
Bulletin of the Karaganda University. Mathematics Series, No. 4(120), 2025, pp. 5–20

MATHEMATICS

https://doi.org/10.31489/2025M4/5-20 Research article

The quadratic B-spline method for approximating systems of Volterra
integro fractional-differential equations involving both classical and

fractional derivatives

D.Kh. Abdullah, K.H.F. Jwamer∗, Sh.Sh. Ahmed

College of Science, University of Sulaimani, Sulaymaniyah, Iraq
(E-mail: Diar.khalid85@gmail.com, karwan.jwamer@univsul.edu.iq, Shazad.ahmed@univsul.edu.iq)

The quadratic B-spline method is a widely recognized numerical technique for solving systems of Volterra
integro-differential equations that involve both classical and fractional derivatives (SVIDE’s-CF). This study
presents an improved application of the quadratic B-spline approach to achieve highly accurate and compu-
tationally efficient solutions. In the method developed in this paper, control points are treated as unknown
variables within the framework of the approximate solution. The fractional derivative C

a Dσx is considered
in the Caputo sense. First, we divide the domain into subintervals, then construct quadratic B-spline basis
functions over each subinterval. The approximate solution is presented as a quadratic combination of these
B-spline functions over each subinterval, where the control points act as variables. To simplify the system of
(VIDE’s-CF) into a solvable set of algebraic equations, the collocation method is applied by discretizing the
equations at chosen points within each subinterval. The Jacobian matrix method is employed to perform
computations efficiently. In addition, a careful, step-by-step algorithm for employing the proposed method
is presented to simplify its use, we implemented the method in a Python program and optimized it for
efficiency. Experimental example demonstrates effectiveness and accuracy of the proposed technique and
its comparison with present techniques in terms of accuracy and computational efficiency.

Keywords: system of Volterra integro-fractional differential equation (SVIDE’s), quadratic B-spline func-
tions, Caputo fractional derivative, collocation method, Jacobian matrix algorithm, Clenshaw-Curtis
quadrature rule.

2020 Mathematics Subject Classification: 34K33, 45D05, 45J05.

Introduction

Mathematicians have extended the classical concepts of differentiation and integration to fractional
(non-integer) orders over the centuries [1]. This kind of generalization, which is referred to as frac-
tional calculus (FC), is a more general mathematical framework for investigating complex systems [2].
Compared with the ordinary calculus that deals with essentially local and instantaneous changes, the
fractional calculus incorporates memory and hereditary properties and therefore is particularly suitable
to model those processes where the present state depends not only on the present status but also on the
past history [3, 4]. Several real-life phenomena demonstrate such dynamics [5]. For example, diffusion
∗Corresponding author. E-mail: karwan.jwamer@univsul.edu.iq
Received: 26 June 2025; Accepted: 4 September 2025.
c© 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Mathematics Series. No. 4(120)/2025 5



D.Kh. Abdullah et al.

in porous media, viscoelasticity, and biological systems with memory function regularly display dynam-
ics that are not possible to describe through classical models. In all these cases, fractional derivatives
give more accurate and flexible descriptions, accounting for long-range temporal and spatial depen-
dencies [6–8]. After that, researchers developed integro-fractional differential equations that combine
fractional derivatives with integral terms. Such equations extend traditional differential and integral
equations to include both instantaneous rates of change and accumulative past effects at the same
time. This makes them powerful tools for modelling dynamic processes where past states exert strong
impacts on current and future dynamics [8,9]. Furthermore, fractional integro-differential and integro-
differential equations of fractional order have garnered significant interest in the literature, leading to
the development of several unique methodologies. Benzahi et al. demonstrated a least squares method
[10]. Ghosh et al. presented an iterative difference scheme for solving an arbitrary order nonlinear
Volterra integro-differential population growth model [11]. Rahimkhani et al. illustrated nonlinear
fractional integro-differential equations using fractional alternative Legendre functions [12]. Akbar et
al. presented an analysis of delay [13]. Miran et al. presented Laplace transform multi-time delay
[14]. Akhlaghi et al. addressed fractional order integro-differential equations via Muntz orthogonal
functions [15]. Yuzbai et al. presented a fractional Bell collocation method [16]. In practice, most
linear Volterra integro-fractional differential systems with variable coefficients are too complex to solve
exactly using analytical methods. Because of this, researchers often turn to approximation techniques
and numerical methods. One of the most common and effective tools for this purpose is the use of
spline and B-spline functions [17, 18]. These functions play a crucial role in solving both linear and
nonlinear functional equations. Many researchers use B-spline functions to solve various mathematical
problems because of their flexibility and accuracy [19–21].

This study presents an approximate method for solving the linear system associated with Volterra
integro-differential equations, encompassing classical and fractional orders (LSVIDE’s-CF). For the
derivation, it deals with quadratic B-spline interpolation functions. Which takes the following general
forms:

Pi(x)U ′′i (x) + ai0(x) Ca Dσi0x Ui(x) + ai1(x) Ca Dσi1x Ui(x) + ai2(x)Ui(x)

= Fi(x) +
m∑
j=0

ωij

∫ x

a
Kij(x, s) Ca D

βij
s Uj(s) ds. (1)

Under the following conditions:[
Dkix Ui(x)

]
x=a

= ϑiki , ∀ki = 0, 1, . . . , µi − 1, and i = 0, 1, . . . ,m. (2)

The variable coefficients Pi(x)(6≡ 0), ai0(x), ai1(x) ∈ C([a, b],R) and Kij ∈ C(Θ,R), Θ = {(x, s) :
a ≤ s < x ≤ b}, with fractional orders: σi1 > σi0 > 0 and βim > βi(m−1) > · · · > βi1 > βi0 = 0.

Furthermore, the µi = max
{

2,mβ
im

}
, where mβ

ij − 1 < βij ≤ mβ
ij ,m

β
ij = dβije , ωij ∈ R, for all

i, j = 0, 1, . . . ,m. In the manuscript, we examined and assessed the systems of Volterra integro-
differential equations for classical and fractional orders (SVIDE’s-CF); according to the conditions,
fractional orders between 0 and 1. We approximate these integrals using the Clenshaw-Curtis quadra-
ture rule [17, 22] in conjunction with quadratic B-spline functions. Four algorithms summarized the
information, and we later produced Python software to implement each algorithm. These algorithms
resolved a few test instances. The paper is structured as follows: in Section 1, we introduce some
notions of fractional calculus necessary for the description of our model, and then we define the fun-
damental concepts of B-spline functions. In Section 2, we introduce the numerical approximation that
we use throughout our work. The experimental outcomes are presented in Section 3. Lastly, the
concluding remarks on the proposed method are presented in Section 4.

6 Bulletin of the Karaganda University



The quadratic B-spline method for ...

1 Basic definitions and notation

In this section, we will introduce and study the concepts.

Definition 1. [1, 2] Let n− 1 < α ≤ n (∈ Z+), α ∈ R+. The operators (RaDαxV(x)) and (Ca DαxV(x))
of fractional order α are defined as:

R
aDαxV(x) = Dnx

(
aJ n−αx V(x)

)
=

1

Γ(n− α)

dn

dxn

∫ x

a

V(s)

(x− s)α+1−nds, x > a, (3)

C
a DαxV(x) = aJ n−αx DnxV(x) =

1

Γ(n− α)

∫ x

a

V(n)(s)
(x− s)α+1−nds, x > a. (4)

Equation (3) represents the Riemann–Liouville fractional differential operator. Additionally, the
operator aJ αx , known as the Riemann–Liouville fractional integral of order α, is defined as

aJ αx V(x) =
1

Γ(α)

∫ x

a
(x− s)α−1V(s)ds, aJ 0

xV(x) = V(x), x > a.

