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This paper explores the Monge–Ampere equation in the context of isotropic geometry. The study begins
with an overview of the fundamental properties of isotropic space, including its scalar product, distance
formula, and the nature of surfaces and curvatures within this geometric framework. A special focus is
placed on dual transformations with respect to the isotropic sphere, and the self-inverse property of the
dual surface is established. The article formulates the Monge–Ampere equation for isotropic space and
studies its invariant solutions under isotropic motions. Several lemmas are proved to demonstrate how so-
lutions transform under linear modifications and isotropic motions. A specific class of Monge–Ampere-type
nonlinear partial differential equations is solved analytically using dual transformations and separation of
variables. Additionally, translation surfaces and their curvature properties are studied in detail, particu-
larly through the lens of dual curvature. The results demonstrate the deep relationship between curvature
invariants and Monge–Ampere-type equations and show how duality simplifies the solution of nonlinear
PDEs. These methods can be used for surface reconstruction and modeling in isotropic spaces.
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Introduction

The Monge–Ampere equation occupies a prominent position in the theory of nonlinear partial
differential equations due to its rich mathematical structure and wide applicability in geometric analy-
sis, optimization, and mathematical physics. In classical differential geometry, this equation naturally
arises in the context of surface theory, particularly in problems involving the reconstruction of a surface
from curvature invariants [1]. A key feature of the Monge–Ampere equation is its close relationship
with convex geometry and curvature prescriptions, as first systematically studied by I.Ya. Bakelman
in the framework of the generalized Dirichlet problem for convex surfaces [2].

While significant progress has been achieved in Euclidean settings, the exploration of Monge–
Ampere-type equations in non-Euclidean geometries, such as isotropic or semi-Riemannian spaces, is
relatively recent. Isotropic geometry, which is a limiting case of semi-Euclidean geometry, provides a
degenerate metric structure where distances are defined in a directionally dependent manner. This de-
generate nature introduces novel phenomena not present in Riemannian or pseudo-Riemannian frame-
works, thereby making isotropic geometry a fertile ground for discovering new geometric properties
and solving PDEs under non-standard metrics [3].

In his book [4], O’Neill introduced fundamental concepts of semi-Riemannian geometry, from which
the notion of isotropic and degenerate metric spaces naturally arises as a special geometric model.

The geometry of isotropic space Rnn+1, as introduced, is characterized by a scalar product that is
degenerate not along a single axis. The differential geometry of isotropic space was first studied by
K. Strubecker [5, 6]. This leads to a unique classification of surfaces and transformations, including
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duality mappings with respect to the isotropic sphere. The theory of dual surfaces in isotropic space has
been actively developed in recent works, including the classification and reconstruction of surfaces via
dual curvature invariants [7]. The concept of dual transformation plays a central role in understanding
curvature-driven surface generation, a theme that appears throughout this study.

One of the central motivations for the present paper stems from the growing body of research
demonstrating that dual transformations in isotropic spaces offer elegant and computationally tractable
methods for solving highly nonlinear equations such as the Monge–Ampere equation. Generalizing
Lonen’s works [8], Artykbaev, Sultanov, and Ismoilov have shown in several studies [9] that the total
and mean curvatures of a surface and its dual are closely related, and that this relationship can be
used to construct surfaces with prescribed curvature characteristics. The present study builds upon
these foundational results and extends them in several directions. In the work by A. Polyanin [10],
certain solutions of the Monge–Ampere equation are presented without derivation. In contrast, in this
paper, we also explore a method for finding a different type of solution.

Firstly, we investigate the invariant form of the Monge–Ampere equation under isotropic motions
and provide a detailed analysis of its solutions under linear perturbations. The result that any solution
of the Monge–Ampere equation remains invariant under the addition of linear functions is well-known
in classical settings, but here it is adapted and rigorously proven for isotropic geometry, leading to new
insights into the geometry of the solution space.

