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Local boundary value problems for hyperbolic differential equations have been studied in considerable
detail. However, the mathematical modeling of a number of real-world processes leads to nonlocal boundary
value problems involving nonlinear hyperbolic differential equations, which remain poorly understood. In
this paper, we consider a system of hyperbolic equations defined by both point and integral boundary
conditions in a rectangular domain. To the best of our knowledge, such a problem is studied here for
the first time. We note that this formulation is quite general and encompasses several special cases. The
classical Goursat-Darboux problem-a problem with integral boundary conditions in which some boundary
conditions are specified as point conditions and others as integral conditions-is derived from this formulation
as a particular case. Under natural conditions on the initial data, the necessary conditions for the solvability
of a nonlocal boundary value problem are established. A corresponding Green‘s function for the boundary
value problem is constructed and the problem is reduced to an equivalent integral equation. Using the
principle of contracting Banach maps, conditions for the existence and uniqueness of a solution to the
boundary value problem are established. An example is given illustrating the validity of the obtained
results.
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Introduction

Recently, intensive research has been carried out on nonlocal boundary value problems for both
ordinary and partial differential equations. The significance of these problems was emphasized in [1].
If, instead of classical boundary conditions, algebraic relations are defined between the values of the
unknown function on the boundary and/or inside the domain, such a boundary value problem is
referred to as a nonlocal boundary value problem [2-4|. These algebraic relations can be expressed in
terms of pointwise values of the unknown function and/or its integral.

Non-local condition boundary value problems arise while constructing mathematical models of
processes that occur in atomic and nuclear physics, demography, heating processes and in other fields
of natural science. The papers [5, 6| study one-dimensional nonlinear hyperbolic equations given with
integral and multipoint boundary conditions. Sufficient conditions for the existence and uniqueness of
the problem are found.

In [7-9], a system of hyperbolic equations is investigated under two-point and integral boundary
conditions. The Green‘s function for the problem is constructed, the boundary value problem is reduced
to an equivalent integral equation, and sufficient conditions for the existence and uniqueness of the
solution are obtained.
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In [10-12], a nonlocal problem with integral conditions for a system of hyperbolic equations in a
rectangular domain is analyzed. The existence of a unique classical solution and the methods for its
construction are discussed.

Kozhanov A.l. and Pulkina L.S. investigated a multidimensional hyperbolic equation with integral
boundary conditions in [13].

In [14-16], a nonlocal boundary value problem with an integral condition for a system of hyper-
bolic equations was considered, and necessary and sufficient conditions for its well-posedness were
established.

Papers [17-19] study the existence and uniqueness of strong solutions using methods of functional
analysis.

Paper [20] analyzes an optimal control problem with integral boundary conditions.

In the present work, we consider a Goursat—Darboux system with pointwise and integral condition.
A necessary condition for the solvability of the problem is proved. The problem considered is reduced to
an equivalent equation by means of equivalent transformations. Sufficient conditions for the existence
and uniqueness of the solution are found by means of the Banach compressed mapping principle.

1 Problem statement

We consider a non-local problem with integral and pointwise boundary conditions for a Goursat—
Darboux system in the domain @ = [0,7] x [0, []:

2te = f(t,x, 2(t, x)), (1)
T

Ax(0,0) + [ n():(t. )it = (o), @ € 0.1, )

0

!
Bz(t,0) + /m(m)z(t, z)dz = (t), t€0,T]. (3)

0
Here, z(t,z) = col(z(t,x), z2(t,z), ..., 2p(t,x)) is an unknown n-dimensional vector-function;

f:Q x R"™— R" is a given function; ¢(z),(t) are functions that are differentiable on [0, 77, [0, ] re-
spectively. A, B € R™*™ are the given matrices, n(t) and m(x) are n x n-dimensional matrix functions.

T !
det (A + f n(t)dt) #0, det | B+ [ m(z)dz | # 0. Furthermore, the matrices 4, n(t) and B, m(z) are
0 0

pairwise commutative. So, A-B = B-A, A-m(x) = m(z)-A, B-n(t) = n(t)-B,m(z)-n(t) = n(t)-m(z).

