Forward and inverse problems for a mixed-type equation with the Caputo fractional derivative and Dezin-type non-local condition

Authors

  • R.R. Ashurov V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan; Central Asian University, Tashkent, Uzbekistan https://orcid.org/0000-0001-5130-466X
  • U.Kh. Dusanova V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan; Karshi State University, Karshi, Uzbekistan https://orcid.org/0009-0001-0904-6270
  • N.Sh. Nuraliyeva V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan; Karshi State University, Karshi, Uzbekistan

DOI:

https://doi.org/10.31489/2025m4/46-60

Keywords:

mixed type equation, the Caputo derivative, forward problem, inverse problem, Fourier method, Dezin-type non-local condition, existence and uniqueness, gluing conditions

Abstract

This paper investigates a mixed-type partial differential equation involving the Caputo fractional derivative of order ρ ∈ (0,1) for t > 0, and a classical parabolic equation for t < 0. The problem is studied in an arbitrary N-dimensional domain Ω with smooth boundary, subject to Dezin-type non-local boundary and gluing conditions. For the forward problem, existence and uniqueness of the classical solution are established under suitable assumptions on the data, employing the Fourier method. The influence of the parameter λ in the non-local boundary condition on solvability is analyzed. Additionally, an inverse problem is considered, where the source term is separable as F(x,t) = f(x)g(t), with known g(t) and unknown spatial function f(x). Under certain conditions on g(t), the uniqueness and existence of the solution are proven. This work extends previous results on mixed-type equations, highlighting the role of fractional derivatives and nonlocal conditions in both forward and inverse settings. The findings contribute to the theory of mixed-type and fractional differential equations, with potential applications in subdiffusion and related processes.

References

Bitsadze, A.V. (1958). Nekorrektnost zadachi Dirikhle dlia uravnenii smeshannogo tipa v smeshannykh oblastiakh [Incorrectness of Dirichlet’s problem for the mixed type of equations in mixed regions]. Doklady Akademii nauk SSSR — Reports of the USSR Academy of Sciences, 122(2), 167–170 [in Russian].

Gorenflo, R., Kilbas, A.A., Mainardi, F., & Rogozin, S.V. (2014). Mittag-Leffler functions, Related topics and Applicatins. Berlin, Heidelberg: Springer. DOI: https://doi.org/10.1007/978-3-662-43930-2

Dezin, A.A. (1963). Prosteishie razreshimye rasshireniia dlia ultragiperbolicheskogo i psevdoparabolicheskogo operatorov [The simplest solvable extensions of ultrahyperbolic and pseudoparabolic operators]. Doklady Akademii nauk SSSR — Reports of the USSR Academy of Sciences, 148(5), 1013–1016 [in Russian].

Sabitov, K.B. (2019). Dezin Problem for an equation of the mixed type with a power-law degeneracy. Differential Equations, 55(10), 1384–1389. https://doi.org/10.1134/S0012266119100136 DOI: https://doi.org/10.1134/S0012266119100136

Nakhusheva, Z.A. (2009). On a nonlocal problem of A.A. Dezin for the Lavrent’ev–Bitsadze equation. Differential Equations, 45(8), 1223–1228. https://doi.org/10.1134/S0012266109080151 DOI: https://doi.org/10.1134/S0012266109080151

Gushchina, V.A. (2016). Nelokalnaia zadacha A.A. Dezina dlia uravneniia smeshannogo elliptikogiperbolicheskogo tipa [The nonlocal A.A. Dezin’s problem for an equation of mixed elliptichyperbolic type]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia «Fiziko-matematicheskie nauki» — Bulletin of Samara State Technical University. Series “Physical and Mathematical Sciences”, 20(1), 22–32 [in Russian]. https://doi.org/10.14498/vsgtu1470

Gushchina, V.A. (2017). Dezin nonlocal problem for a mixed-type equation with power degeneration.Vestnik of Samara University Natural Science Series, 22(3-4), 24–31. https://doi.org/10.18287/2541-7525-2016-22-3-4-24-31 DOI: https://doi.org/10.18287/2541-7525-2016-22-3-4-24-31

Murzambetova, M.B. (2023). Priamaia i obratnaia zadacha dlia uravneniia smeshannogo tipa s drobnoi proizvodnoi v smysle Kaputo [Forward and inverse problems for the mixed-type equation with Caputo fractional derivative]. Biulleten Instituta Matematiki — Bulletin of the Institute of the Matematics, 6(5), 124–133 [in Russian].

Feng, P., & Karimov, E.T. (2015). Inverse sourse problems for time-fractional mixed parabolichyperbolic equations. Journal of Inverse and Ill-Posed Problems, 23(4), 339–353. https://doi.org/10.1515/jiip-2014-0022 DOI: https://doi.org/10.1515/jiip-2014-0022

Sabitov, K.B., & Novikova, V.A. (2016). Nonlocal Dezin’s problem for Lavrent’ev-Bitsadze equation. Russian Mathematics, 60(6), 52–62. https://doi.org/10.3103/S1066369X16060074 DOI: https://doi.org/10.3103/S1066369X16060074

Ashurov, R.R., & Shakarova, M.D. (2022). Time-Dependent source identification problem for fractional Schrodinger type equations. Lobachevskii Journal of Mathematics, 43(2), 303–315. https://doi.org/10.1134/S1995080222050055 DOI: https://doi.org/10.1134/S1995080222050055

Muhiddinova, O.T. (2022). Inverse problem for a subdiffusion equation with the Caputo derivative. Uzbek Mathematical Journal, 66(3), 101–111.

Il’in, V.A. (1960). The solvability of mixed problems for hyperbolic and parabolic equations. Russian Mathematical Surveys, 15(2), 85–142. https://doi.org/10.1070/RM1960v015n02ABEH004217 DOI: https://doi.org/10.1070/RM1960v015n02ABEH004217

Krasnoselskiy, M.A., Zabreyko, P.P., Pustylnik, E.I., & Sobolevskiy, P.E. (1966). Integralnye operatory v prostranstvakh summiruemykh funktsii [Integral operators in spaces of summable functions]. Moskva: Nauka [in Russian].

Ashurov, R.R., & Fayziev, Yu.E. (2021). Uniqueness and existence for inverse problem of determining an order of time-fractional derivative of subdiffusion equation. Lobachevskii Journal of Mathematics, 42(3), 508–516. https://doi.org/10.1134/S1995080221030069 DOI: https://doi.org/10.1134/S1995080221030069

Downloads

Published

30.12.2025

How to Cite

Ashurov, R.R., Dusanova, U.Kh., & Nuraliyeva, N.Sh. (2025). Forward and inverse problems for a mixed-type equation with the Caputo fractional derivative and Dezin-type non-local condition. Bulletin of the Karaganda University. Mathematics Series, 4(120), 46–60. https://doi.org/10.31489/2025m4/46-60

Issue

Section

MATHEMATICS