Secondly, we focus on a special class of Monge–Ampere-type equations that arise in the context
of translation surfaces in isotropic space. Using the techniques of separation of variables and dual
transformation, we derive exact analytical solutions for these equations. In particular, we solve the
equation (

∂2z

∂x∂y

)2

− ∂2z

∂x2
· ∂

2z

∂y2
= f(x)y2,

by assuming a quadratic ansatz and reducing the resulting PDE to a system of ODEs. The general
solution is expressed in terms of integrals of nonlinear functions and demonstrates the applicability of
this approach to constructing explicit surfaces with curvature-driven features.

Thirdly, we introduce and analyze translation surfaces whose total curvature of the dual surface
is separable in the form K∗(x, y) = ϕ(x)ψ(y). Using the inverse problem framework, we demonstrate
that such dual curvature data uniquely determines the original surface up to an isotropic motion. This
result contributes to the general problem of surface reconstruction from curvature invariants and finds
relevance in applications such as surface design in computer graphics and shape optimization.

The geometric significance of these results lies in the structure of the isotropic space itself. Unlike
Euclidean geometry, where the normal to a surface is uniquely defined by the metric, in isotropic
geometry the notion of normality is more subtle. Here, we distinguish between the special normal
vector ~nm and the standard unit normal ~n, and we show that the second fundamental form and the
total curvature remain invariant under this choice. This confirms earlier findings in [11] and supports
the use of duality-based methods for analyzing surface properties.

Furthermore, in the final section of the paper, we consider an application of the Monge–Ampere
equation arising in the theory of plasticity and elasticity. A particular nonlinear equation governing
large deformations of elastic plates is shown to be a higher-order Monge–Ampere-type equation. We
demonstrate how this complex nonlinear equation can be transformed into a linear PDE with constant
coefficients by applying dual transformations, and we solve it using separation of variables. The
solution process also illustrates how dual mappings can be used not only in geometric but also in
physical models.

It is worth noting that similar approaches have been explored by researchers studying special sur-
faces in isotropic spaces, such as ruled, helicoidal, and Weingarten-type surfaces [12–15]. However, the
novelty of the present work lies in the formulation and solution of Monge–Ampere equations speci-
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fically in terms of dual curvature data, and the construction of explicit surface representations using
integrable systems techniques. The article [16] investigates the parametric and algebraic representa-
tions of minimal surfaces in four-dimensional Euclidean space. It presents a generalized form of the
Weierstrass–Enneper formula and analyzes the differential-geometric properties, projections, and
modeling significance of such surfaces. This approach is closely related to the methods applied in
solving the Monge—Ampere equation within isotropic geometry and provides an effective geometric
framework for studying related problems

1 Geometry of isotropic space

Let Oxi (i = 1... n+ 1) be a coordinate system in affine space An+1. The scalar product of vectors
−→
X (x1, x2, ..., xn+1) and

−→
Y (y1, y2, ..., yn+1) is defined by the following formula:

(
→
X ,
→
Y ) =


n∑
i=1

xiyi, if
n∑
i=1

xiyi 6= 0,

xn+1yn+1, if
n∑
i=1

xiyi = 0.
(1)

Definition 1. An affine space An+1, in which the scalar product of vectors is calculated using
formula (1), is called an isotropic space Rnn+1.

The scalar product (1) is called a degenerate scalar product.
Minkowski space is a pseudo-Euclidean space with index 1. It serves as a geometric framework for

the theory of relativity. This space also includes isotropic space as a special case. This can be seen in
the following lemma.

Lemma 1. The isotropic space Rnn+1 is a subspace of the (n + 2)-dimensional Minkowski space
1Rn+2 [11].

We define the norm of a vector in isotropic space Rnn+1 as the root of the scalar product of a vector

|
→
X | =

√ →
(X ,

→
X ), and the distances between points are defined as the norm of the vector connecting

these points.
If
→
X −

→
Y =

→
AB, then the distance between points A and B is calculated using the following

formula:

d =


√

n∑
i=1

(yi − xi)2 , if
√

n∑
i=1

(yi − xi)2 6= 0,

|yn+1 − xn+1|, if xi = yi (i = 1, n).