Equation (4) defines the Caputo fractional differential operator. Similar to integer-order differen-
tiation, the Caputo fractional differentiation is a linear operation:

C
a Dαx [ρ1V1(x) + ρ2V2(x)] = ρ1

C
a DαxV1(x) + ρ2

C
a DαxV2(x).

Furthermore, the Caputo derivative of any constant function (say A ∈ R) vanishes: Ca DαxA = 0.

Lemma 1. [1, 9] The function V(x) = (x− a)n for n ≥ 0 has a β-Caputo derivative (β ≥ 0), which
is given as follows: for n ∈ {0, 1, 2, . . . , dβe − 1}, the β-Caputo derivative vanishes, i.e., Ca D

β
xV(x) = 0.

While for n ∈ N and n ≥ dβe or n /∈ N and n > dβe − 1, where dβe represents the least integer that is
not less than β, it is given by:

C
a DβxV(x) =

Γ(n+ 1)

Γ(n− β + 1)
(x− a)n−β.

Definition 2. [17, 22] In 1960, Clenshaw and Curtis established a method for evaluating a definite
integral by representing the integrand through a finite Chebyshev series. This involves sequentially
summing the individual terms the series. This approach proves to be highly effective, especially when
applied to integral equations.

∫ 1

−1
V(x) dx ≈

N∑
r=0
even

(
2

N

N∑
K=0

cos

(
rKπ

N

)
V
(

cos

(
Kπ

N

)))
, K = 0, 1, . . . ,N .

Remark:

(I) The symbol
∑

indicates that the initial and final terms should be divided by two before sum-
mation.

(II) The transformation x = b−a
2 t+ b+a

2 , or t = 2
(
x−a
b−a

)
− 1, where x ∈ [a, b] and t ∈ [−1, 1].

Definition 3. [23] Let TN = {x0, x1, . . . , xN } be a uniform or non-uniform partition of the interval
[a, b]. The K-degree B-spline basis function BKr (x), r ≥ 0, is defined as follows:

BKr (x) =
x− xr

xr+K − xr
BK−1r (x) +

xr+K+1 − x
xr+K+1 − xr+1

BK−1r+1 (x),

Mathematics Series. No. 4(120)/2025 7



D.Kh. Abdullah et al.

B0r(x) =

{
1, x ∈ [xr, xr+1),

0, otherwise.
(5)

B1r(x) =


x−xr

xr+1−xr , if x ∈ [xr, xr+1),
xr+2−x

xr+2−xr+1
, if x ∈ [xr+1, xr+2),

0, otherwise.

(6)

Equations (5) and (6) represent zero-degree and one-degree B-splines, respectively [24,25].
Note that the local support property is BKr (x) = 0 for all x /∈ [xr, xr+K+1) and the nonnegativity

property is BKr (x) ≥ 0 for all x ∈ [xr, xr+K+1).

2 Methods analysis

In this section, we utilize the quadratic B-spline collocation method to compute the approximate
solution (SVIDE’s-CF) of equation (1) subject to equation (2), where the mesh points a = x0 < x1 <
x2 < · · · < xN−1 < xN = b form a uniform partition of the solution domain [a, b] defined by the knots
xr with h = xr+1−xr

N = b−a
N , r = 0, 1, . . . , N − 1. The numerical solution for treating equations (1)

and (2) for all x ∈ [a, b], Ui(x) ≈ PQ,2i (x) for each i = 0, 1, . . . ,m, using collocation techniques with
quadratic B-spline to find an approximate solution PQ,2i (x) given by:

PQ,2i (x) ≈
n∑
l=0

CliBkil(x), i = 0, 1, . . . ,m. (7)

Here, the general expression of a quadratic B-spline curve defined on the interval [a, b] is,

PQ,2i (x) = C0
(
b− x
b− a

)2

+ 2C1
(
x− a
b− a

)(
b− x
b− a

)
+ C2

(
x− a
b− a

)2

, x ∈ [a, b]. (8)

Now, the Caputo fractional derivative of order α ∈ (0, 1], and the recursive derivative formula for
quadratic B-spline curves for equation (8) are given, respectively:

C
a DαxP

Q,2
i (x)

=
2(x− a)1−α

(Nh)2Γ(3− α)

{
C0[(x− a)− (Nh)(2− α)] + C1[(Nh)(2− α)− (x− a)] + C2(x− a)

}
, (9)

d2

dx2
PQ,2i (x) =

2
(
C0 − 2C1 + C2

)
(Nh)2

, (10)

where h is a step size and N is the number of iterations. For the numerical approximate solutions of
(SVIDE’s-CF) based on equation (1) the control points Cli are unknowns. Also, for all i = 0, 1, . . . ,m,
the control points C0i are determined by initial conditions specified in equation (1), and the control
points C1i = (Nh)

2
(dB2i (a))

dt +C0i for the quadratic B-spline curve can be determined for each i = 0, 1, . . . ,m,

to find C2i , from the (VIDE’s-CF) in equation (1). The unknown function PQ,2i (x) is approximated by
B-spline interpolation of degree 2 as in equation (7), so the equation (1) becomes:

Pi(x)
d2

dx2
PQ,2i (x) + ai0(x) Ca Dσi0x [PQ,2i (x)] + ai1(x) Ca Dσi1x [PQ,2i (x)] + ai2(x)PQ,2i (x)

= Fi(x) +

m∑
j=0

ωij

∫ x

a
Kij(x, s)

C
a D

βij
s [PQ,2j (s)] ds. (11)

8 Bulletin of the Karaganda University



The quadratic B-spline method for ...

The fractional orders σi0,i1, βij ∈ (0, 1], ∀i, j = 0, 1 . . . ,m. Consequently, using equation (11), applying
the linearity property of fractional Caputo derivatives, and using equation (8), by defining [xr, xr+1]
and analyzing the collocation points, we use a quadratic B-spline function (K = 2, n = 2) in the interval
[xr, xr+1] as established, from equations (9), and (10), yielding results for each r = 0, 1, . . . , N −1 and
i = 0, 1, . . . ,m, derive the following:

Pi(xr+1)
[

2C0i
(Nh)2 −

4C1i
(Nh)2 −

2C2i
(Nh)2

]
+ ai0(xr+1)

(xr+1 − a)1−σi0

(Nh)2Γ(3− σi0)


C0i (−2(Nh)(2− σi0) + (xr+1 − a))

+2C1i ((Nh)(2− σi0)− 2(xr+1 − a))

+2C2i (xr+1 − a)



+ ai1(xr+1)
(xr+1 − a)1−σi1

(Nh)2Γ(3− σi1)


C0i (−2(Nh)(2− σi1) + (xr+1 − a))

+2C1i ((Nh)(2− σi1)− 2(xr+1 − a))

+2C2i (xr+1 − a)

+ ai2(xr+1)


C0i (b−xr+1)2

(Nh)2 +

2C1i (xr+1−a)(b−xr+1)

(Nh)2

+
C2i (xr+1−a)2

(Nh)2



= Fi(xr+1) +
m∑
j=1

ωij


r−1∑
q=0

∫ xq+1

xq

Kij(xr+1, s)
(s− a)1−βij

(Nh)2Γ(3− βij)


C0j (−2(Nh)(2− βij) + 2(s− a))

+2C1j ((Nh)(2− βij)− 2(s− a))

+2C2j (s− a)

 ds


+

∫ xr+1

xr

Kij(xr+1, s)
(s− a)1−βij

(Nh)2Γ(3− βij)

[
C0j (−2(Nh)(2− βij) + 2(s− a)) + 2C1j

((Nh)(2− βij)− 2(s− a)) + 2C2j (s− a)

]
ds

+ ωi0


r−1∑
q=0

∫ xq+1

xq

Ki0(xr+1, s)
[
C00

(Nh)2 (b− s) +
2C10

(Nh)2 (s− a)(b− s) +
C20

(Nh)2 (s− a)2
]
ds

+

∫ xr+1

xr

Ki0(xr+1, s)
[
C00

(Nh)2 (b− s) +
2C10

(Nh)2 (s− a)(b− s) +
C20

(Nh)2 (s− a)2
]
ds

}
.

