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PREFACE

https://doi.org/10.31489/2025M4 /4 Editorial

Functional analysis in interdisciplinary applications

Guest-Editors: Allaberen Ashyralyev!®3* Charyyar Ashyralyyev!45 Makhmud Sadybekov?

! Bahcesehir University, Istanbul, Turkey;
2 Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan;
8 Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia;
4 Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, Kazakhstan;
5 National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan
(E-mail: aallaberen@gmail.com, charyyar@gmail.com, sadybekov@math.kz)

Keywords: boundary value problems, delay differential operators with involution, difference schemes, Dirich-
let problem, identification problems, involution, integro-differential equations, numerical methods and so-
lutions, partial differential equations, regular solutions, stability, well-posedness.

2020 Mathematics Subject Classification: 30C80, 30E25, 34B10, 35G35, 35G46, 35J67, 35J96, 35K10,
35L04, 35L53, 35L57, 35M10, 35M12, 35R11, 37B25,37C25,37C27, 39K40, 41A35, 41A20, 49K40, 52A38,
53A05, 53A35, 53C42, 58D25, 65M06, 65M12, 92B05

This issue presents a collection of 15 carefully selected papers authored by both international and
national researchers. Each paper has undergone rigorous peer review and introduces novel findings in
the fields of analysis and applied mathematics, with particular emphasis on their application to the
construction and investigation of solutions to well-posed and ill-posed boundary value problems for
partial differential equations.

The contributing authors represent a diverse range of countries, including Turkey, Kazakhstan,
Sweden, the Russian Federation, Azerbaijan, Uzbekistan, Turkmenistan, Iraq and Cyprus. We are
especially pleased to note that many of these articles are co-authored by researchers from different
universities across the globe, reflecting the collaborative spirit and international scope of contemporary
mathematical research.

Guest-Editors: A. Ashyralyev, C. Ashyralyyev and M. Sadybekov

September 15, 2025

*Correspondence: E-mail: aallaberen@gmail.com
(© 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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MATHEMATICS

https://doi.org/10.31489/2025M4 /5-20 Research article

The quadratic B-spline method for approximating systems of Volterra
integro fractional-differential equations involving both classical and
fractional derivatives

D.Kh. Abdullah, K.H.F. Jwamer*, Sh.Sh. Ahmed

College of Science, University of Sulatmani, Sulaymaniyah, Iraq
(E-mail: Diar.khalid85Q@Qgmail.com, karwan.jwamer@univsul.edu.iq, Shazad.ahmed @univsul.edu.iq)

The quadratic B-spline method is a widely recognized numerical technique for solving systems of Volterra
integro-differential equations that involve both classical and fractional derivatives (SVIDE’s-CF). This study
presents an improved application of the quadratic B-spline approach to achieve highly accurate and compu-
tationally efficient solutions. In the method developed in this paper, control points are treated as unknown
variables within the framework of the approximate solution. The fractional derivative $DZ is considered
in the Caputo sense. First, we divide the domain into subintervals, then construct quadratic B-spline basis
functions over each subinterval. The approximate solution is presented as a quadratic combination of these
B-spline functions over each subinterval, where the control points act as variables. To simplify the system of
(VIDE’s-CF) into a solvable set of algebraic equations, the collocation method is applied by discretizing the
equations at chosen points within each subinterval. The Jacobian matrix method is employed to perform
computations efficiently. In addition, a careful, step-by-step algorithm for employing the proposed method
is presented to simplify its use, we implemented the method in a Python program and optimized it for
efficiency. Experimental example demonstrates effectiveness and accuracy of the proposed technique and
its comparison with present techniques in terms of accuracy and computational efficiency.

Keywords: system of Volterra integro-fractional differential equation (SVIDE’s), quadratic B-spline func-
tions, Caputo fractional derivative, collocation method, Jacobian matrix algorithm, Clenshaw-Curtis
quadrature rule.

2020 Mathematics Subject Classification: 34K33, 45D05, 45J05.

Introduction

Mathematicians have extended the classical concepts of differentiation and integration to fractional
(non-integer) orders over the centuries [1]. This kind of generalization, which is referred to as frac-
tional calculus (FC), is a more general mathematical framework for investigating complex systems [2].
Compared with the ordinary calculus that deals with essentially local and instantaneous changes, the
fractional calculus incorporates memory and hereditary properties and therefore is particularly suitable
to model those processes where the present state depends not only on the present status but also on the
past history [3,4]. Several real-life phenomena demonstrate such dynamics [5]. For example, diffusion

*Corresponding author. E-mail: karwan.jwamer@univsul.edu.iq
Received: 26 June 2025; Accepted: 4 September 2025.
(© 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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in porous media, viscoelasticity, and biological systems with memory function regularly display dynam-
ics that are not possible to describe through classical models. In all these cases, fractional derivatives
give more accurate and flexible descriptions, accounting for long-range temporal and spatial depen-
dencies [6-8]. After that, researchers developed integro-fractional differential equations that combine
fractional derivatives with integral terms. Such equations extend traditional differential and integral
equations to include both instantaneous rates of change and accumulative past effects at the same
time. This makes them powerful tools for modelling dynamic processes where past states exert strong
impacts on current and future dynamics [8,9|. Furthermore, fractional integro-differential and integro-
differential equations of fractional order have garnered significant interest in the literature, leading to
the development of several unique methodologies. Benzahi et al. demonstrated a least squares method
[10]. Ghosh et al. presented an iterative difference scheme for solving an arbitrary order nonlinear
Volterra integro-differential population growth model [11]. Rahimkhani et al. illustrated nonlinear
fractional integro-differential equations using fractional alternative Legendre functions [12]. Akbar et
al. presented an analysis of delay [13|. Miran et al. presented Laplace transform multi-time delay
[14]. Akhlaghi et al. addressed fractional order integro-differential equations via Muntz orthogonal
functions [15]. Yuzbai et al. presented a fractional Bell collocation method [16]. In practice, most
linear Volterra integro-fractional differential systems with variable coefficients are too complex to solve
exactly using analytical methods. Because of this, researchers often turn to approximation techniques
and numerical methods. One of the most common and effective tools for this purpose is the use of
spline and B-spline functions [17,18]. These functions play a crucial role in solving both linear and
nonlinear functional equations. Many researchers use B-spline functions to solve various mathematical
problems because of their flexibility and accuracy [19-21].

This study presents an approximate method for solving the linear system associated with Volterra
integro-differential equations, encompassing classical and fractional orders (LSVIDE’s-CF). For the
derivation, it deals with quadratic B-spline interpolation functions. Which takes the following general
forms:

Pi(x) U (2) + aio(x) SDIU(x) + ain (2) SDIU () + ain(x)Us(x)

= Fi(x) +ZWij/ Kij(z,s) ngijL{j(s) ds. (1)
=0 Ja

Under the following conditions:

[Dﬁiui(x)} =Wk =01, — 1, and i = 0,1,...,m. 2)
The variable coefficients P;(x)(# 0), aio(x), aii(xz) € C([a,b],R) and K;; € C(O,R), © = {(z,s) :
a < s < x < b}, with fractional orders: o;1 > 040 > 0 and B, > Bitm-1) > -+ > Ba > Bio = 0.

Furthermore, the pu; = maX{Q,mfm}, where mfj -1 < By < mfy,mfj = [Bij], wij € R, for all
i,7 = 0,1,...,m. In the manuscript, we examined and assessed the systems of Volterra integro-
differential equations for classical and fractional orders (SVIDE’s-CF); according to the conditions,
fractional orders between 0 and 1. We approximate these integrals using the Clenshaw-Curtis quadra-
ture rule [17,22] in conjunction with quadratic B-spline functions. Four algorithms summarized the
information, and we later produced Python software to implement each algorithm. These algorithms
resolved a few test instances. The paper is structured as follows: in Section 1, we introduce some
notions of fractional calculus necessary for the description of our model, and then we define the fun-
damental concepts of B-spline functions. In Section 2, we introduce the numerical approximation that
we use throughout our work. The experimental outcomes are presented in Section 3. Lastly, the
concluding remarks on the proposed method are presented in Section 4.

6 Bulletin of the Karaganda University



The quadratic B-spline method for ...

1 Basic definitions and notation

In this section, we will introduce and study the concepts.

Definition 1. [1,2] Let n — 1 < a < n (€ ZT), a € RT. The operators (¥D2V(z)) and ($D2V(x))
of fractional order « are defined as:

. 1 dr Ty
aR’DgV(.fL') = D’g (aja? V(Jf)) = den/a (x_s()sa)_i_l_nds, xTr > a, (3)
—ayn 1 ’ V(n)
CDEV) = T2 DV) = ot [ s e @)

Equation (3) represents the Riemann—Liouville fractional differential operator. Additionally, the
operator ,J*, known as the Riemann—Liouville fractional integral of order «, is defined as

1 T
oIV (x) = / (z —5) WV(s)ds, TV(z)=V(z), z>a.
(@) Jaq
Equation (4) defines the Caputo fractional differential operator. Similar to integer-order differen-
tiation, the Caputo fractional differentiation is a linear operation:

D5 [pVi (@) + p2Wa(w)] = pi1 DEVi () + p2g D Va(2).
Furthermore, the Caputo derivative of any constant function (say A € R) vanishes: DA = 0.

Lemma 1. |1,9] The function V(z) = (x — a)™ for n > 0 has a S-Caputo derivative (§ > 0), which
is given as follows: for n € {0,1,2,...,[5] — 1}, the 8-Caputo derivative vanishes, i.e., aCDfV(x) =0.
While for n € Nand n > [f] or n ¢ N and n > [5] — 1, where [/5] represents the least integer that is
not less than 3, it is given by:

(x —a)" P,

« D2V(x) = F(fz(ﬁ Jﬁr i) )

Definition 2. |17,22] In 1960, Clenshaw and Curtis established a method for evaluating a definite
integral by representing the integrand through a finite Chebyshev series. This involves sequentially
summing the individual terms the series. This approach proves to be highly effective, especially when
applied to integral equations.

-1 r=0 K=0
even

Remark:

(I) The symbol ) indicates that the initial and final terms should be divided by two before sum-
mation.
II) The transformation z = %5%¢ + 5% or t =2 (2=2) — 1, where z € [a,b] and t € [—1,1].
2 2 b—a
Definition 3. 23] Let Tyr = {xo,x1,...,2x} be a uniform or non-uniform partition of the interval

[a,b]. The KC-degree B-spline basis function BN (z), r > 0, is defined as follows:

r—x _ TrikK+1 — X C—1
BNz)= —— B ) T B x
T ( ) Typk — Ty T ( ) Tyl — Trpl r+1 ( )7

Mathematics Series. No.4(120)/2025 7
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0, otherwise.

Bo(x) _ {1, x € [Xp, Tri1), (5)

r—x 3
s, iae [Ty, Tri1),

1 ro— .
Bla) = { 2200 iy e [y, 0000), 6)
0, otherwise.

Equations (5) and (6) represent zero-degree and one-degree B-splines, respectively [24,25].

Note that the local support property is BN(x) = 0 for all # ¢ [x,, 2, x11) and the nonnegativity
property is BX(z) > 0 for all € [z, 2,4 xc41).

2  Methods analysis

In this section, we utilize the quadratic B-spline collocation method to compute the approximate
solution (SVIDE’s-CF) of equation (1) subject to equation (2), where the mesh points a = 29 < 1 <
o < -+ < xp—1 < xpr = b form a uniform partition of the solution domain [a, b] defined by the knots
T, with h = S = bfwa, r =0,1,..., NV — 1. The numerical solution for treating equations (1)
and (2) for all x € [a,b], U;i(z) = IP’Z.Q’2(m) for each @ = 0,1,...,m, using collocation techniques with
quadratic B-spline to find an approximate solution Pig’z(x) given by:

P22 (2 ZCZB i=0,1,...,m. (7)
Here, the general expression of a quadratic B-spline curve defined on the interval [a, ] is,

P22(z) = C° <z:z>2+2cl (fg:;‘) (Z:i) +C? <§:Z>2 © € [a,b). (8)

Now, the Caputo fractional derivative of order o € (0,1], and the recursive derivative formula for
quadratic B-spline curves for equation (8) are given, respectively:

CDeP ()
2(x —a)l™@

= (N3 —a) {C%l(x —a) = VW) (2 = )] + C' [NR)(2 — @) — (z — a)] + C*(x — a) }, (9)

0 1 2

d? @ pozg, 2(C0—2c +C?)
dz? " (Nh)? ’
where h is a step size and N is the number of iterations. For the numerical approximate solutions of
(SVIDE’s-CF) based on equation (1) the control points C£ are unknowns. Also, for all ¢ =0,1,...,m,
the control points C? are determined by initial conditions specified in equation (1), and the control

2
points C} = (NT}Z) %—FC? for the quadratic B-spline curve can be determined for eachi = 0,1,...,m,

to find CZ, from the (VIDE’s-CF) in equation (1). The unknown function IP’iQ’2(ac) is approximated by
B-spline interpolation of degree 2 as in equation (7), so the equation (1) becomes:

(10)

Pi(z )CZ; P22(z) + aio(z) SDIO[PR2(2)] + air (z) SDI P2 (2)] + ain(z) P22 (2)

+ZWU/ Kij(z,5) CDI P22 (s)] ds. (11)

7=0

8 Bulletin of the Karaganda University



The quadratic B-spline method for ...

The fractional orders o041, 8i; € (0,1], ¥i,j =0,1..., m. Consequently, using equation (11), applying
the linearity property of fractional Caputo derivatives, and using equation (8), by defining [z, zy41]
and analyzing the collocation points, we use a quadratic B-spline function (K = 2, n = 2) in the interval
[, x,11] as established, from equations (9), and (10), yielding results for each r = 0,1,..., V=1 and
1=0,1,...,m, derive the following:

CY(—2(NR)(2 — 0io) + (2741 — a))
+2C} (Nh)(2 = gi) = 2(xr41 — a))

+2C* (241 — a)
[ C? (b=zrt1)?

1—050

ac0 ac} ac? (Tr41 — a)
Pi(xT—i-l) (Nh)2 - (NR)Z - (Nh) :| +a10(xr+l)(Nh)2F(3 _ UiO)

CH(=2(Nh)(2 = oir) + (2r41 — a)) wRE T

Typq1 —a)l o0 2CH (2,4 1—a) (b—2rs1)

() s | F2CH B2 = ) = 2o @) | + (o) | O
—|—2C?(£L’,’.+1 — a) + 1 (fﬁ}:) a)2

L ORI )+ 26— a)
Filaran +Z“w z / Kl ) =] |22 - 5) = 2s = )| ds
+2C]2(S—CL)

Tra1 (8 o a)l*ﬁij [ C;)(—2(Nh)(2 — ,81]) + 2(8 — a)) + 2631
+ IC'L r+1, d
/m ri1,9) WR)PL(3 = Big) |(WR)(2 — Bij) — 2(s — @) + 2C3(s — a) ’
2 [ran 0 1 2
+ wio Zo/x Kio(zr41,5) [ /\?2)2 (b—s)+ (E/C}f)z (s—a)(b—s)+ &72)2(3 - a)Q} ds
q= q

Tr+1 0 1 2
+/ Kio(zr41,5) [ A%)Z)Q (b—s)+ (K/C}?)z (s—a)(b—s)+ (./\(/';'](’)L)Q (s — a)Q} ds} .
T (12)

The quadratic B-spline function throughout the interval [x,,z,41] is optimized to simplify its
representation and promote efficient solution methods; it is also determined, and in practice, these
integrals must be approximated using the Clenshaw-Curtis quadrature rule; hence, the equation (12)
is applicable for r =0,1,..., N ' =1,i=0,1,..

*

H (0:0)CF + O} (00)C) + T (010)CY = Filwpin) + I wis (A2) G+ ey (S3) €}

j=1 j=1

+ wa (X'B”> CO ( W yKlO) CO + ( Wi 371(1-0> Cé + < (T)me) Cov
j=1

where
vy 2Pi(r1) | 2ai0(ze) (P + DR)' 770 (2040 — a)
Hilow) = (./\/'h); + (Nh)2T(3 — 00)
2a;1(r41) (1 + 1)h)170“ (Xr41 —a)  ap(@rg1)(Tpg1 — a)2
(NR)T(3 — 041) (Nh)? ’

Mathematics Series. No.4(120)/2025 9
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» —APi(zr11) | 2ai0(zrg1) ((r+ 1)h) 7 —
O = (/\/h)2+ (N+h)2r(3 — oio) (F2VR)T7 + 2y — @)
2a;1 (x,41) ((r + 1)h)' 7" —on 2ai2(Tr41) (Tr41 — @)
WRPTE o) (2T 2arn =) + =g = Ty
r 2Pi(mrg1) | aio (trg) ((r+ D)7 4
T = =y hPLG oy (2N (2= 0i0) +2 (a1 — 0))
ait (wr41) ((r+ 1h)' ™" iz (Zy41)
+ = (A}F;IL)QF@ “on) {—2WNh) (2 —0i1) +2(zr1 —a)} + (2./\/'h)+21 (b— z,41)%,
r—1 N 1—B;;
Bij Tqt1 —Tq o (2(Sk —a))"7 (S — a)
TAIC] - pr kzo [ - 5 Wk (41, Sk) (NR)2T(3 = By ]
N 1-Bi;
Tr41 — T (2(Sk - a’)) ! (Sk - Cl)
LT el ST e gy ()
r—1 N -
Bij LTg+1 — (Sk — a)l_ﬁ“ -
TS/Cm - purd kZO |: wklclj Tr+1, Sk) (./\/h)2F(3 — 5”):| [(Nh)(2 - ﬂz]) - 2(Sk - a)]
N iy
Ty — 2(S) — a)\—Pu
+ kzzzo |: + Wk:lclj(xr"rl, Sk) (Nh)QF(S — /81]):| [(Nh)(Q — BZ]) — Q(Sk — a)] y (14)
r—1 N -
Bij _ Tg+1 — a, T (Sk — a)l_ﬁ” _ _A.. —a
R = S5 [ o S (G ] A )+ 205 )
N Y
Tri1 — (S —a)™Ps 7 _ 3.
+ kzzo [ oK (24, ) VA3~ Bz’j)] [—2(NR)(2 - B;)], (15)
r—1 N 9
7V, = Wi Totl “%q Kio(xrs1,S )(b — )
K 0 {quZO [ kRiol@r+1, 56) =ri7pve ]

M=

r—1
wio\)
70 VK0 = Wio 5
q=0

i
o)

10

[mqﬂ —Zq

wk/Cio(ﬂfrH, Sk)

N X
+Z|: r+1 —

k=0

wmmmm&ﬂ&—wwﬂﬂ

(Nh)?

2 ok Kio (41, Sk)

N T
+Z[ r+1 —

k=0

Q(Sk — a)(b — Sk)
Wh)? ]}<m
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r—1

BITRY X x‘ﬁ’l <Sk_a)2
rl ylclo = Wwio E wk'IC’LO(xT‘Fl’ Sk?) (Nh)2
4=0 k=0

X —a 2
+Z{ o wk’Czo(er,Sk)(%vh); ]} (18)

From equations (13)—(18) the nodes ¢, where the integrand is evaluated at points corresponding to
the extrema of the Chebyshev polynomials on the interval [—1,1] and are defined as t; = cos ( ) for
k=0,1,...,N, for each subinterval [z, z4+1], the mapped node Sy is calculated by S = wt +
%. The weights wy, are coefficients that multiply the function values at the nodes to approximate
the integral given by wp = % Zj,yzg cos (T’“Wﬂ) These weights help the weighted sum of function
evaluations accurately represent the einntegrad over the chosen interval, and are determined following a
linear system (m + 1) x (m + 1) of algebraic equations, which is provided.

A-B=C, (19)
where
EYiS _ wooj; _ Aﬁol _ Aﬁoz _ AﬁOm 7
0(700) — $°° Vg wo1 Kot wo2 lCoz ce wWom  r Ao,
V1o —wi1 «4%111 —wig AIC12 cos —Wim 7"“4%111
A= =72 Via0 —wa1 TA]CQI —w22 TA]CQQ e —wom ARG , (20)
—“’mojf —w Aﬁml B A5m2 yr ( ) B A,Bmm
L r Kmo ml Wm2 T Yoo te m Omo Wmm ™ KCmm
B=[c2 ¢2 ¢ ... c&]", (21)
Folwrs1) — OFCH = TGC + oy woy (St ) €+ 7y wiog (027 ) €0 + (w0 Vicos O + (whoFicon)Ca
Fi(wpi1) = OFCH = Ty CY + 57 wij (Sed ) €+ Ty wny (047 ) €9+ (Vs )CF + (who Vi )
C= | Folwrs) = 050 = T3C+ L7y wa; (S0 ) CF + X5y was (A2 ) €0+ (whoican )Y + (o Vican )C
| Fon(@r+1) = OpCh = TaC8 4 S wms (S02) €+ S0y wmy (2277) €9 + (107,000 + (0T

(22)
An algebraic linear system consisting of (m + 1) equations is derived, containing (m + 1) unknown
control points CZ-Q,Z' =0,1,...,m. To solve for these control points, the linear system (m+ 1) equations,
as shown in equation (11), is efficiently solved using a Jacobian matrix method. Once the control
points Ci2, i=0,1,...,m, are determined, they are substituted into equation (7). Using initial condi-
tions (2), the control points C} = Agh s ( ) + CO for the quadratic B—sphne curve can be determined,
and their derivative parts can be determlned by CZ-1 using U/ (x )‘ R déa), Vi=20,1,...,m, and

in practice, these integrals must be approximated using the Clenshaw-Curtis quadrature rule. The
following algorithms are considered to solve (LSVIDE’s-CF) using quadratic B-spline functions:
Algorithm describing the approzimate solution (LSVIDE’s-CF) using quadratic B-spline.
INPUT:

(I) a, b, and N is the number of iterations, (m + 1) is the number of equations.

(I1) Pi(x), aio(x), ain(x), an(x), Fi(x), wij, Kij(x,s), CY, i, and B;j for each i,j =0,1,...,m.
OUTPUT: Solution vector B containing the control points C?, 1=0,1,...,m
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Steps:
(i) Construct arrays B, C of size (m+ 1) and matrix A from equation (20) of size (m+1) x (m+1).
(ii) Compute the step size: h = bw_ﬂ, N € N and partition points: z,41 = a + (r + 1)h,
r=0,1,..., N —1.
2
(iii) Compute the approximation: U] (x) ~ LB(;’:C(G), using the initial conditions.
r=a
(iv) Compute the elements of C from equation (22): C} = Nh dB ( ) 4 c),i=0,1,...
(v) Compute the elements of matrix A and vector C using the Jacobl iteration method
(vi) Apply the initial conditions C? to modify A and C.
(vii) Solve the system: A -B = C from equation (19), using numerical integration techniques such as
the Clenshaw-Curtis quadrature rule.

OUTPUT: Solution vector B from equation (21), containing the control points, i = 0,1,...,m.
—[c2 ¢z ¢z ... cz)"

L Algorithm (NCP2DBS): Normal Control Points Second Degree B-Spline.
We perform all steps in the previous main algorithm and follow the additional steps below:
(viii) For r =0,1,...,N — 1, set: .’13—11?7»_1,_1 =a+(r+1)h, n=2 k=2
(ix) Compute: }P’iQ’Z(xTH) S oCiBE(zy41), i=0,1,...,m
Output: IP)OQ’2($T+1), ]P’?’Z(:ETH), PR (zy41) are the approximate solutions for each function.
II. Algorithm (FCP2BS): First Control Point Second Degree B-Spline.
We perform all steps in the previous main algorithm and follow the following two steps:
(viii) Use: C2 = C?(z1), i=0,1,...,m
(ix) Compute: ]P’Z-Q’Q(:L'TH) ~ Y o ClBE(zr41), i=0,1,...,m
Output: IP’OQ’z(xTH), ]P’lg’Q(er), PR (zy41) are the approximate solutions for each function.
III. Algorithm (MCP2BS): Mean Control Point Second Degree B-Spline.
We perform all stepb in tlhe previous main algorithm and follow the following two steps:
(viii) Use: C? = N Zr o C3(zpg1), i=0,1,...,m
(ix) Compute: IP’Z HLpy1) ~ S CiBE(v41), i=0,1,...,m
Output: IP’OQ’Q(mTH), ]P’lg’Q(:er), PR (zy41) are the approximate solutions for each function.
IV. Algorithm (FFCP2BS): Average First and Final Control Point Second Degree B-Spline.
We perform all steps in the previous main algorithm and follow the following two steps:
(viil) Use: C? = 3 (CZ(z1) + C3(zn— )) , 1=0,1,....m
(ix) Compute: P?’Q(xrﬂ) S CiBE(v41), i=0,1,...,m
Output: IP’OQ’Q(JCTH), ]P’lg’Q(xTH), PR (zy41) are the approximate solutions for each function.

3 Numerical results

In this section, the validity and efficiency of the proposed systems are verified by using the Least
squares error. Numerical results are developed in Python 3.9, and those derived by the proposed
techniques are compared.

Example. Consider the following classical and fractional-order systems of Volterra integro-differential
equations (CF-VIDE’s) with variable coefficients on [0, 1]:

cos(x)UY (z) + 2 D3 Uy () + e*S DO Uy () + 22Uy ()

= Fo(x) + woo /0 sx3uo(s)ds + wo1 /0 (1+ sx2)ng‘7L{1(s)ds + wp2 /0 e$ZD2‘8Z/{2(s)ds,
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U () + sin(z) S DYU, () + 22DV () + In(a + 1)U (2)

— (@) + wio / (% — 5+ 1)Uo(s)ds + wnr / (2 + 22 DO9524, (5)ds + wio / (229)° DL (5)ds,
0 0 0

sin(x)Uy (z) + 3¢ DV4Uy () + cos(z)S DY Uy (z) + tan(z)Us (z)
= Fa(z) + wgo/ xsUp(s)ds + wai / (sin(x) — 1)$D3U, (s)ds + CL)QQ/ (2 — 522)SD%5Uy (s5)ds.
0 0 0
The given functions Fo(z), F1(z), and Fa(z) are defined as follows:

31,1.7 3$O.5€x

Fol(x) = 2Bz +2) — 0+ 2°
o) = vyt sy TG s+ )
B 2wo1 ﬁ n x23 _ wo2 eT 22
r23)\23 " 33) T2\ 22 )’
2sin(z)xlt 2242 2 3z 4 1, 4
= 2¢” 1 1 1) — —_ = - 2 2
Fi(z) = 2e* + T(2.4) +P(2.2)+ n(x+1)(@* +1) —wip 5~ % a2t 42

2W11 1,3.55 N 134'55 wW1a 1,5.5
['(2.55) \ 2.55 = 455 ) T(2.5) \ 3.5 )"

. 26 g3 cos(z) 1 2w 22 7sin(x) 227
) =) gy ) (32721 emtet ) (5 - )

W99 2.%'2'4 $5,4
T4\ 24  34)°
Together with the initial conditions: Uy(0) = 2, U1(0) = 1, Uz(0) = —1, while the exact solutions by:

Up(z) =32+ 2, Us(z) = 22+ 1, Up(z) = 2% — 1.
The coeflicients are defined as:

o — sin(0.3) o — sinh(0.7) e — cosh(30)
o cos(89) e — In(5) ~ sinh(0.3)
7 a0 M T ey (1)
o — cos(89) o — sin(179) s — sin(30)

We set the parameters as: N = 10, h = 0.1, . = a +rh, forr = 0,1,...,N — 1. We aim to
approximate the solutions IP’Z-Q’2(1‘) for i = 0,1,2, as defined in equation (7). The programs NCP2BS,
MCP2BS, FFCP2BS, and FCP2BS are executed to compute the unknown control points C?, Cil, and
Cl-2 for © = 0,1,2, we then use these control points to construct the approximate solutions for the
given system. The first table presents the values of all control points for POQ’2(33), Plg’g(a:), and IP’2Q’2(x)
according to the four methods, respectively.
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Table 1

The values of control points of PS%(z), P22 (), and PS> (x) for four methods NCP2BS, MCP2BS,
FFCP2BS, and FCP2BS

Control points for each function

Methods Interval POQ’Z(JJ) Plg’z(az) P2Q72(SU)
C§ = 2.000000000000 €Y = 1.000000000000 C§ = —1.000000000000
10,0.1] ¢} = 3.500000000000 C;# = 1.000000000000 Ci = —1.000000000000
C3 = 4.991448639638 C? = 1.999999999997 (3 = —0.499999999434
C§ = 2.000000000000 €9 = 1.000000000000 €9 = —1.000000000000
10.1,0.2] €} = 3.500000000000 Ci = 1.000000000000 Ci = —1.000000000000
C3 = 4.978635126166 C3 = 1.999999999965 C3 = —0.499999998681
CY = 2.000000000000 €Y = 1.000000000000 C§ = —1.000000000000
10.2,0.3] € = 3.500000000000 Ci = 1.000000000000 Ci = —1.000000000000
C2 = 4.966525349698 C? = 1.999999999855 (2 = —0.499999997856
CY = 2.000000000000 €Y = 1.000000000000 C§ = —1.000000000000
10.3,0.4] €} = 3.500000000000 C{ = 1.000000000000 Ci = —1.000000000000
C3 = 4.957359583196  C7 = 1.999999999609 C3 = —0.499999997028
CY = 2.000000000000 €Y = 1.000000000000 C§ = —1.000000000000
10.4,0.5]  C} = 3.500000000000 C;} = 1.000000000000 Ci = —1.000000000000
NCP2BS C2 = 4.952023072809 C? = 1.999999999169 C3 = —0.499999996274
CY = 2.000000000000 €Y = 1.000000000000 C§ = —1.000000000000
10.5,0.6] C} = 3.500000000000 Ci = 1.000000000000 Ci = —1.000000000000
C2 = 4.950374272935 C? = 1.999999998489 (2 = —0.499999995668
C§ = 2.000000000000 €Y = 1.000000000000 C§ = —1.000000000000
10.6,0.7] C} = 3.500000000000 Ci = 1.000000000000 Ci = —1.000000000000
C3 = 4.951655066708 C7 = 1.999999997543 (3 = —0.499999995271
CJ = 2.000000000000 €Y = 1.000000000000 CJ = —1.000000000000
10.7,0.8] € = 3.500000000000 Ci = 1.000000000000 Ci = —1.000000000000
C2 = 4.954905674858 C? = 1.999999996333 (2 = —0.499999995114
CY = 2.000000000000 €Y = 1.000000000000 C§ = —1.000000000000
10.8,0.9] C} = 3.500000000000 C{ = 1.000000000000 Ci = —1.000000000000
C3 = 4.959250140980 C37 = 1.999999994883 (3 = —0.499999995189
CY = 2.000000000000 €Y = 1.000000000000 C§ = —1.000000000000
10.9,1] €} = 3.500000000000 C;i = 1.000000000000 C3 = —1.000000000000
C2 = 4.964022227702 C? = 1.999999993235 (3 = —0.499999999434
MCP2BS C§ = 2.000000000000 €Y = 1.000000000000 C§ = —1.000000000000
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Continued from previous page

Methods IP’(C)J’Q(:U) IP’?’2($) }P’?’Q(x)
10,1 €} = 3.500000000000 C{i = 1.000000000000 Ci = —1.000000000000
C3 = 4.962619915469 C7 = 1.999999997908 C3 = —0.499999996534
FFCP2BS CY = 2.000000000000 C? = 1.000000000000 C§ = —1.000000000000
10,1] €} = 3.500000000000 C{ = 1.000000000000 Ci = —1.000000000000
C2 = 4.977735433670 C? = 1.999999996616 C3 = —0.499999997407
FCP2BS CY = 2.000000000000 C? = 1.000000000000 C§ = —1.000000000000

10,1] €} = 3.500000000000 Ci = 1.000000000000 Ci =
C2 = 4.991448639638 C? = 1.999999999997 (3 =

—1.000000000000
—0.499999999419

From the equation (7), we obtain the approximate solution for the classical and fractional-order linear
systems of Volterra integro-differential equations (SVIDE’s-CF) with variable coefficients, as shown

below:

Py (x)

NCP2BS

PP (x)

NCP2BS
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71.000000000000(1 — :C)2 — 2.00000000000093(1 — x) — 0.499999999434x2, << 1—10,

—1.000000000000(1 — 1:)2 - 2.000000000000x(1 — 17) - 0.4999999986811‘2, 1—10 <x< %,

—1.000000000000(1 — )2 — 2.000000000000z(1 — ) — 0.4999999978562%, L <z < &

—1.000000000000(1 — )2 — 2000000000000z (1 — ) — 0.4999999970282%, & <z < 2,

P2?(z) —1.000000000000(1 — )2 — 2.0000000000002:(1 — x) — 0.49999999627422, 2 < & < L,

NCP2BS | —1.000000000000(1 — 2)% — 2.000000000000z(1 — x) — 0.49999999566822, 1 <z < 2,

—1.000000000000(1 — )2 — 2.000000000000z(1 — ) — 0.4999999952712%, 2 <z < L.

—1.000000000000(1 — )2 — 2.000000000000z(1 — ) — 0.4999999951 1422, = <z < 4,

—1.000000000000(1 — )2 — 2.000000000000z(1 — z) — 0.49999999518922, 4 <z < 2
—1.000000000000(1 — 2)2 — 2.0000000000002:(1 — ) — 0.49999999546122, % < 2 < 1.0,

Q.2
Py (x)

0 _ 2 2
————— = 42.000000000000(1 — 7.000000000000x(1 — 4.9626199154692“, 0<ax <1,
MCP2BS — 1 (1—o)"+ o(l—a)+ v v

Q.2

P (x)
—= —~ = {1.000000000000(1 — z)2 + 2.000000000000x(1 — 1.999999997908 2, O0<ax<1,
MCP2BS — 1 (1—2)"+ ol —o)+ v v
P5 (x)
—= = {_1.000000000000(1 — )2 — 2.0000000000002(1 — — 0.499999996534 2, 0<zx<1,
MCP2BS { (1-2) z(l - ) v =
Q.2
Py (x)

0 _ 2 2
—————— = 42.000000000000(1 — 7.000000000000x(1 — 4.9777354336702°, O0<x <1,
FFCP2BS — 1 (1—a)"+ ol —a)+ v v

Q.2

P (x)
—= 2 = £1.000000000000(1 — )2 + 2.000000000000z(1 — 1.999999996616 2, 0<z <1,
FFCP2BS — 1 (1—2)"+ (1 —o)+ v v
Q.2
Py (x)
—= - = 1§ _1.000000000000(1 — 2)2 — 2.0000000000002(1 — —0.49999999740722, O0<x <1
FFCP2BS { (1-2) z(1—z) "”’ =50
Q.2
Py (x)
0 _ 2 2
———— = 42.000000000000(1 — 7.000000000000x(1 — 4.991448639638z°, 0<x <1,
FOP2BS — 1 (1—2)"+ (1 —2)+ v v
PP ()
—————_ = 11.000000000000(1 — z)? + 2.000000000000z(1 — x) + 1.999999999997 2, 0<x<1,
FCP2BS { (1-=2) z(l - =) v =
Q.2
Py (x)
—=2 7 = 1_1.000000000000(1 — z)% — 2.000000000000z(1 — — 0.499999999419 2, 0<x<l1.
FCP2BS { (1-2) 2(1-2) . =

Tables 2-4 demonstrate a comparison of the approximate solution with the exact solution of Uy(x),
Uy (), and Us(z). By setting N =10, h = 0.1, and z, = a+rh for r =0,1,..., N — 1, we compare
four methods of quadratic B-spline curves: NCP2BS, MCP2BS, FFCP2BS, and FCP2BS, respectively.
Finally Table (5) compares the least square errors for two algorithms (FCP2BS) and (MCP2BS) with
various choices of step size.
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Table 2
Compares the exact and approximate based on a least square error of U (z)
Approximate Solution P (x) (10, 0.1)
zr  Exact Up(z) NCP2BS MCP2BS FFCP2BS FCP2BS

0 2.0 2.000000000000 2.000000000000 2.000000000000 2.000000000000
0.1 2.3 2.299914486396 2.299626199155 2.299777354337 2.299914486396
0.2 2.6 2.599145405046 2.598504796619 2.599109417347 2.599657945586
0.3 2.9 2.896987281472 2.896635792392 2.897996189030 2.899230377567
0.4 3.2 3.193177533311 3.194019186475 3.196437669387 3.198631782342
0.5 3.5 3.488005768202 3.490654978867 3.494433858418 3.497862159909
0.6 3.8 3.782134738256 3.786543169569 3.791984756121 3.796921510270
0.7 4.1 4.076310982687 4.081683758580 4.089090362498 4.095809833423
0.8 4.4 4.371139631909 4.376076745900 4.385750677549 4.394527129368
0.9 4.7 4.666992614193 4.669722131530 4.681965701273 4.693073398107
1 5.0 4.964022227701 4.962619915469 4.977735433670 4.991448639638
LS.E 4.29736734820x10~°  3.53970591382 x10~°  1.25578445284 x10~°>  1.85249498044 x10~ 7%
R.T./sec. 2.2315187454223 2.4110293388366 2.6110293388366 3.0368537902832
Table 3
Compares the exact and approximate based on a least square error of U ()
Approximate Solution P27 (z) (10, 0.1)
z, Exact U (z,) NCP2BS MCP2BS FFCP2BS FCP2BS
0 1.00 1.000000000000 1.000000000000 1.000000000000 1.000000000000
0.1 1.01 1.009999999999 1.009999999979 1.009999999966 1.010000000000
0.2 1.04 1.039999999998 1.039999999916 1.039999999865 1.040000000000
0.3 1.09 1.089999999986 1.089999999812 1.089999999695 1.090000000000
0.4 1.16 1.159999999937 1.159999999665 1.159999999459 1.160000000000
0.5 1.25 1.249999999792 1.249999999477 1.249999999154 1.249999999999
0.6 1.36 1.359999999455 1.359999999247 1.359999998782 1.359999999999
0.7 1.49 1.489999998796 1.489999998975 1.489999998342 1.489999999999
0.8 1.64 1.639999997653 1.639999998661 1.639999997834 1.639999999998
0.9 1.81 1.809999995856 1.809999998305 1.809999997259 1.809999999998
1 2.00 1.999999993237 1.999999997908 1.999999996616 1.999999999997
LS.E 7.0199557924x 1017 1.1086895011 x10~ 1"  2.9009973891 x10~ "  2.2801089911 x10~>°
R.T./sec. 2.2315187454223 2.4110293388366 2.6110293388366 3.0368537902832
Table 4
Compares the exact and approximate based on a least square error of U (z)
Approximate Solution PS2(z) (10, 0.1)
z.  Exact Us(z,) NCP2BS MCP2BS FFCP2BS FCP2BS
0 —1.000 —1.00000000000 —1.00000000000 —1.00000000000 —1.00000000000
0.1 —0.995 —0.99499999999 —0.99499999996 —0.9949999999°7 —0.994999999994
0.2 —0.980 —0.97999999994 —0.97999999986 —0.97999999989 —0.979999999977
0.3 —0.955 —0.95499999980 —0.95499999969 —0.95499999977 —0.954999999949
0.4 —0.920 —0.91999999952 —0.91999999945 —0.91999999959 —0.919999999909
0.5 —0.875 —0.87499999906 —0.87499999914 —0.87499999936 —0.874999999858
0.6 —0.820 —0.81999999843 —0.81999999877 —0.81999999908 —0.819999999796
0.7 —0.755 —0.75499999767 —0.75499999833 —0.75499999874 —0.754999999723
0.8 —0.680 —0.67999999686 —0.67999999782 —0.67999999836 —0.679999999638
0.9 —0.595 —0.59499999609 —0.59499999724 —0.59499999793 —0.594999999542
1 —0.500 —0.49999999545 —0.49999999659 —0.49999999744 —0.499999999434
LS.E 5.6479062171x10~ 17  2.9319410000 x10~'"  1.6511565195x10" 1" 8.1155790437x10"1°
R.T./sec. 2.2315187454223 2.4110293388366 2.6110293388366 3.0368537902832
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Table 5

The least square error with different step sizes for Uy(z), Ur(z), and Usz(x)

LS.E
Pg % (x) PP (x) P35 (x)
N =20 | 3.3804747524859968 x 10>  9.261094453318532 x 10~  2.853188809643298 x 1017
MCP2BS | AN =50 | 3.2834709955904783 x 10 °  8.28101310189266 x 10 ®  2.738736379765375 x 10~ 1"
N =100 | 3.2510081333708340 x 10~ °  7.972488621480216 x 10  2.7005547497925035 x 10 '~
N =1000 | 3.251008133370834 x 10~ >  7.696289581642592 x 10~  2.667571186072652 x 10~ 1"
N =20 2.499554593756400 x 10~°  9.86076131526260 x 10~°>2  1.596004257270100 x 10~ ™°
FCP2BS | N =50 1.564846997979940 x 10~ °  8.86076131526260 x 10 °2  1.745188520809840 x 10~ 2V
N =100 | 1.821769238662400 x 10~  7.86076131526260 x 10 2  3.468085471432110 x 10 =
N =1000 | 1.18952321777046 x 10°°  6.86076131526260 x 10 °2 1.01330642945647 x 10 =

4 Conclusion

In this paper, we constructed a numerical technique for solving systems of Volterra integro-differen-
tial equations that involve both classical and fractional derivatives (SVIDE’s-CF) with variable coef-
ficients based on quadratic B-spline functions. Four algorithms, NCP2BS, MCP2BS, FFCP2BS, and
FCP2BS, were successfully introduced. The control points were determined by converting the system of
VIDEs-CF into a system of linear algebraic equations, which was then solved using the Jacobian method
and the Clenshaw-Curtis quadrature rule. Numerical experiments demonstrated that all the proposed
methods are novel and significant for our research. Furthermore, we show that FCP2BS outperforms
the other algorithms in terms of accuracy and computational efficiency, simplifies the analysis and
ensures that computations remain manageable using software such as Python. In general, Table 5
demonstrates that as the value of N increases, the approximation significantly improves. As a future
direction, we aim to extend this framework by exploring more sophisticated spline functions, including
modified quadratic, cubic, trigonometric, and exponential B-splines.
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Difference schemes of high accuracy for a Sobolev-type
pseudoparabolic equation
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In this work, numerical algorithms of higher-order accuracy are constructed and studied for a pseu-
doparabolic equation that describes the filtration process in fractured-porous media. The increase in the
order of accuracy is achieved in various ways. First, only the spatial variables are approximated, as in the
method of lines. Then, to solve the resulting system of linear ordinary differential equations, the finite
difference method and the finite element method are applied. The application of these methods makes it
possible to achieve a higher order of approximation for the difference schemes. Schemes of fourth-order
accuracy in the spatial variables and second-order in time are presented, as well as schemes of fourth-order
accuracy in all variables. Based on the stability theory of three-level difference schemes, stability conditions
for the proposed algorithms are obtained. Using a special technique for solving the difference schemes, a
priori estimates are derived, and based on them, theorems on convergence and accuracy are proven in
the class of smooth solutions to the differential problem. An implementation algorithm is proposed for
the difference scheme constructed using the finite element method. Test examples for one-dimensional
and two-dimensional equations are also provided, demonstrating the higher-order accuracy of the proposed
schemes.

Keywords: pseudoparabolic equation, filtration equation, finite difference method, finite element method,
higher-order accuracy schemes, stability, convergence, accuracy estimates.

2020 Mathematics Subject Classification: 65M06, 65M12.

Introduction

In the general case, pseudoparabolic equations are written in the following form:

0
—|A(u B(u)=0

Q)] + B(u) =0,
these equations belong to composite-type equations. Here A(u), B(u) are elliptic operators [1|. Prob-
lems in semiconductor physics, plasma physics, and hydrodynamics of stratified and filtered liquids are
examples of such equations. Let us present some of them. Mathematical models of Rossby waves in
oceanology [2| are given as

0
—Lu + ﬁu/2 = g(l‘at)? (l’,t) € QTa

ot
3
Lu= 3" Ly, Ly = 0*u/022,, u'y = Ou/dxy, B is a constant, and the equation
m=1
9 2
a(Lu—l—@u)—l—,u Lu+ M= g(x,t), (z,t) € Qr (1)
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describes the process of filtration in a fractured porous liquid [1]. Here 6, u, A are constants. Besides,
we can mention the equation of moisture transfer in soils [3]:

where Lu = i L, Lpu= (ka(z)t'n) ,+ & (ka(z)t'n) . Here Qr = {(z,t) : 2 € Q, t € (0,T]},
m=1
Q={x=(x1, z2,23): 0 < xp < lp, k=1,2,3}.

