An analogue of Leibniz’s rule for Hadamard derivatives and their application

Authors

DOI:

https://doi.org/10.31489/2025m4/180-195

Keywords:

linear and nonlinear diffusion equation, Hadamard-type time fractional derivative, Hadamard time fractional derivative, Mittag-Leffler function, methods of a priori estimates, Leibniz rule, porous medium equation, Gronwall inequality

Abstract

This paper explores new analogues of the Leibniz rule for Hadamard and Caputo–Hadamard fractional derivatives. Unlike classical derivatives, fractional ones have a strong nonlocal character, meaning that the value of the derivative at a given point depends on the entire history of the function. Because of this nonlocality, the standard product rule cannot be directly applied. The study develops refined formulas for differentiating the product of two functions, which include additional integral terms representing memory effects inherent to fractional calculus. The paper also establishes a series of inequalities that make it possible to estimate the fractional derivatives of nonlinear expressions, such as powers of a function, through the derivative of the function itself. In particular, it is shown that a specific inequality holds for positive functions that relates the fractional derivative of the function power to the function product and its fractional derivative. These theoretical results are of great importance for the study of linear and nonlinear fractional diffusion equations. They provide useful tools for proving the existence, uniqueness, and stability of their solutions and for deriving a priori estimates that describe the qualitative behavior of such systems.

References

Tarasov, V.E. (2013). No violation of the Leibniz rule. No fractional derivative. Communications in Nonlinear Science and Numerical Simulation, 18(11), 2945–2948. https://doi.org/10.1016/j.cnsns.2013.04.001 DOI: https://doi.org/10.1016/j.cnsns.2013.04.001

Ahmad, B., Alsaedi, A., Ntouyas, S.K., & Tariboon, J. (2017). Hadamard-Type Fractional Differential Equations. Springer. https://doi.org/10.1007/978-3-319-52141-1 DOI: https://doi.org/10.1007/978-3-319-52141-1

Samko, S.G., Kilbas, A.A., & Marichev, O.I. (1993). Fractional Integrals and Derivatives, Theory and Applications. Yverdon: Gordon and Breach.

Kilbas, A.A., Srivastava, H.M., & Trujillo, J.J. (2006). Theory and applications of fractional differential equations (North-Holland Mathematics Studies, Vol. 204). Elsevier.

Carvalho-Neto, P.M., & Fehlberg Junior, R. (2020). On the fractional version of Leibniz rule. Mathematische Nachrichten, 293(4), 670–700. https://doi.org/10.1002/mana.201900097 DOI: https://doi.org/10.1002/mana.201900097

Sousa, J.V.d.C., & de Oliveira, E.C. (2019). Leibniz type rule: ψ-Hilfer fractional operator. Communications in Nonlinear Science and Numerical Simulation, 77, 305–311. https://doi.org/10.1016/j.cnsns.2019.05.003 DOI: https://doi.org/10.1016/j.cnsns.2019.05.003

Osler, T.J. (1970). Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series. SIAM Journal on Applied Mathematics, 18(3), 658–674. https://doi.org/10.1137/0118059 DOI: https://doi.org/10.1137/0118059

Osler, T.J. (1972). A further extension of the Leibniz rule to fractional derivatives and its relation to Parseval’s formula. SIAM Journal on Applied Mathematics, 3(1), 1–16. https://doi.org/10.1137/0503001 DOI: https://doi.org/10.1137/0503001

Alsaedi, A., Ahmad, B., & Kirane, M. (2015). Maximum principle for certain generalized time and space fractional diffusion equations. Quarterly of Applied Mathematics, 73, 163–175. https://doi.org/10.1090/S0033-569X-2015-01386-2 DOI: https://doi.org/10.1090/S0033-569X-2015-01386-2

Cuesta, E., Kirane, M., Alsaedi, A., & Ahmad, B. (2021). On the sub-diffusion fractional initial value problem with time variable order. Advances in Nonlinear Analysis, 10(1), 1301–1315. https://doi.org/10.1515/anona-2020-0182 DOI: https://doi.org/10.1515/anona-2020-0182

Zacher, R. (2008). Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients. Journal of Mathematical Analysis and Applications, 348(1), 137–149. https://doi.org/10.1016/j.jmaa.2008.06.054 DOI: https://doi.org/10.1016/j.jmaa.2008.06.054

