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Well-posedness of elliptic-parabolic differential problem with integral
condition
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In this paper, we study a class of nonlocal boundary value problems for elliptic-parabolic equations subject
to integral-type conditions. Such problems naturally emerge in various physical and engineering contexts,
including diffusion processes in composite materials and systems with memory or nonlocal interactions.
The model considered involves a mixed-type equation in which the elliptic and parabolic components are
coupled through nonlocal boundary terms, while the boundary conditions incorporate integral constraints
that generalize the traditional Dirichlet and Neumann formulations. To investigate the solvability of this
problem, we employ analytical methods based on the theory of parabolic and elliptic operators in weighted
Holder spaces, which are particularly suitable for handling boundary singularities and ensuring regularity
of solutions. We establish the existence, uniqueness, and continuous dependence of solutions on the input
data, thereby proving the well-posedness of the problem. Furthermore, we derive coercivity inequalities for
solutions of the associated mixed nonlocal boundary problems, which guarantee their stability and provide
essential tools for studying related inverse and control problems. The findings extend several classical
results and offer a unified approach to the analysis of nonlocal elliptic-parabolic models.
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Introduction

Elliptic partial differential equations play a fundamental role across nearly all branches of mathe-
matics — from harmonic analysis and geometry to Lie theory — and have a wide range of applications
in physics and engineering. The well-posedness of local boundary value problems for elliptic equations,
along with their various applications, has been extensively studied by numerous researchers [1-3].

Equations of mixed-composite type form an important class of partial differential equations (PDEs)
that combine features of different types of equations — typically elliptic, parabolic, and sometimes
hyperbolic — within a single formulation [4-6]. These equations often arise in mathematical models
describing processes where the nature of the physical phenomenon changes across a domain or depends
on certain parameters.

In general, an equation is called mixed type when its classification (elliptic, parabolic, or hyperbolic)
varies in different regions of the domain. A mixed-composite type equation extends this idea by coupling
different equations or operators — such as elliptic and parabolic ones — through boundary, interface,
or integral-type conditions [7].

In mathematical modeling, elliptic equations are paired with local boundary conditions that dictate
the solution at the domain’s edge. However, traditional boundary conditions may be insufficient for
accurately modeling certain processes or phenomena. As a result, nonlocal boundary conditions are
often employed in mathematical models of physical, chemical, biological, or environmental processes.
These conditions, known as nonlocal boundary conditions, arise when data at the domain’s edge cannot
be directly observed or when boundary data are dependent on internal data within the domain [8-10].
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Various nonlocal boundary value problems with Samarskii—Ionkin condition for partial differential
equations have been investigated by many researchers [11,12].

Moreover, the identification of partial differential equations (PDEs) arises in numerous applied
problems and has been the subject of extensive research [13-15].

The significance of well-posedness (WP) in the analysis of boundary value problems (BVPs) for
(PDEs) is widely recognized [16-18].

Considerable attention has been devoted to the study of coercivity inequalities (CIs) arising in
nonlocal BVPs for elliptic and parabolic PDEs [19-21].

In this paper, we study the WP of a nonlocal BVP of the form

{ _utt(t) —{-AZ/{(t) = g(t), te O’d]v (1)
U(t) — AU(t) = [f(t), t € [-d,0)

0
with an integral condition U(d) = / w(s)U(s)ds + & in a Hilbert space X with a self-adjoint positive

d
definite operator (SAPDO) A. Here, £ € D(A), while g(¢) and f(t) are prescribed smooth functions.
The principal result demonstrates the WP of problem (1) in weighted Hélder spaces. New Cls for
the solutions of elliptic-parabolic nonlocal BVPs are derived.

1 The main theorem on the WP of (1)

Throughout this work, N is a Hilbert space and A is assumed to be a SAPDO satisfying A > §1
for & > &y > 0, where I is the identity operator. We also set V = A!/2.

First, we present several results that will be needed in the sequel.

Lemma 1. The following estimates hold [22]:

|| 4s exp(_tv)||N—>N < (%)ﬂt_ﬂ’ le (07 OO), JIRS [07 6],
H Ak eXp(_tA)HN%N < (%)Ht*#) te (07 00)7 e [076]7 (2)
1 (I = exp(=2dV)) ™" |eosn< M(9)

for some M (6) > 0.
Lemma 2. Operator

0
(I—=V)e 2V L T4+ V -2~ /u(s)eswds
~d

has an inverse

O _1
N=[T-V)e2 +14+V - 2e_dv/u(s)esv2ds
d
and the following estimates are fulfilled
[N flxon< M(5), || VN [lnosn< M(0). (3)

The Proof for Lemma 2 relies on the spectral representations of unit SAPDO A [22].