(2)

The hyperplanes in Rn−in+1(i = 1..n − 2) can be of two types — isotropic Rn−in+1 or Euclidean Rn.
Hyperplanes xn+1 = constant are Euclidean spaces. If a two-dimensional plane is considered and it is
parallel to the Oxn+1 axis, then the intrinsic geometry of this plane becomes Galilean. The intrinsic
geometry of the Galilean plane is presented in [17].

Since the isotropic space Rnn+1 is an affine space, there is an affine coordinate transformation that
maintains the distance defined by formula (2). This transformation is called the motion of isotropic
space Rnn+1 and is given by the following formula [3]:

X ′ = A ·X +B, A =

 AE
_________________

h1 h2 ... hn−1 hn

0
...
0
1

 , (3)
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where AE = (aij)i, j = 1..n
is the motion matrix in the Euclidean space Rn, BT = (b1, b2, ..., bn+1) is

the parallel translation vector, and (h1, h2, ..., hn, 1) is the vector with sliding coordinate components.
If we define a sphere in isotropic space as a set of geometric points equidistant from a given point

(x01, x
0
2, ..., x

0
n, xn+1), then its equation has the following form:

n∑
i=1

(xi − x0i )
2
= r2.

We will call this sphere a metric sphere.
Let us consider in the Rnn+1 a surface defined by the following vector equation [1]:

r(u1, u2, ..., un) =
(
xi(u1, u2, ..., un)|(u1, u2, ..., un) ∈ D ⊂ Rn, i = 1..(n+ 1)

)
. (4)

The first quadratic form of (4) a surface is defined by analogy with Euclidean space

I = ds2 =
n∑
i=1

n∑
j=1

gij duiduj ,

where gij are the coefficients of the first quadratic form of the surface and

gij = (
−→
r′ ui ,

−→
r′ uj ) =

n∑
k=1

(
∂xk
∂ui

,
∂xk
∂uj

)
.

In the case where ds2 = 0, an additional first quadratic form ds2 = dxn+1 is considered.
Since we mainly consider surfaces with a single-valued projection onto the plane xn+1 = 0, ds2 6= 0

for all points of the surface. Therefore, an additional first quadratic form of the surface is not considered.
The normal to the surface is taken to be the only orthogonal vector to all tangent vectors of the

surface −→nm(0, 0, ..., 0, 1) [9].
By analogy with the Euclidean space, the second quadratic form of the surface is defined as the

scalar product of the vector of the second-order differential d2−→r by the surface normal.
The surface normal needs a clear definition in order to handle the issues in question. To this end,

the following formula can be offered:
The standard, and orthogonal, form of the normals is given by

−→n =
[−→ru1 , ...,−→run ]
|[−→ru1 , ...,−→run ]|

,

in which [−→ru1 , ...,−→run ] signifies the vector product.
Since we consider two surface normals (the special normal −→nm and the normal −→n ), the formula for

the second quadratic form will be as follows:

II = (d2r,
−→
N ) =

n∑
i,j=1

Dijduiduj .

Here, Dij is the coefficient of the second quadratic form, calculated as:
1) Dij =

∂2xn+1

∂ui∂uj
, if
−→
N = −→nm,

2) Dij = (ruiuj ,
−→n ), if

−→
N = −→n .

In particular, if the surface is defined by the following equation

xn+1 = f(x1, x2, ..., xn), (5)
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where (x1, x2, ..., xn) ∈ D ⊂ Rn, then

II =
n∑

i,j=1

∂2xn+1

∂xi∂xj
duiduj .

Hyperplanes parallel to the normal vector are isotropic hyperplanes of the corresponding dimension.
In particular, a two-dimensional plane parallel to the normal vector is a two-dimensional isotropic plane,
called the Galilean plane [7]. Therefore, the geometry is Galilean in a two-dimensional normal section
of the surface. A two-dimensional normal section of the surface is a curve on the Galilean plane.

The curvature of the curve of the normal section is called the normal curvature of the curve on the
surface. The normal curvature of the curve on the surface is calculated by the following formula:

kn =
II

I
.

In isotropic space Rnn+1, the second sphere is a surface with constant normal curvature in all
directions, given by the following equation:

2xn+1 =

n∑
i=1

xi
2. (6)

Definition 2. The surface defined by equation (6) is called an isotropic sphere in Rnn+1.