(12)
The quadratic B-spline function throughout the interval [xr, xr+1] is optimized to simplify its

representation and promote efficient solution methods; it is also determined, and in practice, these
integrals must be approximated using the Clenshaw-Curtis quadrature rule; hence, the equation (12)
is applicable for r = 0, 1, . . . , N − 1, i = 0, 1, . . . ,m.

Hri (σi0)C2i +Ori (σi0)C1i + T ri (σi0)C0i = Fi(xr+1) +
m∑
j=1

ωij

(
AβijKij

)
C2j +

m∑
j=1

ωij

(
S
βij
Kij

)
C1j

+

m∑
j=1

ωij

(
X βijKij

)
C0j +

(
ω
(r)
i0 YKi0

)
C00 +

(
ω
(r)
i0 ȲKi0

)
C10 +

(
ω
(r)
i0 Y̆Ki0

)
C20 ,

where

Hri (σi0) =
2Pi(xr+1)

(Nh)2
+

2ai0(xr+1) ((r + 1)h)1−σi0 (xr+1 − a)

(Nh)2Γ(3− σi0)

+
2ai1(xr+1) ((r + 1)h)1−σi1 (xr+1 − a)

(Nh)2Γ(3− σi1)
+
ai2(xr+1)(xr+1 − a)2

(Nh)2
,

Mathematics Series. No. 4(120)/2025 9



D.Kh. Abdullah et al.

Ori =
−4Pi(xr+1)

(Nh)2
+

2ai0(xr+1) ((r + 1)h)1−σi0

(Nh)2Γ(3− σi0)
(
−2(Nh)2−σi0 + 2(xr+1 − a)

)
+

2ai1(xr+1) ((r + 1)h)1−σi1

(Nh)2Γ(3− σi1)
(
−2(Nh)2−σi1 + 2(xr+1 − a)

)
+

2ai2(xr+1)(xr+1 − a)

(Nh)2(b− xr+1)
,

T ri =
2Pi (xr+1)

(Nh)2
+
ai0 (tr+1) ((r + 1)h)1−σi0

(Nh)2Γ(3− σi0)
{−2(Nh) (2− σi0) + 2 (xr+1 − a)}

+
ai1 (xr+1) ((r + 1)h)1−σi1

(Nh)2Γ(3− σi1)
{−2(Nh) (2− σi1) + 2 (xr+1 − a)}+

ai2 (xr+1)

(Nh)2
(b− xr+1)

2 ,

rA
βij
Kij =

r−1∑
q=0

N∑
k=0

[
xq+1 − xq

2
ωkKij(xr+1, Sk)

(2(Sk − a))1−βij (Sk − a)

(Nh)2Γ(3− βij)

]

+
N∑
k=0

[
xr+1 − xr

2
ωkKij(xr+1, Sk)

(2(Sk − a))1−βij (Sk − a)

(Nh)2Γ(3− βij)

]
, (13)

rS
βij
Ki0 =

r−1∑
q=0

N∑
k=0

[
xq+1 − xq

2
ωkKij(xr+1, Sk)

2(Sk − a)1−βij

(Nh)2Γ(3− βij)

]
[(Nh)(2− βij)− 2(Sk − a)]

+
N∑
k=0

[
xr+1 − xr

2
ωkKij(xr+1, Sk)

2(Sk − a)1−βij

(Nh)2Γ(3− βij)

]
[(Nh)(2− βij)− 2(Sk − a)] , (14)

rX
βij
Kij =

r−1∑
q=0

N∑
k=0

[
xq+1 − xq

2
ωkKij(xr+1, Sk)

(Sk − a)1−βij

(Nh)2Γ(3− βij)

]
[−2(Nh)(2− βij) + 2(Sk − a)]

+

N∑
k=0

[
xr+1 − xr

2
ωkKij(xr+1, Sk)

(Sk − a)1−βij

(Nh)2Γ(3− βij)

]
[−2(Nh)(2− βij)] , (15)

ωi0
r YKi0 = ωi0


r−1∑
q=0

N∑
k=0

[
xq+1 − xq

2
ωkKi0(xr+1, Sk)

(b− Sk)2

(Nh)2

]

+

N∑
k=0

[
xr+1 − xr

2
ωkKi0(xr+1, Sk)

(b− Sk)2

(Nh)2

]}
, (16)

ωi0
r YKi0 = ωi0


r−1∑
q=0

N∑
k=0

[
xq+1 − xq

2
ωkKi0(xr+1, Sk)

2(Sk − a)(b− Sk)
(Nh)2

]

+
N∑
k=0

[
xr+1 − xr

2
ωkKi0(xr+1, Sk)

2(Sk − a)(b− Sk)
(Nh)2

]}
, (17)

10 Bulletin of the Karaganda University



The quadratic B-spline method for ...

ωi0
r Y̆Ki0 = ωi0


r−1∑
q=0

N∑
k=0

[
xq+1 − xq

2
ωkKi0(xr+1, Sk)

(Sk − a)2

(Nh)2

]

+
N∑
k=0

[
xr+1 − xr

2
ωkKi0(xr+1, Sk)

(Sk − a)2

(Nh)2

]}
. (18)

From equations (13)–(18) the nodes tk, where the integrand is evaluated at points corresponding to
the extrema of the Chebyshev polynomials on the interval [−1, 1] and are defined as tk = cos

(
kπ
N
)
for

k = 0, 1, . . . ,N , for each subinterval [xq, xq+1], the mapped node Sk is calculated by Sk =
xq+1−xq

2 tk +
xq+1+xq

2 . The weights ωk are coefficients that multiply the function values at the nodes to approximate
the integral given by ωk = 2

N
∑N

r=0
even

cos
(
rkπ
N
)
. These weights help the weighted sum of function

evaluations accurately represent the integral over the chosen interval, and are determined following a
linear system (m+ 1)× (m+ 1) of algebraic equations, which is provided.

A · B = C, (19)

where

A =


Hr0(σ00)− ω00

r Y̆K00 −ω01 rAβ01K01
−ω02 rAβ02K02

. . . −ω0m rAβ0mK0m

−ω10
r Y̆K10 −ω11 rAβ11K11

−ω12 rAβ12K12
. . . −ω1m rAβ1mK1m

−ω20
r Y̆K20 −ω21 rAβ21K21

−ω22 rAβ22K22
. . . −ω2m rAβ2mK2m

...
...

...
. . .