Carpinteri, A., & Mainardi, F. (1997). Fractals and Fractional Calculus in Continuum Mechanics. Vienna–New York: Springer. (CISM International Centre for Mechanical Sciences, 378). https://doi.org/10.1007/978-3-7091-2664-6 DOI: https://doi.org/10.1007/978-3-7091-2664-6

Hilfer, R. (2000). Applications of Fractional Calculus in Physics. Singapore: World Scientific. https://doi.org/10.1142/3779 DOI: https://doi.org/10.1142/3779

Liouville, J. (1832). Memoire sur le calcul des differentielles a indices quelconques [Memoir on the calculus of differentials of arbitrary order]. Journal de l’Ecole Polytechnique — Journal of the Polytechnic School, 13, 1–92 [in French].

Hadamard, J. (1892). Essai sur l’etude des fonctions donnees par leur developpement de Taylor [Essay on the study of functions given by their Taylor expansion]. Journal de Mathematiques Pures et Appliquees — Journal of Pure and Applied Mathematics, 8, 101–186 [in French].

Metzler, R., & Klafter, J. (2000). The random walk’s guide to anomalous diffusion: a fractional dinamics approach. Physics Reports, 339(1), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 DOI: https://doi.org/10.1016/S0370-1573(00)00070-3

Ladyzhenskaya, O.A. (1973). Kraevye zadachi matematicheskoi fiziki [Boundary Value Problems of Mathematical Physics]. Moscow: Nauka [in Russian].

Li, C., & Li, Z. (2021). Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation. Journal of Nonlinear Science, 31, Article 31. https://doi.org/10.1007/s00332-021-09691-8 DOI: https://doi.org/10.1007/s00332-021-09691-8

Ma, L., & Li, C.P. (2017). On Hadamard fractional calculus. Fractals, 25(3), Article 1750033. https://doi.org/10.1142/S0218348X17500335 DOI: https://doi.org/10.1142/S0218348X17500335

Smadiyeva, A.G. (2024). Degenerate Diffusion Equation with the Hadamard Time-Fractional Derivative. Women in Analysis and PDE. Trends in Mathematics, 5, 365–374. https://doi.org/10.1007/978-3-031-57005-6_38 DOI: https://doi.org/10.1007/978-3-031-57005-6_38

Yang, Z., Zheng, X., & Wang, H. (2022). Well-posedness and regularity of Caputo–Hadamard time-fractional diffusion equations. Fractals, 30(1), Article 2250005. https://doi.org/10.1142/S0218348X22500050 DOI: https://doi.org/10.1142/S0218348X22500050

Yin, C.T., Ma, L., & Li, C.P. (2018). Comparison Principles for Hadamard-Type Fractional Differential Equations. Fractals, 26(4), Article 1850056. https://doi.org/10.1142/S0218348X18500561 DOI: https://doi.org/10.1142/S0218348X18500561

Abdelhedi, W. (2024). On Leibniz type rule for generalized fractional derivatives. Bulletin des Sciences Mathematiques, 196, Article 103495. https://doi.org/10.1016/j.bulsci.2024.103495 DOI: https://doi.org/10.1016/j.bulsci.2024.103495

Ren, X., Wang, G., Bai, Z., & El-Deeb, A.A. (2019). Maximum principle and its application to multi-index Hadamard fractional diffusion equation. Boundary Value Problems volume, 2019, Article 182. https://doi.org/10.1186/s13661-019-01299-y DOI: https://doi.org/10.1186/s13661-019-01299-y

Kirane, M., & Torebek, B.T. (2019). Extremum principle for the Hadamard derivatives and its application. Fractional Calculus and Applied Analysis, 22, 358–378. https://doi.org/10.1515/fca-2019-0022 DOI: https://doi.org/10.1515/fca-2019-0022

Salamooni, Ahmad Y.A., & Pawar, D.D. (2021). Continuous dependence of a solution for fractional order Cauchy-type problem. Partial Differential Equations in Applied Mathematics, 4, Article 100110. https://doi.org/10.1016/j.padiff.2021.100110 DOI: https://doi.org/10.1016/j.padiff.2021.100110

Downloads

Published

30.12.2025

How to Cite

Smadiyeva, A.G. (2025). An analogue of Leibniz’s rule for Hadamard derivatives and their application. Bulletin of the Karaganda University. Mathematics Series, 4(120), 180–195. https://doi.org/10.31489/2025m4/180-195

Issue

Section

MATHEMATICS