Inequalities for analytic functions associated with hyperbolic cosine function
DOI:
https://doi.org/10.31489/2025m4/95-106Keywords:
Schwarz estimate, angular derivative, the principle of subordination, activation function, extremal function, analytic function, Julia–Wolff lemma, angular limit, Schwarz lemma at the boundary, the unit discAbstract
In this paper, we investigate the geometric properties of a specific subclass of analytic functions satisfying the condition f' (z) ≺ cosh(√ z) meaning that the function f '(z) is subordinate to the function cosh(√ z). Also, we focus on deriving sharp inequalities for Taylor coefficients, particularly for b2 and the modulus of the second derivative f''(z). Utilizing the Schwarz lemma, both on the unit disc and on its boundary, we provide essential insights into the distortion and growth behaviors of these functions. The paper demonstrates the sharpness of these inequalities through extremal functions and applies the Julia–Wolff lemma to establish boundary behavior results. These findings contribute significantly to the understanding of the analytic functions associated with the hyperbolic cosine function, with potential applications in geometric function theory. It is considered that the extremal functions obtained in this study could be potential hyperbolic activation functions in neural network architectures. This perspective builds a conceptual bridge between geometric function theory and artificial intelligence, indicating that insights from complex analysis can inspire the development of more effective and theoretically grounded activation mechanisms in deep learning. Empirical evaluation of architectures built with novel activation functions may be considered as potential future work.
References
Goluzin, G.M. (1969). Geometricheskaia teoriia funktsii kompleksnoi peremennoi [Geometric theory of functions of a complex variable]. 2nd ed. Moscow: Nauka [in Russian]. DOI: https://doi.org/10.1090/mmono/026
Mundalia, M., & Kumar, S.S. (2023). On a subfamily of starlike functions related to hyperbolic cosine function. The Journal of Analysis, 31(3), 2043–2062. https://doi.org/10.1007/s41478-023-00550-1 DOI: https://doi.org/10.1007/s41478-023-00550-1
Osserman, R. (2000). A sharp Schwarz inequality on the boundary. Proceedings of the American Mathematical Society, 128, 3513–3517. https://doi.org/10.1090/S0002-9939-00-05463-0 DOI: https://doi.org/10.1090/S0002-9939-00-05463-0
Unkelbach, H. (1938). Uber die Randverzerrung bei konformer Abbildung.¨ Mathematische Zeitschrift, 43, 739–742. https://doi.org/10.1007/BF01181115 DOI: https://doi.org/10.1007/BF01181115
Azero˘glu, T.A., & Ornek, B.N. (2013). A refined Schwarz inequality on the boundary.¨ Complex Variables and Elliptic Equations, 58(4), 571–577. https://doi.org/10.1080/17476933.2012.718338 DOI: https://doi.org/10.1080/17476933.2012.718338
Boas, H.P. (2010). Julius and Julia: Mastering the Art of the Schwarz lemma. The American Mathematical Monthly, 117(9), 770–785. https://doi.org/10.4169/000298910X521643 DOI: https://doi.org/10.4169/000298910x521643
Dubinin, V.N. (2004). The Schwarz inequality on the boundary for functions regular in the disk. Journal of Mathematical Sciences, 122(6), 3623–3629. https://doi.org/10.1023/B:JOTH.0000035237.43977.39 DOI: https://doi.org/10.1023/B:JOTH.0000035237.43977.39
Mateljevi´c, M., Mutavdˇzi´c, N., & Ornek, B.N. (2022). Note on some classes of holomorphic¨ functions related to Jack’s and Schwarz’s lemma. Applicable Analysis and Discrete Mathematics, 16(1), 111–131. https://doi.org/10.2298/AADM200319006M DOI: https://doi.org/10.2298/AADM200319006M
Mercer, P.R. (2018). An improved Schwarz lemma at the boundary. Open Mathematics, 16(1), 1140–1144. https://doi.org/10.1515/math-2018-0096 DOI: https://doi.org/10.1515/math-2018-0096
Pommerenke, C. (1992) Boundary Behaviour of Conformal Maps. Berlin: Springer–Verlag. https://doi.org/10.1007/978-3-662-02770-7 DOI: https://doi.org/10.1007/978-3-662-02770-7
Ornek, B.N., Aydemir, S.B., Du¨zenli, T., &¨ Ozak, B. (2022).¨ Some remarks on activation function design in complex extreme learning using Schwarz lemma. Neurocomputing, 492, 23-33. https://doi.org/10.1016/j.neucom.2022.04.010 DOI: https://doi.org/10.1016/j.neucom.2022.04.010
Kunc, V. (2024). Gene expression inference using artificial neural networks (PhD Thesis). Czech Technical University, Czech Republic.
Parisi, L., Ma, R., RaviChandran, N., & Lanzillotta, M. (2021). Hyper-sinh: An accurate and reliable function from shallow to deep learning in TensorFlow and Keras. Machine Learning with Applications, 6, Article 100112. https://doi.org/10.1016/j.mlwa.2021.100112 DOI: https://doi.org/10.1016/j.mlwa.2021.100112
Parisi, L., Zaernia, A., Ma, R., & Youseffi, M. (2021). Hyper-sinh–Convolutional Neural Network for early detection of Parkinson’s disease from spiral drawings. WSEAS Transactions on Computer Research, 9(1), 90–97. https://doi.org/10.37394/232018.2021.9.1 DOI: https://doi.org/10.37394/232018.2021.9.1
Husain, S.S., Ong, E.-J., & Bober, M. (2021). ACTNET: End-to-end learning of feature activations and multi-stream aggregation for effective instance image retrieval. International Journal of Computer Vision, 129, 1432–1450. https://doi.org/10.1007/s11263-021-01444-0 DOI: https://doi.org/10.1007/s11263-021-01444-0







