Application of isotropic geometry to the solution of the Monge–Ampere equation
DOI:
https://doi.org/10.31489/2025m4/134-147Keywords:
isotropic geometry, Monge–Ampere equation, linear transformation, dual transformation, dual surface, curvature invariants, surface reconstruction, Dirichlet problem, PDEAbstract
This paper explores the Monge–Ampere equation in the context of isotropic geometry. The study begins with an overview of the fundamental properties of isotropic space, including its scalar product, distance formula, and the nature of surfaces and curvatures within this geometric framework. A special focus is placed on dual transformations with respect to the isotropic sphere, and the self-inverse property of the dual surface is established. The article formulates the Monge–Ampere equation for isotropic space and studies its invariant solutions under isotropic motions. Several lemmas are proved to demonstrate how solutions transform under linear modifications and isotropic motions. A specific class of Monge–Ampere-type nonlinear partial differential equations is solved analytically using dual transformations and separation of variables. Additionally, translation surfaces and their curvature properties are studied in detail, particularly through the lens of dual curvature. The results demonstrate the deep relationship between curvature invariants and Monge–Ampere-type equations and show how duality simplifies the solution of nonlinear PDEs. These methods can be used for surface reconstruction and modeling in isotropic spaces.
References
Aleksandrov, A.D. (2006). Intrinsic geometry of convex surfaces. Boca Raton–London–New York: Chapman & Hall/CRC.Bakelman, I.Ya., Verner, A.L., & Kantor, B.E. (1973). Vvedenie v differentsialnuiu geometriiu “V tselom” [Introduction to Differential Geometry “In General”]. Moscow: Nauka [in Russian].
Sachs, H. (1990). Isotrope Geometrie des Raumes [Isotropic Geometry of Space]. Braunschweig– Wiesbaden: Vieweg [in German]. DOI: https://doi.org/10.1007/978-3-322-83785-1
O’Neill, B. (1983). Semi-Riemannian Geometry with Applications to Relativity. New York: Academic Press.
Strubecker, K. (1942). Differentialgeometrie des isotropen Raumes. II. Flaechen konstanter Relativkruemmung K = rt − s2 [Differential geometry of the isotropic space. II. Surfaces of constant relative curvature K = rt − s2]. Mathematische Zeitschrift — Mathematical Journal, 47, 743–777 [in German]. https://doi.org/10.1007/BF01180984 DOI: https://doi.org/10.1007/BF01180984
Strubecker, K. (1962). Airysche Spannungsfunktion und isotrope Differentialgeometrie [Airy’s stress function and isotropic differential geometry]. Mathematische Zeitschrift — Mathematical Journal, 78(1), 189–198 [in German]. https://doi.org/10.1007/BF01195167 DOI: https://doi.org/10.1007/BF01195167
Ismoilov, Sh.Sh. (2022). Geometry of the Monge–Amp`ere equation in an isotropic space. Uzbek Mathematical Journal, 65(2), 66–77. http://dx.doi.org/10.29229/uzmj.2022-2-7 DOI: https://doi.org/10.29229/uzmj.2022-2-7
Lone, M.S., & Karacan, M.K. (2018). Dual translation surfaces in the three-dimensional simply isotropic space . Tamkang Journal of Mathematics, 49(1), 67–77. https://doi.org/10.5556/j.tkjm.49.2018.2476 DOI: https://doi.org/10.5556/j.tkjm.49.2018.2476
Ismoilov, S., Sultanov, B., Mamadaliyev, B., & Kurudirek, A. (2025). Translation surfaces with non-zero constant total curvature in multidimensional isotropic space. Journal of Applied Mathematics and Informatics, 43(1), 191-203. https://doi.org/10.14317/jami.2025.191
Polyanin, A.D., & Zaitsev, V.F. (2004). Handbook of Nonlinear Partial Differential Equations. Boca Raton, FL: Chapman & Hall/CRC. https://doi.org/10.1201/9780203489659 DOI: https://doi.org/10.1201/9780203489659
Ismoilov, Sh.Sh., & Sultonov, B.M. (2023). Invariant geometric characteristics under the dual mapping of an isotropic space. Asia Pacific Journal of Mathematics, 10(20), 1–12. https://doi.org/10.28924/APJM/10-20 DOI: https://doi.org/10.28924/APJM/10-20
Aydin, M.E., & Mihai, A. (2019). Ruled surfaces generated by elliptic cylindrical curves in the isotropic space. Georgian Mathematical Journal, 26(3), 331–340. http://dx.doi.org/10.1515/gmj-2017-0044 DOI: https://doi.org/10.1515/gmj-2017-0044
Aydin, M.E. (2016). Classification results on surfaces in the isotropic 3-space. AKU Journal of Science and Engineering, 16, 239–246. https://doi.org/10.5578/fmbd.27735 DOI: https://doi.org/10.5578/fmbd.27735
Yoon, D.W., & Lee, J.W. (2016). Linear Weingarten helicoidally surfaces in isotropic space. Symmetry, 8(11), 1–7. http://dx.doi.org/10.3390/sym8110126 DOI: https://doi.org/10.3390/sym8110126
Karacan, M.K., Yoon, D.W., & Bukcu, B. (2016). Translation surfaces in the three-dimensional simply isotropic space . International Journal of Geometric Methods in Modern Physics, 13(7), 1–15. https://doi.org/10.1142/S0219887816500882 DOI: https://doi.org/10.1142/S0219887816500882
Toda, M., Guler, E. (2025). Generalized Weierstrass-Enneper Representation for Minimal Surfaces in R4. AIMS Mathematics, 10(9), 22406–22420. https://doi.org/10.3934/math.2025997 DOI: https://doi.org/10.3934/math.2025997
Sultonov, B.M., Kurudirek, A., & Ismoilov, Sh.Sh. (2023). Development and isometry of surfaces in Galilean space G3. Mathematics and Statistics, 11(6), 965–972. https://doi.org/10.13189/ms.2023.110612 DOI: https://doi.org/10.13189/ms.2023.110612
Artykbaev, A. (1988). Total angle about the vertex of a cone in Galilean space. Mathematical Notes of the Academy of Sciences of the USSR, 43(5), 379–382. https://doi.org/10.1007/BF01158845 DOI: https://doi.org/10.1007/BF01158845
Topvoldiyev, F., & Sharipov, A. (2024). On defects of polyhedra isometric on sections at vertices.
AIP Conference Proceedings, 3004(1), article number 030011. https://doi.org/10.1063/5.0199937 DOI: https://doi.org/10.1063/5.0199937
Evans, L.C. (1982). Classical solutions of fully nonlinear, convex, second-order elliptic equations. Communications on Pure and Applied Mathematics, 35(3), 333–363. https://doi.org/10.1002/cpa.3160350303 DOI: https://doi.org/10.1002/cpa.3160350303
Urbas, J. (1990). On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations, Indiana University Mathematics Journal, 39(2), 355–382. http://www.jstor.org/stable/24895452 DOI: https://doi.org/10.1512/iumj.1990.39.39020
Mooney, C. (2018). The Monge–Amp`ere equation. Proceedings of the Mathematical Seminar of the University and Polytechnic of Turin, 76(1), 93–113.