Such problems were studied by analytical methods in [4-6]. Numerical methods for solving prob-
lems of this type were considered in [1,2], where difference schemes with second-order accuracy in both
variables were constructed under the assumption of sufficient smoothness of the solution to the dif-
ferential problem. In [7-9] for Sobolev-type equations, high-order accuracy schemes were constructed
and studied in classes of nonsmooth solutions.

Initial high-order accuracy difference schemes for multidimensional parabolic equations were deve-
loped and analyzed in [10-12|, where it was demonstrated that fourth-order accuracy in spatial variables
and second-order accuracy in time could be achieved. In [13-15], compact difference schemes for various
parabolic equations were constructed and investigated. In particular, monotone difference schemes for
linear non-homogeneous parabolic equations and Fisher (Kolmogorov—Petrovskii-Piskunov) equations
were constructed in [13]. The convergence of the proposed methods in the uniform metric C' is proved.
The results obtained are generalized to arbitrary semilinear parabolic equations with a nonlinear sink
of arbitrary type and to quasilinear equations. Note also the paper [14], which studies compact and
monotone difference schemes: first- and second-order in time and fourth-order in space, developed
for linear, semilinear and quasilinear parabolic equations. Similar results were obtained in [15] for
one-dimensional and multidimensional quasilinear stationary equations; where conservative compact
and monotone difference schemes were constructed. Compact and monotone difference schemes of
the fourth-order accuracy in spatial variables (and first-order in time) that maintain the conservatism
properties were constructed and investigated for the first time in [16]. High-order accuracy difference
schemes for convection-diffusion problems are constructed in paper [17,18].

This paper examines the issues of constructing and studying high accuracy difference schemes for
equation (1) with first kind boundary conditions. In this case, the main attention is paid to obtaining
an estimate of the accuracy of difference schemes in classes of smooth solutions. The approximation
error was studied, stability conditions were obtained, and theorems on the convergence and accuracy
of the considered schemes were proved. In addition, test calculations are performed to confirm the
high accuracy of difference schemes.

1 Statement of the problem

Let the following initial and boundary conditions be specified for (1):

ul,_g = uo(z), z € Q=Q+T, (2)

Ulyer—pn = m(t), t € (0,T7. (3)

Let u(z,t) € H = V[c}zl (Q), %—? € L3[0,T]. Let us put the following problem in correspondence to
(1)-(3): )

3 ( o ,19) + as(u(t),9) + ar(u(t), ) = (g(t),9), w(0)=wo, V¥(z) € H, (4)

where

(u,?) // (Zuwkﬂzk +9u19>dac as(u, V) //Zuzkﬂxkdx ai(u,V) = /\//uﬁdac
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u=wu(t) € H,Vt € [0,T], i.e. u(t) is a function of abstract argument ¢ with values in Hilbert space
H. In W4 (Q) we define the scalar product

(u(x), 9(x)) = // <m9+mz ;Zn - ﬁ ) do

s 22,23) gy = // (u +Z (axm) )

Here c3|lull] < as(u,u) < Csllulf, 0 < as(u,u) < Callulf, 0 < ai(u,u) < Ctllulf, es > 0,
Cr = C1(N), C2 = Ca(p), C3 = C3(0).

and the norms

2 Approximation in space

We introduce subspace Hj, C H. The scalar product and energy norm [14] in Hy, are defined by

(y,9) 4 = (Ay, ) and ||y|| 4 = \/ (Y, y) 4, respectively. Let us approximate equation (1) in space vari-
ables. We introduce a grid wy, = wp, X W, X Opy, On,, = {xm = imhm, tm =0, N, hm =ln/Nn } ,
o

m=1,2,3 in Q. Here &), = wp, + 7. We define Hy, = W4 (wp,) with the norm defined as

N1 N2 N3

19115, = Zzzhﬂlzhzaz #)? <M,

i1 ip i3
where M is a positive constant, J = ¥(i1h1,i2hg, ishs),
Uz, = [U(i1h1,i2ha,i3h3) — U((i1 — 1)h1,i2he, i3hs)] /ha,
Uz, = [V(i1h1, i2he, i3hs) — O(i1h1, (i2 — 1)ha,i3h3)] /ha ,
Uz, = [V(i1h1,i2h2, i3h3) — V(i1h1,i2he, (i3 — 1)h3)] /h3 .

Approximating a,,(u, ) by quadrature formulas, from (4) we come to the definition of an approxi-
mate grid solution:

asn (d“h“),ﬂ) T apn(un(t),9) + avp(un(t), 9) = (an(t), 0), VO(z) € Hp,

dt
up(0) = ug,p-
This corresponds to the following problem:
du
D20 | A1) = n(®). un0) = o, 6)

where D = Z A + 0E, A = /2 Z Ay + AE, Ay = Yoz, Uno = Phuo(x), P, - H — Hy,
gn(t) = Phg( )
Yoz, = (Y((31 + 1Ry, ioha,ighs) — 2y(ivh, igha, izhs) +y((i1 — 1)h,d0ha,i3hs))/ hi,

Yaozs = (Y(i1hi, (iz + 1)ha,izhs) — 2y(i1h1,iaha, izhs) + y(i1h1, (i — 1)ha,i3h3))/ b3,
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Yuszs = (Y(i1h,i2ha, (i3 + 1)hs) — 2y((i1h1, i2ha, ishs)) + y(irh1,izha, (is — 1)h3))/ hj.

Operators D € Hy, and A € Hj, are approximates respectively,
L+0E, u’L+\E (6)

with second-order error.
Based on the Taylor expansion formula, we obtain:

3 3
_ h?n
A=Y Apu+t > T AmAs + O(|h|h, (7)
m=1 m,l=1
m#l

where |h| = \/h? + B3 + h2. Then, from (7), neglecting O(|h|*), we obtain the following operators:
D=A+0E, A=p*A+)\E, (8)

which approximate (6) to the fourth-order in h. Hence, instead of (5), we obtain the semi-discrete

problem:

_d _
D% + Auy, = gn, 1€ (O,T], uh(O) = Up0, (9)

_ _ 3
where D € H,, A€ Hy, gh =9+ > %Amg.
m=1
It’s clear that
D=D*>0, D=D*>0, A=A*">0, A=A">0. (10)

In what follows, in (9), we use u = ujy, € Hy, instead of uy, i.e. equations (9), (10) have the following
form:
Di+ Au =g, u(0)= up, (11)

where @ = du/dt.
8 Approximation in time

Let y approximate u = uy € Hp. We introduce a grid w; = {t, =n7r, n=1,2,.... M, 7 =T/M}
uniform in ¢. Here 7 > 0 is the time step. We replace system (11) with the following difference scheme:

Dy + Ay 77 =, ) =g, y' =i, (12)

where yo = (y" ™! = y"71)/(27), ¥ = y(tn), w1 = (E — 7D~ ' A)jug + 7D~'g(x,0), ¢ approximates g,

2

-
=y +71(01 — Uz)y; + ?(Ul + 02) Yzt (13)

Yy = oy + (1= 01 — o)y + ooy

where yz = (y" ™! — 2y" + y" 1) /72, We write the difference scheme (12) using identity (13) in the
following form:
By, +7°Dyg + Ay =@, 3y’ =wo, y' =ui, (14)

with the operators

D= (01 +02)A/2, B=D+1(01 — 02)A. (15)
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We denote the errors of scheme (14) by z = y — u. Then, from (14) for z, we obtain:
Bz; + 72Dz + Az =1, 2°=0, 2'=0, (16)

where 1 is the approximation error of scheme (14) for the solution wu(z,t) of the equation (1). By
direct calculation we can verify that 1» = O(72 + |h|*). Now we approximate (11) by the difference
scheme |[8]:

Dy, —vAg + Ay®® = o1, 1Dy + ady, + BAY"D) = s, (17)

' =uo, §°=D7'(f°— Aug), (18)
(yn-i-l _ yn)/T yt — (yn-i—l . )/7_7 y(0.5) — (yn—I—l +yn)/27 y(0.5) _ (yn—f—l _|_yn)/2,

where y; =
+
=1 f t)dt, v2 = - f G0 (519 + 50P)dt, s = 157 — 35a/3, s = 140y — 3500/3,

19%1 =1/2, 192 =76(1—€) (€ —1/2), € =771(t —t,). Thus, consider the following algorithms:

— scheme 1° — a difference approximation of fourth order in space (8) and second order in time
(12);

— scheme 2° — a difference approximation of fourth order in space (8) and fourth order in time

(17), (18).
4 Stability and accuracy

To study the stability of scheme (12), we use well-known theorems on the stability of three-layer
difference schemes. Since D, B are self-adjoint positive difference operators, according to Theorem 1
from [19, p.231|, provided that the following conditions are met:

_ _ 1-
A>0, D> ZA’ (19)
BTl is0 ,>1 (20)
2 er 1 ) p — )
the following a priori estimate holds:
[v" Mg < oyl n=0,1,s p>1, (21)

2 2
where [|y"flo = 1 [y +y" 5 + [l =" [5o1 4
Conditions (19), (20) considering (15) take the following form:

o1+ 092 1\ -
——]A 22
( ! 4) =0, (22)
o1+ 02 Tp—1]| -
— ——[A>0 2
[ 5 + 7(01 02)+2p+1] > (23)

Since p > 1, from (22), (23) we obtain that the difference scheme (12) is stable for all 7 and h, if its
parameters satisfy the following inequalities

o1+09>0.5, o> o09. (24)

Consequently, the following theorem holds.

Theorem 1. If conditions (24) are satisfied, scheme (12) is stable with respect to the initial data
and estimate (21) holds for its solution y™ € Hp,.
Based on Theorem 1 and Theorem 3 in [19, p. 257], the following statement holds.
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Theorem 2. Let conditions (24) be satisfied. Then the solution to the difference scheme (12) is
stable with respect to the initial data and the right-hand side, and for its solution y™ € Hj, the
following a priori estimate holds:

Il < (1l + 3 357, ) )
k=0

where By = B/(27) = e
Considering (16) and (25), we obtain the following theorem.

-
—7A

Theorem 3. Let conditions (24) be satisfied. Then the solution to scheme (12) y" € Hj, converges
to a smooth solution to the differetial problem (1)—(3), i.e.

Yy (@i, tn) — u(l‘i»tn)nlh < M(’h|4 + 7'2)» (T4, tn) € Wrp = Wy X Why, Wr=wrU {0}.

Let us consider the accuracy of scheme (17), (18). Let 2™ = y™ — u", 2" = ¢ — 4". Substituting
y" =2"+u" and y" = 2" 4+ 4" into (17), (18), we obtain:
Dz — i +720% =y, Dz +am + f20V =y, 0=0, =0,

2

Y1 =0, o = (o B = A+ T [(a+38 =) AT - (37— 2a3)] + O (),

where @ = u(t,), t, =t,+ 601, 0 <6 < 1. Hence, if the following conditions are met
vy=a+8, a B, 7=0(%), (26)

then 1 = by = O (14).
For vector scheme (17), (18) with commuting operators D and A, i.e. AD = DA, the following
estimate was obtained in [8]:

lun(t) = u(®)l| 5z + lune(t) = w(t)ll 5 < M7

Condition fll? = DA is overloaded. To avoid it, we introduce w = DYy, W= D'/2y instead of
y,1y. Note that (D1/2)* = D'/2 > 0 and there is an inverse operator D~/% = (D*1/2)* > 0.
After obvious transformations, from (17), (18) we obtain:

Dwt - %Zhbt + Aw©®) = D1, VDU% + Oélewt + ﬁjw(0-5) = ¥2, (27)

w® = DY2yg,  @® = DY2(3° — Aug),

where ¢; = D*1/2<pj, 7 =12 D=E, A=D"124AD~1/2 Here D, A are self-adjoint, positive, and
commutating operators. Eliminating  from (27) we obtain:

Biw"™™ + Bow™ + Bsw™ ' =7 F,, n=1,2,.., (28)
where w?, w! are given
~ 9 T ~ ~ 7'2
By =D+ (v + B)AD + —2(3ﬁ+a)
2

By = —2yD* + (3/5 —a) A%
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~ 7'2

B3—7D2—§(’Y+5) D+ 5(354‘@)1‘12,

~ T =\ - 72~~n =T\ 7'2~~n7
Fy = (vD + §BA) PL+ 5 A% — (vD - *5A> - S AGT

We rewrite equation (28) in canonical form:
Ewg + 7?Rwy, + Aw = F. (29)
The operators in (29) have the following form:

B=7(B1—Bs) =7(y+ B)AD,

D _ 1 _1 2 2 72
R—QT(Bl—i-B?,)—T(’}/D +12(35+a)A>,

1 -
A= —(Bi+ Bz + B3) = TBA?,

B ~ ~¢)n + @’n—l 2 ~
F=1yD@y;+ TBAT—— + S AGL ;. (30)

—_

Here B, A are self-adjoint positive operators, R* = R.
The scheme stability condition (29) R > A/4 is satisfied if,

a>0, v>0, (31)

B is a free parameter. Therefore, based on the methodology given in [19,20], for solving scheme (29),
we obtain the following estimate:

1 — _
™% < ¥l + 5 227 1l (32)
k=0

From (32) considering (30), we obtain:

Iyl 42 < [|9°]] 12 +

901+S0]f !

2

~k HA 1D+ vfﬁ

Mmax | —2— H (33)
k By +B) -
where M is a positive constant.
Let us apply (33) to estimate the error z = y — u of scheme (29), which satisfies equation Bz; +

2Rz, + Az = 1), where ¢ = F — (Bu; + 72 Rug + Au). Hance, we get the following estimate for z:
Ut + w 7 k
M | st ;5 e ilis- )
( B+ 7+ ipa 12¢/B+p) I AD
Here 11, 19 are the approximation errors of the vector scheme (17).
Similarly we obtain results for 2 = ¢ — u(t,). Therefore, [[2"| 2 = |[u™ — y"| 2 = O(r?) and

12| 42 = [la™ — §™|| 2 = O(7*) at time point t,,, n=1,2,... Based on (26), (31), (33), we obtain the
following result.

12 ’y—l—ﬁ

AD-1!

12" 42 <
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Theorem 4. Let conditions (26), (31) be satisfied. Then, for u(x,t) € C%[0,T], scheme (17), (18)
converges to the solution to problem (11), i.e. the following accuracy estimates hold:

Izl 72 < M7, [12(0))]] g2 < M7, VWt € [0,T].

Similarly, we obtain accuracy estimates for scheme 29.

Theorem 5. Let the approximation conditions (26) be satisfied. Then, if condition (31) is satisfied,
the solution to scheme 2% converges to a sufficiently smooth solution to problem (1)—(3), i.e.

@)l + 12, < MBI +79), 2,2 € Hy.

5 Algorithm for implementing the scheme
To implement (27) we rewrite it in the following form:
muw™ £ mpd™ = g1, ma w4 magi™ T = ¢, (34)

where

my = D + 7';1/2, mig = —7'2;1/12, mo1 = ad, may = yf) + 7‘6;1/2,

b1 = 731 + (D n TA/2) W' — 72 A0 /12, ¢y = T2 + aAw" + (7[) n 7521/2) W,

The integrals @1, @9 can be calculated, for example, using Simpson’s formula.
Considering the commutability of A, D, we eliminate w" ! from (34):

cy"™tt = F, (35)

where C' = yD? + 7(8 4 7)AD/2 + 72(36 + a) A% /12, F = maa¢y — miagha.
To solve (35), we factorize the operator C:

C =~CCy =~[D? — (z1 + x2)TAD + z1297% A%, Cp = (D — x7A), k=1,2.
Therefore, the algorithm for solving (35) has the following form:
FC10 =F, Cow™! =w.
The value of @™ is determined from
<’yl~? + TBA/2> Wt = ¢y — aAw™ T

The implementation of scheme (12) is not difficult, for example, for 01 = 02 = 0, it is implemented as
follows:
(D —orA)y"™ = (1 -20)7Ay" + (D + orA)y"  + 716, n=1,2,..,

0 1
Y =Uno, Y = Upa-
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6 Numerical experiments

6.1 One-dimensional case
Let us choose the parameters of problem (1)-(3): [ =n, T =1, u =60 =1, A = —1. Then,
instead of (1)—(3), we obtain:
ot \ Ox? Oz -
(x,t) eQr={z: O0<z<m, te(0,1]},
uw(0,t) = u(m,t) =0, te(0,1],
u(z,0) = sinz, x € [0,7].

The exact solution is u(z,t) = e *sinx. The parameters of scheme (17), (18) are given by the values

of y =72 a=972/7, B=—-27%/T7.
The order of the convergence rate is determined by the following formulas: p" = logy(||z|| /|21 2]
p" =logy(|l=l| / H21/2 ), where 219 = Ynj2.r/2 — Un/2.r/2-

),

Table 1
Convergence rates in spatial and temporal variables

h T Error Order
0.01 0.01 0.00038 —
0.005 0.005 1.93E — 05 4.26

0.0025 0.0025 | 1.27FE — 06 3.93
0.00125 | 0.00125 | 8.09F — 08 3.98

6.2 Two-dimensional case

We choose the parameters of problem (1)—(3) in the following form: I} =lo =n, T=1,u=0 =1,
A = —1. Then, instead of (1)—(3), we obtain:

—u=0,

9 (0*u  O*u 0’u  0*u
o (w*ay? “) o2 T oy
(,y,t) eQr={(z,y): O<z<m O0<y<m te(0,1]},
u(r,y,t) =0, (v,y) €09, te(0,1],
u(z,y,0) = sinzsiny, x € [0,7], y € [0,n].

The exact solutions is u(z,y,t) = e 'sinxsiny. The parameters of scheme (17), (18) are given by

the values of v = 7%, a =972/7, B = —272/17.

Table 2

Convergence rates in spatial and temporal variables

hi ho T Error Order
1/10 | 1/10 | 0.05 | 3.78E — 02 -
1/20 | 1/20 | 0.05 | 2.49F — 03 3.97
1/40 | 1/40 | 0.05 | 1.61E — 04 3.98
1/80 | 1/80 | 0.05 | 1.01E — 05 3.97

Tables 1 and 2 show the rate of convergence of the approximate solution to the exact solution when
conditions (26), (31) are satisfied.
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Conclusion

A high-accuracy numerical method was developed and investigated for solving the first boundary

value problem for a pseudoparabolic equation. Based on the stability theory results for difference
schemes, it was possible to obtain a priori estimates and, on their basis, prove the convergence of the
constructed algorithm with a fourth-order rate in both variables. An algorithm for implementing the
methods is given. Based on a computational experiment, test calculations were verified to confirm the
theoretical data.
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The intrinsic geometry of a convex surface in Galilean space
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This paper investigates the intrinsic geometry of a convex surface in the Galilean space R3. The Galilean
space, as a special case of a pseudo-Euclidean space, possesses a degenerate metric. The angle between two
directions is defined using a parabolic method, which is itself degenerate. The three-dimensional Galilean
space, similar to the Euclidean space, is based on a three-dimensional affine space. While the fundamental
geometric objects in these spaces coincide structurally, the geometric quantities associated with them differ
significantly from those in Euclidean geometry. It becomes necessary to introduce and rigorously define
various geometric characteristics of objects in Galilean space. Therefore, special attention in this work is
given to the total angle around the vertex of a cone, the angle between curves on a convex surface, and
the variation of curve turning on a convex surface. A geodesic on a convex surface is defined as a curve
with bounded variation of turning. A triangle is defined as a curve homeomorphic to a circle, bounded by
three geodesics. Using the concept of the total angle around the vertex of a cone, we define the intrinsic
curvature of convex surfaces in Galilean space and obtain an analogue of the Gauss-Bonnet theorem for
convex surfaces in Galilean geometry. The results obtained extend classical notions of intrinsic geometry
under a degenerate metric.

Keywords: Galilean space, convex surface, intrinsic geometry, intrinsic curvature, Gauss—Bonnet theorem,
degenerate metric, tangent cone, geodesic, curves with bounded variation of turning.

2020 Mathematics Subject Classification: 53A35, 52A38, 53A05.

Introduction

Modern differential geometry successfully applies methods of both intrinsic and extrinsic geometry
to the study of curves and surfaces in various spaces. One such space is the Galilean space Ril,), where
a degenerate metric coexists with the affine structure. This metric does not depend on all coordinates,
leading to fundamental differences in the definitions of distances, angles, and curvature, as compared
to the Euclidean case.

It is well known that the study of surface geometry is traditionally divided into “intrinsic” and
“extrinsic” components. In Euclidean space, the first fundamental form plays a central role in intrinsic
geometry. However, in Galilean space, the first fundamental form of a surface is degenerate, and
Gauss’s theorem, stating that the Gaussian curvature of a surface can be expressed entirely in terms of
the coefficients of the first fundamental form and their derivatives-does not hold. Therefore, it becomes
necessary to redefine intrinsic curvature, highlighting specific geometric characteristics that arise due
to the degeneracy of the metric.

The aim of this paper is to define the fundamental geometric characteristics of convex surfaces and
to construct an analogue to the intrinsic geometry of a surface within the Galilean space. Due to the
degenerate nature of the metric, it is not possible to directly apply classical Euclidean definitions such
as geodesics, arc length, or intrinsic curvature. Consequently, this paper introduces new approaches:
using angles between generators of tangent cones, curves with bounded variation of turning, and
cylindrical mappings.

*Corresponding author. E-mail: aartykbaev@mail.ru
Received: 23 June 2025; Accepted: 4 September 2025.
(© 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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This work builds upon the results of previous studies by A.D. Alexandrov and O. Roschel, and
contributes to the further developing of the theory of convex surfaces in pseudo-Euclidean spaces [1,2].

Since the 2000s, there has been an increasing interest in the geometry of Galilean space. In this
context, special attention should be given to the works [3-5].

1 Galilean space and fundamental concepts

The Galilean space R} is an affine space A3 equipped with two scalar products defined for vectors

X ={z1,y1,21} and Y = {@9,92, 22 }:

1. (X,Y) = (X, Y)l =1 - T,

2. (X,)Y)=(X,Y)2=uy1-y2+ 21 22, when (X,Y); =0.

The norm of a vector is defined as the square root of its scalar square, and the distance between
two points equals the norm of the vector connecting them [6].

The motions of Galilean space, i.e., linear transformations preserving distances between correspon-
ding points, are described by the system [7]:

2 =z +a,
Yy = ax +ycos¢+ zsing + b,
2 = Bx —ysing + zcos ¢ + c.

Here a, b, c are translation parameters, «, 3 correspond to a Galilean shear (related to the parabolic
angle h), and ¢ denotes the Euclidean rotation angle in the (y, z)-plane.

Let e; = (1,0,0), ea = (0,1,0), es = (0,0, 1) be an orthonormal basis of the space. Then it is easy
to establish that a motion maps a plane parallel to the vectors es, e3 into another parallel plane. These
planes are Euclidean and are called special planes. Planes not parallel to es and e3 are called planes
in general position. Vectors parallel to special planes are also called special vectors.

A sphere in Galilean space R} is a set of all points equidistant from a point Xy and is defined by
the equation:

(xz — xg, x — x0) = 1.

If the center of the sphere is at the origin and the radius is 1, then
(z,2); = 22 = 1.

The set of all points whose coordinates satisfy the sphere equation forms a set of parallel special
planes located at unit distance from the origin.
Unit vectors in the directions of X and Y have the coordinates:

= z = z
X:{l,yl,l}, Y:{l,y272}.
Tr1 I Tro X9
These vectors are the radius vectors of points on the unit sphere.

The angle between spatial vectors is defined as the distance between the endpoints of their corre-
sponding unit vectors on the sphere, and is given by:

Y Yy 2 z z 2
S CERCEE
X1 T2 Wil T2

It is evident that 0 < h < oo, and h — oo if one of the vectors approaches a special direction.
When h = 0, the vectors are parallel.

34 Bulletin of the Karaganda University



The intrinsic geometry ...

The angle between a spatial vector X = (z1,y1,21) and a special vector Y = (z2,Y2, z2) is defined

as: v Y1 z1
= (X,Y) _ Y2t 57122.
Y12 Vs + 23

The geometric interpretation of the angle f is the projection length of the unit vector X onto the
direction of Y in the special plane. The projection is taken along the vector e;. If X is parallel to e,
then f =0.

The angle between special vectors is given by the standard Euclidean formula:

Y1Y2 + 2122 _ (X,Y)2
Vi +24 Vs + 2 (XY

Thus, the angle between lines in Galilean space is defined via the angle between their direction
vectors.

Let F' be a surface in Ré that does not possess special tangent planes. We introduce a special
curvilinear coordinate system by considering all intersections of F' with special planes x = const. We
choose the family of curves formed by these intersections as u = wg coordinate lines, and arbitrary
transverse curves on F' as v = vg lines. Then the surface can be parameterized as:

cosp =

(u,v) = uer + y(u,v)es + z(u, v)es.

Here, the vectors 7, and 7, form a basis of the Galilean tangent plane at each point. The direction
of 7, corresponds to the distinguished direction in the Galilean plane.

Let a curve on F' be given by the equation v = v(u). The arc length of the curve between points
A(ug) and A(uq), where ug # uq, is computed as follows:

ds = |Fydu + 7ydv| = |dul.

Hence, the square of the arc length differential on the surface equals the square of the increment of the
coordinate wu:
ds? = du?.

This expression is referred to as the first fundamental form of the surface.
When du = 0, i.e., u = const, the corresponding curve lies entirely in a special plane. In this case,
the differential of arc length is given by

ds* = (y2 + 22)dv* = G(u,v)dv?.

We refer to this as the first supplementary fundamental form of the surface. Thus, with the chosen
curvilinear coordinates, the coefficients of the first fundamental forms are E1 = 1, and G = y2 + 22.

Suppose two points emanate from a point M (ug,vp) on a surface in general position (i.e., whose
tangents are not parallel to a special plane). Let di and d7 be the differentials of the radius vector
along these curves. The angle 6 between them is defined as the angle between the vectors di’ and 7.

Hence,
dv v
0= — .
Glu,v) <du 5u>

Similar to the Euclidean case, the concept of surface area can be introduced. The area of a domain

D on the surface is given by
S = //\/G(u,v) du dv.
D
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2 Convergence of convex surfaces in R%)

The degeneracy of the scalar product induces a degenerate metric in the Galilean space R}. If
two points lie on different planes, then the distance between the special planes to which they belong
is defined as the distance between the points. When the points lie on the same special plane, the
distance between them is defined as the length of the segment connecting them. Special planes in R}
are Euclidean planes.

Suppose that a sequence of convex polyhedra F), converges to a convex surface F', and a sequence
of points x,, € F,, converges to a point « € F.

We consider only such approximations for which the points x,, and y,-converging respectively to x
and y-remain at distances of the same order.

Theorem 1. Let a sequence of closed convex polyhedra F;, converge to a closed convex surface F',
and let sequences of points x,,y, € F),, converge to points x,y € F, respectively. Then the distances
between x, and ¥,, measured on F;,, converge to the distance between x and y, measured on F, i.e.,

pr(z,y) = Jim_ pp, (0, Yn)-

Proof. Suppose the points x,, and y, lie on different special planes and converge to points z and y
lying on corresponding special planes. Then we have:

PE,, (l’n, y’n) S pE(Z’, y)7

where pg denotes Euclidean distance. Moreover, in Galilean space, for points lying on different special
planes, the distances are equal:

PF, (xnv yn) - pF(‘T? y)7

since in this case the measured distance is formally defined: it does not depend on the surface itself.
If the points z,, and y, lie on the same special plane, then the metric is considered as a second-
order metric, and we have pa(zy, yn) = pE(Tn,yn). Instead of computing the direct distance between
the points, we consider the length L, of a polygonal line on the special plane connecting x,, and y,.
This broken line arises from the intersection of F), with the special plane. Since the special plane is
FEuclidean, distances on F;, within it are measured via the polygonal path joining x, and y,, and thus

P2 (xrm yn) = Ln(xna yn)

When F,, — F, the Euclidean length of the polygonal line L, (x,,y,) converges to the length of
the curve L(x,y) on the special plane. Therefore,

n—oo

The theorem is thus proved.

8 The total angle around the vertex of a cone

The definition of the total angle around the vertex of a cone in Galilean space was introduced in
the work [8] of A. Artykbayev. The main challenge in this definition lies in the concept of the angle
between a vector and a special plane. Therefore, cones are divided into two classes: cones that do not
have special supporting planes and cones that do.

In both cases, the total angle around the cone’s vertex is defined using a circle of unit radius
centered at the vertex of the cone.
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When the cone does not possess special supporting planes, the total angle around its vertex is
defined via the intersection of the cone with special planes. Since special planes determine a sphere in
Galilean space [8], intersecting the cone with these planes yields hyperbolas with asymptotes parallel
to lines passing through the cone’s vertex.

The sphere in Galilean space consists of two parallel special planes. If one of these sections is
reflected symmetrically onto the other, we obtain both branches of the hyperbola on the same special
plane.

Let V be a convex cone in R} that does not have any special supporting plane. Intersect V with
a special plane 7y passing through the cone’s vertex. Let i and ps be the generatrices of the cone
lying on this intersection. Let v and 72 be the curves formed by intersecting the cone V with the unit
sphere of Galilean space, i.e., with the pair of special planes located at unit distance from the cone’s
vertex. Clearly, the curves v; and 9 have asymptotes parallel to the lines py and po, respectively.

This configuration, when visualized on a special plane, appears as shown in Figure 1.

124

Figure 1. Intersection of a convex cone with special planes in Galilean space R?l)

Let us denote the angular quantity by
w=AD+ BC — AB—DC > 0.

The total angle around the cone’s vertex is defined as the limit of w as the points A, B,C, D on
the respective branches of the curves 77 and 72 tend to infinity.

In [8], the limit was proven to be bounded. Furthermore, in [9], an analytical formula for this total
angle was obtained when the equations of the curves v, and 72 are known explicitly.

To define the curvature of fundamental sets on a convex surface, we use of the total angle around
the cone’s vertex in Galilean space.

When the cone has special supporting planes, its intersection with the unit sphere centered at the
vertex is a closed curve. The length of this closed curve is then taken as the total angle around the
vertex of the cone possessing a special supporting plane [10, 11].

4 Angle between curves on a convex surface in Galilean space R}

To define the angle between two curves on a convex surface, we use the angle between the genera-
trices of the tangent cone. At every point on a convex surface in Galilean space, a tangent cone exists.
This follows from the fact that Galilean space is affine, and affine structures are preserved in Galilean
geometry.
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When the convex surface is regular, the tangent cone degenerates into a plane. The geometry on
this plane is Galilean.

Let I; and I3 be two generatrices of a convex cone V', directed into the same half-space with respect
to a special plane my. The generatrices [; and ls intersect the curve ~; (for i = 1 or 2, depending on
the direction of I; and l3). The length of the arc of the curve 7; enclosed between I; and [y is taken as
the angle o™ between them.

We intersect the cone V' with a plane passing through the bisector of the angle formed by the
generatrices pp and po, and parallel to the Oz-axis. This intersection is referred to as the principal
section of the cone V.

Generatrices of the cone directed into opposite half-spaces with respect to both the special plane
and the principal section, and forming equal angles with the generatrices lying in the principal section,
are called conjugate generatrices. The angle between conjugate generatrices is defined to be half of the
total angle around the vertex of the cone.

When l: and l; are generatrices directed into different half-spaces divided by the special plane g,
the angle between them is given by

o {l,lo} = % - B,
where 8* is the angle <p*{l~1, l~2*}, and Z;* is the generatrix conjugate to l. Tt is easy to verify that
eI} = o {0 B

It can be shown that for three generatrices of the cone not directed into the same half-space and
distinct from pq and ps, the sum of the angles between them equals the total angle around the vertex
of the cone.

If the cone V degenerates into a plane or a dihedral angle, the defined angles ¢ and ¢~ coincide
with the angle between rays in the Galilean plane Ro. In such cases, the total angle is zero.

Now consider an arbitrary point M on the surface F', and let V be the tangent cone at this point.
Let {~} denote the family of curves on the surface F' issuing from the point M and having a direction
not lying in the special plane my. The direction of any curve in {7} coincides with a generatrix of the
tangent cone V.

The angle between two such curves issuing from the point M on the convex surface F' is defined as
the angle between their directions — that is, the angle between the corresponding generatrices of the
tangent cone.

This notion of angle does not satisfy all the properties of angles between curves on convex surfaces
in Euclidean geometry. For instance, in Euclidean space, if L1, Lo, and L3 are three curves forming
angles a1, ag, and ag, then the sum of any two of these angles is at least as great as the third.

This property holds in Galilean space only for curves directed into the same half-space.

The angle defined in this manner is naturally called the “parabolic angle”. It can take any positive

value. When the direction of one of the curves tends to lie infinitely close to the special plane, the
angle increases without bound.

5 Curves of bounded variation of turning in R}

To introduce the analogue of a shortest path in R?l), we first define curves of bounded variation
of turning. Let v be a curve in the space R} connecting points A and B that lie on different special
planes. Inscribe a polygonal line L,, into =y, and denote by p(L;,) the sum of (parabolic) angles of this
polygonal line. The upper limit of the values p(L,) over all such inscribed polygonal lines L,, is called
the variation of turning of the curve «y. If u(7) is finite, then ~ is called a curve of bounded variation
of turning.

38 Bulletin of the Karaganda University



The intrinsic geometry ...

Lemma 1. If v is a curve of bounded variation of turning connecting points A and B on different
special planes, then it intersects each special plane of Ré in at most one point.

Proof. Suppose v has two points of intersection with some special plane, or contains a component
lying entirely within a special plane. Then one can inscribe a polygonal line L,, such that at least one
of its segments lies entirely within the special plane. The angle of the polygon at the ends of such a
segment becomes unbounded. This contradicts the boundedness of the variation of turning. O

Lemma 2. If v is a curve of bounded variation of turning in Galilean space Ré, then it also has
bounded variation of turning in Euclidean space.

Proof. Let A;_1A; and A;A; 11 be segments of a polygonal line inscribed in 7. Let h; be the angle
between these segments in R}, and ¢} be the Euclidean measure of that angle. Then the following
inequality holds:

0 < ¢f < tany} < h;.

n n

Since 7 is of bounded variation in R}, we have Y h; < oo, and thus Y ¢} is also finite. Therefore,
i=1 i=1

the variation of turning in Euclidean space is bounded. O

Lemma 3. Curves of bounded variation of turning have right and left semi-tangents at every point.
These are not parallel to the special plane.

This follows from the properties of Euclidean curves of bounded variation of turning. Since such
curves also have bounded variation in Euclidean space, the tangents cannot be parallel to the special
plane; otherwise, it contradicts boundedness.

Variation of turning can also be defined equivalently. Let v be a curve with a right (or left) semi-
tangent at each point. Take a finite number of points Ag on ~, and at each point place the right
semi-tangent t;. The supremum of the sum of angles between successive semi-tangents over all such
finite systems of points Ay is called the variation of turning of . This definition is equivalent to the
one given above, as proved analogously in Euclidean geometry [12].

Let A and B be points on different special planes in R}. Consider circular cones S4 and Sp with
vertices at A and B, respectively, and with their directrices centered along the segment AB (lying
in a special plane). These cones intersect. The class of closed convex surfaces formed by all possible
intersections of such cones is denoted by S4p.

Lemma 4. If map is a family of curves connecting A and B and having variation of turning not
greater than NN, then there exists a surface F in the class Sap such that all curves in the family lie
within F'.

Proof. From the set of surfaces, choose one. For this surface the total angle around the vertices
satisfies:

vA =B =27N.

Consider a broken line consisting of the generatrices of intersecting cones S4 and Sp, with a vertex
at their intersection point. The turn at this vertex is not less than N. This follows from the triangle
formed by the broken line and the segment AB, where the base angles are N, and the vertex angle is
at least the sum of the base angles. The same argument applies if any vertex of the broken line does
not correspond to a generatrix of surface F'. In such case, that part cannot lie on the cone, implying
the curve cannot lie outside F'. O

Theorem 2. Let v1,72,...,7v, be an infinite sequence of curves with bounded turning variation,
each with variation no greater than N. If ~, converges to a curve -y, then v is also with bounded
turning variation and its variation does not exceed N.
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Proof. The proof is analogous to the corresponding result in Euclidean space [12].

Let X and Y be arbitrary points on a convex polyhedron ) without special supporting planes. If
X and Y lie on the same special plane, they are connected by a planar convex polygon with bounded
turning. If they lie on different special planes, they can still be connected by a polygonal line on @
with bounded turning. O

Lemma 5. Any two points X and Y on a convex polyhedron ) without special planes can be
connected by a polygonal line Lxy on ) with bounded turning.

Proof. Let points X and Y lie on the singular planes mx and my, respectively. Consider the
intersection of the polyhedron () with the singular planes mx and 7y, and denote by Q4p the portion
of () between these two planes. At the points X and Y, the boundary of the polyhedron Q45 has two
directions: l1x, lox at X and lyy, loy at Y.

Now consider the spatial segment connecting the points X and Y. We construct through X and Y
a general-position plane wxy such that the boundary edge directions of the broken line L xy, formed by
the intersection of wxy with the polyhedron @ xy, do not coincide with the directions of the boundary
at X and Y. The broken line Lxy contains no segments lying on singular planes. Indeed, the extreme
segments are chosen in such a way that they do not lie on any singular plane. The intermediate
segments cannot lie on singular planes either, since the polyhedron () contains no such planes.

Since the plane mxy is in general position, it is a Galilean plane. Consider the convex polygon
formed by the segment XY and the broken line Lxy on this plane. In this polygon, the sum of the
angles not supported by singular directions equals the sum of the angles with singular supporting
directions. Hence,

u(Lxy) = ax + ay,

where ax and ay are the angles at the vertices X and Y supported by singular directions. These
values ax and ay are finite because the segment XY and the extreme edges of the broken line Lxy,
which form these angles, are spatial (i.e., not singular). Therefore, the value p(Lxy) is bounded. This
completes the proof of the lemma. O

Consider a sequence of convex polyhedra F;, with common boundary L,, all lacking special sup-
porting planes. Suppose each L, is a polygonal line with bounded turning on F),, and the sequence
F,, converges to a convex surface F' with boundary L.

Lemma 6. If a sequence of polygonal lines 7, with bounded turning on Fj, converges to a curve y
on F', then v also has bounded turning variation.

This follows from Theorem 2 and the assumption that F' does not have special supporting planes.

6 An analogue of a geodesic on a surface in R%

The degeneracy of the metric in Galilean space R} prevents the definition of a geodesic via standard
metric methods. The distance between two points lying on different special planes is equal to the
interval between those planes [13].

An interesting phenomenon arises: all curves connecting two given points that do not lie on the
same special plane have equal length. This effect can be interpreted within Newtonian mechanics as
worldline length invariance connecting given events. In other words, in Newtonian mechanics, time
is independent of the velocity of bodies. Hence, the natural question arises — by what criterion can
a curve on the surface be distinguished as a substitute for the shortest path, i.e., a curve possessing
properties similar to those of a Euclidean geodesic?

Let F' be a convex surface in Galilean space. Consider a family {7} of curves lying on the surface
and connecting two given points on the Galilean surface.
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Definition 1. A curve 7 from the family {7} that has the least turning variation is called the
shortest curve between the given points on the surface.

This provides one possible definition of a geodesic in R:l),.

Accordingly, a geodesic is defined as a continuous curve that is the shortest (in the sense of minimal
turning variation) over each of its sufficiently small subarcs. A triangle on the surface is defined as
a figure homeomorphic to a circle and bounded by three such shortest curves. A geodesic triangle is
defined as a figure bounded by three geodesics.

7 Intrinsic curvature of a convexr surface

The degeneracy of the metric in Galilean space necessitates a new approach to defining the intrin-
sic geometry of a surface. Intrinsic geometry includes those properties of a surface that depend on
the properties of its metric. In Euclidean space, the intrinsic curvature of a convex surface is fully
determined by the internal metric of the surface. A similar approach in Galilean space does not yield
satisfactory results. Therefore, we attempt to study the intrinsic geometry of a convex surface using
its extrinsic geometry in Galilean space. We define the intrinsic curvature of a set on a convex surface
in Galilean space by analogy with the Euclidean case, initially for three types of “elementary” sets:
open triangles, open geodesics, and points. An open triangle excludes its vertices and sides; its sides
do not lie on special planes. An open geodesic is a geodesic excluding its endpoints.

For an open triangle T" on F', the curvature is defined as

wT)=a—-B+7.

Here «, 3,y are the triangle’s angles, and each side lies in a different half-space determined by a special
plane through the vertex.

The curvature of an open geodesic is taken to be zero.

A point’s curvature on a convex surface is defined as the total angle around the vertex of the
tangent cone at that point.

We consider sets on a convex surface that do not share common points pairwise. Such sets are
called “elementary”. Based on the definition of elementary set curvature, we define a bounded set’s
curvature on a convex surface.

Definition 2. The intrinsic curvature of a bounded closed set on a convex surface is defined as the
infimum of the curvatures of all elementary sets containing it.

We define the intrinsic curvature of Borel sets on a convex surface as the least upper bound (supre-
mum) of the curvatures of all bounded closed subsets contained in it.

The definitions of intrinsic curvature of a set on a convex surface in Galilean space given above
are analogous to those in Euclidean geometry. The main difference lies in how the curvature of the
“elementary” (or “basic”) sets is defined.

Let M be an “elementary” set on a convex surface F. Suppose it can be represented as a disjoint

union of basic sets .
M =>"B
=1

Then, the intrinsic curvature of the set M is defined as the sum of the curvatures of its basic compo-
nents:

=1

The intrinsic curvature of a Borel set on a convex surface is defined as the exact least upper bound
of the curvatures of all bounded closed subsets contained in it.
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The curvature value of a set on a convex surface does not depend on the particular way it is
decomposed into basic sets.

This fact, along with the non-negativity and complete additivity of the intrinsic curvature of a
convex surface for elementary sets, is proved in the same way as in FEuclidean geometry. This is
justified by the observation that the cylindrical mapping of a convex surface can be regarded as the
projection of its spherical mapping onto a cylinder. The generating curve of the cylinder corresponds
to a great circle on the unit sphere. As a result, the cylindrical mapping of a convex surface in
Galilean space inherits all the essential properties of the spherical mapping. These properties ensure
the correctness of the intrinsic curvature’s stated properties.

Theorem 8. The intrinsic curvature of a Borel set on a convex surface is equal to its extrinsic
curvature.

Proof. The concept of extrinsic curvature is defined in [8]. The authors show the cylindrical map-
ping is a projection of the Euclidean spherical mapping onto the sphere in the isotropic space R}. The
isotropic sphere is interpreted as the co-Euclidean plane S21. To prove the theorem, it suffices to show
that the curvature of basic sets equals the area of their cylindrical image. Indeed, the spherical image
of an open triangle maps to a triangle on the co-Euclidean plane. The quantity defining the curvature
of the open triangle on F' equals the area of the triangle on S’%. The intrinsic curvature of an open
geodesic equals the area of its cylindrical image, which is a curve on the plane.

The total angle around the vertex of a cone is taken to be equal to the area of its cylindrical image.

The theorem for any Borel set on a convex surface follows from the fact that the cylindrical mapping
of a convex surface in Galilean space is a central projection of the Euclidean spherical mapping. O

Theorem 4. Intrinsic curvature is a non-negative and fully additive function on Borel sets of a
convex surface.

Proof. The extrinsic curvature of convex surfaces in Galilean space is a non-negative and fully
additive function on Borel sets of the surface. Therefore, intrinsic curvature, being equal to extrinsic
curvature, also possesses these properties. O

8 Gauss—Bonnet formula in Galilean space

The results obtained in the previous sections allow us to approach a generalization of the Gauss—
Bonnet formula for an arbitrary domain on a convex surface in Galilean space. However, a completely
new difficulty arises here, related to the discontinuity of the angle between vectors when a vector
traverses a closed region. In particular, when one of the vectors is parallel to a singular plane, the
angle between vectors becomes unbounded. To eliminate this peculiarity, the domain must satisfy
certain conditions.

Let @ be a convex domain on a convex surface F', that has no singular supporting planes, and is
bounded by smooth curves

a1, 2, ..., L, ﬂlvﬁ?)"'aﬁp'

Assume that the curves oy and 3, as well as oy, and (31, share common endpoints A and B, respectively.
The points A and B lie on the singular planes that bound the domain. The directions of the curves
a1, B, at point A, and oy, 81 at point B, are not parallel to the singular planes.