The mean and total curvatures are the main geometric characteristics of a surface. The total
curvature of the surface (4) is calculated as:

K =
det
∣∣∣(Dij)i,j=1.n

∣∣∣
det
∣∣∣(gij)i,j=1.n

∣∣∣ .
Lemma 2. The total curvatures of the surface (5), determined by the normal and the special normal,

are mutually equal K = Km [11].

2 Dual transformation with respect to the isotropic sphere

Let the surface F be given by the equation (5) and suppose it lies within the isotropic sphere of
the space Rnn+1. Consider the set of points obtained via dual mapping of the tangent hyperplanes to
the surface F at each of its points, with respect to the isotropic sphere. This set forms a new surface
defined as follows.

Definition 3. The surface F ∗ is called the dual surface to the surface F with respect to the isotropic
sphere.

If the surface F is regular, then the dual surface F ∗ is also a surface and is given by the system:
x∗i =

∂f

∂xi
, i = 1, ... , n,

x∗n+1 =

n∑
i=1

xi ·
∂f

∂xi
− f.

Theorem 1. The dual image of the surface F ∗ coincides with the surface F ; that is,

F ∗∗ = F.
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The total curvature of the surface (5) has the form:

K =

∣∣∣∣∣∣∣∣∣
fx1x1 fx1x2 · · · fx1xn
fx2x1 fx2x2 · · · fx2xn
...

...
. . .

...
fxnx1 fxnx2 · · · fxnxn

∣∣∣∣∣∣∣∣∣ .
The right-hand side is the Monge–Ampere operator. In isotropic space, the problem of recovering

a surface from its total curvature is equivalent to solving the Monge–Ampere equation.

3 Monge–Ampere equation

I.Ya. Bakelman studied the connection between the extrinsic curvature of convex surfaces and the
second-order nonlinear Monge–Ampere equation [2]. In this case, I.Ya. Bakelman showed that the
solution of the generalized Dirichlet problem for the Monge–Ampere equation exists and is unique by
estimating the area of the normal image of the surface. The listed problems were solved only if the
domain D ⊂ R2 is convex where the function is defined. By applying the geometry of the Galilean
space, A. Artykbaev solved the problem for the existence and uniqueness of the convex surface for
the given extrinsic curvature if the domain D ⊂ R2 is non-convex [18]. Also, in the article [7], the
concept of generalized extrinsic curvature is given, and the existence and uniqueness of the solution to
the Monge–Ampere equation in the multi-connected domain is proved. The Monge–Ampere equation
in a discrete setting with a special invariant can be observed in the Sharipov’s works [19]. In [20, 21],
Lions and Urbas established the existence and regularity results for a wide class of fully nonlinear
elliptic PDEs. The paper [22], provides a clear and accessible overview of the modern theory of the
Monge–Ampere equation. It discusses the notion of Alexandrov (weak) solutions, interior and boundary
regularity results, and classical methods developed by Calabi, Cheng–Yau, and Lions. The article also
emphasizes the analytical and geometric aspects of the equation, offering valuable insights into the
existence and smoothness of convex solutions to Dirichlet-type problems. In this paper, we address the
problem of reconstructing a surface in three-dimensional isotropic space by solving the Monge–Ampere
equation, using the relationship between the surface equation and the Monge–Ampere equation in
isotropic space. To this end, we first introduce the Monge–Ampere equation in three-dimensional
space.

It is known that the Monge–Ampere equation is generally as follows:

zxxzyy − z2xy = φ (x, y, z, zx, zy) .

In this case, if φ (x, y, z, zx, zy) > 0, the equation is elliptic and its solution is a convex surface
equation. Now, if we consider this equation in the semi-Euclidean space, that is, in the isotropic space,
it will be as follows:

K (x, y) = zxxzyy − z2xy.

3.1 General invariant solution

We present some statements related to the solution of the Monge–Ampere equation and motions
in isotropic space.