...
−ωm0
r Y̆Km0 −ωm1 rAβm1

Km1
−ωm2 rAβm2

Km2
. . . Hrm(σm0)− ωmm rAβmmKmm

 , (20)

B =
[
C20 C21 C22 . . . C2m

]T
, (21)

C =



F0(xr+1)−Or0C10 − T r0 C00 +
∑m

j=1 ω0j

(
Sβ0jK0j

)
C1j +

∑m
j=1 ω0j

(
X β0jK0j

)
C0j + (ωr00YK00)C00 + (ωr00ȲK00)C10

F1(xr+1)−Or1C11 − T r1 C01 +
∑m

j=1 ω1j

(
Sβ1jK1j

)
C1j +

∑m
j=1 ω1j

(
X β1jK1j

)
C0j + (ωr10YK10)C00 + (ωr10ȲK10)C10

F2(xr+1)−Or2C12 − T r2 C02 +
∑m

j=1 ω2j

(
Sβ2jK2j

)
C1j +

∑m
j=1 ω2j

(
X β2jK2j

)
C0j + (ωr20YK20)C00 + (ωr20ȲK20)C10

...
Fm(xr+1)−OrmC1m − T rmC0m +

∑m
j=1 ωmj

(
SβmjKmj

)
C1j +

∑m
j=1 ωmj

(
X βmjKmj

)
C0j + (ωrm0YKm0)C00 + (ωrm0ȲKm0)C10


.

(22)
An algebraic linear system consisting of (m + 1) equations is derived, containing (m + 1) unknown
control points C2i , i = 0, 1, . . . ,m. To solve for these control points, the linear system (m+1) equations,
as shown in equation (11), is efficiently solved using a Jacobian matrix method. Once the control
points C2i , i = 0, 1, . . . ,m, are determined, they are substituted into equation (7). Using initial condi-
tions (2), the control points C1i = Nh

2
dB2i (a)
dx + C0i for the quadratic B-spline curve can be determined,

and their derivative parts can be determined by C1i using U ′i(x)
∣∣∣
x=a
≈ dB2i (a)

dx , ∀ i = 0, 1, . . . ,m, and
in practice, these integrals must be approximated using the Clenshaw-Curtis quadrature rule. The
following algorithms are considered to solve (LSVIDE’s-CF) using quadratic B-spline functions:
Algorithm describing the approximate solution (LSVIDE’s-CF) using quadratic B-spline.
INPUT:
(I) a, b, and N is the number of iterations, (m+ 1) is the number of equations.
(II) Pi(x), ai0(x), ai1(x), ai2(x), Fi(x), ωij , Kij(x, s), C0i , σi0, and βij for each i, j = 0, 1, . . . ,m.
OUTPUT: Solution vector B containing the control points C2i , i = 0, 1, . . . ,m.

Mathematics Series. No. 4(120)/2025 11



D.Kh. Abdullah et al.

Steps:
(i) Construct arrays B, C of size (m+ 1) and matrix A from equation (20) of size (m+ 1)× (m+ 1).
(ii) Compute the step size: h = b−a

N , N ∈ N and partition points: xr+1 = a + (r + 1)h,
r = 0, 1, . . . , N − 1.

(iii) Compute the approximation: U ′i(x)
∣∣∣
x=a
≈ dB2i (a)

dx , using the initial conditions.

(iv) Compute the elements of C from equation (22): C1i = Nh
2
dB2i (a)
dx + C0i , i = 0, 1, . . . ,m.

(v) Compute the elements of matrix A and vector C using the Jacobi iteration method.
(vi) Apply the initial conditions C0i to modify A and C.
(vii) Solve the system: A · B = C from equation (19), using numerical integration techniques such as

the Clenshaw-Curtis quadrature rule.
OUTPUT: Solution vector B from equation (21), containing the control points, i = 0, 1, . . . ,m.

B =
[
C20 C21 C22 . . . C2m

]T
.

I. Algorithm (NCP2DBS): Normal Control Points Second Degree B-Spline.
We perform all steps in the previous main algorithm and follow the additional steps below:
(viii) For r = 0, 1, . . . ,N − 1, set: x = xr+1 = a+ (r + 1)h, n = 2, k = 2.
(ix) Compute: PQ,2i (xr+1) ≈

∑n
l=0 CliBkil(xr+1), i = 0, 1, . . . ,m.

Output: PQ,20 (xr+1),PQ,21 (xr+1), . . . ,PQ,2m (xr+1) are the approximate solutions for each function.
II. Algorithm (FCP2BS): First Control Point Second Degree B-Spline.

We perform all steps in the previous main algorithm and follow the following two steps:
(viii) Use: C2i = C2i (x1), i = 0, 1, . . . ,m.

(ix) Compute: PQ,2i (xr+1) ≈
∑n

l=0 CliBkil(xr+1), i = 0, 1, . . . ,m.

Output: PQ,20 (xr+1),PQ,21 (xr+1), . . . ,PQ,2m (xr+1) are the approximate solutions for each function.
III. Algorithm (MCP2BS): Mean Control Point Second Degree B-Spline.

We perform all steps in the previous main algorithm and follow the following two steps:
(viii) Use: C2i = 1

N
∑N−1

r=0 C2i (xr+1), i = 0, 1, . . . ,m.

(ix) Compute: PQ,2i (xr+1) ≈
∑n

l=0 CliBkil(xr+1), i = 0, 1, . . . ,m.

Output: PQ,20 (xr+1),PQ,21 (xr+1), . . . ,PQ,2m (xr+1) are the approximate solutions for each function.
IV. Algorithm (FFCP2BS): Average First and Final Control Point Second Degree B-Spline.

We perform all steps in the previous main algorithm and follow the following two steps:
(viii) Use: C2i = 1

2

(
C2i (x1) + C2i (xN−1)

)
, i = 0, 1, . . . ,m.

(ix) Compute: PQ,2i (xr+1) ≈
∑n

l=0 CliBkil(xr+1), i = 0, 1, . . . ,m.

Output: PQ,20 (xr+1),PQ,21 (xr+1), . . . ,PQ,2m (xr+1) are the approximate solutions for each function.

3 Numerical results

In this section, the validity and efficiency of the proposed systems are verified by using the Least
squares error. Numerical results are developed in Python 3.9, and those derived by the proposed
techniques are compared.

Example. Consider the following classical and fractional-order systems of Volterra integro-differential
equations (CF-VIDE’s) with variable coefficients on [0, 1]:

cos(x)U ′′0 (x) + x Ca D0.3
x U0(x) + exCa D0.5

x U0(x) + x2U0(x)

= F0(x) + ω00

∫ x

0
sx3U0(s)ds+ ω01

∫ x

0
(1 + sx2)caD0.7

s U1(s)ds+ ω02

∫ x

0
excaD0.8

s U2(s)ds,

12 Bulletin of the Karaganda University



The quadratic B-spline method for ...

exU ′′1 (x) + sin(x)Ca D0.6
x U1(x) + x3Ca D0.8

x U1(x) + ln(x+ 1)U1(x)

= F1(x) + ω10

∫ x

0
(x3 − s+ 1)U0(s)ds+ ω11

∫ x

0
(x+ s2)caD0.45

s U1(s)ds+ ω12

∫ x

0
(x2s)caD0.5

S U2(s)ds,

sin(x)U ′′2 (x) + x3Ca D0.4
x U2(x) + cos(x)Ca D0.7

x U2(x) + tan(x)U2(x)

= F2(x) + ω20

∫ x

0
xsU0(s)ds+ ω21

∫ x

0
(sin(x)− 1)caD0.3

s U1(s)ds+ ω22

∫ x

0
(2− sx2)caD0.6

s U2(s)ds.