Let ¢; and 1; denote the angles between the curves (a;, 1) and (535, Bj4+1), respectively. Let ¢
and 1 denote the angles at the points A and B, respectively.

A domain @ satisfying the above conditions is called admissible.

Then, the following theorem holds.
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Theorem 5. Let D C F be an admissible domain on a convex surface F' in Galilean space. Then
the generalized Gauss—Bonnet formula holds:

n

é/Kdo—zsoJrlb—izk; %—Fa[k(ai)ds —; ¢j+¥k(5j)ds ;

where:

o K is the Gaussian curvature on the surface F,
do is the surface area element,
ko), k(B;) are the geodesic curvatures of the boundary curves,
ds is the arc length element,
©i, ¥ are the turning angles between boundary curve segments,
©, Y are the interior angles at the corner points A and B.

Proof. We begin by computing the intrinsic curvature of a convex geodesic polygon on a convex
polyhedral surface. Let F}, be a sequence of convex polyhedral surfaces converging to a convex surface
F that has no singular supporting planes.

Let @, be a geodesic polygon on Fj,, bounded by geodesic arcs o, and 8j,, such that @, consists
of a collection of non-overlapping geodesic triangles. These triangles are chosen in such a way that
none of their sides lie on singular planes. Furthermore, the vertices of the polyhedron F}, contained in
@y, are the vertices of these triangles.

By definition, the intrinsic curvature w(@,,) of the polygon @, is equal to the sum of the intrinsic
curvatures of the sets contained within it:

W(@Qn) =Y w(Te) + ) w(Xm) + Y w(La),

where:

e T, are the open triangles in the triangulation,

e X,, are the vertices of the triangles T, contained in @Q,,

e L, are the sides of the triangles (excluding endpoints).

The intrinsic curvature w(L,) = 0 for all segments L, since geodesic arcs have zero intrinsic
curvature except at their endpoints.

The vertices of triangles T, in @,, are of two types:

1. vertices located inside the polygon @,

2. vertices lying on the boundary of the polygon.

The boundary vertices are further subdivided into:

e points lying on A, or By,

e points lying on the geodesic arcs a;y or Bjp,.

The sum of all angles around an interior vertex of @, is equal to the negative of the intrinsic
curvature at that vertex. The angle at a boundary vertex equals the turning angle of the boundary at
that point.

Thus, we obtain:

k

Zw(Te) = ©n + Un, — Z (So'm + Aa'm) - Z (¢]n + Aﬁ]n) - Zw(Xm),

i=1 j=1

where Aa;y,, ABj, denote the total turning (geodesic curvature integrals) along the respective arcs
Qijn, Bjn-
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Hence, the total intrinsic curvature of the polygon @, is

k

W(Qn) = p + wn - Z (Spin + Aain) - Z (T/}jn + A/BJH) - Zw(Xm)'

i=1 j=1

Finally, passing to the limit and applying arguments analogous to those used in Euclidean geometry,
we obtain the required formula. O

In Galilean space, consider a closed surface F' possessing two conical points A and B, each admitting
a singular supporting plane. Assume that S4 and Sp are the tangent cones at points A and B,
respectively. Let the total angles around the vertices of these cones be v4 and vp.

Then the Gauss—Bonnet formula for the closed surface F' takes the form

/Kdg:7A+'YBa
>

where:

e K is the Gaussian curvature,

e do is the surface area element,

e v4,7p are the total cone angles at the conical points A and B.

This formula reflects the concentration of curvature at the conical points on the surface and gen-
eralizes the classical result to surfaces with isolated singularities in Galilean geometry.

Conclusion

This work presents a systematic exposition of the intrinsic geometry of convex surfaces in Galilean
space. It is shown that, despite the degeneracy of the metric, it is possible to construct a consistent
theory that incorporates the notions of length, angle, geodesics, and curvature. One of the key results
is the formulation and proof of an analogue of the Gauss—Bonnet theorem, valid for convex surfaces
without special supporting planes. It is also demonstrated that the intrinsic curvature coincides with
the extrinsic curvature defined via cylindrical mapping, highlighting the deep connection between the
intrinsic and extrinsic properties of convex geometry in Galilean space. The results obtained may
serve as a foundation for further investigations of geometric structures in non-smooth spaces and have
potential applications in mechanics, optics, and relativity theory, where space-time models may admit
degenerate metrics. These results can be applied in classical mechanics, where Galilean space models
Newtonian spacetime. They may also be useful in optics and relativity theory for studying degenerate
metrics.
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Forward and inverse problems for a mixed-type equation with the
Caputo fractional derivative and Dezin-type non-local condition
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This paper investigates a mixed-type partial differential equation involving the Caputo fractional derivative
of order p € (0,1) for ¢ > 0, and a classical parabolic equation for ¢ < 0. The problem is studied in an
arbitrary N-dimensional domain 2 with smooth boundary, subject to Dezin-type non-local boundary and
gluing conditions. For the forward problem, existence and uniqueness of the classical solution are established
under suitable assumptions on the data, employing the Fourier method. The influence of the parameter A in
the non-local boundary condition on solvability is analyzed. Additionally, an inverse problem is considered,
where the source term is separable as F(z,t) = f(z)g(t), with known ¢(¢) and unknown spatial function
f(z). Under certain conditions on g(t), the uniqueness and existence of the solution are proven. This work
extends previous results on mixed-type equations, highlighting the role of fractional derivatives and non-
local conditions in both forward and inverse settings. The findings contribute to the theory of mixed-type
and fractional differential equations, with potential applications in subdiffusion and related processes.

Keywords: mixed type equation, the Caputo derivative, forward problem, inverse problem, Fourier method,
Dezin-type non-local condition, existence and uniqueness, gluing conditions.

2020 Mathematics Subject Classification: 35M10, 35R11.

Introduction and formulation of problems

Numerous researchers have investigated boundary value problems for differential equations of mixed
type. These problems first attracted attention through the work of S. Chaplygin, who applied mixed-
type partial differential equations to model gas dynamics. Later, A. Bitsadze [1] demonstrated the
ill-posedness of the Dirichlet problem for the equation ug, + sgn(y)uy, = 0.

Let 0 < p < 1. The Caputo fractional derivative of order p of a function f is given by |2, p. 336]

R Ao
fo(t)_l“(l—p)o/(t—f)l—f’d’ t>0,

provided the right-hand side exists. Here I'(-) denotes the well-known gamma function.
Let © be an arbitrary N-dimensional domain with a sufficiently smooth boundary 9f2. Consider
the following mixed-type equation:

Diu— Au= F(z,t), z€Q, 0<t<}g,

1
up + Au = F(x,t), €, —a<t<Oo, ()
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where F'(z,t) is a continuous function and a > 0, 8 > 0 are given real numbers and A is the Laplace
operator.
The Dezin problem. Find a function u(z,t) satisfying equation (1) and the boundary condition

u(z,t)lae =0, € o, pl, (2)
and the gluing condition
tl—i}—l&—l()u(x’t) = tl_i)rzlou(:z:,t), x € Q, (3)
and also the non-local condition
u(z, —a) = Au(z,0), x€Q, (4)

where A = const, A # 0.
This problem is called the Dezin problem due to condition (4). Note that if A = 0 then we arrive
at the backward problem for the subdiffusion equation.

Definition 1. A function u(t,z) € AC([0, 5]; C(2)) with the properties
1. u(z,t) € C(Q x [~a,0]),
2. Au(x,t) € C(Q x (—a,0) U (0, 4]),
3. DYu(z,t) € C(Q2 x (0, 0]),
4. ug(z,t) € C(Q x (—a,0)),
and satisfying conditions (1)—(4) is called a (classical) solution of the problem (1)—(4).

In equation (1), the derivatives of the function u(x,t) are considered in the open domain. The
condition of continuity for these derivatives in the closed domain €2 is imposed to facilitate a straight-
forward proof of the solution’s uniqueness. The requirement of absolute continuity of the solution for
t > 0 is necessary to exclude singular functions from consideration, as their inclusion would violate the
uniqueness of the solution. Notably, the solution derived via the Fourier method inherently satisfies
these continuity and absolute continuity requirements.

Inverse problem. Let F(x,t) = f(x)g(t), and let the function g(¢) be known. Find functions f(x)
and u(x,t), such that f(z) € C(Q) and the function u(z,t) satisfies conditions (1)—(4) and conditions
of Definition 1, also an additional condition

U(SL‘,to) = 900(33)7 z €, (5)

here ¢o(z) is a given sufficiently smooth function and ¢¢ is a given point in (0, ).

In 1963 A.A. Dezin [3] (see the condition (I'1)) studied solvable extensions of mixed-type differential
equations. He formulated a boundary value problem characterized by 2m-periodicity and non-local
conditions, where the value of the unknown function within a rectangular domain is related to the
value of its derivative on the boundary. This formulation involves the Lavrentiev—Bitsadze operator
and reflects a significant development in the theory of mixed-type equations.

In works [4-7] non-local boundary value problems of Dezin’s type for mixed-type differential equa-
tions have been investigated. Let us dwell in more detail on these works.

In [4], the following degenerating mixed type equation is considered:

Lu = K(t)ugy + uy — bK (t)u = F(x,t), (6)

in the rectangular domain D = {(z,t) : 0 < = < I, —a < t < B}, where K(t) = (sgnt)|t|™, and
m,b,l > 0 are given real constants. The study addresses an inhomogeneous Dezin-type non-local
boundary condition of the form w;(x, —a) — Au(z,0) = ¥ (x). In [5], a similar problem is examined
under the assumptions m =b =0, a = [, ¥(z) =0, and F(z,t) = f(z,t)H(t) (H(t) is the Heaviside
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function), with A > 0. It is also shown that in the case A < 0, the homogeneous problem admits a
nontrivial solution. In [6], equation (6) is investigated under the same conditions as in [4], except for
the homogeneous case where F'(z,t) = 0. It should be emphasized that all the abovementioned works
focus on forward problems. In the work 8], the forward and inverse problems for equation (1) were
studied. In solving the forward problem, instead of the non-local condition (4), the gluing condition
Dlu(z,+0) = u¢(x,—0) was used. The inverse problem of determining the unknown function f(x)
was investigated for the case where ¢g(t) = 1. In [9], the inverse problem is also considered, where the
equation involves for t > 0 a Caputo fractional derivative of order p, and for ¢ < 0 the equation is of
hyperbolic type. Furthermore, in [10-12], similar inverse problems are studied for the subdiffusion and
mixed-type equations.

In this paper, we consider the forward problem (1)—(4) and the inverse problem (1)—(5) of deter-
mining the right-hand side.

1 Preliminaries

Let us denote by {vx} the complete orthonormal eigenfunctions in Ly(€2) and by A; (where
the values A\p are a sequence of non-negative integers that do not decrease with increasing index
k: 0 <A1 < A2 < A3 <...) the set of positive eigenvalues of the following spectral problem

—Av(z) = v(x), = € Q,

(7)

v(x) Jgg = 0.

Let o be an arbitrary real number. In the space L2(2), we introduce the operator A’ which
operates according to the rule

A g(x) = Mgror(x).
k=1

Here g, = (g, vx) are the Fourier coefficients of an element g € Lo(£2). Obviously, this operator A9 with
the domain D (fl") = {g €Ly (Q): Y3 A gk < oo} is selfadjoint. If we denote the operator
by A in Lo (2) acting according to the rule Ag(z) = —Ag(x) and with the domain of definition
D(A) = {g e C*(Q) : g(xz) =0, x € 9Q}, then the operator A = A is the selfadjoint extension in
Lo (2) of the operator A [13, p.139).

Our reasoning will largely rely on the methodology developed in the monograph [14].

Lemma 1. |14, p.453] Let o > %. Then the following estimate HA_"gHC(Q) < |9l 14(0) holds.

In order to prove the existence of a solution to the forward and inverse problems, it is necessary to
study the convergence of the following series:

> N
Z)\;c—|hk|27 T > 57 (8)
k=1

here hy are the Fourier coefficients of the function h(x) € L2(2). In the case of integer 7, in the paper
by Il'in [13] we obtain the conditions for convergence of such series in terms of function h(x) belonging
to the classical Sobolev space. In order to formulate this condition, let us introduce the class Wy (Q)
as a closure in the W4 () norm of the set of functions from C§°(Q2) that vanish on the boundary of
the domain Q. II'in’s lemma states that if the function h(z) satisfies the following conditions (we can
take 7 = % +1,if N iseven and 7 = %, if N is odd):

hx) e Wi Q) h), Ah),... Al

N
1

In(z) e Wl (@), (9)
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then the series (8) converges. Similarly, if in (8) 7 is replaced by 7+ 1, then the convergence conditions
are
[3]+2 (4] i1
h(z) € W, (Q), h(x), Ah(z),..., Alslh(z) € Wy (). (10)
Next we recall some properties of the Mittag-Leffler function.
Let p be an arbitrary complex number. The function defined by the following infinite series

[e.e] Zk

Epu(z) = m

k=0

is called a Mittag-Leffler function with two parameters [2, p. 56]. If the parameter y = 1, then we have
the classical Mittag-Leffler function: E,(z) = E,1(%).

Lemma 2. |2, p.61, Eq. (4.4.5)] For any ¢ > 0 one has

0 < Bpu(~1) <

1+t
where the constant Cy does not depend on ¢ and pu.

Lemma 3. |2, p.47]) The classical Mittag-LefHler function of the negative argument E,(—t) is a
monotonically decreasing function for all 0 < p < 1 and

0< Ey(—t) <1, E,0)=1.
Lemma 4. |2, p.61, Eq. (4.4.5)] Let p > 0, u > 0 and A € C. Then for all positive ¢ one has

t

/np_lEﬂ,p(Aﬁp)dU = tPEp p+1(AtF).
0

Lemma 5. |2, p. 57, Eq. (4.2.3)] For all & > 0, p € C, the following recurrence relation holds:

1

Epu(=t) = m — tEp i p(—1).

Lemma 6. |15] Let A > 0, 0 < & < p. Then, for all ¢t > 0, the following coarser estimate holds:
(P E, , (—At)| < OXTTHET,
where C' > 0 is a constant independent of A and ¢.
2 Constructing the solution of the forward problem (1)-(4)

We seek the unknown function u(x,t), which is a solution to the problem (1)—(4), in the form
o0
u(z,t) = ZTk(t)vk(x).
k=1

It is easy to see that the unknown coefficients T} (t) have the form [2, p. 174|
t
akEpyl(—)\ktp) + / SpilEpﬁ (—)\ksp) Fk(t — S) ds, t>0,

Ti(t) = "
0
bttt — /Fk(s)e)"“(t_s)ds, t <0,
t
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where ag, by are arbitrary constants, and Fj(t) are the Fourier coefficients of the function F(z,t).
By the gluing condition (3) one has ay, = by. The non-local condition (4) implies:

apdy = F, (11)

0
where F} = [ Fi.(s)eM(T273)ds and &, := 0p(\) = e ™M — X\, k& > 1.

If for some k, we have §; = 0, then equation (11) has a solution only if the free term is zero, i.e.,
F} = 0. In this case, the coefficients aj, remain arbitrary, and problem (1)-(4) does not have a unique
solution.

Thus, if §; # 0 for all k, then the unknown coefficients a; are uniquely determined, and problem
(1)—(4) has a unique solution. Indeed let u = u; — uz. We have the following problem for u(z,t):

{Dfu(az,t)—Au(az,t) =0, 0<t<p, ze€q, (12)

ug(x,t) + Au(z,t) =0, —a<t<0, e,

and the conditions (2), (3) and (4).
Assume that wu(z,t) satisfies all the conditions of the homogeneous problem, and let v be an
arbitrary eigenfunction of the spectral problem (7) corresponding to the eigenvalue \i. Let

Ti(t) = /u(x,t)vk.(a:) de, k=1,2,...
Q
Differentiating under the integral sign with respect to t, which is allowed by the definition of the

solution, and using equation (12), we obtain

DTy (t) = /Dfu(a:,t)vk(x) dx = /Au(x,t)vk(w) dr, t>0,
Q Q

dTy(t) _ / ou(z,t)

o 5t vg(x) de = —/Au(a:,t)vk(x) dr, t<O0.
Q

Q
Integrating by parts and using condition (2), we get:

dTy (1)

D?Tk(t) == —)\ka(t), t >0, L

= )\ka(t), t <O0.
The solutions to these equations are given by [2, p. 175]:
Ti(t) = axEp1(—Mit?), >0, Ti(t) =bret, k=1,2,..., t<O0. (13)

Gluing condition (3) translates into: Tj(+0) = Ti(—0). Using this condition, we find aj = bg. Apply-
ing the non-local condition (4) to get: ardr = 0. Since & # 0 for all £ € N, ap, = by = 0. Therefore,
from (13), we can see that the right-hand sides must be identically zero, which implies that u(z,t) is
orthogonal to the complete system {v(z)}. As a result, we conclude that u(x,t) = 0 in Q.

Thus, we arrive at the criterion for the uniqueness of the solution to the forward problem (1)—(4):

Theorem 1. If there is a solution to the forward problem (1)—(4), then this solution is unique if and
only if the condition d; # 0 is satisfied for all £ € N.
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So we obtain a formal solution to problem (1)-(4) represented in the form

t
00 F*
Z 5—";E 1(=Axt?) +/sp_1Epp (=A\ks”) Fi(t — s)ds | vip(z), 0<t<p,
k=1

u(z,t) = 0 (14)
— [ F}
Z —k At / e ds | v (x), —a<t<O0.
k=1 f

To show that these series satisfy the conditions of Definition 1, we need to estimate the denominator
0 from below.

3 Lower estimates for the denominator of the solution to the forward problem (1)—-(4)

In this section, we investigate the conditions under which d; may be equal to zero, and for those
cases where d; # 0, we derive lower bounds for d;. It is not hard to see that the following lemma is
true:

Lemma 7. Let A ¢ [0,1). Then there exists a constant dp > 0 such that, for all £ € N, the following

estimate holds:
|, A <0,

55| > 6o, 8o =
0% | 0 0 {)\—G_Ala, Y

Proof. We consider two separate cases based on the value of the parameter \.
Case 1. A < 0. In this case, since e™** > 0, we have:

0] = ™ = A = ]| + €74 > |A] = 6y > 0.
Case 2. A > 1. In this case, we observe that e = € (0,1) for all k € N, and therefore:
0k = |e M = A = A —e M > A —e MY =5) > 0.
This completes the proof. O

Theorem 2. Let A\ ¢ [0,1). Let the function F(x,t) be continuous for all ¢t € [—a, 8] and satisfy
condition (10) uniformly with respect to ¢. Then there exists a unique solution of the forward problem
(1)—(4), determined by the series (14).

Proof. Now we will show the existence of a solution. The formal solution of problem (1)-(4) has
the form

00 % t
> (skEp,l(—Aktp)+/sp_1Ep7p(—)\ksp)Fk(t—s) ds | vp(z), t>0,
k
k=1
u(z,t) = 0 0 (15)
00 F*
Z 5’“ et /Fk(s)e)"“(t_s)ds ve(z), t<O0.
k
k=1

Let us now show that the sum of series (15) is indeed a solution to the forward problem. Consider
the case for ¢ > 0, and in the case ¢ < 0 the absolute convergence of the solution (15) is proved in
a similar way. This series is the sum of two series. We denote the first sum by —AS;(z,t), and the
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second by —ASy(z,t). Let the partial sums of the first and second terms have the following forms,
respectively:

0
j A (f Fk(S)eAk(_a_s)d8> E/,,l(—/\ktp)

—x
— AS{(z,t) =) 5 vg(), (16)
k=1
¢
- AS] (z,1) Z)\k /nplEp,p(—)\knp) Fi(t —s)ds | vi(x). (17)

0

In what follows, the symbol C will denote a positive constant, not necessarily the same one.
Let o > 4. Since A=y (z) = A, “vi(x), we have by (16)

;AT (fa Fi( —a- S)ds> 1(=Agt?)
—AS{(z,t) =A77>

vk ().
k=1 Ok
By virtue of Lemma 1 we obtain
0 2
. 2 j ’\Z+l<f Fk(S)eAk(‘&‘S)d8>Ep,l(—/\kt”)
J —a
H—ASl (m,t)HC(Q) <c|x - k(@)
L2 ()

Since the system {vy} is orthonormal, by applying Parseval’s equality and using Lemma 2 we have

) 0 2
: 2 J
HfAS{ (x’t)HC(Q) < Ct_2pz>\%o /Fk(s)e)‘k(_o‘_s)ds
k=1 o
Applying the Cauchy-Schwarz inequality
C’t 2 N
H—AS{(JJ,t)H c@ /Z/\QU]F T:2a>5.

This means that we have the series, similar to the series (8). Thus, if the function F'(x,t) satisfies the
conditions (10) with 7 > &, then the series |-AS(z, t)%@) < C will converge if ¢ > 0.
For the series (17) by virtue of Lemma 6 we get

H_Asg(x’t)HZ(Q) = Czj: 2

t
/ssp_l)\ZJrst(t—s)ds
k=170

Further, we will apply the generalized Minkowski inequality. Then

2

; 2 t 1 / 2(o+e) 2\” N
H—Asg(x,t)HC(mgc /Ospe— (;‘)\k ||Fk(t—s)‘) ds| . T=20+2>7. (18)

Here we again get a series similar to (8). In this case, 7 = 20 + 2¢. Since ¢ is an arbitrarily small
number, the series (18) converges under the same conditions (10) for the function F(z,t).
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Consequently, ]—ASl(:p,t)%@) <C, |—A52(x,t)\%(m < C, t > 0. Thus Au(x,t) € C(Q x (0, 3]),
in particular u(x,t) € C(Q x [0,3]). Using completely similar reasoning, it can be shown that sum
(15) for t < 0 has the same properties as sum (15) for ¢t > 0. Hence, Au(z,t) € C(Q x (—a,0)), in
particular u(x,t) € C(Q x [—a,0]).

From equation (1), we have D{u(z,t) € C(Q x (0,8]), ui(x,t) € C(Q x (—a,0)). That u(x,t) is
absolutely continuous in a closed region follows from the fact that every function T} (t)vk(x) is such.
Theorem 2 is proved. O

Lemma 8. Let 0 < A < 1. Then there exists a number ky € N, such that for all k > kg, the
following estimate holds:

If 0 < A < 1, then obviously, there is a unique Ao > 0 such that e=20® = X, If A\, # Ao for all k € N
then the formal solution of problem (1)—(4) has the form (14).

If \p = Ao for k = ko, ko + 1, ..., ko + po — 1, where pg is the multiplicity of the eigenvalue
Ako, then for the solvability of problem (1)-(4) it is necessary and sufficient that the following equality
holds (see (11)):

Fp=(F"v) =0, k&Ko, Ko={koko+1,...,ko+po—1}. (19)

In this case, the solution of problem (1)—(4) can be written as follows:

> Teltyor(@) + Y axBpr(Mt?)vr(z), >0,

u(z,t) = kg Ko keKo 20
(1) > Teltyor(@) + Y axeMug(a), <0, (20)
k¢K0 kGKO

here, a; are arbitrary constants.
Thus, we obtain the following statement:

Theorem 3. Let 0 < A < 1 and let the function F'(x,t) be continuous for all ¢t € [—a, 5] and satisfy
condition (10) uniformly with respect to t.

1) If A\x # Ao, for all k£ > 1, then there exists a unique solution of the problem (1)—(4) and it can
be represented in the form (14).

2) If A\ = Ao, for some k and the orthogonality condition (19) holds for indices k € K, then the
problem (1)—(4) has a solution, which is expressed in the form (20) with arbitrary coefficients ay.

Proof. We have considered the proof of the first part of the theorem above in Theorem 2. Now, we
need to show the convergence of the series (20). If k € Ko, then in the solution (20) additional series
are formed as
> arBy (—Mt?) vp(z), >0,
keKy

Z arpe™ o (x), t<O0.
keKy

up(x,t) =

Since Ky has a finite number of elements, these series consist of finite sum of smooth functions.
Therefore, these series satisfy all conditions of Definition 1. O
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4 Existence and uniqueness of the solution of the inverse problem (1)-(5)

We study the inverse problem for the equation (1) with the right-hand side of the form
F(x,t) = f(x)g(t), where g(t) is a given function and f(z) is an unknown function. Furthermore,
since we use the solution of the forward problem when solving the inverse problem, in all subsequent
sections we assume that d; # 0 for all k. According to the additional condition (5), it is sufficient to
construct the solution of the inverse problem (1)-(5) only for ¢ > 0. Using the representation (14), we
obtain the following solution to the inverse problem (1)—(5):

t

u(a,t) = | a1pEp1(—Mit?) + fk/SplEp,p (=Aes”) g(t — s)ds | ve(z), 0<t<p, (21)

where
0
fi [ g(s)erTo79)ds

O,
Substituting the function (21) into the condition (5), we obtain the equation

a1k =

> Tilto)vr(z) = po(x) = Y porvr(x), (22)
k=1 =1

where o
Ji | gls)eM—o=ds t
Tis(to) = —= 5 E,1(=Aitf) + fk/nplEp,p (=An”) g(s) ds,
0
and

ok = /goo(a:)vk(w) de, k=1,2,...,
Q

the numbers fi are so far unknown and have to be determined.
From the relation (22), we have

FrBk(to) = drpor = (€7 — X)pok, (23)
here
0 to
Ag(to) = Ep1 (= ith) /g(s)e/\’“(as)ds + (ef)‘ko‘ —-A) / spflEW, (=Aks”) g(to — s) ds.
o 0

Let us introduce the following notation:

0 to
I(a) = /g(s)e’\k(_a_s)ds, I, »(to) = /sp_lEpyp (—Ais?) g(to — s) ds.
—a 0

Again, as we noted above, if Ag(ty) # 0 for all k, then the coefficients f;, are found uniquely, otherwise,
i.e. if Ag(tg) =0 for some k, according to the equation (23), the coefficients fj are chosen arbitrarily.
Therefore, we have the following uniqueness criterion for the inverse problem (1)—(5):

Theorem 4. The uniqueness of the solution to the inverse problem (1)—(5) is guaranteed if and only

if Ag(to) #0 for all k> 1.

The uniqueness of the solution of the inverse problem follows from the completeness of the eigen-
functions (see the proof of Theorem 1).

54 Bulletin of the Karaganda University



Forward and inverse problems ...

5 Lower estimates for the denominator of the solution to the inverse problem (1)-(5)
We now provide a lower estimate for Ag(tp). Let g € C[—a, 5] and g(t) # 0, we define

m= min |g(t)] >0, M= max [g(t)] > 0.
te[—ayto] te[—ayto]

Lemma 9. Let A <0, ¢g(t) € C[—a, ] and g(t) # 0, t € [—«, B]. Then, there is a constant C' > 0,
depending on tg and «, such that for all k:

C
Ar(ty) > —.
k(o)_kk

Proof. Tt is sufficient to consider the case g(t) > 0, t € [—«, 8]. If ty € (0, 8], then (see Lemma 4)
to
Iy, p(to) > m/sp_lEpm(—)\ksp)ds = mt{E, pr1(—Aith).
0

Taking into account (see Lemma 5), we obtain

1 1 C
Ik,P(tO) > )\7(1 - EP(_Akt{))))m > )\7(1 - EP(_)‘ltS))m > Ttov Cto >0,
k k k
7 1 A C
—_ p AkQ
I(a) > m/e)"“(_o‘_s)ds = mei > -2 C,>0.
Ak Ak
Therefore,
Ag(to) > E, 1(—)\kt8)@ + (e_’\ko‘ — )\)% > (e_)‘ko‘ — )\)%,
’ Ak Ak Ak
which implies the desired assertion because A < 0. Lemma 9 is proved. O

Lemma 10. Let A > 1, g(t) € C[—«, 8] and ¢(t) #0, t € [—, (]
If the number ¢ satisfies the following condition

C M
t8>)\f<1+m>, (24)

where Cj is the number in Lemma 2 then, there is a constant C' > 0 depending on ¢y, p and «, such
that for all k:

Ailto)] > 1 (25)
k

If the number ty does not satisfy condition (24), then there exists a number k;, [ € N, such that
the estimate (25) holds for all k& > k;.

Proof. We begin by estimating Ag(to) from below. From its definition, it consists of a sum of two
integrals. For the first and second integrals, using Lemma 4 and Lemma 5, we get:

Ep,l(_/\ktg)

0 1— e*)xkoz to 1 —
/ g(s)eM =) dg > m—— / sPLE, (= \s”)g(to — s)ds < M .
—a Ak 0 Ak

Hence,
Epi(=Mito) T
k

Ag(to) >
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which implies

where Ch1 = M.
Next, to estimate Ag(tp) from above using Lemma 2, we obtain:

1 —e M\ [/ Co(M +m)
Ap(tg) < —-m . 26

k<0)_< Ak >< Akt (26)
Note that the expression in parentheses becomes negative under the assumption:

C M
tg>£<1+m>.

Thus, for all £k € N, we have:

where Cy = (Ai‘;;” — m) > 0.
0

Hence, there exists a constant C' = min{C7, Cy} such that the required lower bound holds.
Now let A > 1 and assume that, condition (24) not be satisfied for the given values of the parameter.
However, there exists an index k;, such that for all £ > k; the condition tg > % (1 + %) is satisfied,

since %’ (W) — 0 as k — oo, (see (26)). Therefore, for all £ > k; the estimate (25) holds. Lemma

10 is proved. O

Lemma 11. Let 0 < A < 1, g(t) € Cl—a, f] and g(t) # 0, t € [—«, 8]. Then for all k > k,, r € N
the following estimate

Biplto)] > 27)
k
is valid, where a constant C' > 0 depends on p, ty and «.
Proof. Since d; # 0, it follows that Ag # Ag for all k. Therefore, we consider only the following two
cases.
Case 1. Let A < Ag. In this case, based on the proof of Lemma 9, it is not difficult to see that for

all k < ko, the following estimate holds:
Ak’p(to) > cp,

where ¢y > 0 is a constant depending on «;, tg, and p.
Case 2. Let A\ > Ag. We prove this case of the lemma similarly to the proofs of the previous
lemmas. The lower bound of Ag(tp) has the form (see Lemma 10)

Ag(to) > —%~
k
Now, we establish an upper bound for Ak (tp). To this end, using Lemma 4, Lemma 5, and Lemma 2,
we obtain: ( Mo
Co _ _ A—e M Ym
Autto) £ S0 ({1 — ey 4 (3 Ny - A
Thus, for all & > k,., we have
C
Ag(to) < —)\*3,
k

where C3 = (A — e ) m > 0.
Therefore, there exists a constant C' = min{cy, C1,C3} such that for all k£ > k, the required lower
bound holds. Lemma 11 is proved. O
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The above estimates (25) and (27) allows to determine explicitly the index from which they hold.
For example, according to the proof of the second condition of Lemma 10, the index k; is given by

1 M
kl:min{k:t8>)\<l+>}.
k m

Similarly, for estimate (27), the index k, can be determined in the same way.
Hence, we introduce the set:

Ko = {k eN: Ak(to) = O}
Remark 1. Note that if & € Kg, then obviously 6 # 0.
Lemma 12. The set Kq is either empty or contains only finitely many elements.

Proof. From the proof of Lemma 10, it follows that if there exists an index k& € Kg, then necessarily
k < k;. Therefore, Ky is a finite set. Moreover, as mentioned in Section 1, the sequence {\;} consists
of discrete values. Hence, Ag(tp) can vanish only at isolated indices, and it is possible that no such
index exists. In this case, the set Ky is empty. A similar argument is valid for the elements of the set
Ko when k£ < k,.. This completes the proof of Lemma 12. O

Theorem 5. Let g(t) € Cl—a, ] and g(t) # 0, t € [—a,5]. Let A < 0 and the function @g(x)
satisfies the conditions (9). Then there exists a unique solution of the inverse problem (1)—(5) and it
can be represented as:

0
u(z,t) =35 <%Ep,1(kktp)f 9(3)6’\’“(0‘8)618> vg(z)

(28)
NS
+ 30 (M 577 (~Xas) gt = 5) ds) o), >0,
[e'¢) 0 o 0
_ POk A t/ Ak (—a—s) <100k R / )\kt s)
u(x,t) = e’k s)ek ds — ve(x), t<O.
0 =2 | w0 SR (@)
— Pok(e MY = N)

T) = V(). 29

10 =3 PR o) (29)

Proof. We write the series (28) as sums of two series: Ij(z,t) and Ip(z,t). If I (z,t) and I} (z,t)
are the corresponding partial sums, then we have:

j 0

A
— AL (z,1) Z k('OOk pyl()\ktp)/g(s)e’\"( =) ds | (),
k=1

—

J — A
)\k%k FY—X)

— AI] (z,t)
E:l Ag(to)

t
/sp_lEp,p (=Xks”) g(t — s)ds | vi(x).

Next, applying the identity A_ka(z:) = A, “vg(x) and using Lemma 1, Lemma 2, and by applying
Parseval’s equality, we obtain:

- 2 MCt=20 N
AL (2.t H L Mot 2\20 L 95>
[-aten] g < = Xl r=20> 3
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By the Lemma 4 and Lemma 2 we have

4 2 MC [ N
~AL tH < 22 (ST ol =20 > =
|-aB@||,, <5 S lenl). m=20> 3
It is easy to see that

J
o N
7@ < €Y W lol?, 7=20> .
k=1

Therefore, if the function ¢g(x) satisfies the conditions (10), then the following estimates hold:
(BN

<c |-af@o| <O If@)Ea <6 >0

2 2
o) c©)

Thus, we conclude that Au(z,t) € C(Q x (0,8]). In particular, u(z,t) € C(Q x [0,8]), and

f(z) € C(2). Theorem 5 is proved. O

Theorem 6. Let @o(z) satisfy the conditions (9) and ¢(t) € C[—a, ] , g(t) # 0, t € [—a, 8] and let
0 # 0 for all k. Moreover, let the assumptions of Lemma 10 or Lemma 11 hold.

1) If the set Ky is empty, then there exists a unique solution of the inverse problem (1)—(5) and it
can be represented as the series in Theorem 5.

2) If the set Ko is not empty, then for the existence of a solution to the inverse problem (1)—(5), it
is necessary and sufficient that the following conditions

wor = (po,vx) =0, k €Ky

be satisfied. In this case, the solution to inverse problem (1)—(5) exists, but is not unique:

)= 3 B )+ 3 fnle), (30)

k¢Ko A (to) keKo
0
o [ ] oeeteas t
u(z,t) = ka - 3 E,1(=Agt?) —i—/splEp,p (=Ais?) g(t —s)ds | vi(x), t>0,
k
(31)
0

~ [ g(s)eM(—a=9)ds 0
u(z,t) = ka - et — /g(s)e)"“(ts)ds vp(x), t<0, (32)

k=1 Ok f

where if k ¢ Ky then fj has the form (23) and if k € Kg, then f; are arbitrary real numbers.

Proof. To prove the theorem we need to show that the series (30), (31) and (32) satisfy all the
conditions of Definition 1. This follows directly from the proof of Theorem 5, and the proof is almost
the same when any of the conditions of Lemma 10 or Lemma 11 hold. For clarity, let us suppose that
the assumptions of Lemma 10 are satisfied. Series (31) and (32) are divided into two parts, following
the structure given in (30). The second part of both these series, as stated in Lemma 12, is a finite
sum of smooth functions. In the first part, the satisfaction of the series of the conditions of Definition
1 can be proved in the same way as for the series (28). Here we use the lower bound (25) for Ag(to).
The convergence of the first part of (30) is shown similarly to that of the series (29), while the second
part is a sum of finitely many smooth functions. O
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Conclusion

In this work, a subdifusion equation with the Caputo fractional derivative of order p € (0,1) is
studied for ¢ > 0, while a classical parabolic equation is considered for ¢t < 0. Following the work [3],
forward and inverse problems (f(x) is unknown) are considered with a non-local Dezin type condition.
The solutions are constructed using the classical Fourier method. The main contribution of the authors
is that such non-local direct and inverse problems for mixed-type equations with a fractional order have
not been previously studied. In the process of studying these problems, we investigate the effect of
the parameter A\ in Dezin’s condition, on the existence and uniqueness of the solution. As proved, it is
shown that for certain values of A\, the uniqueness of the solution may fail, and in order to recover the
solution, orthogonality conditions on the given functions ¢o(x) and F'(z,t) are required.

In the future, it would be of interest to consider other types of fractional derivatives instead of the
Caputo derivative, in order to investigate whether similar effects occur. Another promising direction
is the study of inverse problems aimed at determining fractional orders in mixed-type equations for
such nonlocal problems.
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Numerical solutions of source identification problems for
telegraph-parabolic equations

M. Ashyraliyev!*, M.A. Ashyralyyeva?
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2 Magtymguly Turkmen State University, Ashgabat, Turkmenistan
(E-mail: maksat.ashyralyyev@mdu.se, ashyrmaral2010@masl.ru)

This paper presents a numerical study of source identification problems for one-dimensional telegraph-
parabolic equations subject to Dirichlet and Neumann boundary conditions. In these inverse problems, the
unknown source terms are assumed to be space-dependent, which introduces both analytical and compu-
tational challenges. The study begins by discretizing the considered problems using the finite difference
method — first in space and subsequently in time — resulting in a system of discrete equations. Stability
results for the solutions of the resulting finite difference schemes are established to ensure the reliability
of the numerical approach. A numerical algorithm is proposed for solving the discrete inverse problems.
The algorithm begins by eliminating the unknown source terms, which transforms the original discretized
problem into a new nonlocal problem with unknown initial data. To approximate this initial data, an
iterative procedure based on fixed-point iterations is constructed. Once the transformed nonlocal problem
is solved, the solution of the main finite difference scheme and approximations of the unknown source term
are recovered. Numerical results for two test problems are presented to illustrate the proposed method
in practice. The findings confirm the accuracy of the approach in solving space-dependent inverse source
problems.

Keywords: source identification problem, inverse problem, mixed-type differential equation, telegraph-
parabolic equation, finite difference scheme, numerical algorithm, nonlocal problems, fixed-point iterations.

2020 Mathematics Subject Classification: 65M06, 35M10, 35R30.

Introduction

Partial differential equations with unknown source terms are widely used in the mathematical
modelling of real-world phenomena in various applied fields (see, e.g., [1] and the references therein). A
problem involving a differential equation with a time- and/or space-dependent source term is referred
to as a source identification problem (SIP). These types of inverse problems have been extensively
studied in the literature (see, e.g., [2-4| and the references therein).

In recent years, the analysis of SIPs for mixed-type differential equations, as well as the development
and investigation of numerical methods for their solution, has attracted significant attention (see, e.g.,
[5,6] for parabolic-elliptic, [7—9] for elliptic-hyperbolic, and [10,11] for telegraph-parabolic SIPs). By
mixed-type, we mean that the differential equation is of one type in one part of the domain and of a
different type in another part. For instance, consider a physical system initially modelled by the heat
equation. At a certain moment in time, due to an instantaneous change in the system, the governing
model transitions to the wave equation with a damping term. In such cases, the resulting differential
equations are referred to as telegraph-parabolic equations.

*Corresponding author. E-mail: maksat.ashyralyyev@mdu.se
Received: 27 June 2025; Accepted: 17 September 2025.
(© 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Consider the following abstract formulation for telegraph-parabolic equations with an unknown
space-dependent source term p:

w’(t) + aw'(t) + Aw(t) =p+ f(t), t€(0,1),
w'(t) + Aw(t) = p+g(t), te(-1,0),
w(0F) = w(07), w'(07) = w'(07),

w(=1) = ¢, wA) = ¢, Ae (=1,1],

(1)

where the problem is posed in a Hilbert space H with a self-adjoint positive definite (SAPD) operator
A satisfying A > 61, for some § > 0‘72 and o > 0. Here, ¢, ¥ € D(A) and the functions f(t) and
g(t) are assumed to be continuously differentiable on [0, 1] and [—1,0], respectively. The existence,
uniqueness, and stability of solutions of the problem (1) in the space C(H) of continuous H-valued
functions w(t) defined on the interval [—1, 1], equipped with the norm
- t
Jwlloqn = max u(e)]

are established in [10].

For the approximate solution of the abstract problem (1), the following stable difference scheme
(DS) of first-order accuracy is constructed in [11]:

Wl TR W1y WU 4 Ay =t fy, 1< kK< N -1,

T T

L+ Awy = p + gi, -N+1<k<0, @)

FEL = p — Awg + go,

W_N = @, Wy = 1/}7

where 7 = % is sufficiently small positive number, ¢, = k7, —N < k < N, { = (%L fe = f(te),

1<k<N-1land gr=g(tx), - N+1<k<0.

The unique solvability of the DS (2) and the stability estimates for its solution were established
in [11]. However, the abstract results for the DS (2), presented in [11], require further investigation from
an implementation perspective. In the present paper, we consider the application of the aforementioned
abstract results to two SIPs for one-dimensional telegraph-parabolic equations with Dirichlet and
Neumann boundary conditions. We provide a complete discretization of the considered problems and
propose a numerical algorithm for solving the resulting DSs. Numerical examples are presented to
illustrate the proposed numerical procedure.

1 SIPs for one-dimensional telegraph-parabolic equations

In this section, we consider two SIPs for one-dimensional telegraph-parabolic equations: one with
Dirichlet boundary conditions and the other with Neumann boundary conditions. Since the discretiza-
tion procedures for the considered problems are very similar, we describe the approach for both SIPs
simultaneously.

First, consider the following SIP for one-dimensional telegraph-parabolic equations

wy(t, ) + a w(t, z) — (a(z) wm(t,x))m = p(x) + f(t,z), = € (0,1), ¢ € (0,1),

wi(t, z) — (a(z) we(t, x)) = plx) + g(t,z), xz € (0,1), t € (-1,0),
w0, z) =w(07,z), w(0T,2) = w (07, 2), z € [0,1], (3)
w(=1,2) = ¢(z), w(l,z) = ¢(z), z € [0,1],

w(t,0) =w(t, 1) =0, te[-1,1]
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with homogeneous Dirichlet boundary conditions. Here and throughout the paper, p(x) denotes the
unknown source term, a(x) > a > 0, p(z), ¥(x), f(t,x), and g(t,x) are given sufficiently smooth
functions, and « is a positive constant. SIP (3) can be reduced to the abstract problem (1) in a Hilbert
space H = Ly(0,1) with a SAPD operator A = A® defined by the formula

ATw(z) = —(a(z)ws(2)), (4)
with domain D(A%) = {w(z) : w(z), we(x), (a(z)ws), € L2[0,1], w(0) = w(1) = 0}.

Second, consider the SIP for one-dimensional telegraph-parabolic equations with Neumann bound-
ary conditions

wie(t, ) + aw(t, z) — (a(z)we(t, x))  + ow(t,z) = p(x) + f(t,x), =€ (0,1), t€(0,1),
wi(t, z) — (a(z)we(t,x))  + dw(t, x) = p(x) + g(t, z), z € (0,1), t e (—1,0),
w(0F,2) =w(07,2), w (0", 2) = w, (07, z), xz € [0,1], (5)
w(=1,z) = p(z), w(l,z) =Y(x), xz € [0,1],

[ wy(t,0) = wy(t,1) =0, tel-1,1],

where 4 is a positive constant. SIP (5) can be reduced to the abstract problem (1) in a Hilbert space
H = L5(0,1) with a SAPD operator A = A" defined by the formula

Aw(z) = —(a(z)we(z)) , + ow (6)

with domain D(A”) = {w(z) : w(z), we(x), (a(z)w:) € L2(0,1), we(0) = w,(1) =0}.

By means of the abstract result from [10], both problems (3) and (5) have a unique smooth solution
{w(t,z),p(x)} for given smooth data satisfying all compatibility conditions.

We start the discretization of SIPs (3) and (5) by defining the grid space [0,1], =
{a:‘xm =mh, 0<m < M, Mhzl}.