Lemma 3. If the function z = f(x, y) is a solution of the Monge–Ampere equation

detD2f = fxxfyy − (fxy)
2 = F (x, y),
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then the function
z = f(x, y) + C1x+ C2y + C

is also a solution of the same equation.

Proof. This follows from the fact that the Monge–Ampere operator involves only second-order
partial derivatives. Since the linear part C1x+C2y+C vanishes under second-order differentiation of
second order, it does not affect the operator:

∂2

∂x2
(f + C1x+ C2y + C) = fxx,

∂2

∂y2
(f + C1x+ C2y + C) = fyy,

∂2

∂x∂y
(f + C1x+ C2y + C) = fxy.

Therefore, the Monge–Ampere determinant remains unchanged.

Lemma 4. The surface defined by the function

z = f(x, y) + C1x+ C2y + C

can be obtained from the surface z = f(x, y) by an isotropic motion.

Proof. Consider applying (3) an isotropic motion to the surface, specifically an isotropic shear
transformation (translation along the z-axis depending linearly on x and y). This motion is given by:

x′ = x,

y′ = y,

z′ = Ax+By + z + C,

(7)

where A,B,C ∈ R are constants.
Applying this transformation to the surface z = f(x, y), we obtain:

z′ = f(x, y) +Ax+By + C,

which coincides with the general form f(x, y)+C1x+C2y+C. Hence, the transformation corresponds
to (7) a motion in isotropic space.

Taking Lemmas 3 and 4 into account, we will not consider the linear case in the subsequent
solutions. The reason is that, in isotropic space, adding a linear term results in two different solutions
representing the same surface, differing only by their position.

4 Analytical solution of a Monge–Ampere-type equation

We study a nonlinear Monge–Ampere-type partial differential equation of the form:(
∂2z

∂x∂y

)2

− ∂2z

∂x2
· ∂

2z

∂y2
= f(x)y2. (8)

Our aim is to construct general and particular solutions, including transformation invariance and
exact construction for a specific case.

We consider a quadratic ansatz in y:

z(x, y) = ϕ(x)y2 + U(x)y + V (x)
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and compute the necessary derivatives:

∂2z

∂x∂y
= 2ϕ′(x)y + U ′(x),

∂2z

∂x2
= ϕ′′(x)y2 + U ′′(x)y + V ′′(x),

∂2z

∂y2
= 2ϕ(x).

Substituting into equation (8), we obtain a polynomial in y. Matching coefficients gives the following
system:

4(ϕ′)2 − 2ϕϕ′′ = f(x),

4ϕ′U ′ − 2ϕU ′′ = 0,

(U ′)2 − 2ϕV ′′ = 0.

Solving this system, we obtain the general solution:

w(x, y) = ϕ(x)y2 + C1y

∫
ϕ2(x) dx+

1

2
C2
1

∫ x

a
(x− t)ϕ3(t) dt,

where ϕ(x) satisfies the nonlinear ODE

ϕϕ′′ = 2(ϕ′)2 − 1

2
f(x).

Particular case: f(x) = 0.
We assume ϕ(x) = A/(x+ C) and verify that it satisfies:

ϕϕ′′ = 2(ϕ′)2.

This leads to a family of solutions of the form:

w(x, y) =
A

x+ C
y2 − C1A

2y

x+ C
+
C2
1

2

∫ x

a
(x− t)

(
A

t+ C

)3

dt.

Particular case: f(x) = x2.
We seek ϕ(x) = axn. The equation

a2n(n− 1)x2n−2 = 2a2n2x2n−2 − 1

2
x2

is satisfied when n = 2, yielding

a = ± 1

2
√
3
.

Hence,

ϕ(x) =
1

2
√
3
x2.

Using this, we compute the full solution:

w(x, y) =
1

2
√
3
x2y2 +

C1y

60
x5

C2
1

48
√
3

∫ x

a
(x− t)t6dt.
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5 Translation surface

When the surface is uniquely projected onto the Oxy plane in isotropic space, it is given by the
parametrization:

−→r (x, y) = x · −→i + y · −→j + (f(x) + g(y)) ·
−→
k . (9)

In this case, the coefficients of the first fundamental form are: E = 1, F = 0, G = 1, and the
coefficients of the second fundamental form are: L = f ′′(x), M = 0, N = g′′(y).