Function U(t) is said to be a solution of problem (1) it the following conditions are met:

1. U(t) is twice continuously differentiable on (0, d] and continuously differentiable on [—d, d]; the
derivatives at the endpoints are understood in the sense of one-sided limits;

2. U(t) € D(A) for all t € [—d,d], and the mapping t — AU(t) is continuous on [—d, dJ;

3. U(t) satisfies the system and the nonlocal boundary condition in (1).

126 Bulletin of the Karaganda University



Well-posedness of elliptic-parabolic ...

The function U(t) fulfilling the above requirements will be referred to as a solution of problem (1) in
the space C(X) = C_44(R), consisting of all continuous functions ¢ (y) defined on [—d, d] with values in
N, with the norm

1¥lle_y a0 = dax 19 () |-
To derive the formula for solution of problem (1), we will consider the following auxiliary problems

{ " (t) + AU (t) =g (t) , t€(0,d), (4)
U(0) =Uy, U(d) = U,

{ U t)y—AU ()= f(t), te(—d0), (5)
U (0) = Uy,

It is well established (cf. [22]) that, for sufficiently smooth data, problems (4) and (5) admit a unique
solution. Moreover, the following relations are valid:

i) - (I B 6—2‘1‘/)71 [ (e‘tv B 6—(2d—t)V) Uy + (6—(d—t)V _ 6—(t+d)V) U, (6)
_ (e—(d—t)V _ e tr)V 1/d e~ (d=0)V —(9+d)V) g(g)d9]
0

d
+(2v) ™! / (70 = =0V g(0)dp, ¢ € [0,d],
0

t
Ut =t + [ I f)dy, b (-0l 7)
0
0
Using formula (6), conditions U(d) = [ p(0)U(0)dO + &, and U'(0+) = U'(0—), we can write
~d
0 0 0
U(d) = / w(0)e?Adouy + / (0 / e~ O=A £ () dydd + ¢, (8)
—d — 0

— V(I 4 e YUy + 2Ve VU,

d d
7 [ (O @) g0y ap| + [ V(o) . (9)
0 O

Using formulas (8) and (9), we obtain that

-1
AU (0) = (I - e—QdV) V(I + e 2V Yy,
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we derive that

0
Uy =N [2e= (0 /e_(g Y Af )dydf + & (10)
0

a—c

d
dV/ o (d-0V _ (d+9)v) 4(0)d0
0

d
+ (I *W V- 1/e d0—( —e*ZdV) V=L£(0)
0

Hence, the solution of nonlocal BVP (1) is represented by formulas (7), (10), and (9). Now, let us
denote by C* d. 4R, € (0,1), the Banach space obtained by completing the space of smooth R-valued
function ¢ (y) on [—d, d] in the norm

I llee, o= I1¥lle_, .00 + sup [ (y + Ay) — b (y)lIn(AyH (—y)*
’ —d<y<y+Ay<0

+  sup  [[P(y + Ay) = E()lIx(Ay)TH(d — y)H (y + Ay)*,
O<y<y+Ay<d

and denote by Bgd(N), u € (0,1), the Banach space obtained by completing the space of smooth
N-valued function ¥ (y) on [0,d] in the norm

I llge o= 1¥llgy .00+ sup [lo(y + Ay) — o (y)In(Ay) ™ (d — y)*(y + Ay)*,
’ O<y<y+Ay<d

finally denote by C* 20(X), g € (0,1), the Banach space obtained by completion of the set of all smooth
N-valued functions 1 (y) on [—d, O] in the norm

I llee, jo0=1¥lle_uoo + sup Iy + Ay) — d(y)lln(Ay) " (—y)".
—d<y<y+Ay<0

128 Bulletin of the Karaganda University



Well-posedness of elliptic-parabolic ...

Here, C,p(R) is defined as the Banach space of all continuous functions 1 (y) defined on [p,q] with
values in X, endowed with the norm

= Inax .
¥, . v ax 14 ()l

Problem (1) is considered well-posed in C(R) if, for every g(t) € Coa(R), f(t) € C_go(R), and
¢ € D(A), it has a unique solution U(t) € C(R) satisfying the CI

141 sy + 1oy + 14Uy < M (e, sy + 110 + 14€1),

where M represents a positive constant whose value does not depend on g(t), f(t), and &.

