Mixed problem for a third order parabolic-hyperbolic model equation
DOI:
https://doi.org/10.31489/2025m3/57-67Keywords:
second order degenerate hyperbolic equation of the first kind, third-order equation with multiple characteristics, third-order parabolic-hyperbolic equation, Volterra integral equation, Fredholm integral equation, Tricomi method, method of integral equations, integral equation method, Mittag-Leffler functionsAbstract
In 1978, the journal Differential Equations published an article by A.M. Nakhushev, that presented a method for correctly formulating a boundary value problem for a class of second-order parabolic-hyperbolic equations in an arbitrarily bounded domain with a smooth or piecewise smooth boundary. In that work, a boundary value problem was formulated and investigated using the method of a priori estimates, which is currently called the first boundary value problem for a second-order mixed parabolic-hyperbolic equation. In this work, a boundary value problem for a third-order model parabolic-hyperbolic equation is formulated and investigated in a mixed domain, following the approach of A.M. Nakhushev for second-order mixed parabolic-hyperbolic equations. In one part of the mixed domain, the equation under consideration is a degenerate hyperbolic equation of the first kind of the second order, and in the other part, it is a nonhomogeneous equation of the third order with multiple characteristics and reverse-time parabolic type. For various values of the parameter, existence and uniqueness theorems for a regular solution are proved. The uniqueness theorem is proved using the method of energy integrals combined with A.M. Nakhushev’s method. The existence theorem is proved by the method of integral equations. In terms of the MittagLeffler function, the solution of the problem is found and written out explicitly. Sufficient smoothness conditions for the given functions are found, which ensure the regularity of the obtained solution.
References
Struchina, G.M. (1961). Zadacha o sopriazhenii dvukh uravnenii parabolicheskogo i giperbolicheskogo tipov [The problem of conjugation of two equations of parabolic and hyperbolic types]. Inzhenerno-fizicheskii zhurnal — Engineering and Physics Journal, 4(11), 99–104 [in Russian].
Zolina, L.A. (1966). O kraevoi zadache dlia modelnogo uravneniia giperbolo-parabolicheskogo tipa [On the boundary value problem for a model equation of hyperbolic-parabolic type]. Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki — Journal of Computational Mathematics and Mathematical Physics, 6(6), 991–1001 [in Russian].
Sabitov, K.B. (1989). K teorii uravnenii smeshannogo parabolo-giperbolicheskogo tipa so spektralnym parametrom [On the theory of equations of mixed parabolic-hyperbolic type with a spectral parameter]. Differentsialnye uravneniia — Differential Equations, 25(1), 117–126 [in Russian].
Nakhushev, A.M. (2006). Zadachi so smeshcheniem dlia uravnenii v chastnykh proizvodnykh [Problems with shift for partial differential equations]. Moscow: Nauka [in Russian].
Sabitov, K.B. (2016). Priamye i obratnye zadachi dlia uravnenii smeshannogo parabolo-giperbolicheskogo tipa [Direct and inverse problems for equations of mixed parabolic-hyperbolic type]. Moscow: Nauka [in Russian].
Balkizov, Zh.A. (2021). Zadacha so smeshcheniem dlia vyrozhdaiushchegosia giperbolicheskogo uravneniia pervogo roda [Problem with shift for a degenerate hyperbolic equation of the first kind]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia FizikoMatematicheskie nauki — Bulletin of Samara State Technical University. Series PhysicsMathematics Sciences, 25(1), 21–34 [in Russian]. https://doi.org/10.14498/vsgtu1783
Ergashev, T.G. (2017). Obobshchennye resheniia odnogo vyrozhdaiushchegosia giperbolicheskogo uravneniia vtorogo roda so spektralnym parametrom [Generalized solutions of one degenerate hyperbolic equation of the second kind with a spectral parameter]. Vestnik Tomskogo gosudarstvennogo universiteta. Seriia Matematika i Tekhnika — Bulletin of Tomsk State University. Series Mathematics and Technology, 46, 41–49 [in Russian]. https://doi.org/10.17223/19988621/46/6