Let us introduce the Hilbert space Loy = Lo ([0,1]p,) of grid functions ¢"(z) = {npm}é\/[ defined on

[0,1], and equipped with the norm ng

1/2
hHL% = ( > ‘gph(x)fh) . To the differential operator

.Z’G[O,l]h
A”, defined by formula (4), we associate the difference operator A7, given by the formula
M-1

A (@) = { = (@) @), ),

1

which acts in the space of grid functions gph’(x) = {gom}éw satisfying boundary conditions g = @ = 0.
Here and throughout the paper,

N M 1 m M—1
™ — ™! ™t —
@?:{h }1 and @?:{h L

Similarly, to the differential operator A”, defined by formula (6), we assign the corresponding difference
operator A7, given by the formula

A3 (@) = { - (@) @), + (@)}

acting in the space of grid functions ¢™(z) = {gpm}éw , subject to the boundary conditions pg = ¢ and
PM = PM-1-
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Note that in both cases, Aj corresponds to the second-order accuracy centered difference
approximation of the respective differential operator A*, incorporating Dirichlet and Neumann bound-
ary conditions, respectively. Moreover, A7 is a SAPD operator in Lgj in both cases.

With the help of the corresponding operator A7, the first step of the discretization of both SIPs
(3) and (5) leads to the following problem:

Z,wh T T
d dtéf’w WD) | Arwh(tx) = ph(x) + (), te (0,1),
LD | pzwh(t, 2) = ph() + g"(t, @), t e (~1,0),

dw" (07, dwh (0,
wh(0F,2) = ho,w> =g,

(
wh(—1,2) = ¢"(x), wh(1,2) = "),

where z € [0, 1],
Now, in the second step of the discretization process, we define 7 = %, tr = k7, —N <k < N and
replace problem (7) with DS (2)

w2+1(w)*2wf2(x)+w271($) +awk+1<x> wi (z) + ATwh | (2) = ph(2) + fi(x), 1<k<N-1,
O | gl (2) = ph (@) + gl(@), ~N+1<k<0,
%ﬁﬁﬂﬂ=p<>Awm>+g@x

wh (@) = ¢""(x), wi(z) = "(2),

where z € [0, 1], fi(z) = fM(tg,2), 1 < k < N—1and g}(z) = ¢"(ty,2), -N+1 < k < 0.
Then, the following theorem follows readily from the abstract result stated in Theorem 1.

Theorem 1. The solution of DS (8) satisfies the following stability estimate

max [l ], + an

—N<k<N HL%

< MG0) | (8, mas okl + 19, + 10,

Here, M (6, «) is independent of 7, h, ¢"(z), ¥"(z), f (z) and g} (z).

2 Numerical algorithm

In this section, we propose a numerical algorithm to solve the difference scheme (8). The approach
relies on a suitable substitution that eliminates the unknown source term p”. Let us denote

wi(x) = vl (z) + (A5) T ph(x), € [0,1]y, —N <k < N.

Then, the scheme (8) results in the following auxiliary DS

h _o9.,h h h
U MW@ @) (U W) geh () = (@), 1< k<N -1,
h

v I'—’Uh X
v (@)=, (@) + AT (2) = gl(a), -N+1 < k <0,

T

’Uh T 7’Uh’ x
B = —Afel (@) + g (2),

[ vy (2) = of(@) + ¢ (2) = ¥"(2),

(9)
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where z € [0,1],. Note that the scheme (9) no longer involves the unknown source p*. However, it
exhibits a non-local nature due to the coupling between v" N and U]}{,, and therefore it cannot be solved
using a standard time-marching approach.

We attempt to solve the non-local difference problem (9) iteratively. Let {v}(z;6)} be the solution
of the following scheme

UZJrl(x 0)— 2vk (z; 0)+vk 1 (x;0) av£”+1(x;9)—v,§(a:;€)
T2 T
vl (@;0)—vl | (;0)
%
vf (230) —vg (2:0) _
T

() = 0" (=),

where x € [0, 1];,. For {v}(x;0)} to be a solution of the scheme (9), the initial vector 6 = 6" (z), where
x € [0, 1], must satisfy the following condition

0 = v (x;0) + ¢"(x) — " (z), = €[0,1]5

We can then construct an iterative procedure, such as fixed point iterations, to approximate the initial
vector #. Taking all of the above into account, the following algorithm can be used to solve the
difference scheme (8).

+ Afvp, (2:0) = fi(z), 1<k<N-1,

+Ahvk( ;0) = g,’g(x), —-N+1<Ek<L0, (10)
Jo\T

—Ajvf (2:0) + gf (),

1. To approximate the initial vector 6 iteratively, we use the following formula:
oL = ol (2 0™) + o"(z) — YM(z), € [0,1]5, m=0,1,2,...

At each iteration step, the difference scheme (10) must be solved to compute v? (z; ™).
2. Next, we approximate the source p(x) using the formula

p'(@) = A} (¢"(@) = 0) = € [0 1],

where 6 is the initial vector, approximated in the first step.

3. Finally, we obtain the solution of the difference scheme (8) using the formula:
wi(2) = vi(2) +¢"(@) —0, €01, -N+1<k<N-1

Here, v}(x) is the solution of the difference scheme (10) with the initial vector § obtained from
the iterative procedure.

3  Numerical example

First, we consider the following initial-boundary value problem

Wy + 2w — wyy = plx) + f(t2), z € (0,1), t€(0,1),
wy —wee = plx) + 9g(t, z), z € (0,1), t € (—1,0),
w(0t, z) = w0 ,z), w(0F, ) = w(07,2z), = € [0,1], (11)
w(—1,2) = e! sinmx, w(l,z) =e ! sinnz, z € [0,1],
[ w(t,0) =0, w(t,1) =0, te[-1,1],

where f(t,z) = g(t,z) = ((7* —1)e”* —1) sinmz. The analytical solution of problem (11) is

w(t,z) = e 'sinmx, x€[0,1], t€[-1,1]
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with the source term p(x) = sin7z, x € (0,1).
Second, we consider the initial-boundary value problem

Wit + 2wy — Wey + 3w = p(z) + f(t, ), xz € (0,1), t€(0,1),
W — Wep + 3w = p(z) + g(t, x), xz € (0,1), t € (—1,0),
w0, 2) =w(0™,z), w(0", x) =w (0", ), =z € [0,1], (12)
w(=1,z) = e cosmz, w(l,z) = e~ ! cosmx, = € [0,1],
[ wa(t,0) = wy(t,1) =0, te[-1,1],

where f(t,z) = g(t,z) = ((7*+2)e~" —1) cosmz. The analytical solution of problem (12) is

w(t,z) =e

cosmx, x€10,1], t € [-1,1]
with the source term p(x) = cosmz, = € (0,1).

The numerical solutions for SIPs (11) and (12) are computed using the first-order accuracy DS and
the aforementioned numerical procedure for various values of M = N. To evaluate the accuracy of
the method, we compute the error between the analytical and numerical solutions using the following
formulas:

E,= max p(xn) —pnl, FEuy= max w(ty, x,) — wk|.

Here, w¥ and p,, denote the corresponding numerical approximations of the exact solution {w(t, z), p(z)}
at the grid points t = t; and = = x,,. Figure 1 shows the errors between the exact and numerical
solutions of problems (11) and (12) for different values of 7, confirming the first-order convergence of
the proposed method. Since we have taken M = N, which implies h = 7, and the error of the method
is O(T + h?), observe only the temporal errors here, i.e., the first-order convergence of the method.

Figure 1. The errors between the analytical solutions of problems (11) (on the left) and (12) (on the
right) and their numerical solutions, computed using the first-order DS for various values of the time
step T

Conclusion

In this work, we developed an algorithm for the numerical solution of one-dimensional telegraph-
parabolic equations with an unknown source term dependent on a spatial variable. The local inverse
problems considered are transformed into corresponding nonlocal direct problems, which are then solved
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using an iterative technique similar to the shooting method. Numerical experiments are provided to
illustrate the procedure in practice.

Our results demonstrate first-order convergence of the proposed numerical method. It is of practical
importance to develop higher order accuracy stable DSs so that more accurate results can be obtained
in less computational time. Future work will also focus on the investigation of SIPs for telegraph-
parabolic equations with time-dependent sources.
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Bounded solutions in epidemic models governed by semilinear
parabolic equations with general semilinear incidence rates
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The transmission mechanisms of most infectious diseases are generally well understood from an epidemio-
logical standpoint. To mathematically and quantitatively characterize the spread of these diseases, various
classical epidemic models-such as the SIR, SIS, SEIR, and SIRS frameworks-have been formulated and thor-
oughly investigated. In the present paper, the initial value problem for the system of semilinear parabolic
differential equations arising in epidemic models with a general semilinear incidence rate in a Hilbert space
with a self-adjoint positive definite operator is investigated. The main theorem on the existence and unique-
ness of bounded solutions for this system is established. In applications, theorems on the existence and
uniqueness of bounded solutions for two types of systems of semilinear partial differential equations arising
in epidemic models are proved. A first-order accurate finite difference scheme is developed to construct
approximate solutions for this system. We further prove a theorem that guarantees the existence and
uniqueness of bounded solutions for the discrete problem, independently of the time step. The theoretical
results are supported by applications, where bounded solutions of the continuous system and their corre-
sponding discrete approximations are demonstrated. Finally, numerical results are presented to illustrate
the effectiveness and accuracy of the proposed scheme.

Keywords: system of semilinear partial differential equations(SPDEs), EM, bounded solution(BS), numer-
ical results, Hilbert space, self-adjoint positive definite operator,existence and uniqueness (EU), difference
scheme(DS).

2020 Mathematics Subject Classification: 58J35, 58D25, 656M12, 92B05, 35K61, 35K58, 35K90, 91B76.

Introduction

The mechanism of disease transmission is typically well understood from an epidemiological
perspective for most infectious diseases. To describe mathematically and quantitatively the spread
of such diseases, numerous classical EMs have been developed and extensively studied, including the
SIR, SIS, SEIR, and SIRS models [1-3].

In particular, the studies presented in [1] focus on the numerical solution of systems of linear
parabolic equations modeling the transmission of HIV from mother to child. Numerical simulations
were provided to support the theoretical results.

In the papers [4-6], the authors study a diffusive SIR epidemic model with nonlinear incidence in
a heterogeneous environment. They establish the boundedness and uniform persistence of solutions
to the system, as well as the global stability of the constant endemic equilibrium in the case of a
homogeneous environment.

The papers |7, 8] study the dynamical behavior of a diffusive epidemic SIRI system with distinct
dispersal rates. The overall solution of the system is derived using L, theory and Young’s inequality.

*Corresponding author. E-mail:allaberen.ashyralyev@bau. edu. tr
Received: 25 June 2025; Accepted: 18 September 2025.
(© 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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The uniform boundedness of the solution is established, and the asymptotic smoothness of the semi-
flow, as well as the existence of a global attractor, is discussed.

Finally, the papers [9,10] focus on a reaction-diffusion SEIR (susceptible-exposed-infected-recovered)
epidemic model with a mass-action infection mechanism. The basic reproduction number of the SEIR
model is defined, and its properties are studied under conditions of low mobility of the susceptible
and exposed /infected populations, respectively. In a homogeneous environment, the global asymptotic
stability of both the disease-free equilibrium and the endemic equilibrium is determined by the ba-
sic reproduction number. Furthermore, the asymptotic behavior of the endemic equilibrium (when it
exists) is analyzed in a spatially heterogeneous environment with low migration rates of the susceptible,
exposed, or infected populations.

Various classes of mixed boundary value problems for systems of partial differential equations can be
transformed into initial value problems for systems of semilinear ordinary differential equations [11,12]

D) 4t () + Aw' (1) = —F (8, (£), 0 (£)),
Wl (6 )t (1) + Awt (1) = F (8w (), w7 () — T(tw? (2), Q)

3
W 4w’ (1) + Aw’ (8) = T(t,w* (t)), t € (0,b),
w(0) =", n=1,3

in a Hilbert space X with an unbounded elliptic operator A.

Throughout this paper, a theorem on the EU of BSs to the abstract problem (1) is proved. The
results are illustrated by their application to a system of semilinear parabolic equations, demonstrating
their effectiveness in both one- and multi-dimensional settings with appropriate boundary conditions.
Furthermore, a discrete analogue of the theoretical results is developed for a first-order accurate time-
difference scheme. Numerical simulations are included to illustrate and validate the theoretical results.

1 BS of the differential problem (1)

Let N be a Hilbert space, and let A be a positive definite self-adjoint operator such that A > 61
for some § > 0. Throughout this paper, the family {exp(—tA), ¢t > 0} denotes the strongly continuous
exponential operator-function.

By applying the spectral representation of a self-adjoint positive definite operator in a Hilbert
space, we obtain the following estimate:

lexp(—tA)[[x_n < eiétv t>0. (2)

A vector-valued function w(t) = (w!(t), w?(t), w3(t))T is said to be a solution of problem (1) if the
following conditions are satisfied:

(i) For each m € {1,2,3}, w™(t) is a continuously differentiable function on the interval (0, b).

(i) For all t € [0,b] and each m = 1,3, the element w™(¢) belongs to the domain D(A) of the
operator A, and the function Aw™(t) is continuous on [0, b].

(iii) The functions F (¢, w!(t),w?(t)) and Y(t,w?(t)) are continuous for all ¢ € [0, b].

(iv) The function w(t) satisfies the system of equations and initial conditions given in (1).

The proof of the main theorem regarding the EU of a BS of problem (1) is based on reducing the
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problem to an equivalent system of integral equations

(

wl(t) = e He=Atyl — ({te“(t)‘)eA(t)‘)F (/\,wl()\),w2 ()\))d)\,
w?(t) = e~ WOt Aty2 4 f e~ TN =AUV (X w' (N), w® (X)) dA
0
_ [ e OEN AT (A (V) dA, ¥
0
w3(t) = e Mte=Aty3 4 b;e_“(t_)‘)e_A(t_A)T (A, w? (X)) dX

in C'(N) and the use of successive approximations. Here, C' (R) stands for the Banach space of the
continuous functions z(t) defined on [0, ] with values in X, equipped with the norm

Izlle = max Iz @)l -

We introduce the equivalent norm

Iz lle,= max e @)y, L>0.

The recursive formula for the solution of problem (3) is

t
nw(t) = e He=Atyl — fe—w—ﬂe—f‘(t—ﬂf (A (n = Dw" (N), (n — Dw* () dA,
nw (t) —(pu+&)t 7At¢2
t
+ [ e WO A=V [ (X, (n — Dw' (N), (n — 1)w* (X)) dA
¥ (4)
t
— [ em WO = AL=NT (A (n — 1)u” (V) dA,
0
t
nw3(t) = e e~ Aty3 4 [ emnlt=N) =A=MY (A, (n=Dw*(N)d\, n=1,2,...,
0
[ Ow™(t), m=1,3 are given.

Theorem 1. Assume the following conditions are satisfied:
1. For each m = 1,3, the initial function ¢™ belong to the domain D(A) of the operator A, and

9™ | pay = M. (5)
2. The function F : [0,b] x X x N — N is continuous and satisfies the uniform bound:
[F(t,w(t), u(®))lx < Mo, (6)

for all (t,w,u) € [0,b] x N x V. In addition, the mapping f fulfills a Lipschitz condition that
holds uniformly in ¢:

17t w,w) = £t 2,0)[n < Li (fw =zl + [lu=vllx) - (7)
3. The function Y : [0, ] x X — N is uniformly Lipschitz continuous w.r.t. the variable ¢:
1T, w(t)llx < Ms (8)
for all (¢, w) € [0,b] x V. In addition, Y satisfies a Lipschitz condition uniformly w.r.t. ¢:
IT(t,w) =Y (X, 2) [l < Lofjw — z|x. (9)
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Here, L, for r = 1,2 and M, for r = 1,2, 3 are positive constants. Then, under these assumptions,
there exists a unique solution w(t) = (wl(t),wQ(t),w?’(t))T of the problem (1), which is bounded in
the product space C3(R) = C(R) x C(R) x C(R).

Proof. Since w?(t) does not appear in equations for dw;t(t) and dw;t(t) , it is sufficient to analyze the
behaviors of solutions w' () and w?(t) of (1) in the norm of the space Cp, (R).

According to the method of recursive approximation (4), we get

w™(t) )+ D[+ Dw™ ) —iw™B)], m =12, (10)
i=0

where i
m eiu ei l/) ) m = 17 37
Ow (t) = { e—(,u—l—ﬁ)te—At,(/]27 m = 2.
Using formula (4) and estimates (2), (5), (6) and (8), we obtain
e M |[1w' () — Ou' (t)Iy

My
L+ L

9

S/O oxp (= (p+ L) (t = M) lle V)1 (A, 00" (1), 00" (A)) [[wdA <
e 1w () — 0w?(#) |

t
< [ exp (= €5 L = AN I I (0,001 (0,00 0) i + 1T (3, 0u” () ]
My + M3
T p+&+L
for any ¢ € [0, b]. Using the triangle inequality, we get

Ms + M3
L+ L

Ms + M3

—Lt 2
lw=(t <M
e

e 1w () [l < My +

for any ¢ € [0,b]. Using formula (4) and estimates (2), (6), (7) and (9), we obtain

e [2w! () — 1w (8) |1

< /0 exp (= (u+ L) (t = N)e e VY IF (A 1w' (), 1w’ (V) = £ (A, 0w' (A), 0w® (1)) [lndA

< 2L (Ms + M3) <2 (L1 + Lo) (Ms + M)
(n+L1)? (n+ L)

e M 202 (1) — 1w (1)

)

< /O exp (—(u+ &+ L) (t—A)e PN e AVIF (A 1w' (A), 1w (V) — F (X, 0w' (), 0w® (X)) [[ndA

+/0 exp (—(u+E+ L) (t = N)e e VT (A 1w* (A) =T (A, 00 (1)) [lnd

(2L1 + LQ) (M2 + M3) < 2 (L1 + LQ) (MQ + Mg)
(n+L)* B (n+ L)
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for any t € [0,b]. Then,

M- M. 2 (L Lo) (M- M.
eIt 2w (1) |x < My + 2 + M3 (L1 + L) (M2 + M3)

pt L (n+ L) ’
_ Mo + M. 2 (Lq + Lo) (M + M-
e LtH2w2(t)||N§Ml+ 2 3 + ( 1 2)( 22 3)
ptL (u+L)

for any t € [0, 0]. Let

21 (Ly + L))"t (My + Ms)

eiLtHnwm(t) —(n=1w"@)x < (n+L)" |

m=1,2.

Thus, we arrive at
e M (n+ 1) w' (8) — naw' (1)

t
< / eI I = AN (A nw' (), na® (A)) = F (A (n = 1) w' (V) (n = 1) w® (V) [lndX
0

_ 202" YLy + Ly)" Y (My + Ms) L (L1 + L)™ (Mo + Ms)
— ( +L)n+1 — (M +L)n+1

e (n + 1) w?(#) — nw?(t) |y

)

t
< / e WFEFDU=N o= LA =AU (3 1wt (M), Tw? (V) — F (A, 0w’ (M), 0w® (V) [JxdA
0

_ 2Ly + Lo) 2" (L + Lo)"” Y (M + Mz) _ 2" (Ly + L)" (Ms + Ms)
(M+L)n+1 — (M+L)n+1

for any t € [0,b]. Then,
e (n+ 1) w™ (1)l
My + M;s n 2 (L1 + La) (M2 + M3) I 2" (Ly + L))" (M + M)

< My + , m=1,2
wt L (n+L)* (j+ L)
for each t € [0,b]. Then, for any n, n > 1, we have
2" (L1 + Lo)"™ (My + M.
e*LtH(n+1)w1(t)—nw1(t)HN§ (L1 + Lo) (n+f+ 3), m=1,2,
(b +L)
and
—Lt m
e (n+ 1) w™ (@)l
Mo+ Mg 2(Ly + Lo) (My + M. 2" (L1 + Lo)" (Mo + M.
< My + 2 + M3 (L1 + La) (M3 + M3) N (L1 + Lo)" (M + 3)’ m=1,2

- ptL (n+ L)? (u+ L)"!
by induction. It follows from this and formula (10) that

e lw™ (@)l < 0w™(®)lx + Z e H (i + 1w () — iw™ (t) |

(L1 + Lo)' (Mo + M.
<M1+Z < iL()z+§+ Jom=12
(1

which proves the existence of a BS of problem (1) in norm Cf, ([0,b],R). From this, it follows the
existence of a BS of problem (1) in norm C ([0, ], X). Theorem 1 is proved.
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Now, consider the applications of Theorem 1.
First, we investigate the initial-boundary value problem for one-dimensional system of SPDEs

P — (a(2) VL (1.2)), — B (a(=2)Ts (1, —2)). + (0 4+ ) (1, 2)
:2—F( z; Ut (t,z), (t,2)),
P (a()V2(1,2)), — B (a(=2) V- (1, —2)), + (6 + p+ ) Wt 2)

2(
= F(t 2, Ut (t,z),‘lf (t,2)) = T(t, 2, ¥*(t, 2)), (11)

P2 (a(2) W3 (1,2)), — Bla(—2) Vs (t,—2)), + (5 + ) V(¢ 2)
—T(t 20 (t,2)), t € (0,b), —d < z < d,
U™(t,+d) =0, t € [0,b], m =1,3,

, 1
Um0, z) =¢™(z), ¥"™(£d) =0, z € [-d,d], m=1,3,

where a(z) and 1(z) are given sufficiently smooth functions. Here, § > 0 is a sufficiently large number.
We will suppose that a > a(z) =a(—2) >6>0,0 —a|B| > 0.
Theorem 2. Suppose the following conditions are satisfied:

1. For each m = 1,3, the initial function ¢™ belongs to the Sobolev space W2[—d, d], and

||wm||w22[_d7d] < Ml-

2. The function
F :[0,0] x [=d,d] x Lo[—d,d] x Lo[—d,d] — La|—d, d]

is continuous in the time variable ¢t and satisfies the uniform bound
HF(t? " w(t, ‘)7 u(t7 '))HLg[—d,d} < M

for all (¢,-,w,u) € [0,b] x La[—d,d] x Lo[—d,d]. Moreover, F satisfies a Lipschitz condition
uniformly in %:

1F (s w,u) = F (@)l aq < I (||w —PllLyj—aq + llu— q”Lg[—d,d]) :

3. The function
T :[0,0] x [—d,d] x Lo[—d,d] — La|—d, d]

is continuous in ¢ and satisfies the uniform bound:

ICCE, - wts D py—aq < Ms

for all (t,w) € [0,b] x La[—d,d]. Additionally, T satisfies a Lipschitz condition uniformly in ¢:

I w) =T )l g < Lo llw —ull py_qq -

Here and in the sequel, the constants L,, (for m = 1,2) and M,, (for m = 1, 3) are assumed to be
positive.

Then, wunder the above assumptions, there exists a unique solution W(t,z) =
T

= <\P1(t, 2), W2(t, z), U3(t, z)> to problem (11), which is bounded in the space C3(Ly[—d,d]) =

C (La[—d,d]) x C (La[—d,d]) x C (Lo[—d,d]).
The proof of Theorem 2 is based on the abstract Theorem 1, the self-adjointness and positivity in
Ly [—d, d] of a differential operator A* defined by the formula

Aw(z) = = (a(2)w:(2), — B(a(=2)w: (=2)), + dw (2)
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with the domain D(A%) = {w € W3 [—d,d] : w(—d) = w (d) = 0} [13] and on the estimate

| exp{—t A"} 1y—d.d)—Lo[—daq) < 1, > 0.

Second, we study the initial-boundary value problem for a multidimensional system of SPDEs

oV (ts) _ é(ar(z)qz;)zr F (54 p) ULt 2) = —F (t, 2,0 (£, 2), T2 (, 2)),

P 5 (0202 )20 + (04 i+ §) V(1 2)

= £z (12, W (,2) = X020 (1 2), 2
OV 5 (ar(2) U3 )z + (6 + 1) W31, 2)

— Ytz U (1, 2)), tE (0,0), 2 = (21,0 20) € D,
UP(0,2) =9P(z), z€Q, p=1,3
UP(t,z) =0, t€[0,b], z€ S, p=1,3

where a,(z) and ¢P(z) are given sufficiently smooth functions and § > 0 is a sufficiently large number
and a,(z) > 0. Here, 2 C R" is an open and bounded domain whose boundary S is smooth and we
put Q =QuUS.

Theorem 3. Suppose the following conditions are satisfied:

1. For each m = 1,3, the initial function ¥™ belongs to the Sobolev space W2 (), and

19" w2 @) < M.

2. The function
F : [O,b] X [O,Z] X Lg(ﬁ) X LQ(Q) — Lg(ﬁ)

is continuous in the time variable ¢, and satisfies the uniform bound:
HF(t"’w(t")vu( ))HL <M2

for all (t,w,u) € [0,b] x La(Q) x Lo(Q). Moreover, F satisfies a Lipschitz condition uniformly
in t:
HF(t, '7w7u) - F(t7 5P, Q)HLQ(ﬁ) <Ly <||w _pHLg(ﬁ) + Hu - q”Lg(ﬁ)) :
3. The function
T [O,b] X [O,l] X Lg(ﬁ) — Lg(ﬁ)
is continuous in ¢, and satisfies the uniform bound:
1T (¢, -, w(t, ))”Lg(ﬁ) < Ms
for all (t,w) € [0,b] x La(Q). T satisfies a Lipschitz condition uniformly in ¢:
(- w) =T( - Py < Lo llw = pll,@)

Then, under the above assumptions, there exists a unique solution W(t,z) =
= (Vl(¢, 2), U2(¢, z), UP(¢, z))T to problem (12), which is bounded in the space C*(L3(Q)) = C' (L2(Q2)) x
C (@) % C (L2(2)).

The proof of Theorem 3 is based on the abstract Theorem 1, on the self-adjointness and positivity
in La(Q) of a differential operator A* defined by the formula

n

A*Q(z) = — Z(ar(z)gzﬁw +6Q(2)

r=1

Mathematics Series. No.4(120)/2025 75



A.Ashyralyev et al.

with domain [12]
= {w(2) ), (ar(2)wz, )z € La(), 1<r <n, w(z) =0, z€ S}

and on the estimate
lexp{—tA™}| 1, @)@ < 1o t € [0,00)

and the following theorem on coercivity inequality for the solution of the elliptic problem in Lo () [12].

2 BS of the difference scheme

For the approximate solution of (1) we consider a grid space

[O,b]T:{tk:kT, k=1,N, NT:b}.

We consider the first order of accuracy difference scheme

11

% + 'U’ullc + Aullc = _F(tk‘?ullc’ui)?
2 To

% (§+p) ui + Aui = F(tk’ullwui) - T(tmui), (13)

M + puy, + Auj = Y(ty,uy), k=1,N,

ubh =yP, p=1,3

for the approximate solution of problem (1). The proof method for the basic theorem on the EU of
a BS of difference scheme (13) uniformly w.r.t. 7 is based on reducing (13) to an equivalent system
of semilinear difference equations. Actually, an equivalent system of semilinear difference equations
for (13) is

uj, = Rt — Z VRETEN (tn g, )T

= RE B [ ) = T ()] 7 1)

k
ui = RFY3 + 5 RFMIY (4, ul )T, k=1,N

in C3 (R) = C-(R) x C-(N) x C,(N) and the use of successive approximations. Here and in the future
Ri={I+7((p+&T+A) L R=[T+7(ul +A))~! and C,(R) stands for the Banach space of mesh

functions w” = {wp}p:0 defined on [0, b], with values in R, equipped with the norm
T
07 oy = ma [yl

The recursive formula for the solution of DS (13) is

1 1
ruk—ruk 1

=1 4+ m“ul,lc + Aru}c = —f (tg, (r — 1) ulz, (r—1) ui),
7"[14277”[1,2
AL (E 4 ) rug + Arud = F (b, (r— D g, (r = 1) ug) — T (b, (r — 1) ),

—f—;u“uk—i—Aruk =T(tg, (r —1)uy), k
ruf =y¢P, p=1,3, r=1,2,.
0uk, k= O,N, p=1,3 are given.

3 T
rukfruk 1

[l
=

\

From (14) and (15) it follows

k .
rup = RFypl — Zl (RELE (b, (r = D)y, (r — 1) ud) T,
rul = REg? + Ez VRETERF (e, (r = Dy, (r = 1) ug) = Yt (r — 1) up)] 7, (16)

ru = RFy3 + Eilek_mHT(tk, (r—1) ui)T, k=1,N, r=1,2,..,
Oup, k=0,N, p=1,3 are given.
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Theorem 4. Let the assumptions of Theorem 1 be satisfied and
w6 > 2(L1+L2).

Then, there exists a unique BS u”™ = {uy}Y_, of difference problem (13) in C3(R) uniformly w.r.t. 7.
Proof. Since uz does not appear in equations for %, m = 1,2, it is sufficient to analyze the
behaviors of solutions u, and u; of (13). According to the recursive approximation method (16), we get

oo
uf = Ou + Y [(i+ Dug —iuf’], m=1,2, (17)
=0
where
REym™ m =1,3,
Oup' = (18)
Ry?, m=2.

Applying the spectral representation of the self-adjoint positive definite operator in a Hilbert space,
we get the following estimates

1 1
R < — R < . 19
IRl < g PRl < T 55 (19)
From formula (18) and estimates (19) it follows that
10uf [l < Mlep™ [l < M. (20)

Using formula (16), estimates (19), we get

Mo
p+o

k
ILuj = Ouillx < > 1B FHIIIF (b, Ougy, Oty )Inr <

m=1

)

d My + M
_ 2 3
102 = 0wl < D7 | RET4 | (1 (b Ortg, 0 )l 11 (s, Oty ) ] 7 < 52
— pt0+¢
for any k = 1, N. Using the triangle inequality and estimate (20), we get

Ms + Ms
+6

My + M3

Tukllx < M
| Tug|lx < M+ 1o

luj|lx < My +

for each k =1, N. Using formula (16), estimates (19), (6) and (7), we can write

2(L1 + Lo) (M2 + M3)
(1 + )

k
12u, = Tug e < D B (s Lutgy, Tug,) = F (b, Oty Oty e <

m=1

)

k
1267 — Tule <Y IRY I (s Lty 1103,) = F (i, Oty Oy |
m=1
2 (Ll + LQ) (Mg + Mg)
(1 +0+¢)?

k
+ 2 IR Y (b, Lug,) = L (b, O e <

m=1
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for any k = 1, N. Then,

My + M3 n 2(L1 + Lo) (M2 + Ms)

12uiflx < My +
g g+ (1 +6)>2

9

My + M; 2 (L1 + LQ) (Mg + Mg)
p+o (104 6)>

12uj|lx < My +

for each k =1, N. Let

n—1 n—1
2" (L1 + Lo)" " (M2 + M3) m—1.9

nul’ — (n— Dultx < , ,
I~ (= D < T

Using formula (16), estimates (19), (7) and (6), we get

k
0+ 1) up = nuglln < YIRS (i natgy, (0= 1) ) = F (i gy, (0= 1) ) [T
m=1
< (2 (Ll + LQ))" (MQ + Mg)
— (M+5)n+l

)

k
(0 + 1) ug = nuill < > IR I (s ity ntizy) = F (tms (10 = 1) gy, (0= 1) g )[|nr

m=1
k
+ Z |RE MY (b ) — Y (E, (00— 1) i) [|n7
m=1
< 2L+ L))" (Ma + Ms)
(+d+&"

for each k = 1, N. Then,

My + M. 2(Ly + Lo) (M2 + M. 2 (Ly + Ls))" (Ms + M.

wto (1 +0)* (n+o+o™ " 7
My + M. 2(Ly + Lo) (Mo + M. 2 (L1 + Ls))"™ (Mo + M.

It D)l < oy 4 M2t Ms | 200+ Lo) Myt My) |y @ULa o+ L))" (Mo o+ M)
o (1 +9) (1 +9)

for every k = 1, N. Therefore, for any n,n > 1, we have that

2" (L1 + Lo)"™ (Ms + Ms)
(M +5)n+1

| (n 4 1) uj, — nugllx < , p=12

and
n

2" (L1 + La)" (M + M)

by induction. From this and formula (17) it follows that

, p=12

oo
gl < N0uf s + D N+ Duf = rf
r=0
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L1+L2 (MngMg)
<M1+Z (i +0) ;o p=1,2

This proves the existence of a BS of DS (13) that is bounded in C2(X) uniformly w.r.t. 7. Theorem 4
is proved.

Now, let us consider the applications of Theorem 4. First, the mixed problem (11) for one-
dimensional system of SPDEs is considered. The discretization of problem (11) is carried out in
two steps.

In the first step, we define the grid space as follows:

[—d,dp ={z:2,=rh, n=—-K,K, Kh=d}.

We introduce the Hilbert spaces Loy, = La([—d,d];) and W3, = Wi([—d,d]) of the grid functions
Yh(2) = {4}, defined on [—d, d]p,, equipped with the norms

[+

1/2

- ¥ e[|

ZE[—d,d]h

s e

ze|—da,dlp

Lop

1/2

[+ lls, = " '

2
W3,

respectively. To the differential operator A generated by problem (11), we assign the difference operator
A7 by the formula

P (2) = {=(al2)¥z(2))zr — Bal(=2)pz(—2)),, + 60 ML, (21)

acting in the space of grid functions ¥"(2) = {¢"}% satisfying the conditions % = & = 0. With
the help of A7, we arrive at the initial value problem

L() + puth(t, 2) + Azuth(t, 2) = —F(t, z;u (¢, 2), u™" (¢, 2)),

L (t 2D 4+ &) uPh(t, 2) + Azuh(t, 2) = F(t, 2z;u™ (¢, 2),u" (t, 2))

—Th(t zu (t,2)), (22)
% + P (t, 2) + Az udh(t, 2) = Y (t, 20" (t,2)), t € (0,b), z € [—d, d]p,

umh(o’z) = me(z), m = 17737 S [_d> d]h

for an infinite system of semilinear ordinary differential equations. In the second step, we replace
problem (22) by DS (13)

1
Sl +Muk +Ahuk = —Fh(tk,z,u,lf,ui),
2
% +(E+p) Uk + Ahuk = F"(ty, Z>u11g7ui) = T (t, Z’ui)’ (23)
ST Afud = Th(tg, 2, 0)), k=T,
u =™ m=1,3.

Theorem 5. Let the assumptions of Theorem 2 be satisfied and p + § > 2 (L1 + Lg). Then, there
exists a unique solution u” = {uk},ivzo of DS (23) that is bounded in C2 (Loy) uniformly w.r.t. 7 and h.

The proof of Theorem 5 is based on the main Theorem 4 and the symmetry properties of the
difference operator A} defined by formula (21).
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Second, the initial-boundary value problem (12) for multidimensional system of SPDEs is consid-
ered. The discretization of problem (12) is also carried out in two steps. In the first step, let us define
the grid sets

Q= {z =z, = (M1, ey hpry), 7= (11, 1n), k=0,N;, h;

=
I
=
~.
I
—
S
—

QhZQhﬂQ, ShZQhﬂS.

We introduce the Banach spaces Lg, = L2(Q) and WQQh = W2(Qy,) of the grid functions
Y(2) = {(h171, ..., hury)} defined on Qy,, equipped with the norms

ol = (5 )
=+ (S50, [0

ze€QpT

respectively. To the differential operator A generated by problem (12), we assign the difference operator
A7 by the formula

n
Zul = —Z (ar(z)u%>z ) (24)
—1 T

acting in the space of grid functions u”(z), satisfying the conditions u(z) = 0 for all z € Sy It is
known that Aj is a self-adjoint positive definite operator in La(€25). With the help of A}, we arrive at
the initial value problem

dulh(t,z 2

;;ﬁfl-%uu”%t 2) + Ajull(t, 2) = =Mt zu™ (8, 2), u™ (8, 2)),

B (o © w1, 2) + AP (1 2) = F (2 (1 2) 0 (1, 2)

—'I;Lh(t zu (t, 2)), (25)
3 —

du (t 2) —I—,uugh(t, 2) + Az 3h( 2) = Th(t,z;u2h (t,2)), t € (0,b), z € O,

umh(O, 2)=9Y"(z), m=1,3, 2 € Qy

for an infinite system of semilinear ordinary differential equations. In the second step, we replace

problem (25) by DS (13)

1 1
S g Ay = =Mt 2, ),
2 2
S (€ )+ AR = oz 0) = 02, (26)
S+ Afud = T (b, z,up), k=T
uo = ’(/)m - 173

Theorem 6. Let the assumptions of Theorem 3 be satisfied and p+ 0 > 2(L; 4+ La). Then, there
exists a unique solution u” = {uk},ivzo of DS (26) that is bounded in C2 (Loy) uniformly w.r.t. h and 7.
The proof of Theorem 6 is based on Theorem 4 and the symmetry properties of the difference

operator A} defined by formula (24) and the theorem on the coercivity inequality of an elliptic problem
in Lop, [13].
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8 Numerical experiments

When analytical methods fail to provide exact solutions or become intractable, numerical methods
play a crucial role in obtaining approximate solutions of partial differential equations. Over the years,
numerous significant contributions have been made in this area, and various reliable techniques have
been developed.

In the present section, we focus on the numerical approximation of the solution to a given initial-
boundary value problem. Specifically, we employ a finite DS of first-order accuracy. To solve the
resulting discrete system, we apply a modified Gauss elimination method.

Furthermore, we provide an error analysis for both the first-order and second-order accurate DSs,
highlighting their performance and convergence behavior. We now consider the following initial-
boundary value problem for a system of SPDEs:

Ul(t,2) +vUi(t, )— BUL (¢, 2)

= (=14 v+ B)e 'sinz —sin (V' (¢, 2)T3(t, 2) — e *'sin’ 2)
W2(t, 2) + (u+ &) T2(t, z) —dV2 (t,2)

=(-1+v+E&+detsing,

+sin (Ul(t, 2)U(¢, 2) — e *sin® z) — cos (P2(¢,2) — e 'sinz), (27)
T (t,2) + vVt 2) — T3 (¢, 2)

= (=1+v+~)e " sinz 4+ cos (\IIQ(t, 2)—et sinz) , t€(0,1), z € (0,n),

U™(0,z) =sinz, z € [0,7], m=1,3,
U™ (t,0) = UM (t,7) = 0, t € [0,1], m = 1,3.

The spatial variable z may be treated as either discrete or continuous, depending on the context.
In all cases, 2z represents population mobility, such as travel or migration between cities, towns, or even

countries.
The exact solution of problem (27) is given by:

U™ (t,z) =e 'sinz, m=1,3.

We now present a first-order accurate iterative DS for approximating the solution of the initial-
boundary value problem (27):

1 1,k 1,k—1 1,k 1,k
= (run — Uy ) + vru, — % (runH — 2run + ru
- . 1,k _ .
= (=1+v+B)etsinz, —sin ((r— Dup™(r — 1udF — e 20k sin? z,,
1 2,k 2,k—1 d 2,k

(run — TUy ) +(p+ §)ru,2{k — 3z <7“un’+1 —2ru2 4 ru2 k )
=(-14+v+E&+d)e*sinz,
. 1,k 2.k *Qt .. 9 . 2.k by
+ sin ((r — Duy™(r — Duy” — kgin® 2 ) — sin ((r — Duy™ — e e gin zn) , (28)

1 3.k 3,k—1 3.k 1,k
= (run — ruy ) + vruy” — % (runH 2run +ru,)” 1)

= (=14 v +v)e *sinz, + sin ((r—l) 2k _ etk sinzn),
tk—kT k=1N, Nr=1, z,=nh, n=1,K — 1, Kh =,
run’ :wm(zn), Uy k—ruK =0, k=0,N,
0ul* is the initial guess, m=1,3, k=0, N, n =0, K.

To solve the DS (28), we follow the iterative procedure described below. For each time step
k=0, N — 1 and spatial index n =0, K:
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Initialize iteration with r» = 1.
Assume (r — 1)1@’g is known for all m.

Compute ruﬁ’k using the difference equations.
k

WD =

If the maximum absolute error between (r — 1)u,”" and rupt exceeds a prescribed tolerance,

increment r — r 4+ 1 and repeat from step 2. Otherwise, accept ruff’k as the solution.

The errors of numerical solutions are computed by

(rEm)% = max
k=T,N, n=1,K—1

U (tg, zp) — runm’k ,

3
Il
w

where U™ (g, z,) is the exact solution, and ru?’k is the numerical approximation at the grid point
(tg, zn) for each m.
The results of the error computations for different grid resolutions are presented in Table 1.

Table 1

Maximum error (rE™)Y for different values of N = K and r = 6

(rE™)Y [N=K=20 [ N=K=40 | N=K =80
m=1 0.0068 0.0032 0.0016
m=2 0.0071 0.0033 0.0016
m=3 0.0073 0.0034 0.0017

As observed in Table 1, when the values of N and K are doubled, the error decreases approximately
by a factor of 1/2, which is consistent with the behavior of a first-order accurate finite DS as defined
in equation (28). The numerical results confirm both the stability and the accuracy of the proposed
DS.

Conclusion

In the present paper, we have established a theorem concerning the EU of a BS for a semilinear
system of parabolic equations that models the spread of epidemics with a general semilinear incidence
rate. The single-step DS of the w.r.t. for the numerical approximation of the semilinear system has
been investigated.

Furthermore, we proved a theorem concerning the EU of a BS for the DS, uniformly w.r.t. the
time step 7. The BSs of the semilinear parabolic system and its corresponding numerical scheme were
derived. Finally, numerical results were presented for a test problem to illustrate the effectiveness and
precision of the proposed DS. Applying methods from this paper and from papers [14] and [15] we can
present similar results from this paper for a BS for a semilinear system of delay parabolic equations
that models the spread of epidemics with a delay semilinear incidence rate.
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On a stable difference scheme for numerically solving a reverse
parabolic source identification problem

C. Ashyralyyev!?3* M.A. Sadybekov??

! Department of Mathematics, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey;
2Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, Kazakhstan;
3 National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan;
4 Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
(E-mail: charyar@gmail.com, sadybekov@math.kz)

This article is devoted to the study of source identification problems for reverse parabolic partial differential
equations with nonlocal boundary conditions. The principal aim of the work is to construct and analyze
stable difference schemes that can be effectively employed for obtaining approximate solutions of such
inverse problems. In particular, attention is focused on the Rothe difference scheme, and stability estimates
for the corresponding discrete solutions are rigorously derived. These estimates guarantee the reliability and
convergence of the proposed numerical method. A stability theorem for the solution of the difference scheme
related to the source identification problem is proved. To establish the well-posedness of the underlying
differential problem, the operator-theoretic approach is employed, ensuring a solid analytical foundation
for the numerical method. Furthermore, the investigation is extended to an abstract setting for difference
schemes, which is then applied to the numerical solution of reverse parabolic equations under boundary
conditions of the first kind. This unified framework emphasizes both the theoretical justification and the
computational effectiveness of the proposed approach. Finally, the efficiency of the developed method is
demonstrated through a numerical illustration with a test example.

Keywords: reverse parabolic equation, inverse problem, difference scheme (DS), partial differential equa-
tion (PDE), source identification problem (SIP), self-adjoint positive definite operator (SAPDO), stability
estimate, well-posedness.

2020 Mathematics Subject Classification: 34B10, 35K10, 49K40.

Introduction

In recent decades, the importance of SIPs in the mathematical modeling of real-world processes
has grown significantly (see [1,2]). Comprehensive reviews, detailed references, and classifications of
recent studies devoted to SIPs for parabolic PDEs can be found in [3-5]. The solvability of various
inverse problems for parabolic equations was investigated in [6-8], while the well-posedness of SIPs
for hyperbolic—parabolic equations was analyzed in [9]. The work [10] focused on the identification of
a space-dependent source term in the heat equation. A numerical algorithm for solving certain SIPs
for parabolic equations backward in time was proposed in [11]. The authors of [12] examined the
backward-in-time problem for a semilinear system of parabolic equations, whereas [13| developed a
regularization technique for the spherically symmetric backward heat conduction problem. Moreover,
a numerical approach for the backward heat conduction problem was introduced in [14]. In addition,
several stable difference schemes for various direct nonlocal problems associated with reverse parabolic
equations have been developed by different researchers (see, for instance, [15,16] and the references
therein).
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We denote by H, a Hilbert space and by A : H — H, a SAPDO such that A > ¢TI for a real number
6 > 0, and I identity operator. Let i, ur, kK =1,..., s be given real numbers so that

i+ o4 sl <1, 0<m<m<. . <y<l1 (1)
hold.
We study SIP to search for a pair (v, p) that satisfies reverse parabolic equation
dv
E(t)—Av(t)zp%—g(t), 0<t<1 (2)

and the following initial condition
v(0) = ¢ (3)
with a nonlocal condition
S
v(1) = D () + @ (4)
k=1

for a given smooth function g : [0, 1] — H and elements ¢, ¢ € H.