Note that problem (1)—(3) is quite general. For example, if the matrices A and B are both zero, then
the problem reduces to one with pure integral conditions. When A = B = E and n(t) = m(z) = 0,
we obtain the classical Goursat—-Darboux problem, and there are other variants.

2 Main results

In the paper, it is shown that for the solvability of problem (1)—(3) the compatability condition of
functions (z) and ¢ (t) is satisfied.

Theorem 1. For the solvability of problem (1)—(3), it is necessary that the compatibility condition
l T
Bo(O) + [ ma)plalds = 40(0) + [ n(0u)de
0 0
is fulfilled.
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Proof. Let us find the solution of equation (1) as follows:

z(t,z) = a(t) + b(x) + //f(r, s, z(7, s))dr ds,
00

(4)

where the functions a(t) and b(x) are unknown differentiable functions and are determined in the
intervals [0,77,[0,1], respectively. We require that the function determined by equality (4) satisfies

boundary conditions (2) and (3). Then, we obtain the relations

T

Ala(0) + b(z)] + /n(t) {a(t) + b(z) —|—/ /f(T,s,z(T, s))dr ds] dt
0 0

0

T T
= Aa(0) + / n(t)a(t)dt + (A+ / n(t)dt) b(z)
0 0

T t x
+ [ n(t) f(r,s,2(7,8))drdsdt = p(x), = € 0,1].
O/ [
l t x
Bla )N+ [ m(z )+ b(x) + f(r,s,2(7,s))dr ds| dx
ore foir s | | ]
l
= | B+ m(x)da:) )+ Bb(0) +
( /
l t =z
+ [ m(x) f(7,8,2(7,8))drds dx = 9(t), t €[0,T).
[*f]

Applying conditions (3) to relation (5) and conditions (2) to relation (6), we obtain

T T
Aa(0) + [ n(t)a(t)dt + (A+ / n(t)dt) b(O)}
0

l T
+ / m(z) / n(t)dt) b(@] dx
0

’I?’L

o _

o

T
Aa(0) + /n(t)a(t)dt + (A +
0

[e=]

t

T
o
0

l l
(B + /m(:):)dac) a(0) + Bb(0) + /m(x)b(x)d:r]
0 0
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T l !
—i—O/n(t) (B+O/m(x)d:c) a(t) + (Bb(O) +0/m(:c)b(a:)dx>] dt

+/T/l" /jf (7,5, 2(7,))dr ds dt dz = Ay (0 )+/Tn(t)¢(t)dt.
00 0 )

0

From this we obtain

T ! T l
Aa(0) + n(t)a(t)dt) (B—l— m(a:)dx) + (A+ n(t)dt) (Bb(()) + m(:v)b(w)dx)
(o ) (o frs) (o ) e

T 1 !

+/ /n(t)m /f 7,8,2(T,8))dT ds dt dx = Bp( )+/m(x)g0(:c)d$

00 0 0

T l l T
Aa(0) + n(t)a(t)dt) <B+ m(x)dx) + (Bb(O) + m(m)b(a:)da:) (A—i— n(t)dt)
(o o) (o] Jreves) ]

o\w

T 1 t =z T
+/ /n(t) / /f r5, 2(7, 8))dr ds di da = Ap(0) + /n(t)w(t)dt.
0 0 0 0
The right hand side equality is obtained from the left-hand side equality. O

In this paper, we construct the Green function for problem (1)—(3). We note that problem (1)—(3)
is reduced to an equivalent integral equation.

Theorem 2. The equivalent integral equation for the problem (1)—(3) is as follows

z ! T -
— (B+/m(:v)d:r) »(t) + <A+/n(t)dt) p()
0

0

! -1 T -1 !
- (B+/m(x)d:n) (A+/n(t)dt> (B@(O) —I—/m(x)go(w)da:)
0 0

+
O\’ﬂ
o _

«Q

ﬁ.

8

\]

Cla

\]

VA

X,

QU

\]

U

»

=

S~—

where
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'<A gn(a da) B+
—<A+
—<B+

l
n (o) da [ m(B)dp, t<T<Tx<s<lI.