Taking this into account, the formula for the total curvature of the surface can be obtained as:

K = f ′′(x) · g′′(y).

The total curvature of the dual surface is given by:

K∗ =
1

f ′′(x) · g′′(y)
.

Let
K∗ = ϕ(x) · ψ(y) 6= 0

be a function defined on the domain D ⊂ R2, where ϕ(x) and ψ(y) are continuous, non-vanishing
functions.

Lemma 5. If the total curvature of the dual surface is given by K∗ = ϕ(x) ·ψ(y), then there exists
a surface of the form

~rλ(x, y) = x~i+ y~j +

(∫ [∫
1

λϕ(x)
dx

]
dx+

∫ [∫
λ

ψ(y)
dy

]
dy

)
~k, (10)

for which K∗ is the total curvature of its dual surface and ϕ(x), ψ(y) ∈ C2(D).
Proof. From the general formula (10) for the total curvature of a dual surface in a translation

surface, we have:
1

f ′′xx(x) · g′′yy(y)
= ϕ(x) · ψ(y).

Rewriting, we obtain:
1

f ′′xx(x) · ϕ(x)
= g′′yy(y) · ψ(y).

This leads to the separation of variables as:

1

f ′′xx(x) · ϕ(x)
= λ = g′′yy(y) · ψ(y), (11)

where λ is a constant of separation.
Solving (11) these differential equations gives:

fλ(x) =

∫ [∫
1

λϕ(x)
dx+ C1

]
du+ C ′1,

gλ(y) =

∫ [∫
λ

ψ(y)
dv + C2

]
dy + C ′2.

By substituting the functions f(x) and g(y) into the translation surface equation (9) and omitting
their linear parts, we obtain the formula presented in Lemma 5.
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Theorem 2. (i) If the surface belongs to a translation surface and the total curvature of the dual
surface is K∗ = C0 = constant 6= 0, then the surface has the following equation: ~r(x, y) = x~i + y~j +(
C0
2 x

2 + 1
2C0

y2
)
~k.

(ii) If the total curvature is given in the form K∗ = ϕ(x) · ψ(y), then the surface is given by
formula (9).

(iii) However, if the total curvature is a non-separable function, i.e. K∗ = K∗(x, y) 6= ϕ(x) · ψ(y),
then the problem has no solution in the class of translation surfaces.

Proof. Each case in the theorem is considered separately.
(i) When K∗ = C0 = constant, the result is already established in [8].
(ii) When K∗ is separable as ϕ(x) · ψ(y), the theorem follows directly from Lemma 5.
(iii) Finally, when K∗ = K∗(x, y) is non-separable, a surface of the form

~r(u, v) = x~i+ y~j + (f(x) + g(y))~k

has curvature
K∗(x, y) =

1

f ′′xx(x)
· 1

g′′yy(y)

which is necessarily separable in variables. This contradiction implies that no such transfer surface can
exist in the non-separable case.

6 Applications of the Monge–Ampere equation

The Monge–Ampere equation has been widely applied across various scientific fields. Many well-
known equations include the Monge–Ampere equation as a structural component. Let us consider one
such equation. By doing so, we also address the applicability of the results obtained.

Consider the nonlinear partial differential equation

∂2z

∂x2

[(
∂2z

∂x∂y

)2

− ∂2z

∂x2
· ∂

2z

∂y2

]
=
∂2z

∂y2
.

This equation is relevant in two-dimensional plasticity theory, where z = f(x, y) acts as the gen-
erating function. This equation represents a particular case of the nonlinear elastic plate model,
describing the bending deformations of a thin elastic plate. It models the variation of elastic energy
based on the total curvature of the surface. Due to its nonlinear nature, the equation is suitable for
analyzing large deformations. In the absence of external forces, it describes situations where only
internal elastic forces are at play.

Let z = f(x, y) be a solution. Then, the following transformed functions also satisfy the same
equation:

z1 = ±C−21 f(C1x+ C2, C3y + C4),

where C1, . . . , C4 are arbitrary constants.
Let us try to solve the equation. We now define a new function

ω(x, y) =
∂z

∂x
.