The given functions F0(x), F1(x), and F2(x) are defined as follows:

F0(x) =
3x1.7

Γ(1.7)
+

3x0.5ex

Γ(1.5)
+ x2(3x+ 2)− ω00(x

6 + x5)

− 2ω01

Γ(2.3)

(
x2.3

2.3
+
x5.3

3.3

)
− ω02

Γ(2.2)

(
exx2.2

2.2

)
,

F1(x) = 2ex +
2 sin(x)x1.4

Γ(2.4)
+

2x4.2

Γ(2.2)
+ ln(x+ 1)(x2 + 1)− ω10

(
3x5

2
− x3 +

1

2
x2 + 2x4 + 2x

)
− 2ω11

Γ(2.55)

(
x3.55

2.55
+
x4.55

4.55

)
− ω12

Γ(2.5)

(
x5.5

3.5

)
,

F2(x) = sin(x)+
x4.6

Γ(2.6)
+
x1.3 cos(x)

Γ(2.3)
+tan(x)

(
1

2
x2 − 1

)
−ω20(x

4+x3)− 2ω21

Γ(2.7)

(
x2.7 sin(x)

2.7
− x2.7

2.7

)
− ω22

Γ(2.4)

(
2x2.4

2.4
− x5.4

3.4

)
.

Together with the initial conditions: U0(0) = 2, U1(0) = 1, U2(0) = −1, while the exact solutions by:
U0(x) = 3x+ 2, U1(x) = x2 + 1, U2(x) = 1

2x
2 − 1.

The coefficients are defined as:

ω00 =
sin(0.3)

Γ(13)
, ω01 =

sinh(0.7)

Γ4(16)
, ω02 =

cosh(30)

Γ5(14)
,

ω10 =
cos(89)

Γ(12)
, ω11 =

ln(5)

Γ(12)
, ω12 =

sinh(0.3)

Γ(11)
,

ω20 =
cos(89)

Γ2(9)
, ω21 =

sin(179)

Γ(11)
, ω22 =

sin(30)

Γ(12)
.

We set the parameters as: N = 10, h = 0.1, xr = a + rh, for r = 0, 1, . . . ,N − 1. We aim to
approximate the solutions PQ,2i (x) for i = 0, 1, 2, as defined in equation (7). The programs NCP2BS,
MCP2BS, FFCP2BS, and FCP2BS are executed to compute the unknown control points C0i , C1i , and
C2i for i = 0, 1, 2, we then use these control points to construct the approximate solutions for the
given system. The first table presents the values of all control points for PQ,20 (x), PQ,21 (x), and PQ,22 (x)
according to the four methods, respectively.

Mathematics Series. No. 4(120)/2025 13



D.Kh. Abdullah et al.

T a b l e 1

The values of control points of PQ,20 (x), PQ,21 (x), and PQ,22 (x) for four methods NCP2BS, MCP2BS,
FFCP2BS, and FCP2BS

Control points for each function
Methods Interval PQ,20 (x) PQ,21 (x) PQ,22 (x)

C00 = 2.000000000000 C01 = 1.000000000000 C02 = −1.000000000000
]0, 0.1] C10 = 3.500000000000 C11 = 1.000000000000 C12 = −1.000000000000

C20 = 4.991448639638 C21 = 1.999999999997 C22 = −0.499999999434

C00 = 2.000000000000 C01 = 1.000000000000 C02 = −1.000000000000
]0.1, 0.2] C10 = 3.500000000000 C11 = 1.000000000000 C12 = −1.000000000000

C20 = 4.978635126166 C21 = 1.999999999965 C22 = −0.499999998681

C00 = 2.000000000000 C01 = 1.000000000000 C02 = −1.000000000000
]0.2, 0.3] C10 = 3.500000000000 C11 = 1.000000000000 C12 = −1.000000000000

C20 = 4.966525349698 C21 = 1.999999999855 C22 = −0.499999997856

C00 = 2.000000000000 C01 = 1.000000000000 C02 = −1.000000000000
]0.3, 0.4] C10 = 3.500000000000 C11 = 1.000000000000 C12 = −1.000000000000

C20 = 4.957359583196 C21 = 1.999999999609 C22 = −0.499999997028

C00 = 2.000000000000 C01 = 1.000000000000 C02 = −1.000000000000
]0.4, 0.5] C10 = 3.500000000000 C11 = 1.000000000000 C12 = −1.000000000000

NCP2BS C20 = 4.952023072809 C21 = 1.999999999169 C22 = −0.499999996274

C00 = 2.000000000000 C01 = 1.000000000000 C02 = −1.000000000000
]0.5, 0.6] C10 = 3.500000000000 C11 = 1.000000000000 C12 = −1.000000000000

C20 = 4.950374272935 C21 = 1.999999998489 C22 = −0.499999995668

C00 = 2.000000000000 C01 = 1.000000000000 C02 = −1.000000000000
]0.6, 0.7] C10 = 3.500000000000 C11 = 1.000000000000 C12 = −1.000000000000

C20 = 4.951655066708 C21 = 1.999999997543 C22 = −0.499999995271

C00 = 2.000000000000 C01 = 1.000000000000 C02 = −1.000000000000
]0.7, 0.8] C10 = 3.500000000000 C11 = 1.000000000000 C12 = −1.000000000000

C20 = 4.954905674858 C21 = 1.999999996333 C22 = −0.499999995114

C00 = 2.000000000000 C01 = 1.000000000000 C02 = −1.000000000000
]0.8, 0.9] C10 = 3.500000000000 C11 = 1.000000000000 C12 = −1.000000000000

C20 = 4.959250140980 C21 = 1.999999994883 C22 = −0.499999995189

C00 = 2.000000000000 C01 = 1.000000000000 C02 = −1.000000000000
]0.9, 1] C10 = 3.500000000000 C11 = 1.000000000000 C12 = −1.000000000000

C20 = 4.964022227702 C21 = 1.999999993235 C22 = −0.499999999434

MCP2BS C00 = 2.000000000000 C01 = 1.000000000000 C02 = −1.000000000000

Continued on next page

14 Bulletin of the Karaganda University



The quadratic B-spline method for ...