C—uw

m ( ),OSTSt,O§s§$,

!
n( da)fm )dB, 0<rt<t,z<s<l,

O — o @

S
T
m ( d,8>fn do, t<7<T,0<s<u,

‘\%H

Proof. The unknown functions a(¢) and b(x) can be considered as solutions to a system of linear
algebraic equations defined by equalities (5) or (6). This system is of the n-th order. The sought
functions a(t) and b(z) have dimension 2n. It is clear that this system has an infinite set of solutions.

We fix an arbitrary solution. Let
T
Aa(0) + /n(t)a(t)dt =0
0

be an arbitrary solution.
Then, from equality (5), we find

xT

T -1 T T t
b(z) = (A—i—/n(t)dt) o(z) — (A—i—/n(t)dt) /n(t)/ /f(T,s,z(T, s))dr dsdt,
0 0 00

0

b(0) = <A+ / n(t)dt) £(0).

0

Taking the equalities b(z) and b(0) into account in equality (6), we get

! T -1
(B+/m(:c)dm) a(t) + (A+/n(t)dt) Bp(0)
0

0

l T -1 ! T -1

—i—o/m(x) (A—i—o/n(t)dt) o(z)dz — O/m(a:) (A—i—()/n(t)dt)
T t x l t
Xo/n(t)o//fTsz desdtdac+0/m 0/

Hence,

f(r,8,2(7,8))dT dsdx = (t).

Ot~
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I -1 T -y t =
+ (B+/m(a:)dx) (A+/n(t)dt) X / /m(:c)n(t //f ))dT ds dt dz
0 0 0 0 0
(B—i—/lm ) /m /t]f ))dT ds dzx. (9)

0 0

Taking into account equalities (8) and (9) obtained for functions b(z) and a(t) in equality (4)

4), we
have
! -1 T -1
+ [ m(z P(t)+ [ A+ n(t)dt) ()
(o frs) o]

0

0 0
We make the same transformations in equality (10) as follows

T

/ / n(T)dT) (L, 2(t, $))dt ds,
0

t

\
\
8 \

\

\]

Cn

o

\]

Cn

=

\]

QL

»

QL

S

I
O\ﬂ

l
/m(s)ds) f(r,z, z(r, x))dr dz,

l t
m(x f(r,s,2(7,8))drdsdx =
0/ i
. T t x l
m(x f(r,s,2(7,s))drdsdt doe = n(t)dr m(s)ds) ft,x, z(t,x))dt de.
[[reomo] ] /

0 0
Taking into account these expressions in equality (10), we can write

T -1
m(m/m ) (M/n@dt) o

(B—i—/lm(x)dx) (A—I—/Tnt t)l By(0 —i—/lm ]
0 0 0
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8
S @«
= =
= =
0 =
N A
= =
R X
§ o
= X
- =
= 5
> =
S g
l/z T../t
..L/O $/0
~ Y~ S~
5 =
> +~>
8 ~—
— s
g B—
o
Z/O IT
+ <
2] N~ —
(

(11)

(t,z) € Q.

From equality (11) we obtain
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T 1 ! -1 T o !
oy (B+ / m(l‘)daz) (A+ / n(t)dt) [ nteya [ m(ﬁ)dﬂ]
t 0

T 0

x f(1,s,2(7,8))drds, (t,z) € Q. (12)

Given equality (12), we can write:

T -1 1 -1y
E - (A—I—/n(t)dt) /n(a)da— (B—I—/m(x)dx) /m(ﬂ)dﬁ
0

T

_l’_

} ~1 T -1
= — <B+/m(x)dx) (A /n(t)dt)
0

0

As a result, we obtain equation (7)

. -1 -1
2(t,x) = (B—i—/m(:v)d:r) Y(t) + (A—I—/n(t)dt) ()
0
. -1 T -1
- B+ m(x)dx) (A—i— n(t)dt)
[re i) (o]
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t ! -1 T -1
+ 0/ 0/ (B+ / m(a:)dx) (A+ / n(t)dt)

0

x | A+ n(a)da) <B+ m(ﬂ)dﬁ) f(r,s,2(7,s))dr ds
(1o ) (]

x
T - r -1
_t/o/ (B+0/m(m)dm) (A+O/n(t)dt>
x (B+ / m(ﬁ)dﬁ) /T n(a)da | f(r,s,2(r, s))dr ds
d d

