The intrinsic geometry of a convex surface in Galilean space
DOI:
https://doi.org/10.31489/2025m4/33-45Keywords:
Galilean space, convex surface, intrinsic geometry, intrinsic curvature, Gauss–Bonnet theorem, degenerate metric, tangent cone, geodesic, curves with bounded variation of turningAbstract
This paper investigates the intrinsic geometry of a convex surface in the Galilean space. The Galilean space, as a special case of a pseudo-Euclidean space, possesses a degenerate metric. The angle between two directions is defined using a parabolic method, which is itself degenerate. The three-dimensional Galilean space, similar to the Euclidean space, is based on a three-dimensional affine space. While the fundamental geometric objects in these spaces coincide structurally, the geometric quantities associated with them differ significantly from those in Euclidean geometry. It becomes necessary to introduce and rigorously define various geometric characteristics of objects in Galilean space. Therefore, special attention in this work is given to the total angle around the vertex of a cone, the angle between curves on a convex surface, and the variation of curve turning on a convex surface. A geodesic on a convex surface is defined as a curve with bounded variation of turning. A triangle is defined as a curve homeomorphic to a circle, bounded by three geodesics. Using the concept of the total angle around the vertex of a cone, we define the intrinsic curvature of convex surfaces in Galilean space and obtain an analogue of the Gauss–Bonnet theorem for convex surfaces in Galilean geometry. The results obtained extend classical notions of intrinsic geometry under a degenerate metric.
References
Alexandrov, A.D. (2005). Vnutrenniaia geometriia vypuklykh poverkhnostei [Intrinsic geometry of convex surfaces]. Classics of Soviet Mathematics [in Russian].
Roschel, O. (1984). Die Geometrie des Galileischen Raumes [The Geometry of the Galilean Space]. Graz: Forschungszentrum Graz, Mathematisch-Statistische Sektion [in German].
Sultanov, B.M., Kurudirek, A., & Ismoilov, Sh.Sh. (2023). Development and isometry of surfaces in Galilean space G3. Mathematics and Statistics, 11(6), 965–972. https://doi.org/10.13189/ms.2023.110612 DOI: https://doi.org/10.13189/ms.2023.110612
Amorim, R.G.G., Santos, A.F., Vaz, K., & Ulhoa-Zettl, S.C. (2025). On the Pauli–Schro¨dinger coupling to the Galilean gravity. International Journal of Modern Physics A, 40(26), Article 2550109. https://doi.org/10.1142/S0217751X2550109X DOI: https://doi.org/10.1142/S0217751X2550109X
Thiandoum, A. (2025). Curves of constant breadth in Galilean 4-space. Afrika Matematika, 36, Article 70. https://doi.org/10.1007/s13370-025-01296-8 DOI: https://doi.org/10.1007/s13370-025-01296-8
Milin-Sipus, Z., & Divjak, B. (2011). Translation surface in the Galilean space. Glasnik Matematicki, 46(66), 455–469. https://doi.org/10.3336/gm.46.2.14 DOI: https://doi.org/10.3336/gm.46.2.14
Dede, M., Ekici, C., & Goemans, W. (2018). Surfaces of revolution with vanishing curvature in Galilean 3-Space. Journal of Mathematical Physics, Analysis, Geometry, 14(2), 141–152. https://doi.org/10.15407/mag14.02.141 DOI: https://doi.org/10.15407/mag14.02.141
Artykbaev, A. (1988). Total angle about the vertex of a cone in Galilean space. Mathematical Notes, 43(5), 379–382. https://doi.org/10.1007/BF01158845 DOI: https://doi.org/10.1007/BF01158845
Ashyralyev, A., & Artykbaev, A. (2025). A measure associated with a convex surface and its limit cone. Lobachevskii Journal of Mathematics, 46(5), 2312–2316. https://doi.org/10.1134/S1995080224607987 DOI: https://doi.org/10.1134/S1995080224607987
Sharipov, A., Topvoldiyev, F., & Usmonkhujaev, Z. (2024). On one property of a conditional full angle. Mathematics and Statistics, 12(5), 420–427. https://doi.org/10.13189/ms.2024.120503 DOI: https://doi.org/10.13189/ms.2024.120503
Topvoldiyev, F., & Sharipov, A. (2024). On defects of polyhedra isometric on sections at vertices. AIP Conference Proceedings, 3004(1), Article 030011. https://doi.org/10.1063/5.0199937 DOI: https://doi.org/10.1063/5.0199937
Pogorelov, A.V. (1969). Vneshniaia geometriia vypuklykh poverkhnostei [The Extrinsic Geometry of Convex Surfaces]. Moscow: Nauka, Main Editorial Office for Physical and Mathematical Literature [in Russian].
Sachs, H. (1990). Isotrope Geometrie des Raumes [Isotropic geometry of space]. Wiesbaden: Vieweg+Teubner Verlag [in German]. https://doi.org/10.1007/978-3-322-83785-1 DOI: https://doi.org/10.1007/978-3-322-83785-1







