Difference schemes of high accuracy for a Sobolev-type pseudoparabolic equation
DOI:
https://doi.org/10.31489/2025m4/21-32Keywords:
pseudoparabolic equation, filtration equation, finite difference method, finite element method, higher-order accuracy schemes, stability, convergence, accuracy estimatesAbstract
In this work, numerical algorithms of higher-order accuracy are constructed and studied for a pseudoparabolic equation that describes the filtration process in fractured-porous media. The increase in the order of accuracy is achieved in various ways. First, only the spatial variables are approximated, as in the method of lines. Then, to solve the resulting system of linear ordinary differential equations, the finite difference method and the finite element method are applied. The application of these methods makes it possible to achieve a higher order of approximation for the difference schemes. Schemes of fourth-order accuracy in the spatial variables and second-order in time are presented, as well as schemes of fourth-order accuracy in all variables. Based on the stability theory of three-level difference schemes, stability conditions for the proposed algorithms are obtained. Using a special technique for solving the difference schemes, a priori estimates are derived, and based on them, theorems on convergence and accuracy are proven in the class of smooth solutions to the differential problem. An implementation algorithm is proposed for the difference scheme constructed using the finite element method. Test examples for one-dimensional and two-dimensional equations are also provided, demonstrating the higher-order accuracy of the proposed schemes.
References
Sveshnikov, A.G., Alshin, A.B., Korpusov, M.O., & Pletner, Yu.D. (2007). Lineinye i nelineinye uravneniia sobolevskogo tipa [Linear and non-linear equations of the Sobolev type]. Moscow: FIZMATLIT [in Russian].
Kalitkin, N.N., Alshin, A.B., Alshina, E.A., & Rogov, B.V. (2015). Vichisleniia na kvaziravnomernykh setkakh [Computations on quasi-uniform grids]. Moscow: FIZMATLIT [in Russian].
Korpusov, M.O., Pletner, Iu.D., & Sveshnikov, A.G. (2000). O kvazistatsionarnykh protsessakh v provodiashchikh sredakh bez dispersii [On quasi-steady processes in conducting nondispersive media]. Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki — Computational Mathematics and mathematical physics, 40(8), 1237–1249 [in Russian].
Sviridyuk, G.A., & Zagrebina, S.A. (2012). Neklassicheskie modeli matematicheskoi fiziki [Nonclassical mathematical physics models]. Vestnik Iuzhno-Uralskogo universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie — Bulletin of the South Ural University. Series Mathematical Modeling and Programming, (14), 7–18 [in Russian].
Korpusov, M.O., & Sveshnikov, A.G. (2003). Trekhmernye nelineinye evoliutsionnye urevneniia psevdoparabolicheskogo tipa v zadachakh matematicheskoi fiziki [Three-dimensional nonlinear evolution equations of pseudoparabolic type in problems of mathematical physics] Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki — Computational Mathematics and mathematical physics, 43(12), 1835–1869 [in Russian].
Korpusov, M.O., & Sveshnikov, A.G. (2004). Trekhmernye nelineinye evoliutsionnye urevneniia psevdoparabolicheskogo tipa. 2 [Three-dimensional nonlinear evolutionary pseudoparabolic equations in mathematical physics. II] Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki — Computational Mathematics and mathematical physics, 44(11), 2041–2048 [in Russian].
Utebaev, D., Utepbergenova, G.Kh., & Tleuov, K.O. (2021). On convergence of schemes of finite element method of high accuracy for the equation of heat and moisture transfer. Bulletin of the Karaganda University. Mathematics Series, 2(102), 129–141. https://doi.org/10.31489/2021m2/129-141
Aripov, M.M., Utebaev, D., Kazimbetova, M.M., & Yarlashov, R.Sh. (2023). On convergence of difference schemes of high accuracy for one pseudo-parabolic Sobolev type equation. Bulletin of the Karaganda University. Mathematics Series, 1(109), 24–37. https://doi.org/10.31489/2023m1/24-37
Aripov M.M., Utebaev, D., Utebaev, B.D., & Yarlashov, R.Sh. (2024). On stability of nonlinear difference equations and some of their aplications. Bulletin of the Karaganda University. Mathematics Series, 3(115), 13–25. https://doi.org/10.31489/2024m3/13-25
Matus, P.P., & Utebaev, B.D. (2020). Monotonnye raznostnye skhemy povyshennogo poriadka tochnosti dlya parabolicheskikh uravnenii [Monotone difference schemes of higher accuracy for parabolic equations]. Doklady Natsionalnoi akademii nauk Belarusi — Doklady of the National Academy of Sciences of Belarus, 64(4), 391–398 [in Russian]. https://doi.org/10.29235/1561-8323-2020-64-4-391-398
Samarskii, A.A. (1963). Schemes of high-order accuracy for the multi-dimensional heat conduction equation. USSR computational mathematics and mathematical physics, 3(5), 1107–1146. https://doi.org/10.1016/0041-5553(63)90104-6
Xu, B., & Zhang, X. (2019). A reduced fourth-order compact difference scheme based on a proper orthogonal decomposition technique for parabolic equations. Boundary Value Problems, 2019, Article 130, 1–22. https://doi.org/10.1186/s13661-019-1243-8
Matus, P.P., & Utebaev, B.D. (2021). Compact and monotone difference schemes for parabolic equations. Mathematical models and computer simulations, 13(6), 1038–1048. https://doi.org/10.1134/s2070048221060132
Matus, P.P., Gromyko, G.Ph., Utebaev, B.D., & Tuyen, V.T.K. (2025). Konservativnye kompaktnye i monotonnye raznostnye skhemy chetvertogo poriadka dlya odomernykh i dvumernykh kvazilineinykh uravnenii [Conservative compact and monotone fourth-order difference schemes for one-dimensional and two-dimensional quasilinear equations]. Differentsialnye uravneniia — Differential Equations, 61(8), 1117–1134 [in Russian]. https://doi.org/10.31857/S0374064125080097
Matus, P.P., Gromyko, G.Ph., & Utebaev, B.D. (2024). Konservativnye kompaktnye i monotonnye raznostnye skhemy chetvertogo poriadka dlya kvazilineinykh uravnenii [Conservative compact and monotone fourth order difference schemes for quasilinear equations]. Doklady Natsionalnoi akademii nauk Belarusi — Doklady of the National Academy of Sciences of Belarus, 68(1), 7–14 [in Russian]. https://doi.org/10.29235/1561-8323-2024-68-1-7-14
Utebaev, B.D. (2021). Kompaktnye raznostnye skhemy dlya uravnenii konvektsii-diffuzii [Compact difference schemes for convection-diffusion equations]. Vestsi Natsyianalnai akademii navuk Belarusi. Seryia fizika-matematychnykh navuk — Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 57(3), 311–318 [in Russian]. https://doi.org/10.29235/1561-2430-2021-57-3-311-318
Vabishchevich, P.N. (2021). Monotone schemes for convection–diffusion problems with convective transport in different forms. Computational mathematics and mathematical physics, 61(1), 90– 102. https://doi.org/10.1134/S0965542520120155
Mohebbi, A., & Dehghan, M. (2010). High-order compact solution of the one-dimensional heat and advection–diffusion equations. Applied Mathematical Modelling, 34(10), 3071–3084. https://doi.org/10.1016/j.apm.2010.01.013
Samarskii, A.A., & Gulin, A.V. (2009). Ustoichivost raznostnykh skhem [Stability of difference schemes]. Moscow: LIBROKOM [in Russian].
Samarskii, A.A. (2001). The theory of difference schemes. New York: Marcel Dekker.