T 1 I -1 T o !
_|_/ / (B+/m(:v)d$) (A—}—/n(t)dt) [/n(a)da/m(ﬁ)dﬁl
0 0

t x T s
X f(1,8,2(7,8))drds, (t,x)€ Q. (13)

In this equality, having determined the matrix-function G(t,x, 7, s), we proved the first part of the
theorem. We now calculate the derivative of the function z(t,z) determined by equality (13) with
respect to ¢ and x

, . -1 T -1
Zip(t, ) = 8(38:17 |:(B+/m(x)dx) P(t) + (A—l—/n(t)dt) o(x)
0

x | A+ n(a)da) <B+ m(ﬁ)dﬁ) f(T,S,Z(T,S))deS]
(1o froe) (2]

-1

(oo fros) (o )

0 =z 0

62
otox
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(A—i-] da) | m( dﬁ] f(r,s,2(7,s))dr ds]
T =z ! - T -1
Ot&n //(B+/m )dm) (A+/n(t)dt)
t 0 0 0
s T
(B+ O/m(ﬁ)dﬁ) /n ] 7,8, 2(T, s))des}
T l -1 T -1
Al o) o)

[T

]
x/ da/lm ] (7,8, 2(7, 8))dr ds
I -1 T -
(B+O/m(;p)d:1: (A+O/n t) AB+B/ da+A/m
| /t (e)dar [ m()ds + 4 / m(B)d5 + ] n(a)da / m(8)ds
g :

T

. o
+B/n(a)da—|—/m(ﬁ)dﬁ/n(a)da—i—/n(a)da/m(ﬁ)dﬂ]
t 0 t t

T

X f(t,x, z(t,x)) = f(t,z,2(t, x)).

We now show that the function defined by equation (11) satisfies the non-local boundary conditions

(2) and (3), with
; —1 T -1
(B—I—/m(x)dx) P(0) + (A+/n(t)dt) o(x)

0
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n(T)dT) f(t, s, z(t, s))dtds]

—

B
T/O

n(t)dt)

T/O

(M

173

A—i—/n(t)dt

m(s)ds) f(ryz, z(,x))dr dx
n(t)dt) — (

n(t)dt) o(x) (A—i—
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T l

X (A+O/:Fn(t)dt) O/To/l |:/n(r)d7'/m(s)ds] f(t,x, 2(t, x))dt do
/Tn(t)/l] (/m(s)ds) f(r,x, z(r, x))dr dz dt
0 00

T T
+// (/n(T)dT) f(t,s, z(t,s))dtds

0 0 \t

T ! -1
— (B + /m(z)daz) Bp(0) + ¢(x)
0

A6() + [ niieyde
T x /T

—// (/n(T)dT) f(t, s, z(t,s))dtds
0 0

0
! tl l !
— (B—I—/m(:x)dfc) /m(:v)gp(:n)dx—l— (B—i—/m(m)dm)
0 0 0

T 1 T l
X// |:/n(7')d7'/m(s)d3] ft,x, 2(t, z))dtdx
0 0 t
- (B-f—/lm(x)d:c) /Tn(t)/l/t (/m(s)ds) f(r,yz, z(7,x))dT de dt
0 0 0 0

-1

/-~
o
<
=
+
o\ﬂ
3
=
<
=
QU
~
~—
|
Y
&
S}
=
+
O\N
s
8
S}
R
o N
I
~—

In a similar way, we can show that the point-wise and integral boundary condition
l
Bz(t,0) + /m(x)z(t, z)dr =(t), tel0,T]
0
is satisfied. ]
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8 FExistence and uniqueness

It is seen from the proved theorem that problem (1)—(3) is equivalent to the integral equation

T -1

’ -1
2(t,x) = | B+ | m(z)dx P(t)+ [ A+ | n(t)dt o(x)
j ]

0

-1

l T l
- B—I—/m(w)dm A—I—/n(t)dt Bp(0) —I-/m(x)go(x)dx
0 0 0
T 1
+ G(t,z,,8)f(T,s,2)dr ds. (14)
[

In order to prove the existence and uniqueness of the solution to problem (1)—(3) we determine the
operator P : C(Q; R") — C (Q; R") as follows:

. -1 T -1
(Pz)(t,z) = | B+ [ m(x)dx () + | A+ [ n(t)dt o(x)
/ /
! -1 T -1 !
- B+/m(:v)d;r A+/n(t)dt Bp(0) —I-/m(;v)go(x)da:
0 0 0

T 1
—i—/ / G(t,z,7,8)f(T,s,2)dT ds.
0 0

It is known that solving problem (1)—(3) or integral equation (14) is equivalent to finding the fixed
point of the operator P. In other words, problem (1)—(3) has a solution if and only if the operator P
has a fixed point.

