On solving the second boundary value problem for the Viscous Transonic Equation
DOI:
https://doi.org/10.31489/2025m3/34-45Keywords:
equations with multiple characteristics, boundary value problem, uniqueness, existence, method of separated variables, eigenvalue, eigenfunction, functional series, absolute and uniform convergenceAbstract
In a rectangular domain, the second boundary value problem for the Viscous Transonic Equation is considered. The uniqueness of the solution to the problem is proved using the energy integral method. The existence of a solution is proved by the method of separation of variables, i.e. it is sought in the form of a product of two functions X (x) and Y (y). For definition Y (y), an ordinary differential equation of the second order with two boundary conditions on the boundaries of segment [0,q] is obtained. For this problem, the eigenvalues and the corresponding eigenfunctions are found at n ∈ N. For definition X (x), an ordinary differential equation of the third order with three boundary conditions on the boundaries of segment [0,q] is obtained. The solution to this problem is found in the form of an infinite series, uniform convergence, and the possibility of term-by-term differentiation under certain conditions on the given functions is proven. The convergence of the second-order derivative of the solution with respect to variable y is proved using the Cauchy-Bunyakovsky and Bessel inequalities. When substantiating the uniform convergence of the solution, the absence of a “small denominator” is proved.
References
Yuldashev, T.K. (2014). Obratnaia zadacha dlia odnogo integro-differentsialnogo uravneniia Fredgolma v chastnykh proizvodnykh tretego poriadka [Inverse problem for one Fredholm integrodifferential equation in third order partial derivatives]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia Fiziko-matematicheskie nauki — Bulletin of Samara State Technical University, Series Physical and mathematical sciences, 1(34), 56–65 [in Russian]. https://doi.org/10.14498/vsgtu1299
Yuldashev, T.K. (2021). Smeshannye i nelokalnye kraevye zadachi dlia differentsialnykh i integrodifferentsialnykh uravnenii [Mixed and Nonlocal Boundary Value Problems for Differential and Integro-Differential Equations]. Tashkent: Universitet [in Russian].
Ryjov, O.S. (1965). Asimptoticheskaia kartina obtekaniia tel vrashcheniia so zvukovym potokom viazkogo i teploprovodiashchego gaza [Asymptotic picture of flow around bodies of revolution with a sonic flow of viscous and heat-conducting gas]. Prikladnaia Matematika i Mekhanika — Applied Mathematics and Mechanics, 29(6), 1004–1014 [in Russian].
Diesperov, V.N. (1972). On Green’s function of the linearized viscous transonic equation. USSR
Computational Mathematics and Mathematical Physics, 12(5), 225–241. https://doi.org/10.1016/0041-5553(72)90013-4
Cattabriga, L. (1961). Potenziali di linea e di dominio per equazioni non paraboliche in due variabilia caratteristiche multiple [Line and domain potentials for non-parabolic equations in two variables with multiple characteristics]. Rendiconti del seminario matimatico della univ. di Padava — Proceedings of the Mathematical Seminar of the University of Padua, 31, 1–45 [in Italian].
Dzhuraev, T.D, & Apakov, Yu.P. (2007). Ob avtomodelnom reshenii odnogo uravneniia tretego poriadka s kratnymi kharakteristikami [On the self-similar solution of a third-order equation with multiple characteristics]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia «Fiziko-matematicheskie nauki» — Journal of Samara State Technical University, Series Physical and Mathematical Sciences, 2(15), 18–26 [in Russian].
Dzhuraev, T.D., & Apakov, Yu.P. (2010). On the theory of the third-order equation with multiple characteristics containing the second time derivative. Ukrainian Mathematical Journal, 62(1), 43—55. https://doi.org/10.1007/s11253-010-0332-8
Zikirov, O.S. (2014). Dirichlet problem for third-order hyperbolic equations. Russian Mathematics, 58, 53–60. https://doi.org/10.3103/S1066369X14070068
Karimov, Sh.T., & Khojiakbarova, G. (2017). Analog zadachi Gursa dlia odnogo neklassicheskogo uravneniia tretego poriadka s singuliarnym koeffitsientom [An analog of the Goursat problem for a third-order non-classical equation with singular coefficient]. Modern Problems of Dynamical Systems and Their Applications: Abstracts of the Republic Scientific Conference with Participation of Foreign Scientists. Turin Polytechnic University in Tashkent (p. 121–122) [in Russian].