The well-posedness of the SIP (2)—(4) was established in the paper [17]. The aim of the current
study is a stable DS for approximate solution of the SIP (2)—(4), under the assumption (1). Namely,
we study the Rothe DS for approximate solution of this SIP and establish stability estimates for its
solutions. Subsequently, this approach is employed to obtain stability estimates for the approximate
solution of the SIP for a parabolic PDE. A numerical illustration of the test example is carried out.

1  Rothe DS

Denote by [0,1], = {tx = kr,k = 0,1,--- N, N7 = 1}, the set of uniform grid points for any
natural number V.

Let C([0,1],,H) denote a linear space of grid functions 9™ = {5} taking values in the space
H, and let C-(H) = C([0,1],,H), C*(H) = C*([0,1],H) be the corresponding Banach space of grid
functions equipped with the appropriate norms

197 = max [0l [97llczan = 197, + _max _ ()= 94, = Bull

where « € (0, 1) is a given number.
Let us denote by R = (I + 7 A)~! the resolvent of A. Then (see [18]) the estimates

IR*|lgmsn < (1 +67)7", |7R¥|lasn < k71, E>1 (5)

are valid. Let us [; = [2], py =2 —[;,i=1,..,s.

Lemma 1. The operator

s s
ST:I—<1— Z,uz> R.N— Z/LZ‘RNili
=1 i =1

has an inverse T, = S;! and it is bounded such that:

I Tr lasn< M. (6)
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Proof. Since operator (I — RN ) and its inverse are bounded, operator S; can be rewritten in the
form

Sr = (1—Rr"Y) <1+ i i (T—rM)™ (RN —RN”>> = (1-rY)Q;.

Hence, to complete the proof it is sufficient to prove that the operator Q, is invertible and Q! is
bounded. Spectral resolution of a SAPD operator (see [19]) and the assumption (1) give us

Q! |lusn< sup : ! < ———— <M.
H T ||H—>H d<A<o0 ‘1+ > uz‘(1* (147) _N)—l((l NN (147 )\)—(N—li))‘ 1— Zl‘ﬂﬂ
i =1 i =
Therefore, the proof of Lemma 1 is complete. O
1.1 Stable DS
Now, we the consider the Rothe DS
TN Ok — Op—1) + AVp—1 = gk + 0, g = g(tx), 1 <k <N,
(7)

UN— Y i 9, =@, 9=,
i =1

of approximate solution of the problem (2)-(3).
We now derive the solution of problem (7). One can see that a unique solution of the difference
problem

70k — Vg_1) + A1 =gk +p, 1 <k <N,
Yy is given
exists and the formula

N
ve=R""Foy+7 Y R F(ptyg), 0<k<N-1 (8)
j=k+1

holds. Applying formula (8) and the corresponding conditions, we get

N N
RV + ) Ripr=¢—) Ry
j=1 j=1
and
- N1, g N i—l; g N il
I— 3 wRY V) ONn — 30 i i BT = Zlm i1 R TIgGT .
i =1 i =1 1=
Since
Y Rir=a"'(1-rY), Y ®Rhr=at @-rYH),
j=1 Jj=li+1
we have that
N .
RY9y + (I-RV)A'p=¢ > Rlgr 9)
j=1
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and

S S S
1. 1. _ N s 7.
(I— > RN ”) Oy = X (=R = 2 B BT e (10)
1 = =

The determinant operator A for the system of equations (9) and (10) is defined by
A=-rY 3 (-8 — (1-RY) (I N
=1

S S
— RV S TRV St (1 8 )RV - 8 e,
i =1

i= 1 i =1 i=1

Using Lemma 1, we get

In =TS [¢— > Rigm | (1-RY)

s N s
Y D Rhgir te (IZMz’RN_li) (11)
=1

i=1 j=l+1

and

A‘lpzTT{<i§81mZ§Vzi+1Rj‘“gﬂ +90>R (cb PO 1Rjg]) < Z_luRN l>} (12)
(

Therefore, DS (7) is uniquely solvable and defined by the formulas (8), (11) and (12).

Theorem 1. For the solution ({ﬁk}kzl ,p) of problem (7) in C;(H) x H, the following stability
estimates

I lla< M5 (186l + | &9 e+~ | {geHo lose ) (13)

1061 Tewe < Ms (10l + Dol + 1oy llem) (14)

hold, where the value of My does not depend on 7, «, ¢, ¢, and {gk}fcvzl .
Proof. From (12) it follows that

p="T {Aso — ARNg — 7 0L ARV (g — gi) —(T—RY - 2w (I R"))gn

-7 Zs i (Zé-’;l AR (g — gN))} :

=1

Applying to the right side of the last formula the Cauchy—Shwarz and triangle inequalities and
estimates (5), (6), one can obtain estimate (13):

Iplle <Il T [la—n (HAwHHJrHARNHH%HWHHJrZ AR |y gy — gnllg T

)) loxl: )

<M (l6lls+ 1| A s +a= | {r}ly oo ) -

S
(1 IRV gt 3 (0 [
—
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Using relation (8), the triangle inequality and the estimates (5), (6), we show that

196l < [ By N0l + 7350 | RET ]y Nl

(R ) 1Tl { ol + IRV g 0l 7 35550 Bl
pal e R g } < M5 (N9lly + Il A I+ | o by s )

for any index k. From that, the estimate (14) follows.

2 The boundary value problem and its approximation

Let Q = (0,))" CR", S =00,Q=QUS and (1) holds. Assume that ¢ € La(Q), ¢ € W3(Q2) and
g € C*(L2(R)), a, are smooth functions such that Vz € Q,a,(x) > ap > 0, r =1,...,n, 0 is a given
positive real number.

Let us consider in [0,1] x €, SIP for a multi-dimensional reverse parabolic PDE with the
Dirichlet-type boundary condition

i, ) + é(ai(x)ﬁri(:v,t))xi o0, t) = gla,t) + plx), 0<t<1, x= (21, - an) €D,

9, 0) = ¢(x), I, 1) = kz_szlumx,vk) +p(z), weq,

Iz,t) =0, 0<t<1, z€S.
(15)
The well-posedness of the SIP (15) was established in the paper [17].
Now, we will discretize SIP (15) in two steps. Let us take h. M, = [, r = 1,---  n. In the first step,
we define the grid spaces Qp = {r =xp = (hamy, -  hpmy); m= (mq, -+ ,my),my =0,---, M.},
Qp = ﬁh nQ, S, = ﬁh NS and the difference operator A} by

a9 (2) = = 3 (ar(@)l, (a;))wr + 00" (x)

r=1

whose domain consists of all grid functions ¥"(x) satisfying the homogeneous boundary conditions
9'(x) =0 for all € Sj.

By using A7, we arrive at some infinite system of ordinary differential equations. Then, in the
second step of discretization, we obtain the first-order of ADS

b () — Py (2)) — AFOP_ () = [ty ) +p"(2), th =7k, 1<k<N, z€ Qn,
; ~ (16)
I (x) = oM(z), 9% (z) = 421;12. 192(:1:) + (@), e, L=[%],i=1.s.

Let Lgj, = Lg(ﬁh) and W3, = Wg(ﬁh) be spaces of the grid functions ¥"(x) = {9(hymq,--- , hymy)}
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defined on Qh, equipped with the norms

1/2
190, = (S, 19 @201 n) [ = (10",

2

(e, Zre 1 |0,

1/2 n
Petn) o (Zhen, Sre 1 [0 @)a 75, m,

1/2

Zhy - hn) ‘

Denote by C;(Lap) = C([0,1]7,Lap), the Banach space of Lop-valued grid functions 97 = {79k}]1v
with norm

197 Mle. (10) = A, 9k lLa, -

Let C*(Lgp) = C¥([0, 1]+, Lap) and C¥(Lap) = C2(]0, 1]+, Lap) be respectively the Hélder space and
the weighted Hoélder space with the norms defined by (1) for H = Lyy,.

Theorem 2. Assume that 7 and |h| = \/h? +---+ h2 are sufficiently small positive numbers,
oM € Loy, " € D(AD), {gﬁ}iv € C%(Lap). Then, for the solutions of DS (16), the following stability
estimates hold:

c;-f(Lgh)) ’

L I (P v P 123 O

where M; is independent of 7, ¢"(x), ¢"(x), and g,if(a;), k=1,---,N —-1.

The proof of Theorem 2 is based on estimates (13), (14)

191y < 25 (NPl + 85, + 0 [k

the theorem on the coercivity inequality
for the solution of the elliptic difference problem in Loj, ([20]) and the triangle inequality.

3 Numerical algorithm and example

In [0, 7] x [0, 1], we consider a test example to search for a pair of functions (p(z)
of reverse parabolic equation so that

v(z,t)) for SIP

vi(,t) + (14 32)% vee (2, 1) + 6 (1 + 32) va (2, 1) — v(2,t) = p(x) + gl t), O <z <m, 0<t<1,

v(z,0) = ¢(x), v(z,1) = k§1 pr vz, sk) +o(z), 0<xz<m,

v(0,t) =0, v(1,t) =0, 0 <t <1.

: (670.9 + 671.5 4 672.1)) C(x)

(17)
Here ((z) = sin(x), ¢(z) = ((z), p1 = po M3 3,51 = 03, 55 = 05, s3 = 0.7,
g(z,t) = ((—4 —(1+ 3m)2> C(x) +6(1+3x) cos(m)) e p(x)=(1- L
The exact solution is ((z), e 3!¢(z)).

We use the algorithm to solve (17). It contains three steps. In the first step we search for solution

90
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of an auxiliary direct problem without source

wi(x, 1) + (1 + 32)° wen (2, 1) + 6 (1 + 37) wy (2, 1) — w(,t)

= (14 32)% due (2, 1) + 6 (1 4 32) ¢pu(, ) + g(a,t), 0<t <1, 0<z <,

3 (18)
w(z, 1) — Zzl po(e,sk) = ¢(x), 0<z<m,

w(0,t) =0, w(l,t) =0, 0 <t < 1.

Later, in the second step, we find a source function using the formula
p(z) = (14 32)% wee(2,0) + 6 (1 + 32) w,(z,0) — w(t, 0).

Finally, in the third step we put in the right side of the reverse parabolic PDE and solve it to get the
solution v(z,t),
Applying (16), we have the following DS

(77t (W —wpy) + (U4 320) B2 (W — 202 +wp])
+6 (1 + 32,) (2h) 7 (Wit —wp ) — Wl = (14 32,)°h 2 (" — 297 + ¢ )
46 (14 3zy,) (2R) 7 (ot — ¢V )+ gty =kT, 1 <k <N, z,=nh,1 <n <M-1,
Wl — g (wy Fw, +w) =¢", 0 < n <M,

w) =0, wM =0,0 <k <N

(19)
for approximate solution (18). The approximate value of p at grid points x,, is calculated using the
formula

pr=(1+3x,) b2 (wh™ — 2w +wi™' )+ 6(1+3z,) (2h) " (wp™ —wi ) — Wi,
n=1,... M —1.

DS (19) can be rewritten in the matrix form

Anwn+1+ann +Cn wn—l:-lenv n:]-a"'vM_]-a wo = 0) WM = 0. (20)
Here, wy, = [w" - w]\(,]] , = [ wy" el ]t, =1 0" - 9]\’,"‘]75 are
(N +1) x 1 column vectors, A, Bn, C,, are ( +1)?2 square matrlces I is the (N +1)? identity matrix,
0o ... 0 ... 0 0
A 0
n — enl )
0
[0 0 0 —z 0 0 1]
d b, 0 0 0 0 O
0 d by 0 0 0 O
Bn - ’
0 0 O 0 d b, 0
00 0 0 0 bn |
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an = (1+32,)* =24 6(1+3x,) (20)7", by =—1—1—2(1+3z,)* h2
en=(01+3x,)* h"2—6(1+3x,)(20)", d=—1

T
0f =tn, n=1,--- M —1,

b= g(tnen) + (14 32,)° h2 (" — 20" +¢m)
+6 (14 3zy) (2h) 7 ("t —¢" ' ) k=1, -~ ,N,n=1,--- , M —1.
We use the modified Gauss elimination method to solve (20).
Numerical results are carried out using MATLAB. The numerical solutions of DS are evaluated for

distinct values of (N, M). wF represents the numerical value of v(t,x) at (t,2) = (tg,2,) and p, is the
numerical value of p(z) at = x,,. The errors in the numerical solutions are computed by

2

M—1
Ev = maxo<p<n ( S v(an, tr) — 1/,?]2 h> ,
n=1
Mot N
Eoar = (S ten) =P )
n=1

In Table 1 we give the error between the exact solution and the numerical solution of the difference
scheme for distinct values of N and M. The table demonstrates that doubling the grid resolution
results in approximately a twofold reduction in error.

Table 1

Error analysis

DS|N=M 20 40 80
Ev 1.308 x 1072 | 6.723 x 1075 | 3.447 x 10~°
Ep 1432 x 1072 | 7.012 x 107 | 3.465 x 107>
Conclusion

In this work we consider SIPs for reverse parabolic PDEs with initial and nonlocal boundary
conditions. The main goal is to develop and analyze stable difference schemes, particularly the Rothe
scheme, for accurate numerical solutions. Stability estimates are rigorously proved, ensuring reliability
and convergence. The well-posedness of the problem is established, providing a strong analytical
basis. The study also extends to an abstract setting of difference schemes and applies the results to
reverse parabolic equations with first-kind boundary conditions. Numerical experiments confirm the
effectiveness of the proposed method.

In future work, we plan to construct and analyze high-order accurate and stable difference schemes
for the approximate solution of such SIPs.
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Inequalities for analytic functions associated with hyperbolic cosine
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In this paper, we investigate the geometric properties of a specific subclass of analytic functions satisfying
the condition f’(z) < cosh(y/z) meaning that the function f’(z) is subordinate to the function cosh(/z).
Also, we focus on deriving sharp inequalities for Taylor coefficients, particularly for b3 and the modulus of the
second derivative f”(z). Utilizing the Schwarz lemma, both on the unit disc and on its boundary, we provide
essential insights into the distortion and growth behaviors of these functions. The paper demonstrates the
sharpness of these inequalities through extremal functions and applies the Julia—Wolff lemma to establish
boundary behavior results. These findings contribute significantly to the understanding of the analytic
functions associated with the hyperbolic cosine function, with potential applications in geometric function
theory. It is considered that the extremal functions obtained in this study could be potential hyperbolic
activation functions in neural network architectures. This perspective builds a conceptual bridge between
geometric function theory and artificial intelligence, indicating that insights from complex analysis can
inspire the development of more effective and theoretically grounded activation mechanisms in deep learning.
Empirical evaluation of architectures built with novel activation functions may be considered as potential
future work.

Keywords: Schwarz estimate, angular derivative, the principle of subordination, activation function, ex-
tremal function, analytic function, Julia-Wolff lemma, angular limit, Schwarz lemma at the boundary, the
unit disc
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Introduction

Let A represent the class of functions of the form f(z) = z + byz? + b3z + ..., analytic in the unit
disc D = {z : |2| < 1}. Also, let W be the subclass of A satisfying the condition

f'(z) < cosh /2,

where the symbol "<" indicates the principle of subordination [1]. Also, we choose the branch of the

square root function so that
2 3
coshyz=1+ — —1—*+%+

The conformal mapping cosh \/z : D — C maps the unit disc D onto the region
{aec:|n(a+Vaz=1)[ <1}

defined on the principal branch of the logarithm and the square root function |2].
Determining the upper bound for Taylor coefficients has been a key area of focus in understanding
geometric properties, offering important insights into different subclasses of WW. In this section, we
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establish an upper bound for by, a coefficient of the function f(z). To achieve this, we will apply the
Schwarz lemma. Furthermore, the following section will evaluate the modulus of the second derivative
of f(z) from below, requiring the use of the Schwarz lemma on the boundary.

The Schwarz lemma asserts that for any analytic function p(z) mapping the unit disc D into itself
and satisfying p(0) = 0, |p(z)| < |z| for z € D and [p/(0)] < 1. In simpler terms, it asserts that if
a function maps the unit disc into itself and maps its origin to the origin, then the function cannot
magnify the distances between points inside the disc by more than 1 [1].

Extending the Schwarz lemma to the boundary of the unit disc offers deep insights into the behavior
of analytic functions close to this boundary, proving especially beneficial when studying functions that
approach the disc’s edge. In this paper, we set out to examine the application and significance of this
remarkable theorem to various classes of functions. The Schwarz lemma implies the boundary Schwarz
lemma [p/(1)| > 1. Osserman and Unkelbach [3,4] showed that in this case, we have in fact

1—|p'(0)] 2

P21+ ) = T o))

where p satisfies the conditions of the Schwarz lemma, p extends continuously to the boundary point
le 0D = {z:|z| =1}, |p(1)] = 1 and p/(1) exists. These inequalities are sharp. In mathematical
literature, these inequalities and their generalizations are topics of continuous discussion and hold
great importance in the geometric theory of functions [5-7]. Some properties of analytic function
classes related to the Jack and the Schwarz lemmas were studied in [8]. In [9], a new bound for the
Schwarz inequality was obtained for analytic functions mapping the unit disk onto itself.

If we use the principle of subordination for the class we defined above, there exists a Schwarz

function p(z) such that
f'(2) = cosh y/p(2).

Here, the function p(z) meets the criteria of the Schwarz lemma [1|. Therefore, applying the

Schwarz lemma, we derive
/
72 = ZE_ginn /o)

2v/p(2)

" _ p,(O) lim sinh V p(2)
177(0) 2 250 p(2) '

and

Therefore, we have

iy _ P'(0)

oy ="

and 1
|F"(0)] < >

We will now demonstrate that the final inequality is sharp. Let

f(z) = 2y/zsinh /z — 2cosh /z + 2.

Then,
F'(2) = cosh 7,
n, 1 sinhy/z
f(z) = SNCERVE
and 1
|"(0)| = 3
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Lemma 1. If f € W, then
1

1
< —.

This result is sharp, as demonstrated by the extremal function

f(z) = 2y/zsinh /2 — 2cosh v/z + 2.

The subsequent lemma, referred to as the Julia—Wolff lemma, is required for the following discus-
sion [10].
Lemma 2 (Julia-Wolff lemma). If p is an analytic function in the unit disc D with p(0) = 0 and

p (D) C D, and additionally, p has an angular limit p(1) at 1 € 9D where |p(1)| = 1, then the angular
derivative p/(1) exists and 1 < [p/(1)| < oc.

1  Main results

This section focuses on examining the second derivative of the analytic function f(z). During
this analysis, we will derive stronger inequalities by considering the coefficients of the Taylor series
expansion of f(z). Additionally, we will provide an inequality that demonstrates the relationship
between these coefficients.

Theorem 1. Let f(z) € W. Suppose that, for 1 € 9D, f has an angular limit f(1) at 1,
f/(1) = cosh 1. Then we have the inequality

sinh 1

This result is sharp, with equality for the function

f(z) = 2y/zsinh /2 — 2cosh /z + 2.

Proof. Let
f'(z) = cosh \/p(z).
Then,
P'(2)
(=) = sinh \/p(2),
2/p(2)
p'(1)
(1) = sinh \/p(1)
2y/p(1)
and ”
(1) = p;)smm.
Since the function p(z) satisfies the conditions of the Schwarz lemma at the boundary, we obtain
21/7(1)|
1< p(1)] = =4
- ’p ( )} sinh 1
and b1
‘f//(l)’ Z Sln2 ‘

Now, we will prove that inequality (1) is sharp. Let

f(z) = 2¢/zsinh /2 — 2cosh v/z + 2.
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Then,
n, y 1 sinhy/z
P =57

and
sinh 1

| =2

Theorem 2. Assuming the same conditions as in Theorem 1, we obtain

" sinh 1
(1] = T3 217700)] (2)

Inequality (2) is sharp, achieving equality for the function

f(z) = 2y/zsinh /z — 2cosh /z + 2.

Proof. Let p(z) be as defined in the proof of Theorem 1. Thus, by the Schwarz lemma on the
boundary,

2 21f"(1
1+ [p'(0)] sinh 1
Since
10’ (0)] = 2]£"(0)],
we take
2 _ 2"

1+2[f"(0)] = sinhl

and

sinh 1

Next, we will demonstrate that inequality (2) is sharp. Consider

f(2) = 2y/zsinh y/z — 2 cosh /2 + 2.

| f//

Then, we have
sinh 1

| = 2

However, we also have
Z4boz? +b3z® 4 ... = 2¢/zsinh/z — 2cosh v/Zz + 2,

1+ 2boz + 3b322 + ... = cosh/z

and

1 sinh
2b2+6b32+...2751n \/E

2z
Upon taking the limit as z approaches 0 in the final equation, we find that by = %. Consequently, this
yields

sinh 1 sinh 1

L+2[f(0)] 2
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Theorem 8. Under the conditions of Theorem 1, we obtain

|F(1)]

v

2

The bound is sharp with the extremal function given by

f(2) =sinh 2.

inh 1 2(1 — 4 |by|)?
sin 14 (2 |b2]) —
1 — 16 [ba|* + |6b3 — 303

Proof. Let p(z) denote the same function as in the proof of Theorem 1 and let u(z) = z. According

to the maximum principle, for every z € D, it follows that |p(z)| < |u(z)|. Therefore, h(z) =

18

an analytic function and |h(z)| < 1 for |z|] < 1. By Taylor expansion of the function p(z), we have

p(2) = c12 + c22? + 322 + ... Thus, we take

p(2) ez 4 ca2? + 32+

. _ o 9
h(z) = u(z) = " =c+cz+c32”+ ...,
|h(0)] = |ea
and
‘h/(O)‘ = ‘CQ‘ .

Through straightforward computations, we obtain

1+2bgz+3b322+...:cosh\/p(z)zl—kpgf) L RE +

c1z + czz2 + 0323 + ... n (clz + 0222 + 0323 + ... )2

2b22 + 3b322 +... = 9]

4!

1
= —z(a+artal+ )+ (aFarta+ )+

1
2!
2by + 3b _ 2 =
2430z 4 = o (c1+ oz + 32"+ ...) + 7
1
bQ = ch
and ) )
3b3 = 502 + QC%
Thus, based on the expression for h(z), we have
[h(0)| = 4b2|

and
W (0)| = ‘Gbg — %bg

The combined function
h —h
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is analytic in the unit disc D, w(0) = 0, |w(z)| < 1 for z € D and |w(1)] = 1 for 1 € dD. By the
Schwarz lemma on the boundary, we obtain

2 1—[n(0)? 1+ [h(0)]
e < w'(1)] = W(1)] < )| = |u'(1)
1+ ‘w/(o)‘ ‘ | ‘1 _ﬁh(l)f ‘ 1 ‘h(O)‘ (‘ } ‘ ‘)
Since
v O] |6bs — 353
[ O = 1= B0 1= 16 b’
2|
we take
2 _l+dbl (2]
14 |6bs—2b3] — 1 —4]bg| \ sinhl
1—16|bo|?
and

‘f,(l)‘>sinh1 - 2 (1 — 41bg|)?
-2 1— 16 |by|? + |63 — 303| |
372

We will now demonstrate that the inequality (3) achieves equality. Consider
f(z) =sinh z.

Then,
f'(z) = cosh 2

and
f"(1) = sinh 1.

On the other hand, we have

3 5
z+b222+b323—|—...:Sinhz:z—{—?—l—%—k...,
3 5
2 3 _Z L E
boz® + b3z —|—...—3!—|-5!—|—...
and
b b oz 23

Passing to the limit (z — 0) in the last equality yields by = 0. Similarly, using straightforward calcu-
lations, we obtain by = % Therefore, we obtain

. B 2
sinh 1 <1+ 2(1 - 4|bs)) ’> T

2 1 — 16 |ba|* + |6bs — 2b3
O
Theorem 4. Let f € W and f(z) — z has no critical point in D except z = 0 and by > 0. Then
’31)3 - éb% < 4|byIn (4bg)| . (5)

This result is sharp.
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Proof. Given that ba > 0 in the expression of the function f(z), and considering inequality (4),
assuming that f(z) — z has no critical point in D except z = 0, we denote the analytic branch of the
logarithm by In h(z), normalized under the condition

Inh(0) = In (4b2) < 0.

The fractional function
_ Inh(z) —Inh(0)
~ Inh(z) +Inh(0)

is analytic in the unit disc D, |©(z)| < 1 for z € D and O(0) = 0. By the Schwarz lemma, we obtain

O(z)

1> |e/0) = 2In h(0)] h’(O)' -1 h’(O)‘ _ |6by — 303
- IIn A(0) + In k(0)[> | R(0) |~ 2Inh(0) | A(0) 8by In (4by)
and )
‘31)3 — gbg < 4bo In (4by) .
Now, we will show that inequality (5) is sharp. Let
p(z) = et = 2g(2),
where g(z) = elms 21 Thus, we have
2 3
o(z) = p(z) _aztcrt ezt + . JTIR. S

z z

Then 5
9(0) = c1 = 4by, ¢'(0) = cp = 6b3 — gbg.

Following straightforward computations, we obtain

2 142
"(2) = In (4by) e1-z n(4b2)
() = i)

and
g'(0) = 8by In (4bs) .
Thus, we obtain

1
‘3193 - gbg = 4 by In (4bo)] .

O

Based on the findings from [5], this theorem derives the modulus of the function’s derivative at
point 1 by considering its Taylor expansions around two points.

Theorem 5. Let f € W and f’(a) =1 for 0 < |a| < 1. Suppose that for 1 € 9D, f has an angular
limit f(1) at 1, f/(1) = cosh 1. Then, we have the inequality
in 1—|a|? al—=2|f"(0
771 25 (14 [ + Sl
« [1+ Ia\z+4|f”(0)\\f”(a)l(1—|a\2)—2|f”(a)|(1—\al2)—2|f”(0)| 1-faf? ) 6)
lal*+4] £ (0)[ (@) (1—lal* ) +2[ £ (a)| (1~|al* ) +21 /7 (0)] [1~al*
Inequality (6) is sharp, with equality for each possible value of |f”(0)| and |f”(a)].
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Proof. According to the Schwarz—Pick lemma [1], we have

s(z) — s(a) poal|
il b RG]
and
(o] < 1@+ (o) .

1+ Is(a)l[p(2)]"

where s : D — D is an analytic function and a € D. If ¢t : D — D is analytic and 0 < |a| < 1, letting

s(z) = % in (7), we obtain

and |A|+]p(2)]
ey < S H il 0

L+ [4(0)] 2] 121552

where
4ot 10

a (1 - t(O)t(a))
If we take

9= 25
then, we have

0 =", P'(a) (1@— af?)

and

a (1 L PO 7@ ))
where |A] < 1. Let [¢(0)| = b and let
P@(al) | |20
B= —
|al (1 4 |r©@ P'(a)(1-]al?) )
From (8), we obtain
+ 2 k)
< p(z
() < |2 |p<z>\ ot
1+Blp(2)]

and

1 [p(2)| T+l iy — bl )] — = 1)) Tty

- =1.
]2 (1 [el) (1+ b=] 22
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Let V(2) =1+0b|z] ﬁgfp ))‘| and R(z) = 14 B/|p(z)|. Considering the functions V(z) and R(z) in the
earlier inequality, we obtam

1 1Pl 1— | 1— |p(2)?
1= B bB |z| —————— . 9
VERG) { T R ER e )
Since p(2)]
. o B+lp
lﬂV(z)—lE<l+b||1+B|()|) 1+,
limR(z) = lim (1 + B|p(2)|) =1+ B
z—1 z—1
and
(1) (1)
L= o) = 1= || =
P 1—az 11 —az]? ’
passing to the angular limit in (9) yields
1—la* 1-0 1—-B1—la?
(1) >1 —_— .
Oz 1+ 11— af T A 1+ B|1 —al?
Moreover, since
1-b_1-po)l ] el o)l Jal - 2170)
Ol |a|+|p O]~ Ja|+2[f"0O)]
d@(-l?)| )y
T S| (R IO EC e
1+ B P@@-le?)| 1@
H ol (14| 2@ [ @ (=1a?) )
2 " " 2 " 2 "
1—p  laP+20 )21 @) (1= [al?) = 21f"(@)] (1~ |al*) = 217"(0)
LHB o 21 fm0)121 (@) (1= [a?) +21f"(@)] (1~ |a*) +21£(0)
and
| JaP 41O @] (1= 1al?) = 218 @)] (1~ |al’) = 21£"(0)
LEm a4 4 £(0)] (@) (1= lal?) +217"(@)] (1= Jal®) +2157(0)]
we obtain

1= [af* _|al —215"(0)]
1—af " |al+2]f70)

|l + 417 (1~ 1af”) =217 @] (1= Jaf) ~ 217011 — jap
0 + 417 1£"(@)] (1= o) +21(@)] (1 = |al*) +2|7(O)] I = af

(1) =1+
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From the definition of p(z), we have

21/"(1)]
(1) = ——~.
‘p ( >} sinh 1
We thus obtain inequality (6).

Let a be any real number in the interval (—1,0), and let ¢ and d be arbitrary real numbers such
that 0 < ¢ = [p/(0)| < |a|, 0 < d = [p(a)] < (1—|(|l¢|1\2) to show that inequality (6) is sharp. Let

g_,_M 1d(1—|a|2>+c
a(l—i—cdil_a'g‘ ) a 1—i—cd1_a‘g|

Consider the function
—-C + z T+p(z)
Z—a a 1+p(2)T

=z .
—qa T+p(2)
1—az 1— gzlerﬁEz)'JT

p(z) (10)

From equation (10), after performing straightforward calculations, we derive p/(0) = ¢ and p/(a) = d.
Therefore, we obtain

B 1—a® a+ec a2+cd<1—\a|2>—d<l—]a\2)—c 1— a2
P/(l)—1+(1_a)2+a_c 1—'—a2—|—cd<1—|a|2)—|—d<1—|a|2)+c(1—a)2

By selecting appropriate signs for the numbers a, ¢ and d, we can infer from the final equation that
inequality (6) is sharp. O

2  Conclusions and discussion

In this paper, geometric properties of a specific subclass of analytic functions satisfying the con-
dition f’(z) < coshy/z are investigated. Considering the Schwarz lemma and the boundary Schwarz
lemma, significant results on distortion and growth behaviours of these functions have been obtained.
Accordingly, two extremal functions have been based on the results of theorems presented in this paper.

The extremal functions obtained in this paper have been considered as activation functions for
artificial neural networks. There are already studies in the literature that examine the use of extremal
functions as activation functions [11,12]. In [11], the authors propose a complex-valued activation
function obtained using the Schwarz lemma. The authors stated that effective results have been
obtained in both classification and function approximation problems according to simulation results.
In [12], similar functions obtained in this study are presented as activation functions.

There are also various studies that propose hyperbolic functions to be used as activation functions,
which is also valid for our study [13-15]. In one of the recent studies, hyperbolic sine has been
used for deep learning in Tensorflow and Keras [13]. In [14], hyper-sinh-convolutional network has
been proposed for early detection of Parkinson’s disease from spiral drawings. Husein et al. used a
hyperbolic activation function to achieve effective instance image retrieval [15]. In our study, we present
two hyperbolic activation functions, defined as ¢g(z) = sinhz and ¢(z) = 2y/zsin\/z — 2cosh /2 + 2.
At this point, it is worth noting that the activation functions defined in our study are not arbitrarily
selected but they emerge as intuitive outcomes of the problem addressed in this study.

In conclusion, this paper aims to strengthen the connection between complex analysis and arti-
ficial intelligence in this paper by introducing the use of extremal functions within neural network
architectures. We consider that the obtained results show that mathematical findings from geometric
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function theory can inspire new directions in neural network research. Empirical evaluation of the
new activation functions across various learning tasks and architectures to fully assess their practical
impact and limitations can be considered as potential future work.
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Analysis and classification of fixed points of operators on a simplex
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This paper investigates the dynamical behavior of Lotka—Volterra type operators defined on the four and five
dimensional simplexes, focusing on their fixed points and structural representation through directed graphs
(tournaments). For several classes of such operators, we derive algebraic and combinatorial conditions
under which the configuration of fixed points exhibits transitive, cyclic, or homogeneous structures. Using
methods from algebraic graph theory, Lyapunov stability theory, and Young’s inequality, explicit criteria are
established for the existence, uniqueness, and stability of interior and boundary fixed points. A detailed
analysis is provided for the class of operators whose associated skew-symmetric matrices are in general
position. The connection between the minors of these matrices and the orientation of arcs in the tournament
is clarified, revealing how dynamical transitions correspond to changes in tournament type. Furthermore,
we demonstrate that under certain parameter regimes, fixed points coincide with evolutionarily stable
strategies (ESS) in replicator dynamics, thus bridging discrete population models and evolutionary game
theory. The obtained results enrich the theory of quadratic stochastic and Lotka—Volterra operators,
providing new insights into nonlinear mappings on simplexes, combinatorial dynamics, and applications to
models of interacting populations.
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Introduction

A number of applied studies are devoted to the investigation of dynamical systems — both conti-
nuous and discrete — as well as systems involving fractional-order derivatives [1-3]. To this day, all three
types of systems remain relevant; however, they differ in the methods of analysis and in the nature of the
results obtained [4-6]. The application areas of such models are wide-ranging and include medicine
(covering problems in epidemiology, oncology, and population genetics), ecology, economics, com-
puter virology, and many others [7-9]. Building on these applications, we now turn to the theoretical
foundations of a particular class of discrete dynamical systems — the so-called quadratic stochastic
operators — which play a central role in many models, especially in population genetics and game
dynamics.

Let us start by recalling the known facts that we will rely on in the article, as well as recalling the
works of some authors on its topic. It is known that [10], a (m — 1)-dimensional standard simplex in
R™ is defined as the relation

m
Sm—l — {x = (q;l, ,(L‘m) x; >0, sz = ].} c R™,
=1

*Corresponding author. E-mail: 24dil@mail.Tu
This research was funded by the Science Committee of the Ministry of Science and Higher Education of the Republic
of Kazakhstan (No. BR 27100483 “Development of predictive exploration technologies for identifying ore-prospective
areas based on data analysis from the unified subsurface user platform “Minerals.gov.kz” using artificial intelligence and
remote sensing methods”).
Received: 26 July 2025; Accepted: 15 September 2025.

(© 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Mathematics Series. No.4(120)/2025 107



D.B. Eshmamatova, M.A. Tadzhieva

It is easy to verify that S™ ! is a convex and compact subset of R™.

A class of mappings defined on S™~! known as quadratic stochastic operators was introduced by
Bernstein [11] and further developed by R.N. Ganikhodzhaev in [12,13]. Such mappings are defined
by a set of coefficients P;;y for 4,j,k = 1,...,m, satisfying the conditions

m
P1,]7k; = P]%k Z O, ZPZjJi‘ = 1’
k=1
and act according to the equations
m
ay, = (Va), = Z Py iz, k=1,...,m.
=1

This mapping was introduced by R.N. Ganikhodzhaev in [12].

Definition 1. A quadratic stochastic mapping is called a Lotka—Volterra mapping if the inheritance
coefficients satisfy the condition Pj;; = 0 for all k ¢ {i,5}.

It is known (see [14]) that any Lotka—Volterra mapping defined on S™~! can be represented as

m
$;€:$k(1+zakz$z), k=1,...,m, (1)

i=1

where
2P — 1, ifi#£k, ) ,

g =4k _ f with |ag| <1, kyi=1,...,m. (2)

0, ifi =k,
Here, A = (ay;) is a real skew-symmetric matrix, satisfying A = —AT, where A7 denotes the

transpose of A.

Definition 2. [15] A skew-symmetric matrix is called a matrix of general position if all of its principal
minors of even order are nonzero.

Since ag; = —agg, all off-diagonal entries are antisymmetric. In particular, ag; # 0 for ¢ # k if and
only if the corresponding P;; 1, # %

It is known that each skew-symmetric matrix in general position can be associated with a complete-
oriented graph (tournament) [15].

Let A = (ag;) be a skew-symmetric matrix in general position associated with Lotka—Volterra
mapping (1), where the coefficients satisfy conditions (2). We place m points on a plane and label
them 1,2,...,m. For each pair of distinct indices ¢ # k, we draw a directed edge from vertex i to
vertex k if a;; > 0 (equivalently, ag; < 0).

This construction defines a well-posed directed graph. We then call the constructed graph the
tournament of dynamic system (1) with the skew-symmetric matrix A = (ag;) and denote it by T),.

A directed graph is called a tournament if, for every pair of distinct vertices ¢ and k, exactly one
of the edges (i, k) or (k,i) is present. A graph in which every two vertices are connected by an edge is
called a complete graph. If each edge of a complete graph is assigned a direction, the resulting directed
graph is a tournament [16-18|.

Two tournaments are said to be isomorphic if there exists a bijection between their vertex sets that
preserves the direction of all edges.

It is known that there are 12 pairwise non-isomorphic tournaments with 5 vertices [17].

A tournament is called strong if, for any two vertices, there exists a directed path from one to the
other. Among the 12 tournaments with 5 vertices, 6 are strong [15].
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A tournament is said to be transitive if it contains no strong subtournaments. Equivalently, a
tournament is transitive if it does not contain any directed cycles. Among the tournaments with 5
vertices, exactly 1 is transitive, 6 are strong, and the remaining 5 are neither strong nor transitive.

Definition 3. |15] A tournament is homogeneous if every sub-tournament is either strong or tran-
sitive.

In this paper, we study the structure of the set of fixed points (referred to as the card of fized
points) and characterize the fixed points of strong and homogeneous tournaments.

Every face of the simplex S™ ! is invariant under the Lotka—Volterra mapping, and the restriction
V' to this face is also a Lotka-Volterra mapping [12-14].

In recent works [19-21] Lotka—Volterra mappings have been studied from the perspective of dynam-
ical systems, population genetics, and game theory. A particularly fruitful approach is to analyze their
fixed points and dynamical behavior via combinatorial structures such as tournaments and their geo-
metric realizations on simplex [22-24|. Lotka—Volterra mappings are popular in modeling the spread of
viral diseases. In [25-27], degenerate Lotka—Volterra mappings and their applications were considered.

In this paper, we focus on the structure of the set of fixed points — referred to as the card of
fized points — for various types of Lotka—Volterra operators V. We pay special attention to operators
corresponding to strong and homogeneous tournaments. Also explore conditions for the existence of
fixed points on the interior and the faces of the simplex, as well as criteria for their stability and
evolutionary significance.

Additionally, we establish links with replicator dynamics and evolutionary game theory, including
conditions under which fixed points of the system can be interpreted as evolutionary stable strategies

(ESS).
1 Card of fixed points
Introduce the following notation:
P,={x €T, :Ayz >0}, Qo ={z €T, : Ayx <0},

where ', denotes the face of the simplex S™~! corresponding to the index set o C I = {1,2,...,m},
and A, is the submatrix of A corresponding to the indices in a.

It is known [14], each of the sets P, and (), contains a unique fixed point. In some cases, it is
possible that P, = Q.

The set of all fixed points of the operator V, Fix(V) = {x € S™~!: Vo = x} can be represented
as a set of points in a plane. For each o C I, the fixed point P, is connected to the fixed point @, by
a directed arc pointing from P, to ),. The resulting directed graph is called the card of fixed points
of the operator V, and is denoted by Gy [14,15].

Definition 4. Two fixed points (vertices of the graph Gy) z(a) and x(f3) are called adjacent if the
following conditions hold:

L af = 18],
2. lan gl =la| -1,
where |a| denotes the number of elements in « C I = {1,2,...,m}.

In other words, z(«) and () correspond to faces of the same dimension and their supports differ
by exactly one index.

For example, all vertices of the simplex (corresponding to one-element subsets) are pairwise adja-
cent. However, the fixed points z({2,3,5}) and x({1,2,4}) are not adjacent.

Theorem 1. Any two adjacent vertices in the graph Gy are connected by a directed arc.
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Proof. Let z(ar) and x(8) be adjacent vertices of Gy, corresponding to the subsets
a,BCI=1{1,2,...,m}. By definition of adjacency, |a| = |5|, and |a N 5| = |a] — 1. Let v = a U,
so that |y| = |a| + 1.

Let us denote v = {i1,42,...,4t}, with ¢ = |y|. Then, without loss of generality, we may assume

OJZ{iQ,ig,...,’it}, 5={i1,i2,...,’it_1}.

Now consider the restriction of the mapping V' to the face I, € S™~L. Since z(a) and z(f) lie in
I, we consider the action of the submatrix A, from the skew-symmetric matrix A on the face I'.
Recall the property of Lotka—Volterra mappings on invariant faces: for a fixed point x € I',

supp x Nsupp(Ayx) = &, suppz Usupp(Ayx) = .

That is, the nonzero coordinates of A,x are complementary to the support of x within ~.

Applying this to z(«), which has support a = {ia,...,i;}, we obtain that (Ayz(«a));; # 0, and all
other coordinates of Ayx(c) vanish. Similarly, since 5 = {i1,...,%—1}, the only nonzero coordinate of
Ayx(B) is (Ayz(B))i, # 0.

We now consider the signs of these nonzero coordinates. If
sign(A,z(a));, - sign(Ayz(8))i, <O,

then, the directions of the corresponding arcs go from one to the other, and z(a) and z(3) form a
directed pair (P,, Q. ), meaning they are connected by an arc in Gy.

If the signs are the same, then both x(«) and z (/) would have outgoing arcs in the same direction
on the face I'y, which contradicts the uniqueness of the sink (i.e., the unique point with all incoming
arcs) in the fixed point diagram on T'.

Hence, in either case, the pair (z(«),z(f)) must be connected by a directed arc in Gy . O

2  Main results

Consider the general form of the Lotka—Volterra operator Vi:

71(1 — a12w2 — a1373 — a14T4 + a15x5),

22(1 + a12x1 — @233 — a24T4 — A25%5),

X
X

Vi T
xy = x4(1 + a14%1 + agqwe + azqrs — a457s),
X

( )
( )
23(1 + a1371 + ag3r2 — 3474 — a3575), (3)
( )
( )

U mTsy Wy s =TS

T5(1 — ai15x1 + assx9 + assT3 + a45x4).

The operator V; corresponds to the strong and homogeneous tournament shown in Figure 1.

1

Figure 1. The tournament associated with the operator V;
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The corresponding skew-symmetric matrix A; = (a;;) associated with mapping (3) has the form:

0 —aip —ai3 —a as
az 0  —azs —azy —azs
A= a3  as3 0  —ass —ass
aly a4 asy 0 —ays
—ais A G35 Q45 0

In order for the operator Vj to correspond to a matrix in general position, it is required that all
even-order principal minors of the matrix A; be nonzero.

For second-order minors, the condition ax; > 0 ensures their positivity. Calculating the principal
minors of order four (there are five such minors), we obtain:

ALY = (agsaus + agsass — assass)®, A3 = (ar5ass + ar4a3s — arzass)’,
AP = (a15a04 + ar4a05 — a12a5)®, AL = (ar5a23 + a13a25 — a12a35)?,
A = (ai4a23 + a12a34 — a13a24)”.
Since the matrix A; is in general position, all even-order principal minors are nonzero, i.e., A;Z # 0 for

alli=1,...,5.
Let us define the expressions inside the squares as:

Ay = azzays + azsa34 — 24035,
Ay = ai5a34 + ai4a3s — a13a4s,
A3z = a15a24 + a14a25 — a12a45,
Ay = aisaz3 + aizags — ai2azs,

AS = 14023 + 012034 — G13024.

Theorem 2. If Ag, A3, Ay > 0, then the card of the fixed point operator V; is transitive (Figure 2)

125

145 < 135

Figure 2. The transitive card of the fixed point

Proof. As shown in Figure 1, the tournament contains three cyclic triples: 125,135,145. These
correspond to the following fixed points:

a5 ais
M125 - < ) 707 0 >
a12 +ais + azs arz +ais + azs a2 + ais + a2s
ass ais
M135 - < aOa 70 )
a3+ a5 +ass a1z t+ais+aszs aiz+as + ass
Q45 ais
Miys = <,0,0 >
a14 + a1s + aqs ais + ais + ass’ ais + ais -I— a45
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where all coefficients are assumed to be positive.
Now, define the following functions:

1 1
80125@) _ (mtlmsxglsxglz)a12+a15+a25 , 30135(55) — (1‘61135$§15xi5l13)a13+a15+a35 ,
1
pras(®) = (@52 5ag) FarmaTes
We now apply “Young’s inequality” [28], which states that for any ¢ > 0, pr > 0, such that

m

>~ pr = 1, the following holds:
k=1

o m m
H ar < Z CkPk-
P =1

Using this, one derives the following estimates:

p125(V) < 9012;(:) (A2 — Agxsz — Azzy), (4)
x

p135(V) < SOIAST;) (A135 + Agxo — Agzy), (5)
T

g0145(Vl‘) < SDZLTL) ) (A145 + Aszxo + A2x3) . (6)

Here, the constants are:
Aigs = a12 + ai5 + a5, Aizs = a13 + a5 +azs, Az = aa + a1 + ags.