Theorem 3. Assume that the following conditions hold:
|f(t,x,20) — f(t,m,21)| < M|z — 21|, V(t,z) €Q, z1,20€ R", M >0 (15)

and
L=ITSM <1, (16)

where
S = max||G(t,z,T,s)|.
QXQ

Then, problem (1)—(3) has a unique solution in Q.
Proof. Denote

. -1 . -1
N = max B+/m(:c)dx P(t) + A+/n(t)dt o(x)
0
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! -1 T -1 l
- B+/m(az)d:ﬂ A+/n(t)dt Bp(0) +/m(x)go(x)d3: ,
0 0 0
max |f(t,z,0)| =M
|7 (t,0)| = My
and choose r > w We show that the relation PB, C B, holds, where

B, ={w € C(Q,R") : |2l <7}

For arbitrary z € B,, we have

T 1
|P=(t,2)]| < N // (L2, 7,8)| (1f (7, 5,27, 8) — f(7,5,0)] + |f(, 5,0)]) dr ds
0 0

l
N + M;TS
/ (M|2| + M) dt de < N + SMrTl+ M;TIS < % <r.
0

O\H

On the other hand, from condition (15) we obtain that for arbitrary 21, zo € B, the relation

T 1
|P22—le|s// (t, 2,7, 8)| (1 (r, 8, 22(7,8) — F (7,5, 21(7, 8)])
0 0

T 1
< S/ / |z2(t, z) — z1(t, z)|dtde < MSTlmaX’ZQ(t x) — z1(t,x)| < MSTI||zo — z1||
o 0

holds. Hence, we obtain
[Pz2 — Pz1|| < L|zg — z1]|.

Taking condition (16) into account we obtain that the operator P is compressive. So, problem

(1)=(3) has a unique solution.

4 Application of the obtained results

To illustrate the obtained results, let us consider the system of hyperbolic equations

Zote(t, ) = |21 (¢,2)] (t,x) € [0,1] x [0,1].

21tz (t, ) = 0.1 cos 29(t, x),
10(1+[z1 (t,2)])?

Assume that the following boundary conditions are satisfied

1
_ 2
221(0,z) + [tz1(t,x)dt = 22, e 0,1].

0
29(0,x) =1,

1
_ 2
221(0,z) + Ofle(t»ﬂf)dt =1t t €[0,1].

Zg(t, 0) =1

O

(17)
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Make the following notation:

=5 (33). o

O o+
o o
~
3
s
Il
7~
o8
oo
~

(29 () ] (2 0) (e ) (5)- e
(20) () (2 2) (2l Jaem (4 vcton
o (20 ()

B+/lm(x)dx _1: A~|—/Tn(t)dt :<064 ‘f)
0 0

Taking them into account:

7'2 s
0'16<2+ 2><2+ 2) 0), 0<7<t0<s<u,
, 0<7<t,r<s<,

), t<7<1,0<s <z,
t

<7r<l,z<s< 1.

G(t,z,T1,s) =

Let us estimate the main parameters of the boundary value problem (17)-(19). We have that the
following estimate holds for the norm of the Green function max |G (¢,z,7,s)|| < 1; the Lipschitz
constant M = 0.1, and the compression parameter L =1-1-0.1-1 = 0.1 < 1. So, all the conditions of
Theorem 3 are fulfilled and the boundary value problem (17)—(19) has a unique solution.

Conclusion

The present work studied a system of hyperbolic equations with non-local condition. Boundary
conditions are rather general. In the special case, it contains the classical Goursat—Darboux problem,
“pure” integral conditions, a boundary value problem whose part of the conditions is pointwise, the
other part is in integral form, and other cases.
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