We consider ω(x, y) as a surface and move to the surface that is dual to ω∗(x, y) and use the following
3-dimensional dual transformation: 

x∗ = ∂ω
∂x ,

y∗ = ∂ω
∂y ,

z∗ = x∂ω∂x + y ∂ω∂y − ω.
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The goal is to convert the original nonlinear equation into a second-order linear PDE. After per-
forming the transformation, we obtain:

(1 + x∗2)2
∂2z∗

∂x∗2
+ 2x∗y∗(1 + x∗2)

∂2z∗

∂x∗∂y∗
+ y∗2(x∗2 − 1)

∂2z∗

∂y∗2
= 0. (12)

This is a hyperbolic partial differential equation. To further simplify it, we use the coordinate
transformation:

t = arctanx∗, ξ =
1

2
ln(1 + x∗2)− ln y∗, W =

z∗√
1 + x∗2

.

Under this change of variables, equation (12) is transformed into a linear PDE with constant
coefficients:

∂2W

∂t2
=
∂2W

∂ξ2
−W.

We now solve the PDE, using the method of separation of variables. Let

W (t, ξ) = T (t) ·X(ξ).

Substitute into the equation:

T ′′(t)X(ξ)− T (t)X ′′(ξ) + T (t)X(ξ) = 0.

Divide both sides by T (t)X(ξ):
T ′′(t)

T (t)
− X ′′(ξ)

X(ξ)
+ 1 = 0.

This implies:
T ′′(t)

T (t)
+ 1 =

X ′′(ξ)

X(ξ)
= −λ.

So we obtain two ODEs:

T ′′(t) + (λ+ 1)T (t) = 0,

X ′′(ξ) + λX(ξ) = 0.

The general solutions are

T (t) = C1 cos(
√
λ+ 1 t) + C2 sin(

√
λ+ 1 t),

X(ξ) = A1 cos(
√
λ ξ) +A2 sin(

√
λ ξ).

Therefore, the general solution to the PDE is

W (t, ξ) =
[
A1 cos(

√
λ ξ) +A2 sin(

√
λ ξ)

]
·
[
C1 cos(

√
λ+ 1 t) + C2 sin(

√
λ+ 1 t)

]
.

We now reverse the transformation steps to reconstruct ω(x, y).
Recover Z(X,Y ), recall that

W =
z∗√

1 + x∗2
.

From this it follows
z∗ =W ·

√
1 + x∗2.
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Using Theorem 1, which states that the dual transformation is self-inverse, we find ω(x, y):

ω(x, y) = xx∗ + yy∗ − z∗(x∗, y∗).

Integrating ω(x, y), we get z = f(x, y). Finally, since ω =
∂z

∂x
, we integrate:

z(x, y) =

∫
ω(x, y) dx+ φ(y),

where φ(y) is an arbitrary function of y arising from the integration.

Conclusion

In this paper, we investigated the Monge–Ampere equation in three-dimensional isotropic space and
demonstrated its strong connection with the geometry of surfaces, dual transformations, and curvature
invariants. By leveraging the properties of isotropic geometry, particularly the degenerate metric and
dual mappings, we formulated and solved a class of nonlinear Monge–Ampere-type equations.

Using of dual transformation techniques, we linearized a complex nonlinear PDE, solved it ana-
lytically using separation of variables, and reconstructed the original surface using the inverse dual
transform. The method proved effective in simplifying the solution process and understanding the
geometric structure behind the equation.

We also studied translation surfaces and provided conditions under which such surfaces can be
constructed from given curvature functions. In particular, we showed that the total curvature of the
dual surface imposes strict conditions on the form of the original surface.

The results obtained in this work can serve as a foundation for further research in isotropic dif-
ferential geometry, geometric PDEs, and applications in computer graphics, elasticity, and geometric
modeling. The approach of using duality and curvature invariants offers a powerful framework for the
analysis and reconstruction of surfaces governed by Monge–Ampere-type equations.
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