We now determine the directions of arcs between the fixed points:

1. “Between Mj9s and Mjss™: In inequalities (4) and (5), the term involving A4 appears with
opposite signs. If Ay > 0, then in (4) this term decreases ¢125(Vx), while in (5) it increases ¢135(V ).
This implies the direction of the fixed-point flow is Myo5 — Mi3s.

2. “Between M35 and My45”™: In inequalities (5) and (6), Ay appears with opposite signs. If Ay > 0,
this implies the direction Miss — Migs.

3. “Between Mjos and Mjss”: Comparing (4) and (6), if Az > 0, the sign of the corresponding
term shows the direction Mis5 — Miys.

As a result, all three fixed points are connected in a consistent directed order:

Mios — Mizs — Mygs < Mios,

and the resulting subgraph forms a transitive triangle, as shown in Figure 2. O

Let Va =z, i.e., x is a fixed point of the mapping. The eigenvalues of the Jacobian matrix at the
fixed point are found as the solutions of the characteristic equation:

det(J(z) — AE) = 0, (7)

where J(z) is the Jacobian matrix of the mapping V evaluated at the fixed point z, and E is the
identity matrix.

The nature of the fixed point can be characterized based on the eigenvalues of the Jacobian. To
do this, we first introduce some definitions regarding the classification of fixed points [29].

To investigate the nature of fixed points of the mapping, we introduce the following definitions
from [29].
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Definition 5. A fixed point is called an attractor if all eigenvalues of the Jacobian matrix (i.e., the
solutions of equation (7)) have modulus strictly less than one.

Definition 6. A fixed point is called a repeller if all eigenvalues of the Jacobian matrix have modulus
strictly greater than one.

Definition 7. A fixed point is called a saddle point if the spectrum of the Jacobian contains eigen-

values with modulus both less than and greater than one. In other words, it is neither an attractor
nor a repeller.

Corollary 1. If Ag, Az, Ag > 0, then the fixed point M;s5 of the operator V7 is a repeller, the fixed
point M145 is an attractor, and the fixed point Mjss is a saddle point.

Proof. Using equation (7), we compute the eigenvalues of the Jacobian matrix at each fixed point.
Let us denote the diagonal entries of the Jacobian matrix at a general point x as:

t1 =1—a12z2 — a13r3 — A1474 + a1575,

to = 1+ a1271 — ag3®3 — a24T4 — A25Ts,

ts = 1+ a1321 + a23x2 — a34%4 — a35s,

ty =1+ a141 + a4 + a343 — ag5s,

ts = 1 —ai5z1 + agsr2 + 3523 + a4524.

Then the Jacobian matrix J takes the form:

t —a12T1 —aG13T1 —A14T1 —a15%1

1222 ta —Q23T2  —aA24T2 —A25T2

J=| aizrs  az3 l3 —Qa34T3 —a35x3

14T4  A24T4 (3474 t4 —Q45T4
—a15T5  G25%5  A35T5 4575 ts

Substituting the coordinates of the fixed point Mjs5 into J, we obtain:

1 __a12a35 __a13a35 __Gj4a25 a15a25

A12s A1zs A12s A12s
a12a15 1 __a23a1s __a24a15 __aszsa1s
A12s A1zs A12s A1zs
_ a13025+023Q15—0A35Q12
J(Ms)=| 0 0 1+ 701 0 o |,
0 0 0 1 4 2140251024015~ 045012 0
A12s
__aisaiz a25a12 a35a12 a45a12 1
A12s A12s A12s A12s

where A195 = a12 + a5 + ass.
From this matrix, two eigenvalues are immediately identified as: A\; = 1 + AA1357 Ao =1+ 2
corresponding to the diagonal entries.

The remaining eigenvalues are obtained from the characteristic equation for the 3 x 3 leading
principal minor:

1— )\ —a120% a15a25
A12s A12s
a12a15 1— ) —a@sas | _
A12s A12s )
__aisa12 a25a12 1— )\
A12s A12s

Solving it, we find: A\34 =141, /%, A5 = 1. Thus, the spectrum of the Jacobian at Mjas is:

Ay As \/m}
o(J(Mias)) =<1, 1+ Ll 1, 2R
( ( 125)) { A125 A125 A125
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Similarly, we have:

Ay AV .\/m}
o(J(Myzs)) =1, 1— =% 14 22 g4 (213915035 L
(J(Mizs)) { Aq3s Aq3s Aq3s

A3 Ag . 6L14a15a45}
o(J(Mus)) =41, 1— =8 1 22y, (G505 1
(J(Mis5)) { Atz A1ys A5

Assuming Ag, Az, Ay > 0, we observe:

— for Myo5: all real parts of the eigenvalues are strictly greater than 1. Hence, Mio5 is a “repeller”;

— for Mis5: one eigenvalue has real part greater than 1, another less than 1. Hence, M35 is a
“saddle point”;

— for My45: all real parts of the eigenvalues are less than 1. Hence, M145 is an “attractor”. O

Theorem 8. If Ag, Ay > 0 and Az < 0, then the fixed point card of the operator V; is cyclic and,
in addition to the fixed points Miye5, Miss, and Mi,5, contains an internal fixed point with all five
coordinates nonzero (see Figure 3).

125

145 d ¢ 135

Figure 3. Cyclic structure of the fixed point graph with an additional internal fixed point

Proof. The cyclic structure of the fixed point graph Gy follows from Theorem 2, which characterizes
the orientation of arcs between the fixed points Miss, Mi35, and M145 depending on the signs of Ao,
Az, and Ag.

When Ay, Ay > 0 and Az < 0, the inequalities derived in Theorem 2 imply the formation of a
cycle:

Myo5 — M35 — Mygs — Mios.

Let o = {1,2,3,4,5} denote the full support. Then T, is the interior of the simplex S4.

Since M5, Mi3s, and Miy5 form a cyclic triple, none of them can serve as the sink (i.e., the unique
fixed point @, ) of the face I'y. By the uniqueness of such a point ([15], it follows that I', must contain
an additional fixed point M, which lies strictly inside the simplex. Hence, all coordinates of M, are
Nnonzero.

Therefore, under the stated conditions, the graph Gy acquires a cyclic structure and includes an
internal fixed point with full support. O

Next, we consider another representative of the Lotka—Volterra mapping and the corresponding
tournament.
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4 3

Figure 4. A strong, homogeneous tournament with four cyclic triples

Figure 4 illustrates a strong homogeneous tournament containing four cyclic triples. This tournament
corresponds to the Lotka—Volterra operator V5, defined by:

/

z1(1 — a1o2 — a1373 — a1474 + a1575),

aclz = 22(1 4+ a12w1 — a2323 — 2474 + a2575),

Vo 33;) = 23(1 4+ a1321 + a3x2 — a34T4 — a35T5), (8)
vy = 24(1 + a1471 + a2 + 3473 — A15T5),
\ x’5 = x5(1 — a1571 — a2522 + assx3 + as4sx4).

The corresponding skew-symmetric matrix A, associated with this operator is given by:

0 —a12 —ai3 —as ais
a2 0 —azs —azx azs
Ay =] a3  as3 0  —ass —ass
a4 a4 a4 0 —ags
—ais —a 435 Q45 0

If we compute all principal minors of order four of the skew-symmetric matrix As, we obtain squares
of certain expressions. Let these expression denoted by A; # 0, for i =1,...,5:

A1 = agqazs — azaqs + azsazs, Ao = a14a35 — a13045 + 15034,
A3 = ai4as5 — a15a24 + a12a45, A4 = a12a35 — a15a23 + a13a25,
Az = a12a34 — 13024 + 14023.
The Lotka—Volterra operator V5 defined in equation (8) admits four cyclic triples: 135, 145, 235,
and 245. These cyclic triples correspond to strong sub-tournaments of the tournament on the 4-simplex

5S4 (see Figure 4), each containing a unique internal fixed point.
These fixed points are given by:

ass ais a13
Ml35 - < 3 05 ) 07 > )
a13 + ais + ass a13 + a1 + ass a13 + ais + ass
a4s ais Q14
M145 - 5 07 07 ) )
a4 + ais + ags a4 +a1s + a4 a4 + ars + aqs
ass azs a23
M235 - <0) 3 ) 07 > )
az3 + ags + ass a3 + azs + ass az3 + ags + ass
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a45 azs a4 >
b

M245 — <0) ) Oa )
az4 + ags5 + ays a4 + ags + a45” a4 + ags + ags

where all coefficients a;; are assumed to be strictly positive.

For the operator Vs, applying Young’s inequality yields the following estimates:

X
p135(Vr) < ¢§?§5) (A135 + Agzo — Agzy),

©145(x)
ANPE

x
pa35(Vx) < p235(7) (Agss — Ayxz — Aszy),

w145 (V) < (A1a5 + Agza + Agzs),

i
wous(Vx) < pa5(2) (Agas — Ayxsz — Azzy),

for all z € S*, where
Aizs = a13 + a5 +azs, Az = aia +a15 +ass, Aozs = az + ass +azs, Aoz = a4 + azs + ags.

If the second and fourth even-order principal minors of the skew-symmetric matrix Ay are nonzero,
then A, is said to be in general position. In this case, the card of fixed points of the operator V5 has
the structure shown in Figure 5.

135 115
235 245

Figure 5. The card of fixed points for the mapping V5

In the card of fixed points, no directions are initially indicated, as the orientations on the faces of
the simplex depend on the signs of the expressions A;, for i = 1,2, 3,4, 5.

The orientation of a graph refers to assigning a direction (arrow) to each of its edges, i.e., specifying
an order for every pair of adjacent vertices. A directed graph, or digraph, is one in which no two
vertices are connected by a pair of edges pointing in opposite directions. Thus, every orientation of an
undirected graph yields a digraph [17].

For a graph with four vertices, there are 2 = 16 possible orientations. Among these 16 digraphs,
some are isomorphic — that is, structurally identical up to a relabeling of vertices. There are ex-
actly four non-isomorphic directed graphs with four vertices that contain a directed cycle. These are
illustrated in Figure 6.
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135 145 135 145
\ \ N
4
235 245 235 245
a) b)
135 * 145 135 < 145
\ h
Y
235 > 245 235 > 245
c) d)

Figure 6. The four non-isomorphic directed graphs

Theorem 4. Let the following conditions hold:

1. If A1, Ay < 0, then the card of fixed points of the operator V5 has the structure shown in Figure 6,
case a).

2. If A, A3, A4 < 0, then the card of fixed points of the operator V5 has the structure shown in
Figure 6, case b).

3. If A3z, A4 < 0, then the card of fixed points of the operator V5 has the structure shown in Figure 6,
case C).

The proof of Theorem 4 follows directly from Theorems 2 and 3.
Theorem 5. If As is a skew-symmetric matrix in general position, then the card of fixed points of

the operator V5 cannot take the form shown in Figure 6 case d).

Proof. The fact that the card of fixed points of the operator V5 cannot take the form shown in
Figure 6, case d) follows from a uniqueness fakt stated in [15|. Specifically, if the skew-symmetric
matrix is in general position, then the sets of points P and @ are each unique [13,15].

However, in the fixed point diagram shown in Figure 6 case d), there are two P-points, namely
(145,235), and two Q-points, namely (135, 245), which contradicts this uniqueness. O

Let us consider the mapping V3 : §* — S4 defined by the following system of equations:

Ty = 71(1 + a1272 + a1373 — A14T4 — A15T5),

Ty = w2(1 — a1271 + ag3w3 + 2474 — a2575),

Ty = 74(1 + a1471 — a24T2 — a347T3 + A45T5),

( )
( )
Va: Qg =a3(1 — a1321 — azs®s + azas + azsas),
( )
( )

| T5 = x5(1 + a1571 + ag572 — a3503 — A4574),

where the coefficients satisfy the conditions 0 < ay; < 1 for all 4, k.
The strong, homogeneous tournament corresponding to this operator is illustrated in Figure 7.
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Figure 7. The strong, homogeneous tournament corresponding to the operator Vs

It has five cyclic triples: 124,134,135, 235, 245, each of whose corresponding faces contains exactly one
fixed point:

a24 a14 a12
Moy = ) , 0, ————
a12 + a4 +ag4 a2 +aiq + azy aiz + a4 + ag’
as4 a4
M3y = ( , 0, ; 0)
a13 + a4 + as4 ais+ais+asy’ aiz+ ais + as4
ass ais
M35 = < , 0, , 0, >
a13 + ais + ass a13 + ais + ass a1z + ais + ass
Myss — <0 ass azs 0 >
- b b M M
az3 + ags + ags  ag3 + azs + ass a23 + a2s + ass
M. (o 45 0 @25 )
245 — 5 s Uy
a24 + ags + ags asy + ags + ags’ agy + ass + Q45

We use the following notation:

A1 = ag4a35 — a23a45 + a25a34, Ao = a14a35 — 15034 + 13045,
A3 = a14a25 — a12045 + a15024, Ay = a12a35 — a15a23 + a13a25, (9)

As = a13a24 — a12a34 + G14023.

For the operator V3, we also apply Young’s inequality and obtain the following estimates:

p124(Vx) < $rza() (A124 — Aszz — Aszs),

p134(Vz) < (A134 + Asxo + Agxs)

p135(Vx) < P135(2) (A13s + Agza — Aoxy),

a35(V) < () (Agsgs — Ayxy + Ajzy),

P45 (1)

A (A245 + Aszy — Alxg) .
245

wou5(Vx) <

for all z € S*, where
Ajos = a12 + a1q + asq, A3 = a13 + a1a +aza, Aizs = a1z + ais + ass,

Aog3s = ag3 + ags +azs, Aoz = agg + a5 + ags.
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Theorem 6. Let the quantities Ay, Ay, Az, Ay, A5 be defined as in (9). Then:

1. If Ay, A9, A3, A4 < 0 and As > 0, then the fixed point card of the operator V3 contains a
Hamiltonian cycle, and the operator admits an internal fixed point with all five coordinates
nonzero (see Figure 8, case a) ).

2. If Ao, A3, Ay < 0 and Ay, As > 0, then the fixed point card of the operator V3 takes the form
shown in Figure 8, case b).

3. If Ay, Ay < 0 and Ay, Az, As > 0, then the fixed point card of the operator V3 takes the form
shown in Figure 8, case c).

4. If Ay - Ao - Ag- Ay - As # 0, then the fixed point card of the operator V3 cannot take the form
shown in Figure 8, case d).

245 245 134

25 134 245 134

135

c)
Figure 8. Possible cards of fixed points of the operator V3

The proof of Theorem 6 follows directly from Theorems 2 and 3.

Theorem 6 characterizes the types of fixed point configurations of the operator V3 depending on
the signs of the expressions A;. In particular, case 1. indicates the existence of an internal fixed point.
The following lemma makes this statement precise.

Lemma 1. Let the operator V3 : S* — S% be defined by the system
5
Va(@)k = o (1 +Zakimi> , k=1,...,5
i=1

5
where ag; = —az, ©; > 0, >, x; = 1, and A; are the fourth-order principal minors of the skew-

=1
symmetric matrix A = (a;;). Then:
1. If Ay, Aq, A3, Ay < 0 and As > 0, then the operator V3 has at least one internal fixed point
r* € int(S%).
2. If at least three of the values A; are positive, then there are no internal fixed points.
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Proof. Consider the directed graph (tournament) Gy, corresponding to the operator V3, where the
vertices represent the coordinates z;, and the direction of the edges is determined by the sign of the
coefficients a;.

1. Euxistence of an internal point. According to results by Hofbauer J. and Ganikhodzhaev R.
[13, 19|, if the tournament Gy, contains a Hamiltonian cycle, then the operator V3 has at
least one internal fixed point. This behavior occurs when the fixed points on the faces (e.g.,
Mio4, Mi34, M35, Mass, Maygs) are connected by directed transitions forming a cycle. The conditions
A1, A9, A3, Ay < 0 and Az > 0 ensure the required orientation of the transitions between faces,
forming a Hamiltonian cycle.

2. Non-existence of an internal point. If at least three of the values A; are positive, the structure of
Gy, does not contain a full directed cycle (it becomes either transitive or splits into sub-tournaments).
This implies that all trajectories of V3 are attracted to fixed points on the boundary faces of the
simplex, and internal fixed points are either unstable or do not exist. O

8 Connection with replicator dynamics and evolutionary stability

The Lotka—Volterra operators considered in this paper are structurally close to replicator dynamics
from evolutionary game theory. In both models, the trajectories are confined to the standard simplex
S™~1 and fixed points correspond to stationary population states.

3.1 Replicator dynamics and stability

The replicator equation for a population with m strategies and payoff matrix A = (a;;) has the
form [30-32]: 4; = z; ((Az); — 2" Az), where € S™~1, and (Az); denotes the fitness of strategy 1.
A point z* € S™ 1 is a fixed point if all strategies present in z* have equal fitness: (Az*); = z* T Az*
for all 7 > 0.

3.2 Evolutionarily stable strategy (ESS)

A point z* € S™ 1 is called an evolutionarily stable strategy (ESS) if the following two conditions
are satisfied:

1. z* is a Nash equilibrium: z*T Az* > 2" Az* for all z € §™1;

2. if x # 2* and * " Az = 2* T Az*, then o' Az < 2*T Ax.

This means that small deviations from z* result in lower fitness for mutants, and strategy =* cannot
be invaded.

3.8 Analogy with Lotka—Volterra operators

Consider the discrete Lotka—Volterra operator:

m
x;:xk(l—FZakixi), k::1,...,m.
i=1

After normalization and transition to continuous time, this system approximates the replicator form:
m

T = Tk <Z QT — @(x)) , where ®(z) is the average fitness. This supports the interpretation of
i=1

coefficients a;; as measures of fitness differences or interactions between strategies.
Thus, interior fixed points of the operator V, i.e., those with all coordinates positive, can be
interpreted as candidates for ESS.
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3.4 Classification of fized points

Let M, C S* be a fixed point associated with a face I',, defined by a cyclic triple. Then:

e if all eigenvalues of the Jacobian matrix at M, have modulus less than one, the point is asymp-
totically stable and may be ESS;

e if the point is a saddle or repeller, then it cannot be evolutionarily stable.

Proposition 1. Let * be a fixed point of a Lotka—Volterra operator V. Then:
e if x* is a strict local maximum of a potential function (if one exists), then z* is an ESS;

e if * is a saddle or repeller, then it is not evolutionarily stable.

As an example, we can consider the operator V5. Under the conditions As, Ag, Ay < 0, A1, Az > 0,
the fixed point structure corresponds to Figure 8, case b), where there exists a unique interior fixed
point. If the eigenvalues of the Jacobian matrix at this point all have modulus less than one, the point
is asymptotically stable and can be interpreted as an ESS.

The connection with replicator dynamics provides a biological interpretation of the behavior of
Lotka—Volterra operators. Attracting interior fixed points behave as stable combinations of strategies
or species, while saddle points correspond to unstable ecological or strategic equilibria.

4 Conclusion

In this work, we analyzed the structure of the set of fixed points — referred to as the card of fized
points — for Lotka—Volterra type operators defined on the standard simplex S™ 1. By associating these
nonlinear maps with skew-symmetric matrices in general position, we established a correspondence
between the dynamical system and directed graphs, particularly focusing on strong and homogeneous
tournaments.

This graph-theoretical interpretation allowed us to classify the qualitative behavior of the system
based on the topology of the corresponding tournament - including the presence of Hamiltonian cycles
and internal fixed points. Analytical conditions were derived using the signs of even-order principal
minors A;, which determine the number and nature of fixed points. Additionally, Young’s inequality
was applied to obtain upper estimates for the evolution of invariant functions defined on simplex faces.

Beyond theoretical significance, the results of this study find direct applications in several domains
where discrete population dynamics are modeled. In evolutionary biology, Lotka—Volterra operators
serve as simplified models of frequency-dependent selection, where fixed points correspond to evolu-
tionarily stable strategies (ESS). Interior fixed points represent coexistence states, while saddle points
and repellers describe unstable or metastable configurations.

In socio-economic systems, such as market competition, opinion dynamics, or resource allocation,
agent interactions can also be described using skew-symmetric structures. In this context, the tourna-
ment representation reflects dominance, influence, or preference relations. Therefore, the topological
classification of fixed point cards provides insights into long-term system behavior based on interaction
patterns.

The proposed approach can be further extended to systems with noise, spatial heterogeneity, or
adaptive responses, making it a promising tool for modeling complex real-world phenomena. Future
directions may include the development of algorithms to infer tournament structure from empirical
data and applying the derived stability criteria to detect equilibrium configurations in evolutionary
and economic games.
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Well-posedness of elliptic-parabolic differential problem with integral
condition

0. Gercek

Girne American University, Mersin, Turkey
(E-mail: ogercek72@gmail.com,)

In this paper, we study a class of nonlocal boundary value problems for elliptic-parabolic equations subject
to integral-type conditions. Such problems naturally emerge in various physical and engineering contexts,
including diffusion processes in composite materials and systems with memory or nonlocal interactions.
The model considered involves a mixed-type equation in which the elliptic and parabolic components are
coupled through nonlocal boundary terms, while the boundary conditions incorporate integral constraints
that generalize the traditional Dirichlet and Neumann formulations. To investigate the solvability of this
problem, we employ analytical methods based on the theory of parabolic and elliptic operators in weighted
Holder spaces, which are particularly suitable for handling boundary singularities and ensuring regularity
of solutions. We establish the existence, uniqueness, and continuous dependence of solutions on the input
data, thereby proving the well-posedness of the problem. Furthermore, we derive coercivity inequalities for
solutions of the associated mixed nonlocal boundary problems, which guarantee their stability and provide
essential tools for studying related inverse and control problems. The findings extend several classical
results and offer a unified approach to the analysis of nonlocal elliptic-parabolic models.

Keywords: elliptic-parabolic equation, nonlocal boundary value problem, integral condition, Hélder spaces,
well-posedness, coercivity inequalities, stability, mixed-type differential equations.

2020 Mathematics Subject Classification: 35M12, 39K40.

Introduction

Elliptic partial differential equations play a fundamental role across nearly all branches of mathe-
matics — from harmonic analysis and geometry to Lie theory — and have a wide range of applications
in physics and engineering. The well-posedness of local boundary value problems for elliptic equations,
along with their various applications, has been extensively studied by numerous researchers [1-3].

Equations of mixed-composite type form an important class of partial differential equations (PDEs)
that combine features of different types of equations — typically elliptic, parabolic, and sometimes
hyperbolic — within a single formulation [4-6]. These equations often arise in mathematical models
describing processes where the nature of the physical phenomenon changes across a domain or depends
on certain parameters.

In general, an equation is called mixed type when its classification (elliptic, parabolic, or hyperbolic)
varies in different regions of the domain. A mixed-composite type equation extends this idea by coupling
different equations or operators — such as elliptic and parabolic ones — through boundary, interface,
or integral-type conditions [7].

In mathematical modeling, elliptic equations are paired with local boundary conditions that dictate
the solution at the domain’s edge. However, traditional boundary conditions may be insufficient for
accurately modeling certain processes or phenomena. As a result, nonlocal boundary conditions are
often employed in mathematical models of physical, chemical, biological, or environmental processes.
These conditions, known as nonlocal boundary conditions, arise when data at the domain’s edge cannot
be directly observed or when boundary data are dependent on internal data within the domain [8-10].
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Various nonlocal boundary value problems with Samarskii—Ionkin condition for partial differential
equations have been investigated by many researchers [11,12].

Moreover, the identification of partial differential equations (PDEs) arises in numerous applied
problems and has been the subject of extensive research [13-15].

The significance of well-posedness (WP) in the analysis of boundary value problems (BVPs) for
(PDEs) is widely recognized [16-18].

Considerable attention has been devoted to the study of coercivity inequalities (CIs) arising in
nonlocal BVPs for elliptic and parabolic PDEs [19-21].

In this paper, we study the WP of a nonlocal BVP of the form

{ _utt(t) —{-AZ/{(t) = g(t), te O’d]v (1)
U(t) — AU(t) = [f(t), t € [-d,0)

0
with an integral condition U(d) = / w(s)U(s)ds + & in a Hilbert space X with a self-adjoint positive

d
definite operator (SAPDO) A. Here, £ € D(A), while g(¢) and f(t) are prescribed smooth functions.
The principal result demonstrates the WP of problem (1) in weighted Hélder spaces. New Cls for
the solutions of elliptic-parabolic nonlocal BVPs are derived.

1 The main theorem on the WP of (1)

Throughout this work, N is a Hilbert space and A is assumed to be a SAPDO satisfying A > §1
for & > &y > 0, where I is the identity operator. We also set V = A!/2.

First, we present several results that will be needed in the sequel.

Lemma 1. The following estimates hold [22]:

|| 4s exp(_tv)||N—>N < (%)ﬂt_ﬂ’ le (07 OO), JIRS [07 6],
H Ak eXp(_tA)HN%N < (%)Ht*#) te (07 00)7 e [076]7 (2)
1 (I = exp(=2dV)) ™" |eosn< M(9)

for some M (6) > 0.
Lemma 2. Operator

0
(I—=V)e 2V L T4+ V -2~ /u(s)eswds
~d

has an inverse

O _1
N=[T-V)e2 +14+V - 2e_dv/u(s)esv2ds
d
and the following estimates are fulfilled
[N flxon< M(5), || VN [lnosn< M(0). (3)

The Proof for Lemma 2 relies on the spectral representations of unit SAPDO A [22].

Function U(t) is said to be a solution of problem (1) it the following conditions are met:

1. U(t) is twice continuously differentiable on (0, d] and continuously differentiable on [—d, d]; the
derivatives at the endpoints are understood in the sense of one-sided limits;

2. U(t) € D(A) for all t € [—d,d], and the mapping t — AU(t) is continuous on [—d, dJ;

3. U(t) satisfies the system and the nonlocal boundary condition in (1).
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The function U(t) fulfilling the above requirements will be referred to as a solution of problem (1) in
the space C(X) = C_44(R), consisting of all continuous functions ¢ (y) defined on [—d, d] with values in
N, with the norm

1¥lle_y a0 = dax 19 () |-
To derive the formula for solution of problem (1), we will consider the following auxiliary problems

{ " (t) + AU (t) =g (t) , t€(0,d), (4)
U(0) =Uy, U(d) = U,

{ U t)y—AU ()= f(t), te(—d0), (5)
U (0) = Uy,

It is well established (cf. [22]) that, for sufficiently smooth data, problems (4) and (5) admit a unique
solution. Moreover, the following relations are valid:

i) - (I B 6—2‘1‘/)71 [ (e‘tv B 6—(2d—t)V) Uy + (6—(d—t)V _ 6—(t+d)V) U, (6)
_ (e—(d—t)V _ e tr)V 1/d e~ (d=0)V —(9+d)V) g(g)d9]
0

d
+(2v) ™! / (70 = =0V g(0)dp, ¢ € [0,d],
0

t
Ut =t + [ I f)dy, b (-0l 7)
0
0
Using formula (6), conditions U(d) = [ p(0)U(0)dO + &, and U'(0+) = U'(0—), we can write
~d
0 0 0
U(d) = / w(0)e?Adouy + / (0 / e~ O=A £ () dydd + ¢, (8)
—d — 0

— V(I 4 e YUy + 2Ve VU,

d d
7 [ (O @) g0y ap| + [ V(o) . (9)
0 O

Using formulas (8) and (9), we obtain that

-1
AU (0) = (I - e—QdV) V(I + e 2V Yy,
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has an inverse

N = ((I —V)e MV L 14V — 274
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<
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|

we derive that

0
Uy =N [2e= (0 /e_(g Y Af )dydf + & (10)
0

a—c

d
dV/ o (d-0V _ (d+9)v) 4(0)d0
0

d
+ (I *W V- 1/e d0—( —e*ZdV) V=L£(0)
0

Hence, the solution of nonlocal BVP (1) is represented by formulas (7), (10), and (9). Now, let us
denote by C* d. 4R, € (0,1), the Banach space obtained by completing the space of smooth R-valued
function ¢ (y) on [—d, d] in the norm

I llee, o= I1¥lle_, .00 + sup [ (y + Ay) — b (y)lIn(AyH (—y)*
’ —d<y<y+Ay<0

+  sup  [[P(y + Ay) = E()lIx(Ay)TH(d — y)H (y + Ay)*,
O<y<y+Ay<d

and denote by Bgd(N), u € (0,1), the Banach space obtained by completing the space of smooth
N-valued function ¥ (y) on [0,d] in the norm

I llge o= 1¥llgy .00+ sup [lo(y + Ay) — o (y)In(Ay) ™ (d — y)*(y + Ay)*,
’ O<y<y+Ay<d

finally denote by C* 20(X), g € (0,1), the Banach space obtained by completion of the set of all smooth
N-valued functions 1 (y) on [—d, O] in the norm

I llee, jo0=1¥lle_uoo + sup Iy + Ay) — d(y)lln(Ay) " (—y)".
—d<y<y+Ay<0
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Here, C,p(R) is defined as the Banach space of all continuous functions 1 (y) defined on [p,q] with
values in X, endowed with the norm

= Inax .
¥, . v ax 14 ()l

Problem (1) is considered well-posed in C(R) if, for every g(t) € Coa(R), f(t) € C_go(R), and
¢ € D(A), it has a unique solution U(t) € C(R) satisfying the CI

141 sy + 1oy + 14Uy < M (e, sy + 110 + 14€1),

where M represents a positive constant whose value does not depend on g(t), f(t), and &.

The given problem (1) is not well-posed in C(R) [23]. The WP of BVP (1) can be established by
formulating the problem in appropriate function spaces F(R) consisting of smooth R-valued functions
defined on [—d, d].

A function U(t) is said to be a solution of problem (1) in F(R) if it satisfies the problem in C(R)
and, moreover, the functions U”(t) (t € [0,d]), U'(t) (t € [—d,d]) and AU(t) (t € [—d,d]) are elements
of F(N).

Similarly to the space C(X), problem (1) is considered well-posed in F(R) if the subsequent CI holds:

16"y a0 + W a0 + 14U Ly < M (gl ) + 15 o0 + 14T ).

where M > 0 denotes a constant that does not depend on g(t), f(¢), and &.
Setting F(N) = Cﬁd(N) = Bgyd([—d, d],R) for p € (0,1), we can formulate our main theorem as
follows.
Theorem 1. Suppose £ € D (A). Then BVP (1) is well-posed in a Hoélder space Bg,d(m and the
following CI holds:
o]

C8 (%) + Hul‘ G 4 oY) + HAUHE(‘)LJ(N) (11)

< M) [0 =) [l oo+ allee o]+ 1480

where M () is a constant that is independent of g(t), f(¢), and &.
Proof. The CI (11) is derived from the estimate

Hu/HUid,O(N) + AUl , oy < M@)p (1= ) 1 Fllge, oy + M | Alko (12)

< M@ (1= )7 1 e o0 + M 1| ALl

for the solution of problem (5) and the estimate
60" 0+ 14Ul 00 < M@0~ ) gl (13)

+M () [[Alholly + AU ]

associated with the solution of BVP (4) and the estimates

AUl < M) 571 = )7 (1 o, oo + gl g | + 14€IK)- (14)

lAUalle < M) 71 = )7 I lge, oy + ol | + A€ D] (15)
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for the solution of BVP (1). Estimates (12) and (13) were obtained in [24]. Applying formula (10), we
get

0 0
AUy = N [2V2e WV (/ 11(0) / e O=0A 1) dydo + A€
d 0
d

B V2e—dv/ <e—(d—0)V B e—(d+0)v> 9(9)d9]
0

d

YNV (I - e_zdv) / e g(0)df — (1 - e_QdV) £(0)
0
Therefore, the proof of estimate (14) is based on the triangle inequality and estimates (2), (3). Applying

formula (8), we get

0
AlU(d) = / 1(0)ePAdh Audy + Ag
—d

0 0 0
+ { u(6) / Ae"ODA(f(y) — 1(6)) dydt + /d u(0) (1— ) F(0)as.

Therefore, the estimate (15) is proved based on the triangle inequality together with (2) and (3), which
completes the proof of Theorem 1.

2 Illustrative examples

We now illustrate several applications of Theorem 1.
Firstly, the nonlocal BVP for an elliptic-parabolic equation

Uy — (a(z)Uy), + U = g(t, z), t €0,d], z € [0,b]

U + (a(2)Uy), — U = f(t,z), t € [—d,0], z € [0,b], (16)
U0+, z) =U0—, 2), U(0+,2) =U:(0—, 2), z € [0,D],

U(t,0) =U(t,b), Us(t,0) =U,(L,b), t € [—d,d]

0
with the integral condition U(d, z) = [ u(At)U(r, z)dT + &(2), z € [0,b] is considered. Problem (16)
—d

admits a unique smooth solution U(t, z) for smooth functions a(z), with a(z) = a(0) and a(z) > a >0
for z € (0,b), and for g(t,z) (t € [0,d], z € [0,b]) and f(t,2) (t € [-d,0], € [0,b]), where § > 0.

We define the space Ls[0, b] of all square integrable functions £(z) defined on [0, b] and the spaces
W1[0,b] and W20, b] with the norms

1/2

b
Ielhwon = €0 + | [ 167a2)
0

1/2

<

W3[0,b]

b
— €l 0 + / €2 dz
0

This reduces mixed problem (16) to the nonlocal BVP (1) in a Hilbert space X = L3[0,b] with a
SAPDO A given by (16).
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Theorem 2. The solution of nonlocal BVP (16) satisfies the CI

| Une HE“ (La(0p)) T I U ||E“dO (La(op)) T 1 U ”C“ W2(0,))

< M) [ 0= 07 19l gatomn + 1 F lon, ceatosn ]+uf||w22(0,b>

Here, the constant M (J) is independent of the functions g(¢, z), f(¢, z), and £(2).

Proof of Theorem 2 builds upon the theoretical framework developed in Theorem 1, utilizing the
symmetry properties of the operator associated with problem (16).

Secondly, let 2 denote the open unit cube in the n-dimensional FEuclidean space R, defined by
2, € (0,1) for k = 1,n with S, so that Q = QU S. Within the domain [—d,d] x 2, we formulate the
BVP for a multi-dimensional mixed problem as follows:

Uy — > (ar(2)Us,)z, = g(t,2), t €10,d], z € Q,
7“:1

U + Z(ar( JUz)z = (L, 2), L€ [=d,0], z €9, (17)

Z/I(O+ z) UO0—, 2), U(0+,2) =U(0—,2), z € Q,
U(t,z) =0, z€ S, [—d,d]

0 —
with the integral condition U(d, z) f w(HU(T, 2)dr + £(2), z € Q. Here, a.(z) (z € Q), g(t,2)

(t € (0,d), z € Q), and f(t,2) (t € (—d, O), z € Q) are given smooth functions, with a,.(z) > a > 0.
We introduce the Hilbert space La(2) consisting of all square-integrable functions £(z) defined on

Q, endowed with the norm
€l / / 1€(2)|2dz - - - dz

z€Q

and the Hilbert spaces W3 (2), W2(£2) defined on €, endowed with the norms

€z =€ Neay +,| [ [ S e P

zeq =1

and

h h
= *dz ~dzp,
I L R VA D >SS
2cQ "
Problem (17) admits a unique smooth solution w(¢,x) for smooth functions a,(x), g(t,z), and
f(t,z). Using this approach, the mixed problem (17) can be reduced to the nonlocal BVP (1) in the

Hilbert space H = Lo(Q) with a SAPDO A presented as in (17).
Theorem 3. The solution of nonlocal BVP (17) satisfies the CI

elley: ra0) + Wl (o) + WUl , vz

< M(0) |p (1 =)t lglles oy + Hchgd’O(LQ(ﬁ))] + ||£||W22(Q)]'

The proof of Theorem 3 relies on the result given in Theorem 1, together with the symmetry
properties of the operator associated with problem (17), and the CI for solutions of elliptic differential
problems in Lo(12) as established in [24].
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Conclusion

In the present paper, a nonlocal boundary value problem for an elliptic-parabolic equation subject
to an integral condition is investigated. The well-posedness of the problem in weighted Holder spaces
is established. As an application, we derive coercivity inequalities for the solutions of mixed nonlo-
cal boundary value problems associated with elliptic-parabolic equations. By applying the methods
developed in this paper and in [25], we can establish the boundedness of solutions to a semilinear
elliptic-parabolic equation.
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Application of isotropic geometry to the solution of the
Monge—Ampere equation
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This paper explores the Monge-Ampere equation in the context of isotropic geometry. The study begins
with an overview of the fundamental properties of isotropic space, including its scalar product, distance
formula, and the nature of surfaces and curvatures within this geometric framework. A special focus is
placed on dual transformations with respect to the isotropic sphere, and the self-inverse property of the
dual surface is established. The article formulates the Monge-Ampere equation for isotropic space and
studies its invariant solutions under isotropic motions. Several lemmas are proved to demonstrate how so-
lutions transform under linear modifications and isotropic motions. A specific class of Monge—Ampere-type
nonlinear partial differential equations is solved analytically using dual transformations and separation of
variables. Additionally, translation surfaces and their curvature properties are studied in detail, particu-
larly through the lens of dual curvature. The results demonstrate the deep relationship between curvature
invariants and Monge-Ampere-type equations and show how duality simplifies the solution of nonlinear
PDEs. These methods can be used for surface reconstruction and modeling in isotropic spaces.

Keywords: isotropic geometry, Monge—Ampere equation, linear transformation, dual transformation, dual
surface, curvature invariants, surface reconstruction, Dirichlet problem, PDE.

2020 Mathematics Subject Classification: 35J96, 53A35, 53C42.

Introduction

The Monge-Ampere equation occupies a prominent position in the theory of nonlinear partial
differential equations due to its rich mathematical structure and wide applicability in geometric analy-
sis, optimization, and mathematical physics. In classical differential geometry, this equation naturally
arises in the context of surface theory, particularly in problems involving the reconstruction of a surface
from curvature invariants [1|. A key feature of the Monge-Ampere equation is its close relationship
with convex geometry and curvature prescriptions, as first systematically studied by I.Ya. Bakelman
in the framework of the generalized Dirichlet problem for convex surfaces [2].

While significant progress has been achieved in Euclidean settings, the exploration of Monge—
Ampere-type equations in non-Euclidean geometries, such as isotropic or semi-Riemannian spaces, is
relatively recent. Isotropic geometry, which is a limiting case of semi-Euclidean geometry, provides a
degenerate metric structure where distances are defined in a directionally dependent manner. This de-
generate nature introduces novel phenomena not present in Riemannian or pseudo-Riemannian frame-
works, thereby making isotropic geometry a fertile ground for discovering new geometric properties
and solving PDEs under non-standard metrics [3].

In his book [4], O’Neill introduced fundamental concepts of semi-Riemannian geometry, from which
the notion of isotropic and degenerate metric spaces naturally arises as a special geometric model.

The geometry of isotropic space R}, as introduced, is characterized by a scalar product that is
degenerate not along a single axis. The differential geometry of isotropic space was first studied by
K. Strubecker [5,6]. This leads to a unique classification of surfaces and transformations, including
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duality mappings with respect to the isotropic sphere. The theory of dual surfaces in isotropic space has
been actively developed in recent works, including the classification and reconstruction of surfaces via
dual curvature invariants [7]. The concept of dual transformation plays a central role in understanding
curvature-driven surface generation, a theme that appears throughout this study.

One of the central motivations for the present paper stems from the growing body of research
demonstrating that dual transformations in isotropic spaces offer elegant and computationally tractable
methods for solving highly nonlinear equations such as the Monge-Ampere equation. Generalizing
Lonen’s works [8], Artykbaev, Sultanov, and Ismoilov have shown in several studies [9] that the total
and mean curvatures of a surface and its dual are closely related, and that this relationship can be
used to construct surfaces with prescribed curvature characteristics. The present study builds upon
these foundational results and extends them in several directions. In the work by A. Polyanin [10],
certain solutions of the Monge—Ampere equation are presented without derivation. In contrast, in this
paper, we also explore a method for finding a different type of solution.

Firstly, we investigate the invariant form of the Monge—-Ampere equation under isotropic motions
and provide a detailed analysis of its solutions under linear perturbations. The result that any solution
of the Monge-Ampere equation remains invariant under the addition of linear functions is well-known
in classical settings, but here it is adapted and rigorously proven for isotropic geometry, leading to new
insights into the geometry of the solution space.

Secondly, we focus on a special class of Monge-Ampere-type equations that arise in the context
of translation surfaces in isotropic space. Using the techniques of separation of variables and dual
transformation, we derive exact analytical solutions for these equations. In particular, we solve the

equation
z \* _ 9% 0% F(x)y?
0xdy 0x2  Oy? '

by assuming a quadratic ansatz and reducing the resulting PDE to a system of ODEs. The general
solution is expressed in terms of integrals of nonlinear functions and demonstrates the applicability of
this approach to constructing explicit surfaces with curvature-driven features.

Thirdly, we introduce and analyze translation surfaces whose total curvature of the dual surface
is separable in the form K*(z,y) = ¢(x)¥(y). Using the inverse problem framework, we demonstrate
that such dual curvature data uniquely determines the original surface up to an isotropic motion. This
result contributes to the general problem of surface reconstruction from curvature invariants and finds
relevance in applications such as surface design in computer graphics and shape optimization.

The geometric significance of these results lies in the structure of the isotropic space itself. Unlike
Euclidean geometry, where the normal to a surface is uniquely defined by the metric, in isotropic
geometry the notion of normality is more subtle. Here, we distinguish between the special normal
vector 7i,, and the standard unit normal 77, and we show that the second fundamental form and the
total curvature remain invariant under this choice. This confirms earlier findings in [11] and supports
the use of duality-based methods for analyzing surface properties.

Furthermore, in the final section of the paper, we consider an application of the Monge—-Ampere
equation arising in the theory of plasticity and elasticity. A particular nonlinear equation governing
large deformations of elastic plates is shown to be a higher-order Monge-Ampere-type equation. We
demonstrate how this complex nonlinear equation can be transformed into a linear PDE with constant
coefficients by applying dual transformations, and we solve it using separation of variables. The
solution process also illustrates how dual mappings can be used not only in geometric but also in
physical models.

It is worth noting that similar approaches have been explored by researchers studying special sur-
faces in isotropic spaces, such as ruled, helicoidal, and Weingarten-type surfaces [12-15|. However, the
novelty of the present work lies in the formulation and solution of Monge-Ampere equations speci-
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fically in terms of dual curvature data, and the construction of explicit surface representations using
integrable systems techniques. The article [16] investigates the parametric and algebraic representa-
tions of minimal surfaces in four-dimensional Euclidean space. It presents a generalized form of the
Weierstrass—Enneper formula and analyzes the differential-geometric properties, projections, and
modeling significance of such surfaces. This approach is closely related to the methods applied in
solving the Monge—Ampere equation within isotropic geometry and provides an effective geometric
framework for studying related problems

1 Geometry of isotropic space

Let Ox; (i = 1...n 4+ 1) be a coordinate system in affine space A, 1. The scalar product of vectors

(1,22, ..., Tnt1) and 7(y1, Y2y -, Ynt1) is defined by the following formula:

n n
Yoxyi,  if > wiy #0,

(X,Y)=8 = “n (1)
Tpni1Ynt1, of D wy; = 0.
i=1

Definition 1. An affine space A,y1, in which the scalar product of vectors is calculated using
formula (1), is called an isotropic space R

The scalar product (1) is called a degenerate scalar product.

Minkowski space is a pseudo-Euclidean space with index 1. It serves as a geometric framework for
the theory of relativity. This space also includes isotropic space as a special case. This can be seen in
the following lemma.

Lemma 1. The isotropic space Ry, is a subspace of the (n 4 2)-dimensional Minkowski space
'R0 [11]
n—+2 .

We define the norm of a vector in isotropic space R}, | as the root of the scalar product of a vector

— - =
|1 X | =V (X,X), and the distances between points are defined as the norm of the vector connecting
these points.