Continued from previous page
Methods Interval PQ,20 (x) PQ,21 (x) PQ,22 (x)

]0, 1] C10 = 3.500000000000 C11 = 1.000000000000 C12 = −1.000000000000
C20 = 4.962619915469 C21 = 1.999999997908 C22 = −0.499999996534

FFCP2BS C00 = 2.000000000000 C01 = 1.000000000000 C02 = −1.000000000000
]0, 1] C10 = 3.500000000000 C11 = 1.000000000000 C12 = −1.000000000000

C20 = 4.977735433670 C21 = 1.999999996616 C22 = −0.499999997407

FCP2BS C00 = 2.000000000000 C01 = 1.000000000000 C02 = −1.000000000000
]0, 1] C10 = 3.500000000000 C11 = 1.000000000000 C12 = −1.000000000000

C20 = 4.991448639638 C21 = 1.999999999997 C22 = −0.499999999419

From the equation (7), we obtain the approximate solution for the classical and fractional-order linear
systems of Volterra integro-differential equations (SVIDE’s-CF) with variable coefficients, as shown
below:

PQ,20 (x)

NCP2BS
=



2.0000000000(1− x)2 + 7.0000000000x(1− x) + 4.991448639638x2, 0 < x ≤ 1
10 ,

2.0000000000(1− x)2 + 7.0000000000x(1− x) + 4.978635126166x2, 1
10 < x ≤ 1

5 ,

2.0000000000(1− x)2 + 7.0000000000x(1− x) + 4.966525349698x2, 1
5 < x ≤ 3

10 ,

2.0000000000(1− x)2 + 7.0000000000x(1− x) + 4.957359583196x2, 3
10 < x ≤ 2

5 ,

2.0000000000(1− x)2 + 7.0000000000x(1− x) + 4.952023072809x2, 2
5 < x ≤ 1

2 ,

2.0000000000(1− x)2 + 7.0000000000x(1− x) + 4.950374272935x2, 1
2 < x ≤ 3

5 ,

2.0000000000(1− x)2 + 7.0000000000x(1− x) + 4.951655066708x2, 3
5 < x ≤ 7

10 ,

2.0000000000(1− x)2 + 7.0000000000x(1− x) + 4.954905674858x2, 7
10 < x ≤ 4

5 ,

2.0000000000(1− x)2 + 7.0000000000x(1− x) + 4.959250140980x2, 4
5 < x ≤ 9

10 ,

2.0000000000(1− x)2 + 7.0000000000x(1− x) + 4.964022227702x2, 9
10 < x ≤ 1.0,

PQ,21 (x)

NCP2BS
=



1.000000000000(1− x)2 + 2.000000000000x(1− x) + 1.999999999997x2, 0 < x ≤ 1
10 ,

1.000000000000(1− x)2 + 2.000000000000x(1− x) + 1.999999999965x2, 1
10 < x ≤ 1

5

1.000000000000(1− x)2 + 2.000000000000x(1− x) + 1.999999999855x2, 1
5 < x ≤ 3

10 ,

1.000000000000(1− x)2 + 2.000000000000x(1− x) + 1.99999999960x2, 3
10 < x ≤ 2

5 ,

1.000000000000(1− x)2 + 2.000000000000x(1− x) + 1.999999999169x2, 2
5 < x ≤ 1

2 ,

1.000000000000(1− x)2 + 2.000000000000x(1− x) + 1.999999998489x2, 1
2 < x ≤ 3

5 ,

1.000000000000(1− x)2 + 2.000000000000x(1− x) + 1.999999997543x2, 3
5 < x ≤ 7

10 ,

1.000000000000(1− x)2 + 2.000000000000x(1− x) + 1.999999996333x2, 7
10 < x ≤ 4

5 ,

1.000000000000(1− x)2 + 2.000000000000x(1− x) + 1.999999994883x2, 4
5 < x ≤ 9

10 ,

1.000000000000(1− x)2 + 2.000000000000x(1− x) + 1.999999993235x2, 9
10 < x ≤ 1.0,

Mathematics Series. No. 4(120)/2025 15



D.Kh. Abdullah et al.

PQ,22 (x)

NCP2BS
=



−1.000000000000(1− x)2 − 2.000000000000x(1− x)− 0.499999999434x2, 0 < x ≤ 1
10 ,

−1.000000000000(1− x)2 − 2.000000000000x(1− x)− 0.499999998681x2, 1
10 < x ≤ 1

5 ,

−1.000000000000(1− x)2 − 2.000000000000x(1− x)− 0.499999997856x2, 1
5 < x ≤ 3

10 ,

−1.000000000000(1− x)2 − 2.000000000000x(1− x)− 0.499999997028x2, 3
10 < x ≤ 2

5 ,

−1.000000000000(1− x)2 − 2.000000000000x(1− x)− 0.499999996274x2, 2
5 < x ≤ 1

2 ,

−1.000000000000(1− x)2 − 2.000000000000x(1− x)− 0.499999995668x2, 1
2 < x ≤ 3

5 ,

−1.000000000000(1− x)2 − 2.000000000000x(1− x)− 0.499999995271x2, 3
5 < x ≤ 7

10 ,

−1.000000000000(1− x)2 − 2.000000000000x(1− x)− 0.499999995114x2, 7
10 < x ≤ 4

5 ,

−1.000000000000(1− x)2 − 2.000000000000x(1− x)− 0.499999995189x2, 4
5 < x ≤ 9

10 ,

−1.000000000000(1− x)2 − 2.000000000000x(1− x)− 0.499999995461x2, 9
10 < x ≤ 1.0,

PQ,20 (x)

MCP2BS
=
{

2.000000000000(1− x)2 + 7.000000000000x(1− x) + 4.962619915469x2, 0 < x ≤ 1,

PQ,21 (x)

MCP2BS
=
{

1.000000000000(1− x)2 + 2.000000000000x(1− x) + 1.999999997908x2, 0 < x ≤ 1,

PQ,22 (x)

MCP2BS
=
{
−1.000000000000(1− x)2 − 2.000000000000x(1− x)− 0.499999996534x2, 0 < x ≤ 1,

PQ,20 (x)

FFCP2BS
=
{

2.000000000000(1− x)2 + 7.000000000000x(1− x) + 4.977735433670x2, 0 < x ≤ 1,

PQ,21 (x)

FFCP2BS
=
{

1.000000000000(1− x)2 + 2.000000000000x(1− x) + 1.999999996616x2, 0 < x ≤ 1,

PQ,22 (x)

FFCP2BS
=
{
−1.000000000000(1− x)2 − 2.000000000000x(1− x)− 0.499999997407x2, 0 < x ≤ 1,

PQ,20 (x)

FCP2BS
=
{

2.000000000000(1− x)2 + 7.000000000000x(1− x) + 4.991448639638x2, 0 < x ≤ 1,

PQ,21 (x)

FCP2BS
=
{

1.000000000000(1− x)2 + 2.000000000000x(1− x) + 1.999999999997x2, 0 < x ≤ 1,

PQ,22 (x)

FCP2BS
=
{
−1.000000000000(1− x)2 − 2.000000000000x(1− x)− 0.499999999419x2, 0 < x ≤ 1.

Tables 2–4 demonstrate a comparison of the approximate solution with the exact solution of U0(x),
U1(x), and U2(x). By setting N = 10, h = 0.1, and xr = a + rh for r = 0, 1, . . . , N − 1, we compare
four methods of quadratic B-spline curves: NCP2BS, MCP2BS, FFCP2BS, and FCP2BS, respectively.
Finally Table (5) compares the least square errors for two algorithms (FCP2BS) and (MCP2BS) with
various choices of step size.

16 Bulletin of the Karaganda University



The quadratic B-spline method for ...