Kozhanov, I., & Potapova, S.V. (2018). Boundary value problems for odd order forwardbackward-type differential equations with two time variables. Siberian Mathematics Journal, 59(5), 870–884. https://doi.org/10.1134/S0037446618050117
Kozhanov, A.I., & Diuzheva, A.V.(2020). Nelokalnye zadachi s integralnym usloviem dlia differentsialnykh uravnenii tretego poriadka [Nonlocal problems with integral conditions for thirdorder differential equations]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia «Fiziko-matematicheskie nauki» — Journal of Samara State Technical University, Series. Physical and Mathematical Sciences, 24(4), 607–620 [in Russian].
Ashyralyev, A., Belakroum, K., & Guezane-Lakoud, A. (2017). Stability of boundary-value problems for third-order partial differential equations. Electronic Journal of Differential Equations, 2017(53), 1–11.
Ashyralyev, A., Ibrahim, S., & Hincal, E. (2021). On stability of the third order partial delay differential equation with involution and Dirichlet condition. Bulletin of the Karaganda University. Mathematics Series, 2(102), 25–34. https://doi.org/10.31489/2021M2/25-34
Ashyralyev, A., & Belakroum, K. (2022). A stable difference scheme for a third-order partial differential equation Journal of Mathematical Sciences, 260(4), 399–417. https://doi.org/10.1007/s10958-022-05702-5
Sabitov, K.B. (2021). Initial–Boundary Value Problems for Equation of Oscillations of a Rectangular Plate. Russian Mathematics, 65, 52–62. https://doi.org/10.3103/S1066369X21100054
Umarov, R.A. (2025). Kraevye zadachi dlia uravneniia tretego poriadka s kratnymi kharakteristikami s mladshimi chlenami [Boundary value problems for a third-order equation with multiple characteristics and lower terms]. Fergana [in Russian].
Khamitov, A.A. (2024). O korrektnosti kraevoi zadachi dlia uravneniia tretego poriadka s kratnymi kharakteristikami v trekhmernom prostranstve [Well-posedness of a boundary value problem for a third-order PDE with multiple characteristics in three-dimensional space]. Doklady Akademii nauk Respubliki Uzbekistan — Reports of the Academy of Sciences of the Republic of Uzbekistan, 3, 32–38 [in Russian].
Apakov, Yu.P., & Umarov, R.A. (2022). Solution of the Boundary Value Problem for a Third Order Equation with Little Terms. Construction of the Green’s Function. Lobachevskii Journal of Mathematics, 43(3), 738–748. https://doi.org/10.1134/S199508022206004X
Umarov, R.A. (2024). Ob odnoi kraevoi zadache dlia neodnorodnogo uravneniia tretego poriadka s peremennymi koeffitsientami [On a Boundary Value Problem for an Inhomogeneous ThirdOrder Equation with Variable Coefficients]. Nauchnyi vestnik Namanganskogo Gosudarstvennogo Universiteta — Scientific Bulletin of Namangan State University, 2, 16–27 [in Russian].
Irgashev, B.Yu. (2023). Construction of Fundamental Solution for an Odd-Order Equation. Vestnik St. Petersburg University, Mathematics, 56, 512–520. https://doi.org/10.1134/S1063454123040180
Irgashev, B.Yu. (2022). A Boundary Value Problem with Conjugation Conditions for a Degenerate Equation with the Caputo Fractional Derivative. Russian mathematics, 66(4), 24–31. https://doi.org/10.3103/S1066369X2204003X
Irgashev, B.Yu. (2023). A nonlocal problem for a mixed equation of high even order with a fractional Caputo derivative. Journal of elliptic and parabolic equations, 9, 389–399. https://doi.org/10.1007/s41808-023-00205-z
Apakov, Yu.P. (2019). K teorii uravnenii tretego poriadka s kratnymi kharakteristikami [On the theory of third-order equations with multiple characteristics]. Tashkent: Fan va texnologiya [in Russian].
Khasanov, A.B. (2016). Shturm-Liuvil chegaravii masalalari nazariyasiga kirish [Introduction to the Theory of Sturm-Liouville Boundary Value Problems. Tashkent: TURON-IQBOL [in Uzbek].
Nikolskii, S.M. (1983). Kurs matematicheskogo analiza [Course of Mathematical Analysis]. Novosibirsk: Nauka [in Russian].