H
If )_)( — }_f) = AB, then the distance between points A and B is calculated using the following

formula:
w 2
1/;:1(%—361') ; 1/ i —x)? #0, @)

‘yn+1_xn+1|v if  xp =y Z—ln

n—1

The hyperplanes in R} +1(z = 1l..n — 2) can be of two types — isotropic RZ:[ or Euclidean R,,.
Hyperplanes z,11 = constant are Euclidean spaces. If a two-dimensional plane is considered and it is
parallel to the Ox,11 axis, then the intrinsic geometry of this plane becomes Galilean. The intrinsic
geometry of the Galilean plane is presented in [17].

Since the isotropic space Ry, is an affine space, there is an affine coordinate transformation that
maintains the distance defined by formula (2). This transformation is called the motion of isotropic
space R | and is given by the following formula [3]:
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where Ap = (aij) is the motion matrix in the Euclidean space R,,, BT = (b1, ba, ...,bn11) is

,j=1.n
the parallel translation vector, and (hq, hg, ..., hn, 1) is the vector with sliding coordinate components.

If we define a sphere in isotropic space as a set of geometric points equidistant from a given point

(29,29, ..., 2%, 2,11), then its equation has the following form:

We will call this sphere a metric sphere.
Let us consider in the R}, | a surface defined by the following vector equation [1]:

r(Ul, Ugy ey Up) = (l’i(Ul,U/Q, s )| (U1, ug, ooy uy) € D C Ry, = 1..(n+ 1)) . (4)
The first quadratic form of (4) a surface is defined by analogy with Euclidean space
n n
I = d$2 = Z Zgzj duiduj,
i=1 j=1
where g;; are the coefficients of the first quadratic form of the surface and

Ty 5 (O O
gl]_<rui7ruj')_z<aui7auj .

k=1

In the case where ds? = 0, an additional first quadratic form ds? = dx,; is considered.

Since we mainly consider surfaces with a single-valued projection onto the plane z,,1 = 0, ds? # 0
for all points of the surface. Therefore, an additional first quadratic form of the surface is not considered.

The normal to the surface is taken to be the only orthogonal vector to all tangent vectors of the
surface 72,,(0,0, ...,0,1) [9].

By analogy with the Euclidean space, the second quadratic form of the surface is defined as the
scalar product of the vector of the second-order differential 27 by the surface normal.

The surface normal needs a clear definition in order to handle the issues in question. To this end,
the following formula can be offered:

The standard, and orthogonal, form of the normals is given by

o _ [rap ]
— ﬁ
[ruts s Tun]|

in which [Fy!, ..., 7] signifies the vector product.
Since we consider two surface normals (the special normal 7 and the normal ﬁ), the formula for
the second quadratic form will be as follows:

II = (d27“, ﬁ) = Z Dijduiduj.
1,7=1

Here, D;; is the coefficient of the second quadratic form, calculated as:

. a2mn+l 3 _ =
1) Dij = Du0u; if ﬁ = Nm,

2) Dyj = (Pupu,, 1), if N = 7.
In particular, if the surface is defined by the following equation

Tpt+l = f(xlax% (X3} J}n), (5)
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where (z1, 9, ..., x,) € D C Ry, then

Hyperplanes parallel to the normal vector are isotropic hyperplanes of the corresponding dimension.
In particular, a two-dimensional plane parallel to the normal vector is a two-dimensional isotropic plane,
called the Galilean plane [7]. Therefore, the geometry is Galilean in a two-dimensional normal section
of the surface. A two-dimensional normal section of the surface is a curve on the Galilean plane.

The curvature of the curve of the normal section is called the normal curvature of the curve on the
surface. The normal curvature of the curve on the surface is calculated by the following formula:

T

kn
I

In isotropic space R, ;, the second sphere is a surface with constant normal curvature in all
directions, given by the following equation:

n
21 = @i (6)
=1

Definition 2. The surface defined by equation (6) is called an isotropic sphere in R, ;.

The mean and total curvatures are the main geometric characteristics of a surface. The total
curvature of the surface (4) is calculated as:

det ‘ (Dyj)

i,j=1.n

K=

det ‘(gij)z’,j:ﬁ‘

Lemma 2. The total curvatures of the surface (5), determined by the normal and the special normal,
are mutually equal K = K,,, [11].

2 Dual transformation with respect to the isotropic sphere

Let the surface F' be given by the equation (5) and suppose it lies within the isotropic sphere of
the space R, ;. Consider the set of points obtained via dual mapping of the tangent hyperplanes to
the surface I’ at each of its points, with respect to the isotropic sphere. This set forms a new surface
defined as follows.

Definition 3. The surface F'* is called the dual surface to the surface F' with respect to the isotropic
sphere.

If the surface F' is regular, then the dual surface F™* is also a surface and is given by the system:

i = of i1=1, ...,n
7 8[61" I I bl
R - of
Tn+1 :in'%—f‘
i=1 v

Theorem 1. The dual image of the surface F™* coincides with the surface F'; that is,

F*™ =F.
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The total curvature of the surface (5) has the form:

fxlml fxlmz T fxlxn

B f:cle fxgxg T fxgxn

K
fxnxl fxnxg fxnxn

The right-hand side is the Monge—-Ampere operator. In isotropic space, the problem of recovering
a surface from its total curvature is equivalent to solving the Monge-Ampere equation.

8  Monge—Ampere equation

I.Ya. Bakelman studied the connection between the extrinsic curvature of convex surfaces and the
second-order nonlinear Monge—-Ampere equation [2|. In this case, I.Ya. Bakelman showed that the
solution of the generalized Dirichlet problem for the Monge-Ampere equation exists and is unique by
estimating the area of the normal image of the surface. The listed problems were solved only if the
domain D C Ry is convex where the function is defined. By applying the geometry of the Galilean
space, A. Artykbaev solved the problem for the existence and uniqueness of the convex surface for
the given extrinsic curvature if the domain D C Ry is non-convex [18|. Also, in the article |7], the
concept of generalized extrinsic curvature is given, and the existence and uniqueness of the solution to
the Monge-Ampere equation in the multi-connected domain is proved. The Monge-Ampere equation
in a discrete setting with a special invariant can be observed in the Sharipov’s works [19]. In [20,21],
Lions and Urbas established the existence and regularity results for a wide class of fully nonlinear
elliptic PDEs. The paper [22], provides a clear and accessible overview of the modern theory of the
Monge—Ampere equation. It discusses the notion of Alexandrov (weak) solutions, interior and boundary
regularity results, and classical methods developed by Calabi, Cheng—Yau, and Lions. The article also
emphasizes the analytical and geometric aspects of the equation, offering valuable insights into the
existence and smoothness of convex solutions to Dirichlet-type problems. In this paper, we address the
problem of reconstructing a surface in three-dimensional isotropic space by solving the Monge—-Ampere
equation, using the relationship between the surface equation and the Monge-Ampere equation in
isotropic space. To this end, we first introduce the Monge-Ampere equation in three-dimensional
space.

It is known that the Monge—-Ampere equation is generally as follows:

2
Rralyy — Foy = ¢ (v,y, 2, 2, Zy) .

In this case, if ¢ (x,v, 2, 22, 2y) > 0, the equation is elliptic and its solution is a convex surface
equation. Now, if we consider this equation in the semi-Euclidean space, that is, in the isotropic space,
it will be as follows:

K (2,y) = 2p02yy — zgy.

3.1  General invariant solution

We present some statements related to the solution of the Monge-Ampere equation and motions
in isotropic space.

Lemma 3. If the function z = f(x,y) is a solution of the Monge-Ampere equation

detDQf = faafyy — (fzy)2 = F(z,y),
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then the function
z=f(z,y) + Crz+ Coy + C
is also a solution of the same equation.

Proof. This follows from the fact that the Monge—Ampere operator involves only second-order
partial derivatives. Since the linear part Cix 4+ Caoy 4+ C' vanishes under second-order differentiation of
second order, it does not affect the operator:

0* 9?

@(f""clx—i‘céy""c):fmmy aiyg(f‘f’clm"‘CZy"i‘C):fyya

82
0xdy

Therefore, the Monge—Ampere determinant remains unchanged. O

(f + Clx + ng + C) = fa:y-

Lemma 4. The surface defined by the function
z=f(z,y) + Crz + Coy + C

can be obtained from the surface z = f(x,y) by an isotropic motion.

Proof. Consider applying (3) an isotropic motion to the surface, specifically an isotropic shear
transformation (translation along the z-axis depending linearly on = and y). This motion is given by:

=z,
y =y, (7)
2= Ax+ By + 2+ C,

where A, B,C € R are constants.
Applying this transformation to the surface z = f(z,y), we obtain:

7' = f(z,y) + Az + By + C,

which coincides with the general form f(z,y)+ Ci1x+ Caoy+ C. Hence, the transformation corresponds
to (7) a motion in isotropic space. O

Taking Lemmas 3 and 4 into account, we will not consider the linear case in the subsequent
solutions. The reason is that, in isotropic space, adding a linear term results in two different solutions
representing the same surface, differing only by their position.

4 Analytical solution of a Monge—Ampere-type equation

We study a nonlinear Monge—Ampere-type partial differential equation of the form:

2z \> 92z 0% 9
(83&83/) —@-@:f(x)y. (8)

Our aim is to construct general and particular solutions, including transformation invariance and
exact construction for a specific case.
We consider a quadratic ansatz in y:

2(x,y) = p(x)y® + U(z)y + V(z)

140 Bulletin of the Karaganda University



Application of isotropic geometry ...

and compute the necessary derivatives:

0%z

S =20 (@hy+ U' (o)
9%z " 2 " "
a2 = ¢ @y + U @)y +V(2),
0%z

Substituting into equation (8), we obtain a polynomial in y. Matching coefficients gives the following

system:

A(g')? = 209" = f(=),
40U — 20U" = 0,
(U')? = 2pV" = 0.

Solving this system, we obtain the general solution:

woy) = ¢l +Cry [ P@)do+ 362 [ -0 at

where ¢(z) satisfies the nonlinear ODE

og! = 2(¢/)? ~ L f ().

Particular case: f(x) = 0.
We assume p(z) = A/(x 4+ C) and verify that it satisfies:

e =2(¢)>

This leads to a family of solutions of the form:

A, A% C} [T A \?
wie,y) = T av m+0+2/a(x ixe) &

Particular case: f(x) = 2.

We seek p(x) = az™. The equation
a’n(n —

is satisfied when n = 2, yielding

1
a=+——.
2v/3
Hence,
(1) = —=2?
= —F=X .
4 2v/3

1 549 Cuy 5 C% v 6
w(x,y) = —=zy" + —=x x — t)t dt.
@) =37 + 50" 55 ). @Y

Mathematics Series. No.4(120)/2025 141



Sh.Sh. Ismoilov

5 Translation surface

When the surface is uniquely projected onto the Ozy plane in isotropic space, it is given by the
parametrization:

Play) =z 7 +y- 7+ (f@)+a) k. (9)

In this case, the coefficients of the first fundamental form are: £ =1, FF =0, G = 1, and the
coefficients of the second fundamental form are: L = f”(z), M =0, N = ¢"(y).
Taking this into account, the formula for the total curvature of the surface can be obtained as:

K = f"(z)-g"(y).
The total curvature of the dual surface is given by:

1

K= 5w o

Let
K*=o(x) ¢(y) #0

be a function defined on the domain D C R2, where ¢(x) and 9 (y) are continuous, non-vanishing
functions.

Lemma 5. If the total curvature of the dual surface is given by K* = ¢(x) - ¢(y), then there exists
a surface of the form

A@,y) =ai+y]+ (/ [/ Wl(x) dm} dx—l—/[ w?y)dy} dy) k, (10)

for which K* is the total curvature of its dual surface and (), %(y) € C?(D).

Proof. From the general formula (10) for the total curvature of a dual surface in a translation

surface, we have:
1
s = (@) - (y).
() - Gy, (Y)
Rewriting, we obtain:
1
This leads to the separation of variables as:

= Gy (v) - ¥(y).

@) o) A= gy (y) - Y(y), (11)

where A is a constant of separation.
Solving (11) these differential equations gives:

f,\(x)—/[/ )\(pl(x) dx—i—C’l] du + C1,

gx(y)Z/[/wE\y)dv+C’2] dy + Cb.

By substituting the functions f(x) and g(y) into the translation surface equation (9) and omitting
their linear parts, we obtain the formula presented in Lemma 5. O
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Theorem 2. (i) If the surface belongs to a translation surface and the total curvature of the dual
surface is K* = Cy = constant # 0, then the surface has the following equation: 7(x,y) = zi+ yf%—
(%xQ + ﬁyQ) k.

(ii) If the total curvature is given in the form K* = ¢(z) - ¥(y), then the surface is given by
formula (9).

(111) However, if the total curvature is a non-separable function, i.e. K* = K*(z,y) # ¢(x) - ¥(y),
then the problem has no solution in the class of translation surfaces.

Proof. Each case in the theorem is considered separately.

(i) When K* = Cjy = constant, the result is already established in [8].

(ii) When K* is separable as ¢(z) - 1(y), the theorem follows directly from Lemma 5.
(iii) Finally, when K* = K*(z,y) is non-separable, a surface of the form

Plu,v) =i +yj+ (fx) +g(y) k

has curvature
1 1

72(T) gy ()
which is necessarily separable in variables. This contradiction implies that no such transfer surface can
exist in the non-separable case. O

K*(J"’y) =

6 Applications of the Monge—Ampere equation

The Monge-Ampere equation has been widely applied across various scientific fields. Many well-
known equations include the Monge—Ampere equation as a structural component. Let us consider one
such equation. By doing so, we also address the applicability of the results obtained.

Consider the nonlinear partial differential equation

92z \> 0% 9% B 0%z
(8x8y) 9x2 0y | oy
This equation is relevant in two-dimensional plasticity theory, where z = f(z,y) acts as the gen-
erating function. This equation represents a particular case of the nonlinear elastic plate model,
describing the bending deformations of a thin elastic plate. It models the variation of elastic energy
based on the total curvature of the surface. Due to its nonlinear nature, the equation is suitable for
analyzing large deformations. In the absence of external forces, it describes situations where only
internal elastic forces are at play.

Let z = f(z,y) be a solution. Then, the following transformed functions also satisfy the same
equation:

o
Ox?

21 = £C2f(Crx + Cy, Cay + Cy),

where C1, ...,y are arbitrary constants.
Let us try to solve the equation. We now define a new function
0z
w(z,y) = —.
(@,9) = 5

We consider w(z,y) as a surface and move to the surface that is dual to w*(x,y) and use the following
3-dimensional dual transformation:

Py

Ow ow
o +y8—y — Ww.

[T
Il
8 o
<
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The goal is to convert the original nonlinear equation into a second-order linear PDE. After per-
forming the transformation, we obtain:
22 0% 0%z
+ 2x* * 1 + 3’)*2 + *2 $*2 1

(1+ 2*?)? =0. (12)
This is a hyperbolic partial differential equation. To further simplify it, we use the coordinate

transformation:
*
z

\/1—|—SC*2.

Under this change of variables, equation (12) is transformed into a linear PDE with constant
coefficients:

1
t = arctanx”™, §:§IH(1+33*2)—1H?J*7 W=

2 2
oFW oW
otz oe2

We now solve the PDE, using the method of separation of variables. Let

W(t,§) =T() - X(£)-

Substitute into the equation:

Divide both sides by T'(t) X (&):

™)  X"(E) ., _
Tty X
This implies:
™e o, X"E
T T X T

So we obtain two ODEs:

Tt + AN+ 1DT(t) =
X" +AX(¢) =

The general solutions are
T(t) = Crcos(VA+ 1t) + Cosin(vV A+ 1),
X(€) = Ay cos(VAE) 4 Agsin(VAE).
Therefore, the general solution to the PDE is

W(t, &) = [Al cos(\[\&) + Ao sin(\ﬁ)\@} . [Cl cos(VA+1t) + Cysin(vA+1 t)] .

We now reverse the transformation steps to reconstruct w(zx,y).
Recover Z(X,Y), recall that

Z*

V1+ a2
25 =W -1+ a*2

W =

From this it follows
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Using Theorem 1, which states that the dual transformation is self-inverse, we find w(x,y):
w(z,y) =z +yy* — 2" (2%, y").

0
Integrating w(z,y), we get z = f(x,y). Finally, since w = a—z
x

, we integrate:

lovy) = [wlay) o+ o)
where ¢(y) is an arbitrary function of y arising from the integration.

Conclusion

In this paper, we investigated the Monge-Ampere equation in three-dimensional isotropic space and
demonstrated its strong connection with the geometry of surfaces, dual transformations, and curvature
invariants. By leveraging the properties of isotropic geometry, particularly the degenerate metric and
dual mappings, we formulated and solved a class of nonlinear Monge-Ampere-type equations.

Using of dual transformation techniques, we linearized a complex nonlinear PDE, solved it ana-
lytically using separation of variables, and reconstructed the original surface using the inverse dual
transform. The method proved effective in simplifying the solution process and understanding the
geometric structure behind the equation.

We also studied translation surfaces and provided conditions under which such surfaces can be
constructed from given curvature functions. In particular, we showed that the total curvature of the
dual surface imposes strict conditions on the form of the original surface.

The results obtained in this work can serve as a foundation for further research in isotropic dif-
ferential geometry, geometric PDEs, and applications in computer graphics, elasticity, and geometric
modeling. The approach of using duality and curvature invariants offers a powerful framework for the
analysis and reconstruction of surfaces governed by Monge-Ampere-type equations.
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Rational analogues of Bernstein—Szabados operators on several
intervals
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Bernstein polynomials play a very important role in approximation theory, probability theory, computer
aided geometric design and many other areas. In 2017 J. Szabados constructed polynomial operators that
can be considered as the most natural generalization to several intervals of the classical Bernstein operators.
Their main advantages include fixed difference between degrees of the used polynomials and the number of
used nodes. Unfortunately, they exist only under strong restrictions on the geometry of intervals (intervals
have to form a polynomial inverse image of an interval). The main goal of the paper is to present a rational
operator that generalizes J. Szabados’ construction, and exists for an arbitrary system of several intervals.
Moreover, this construction (unlike J. Szabados’) is a linear positive operator. One of the main ingredients
in the construction is the fact (which was proved by M.G. Krein, B.Ya. Levin, and A.A. Nudel’'man) that
an arbitrary finite system of real intervals is the inverse image of an interval by a rational function with
precisely one pole at each gap. The approximation properties of such operators are studied as well. Further
possible generalizations (of V.S. Videnskii’s operators to one interval) are considered.

Keywords: Bernstein polynomials, rational operators, several intervals, inverse images, rate of approxima-
tion, linear positive operators, Videnskii rational functions, Ditzian—Totik modulus of continuity.

2020 Mathematics Subject Classification: 41A35, 41A20.

Introduction

Approximation theory and harmonic analysis on several intervals of the real line is an area that
attracts attention of many researchers. For example, the asymptotics of Chebyshev polynomials and
their norms were studied in papers [1-3|; several related aspects of the theory of orthogonal polynomials
can be found in [4-6]; the capacity of several intervals was considered in [7,8]|; different approximation
problems on several segments were solved in [9-11], among many others.

The polynomial inverse image method plays an important role in solving a number of problems in
this field (see, for example, the survey [12], as well as later works with references to it). The method
consists of several steps. Firstly it is necessary to prove the result for a system of intervals, that is a
preimage of an interval under polynomial mapping (inverse image of an interval). The next step is to
prove the result for arbitrary polynomials on an inverse image of an interval. Finally it is necessary to
approximate an arbitrary system of intervals by inverse images, varying some endpoints of the intervals.

Sometimes, for example in polynomial interpolation, slight change of the system of intervals gives
dramatically worse the asymptotic behaviour of the Lebesgue constants (see, for example, [13]). In
[14] it was proved that even in the case of interpolation by polynomials on several intervals, it is useful
to replace the preimage of an interval under polynomial mappings with the preimage of an interval
under rational functions with fixed denominator. Then instead of varying the systems of intervals it is
possible to vary the poles.

J. Szabados in [15] constructed analogues of Bernstein polynomials on several intervals with similar
reproducing and interpolation properties only for the case of polynomial preimages of an interval. More
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precisely, they preserve polynomials up to a fixed degree (like classical Bernstein polynomials preserve
polynomials up to degree one) and interpolate at the endpoints of the intervals (like classical Bernstein
polynomials interpolate at +1.) We refer to [16-18] for the theory of classical Bernstein polynomials.
However, Szabados’ operators are not positive, unlike the classical Bernstein polynomials, and
polynomial preimages correspond to very special systems of intervals.
The main goal of the paper is to show that the use of rational functions makes it possible to
overcome these disadvantages of BS.

Main results

Let J, = Uj_11;, I; = [aj,bj], s > 1, be a system of real intervals. More precisely, 0 = a1 < by <
... < as < bs =1, and let II,, be the set of polynomials of degree at most n. Let C(Js) be the space
of continuous functions on Jg with the sup-norm.

J. Szabados’ construction works for the case where J; = p~1([0,1]), where p € II,,, m > s. For

n €N, let 211 < ... < Ty, be defined by

k
pleg)=—, i=1,...,mk, k=0,...,n,
n

where my, are given explicitly (in most cases they are equal to m, with normalization p(0) = 0).
For an arbitrary f(z) € C(Js), let

my,
Lk(ful‘) :Zf(xkl)gkl(x) EHmk—la kzOu"'v”)
=1

be the Lagrange interpolation polynomial with respect to the nodes zy;. J. Szabados’ operator is given
by

BSu(f,2) =Y Le(f,2)bu(p(x)), =z € J,,
k=0

where

b () = < Z >£L'k(1 —z)" % k=0,...,n,

are the fundamental functions of the Bernstein polynomials.

The main advantage of the operators BS compared to ordinary Bernstein polynomials of an ex-
tended function onto [0, 1] is that the difference between the number of function values and the degree
of the operator is m — s — 1, i.e., independent of n, just as in the case of the classic Bernstein polyno-
mials. But BS are not positive operators and the assumption Js = p~1([0,1]) with s > 1 is valid for
very special systems of intervals only (for Js in general position it is not satisfied for any m > s).

Now we will give the construction of rational analogues of operators B.S that preserve their main
advantages, exist for all J,; and n, and are positive.

From [19] it follows that for any system Js there exists a polynomial S € II;_; with exactly one
zero at each gap (b;, aj11), i =1,...,1 — 1 such that J, = R71([0,1]), where

Hf:1($ - ai).

B ="

Now for n € N let x31 < ... < x5 be such that

k
R(l’ki)zﬁj i=1,...,8, k=0,...,n.
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Then for an arbitrary f(x) € C(Js), let

s

Lk(fvx):<2f(xkz Ekz ) ZK , k=0,...,n,

=1
where
S(zk;) ok T — Ty
O = _—
j=1
J#

are the fundamental Lagrange rational functions with the denominator S(x). Rational analogues of
Bernstein—Szabados operators are then defined by the formula

Bu(f,2) =Y Li(f,2)bui(R(x)), € Js. (1)
k=0

Those operators are linear and positive, each term in (1) is a rational function of degree sn + s — 1,
they preserve constants and interpolate f at the endpoints of Js.
Now we state an analogue of J. Szabados’ convergence estimate for (1). Let

o(x) = \/(:U—aj)(bj—x) if zelj, j=1,...,s,
and define the Ditzian—Totik modulus of continuity as

we(f,t) = Sup [ Anp@) f ()],

where the difference is meant to be zero if any of the arguments is outside Js, and we assume that ¢ is
so small that both x + ¢(z) fall into the same interval I;. Further let

V(f)= sup |[f(x)— f(y)l

z,yeJs
Theorem 1. For an arbitrary f € C(J;) we have

1£(2) = Bulf, )]s, < cwy (f, ;ﬁ) + V}?

(Here and in what follows, ¢ always denotes a positive constant depending on Js, but independent
of n, not necessarily the same at each occurrence.)

Proof. The proof goes essentially the same way as in [15, Proof of Theorem 1|. Let z € I;. Since
both operators L and the classic Bernstein polynomials reproduce constants, we get

|f(z) — Bu(f, )] <cZZ|f F(@rilGy(2)bpi (R())

k=0 i=1

<y oo (72 ) | o= o) +1| ) 4 V) it b))

7]
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We estimate the right-hand side sum for 0 < k < n/2; the other part can be handled similarly.
Then it is sufficient to consider the case 0 < R(z) < 4/5, since for 4/5 <y < 1 the estimate

é( ) ) <n(4/5)"2, a>0,

was proved in [15].
Let first K = 0. Then we have [{y;(z)| < ¢, zoi =a;, i =1,...,s, and

(z — ai)(;(x) T —a;
: sc < R(x).
o) (@) (=)
Now let 1 < k <mn/2.
Because of |{1;(x)| < ¢ we get
/2] /2]
Z lij(@ (z)) <c Z)bnk(R(ﬂs)) <ec. (2)
k=1

On the other hand, |z — 24| < |R(z) — £|, therefore by [15, Lemma 1] applied with « =0, 8 =1
yields

[n/2] [n/2]
Dz = 2l (2)bnk(R(2) < ¢ |2 — 2 bor(R(z))
k=1 k=1
[n/2]
k R(x) _ »(x)
< —— < < .
_;R@) (<o =< (3)
Finally, using /2, < cf|x — k5], © # j, and [15, Lemma 1| with o = 1/2, f = 1,
we obtain that
[n/2] /2
DO Gi@)bur(R(x) < ¢ 717 = Zhjlbnk(R(2))
k=1 i#j k=1
/2 i c
<ey \/; ‘R(m) | bui(R(2)) < —=. (4)
k=1
Combining (2)—(4) completes the proof. O

Remark 1. Substituting

S

Ll(:) (f,x) = Z f(@ri) lri ()

=1

instead of L(f,z) in (1) other operators (denoted by B ( f,x)) can be constructed. They are rational

functions of degree ns + s — 1, use ns function values, satisfy B S)(R,x) = R(z) for all x € J,, but
don’t form positive operators.

Remark 2. V.S. Videnskii in a series of papers (compare also his book [18], and paper [20]) consid-
ered a generalization of the classical Bernstein polynomials for rational approximation on [0, 1].
More precisely, Videnskii’s operators have the form

x) = Zf (Tnk) Unk (‘T)
k=0
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where the nodes 7, are determined by the formulas

k
¢n (Tnk): ) k:0717'°5n7

n

On () = > i (0),

and the rational functions u,(z), which are analogues of b, (z) from the classical Bernstein operators,
are defined with the help of the generating function as follows:

Pnid .
hni = ng 07 :0717"-7
(@) L+ pni—x pi = '
gn (z,y) = Zykunk(x)a
k=0
n—1
gn (2,y) = (hni (2) y + (1 = hp; (7)) -

Il
=)

3

It is possible to generalize this construction to the case of several intervals by the same method as
above.

Conclusion

Bernstein polynomials have many applications in modern science and technology, but up to now

there is no complete analogue of them for the case of several (greater than one) intervals of the real
axis. In this paper a generalization of Bernstein polynomials to rational functions on several intervals
is constructed. Those operators exist for an arbitrary (unlike previously constructed generalizations)
system of intervals. Approximation properties of the presented operators are studied as well.
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Investigation of the solution of a boundary value problem with
variable coefficients whose principal part is the Cauchy—Riemann
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This study is devoted to obtaining an analytical expression for the solution of a non-local boundary value
problem for a linear inhomogeneous differential equation with variable coefficients, which principle part is
the Cauchy—Riemann equation. Since the Cauchy-Riemann equation is a first-order elliptic equation, the
problem formulated with a classical boundary condition in a finite domain is ill-posed. Defining a boundary
condition for a first-order elliptic equation within a finite domain requires special investigation. For a first-
order elliptic equation in the zi0x2 plane, a new boundary condition is proposed within a bounded region
that is concave in the x2 direction, and an expression for the solution is obtained. For this purpose,
using the fundamental solution of the principal part of the equation, the main relation consisting of two
parts is obtained, the first part yields an arbitrary solution to the equation, and the second part gives
the boundary values of the solution representing the necessary conditions. Utilizing these necessary and
specified boundary conditions, a system of Fredholm integral equations of the second kind with a singular
kernel is constructed to find a solution, and a method for elimination the singularity in the solution is
proposed.

Keywords: first-order elliptic equation, Cauchy—Riemann equation, embroidery condition, nonlocal
boundary condition, main relation, Green’s second formula, necessary conditions, regularization of sin-
gularity.

2020 Mathematics Subject Classification: 35J67.

Introduction

The Dirichlet, Neumann, Poincaré and directional derivative problems for second-order elliptic
equations, particularly for the Laplace equation with local boundary conditions, have been widely
studied in [1-3]. Since the Cauchy—Riemann equation is a first-order elliptic equation, the problems
formulated for it using classical conditions are known to be globally ill-posed.

In [4], the Dirichlet problem for the Cauchy—Riemann equation is studied under the condition that
the given function on the boundary satisfies what the authors call the necessary condition, a very rigid
condition.

In general, writing out boundary conditions for first-order elliptic equations, as well as proving the
correctness of the problem, require special research. Unlike previous works focusing on Dirichlet or
Neumann problems, in [5] a unified analytical framework was developed to handle mixed (Robin type)
boundary conditions by combining complex analysis and functional analysis methods, thus expanding
the applicability of the Cauchy-Riemann boundary problem theory. In [6-8|, problems related to the
Cauchy—Riemann equation under classical boundary conditions are studied essentially using methods
of complex analysis. In [9], the Cauchy—Riemann operator’s spectral behavior with homogeneous

*Corresponding author. E-mail: bahaddins@beykent.edu.tr
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Dirichlet-type boundary conditions was investigated, and the theoretical understanding of its spectral
properties was advanced by demonstrating that the operator possesses the Volterra property.

In this study, a new boundary condition for the Cauchy—Riemann equation is proposed and the
analytical solution of the problem is reduced to the system of Fredholm integral equations of the second
type.

Let D be a region bounded in the zj0x2 plane and convex in the xy direction as shown in Figure 1.
If we project the domain D onto the x; axis parallel to the x5 axis, then the boundary I' is divided into
two parts I'1 and T’y (I' = 'y U T'g, since the domain D is convex in the xo direction). The equations
of the curves I'} and I'g are given by

zo = Yi(x1), (k=1,2); 1 € [a1,b1] = pr|s, D = pr|z I = pr|z T

and T' is a Lyapunov curve.

20, % =720x) V kA

Xz =1 (%)

v

X1
ay v by

Figure 1. Region D

The following problem in the domain D is considered

Ou(x) w ou(x)

o +ice = ala)u(a) + f(z), @D, (1

ar(z)u (z1,71(21)) + az(@1)u (z1,72(21)) = @(z1), 21 € [a1, bi]. (2)

Here, a(x), f(x), a1(z1), ae(x1) and p(z1) are given continuously differentiable functions and i = v/—1.
Let us denote by v and 7 the outward and tangential normals drawn to boundary of I', respectively.
It is known that the fundamental solution of the Cauchy—Riemann equation is

1 1

Ulw=0= 21 w9 — o +i(x1 — &)’

(3)
where z — & = (x1 — &1, 22 — &2).
1 The main relation

We multiply equation (1) by the fundamental solution (3) and integrate over the domain D:

ou(z) 0

w(@) _
e o, Uz §)dm-/D

U(x—f)dm—i—i/D a(m)u(w)U(z—f)da:—i—/Df(x)U(m—§)dm. (4)

Applying the Ostrogradsky—Gauss formula to the integral on the left-hand side of equation (4), we get

Ju(x) oU(z —¢§)
o u(x)U(x — &) cos(v, zo)dx — /D u(x)Tcg

Ul — €)dz / da, (5)

T
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Ou(x)
p 011

w(@z)U(z — €) cos(v, z1)dx — / u(:c)aUg;l_g)daz. (6)

D

Uz — &)dx = /

r

Let us substitute expressions (5) and (6) into equation (4) and write it down as follows

/ u(x)U(x — &) cos(v, xo)dx — / u(x)de +1
r

D O

/ u(x)U(x — &) cos(v, x1)dx
r

- u@)axldx] = [ st -+ [ s@u-ga

or

/Fu(x)U(x - &) [cos(u, x2) + i cos(v, :cl)] dx — /

D
_ /D w(x)

Since the function U(z — &) is a fundamental solution of the principal part of equation (1), we can
write the last equation as

a(z)u(z)U(x — &)dx — /D f(@)U(z — §)dx

oU(x—&) 0U(x—¢)
02s +1 021 ]d:z.

/Fu(:L‘)U(:L' - &) [cos(y, x2) + i cos(v, xl)] dx — / a(x)u(x)U(x — §)dx — /D f(2)U(x — &)dx

D
_Ju§), §eD,
_{ lu(€), €eTl. @

Main relation (7) we obtained consists of two parts. The first part gives an arbitrary solution of the
given equation (1) in the domain D for £ € D, and the second part gives the necessary conditions for
& € I that gives relation between values of boundary conditions and values of the obtained solution.
It should be noted that in the literature expressions of the form (7) are known as necessary conditions
derived from the first fundamental relations, similar to Green’s second formula, in the study of higher-
order equations [2|. Similar methods have also been applied in [10-12] in the process of finding
analytical solutions to problems for the Cauchy—Riemann equation with non-local boundary conditions
in regions with various geometries.

Expressions of the type (7) are derived from various basic relations, by which all necessary linearly
independent conditions can be obtained. As emphasized in [2] while the D’Alembert formula gives the
solution of the Cauchy problem for the second-order wave equation, it cannot directly give a solution
to the boundary value problem posed for the Laplace equation. That is, since the D’Alembert formula
includes it’s own initial conditions, then, by writing them down, we obtain a solution to the Cauchy
problem from the D’Alembert formula. However, it is not possible to specify the two functions that
participate in the Green’s II formula obtained for the Laplace equation (they are linearly dependent
functions). By specifying one of them, we obtain the Dirichlet problem, and by specifying the other,
we obtain the Neumann problem.

In |2], a boundary value problem for the Laplace equation was considered and the expression derived
from Green’s II formula was called a necessary and sufficient condition. In [10] and [11], for a first-
order elliptical equation a new approach to non-local boundary value problem for the Cauchy—Riemann
equation was proposed. Paper [11| was devoted to investigation of a new method for investigating of
solutions to boundary value problems for first order elliptic equations. Computational aspects of
first-order partial differential equations with nonlocal boundary condition were considered in [13].

Mathematics Series. No.4(120)/2025 157



M. Rasulov et al.

2 Necessary and sufficient conditions

Now let us single out the necessary and sufficient conditions from the main relation (7):

Su (6 m(6) = o /F e 53(—?@ T [cos(v,2) +icos(v, z1)] da
+% v 53(_?1, Ry [cos(y, 23) + i cos(v, ml)}da:
o Ry ey el ey e e
-5 b e i e[ s )] R
o b e e g Lot —isinten )
) R A Es e el R P
_ % " o) 1l L /bl u (ﬂf;w(_:vl)) 1 - z‘;p;@]dxl
o (@U@0 €) (@1 — &) +ila1 — &) | 27 Ju, ne(er) —malE) +ia — &)
3 e vlﬁs(g)j—(i)m e e fn(&];(i)z'(xl —e)™ ®
SAGRAGHE ;ﬂ / ro— gf;(-?i o [cos,(y, ) +¢cos(y,x1)}dx
+% [ 72(53(?1, e [cos(v,25) + i cos(w, 1) | da
o Ry e el Ry i e
-5 b e i [ ) s )] P
o b e e g Lot st

1 a(z)u(z) oo L f(x) dx
2m Jp w2 —72(&1) +i(w1 — &1) 21 Jp w2 —72(&1) +i(w1 — &1)
_i by (z1,7(21) [1 = im'(z1)]day 1 . u(z1,72(21)) [1 — ive(w1)]das
21 Joy  m(@1) —22(&) Hile = &) 21 Jo, v (0a(21,&1)) (21 — &) + iz — &)
1 a(z)u(z) o L f(x) i ()
21 Jp w2 —72(&1) +i(w1 — &1) 21 Jp w2 —2(&1) +i(z1 — &1)

Let us clarify the features of expressions (8) and (9), which we obtained for the necessary and
sufficient conditions: To do this, we write equations (8) and (9) as follows:

_1 b ou(e Vl(wl))[l i1’ (%1)]dzy
U (517 71 (51)) ™ Jay (z1— 51)71(01(;131 61))+1 + §R

(10)

b1 u(z1,y2(21))[1—iv2’ (#1)]dz1
(51,72(51)) 7 Jay (21—E1) 74 (02 (z1,€1))+i + Re.
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In expression (10), R;, and Ry denote the sum of the regular terms of expressions (8) and (9). It is
easy to see that
=i/ ()] [ =i/ (2]
Y (on(@1, &) +i 7, (o(21,61)) + i

(1 =i (o)) + i (3 (o1, £0)) +1)
Ve (o (21, &1)) + i
— s Z.’y;; (ok(21,61)) — ' (1)
Ve (Or(21,61)) +i
Since the points ok (x1,&1) lie between x1 and &, when x; and & coincide, the point oy (z1,&1) also
coincides with them. Therefore, when z7 — & — 0, fy,; (ok(x1,&1)) — v/ (21) =0, k = 1,2.
If we substitute expression (11) into (10), we get

+1—1

1 — iy’ (w1) + iy, (on (21, &1)) + 42
v, (o(z1,&)) +i

. k=1,2; z1 € [a1,b1]. (11)

u(&,m(&))=1= bru@n (@) gy 4 Ry,

mJar  (z1-&1) (12)
w(r2(60)) = 4 [ "G e + R,

T Jai (r1-&1)

where R3 and R4 denote the sum of the regular integrals corresponding to expressions (10) and (11),
respectively.

8 Regularization of singularities

Taking into account boundary condition (2), we write the following linear combination from (12)

a1(§1)u (§1,71(61)) — az(§1)u (§1,72(61))

_ ; /b on(E)u (21,m (xll)f_ ?(mu @1 92(E0)) g4 (€0)Rs + as(E)Ra
_ ;/b {{(@&) = ar@) + arfe)|u (e, m(@)
+[(@s(&) = asfen) + anfen)|u (1, 72(1)) }xldflgl
) % /b o (@1)u (21, m(a:l;z + r;g(a:l)u @192(T1)) 4 4o (6 Rs + ()R
_ % /: ;‘j(flgl dz1 + 0 (£1)Rs + (&) Ry (13)

If the functions «j(z1) and ag(x;) belong to the Holder class, then we can say that the limit in
expression (13) exists in the Cauchy sense. Since x; — & =0, ag(§1) — ax(z1) =0, kK = 1,2. In this
case the resulting singular integral no longer contains the unknown function.

Note 1. If the function ¢(x1) on the right-hand side of boundary condition (2) satisfies the following
conditions:

p(ar) = (b)) =0, @(z1) € CWay, by, (14)

then the singular limit in (13) will also exist in the usual sense.
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Theorem 1. Assume that the following conditions are satisfied:

(i) A bounded in plane D is convex in the direction 2, and the boundary I' is a Lyapunov curve;

(i) a(x), f(x) are continuous functions;

(iii) a1(x1), as(x1) belong to the Holder class, and the function (x) satisfies condition (14).
Then expression (13) is regular.

4 Fredholm property of the problem

Now, taking into account boundary condition (2), together with the regular expression (13), we
obtain the following system of algebraic equations

ar(§)u (&, (&) + a2(&)u (&1,72(8)) = (&)

(15)
o (€0)u (€1, 71(61)) — 0a(E)u (61,72(6)) = £ [ £ dory + 01 (6)Rs + 02 (1) Ra
From this it follows
i b T
w(€1,7(61)) = giﬁizb + 2arteye Jar (z(flg)l)df'fl + R,
(16)
u(€1,72(60)) = 55 — sariays Jo! 2y dey + R
1, 7281 202(€1) ~ 2aa(€)7 Jar (w1—€1)“1 4
If the conditions
ak(xl) 7& 0, k= 1,2 (17)

are satisfied, then expressions (16) give a system of integral equations with a regular Fredholm kernel
of the second kind for the boundary values of the unknown function in problem (1), (2). This kernel
does not include the integral of the sought function over the domain D. Thus, we show that problem
(1), (2) has the Fredholm property.

Theorem 2. If the conditions of Theorem 1 and (17) are satisfied, then problem (1), (2) has the
Fredholm property.

5 Solution of the boundary value problem

If we solve the system of integral equations (15), then for the functions u ({1,7%(£1)), (K =1,2) we
obtain certain expressions depending on the expression

/ a(x)u(z)
. dx.
p 2 — 72(&) iz — &)
By writing these expressions on the left side of the main relations (7), from the first component of the

main relation for the function u(z) we obtain a Fredholm-type integral equation of the second kind
with a regular kernel. Thus, we obtain a solution to problems (1), (2).

Conclusion

Firstly, for a first-order elliptic equation with variable coefficients whose main part is the Cauchy—
Riemann equation were written out the non-local boundary conditions (constructive) obtained by
means of stitching from the boundaries of a plane region bounded and convex in the direction xo and
divided into two parts, provided that the Carleman’s condition on the boundary is satisfied.

160 Bulletin of the Karaganda University



Investigation of the solution ...

The main relation consisting of two parts is obtained, the first of which gives arbitrary solutions of
the equation and the second part gives the necessary conditions for & € I' that gives relation between
values of boundary conditions and the obtained solution.

For them, in the case of a partial differential equation, a a system of Fredholm integral equations
of the second type with a regular kernel is obtained.

For the first time, it proved for a partial differential equation that the solution of the considered
boundary problem can be obtained from the Green’s formula, and for the problem of an ordinary
differential equation from the Lagrange formula.
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Local boundary value problems for hyperbolic differential equations have been studied in considerable
detail. However, the mathematical modeling of a number of real-world processes leads to nonlocal boundary
value problems involving nonlinear hyperbolic differential equations, which remain poorly understood. In
this paper, we consider a system of hyperbolic equations defined by both point and integral boundary
conditions in a rectangular domain. To the best of our knowledge, such a problem is studied here for
the first time. We note that this formulation is quite general and encompasses several special cases. The
classical Goursat-Darboux problem-a problem with integral boundary conditions in which some boundary
conditions are specified as point conditions and others as integral conditions-is derived from this formulation
as a particular case. Under natural conditions on the initial data, the necessary conditions for the solvability
of a nonlocal boundary value problem are established. A corresponding Green‘s function for the boundary
value problem is constructed and the problem is reduced to an equivalent integral equation. Using the
principle of contracting Banach maps, conditions for the existence and uniqueness of a solution to the
boundary value problem are established. An example is given illustrating the validity of the obtained
results.

Keywords: non-local boundary value problems, integral and point boundary conditions, Goursat-Darboux
problem, system of hyperbolic equations, existence and uniqueness of solutions, unique solvability, Green'‘s
function.

2020 Mathematics Subject Classification: 35G35, 35G46, 35153, 35L57.

Introduction

Recently, intensive research has been carried out on nonlocal boundary value problems for both
ordinary and partial differential equations. The significance of these problems was emphasized in [1].
If, instead of classical boundary conditions, algebraic relations are defined between the values of the
unknown function on the boundary and/or inside the domain, such a boundary value problem is
referred to as a nonlocal boundary value problem [2-4|. These algebraic relations can be expressed in
terms of pointwise values of the unknown function and/or its integral.

Non-local condition boundary value problems arise while constructing mathematical models of
processes that occur in atomic and nuclear physics, demography, heating processes and in other fields
of natural science. The papers [5, 6| study one-dimensional nonlinear hyperbolic equations given with
integral and multipoint boundary conditions. Sufficient conditions for the existence and uniqueness of
the problem are found.

In [7-9], a system of hyperbolic equations is investigated under two-point and integral boundary
conditions. The Green‘s function for the problem is constructed, the boundary value problem is reduced
to an equivalent integral equation, and sufficient conditions for the existence and uniqueness of the
solution are obtained.

*Corresponding author. E-mail: sharifov22@rambler.ru
Received: 7 July 2025; Accepted: 11 September 2025.
(© 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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In [10-12], a nonlocal problem with integral conditions for a system of hyperbolic equations in a
rectangular domain is analyzed. The existence of a unique classical solution and the methods for its
construction are discussed.

Kozhanov A.l. and Pulkina L.S. investigated a multidimensional hyperbolic equation with integral
boundary conditions in [13].