T a b l e 2

Compares the exact and approximate based on a least square error of U0(x)

Approximate Solution PQ,20 (x) (10, 0.1)
xr Exact U0(xr) NCP2BS MCP2BS FFCP2BS FCP2BS
0 2.0 2.000000000000 2.000000000000 2.000000000000 2.000000000000
0.1 2.3 2.299914486396 2.299626199155 2.299777354337 2.299914486396
0.2 2.6 2.599145405046 2.598504796619 2.599109417347 2.599657945586
0.3 2.9 2.896987281472 2.896635792392 2.897996189030 2.899230377567
0.4 3.2 3.193177533311 3.194019186475 3.196437669387 3.198631782342
0.5 3.5 3.488005768202 3.490654978867 3.494433858418 3.497862159909
0.6 3.8 3.782134738256 3.786543169569 3.791984756121 3.796921510270
0.7 4.1 4.076310982687 4.081683758580 4.089090362498 4.095809833423
0.8 4.4 4.371139631909 4.376076745900 4.385750677549 4.394527129368
0.9 4.7 4.666992614193 4.669722131530 4.681965701273 4.693073398107
1 5.0 4.964022227701 4.962619915469 4.977735433670 4.991448639638
L.S.E 4.29736734820×10−3 3.53970591382 ×10−3 1.25578445284 ×10−3 1.85249498044 ×10−4

R.T./sec. 2.2315187454223 2.4110293388366 2.6110293388366 3.0368537902832

T a b l e 3

Compares the exact and approximate based on a least square error of U1(x)

Approximate Solution PQ,21 (x) (10, 0.1)
xr Exact U1(xr) NCP2BS MCP2BS FFCP2BS FCP2BS
0 1.00 1.000000000000 1.000000000000 1.000000000000 1.000000000000
0.1 1.01 1.009999999999 1.009999999979 1.009999999966 1.010000000000
0.2 1.04 1.039999999998 1.039999999916 1.039999999865 1.040000000000
0.3 1.09 1.089999999986 1.089999999812 1.089999999695 1.090000000000
0.4 1.16 1.159999999937 1.159999999665 1.159999999459 1.160000000000
0.5 1.25 1.249999999792 1.249999999477 1.249999999154 1.249999999999
0.6 1.36 1.359999999455 1.359999999247 1.359999998782 1.359999999999
0.7 1.49 1.489999998796 1.489999998975 1.489999998342 1.489999999999
0.8 1.64 1.639999997653 1.639999998661 1.639999997834 1.639999999998
0.9 1.81 1.809999995856 1.809999998305 1.809999997259 1.809999999998
1 2.00 1.999999993237 1.999999997908 1.999999996616 1.999999999997
L.S.E 7.0199557924×10−17 1.1086895011 ×10−17 2.9009973891 ×10−17 2.2801089911 ×10−23

R.T./sec. 2.2315187454223 2.4110293388366 2.6110293388366 3.0368537902832

T a b l e 4

Compares the exact and approximate based on a least square error of U2(x)

Approximate Solution PQ,22 (x) (10, 0.1)
xr Exact U2(xr) NCP2BS MCP2BS FFCP2BS FCP2BS
0 −1.000 −1.00000000000 −1.00000000000 −1.00000000000 −1.00000000000
0.1 −0.995 −0.99499999999 −0.99499999996 −0.99499999997 −0.994999999994
0.2 −0.980 −0.97999999994 −0.97999999986 −0.97999999989 −0.979999999977
0.3 −0.955 −0.95499999980 −0.95499999969 −0.95499999977 −0.954999999949
0.4 −0.920 −0.91999999952 −0.91999999945 −0.91999999959 −0.919999999909
0.5 −0.875 −0.87499999906 −0.87499999914 −0.87499999936 −0.874999999858
0.6 −0.820 −0.81999999843 −0.81999999877 −0.81999999908 −0.819999999796
0.7 −0.755 −0.75499999767 −0.75499999833 −0.75499999874 −0.754999999723
0.8 −0.680 −0.67999999686 −0.67999999782 −0.67999999836 −0.679999999638
0.9 −0.595 −0.59499999609 −0.59499999724 −0.59499999793 −0.594999999542
1 −0.500 −0.49999999545 −0.49999999659 −0.49999999744 −0.499999999434
L.S.E 5.6479062171×10−17 2.9319410000 ×10−17 1.6511565195×10−17 8.1155790437×10−19

R.T./sec. 2.2315187454223 2.4110293388366 2.6110293388366 3.0368537902832

Mathematics Series. No. 4(120)/2025 17



D.Kh. Abdullah et al.

T a b l e 5
The least square error with different step sizes for U0(x), U1(x), and U2(x)

L.S.E
PQ,20 (x) PQ,21 (x) PQ,22 (x)

N = 20 3.3804747524859968× 10−3 9.261094453318532× 10−18 2.853188809643298× 10−17

MCP2BS N = 50 3.2834709955904783× 10−3 8.28101310189266× 10−18 2.738736379765375× 10−17

N = 100 3.2510081333708340× 10−3 7.972488621480216× 10−18 2.7005547497925035× 10−17

N = 1000 3.251008133370834× 10−3 7.696289581642592× 10−18 2.667571186072652× 10−17

N = 20 2.499554593756400× 10−5 9.86076131526260× 10−32 1.596004257270100× 10−19

FCP2BS N = 50 1.564846997979940× 10−6 8.86076131526260× 10−32 1.745188520809840× 10−20

N = 100 1.821769238662400× 10−7 7.86076131526260× 10−32 3.468085471432110× 10−21

N = 1000 1.18952321777046× 10−10 6.86076131526260× 10−32 1.01330642945647× 10−23

4 Conclusion

In this paper, we constructed a numerical technique for solving systems of Volterra integro-differen-
tial equations that involve both classical and fractional derivatives (SVIDE’s-CF) with variable coef-
ficients based on quadratic B-spline functions. Four algorithms, NCP2BS, MCP2BS, FFCP2BS, and
FCP2BS, were successfully introduced. The control points were determined by converting the system of
VIDEs-CF into a system of linear algebraic equations, which was then solved using the Jacobian method
and the Clenshaw-Curtis quadrature rule. Numerical experiments demonstrated that all the proposed
methods are novel and significant for our research. Furthermore, we show that FCP2BS outperforms
the other algorithms in terms of accuracy and computational efficiency, simplifies the analysis and
ensures that computations remain manageable using software such as Python. In general, Table 5
demonstrates that as the value of N increases, the approximation significantly improves. As a future
direction, we aim to extend this framework by exploring more sophisticated spline functions, including
modified quadratic, cubic, trigonometric, and exponential B-splines.

Author Contributions

Most of this work was done by D.Kh. Abdullah. K.HF. Jwamer helped in auditing the results,
providing critical revisions, and confirming the accuracy of the results. Sh.Sh. Ahmed helped in the
review and assisted in the improvement of the analysis. All the authors revised the manuscript and
approved the final manuscript.

Conflict of Interest

The authors declare no conflict of interest.

References

1 Podlubny, I. (1999). Fractional Differential Equations (Vol. 198). San Diego, CA: Academic
Press.

2 Podlubny, I. (2002). Geometric and physical interpretation of fractional integration and fractional
differentiation. Fractional Calculus and Applied Analysis, 5 (4), 367–386.

3 Owolabi, M., & Abdon, A. (2019). Numerical Methods for Fractional Differentiation. Singapore:
Springer. https://doi.org/10.1007/978-981-15-0098-5

4 Mariya, K. (2005). Properties and Applications of the Caputo Fractional Operator. Karlsruhe.

18 Bulletin of the Karaganda University



The quadratic B-spline method for ...