Sabitov, K.B., & Zaitseva, N.V. (2019). Vtoraia nachalno-granichnaia zadacha dlia B-giperbolicheskogo uravneniia [The second initial boundary value problem for the B-hyperbolic equation]. Izvestiia Vysshikh Uchebnykh Zavedenii. Matematika — News of Higher Educational Institutions. Mathematics, 10, 75–86 [in Russian]. https://doi.org/10.3103/S1066369X19100086
Bimenov, M.A., & Omarbaeva, A. (2024). Nonlocal initial-boundary value problems for a degenerate hyperbolic equation. Analysis and Applied Mathematics, 147–154. https://doi.org/10.1007/978-3-031-62668-5_14
Mirsaburov, M., & Mamatmuminov, D.T. (2025). Zadacha s analogom usloviia BitsadzeSamarskogo na otrezke vyrozhdeniia i parallelnom emu vnutrennem otrezke oblasti dlia odnogo klassa vyrozhdaiushchikhsia giperbolicheskikh uravnenii [A problem with an analogue of the Bitsadze-Samarskii condition on a degeneracy segment and a parallel interior segment of the domain for one class of degenerate hyperbolic equations]. Izvestiia Vysshikh Uchebnykh Zavedenii. Matematika — News of Higher Educational Institutions. Mathematics, 3, 25–29 [in Russian]. https://doi.org/10.26907/0021-3446-2025-3-25-29
Kalmenov, T.Sh., & Sadybekov, M.A. (2017). O zadache tipa Franklia dlia uravneniia smeshannogo parabolo-giperbolicheskogo tipa [On a Frankl-type problem for an equation of mixed parabolic-hyperbolic type]. Sibirskii matematicheskii zhurnal — Siberian Mathematical Journal, 58(2), 298–304 [in Russian]. https://doi.org/10.17377/SMZH.2017.58.205
Ruziev, M.Kh. (2021). A boundary value problem for a partial differential equation with fractional derivative. Fractional Calculus and Applied Analysis, 24(2), 509–517. https://doi.org/10.1515/fca-2021-0022
Ruziev, M.Kh., Zunnunov, R.T., Yuldasheva, N.T., & Rakhimova, G.B. (2024). Bitsadze-Samarskii type problem for the diffusion equation and degenerate hyperbolic equation. Bulletin of KRAUNC. Series of Physical and Mathematical Sciences, 48(3), 33–42. https://doi.org/10.26117/2079-6641-2024-48-3-33-42
Khaidarov, I.U., & Zunnunov, R.T. (2025). Ob odnoi kraevoi zadache so smeshcheniem dlia parabolo-giperbolicheskogo uravneniia s dvumia perpendikuliarnymi liniami izmeneniia tipa [On a boundary value problem with shift for a parabolic-hyperbolic equation with two perpendicular lines of type change]. Vestnik KRAUNC. Seriia fiziko-matematicheskie nauki — Bulletin of KRAUNC. Series of Physical and Mathematical Sciences, 50(1), 39–61 [in Russian]. https://doi.org/10.26117/2079-6641-2025-50-1-39-61
Balkizov, Zh.A., Ezaova, A.G., & Kanukoeva, L.V. (2021). Kraevaia zadacha so smeshcheniem dlia uravneniia parabolo-giperbolicheskogo tipa tretego poriadka [Boundary value problem with shift for a third-order parabolic-hyperbolic equation with lines of communication]. Vladikavkazskii matematicheskii zhurnal — Vladikavkaz Mathematical Journal, 23(2), 5–18 [in Russian]. https://doi.org/10.46698/d3710-0726-7542-i
Balkizov, Zh.A. (2021). Nonlocal boundary value problem for a third order parabolic-hyperbolic equation with degeneration of type and order in the hyperbolicity domain. Journal of Mathematical Sciences, 250(5), 728–739. https://doi.org/10.1007/s10958-020-05037-z
Kozhobekov, K., & Sopuev, A. (2024). Ob odnoi nelokalnoi zadache dlia uravneniia smeshannogo parabolo-giperbolicheskogo tipa tretego poriadka s liniei sopriazheniia [On a nonlocal problem for a third-order mixed parabolic-hyperbolic equation]. Vestnik Oshskogo gosudarstvennogo universiteta. Seriia Matematika. Fizika. Tekhnika — Bulletin of Osh State University. Series Mathematics. Physics. Engineering, 2(5), 75–82 [in Russian].
Smirnov, M.M. (1977). Vyrozhdaiushchiesia giperbolicheskie uravneniia [Degenerate hyperbolic equations]. Minsk: Vyssheishaia shkola [in Russian].
Nakhushev, A.M. (2003). Drobnoe ischislenie i ego primenenie [Fractional calculus and its application]. Moscow: Fizmatlit [in Russian].
Alikhanov, A.A. (2010). A priori estimates for solutions of boundary value problems for fractionalorder equations. Differential Equations, 46(5), 660–666. https://doi.org/10.1134/S0012266110050058