In [14-16], a nonlocal boundary value problem with an integral condition for a system of hyper-
bolic equations was considered, and necessary and sufficient conditions for its well-posedness were
established.

Papers [17-19] study the existence and uniqueness of strong solutions using methods of functional
analysis.

Paper [20] analyzes an optimal control problem with integral boundary conditions.

In the present work, we consider a Goursat—Darboux system with pointwise and integral condition.
A necessary condition for the solvability of the problem is proved. The problem considered is reduced to
an equivalent equation by means of equivalent transformations. Sufficient conditions for the existence
and uniqueness of the solution are found by means of the Banach compressed mapping principle.

1 Problem statement

We consider a non-local problem with integral and pointwise boundary conditions for a Goursat—
Darboux system in the domain @ = [0,7] x [0, []:

2te = f(t,x, 2(t, x)), (1)
T

Ax(0,0) + [ n():(t. )it = (o), @ € 0.1, )

0

!
Bz(t,0) + /m(m)z(t, z)dz = (t), t€0,T]. (3)

0
Here, z(t,z) = col(z(t,x), z2(t,z), ..., 2p(t,x)) is an unknown n-dimensional vector-function;

f:Q x R"™— R" is a given function; ¢(z),(t) are functions that are differentiable on [0, 77, [0, ] re-
spectively. A, B € R™*™ are the given matrices, n(t) and m(x) are n x n-dimensional matrix functions.

T !
det (A + f n(t)dt) #0, det | B+ [ m(z)dz | # 0. Furthermore, the matrices 4, n(t) and B, m(z) are
0 0

pairwise commutative. So, A-B = B-A, A-m(x) = m(z)-A, B-n(t) = n(t)-B,m(z)-n(t) = n(t)-m(z).

Note that problem (1)—(3) is quite general. For example, if the matrices A and B are both zero, then
the problem reduces to one with pure integral conditions. When A = B = E and n(t) = m(z) = 0,
we obtain the classical Goursat—-Darboux problem, and there are other variants.

2 Main results

In the paper, it is shown that for the solvability of problem (1)—(3) the compatability condition of
functions (z) and ¢ (t) is satisfied.

Theorem 1. For the solvability of problem (1)—(3), it is necessary that the compatibility condition
l T
Bo(O) + [ ma)plalds = 40(0) + [ n(0u)de
0 0
is fulfilled.
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Proof. Let us find the solution of equation (1) as follows:

z(t,z) = a(t) + b(x) + //f(r, s, z(7, s))dr ds,
00

(4)

where the functions a(t) and b(x) are unknown differentiable functions and are determined in the
intervals [0,77,[0,1], respectively. We require that the function determined by equality (4) satisfies

boundary conditions (2) and (3). Then, we obtain the relations

T

Ala(0) + b(z)] + /n(t) {a(t) + b(z) —|—/ /f(T,s,z(T, s))dr ds] dt
0 0

0

T T
= Aa(0) + / n(t)a(t)dt + (A+ / n(t)dt) b(z)
0 0

T t x
+ [ n(t) f(r,s,2(7,8))drdsdt = p(x), = € 0,1].
O/ [
l t x
Bla )N+ [ m(z )+ b(x) + f(r,s,2(7,s))dr ds| dx
ore foir s | | ]
l
= | B+ m(x)da:) )+ Bb(0) +
( /
l t =z
+ [ m(x) f(7,8,2(7,8))drds dx = 9(t), t €[0,T).
[*f]

Applying conditions (3) to relation (5) and conditions (2) to relation (6), we obtain

T T
Aa(0) + [ n(t)a(t)dt + (A+ / n(t)dt) b(O)}
0

l T
+ / m(z) / n(t)dt) b(@] dx
0

’I?’L

o _

o

T
Aa(0) + /n(t)a(t)dt + (A +
0

[e=]

t

T
o
0

l l
(B + /m(:):)dac) a(0) + Bb(0) + /m(x)b(x)d:r]
0 0

Mathematics Series. No.4(120)/2025
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T l !
—i—O/n(t) (B+O/m(x)d:c) a(t) + (Bb(O) +0/m(:c)b(a:)dx>] dt

+/T/l" /jf (7,5, 2(7,))dr ds dt dz = Ay (0 )+/Tn(t)¢(t)dt.
00 0 )

0

From this we obtain

T ! T l
Aa(0) + n(t)a(t)dt) (B—l— m(a:)dx) + (A+ n(t)dt) (Bb(()) + m(:v)b(w)dx)
(o ) (o frs) (o ) e

T 1 !

+/ /n(t)m /f 7,8,2(T,8))dT ds dt dx = Bp( )+/m(x)g0(:c)d$

00 0 0

T l l T
Aa(0) + n(t)a(t)dt) <B+ m(x)dx) + (Bb(O) + m(m)b(a:)da:) (A—i— n(t)dt)
(o o) (o] Jreves) ]

o\w

T 1 t =z T
+/ /n(t) / /f r5, 2(7, 8))dr ds di da = Ap(0) + /n(t)w(t)dt.
0 0 0 0
The right hand side equality is obtained from the left-hand side equality. O

In this paper, we construct the Green function for problem (1)—(3). We note that problem (1)—(3)
is reduced to an equivalent integral equation.

Theorem 2. The equivalent integral equation for the problem (1)—(3) is as follows

z ! T -
— (B+/m(:v)d:r) »(t) + <A+/n(t)dt) p()
0

0

! -1 T -1 !
- (B+/m(x)d:n) (A+/n(t)dt> (B@(O) —I—/m(x)go(w)da:)
0 0

+
O\’ﬂ
o _

«Q

ﬁ.

8

\]

Cla

\]

VA

X,

QU

\]

U

»

=

S~—

where
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'<A gn(a da) B+
—<A+
—<B+

l
n (o) da [ m(B)dp, t<T<Tx<s<lI.

C—uw

m ( ),OSTSt,O§s§$,

!
n( da)fm )dB, 0<rt<t,z<s<l,

O — o @

S
T
m ( d,8>fn do, t<7<T,0<s<u,

‘\%H

Proof. The unknown functions a(¢) and b(x) can be considered as solutions to a system of linear
algebraic equations defined by equalities (5) or (6). This system is of the n-th order. The sought
functions a(t) and b(z) have dimension 2n. It is clear that this system has an infinite set of solutions.

We fix an arbitrary solution. Let
T
Aa(0) + /n(t)a(t)dt =0
0

be an arbitrary solution.
Then, from equality (5), we find

xT

T -1 T T t
b(z) = (A—i—/n(t)dt) o(z) — (A—i—/n(t)dt) /n(t)/ /f(T,s,z(T, s))dr dsdt,
0 0 00

0

b(0) = <A+ / n(t)dt) £(0).

0

Taking the equalities b(z) and b(0) into account in equality (6), we get

! T -1
(B+/m(:c)dm) a(t) + (A+/n(t)dt) Bp(0)
0

0

l T -1 ! T -1

—i—o/m(x) (A—i—o/n(t)dt) o(z)dz — O/m(a:) (A—i—()/n(t)dt)
T t x l t
Xo/n(t)o//fTsz desdtdac+0/m 0/

Hence,

f(r,8,2(7,8))dT dsdx = (t).

Ot~
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I -1 T -y t =
+ (B+/m(a:)dx) (A+/n(t)dt) X / /m(:c)n(t //f ))dT ds dt dz
0 0 0 0 0
(B—i—/lm ) /m /t]f ))dT ds dzx. (9)

0 0

Taking into account equalities (8) and (9) obtained for functions b(z) and a(t) in equality (4)

4), we
have
! -1 T -1
+ [ m(z P(t)+ [ A+ n(t)dt) ()
(o frs) o]

0

0 0
We make the same transformations in equality (10) as follows

T

/ / n(T)dT) (L, 2(t, $))dt ds,
0

t

\
\
8 \

\

\]

Cn

o

\]

Cn

=

\]

QL

»

QL

S

I
O\ﬂ

l
/m(s)ds) f(r,z, z(r, x))dr dz,

l t
m(x f(r,s,2(7,8))drdsdx =
0/ i
. T t x l
m(x f(r,s,2(7,s))drdsdt doe = n(t)dr m(s)ds) ft,x, z(t,x))dt de.
[[reomo] ] /

0 0
Taking into account these expressions in equality (10), we can write

T -1
m(m/m ) (M/n@dt) o

(B—i—/lm(x)dx) (A—I—/Tnt t)l By(0 —i—/lm ]
0 0 0

Bulletin of the Karaganda University

168



Studying a system of ...

8
S @«
= =
= =
0 =
N A
= =
R X
§ o
= X
- =
= 5
> =
S g
l/z T../t
..L/O $/0
~ Y~ S~
5 =
> +~>
8 ~—
— s
g B—
o
Z/O IT
+ <
2] N~ —
(

(11)

(t,z) € Q.

From equality (11) we obtain
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T 1 ! -1 T o !
oy (B+ / m(l‘)daz) (A+ / n(t)dt) [ nteya [ m(ﬁ)dﬂ]
t 0

T 0

x f(1,s,2(7,8))drds, (t,z) € Q. (12)

Given equality (12), we can write:

T -1 1 -1y
E - (A—I—/n(t)dt) /n(a)da— (B—I—/m(x)dx) /m(ﬂ)dﬁ
0

T

_l’_

} ~1 T -1
= — <B+/m(x)dx) (A /n(t)dt)
0

0

As a result, we obtain equation (7)

. -1 -1
2(t,x) = (B—i—/m(:v)d:r) Y(t) + (A—I—/n(t)dt) ()
0
. -1 T -1
- B+ m(x)dx) (A—i— n(t)dt)
[re i) (o]
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t ! -1 T -1
+ 0/ 0/ (B+ / m(a:)dx) (A+ / n(t)dt)

0

x | A+ n(a)da) <B+ m(ﬂ)dﬁ) f(r,s,2(7,s))dr ds
(1o ) (]

x
T - r -1
_t/o/ (B+0/m(m)dm) (A+O/n(t)dt>
x (B+ / m(ﬁ)dﬁ) /T n(a)da | f(r,s,2(r, s))dr ds
d d

T 1 I -1 T o !
_|_/ / (B+/m(:v)d$) (A—}—/n(t)dt) [/n(a)da/m(ﬁ)dﬁl
0 0

t x T s
X f(1,8,2(7,8))drds, (t,x)€ Q. (13)

In this equality, having determined the matrix-function G(t,x, 7, s), we proved the first part of the
theorem. We now calculate the derivative of the function z(t,z) determined by equality (13) with
respect to ¢ and x

, . -1 T -1
Zip(t, ) = 8(38:17 |:(B+/m(x)dx) P(t) + (A—l—/n(t)dt) o(x)
0

x | A+ n(a)da) <B+ m(ﬁ)dﬁ) f(T,S,Z(T,S))deS]
(1o froe) (2]

-1

(oo fros) (o )

0 =z 0

62
otox
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(A—i-] da) | m( dﬁ] f(r,s,2(7,s))dr ds]
T =z ! - T -1
Ot&n //(B+/m )dm) (A+/n(t)dt)
t 0 0 0
s T
(B+ O/m(ﬁ)dﬁ) /n ] 7,8, 2(T, s))des}
T l -1 T -1
Al o) o)

[T

]
x/ da/lm ] (7,8, 2(7, 8))dr ds
I -1 T -
(B+O/m(;p)d:1: (A+O/n t) AB+B/ da+A/m
| /t (e)dar [ m()ds + 4 / m(B)d5 + ] n(a)da / m(8)ds
g :

T

. o
+B/n(a)da—|—/m(ﬁ)dﬁ/n(a)da—i—/n(a)da/m(ﬁ)dﬂ]
t 0 t t

T

X f(t,x, z(t,x)) = f(t,z,2(t, x)).

We now show that the function defined by equation (11) satisfies the non-local boundary conditions

(2) and (3), with
; —1 T -1
(B—I—/m(x)dx) P(0) + (A+/n(t)dt) o(x)

0
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n(T)dT) f(t, s, z(t, s))dtds]

—

B
T/O

n(t)dt)

T/O

(M

173

A—i—/n(t)dt

m(s)ds) f(ryz, z(,x))dr dx
n(t)dt) — (

n(t)dt) o(x) (A—i—
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T l

X (A+O/:Fn(t)dt) O/To/l |:/n(r)d7'/m(s)ds] f(t,x, 2(t, x))dt do
/Tn(t)/l] (/m(s)ds) f(r,x, z(r, x))dr dz dt
0 00

T T
+// (/n(T)dT) f(t,s, z(t,s))dtds

0 0 \t

T ! -1
— (B + /m(z)daz) Bp(0) + ¢(x)
0

A6() + [ niieyde
T x /T

—// (/n(T)dT) f(t, s, z(t,s))dtds
0 0

0
! tl l !
— (B—I—/m(:x)dfc) /m(:v)gp(:n)dx—l— (B—i—/m(m)dm)
0 0 0

T 1 T l
X// |:/n(7')d7'/m(s)d3] ft,x, 2(t, z))dtdx
0 0 t
- (B-f—/lm(x)d:c) /Tn(t)/l/t (/m(s)ds) f(r,yz, z(7,x))dT de dt
0 0 0 0

-1

/-~
o
<
=
+
o\ﬂ
3
=
<
=
QU
~
~—
|
Y
&
S}
=
+
O\N
s
8
S}
R
o N
I
~—

In a similar way, we can show that the point-wise and integral boundary condition
l
Bz(t,0) + /m(x)z(t, z)dr =(t), tel0,T]
0
is satisfied. ]
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8 FExistence and uniqueness

It is seen from the proved theorem that problem (1)—(3) is equivalent to the integral equation

T -1

’ -1
2(t,x) = | B+ | m(z)dx P(t)+ [ A+ | n(t)dt o(x)
j ]

0

-1

l T l
- B—I—/m(w)dm A—I—/n(t)dt Bp(0) —I-/m(x)go(x)dx
0 0 0
T 1
+ G(t,z,,8)f(T,s,2)dr ds. (14)
[

In order to prove the existence and uniqueness of the solution to problem (1)—(3) we determine the
operator P : C(Q; R") — C (Q; R") as follows:

. -1 T -1
(Pz)(t,z) = | B+ [ m(x)dx () + | A+ [ n(t)dt o(x)
/ /
! -1 T -1 !
- B+/m(:v)d;r A+/n(t)dt Bp(0) —I-/m(;v)go(x)da:
0 0 0

T 1
—i—/ / G(t,z,7,8)f(T,s,2)dT ds.
0 0

It is known that solving problem (1)—(3) or integral equation (14) is equivalent to finding the fixed
point of the operator P. In other words, problem (1)—(3) has a solution if and only if the operator P
has a fixed point.

Theorem 3. Assume that the following conditions hold:
|f(t,x,20) — f(t,m,21)| < M|z — 21|, V(t,z) €Q, z1,20€ R", M >0 (15)

and
L=ITSM <1, (16)

where
S = max||G(t,z,T,s)|.
QXQ

Then, problem (1)—(3) has a unique solution in Q.
Proof. Denote

. -1 . -1
N = max B+/m(:c)dx P(t) + A+/n(t)dt o(x)
0
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! -1 T -1 l
- B+/m(az)d:ﬂ A+/n(t)dt Bp(0) +/m(x)go(x)d3: ,
0 0 0
max |f(t,z,0)| =M
|7 (t,0)| = My
and choose r > w We show that the relation PB, C B, holds, where

B, ={w € C(Q,R") : |2l <7}

For arbitrary z € B,, we have

T 1
|P=(t,2)]| < N // (L2, 7,8)| (1f (7, 5,27, 8) — f(7,5,0)] + |f(, 5,0)]) dr ds
0 0

l
N + M;TS
/ (M|2| + M) dt de < N + SMrTl+ M;TIS < % <r.
0

O\H

On the other hand, from condition (15) we obtain that for arbitrary 21, zo € B, the relation

T 1
|P22—le|s// (t, 2,7, 8)| (1 (r, 8, 22(7,8) — F (7,5, 21(7, 8)])
0 0

T 1
< S/ / |z2(t, z) — z1(t, z)|dtde < MSTlmaX’ZQ(t x) — z1(t,x)| < MSTI||zo — z1||
o 0

holds. Hence, we obtain
[Pz2 — Pz1|| < L|zg — z1]|.

Taking condition (16) into account we obtain that the operator P is compressive. So, problem

(1)=(3) has a unique solution.

4 Application of the obtained results

To illustrate the obtained results, let us consider the system of hyperbolic equations

Zote(t, ) = |21 (¢,2)] (t,x) € [0,1] x [0,1].

21tz (t, ) = 0.1 cos 29(t, x),
10(1+[z1 (t,2)])?

Assume that the following boundary conditions are satisfied

1
_ 2
221(0,z) + [tz1(t,x)dt = 22, e 0,1].

0
29(0,x) =1,

1
_ 2
221(0,z) + Ofle(t»ﬂf)dt =1t t €[0,1].

Zg(t, 0) =1

O

(17)
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Make the following notation:

=5 (33). o

O o+
o o
~
3
s
Il
7~
o8
oo
~

(29 () ] (2 0) (e ) (5)- e
(20) () (2 2) (2l Jaem (4 vcton
o (20 ()

B+/lm(x)dx _1: A~|—/Tn(t)dt :<064 ‘f)
0 0

Taking them into account:

7'2 s
0'16<2+ 2><2+ 2) 0), 0<7<t0<s<u,
, 0<7<t,r<s<,

), t<7<1,0<s <z,
t

<7r<l,z<s< 1.

G(t,z,T1,s) =

Let us estimate the main parameters of the boundary value problem (17)-(19). We have that the
following estimate holds for the norm of the Green function max |G (¢,z,7,s)|| < 1; the Lipschitz
constant M = 0.1, and the compression parameter L =1-1-0.1-1 = 0.1 < 1. So, all the conditions of
Theorem 3 are fulfilled and the boundary value problem (17)—(19) has a unique solution.

Conclusion

The present work studied a system of hyperbolic equations with non-local condition. Boundary
conditions are rather general. In the special case, it contains the classical Goursat—Darboux problem,
“pure” integral conditions, a boundary value problem whose part of the conditions is pointwise, the
other part is in integral form, and other cases.
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An analogue of Leibniz’s rule for Hadamard derivatives and their
application
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This paper explores new analogues of the Leibniz rule for Hadamard and Caputo-Hadamard fractional
derivatives. Unlike classical derivatives, fractional ones have a strong nonlocal character, meaning that
the value of the derivative at a given point depends on the entire history of the function. Because of this
nonlocality, the standard product rule cannot be directly applied. The study develops refined formulas for
differentiating the product of two functions, which include additional integral terms representing memory
effects inherent to fractional calculus. The paper also establishes a series of inequalities that make it possible
to estimate the fractional derivatives of nonlinear expressions, such as powers of a function, through the
derivative of the function itself. In particular, it is shown that a specific inequality holds for positive functions
that relates the fractional derivative of the function power to the function product and its fractional
derivative. These theoretical results are of great importance for the study of linear and nonlinear fractional
diffusion equations. They provide useful tools for proving the existence, uniqueness, and stability of their
solutions and for deriving a priori estimates that describe the qualitative behavior of such systems.

Keywords: linear and nonlinear diffusion equation, Hadamard-type time fractional derivative, Hadamard
time fractional derivative, Mittag-Leffler function, a priori estimates, Leibniz rule, porous medium equation,
Gronwall inequality.

2020 Mathematics Subject Classification: 35R11, 35A02.

Introduction

In the theory of differential calculus, the Leibniz’s rule is one of the most important rules. Leibniz’s
rule states that: for two differentiable functions u(z) and v(x), the derivative of their product u(z)v(z)
is given by

d

7 w@)v(@)) = v (@)v(z) + u(z)v'(2). (1)
The Leibniz’s rule is applied to many problems in PDEs, including a priori estimates for solutions to
linear and nonlinear parabolic problems.

However, in the case of fractional derivatives, it is not possible to obtain a simple expression
analogous to (1). Tarasov [1| demonstrated that the formula

D*(u(z)v(x)) = D(z)v(z) + u(z) D (x)

« is an integer. This limitation arises from the inherently nonlocal nature of fractional derivatives.
Nevertheless, various analogues of the classical The Leibniz rule for fractional derivatives have been
deve-loped in the literature. In particular, the foundations of fractional calculus and the main properties
of fractional operators, including Hadamard-type derivatives, were systematically presented in the
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monographs [2—4]. Further generalizations of the Leibniz formula for fractional derivatives of different
types were obtained in [5-8|, where both analytical and operator approaches were discussed. The
results concerning fractional diffusion equations and applications of fractional Leibniz-type rules to
boundary and initial value problems can be found in [9-11|. For example, in [9] Alsaedi, Ahmad and
Kirane obtained an analogue of the Leibniz’s rule in the following form:

D% (uv)(t) = u(t)Dv(t) + v(t) Du(t)

u(t)v(t) o " (u(s) —u(t))(v(s) —v(t))
" T(l-a)te T(1-a) /0 (t—s)ite ds,

where D® is the Riemann-Liouville fractional derivative of order o € (0, 1):

1 d [t Y
(F(l—oz)dt/o(t_s) u(s)ds.

Later in [10], Cuesta et al. extended this formula to the Riemann-Liouville fractional derivative of
variable order a(t) € (0,1), t > 0. This makes fractional calculus particularly relevant in fields such
as physics, biology, materials science, and economics, where traditional approaches are insufficient to
describe real-world phenomena. The application of fractional models in continuum mechanics and
physical systems was discussed in [12, 13|, while the classical foundations of fractional calculus were
established in [14,15]. Further developments related to anomalous diffusion processes and boundary
value problems in mathematical physics were presented in [16,17].

In recent years, there has been a growing interest in the study of both linear and nonlinear differ-
ential equations involving Hadamard and Hadamard-type fractional derivatives. Fundamental results
on the theory and applications of such derivatives can be found in [15,18,19]. Theoretical and numer-
ical studies addressing the well-posedness, regularity, and stability of related equations are provided
in [20-22]. Moreover, generalized forms of the Leibniz-type rule for Hadamard fractional operators
and their applications to extremum principles have been explored in [23-25]. In [24], it was proved
that the Hadamard multi-index fractional diffusion problem has at most one classical solution, and
this solution depends continuously on its initial boundary conditions. In [25], Kirane and Torebek
obtained new estimates for the fractional Hadamard derivatives of a function at its extreme points,
and using the extremum principle, showed that linear and nonlinear fractional diffusion equations with
initial-boundary conditions have at most one classical solution, and this solution continuously depends
on the initial and boundary conditions. For Hadamard fractional differential equations with initial
boundary conditions involving a fractional Laplace operator, Wang, Ren, and Baleanu [24| applied the
maximum principle and obtained certain existence and uniqueness results.

In [26], the authors have given a small generalization of the Gronwall inequality, which they used
to study a solution to a generalized Cauchy-type problem with a Hilfer-Hadamard-type fractional
derivative. The Leibniz’s rule for fractional derivatives of constant order was introduced in [9] as an
extension of the classical product rule for integer-order derivatives. This differentiation rule (as well
as other fractional rules found in the literature) includes additional terms that account for the non-
local nature of fractional derivatives, particularly in the case of fractional derivatives of variable order
(FDVO). The authors present a contemporary proof of the maximum principle applicable to the linear
and nonlinear Riemann—Liouville fractional diffusion equations using the following inequality, for any
integer p > 2 and u > 0

Dou(t) =

for p even,

(2)

DY P < pup_lDCY U
ot ) for p odd whenever.

In [10], the authors further advance this concept by extending this property to fractional derivatives
with a variable order «(t). They derive a Leibniz inequality and an integration by parts formula. They
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also studied an initial value problem with their time variable order fractional derivative and present a
regularity result for it, and study its on the asymptotic behavior.

Motivated by the neet to explore in the context of Hadamard derivatives, we embarked on an inves-
tigation of the Leibniz inequality for both linear and nonlinear diffusion equations. After establishing
inequality (2) for Hadamard and Hadamard-type fractional derivatives using the Gronwall inequality,
we explored a priori decay estimates for the solutions.

Our main results are given in the following form:

Lemma 1. Let u, v satisfy the following condition
u € AC[a,T] and v € AC[a,T], 0 < a < 1.
Then, the following holds true

Dy Juv](t) = ut)Dgy yo(t) +v(t) Dgy yult)
u(t)o(t) Sy R TE RO

S T1-a)(ogf)” T(-a) s (log £)"°

This leads to the following cases.

Corollary 1. If u and v have the same signs, then
D3‘+7t(uv)(t) < “(t)Dng,tU(t) + U(t)Dng,tU(t)- (3)
Let u € ACla,T] and 0 < a < 1. Applying u = v in inequality (3), we get the following statement
2u(t)Dg‘+7tu(t) > Dg-s—,tUQ(t)- (4)

Then
Dfﬁr,tUp < pup_ng-l—,tu? (5)
where p > 2 and u > 0. Using mathematical induction we can prove inequality (5).

Lemma 2. Let u, v satisfy the following condition
u € ACla,T] and v € AC[a,T], 0 < a < 1.
Then, the following holds true

ng+,t[UU](t) = U(t)%Dg+,tU(t) + U(t)%Dng,tu(t)
~ (u(a) —u(t))(v(a) —v())
'l -« (log %)a
a /t (u(s) — u(t))(v(s) — v(t)) ,

- s.
I'(l-a) 5 (log %)Ha
This leads to the following cases.
Corollary 2. If w and v have the same signs, then
%D3+,t(uv)(t) < U(t)%Dng,tU(t) + v(t)%Dg+’tu(t). (6)
Then
ng+,tUp < pupflngJr,tua (7)

where p > 2 and v > 0. Applying mathematical induction we can prove inequality (7).
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1 Preliminaries
1.1  The weighted space of continuous functions space

Let us consider the weighted space of continuous functions denoted by C. 1o¢[a, b], where 0 < v < 1.
A function f : (a,b] — R belongs to this space if the function (log 3)7 f(t) can be continuously extended
to the closed interval [a,b]. More precisely,

C. 1oglas b] = {f (] R <log2>7f(t) e C[a,b]} .

The norm associated with this space is given by

t Y
181t = | (1) 700

Cla,b] .

It is worth noting that for v = 0, this space reduces to the classical space of continuous functions, i.e.,
Co,log[a, b} = C[a, b]

For any positive integer n, we work within the Banach space C(% [a, b] of functions possessing conti-
nuous O-derivatives up to order n — 1 on [a,b], and a ¢"-derivative on (a,b] such that
0"f € C,ogla,b]. The dilation operator is defined as § = t%. Functions in this space satisfy the

norm condition
n—1

fllez, =D N8* Fliciay + 16" Fllc sogla < 00
k=0

In the special case of n = 0, the space ng[a, b] coincides with C. 1o¢]a, b].
Additionally, we make use of the space AC}[a, b], which consists of functions f : [a,b] — C for which

the (n — 1)-th d-derivative, "1 f, belongs to the space of absolutely continuous functions AC|a, b].
Explicitly,

AC?[a,b] = {f SJa,b] > C | 6" 1f € AC]a, b]}.
It is evident that AC} [a,b] coincides with AC[a, b].
These functional spaces and operators provide a natural framework for analyzing differential equa-
tions involving weighted logarithmic behaviors and dilation-invariant properties, which are especially

relevant in the study of nonlocal models and fractional dynamics (see more details [4,17| and links
therein).

Definition 1. [4, p.110] Let f € L}, .([a,b]). The Hadamard fractional integral I, ;, of order

€ (0,1) (a > 0) is defined as
12 (1) (/t (1og ) %,

Definition 2. [4, p.111] Let @ > 0 and f € W3 ([a, b]) . The Hadamard fractional derivative of order
a € (0,1) is defined by

t

d d
D af (0 = G (0 = s / (1f) r®

S
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Property 1. |4, p.116] Let 0 < @ < 1 and 0 < a,b < oo. If f € Cj10g[a,b] (0 < p < 1) and
I;_f;f € Cg}u[a, b], then

[1_‘%‘ a a—1
(184 1 Day o f) (8) = f(t) — (a}’(a;() <1og 2) , t € [a,b]

holds at any point ¢ € (a, b].

Definition 3. [4, p.115] The Hadamard-type fractional derivative of order o € (0,1) with a > 0,
then for f(t) € AC]a, ]

DS f () = F(ll—a) /at <log Z>_a f'(s)ds.

Alternatively, for u € C''[a,t] an equivalent representation is

t o d [fuls)—ult
DG ult) = F(l—a)dt/a slog(t/s)ads

Definition 4. |4, p.42] The Mittag-Leffler function with two parameters is represented as
oo

C, R 0).
kzorak+’8 2,8 €C, R(a) > 0)

Lemma 3. [26, Lemma 3.1] Let o > 0, u(t), v(t) be nonnegative functions and locally integrable
on 0 <a<t<T < oo, and M(t) is a nonnegative, nondecreasing continuous function defined on
0<a<t<T<oo, M(t) < m(constant)

u(t) < v(t) + M(t) / t <log z>a_lu<s)ds,

S

~ (MO ()" £\ u(s)
Z T(ka) (log S) S] ds.

k=1

then

u(t) < v(t) +/:

Lemma 4. Let a nonnegative absolutely continuous function y(t) satisfy the inequality
O wy(t) <Oyt) +plt), 0<a<l

for almost all ¢ in [a,T], where > 0 and u(t) is an integrable nonnegative function on [a,T]. Then

y(t) < y(@)Ear <e <log Z>a> 4+ T(0)Eaa (e <log 2)&) o u(t),

where the function F, g(2) is the Mittag-Leffler function.
Remark 1. The case a =1 of Lemma 4 is studied in [17, p. 152].

Proof. Let 0g,y(t) — 0y(t) = g(t), then

y(t) = y(a) Eus <9 <log 2)a> + / t <log i)a_l o <9 <10g i>a> f’(:)dT.
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By virtue of the inequality ¢(t) < pu(t), the positivity of the Mittag-Leffler function E, o (9 (log ﬁ)a)
for given parameters, and the growth of the function E, (t), from [26], we obtain

y(t) < y(a)Ea <9 <log 2)&) + /at <log i)a_l Fuq (9 <log i>a> “(TT)dT
< y(a) Ba <9 <log 2)&) +T(0)Eaa (9 (log 2)&) O (t),

which completes the proof. O

1.2 The proof of the main results

In this subsection, we give a detailed proof of our main results.
The proof of Lemma 1. In view of the expression

u(s)v(s) = (u(s) — u(t))(v(s) = v(t)) + u)v(s) + u(s)v(t) — u(t)v(t)
and the Definition 2

D2, Juv —thml[/atﬁst—/:mds],

we arrive at

D () = gy iy 2 (56 = T0) + ult) (Ba(e) ~ Ta(0)
(8)
+ v(t) (Zs(e) — Z3(0)) — u(t)v(t) (Zale) — 14(0))] :
with

the ( t+e o(s

:/ ))E g))a ())ds, Zs(e) :/a (log(tle) ds,
t+e t+e 1

:/ log t+€ — s, Za(e) :/a st

Hence, u(t) (Z2(e) — Z2(0)) and v(t) (Z3(¢) — Z3(0)) are standard Hadamard derivatives, then
tu(t) .. 1| [tte v(s) Eu(s) B
mil—%g [/a (logtJra)ds_/a s(logz)adS] = u(t)Dgy v(t),
o) 1|7 _u) "_uls) il ompe
I(l—a) il—% € [/a st - /a s(logz)adsl = v(t)Dg, u(t).

Similarly, for the last term we have

wlt)v t+e t
u(t)o(t) (Za(e) — Z4(0)) = tF ((11%)_(3 - é [ / s(loglm)ads_ / - (méf)“dsl
tu(t)v(t) d [* 1
I(1—a) 'dt/a s(bgg)ads
__u@®u()
I'(1-a) (logt)”
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Now for the most complex term, we apply differentiation under the integral and use integration by
parts, which gives

" 1 e (u(s) — u(t))(v(s) — v(t)) E(u(s) —u(t))(v(s) — v(t))
hm[/a (1 P ds—/a d

MNl—-—a)es0e s (log T)O{ s(logé)a s
.« " (u(s) —u(t))(v(s) —v(t))
(1l —a) /a S (log §)1+a g

The combination of integrals in (8) completes the proof. O
The proof of Lemma 2. Similar to the previous Lemma, we now use the decomposition
u(s)v(s) —u(t)o(t) = (u(s) — u(t))(v(s) — v(t)) + u(t)(v(s) — v(t)) +v(t)(u(s) —u(t)).
Then taking into account Definition 3, we obtain

ngﬁt[uv} () =T+ T2+ T3,

where
T
A=) s St
=0 i oy

From the Caputo-Hadamard derivative definition

this yields

We now calculate

Ji =

S.

t o d [ (uls) —u)(v(s) —v(t))
F(l—oz)dt/a s(log é)a d

This term is nonlocal, and it was shown earlier that

L4 [ ) - utete) ol

F(l—a)@ s(log g)a
_(u(a) —u®)(v(a) —v®) o /t (u(s) — ut))(v(s) — v(t)) ,
(1 — ) (log 5)* F-a) /e s (log £)**! '
Finally, combining the integrals, we complete our proof. O
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2 Applications
In this section, due to the obtained results we explored a-priori estimates of the solutions.

2.1 Time-fractional diffusion equations

Let us consider the following time-fractional diffusion equation
Dgyu=bt)Azu+c(t,x)u+ f(t,z), (t,2)€ (a,T] xQ:=Q, (9)
where Q C RY is a bounded domain with regular boundary 99, and the Dirichlet boundary condition

u(t,z) =0, t>a, z€df (10)

or the Neumann boundary condition

gz—o, t>a, x€d, (11)

where 7 is the outward normal and the initial condition is

t—a

Jim (@) <log2>1_a w(a, z) = uo(x). (12)

Here
(A) b(t) is a nonnegative continuous function;
(B) [let 2)llc((a,r):020)) = s
() W& D) e(qayrysL2y = M

Theorem 1. Let ug € L?(2) and statements (A), (B), (C) hold true. If u satisfies (9)—(12) for every
t € (a,T], then

ulley op(@iz2@)) < BKa(T) l[uoll g2 ) + K2 (T) [ fll (a2 ) »

where

[k () o 0 7))

Ko(T) = <log Z) [F(alﬂ) +(2d+1) <log f) " B ((2d +1) (log Z) Q)] .

Proof. Multiplying (9) by u and integrating over ), we get

and

/Q (D2, wuyudz = b(t) /Q (Asu)udz + /Q o(t, 2 )ulda + /Q F(t, 2)udz.

We begin by integrating by parts and then apply (4) together with Holder’s inequality to get

lpgﬂ / wldx < b(t) / u@da—b(t) / VuVudz
2" Ja o On Q

+/Qc(t,x)u2dx+ (/Q|f(t,:c)|2dx>; (/Q]u|2da:>é.
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Taking into account (B) and using b(t)/ VuVudx < 0, we have
Q

1 1

o 2 2 2 2 2 2

Dy | uwdr <2d | u®dr+2 |f(t,x)|“dx lu|*dz ) .
“Ja Q Q Q

At this stage, applying Young’s inequality to the last term of the previous inequality, we deduce that
Dg+7t/ wlde < (2d + 1)/ u’dx +/ |f(t, x)|*dz. (13)
Q Q Q

Let us define y(t) = [|u(t, ~)H%Q(Q) and taking into account (C) in (13), we get the time-fractional
differential inequality

Dgy 1y(t) < (2d+ 1) y(t) + h. (14)
Applying the integral I, ; to both sides of the inequality (14) and using the Property 1, we obtain
(Il—ay) (a) t a—1 1 t ¢ a—1 ds
a+,t
)< ——=———[log— — log — 2d+1 h| —
< S o ) s [ lon ) e e 4

_2d+1 t lo ! " (8)@
T a gs 4

S

Using Lemma 3 to the last estimate, it yields
> (2d+1)F £\ g(s)
—— [ log — —\d
Z (ko) %4 5 °
k=1
j=k+1 t
< (2d+ 1)/

¢ « " a—1
Eq <(2d+ 1) <10g > ) <log ) g(s)] ds.
s s S
Consequently, it follows that

05 O ) b o)

1+«

v <o)+ [

B OBD [y () (1)) (log;)“‘”] & (15
PO [ (2040 (1062)) <1g’f) Qy” &

Applying formula (2.2.51) from [4, p. 86|, we have the following calculations

F(la)/at Eou <(2d+ 1) (log Z)a) (IOg z)%—l)] %
) )
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and

F(alﬂ)/at Eoa ((2d+ 1) (log Z>a> (10g Z)‘H (k)g 2)“] %
— (log Z)Qa Eo 2041 ((2d+ 1) <1Og (’;)a) )

Substituting (16), (17) in to the inequality (15), we obtain
y(t) < (In75y) (a) ( log t " N + (2d+1) ( log t i Eyo0 | (2d+1) ( log i i
= Vet a I'a) a L a

+h (log (’;)a [F(alJrl) +(2d+1) <log 2)& Ea2as1 ((2d +1) <log 2)&)} .

-
t
By multiplying both sides of (18) by <log ) , we get
a

(17)

<1og 2)1a y(t) < (1.7%y) (a) r(la) + (2d + 1) (log fL)aEa,za ((2d+ 1) (log Daﬂ

(
+h (log Z) {I‘(al—i- §+ed+) <1og Z) " Fosin ((Zd +1) <1og 2) a)]

< 1) @) [y + i+ ) (17 ) B (240 (106 ) )]

(16 T) [ty + 1) (106 ) e (20 (16 ) )]

||U|‘cl,a’log((a,ﬂ;p(g)) < Ki(T) ||u0||L2(Q) + K»(T) ||f‘|C((a,T]7L2(Q)) )
which gives the desired result. O

Then, we have

2.2 The porous medium equation
Next, we study the porous medium equation
Dy yu(t, @) = a(t, z)Au™(t,x) + f(t,2), (t,2) € (a,T] x Q:=Q, (19)

with the initial condition

l-a
lim I'(«) (log 2) u(t,z) = %1_1;% (I27%) (t,z) = ¢(x), z€Q (20)

t—a

and the boundary condition
u(t,z) =0, t>a, z€N, (21)

where m > 1 and a(t,z), f(t,z) are nonnegative continuous functions.

Theorem 2. Let 2 C R™ and ¢ € LP(R2). The function u € Ci_q4 10g((a, T]; LP(£2)) is a solution of
problem (19)—(21) and

ulle, o o (@) < K3(M) 1O)| Loy + Ka(T) 1 lle(a Lo @) »

)= [0 (02 B (30 (1 ) )]
0 ) ey 0 () B ()]
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Proof. Multiplying (19) by puP~! (p > 2), and integrating over 2, we arrive at

/ﬁw%mwm_/amWM*mﬁm—/WWmem:&
Q Q Q

In view of the expression

p/ a(t, z)uP L Au"dz :p/ a(t,x)up_lum_lgudo
0 09 on

- p/ (p — Da(t, z)uP2u™ | Vul>dx
Q
= —p/ (p — Da(t, z)uP2u™ 1 Vul*dz,
Q
it follows that

/ puP D2, udz +p/ (p — Da(t, z)uP 2™ | Vu|>dx

_ p—1 —
p/ﬂu f(t,z)dx = 0.

Applying (7) and the Holder inequality to (22), we obtain

/DO‘ upd:n+ /’V pp=t
QO at +m—1

dx
1/p 1-1/p (23)
L (reore)” ()
Q Q
Using Young’s inequality in the last term of (23 it follows that
a p+m 1
/QDaJrupdx +m—1 / ’V dx
-1
—w/uwwww— /Mmgme>u
Q er—1 JQ
Let’s make the following notations
p P P p—1
y(t) = [lu(t, ')HLP(Q)’ H=eP[|f(t, ')HLP(Q)y M = =
gp-
Then, we have
Dgyy(t) < My(t) +H. (24)

Starting from (24), by performing the same actions as in the proof of the previous theorem, we
obtain the following conclusion

<1og Z)l_ay( t) < (I.55v) (a) [F(la) +M <log2>aEa72a <M (log Z)“)}
o) ) s () )
e N5
o) g () o 2]
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Hence, we deduce that

ulle, o (@i < Es(D) €1l ey + Ea(D) 1o Lo@) »

where . _~ o
Ks(TY=|=—=+M{(log— | FEu2.|M|log—
o= [y + (o) o (4 (065) )
and T 1 T\“ T\
Ky (T)=|log— )| |=——+ M |log— | FEuso2a M | log — :
o= (o) e+ () B (4 (6) )
Therefore, we have proven the statement. O

2.8 Fractional-order diffusion equation

In the next case, we consider the fractional-order diffusion equation
t
ng+,tu = log (a> Aiu + C(t7 LIZ‘)U + f(ta 11)7 (t7 .73‘) S (CL, T] X Q? (25)
with the Dirichlet boundary condition

u(t,z) =0, t>a>0, x€IN (26)

and with the Cauchy condition
u(a, z) = uo(z), (27)
where the functions c¢(t, x), f(¢, x) satisfy
(A) et 2l e((ar)iL2 @) = d,c(t, ) < 0;
(B) If(t,z) HC(([a,T);m(Q))
Theorem 3. Suppose ug € L?(2) and (A), (B) hold. If the function u(t,z) satisfies the problem
(25)—(27) for each t € (a, T}, then the following estimate holds

HUHC((a,T};H(Q)) < Ky(T )HUOHL2 +K6( )HfHC((a,T];L2(Q))7

s (e () (1) 2

Ke(T) = <log Z) " {F(al—i—l) +(2d+1) <log Z) i Ea 2041 <(2d +1) <log Z) a)] .

Proof. Multiplying each term of equation (25) by the function u and integrating over €2,

/§2(ng+715@¢) udz = log <Z>/Q(Axu)ud:n—{—/Qc(t,x)u2d:v+/gf(t,:v)udx.

Taking into account the estimate (6) and using Holder’s inequality for the last term of the previously
mentioned inequality, we arrive at

1o 9 t ou /
< Z Ao —
5 H Da+t/ﬂu dx < log <a> /E)Quanda log< ) VuVudx
3 3
—I—/ c(t, z)udx + </ |f(t,x)2dx> </ ]u|2d:c>
Q Q Q
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Applying Young’s inequality to the last term of the previous inequality and in view of
t
—log () / VuVudzr <0
aj Ja
with the notation (A), (B) and y(t) = |lu(t, (L‘)HL2 ()» We obtain

%Dng,ty(t) < (2d+1)y(t) + h. (28)

By applying the integral gIg, ; to both sides of inequality (28) and using Property 1, we derive the
following expression

o 3 [ () g o)
:y(a)+r1+a (10g2) +2d+1 ( )-1 d:.

According to the result of Lemma 3, we deduce that

t oo 9]
y(t) < /a kz: og . . s
i=k+1 o ot
S S S
Therefore, it follows that

£ 40+ 24+ 11(0) /
) < 9l + ey (oo )

+y(a)(2d + 1)T /

(2d + )T (a)h
T T Tt /

In view of formula (2.2.51) in [4, p. 86], we arrive at the following:

F(alﬂ)/: Eaa <(2d+ 1) <log Z)a) <logi>2°‘_1] %
= <log Z)Qa Eq 2041 <(2d +1) (log 2>a> '

Wt) < (o) [1+ 20+ D (e) | B ((2d+1)F(a) <10gz>a> (mgi)ﬂ dj]

+h <log Z) ’ [r(al+1) 4 (2d + 1)T(a) <10g f) " B ((2d + 1)) (log Z)Q)] .
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Finally, we conclude

lullearyze@) < Ks(T) luoll 2y + Ko (DI f lo((a.1),220))

where
r £\ N\ ds
K5(T)=1+ (2d + 1)F(a)/ Eo o ((Zd + DHIN(«) <log > > <10g > —
o S S S
and
T\“ 1 T\° T\“
Kg(T) = [ log — — 1+ (2 (log— ) E 2 1) { log —
ot [ o0 2 B (o))
which completes the proof. O

Conclusion

In this work, we have established new analogues of the Leibniz rule for the Hadamard and Caputo—
Hadamard fractional derivatives, taking into account their inherent nonlocal properties. The refined
differentiation formulas and derived inequalities provide a deeper understanding of how fractional
derivatives interact with nonlinear functions. In particular, the obtained estimates form an analytical
foundation for studying fractional diffusion equations of various types. The results can be effectively
applied to prove the existence, uniqueness, and stability of solutions, as well as to derive a priori bounds
essential for the qualitative analysis of such models. Future research may extend these methods to
systems with variable order or to multidimensional fractional operators.
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