5 Bangti, J. (2021). Fractional Differential Equations. Cham: Springer. https://doi.org/10.1007/
978-3-030-76043-4

6 Yeolekar, M., Dave, D., & Khirsariya, R. (2024). Solution of a cancer treatment model of a drug
targeting treatment through nanotechnology using Adomian decomposition Laplace transform
method. Interactions, 245, Article 278. https://doi.org/10.1007/s10751-024-02114-6

7 Chavada, A., Pathak, N., & Khirsariya, R. (2024). A fractional mathematical model for as-
sessing cancer risk due to smoking habits. Mathematical Modelling and Control, 4 (3), 246–259.
https://doi.org/10.3934/mmc.2024020

8 Said, A., Mouffak, B., Jamal, E., Juan, J., & Yong, Zh. (2023). Fractional Differential Equa-
tions and Inclusions: Classical and Advanced Topics. London: World Scientific Publishing Co.
https://doi.org/10.1142/12993

9 Weilbeer, M. (2005). Efficient Numerical Methods for Fractional Differential Equations and Their
Analytical Background (Doctoral dissertation). Braunschweig: Technische Universität Braun-
schweig.

10 Benzahi, A., Arar, N., Abada, N., Rhaima, M., & Mchiri, L. (2023). Numerical investigation
of Fredholm fractional integro-differential equations by least squares method and compact com-
bination of shifted Chebyshev polynomials. Journal of Nonlinear Mathematical Physics, 30,
1392–1408. https://doi.org/10.1007/s44198-023-00128-2

11 Ghosh, B., & Mohapatra, J. (2023). An iterative difference scheme for solving arbitrary order
nonlinear Volterra integro-differential population growth model. The Journal of Analysis, 32,
57–72. https://doi.org/10.1007/s41478-023-00593-4

12 Rahimkhani, P., & Ordokhani, Y. (2020). Approximate solution of nonlinear fractional integro-
differential equations using fractional alternative Legendre functions. Journal of Computational
and Applied Mathematics, 365, Article 112365. https://doi.org/10.1016/j.cam.2019.112365

13 Zada, A., Riaz, U., Jamshed, J., Alam, M., & Kallekh, A. (2024). Analysis of impulsive Ca-
puto fractional integro-differential equations with delay. Mathematical Methods in the Applied
Sciences, 48 (2), 2102–2121. https://doi.org/10.1002/mma.10426

14 Amin, M.B.M., & Ahmad, S.S. (2022). Laplace transform for solving system of integro-fractional
differential equations of Volterra type with variable coefficients and multi-time delay. Symmetry,
14 (5), 984. https://doi.org/10.3390/sym14050984

15 Akhlaghi, S., Tavassoli Kajani, M., & Allame, M. (2023). Numerical solution of fractional order
integro-differential equations via Müntz orthogonal functions. Journal of Mathematics, 2023,
Article ID 6647128. https://doi.org/10.1155/2023/6647128

16 Yuzbasi, S. (2024). Fractional Bell collocation method for solving linear fractional integro-
differential equations. Mathematical Sciences, 18 (1), 29–40. https://doi.org/10.1007/s40096-
022-00482-0

17 Jwamer, K.H.F., Ahmed, Sh.Sh., & Abdullah, D.Kh. (2021). Approximate solution of Volterra
integro-fractional differential equations using quadratic spline function. Bulletin of the Karaganda
University. Mathematics Series, 1(101), 50–64. https://doi.org/10.31489/2021M1/50-64

18 Karwan, H.F.J., Shazad, Sh.A., & Diar, Kh.A. (2020). Numerical treatment solution of Volterra
integro-fractional differential equation by using linear spline function. Journal of Zankoy Su-
laimani — Part A, 22 (2), 327–338. https://doi.org/10.17656/jzs.10832

19 Masti, I., & Sayevand, K. (2024). On collocation–Galerkin method and fractional B-spline func-
tions for a class of stochastic fractional integro-differential equations. Mathematics and Compu-
ters in Simulation, 216, 263–287. https://doi.org/10.1016/j.matcom.2023.09.013

20 Mirzaee, F., & Alipour, S. (2020). Cubic B-spline approximation for linear stochastic integro-

Mathematics Series. No. 4(120)/2025 19

https://doi.org/10.1007/978-3-030-76043-4
https://doi.org/10.1007/978-3-030-76043-4
https://doi.org/10.1007/s44198-023-00128-2
https://doi.org/10.1007/s41478-023-00593-4
https://doi.org/10.1016/j.cam.2019.112365
https://doi.org/10.1002/mma.10426
https://doi.org/10.3390/sym14050984
https://doi.org/10.1155/2023/6647128
https://doi.org/10.1007/s40096-022-00482-0
https://doi.org/10.1007/s40096-022-00482-0
https://doi.org/10.31489/2021M1/50-64
https://doi.org/10.17656/jzs.10832


D.Kh. Abdullah et al.

differential equation of fractional order. Journal of Computational and Applied Mathematics,
336, 112440. https://doi.org/10.1016/j.cam.2019.112440

21 Maleknejad, Kh., & Rostami, Y. (2019). B-spline method for solving Fredholm integral equations
of the first kind. International Journal of Industrial Mathematics, 11 (1), 63–70.

22 Rajani, B., & Debasish, D. (2011). A Mixed Quadrature Rule by Blending Clenshaw–Curtis
and Gauss–Legendre Quadrature Rules for Approximation of Real Definite Integrals in Adaptive
Environment, I. Hong Kong: Newswood Limited, International Association of Engineers.

23 Ronald, N., & Tom, L. (1993). Knot Insertion and Deletion Algorithms for B-Spline Curves and
Surfaces. Washington, DC: Library of Congress Cataloging in Publication.

24 Abdullah, D.Kh., Ahmed, Sh.Sh., & Jwamer, K.H.F. (2025). An approximate solutions technique
using quadratic B-spline functions for a system of Volterra integro-fractional differential equa-
tions. New Mathematics and Natural Computation, 1–32. https://doi.org/10.1142/S1793005727
500566

25 Abdullah, D.Kh., Ahmed, Sh.Sh., Jwamer, K.H.F. (2025). Employing Cubic B-Spline Functions
to Solve Linear Systems of Volterra Integro-Fractional Differential Equations with Variable Co-
efficients. European Journal of Pure and Applied Mathematics, 18 (4), 6763. https://doi.org/
10.29020/nybg.ejpam.v18i4.6763

Author Information∗

Diar Khalid Abdullah — PhD Student, Department of Mathematics, College of Science,
University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq; e-mail: Diar.khalid85@gmail.com;
https://orcid.org/0009-0005-4245-0493

Karwan Hama Faraj Jwamer (corresponding author) — Doctor of Mathematics (Differen-
tial Equations), Professor, Department of Mathematics, College of Science, University of Sulaimani,
Sulaymaniyah, Kurdistan Region, Iraq; e-mail: karwan.jwamer@univsul.edu.iq ; https://orcid.org/0000-
0003-4009-0357

Shazad Shawki Ahmed — Doctor of Mathematics (Numerical Analysis), Professor, Department
of Mathematics, College of Science, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq;
e-mail: Shazad.ahmed@univsul.edu.iq ; https://orcid.org/0000-0002-9409-4743

∗Authors’ names are presented in the order: First name, Middle name, and Last name.

20 Bulletin of the Karaganda University

https://doi.org/10.1016/j.cam.2019.112440
https://doi.org/10.1142/S1793005727500566
https://doi.org/10.1142/S1793005727500566
https://doi.org/10.29020/nybg.ejpam.v18i4.6763
https://doi.org/10.29020/nybg.ejpam.v18i4.6763
https://orcid.org/0009-0005-4245-0493
https://orcid.org/0000-0003-4009-0357
https://orcid.org/0000-0003-4009-0357
https://orcid.org/0000-0002-9409-4743