The given problem (1) is not well-posed in C(R) [23]. The WP of BVP (1) can be established by
formulating the problem in appropriate function spaces F(R) consisting of smooth R-valued functions
defined on [—d, d].

A function U(t) is said to be a solution of problem (1) in F(R) if it satisfies the problem in C(R)
and, moreover, the functions U”(t) (t € [0,d]), U'(t) (t € [—d,d]) and AU(t) (t € [—d,d]) are elements
of F(N).

Similarly to the space C(X), problem (1) is considered well-posed in F(R) if the subsequent CI holds:

16"y a0 + W a0 + 14U Ly < M (gl ) + 15 o0 + 14T ).

where M > 0 denotes a constant that does not depend on g(t), f(¢), and &.
Setting F(N) = Cﬁd(N) = Bgyd([—d, d],R) for p € (0,1), we can formulate our main theorem as
follows.
Theorem 1. Suppose £ € D (A). Then BVP (1) is well-posed in a Hoélder space Bg,d(m and the
following CI holds:
o]

C8 (%) + Hul‘ G 4 oY) + HAUHE(‘)LJ(N) (11)

< M) [0 =) [l oo+ allee o]+ 1480

where M () is a constant that is independent of g(t), f(¢), and &.
Proof. The CI (11) is derived from the estimate

Hu/HUid,O(N) + AUl , oy < M@)p (1= ) 1 Fllge, oy + M | Alko (12)

< M@ (1= )7 1 e o0 + M 1| ALl

for the solution of problem (5) and the estimate
60" 0+ 14Ul 00 < M@0~ ) gl (13)

+M () [[Alholly + AU ]

associated with the solution of BVP (4) and the estimates

AUl < M) 571 = )7 (1 o, oo + gl g | + 14€IK)- (14)

lAUalle < M) 71 = )7 I lge, oy + ol | + A€ D] (15)
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for the solution of BVP (1). Estimates (12) and (13) were obtained in [24]. Applying formula (10), we
get

0 0
AUy = N [2V2e WV (/ 11(0) / e O=0A 1) dydo + A€
d 0
d

B V2e—dv/ <e—(d—0)V B e—(d+0)v> 9(9)d9]
0

d

YNV (I - e_zdv) / e g(0)df — (1 - e_QdV) £(0)
0
Therefore, the proof of estimate (14) is based on the triangle inequality and estimates (2), (3). Applying

formula (8), we get

0
AlU(d) = / 1(0)ePAdh Audy + Ag
—d

0 0 0
+ { u(6) / Ae"ODA(f(y) — 1(6)) dydt + /d u(0) (1— ) F(0)as.

Therefore, the estimate (15) is proved based on the triangle inequality together with (2) and (3), which
completes the proof of Theorem 1.

2 Illustrative examples

We now illustrate several applications of Theorem 1.
Firstly, the nonlocal BVP for an elliptic-parabolic equation

Uy — (a(z)Uy), + U = g(t, z), t €0,d], z € [0,b]

U + (a(2)Uy), — U = f(t,z), t € [—d,0], z € [0,b], (16)
U0+, z) =U0—, 2), U(0+,2) =U:(0—, 2), z € [0,D],

U(t,0) =U(t,b), Us(t,0) =U,(L,b), t € [—d,d]

0
with the integral condition U(d, z) = [ u(At)U(r, z)dT + &(2), z € [0,b] is considered. Problem (16)
—d

admits a unique smooth solution U(t, z) for smooth functions a(z), with a(z) = a(0) and a(z) > a >0
for z € (0,b), and for g(t,z) (t € [0,d], z € [0,b]) and f(t,2) (t € [-d,0], € [0,b]), where § > 0.

We define the space Ls[0, b] of all square integrable functions £(z) defined on [0, b] and the spaces
W1[0,b] and W20, b] with the norms

1/2

b
Ielhwon = €0 + | [ 167a2)
0

1/2

<

W3[0,b]

b
— €l 0 + / €2 dz
0

This reduces mixed problem (16) to the nonlocal BVP (1) in a Hilbert space X = L3[0,b] with a
SAPDO A given by (16).
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Theorem 2. The solution of nonlocal BVP (16) satisfies the CI

| Une HE“ (La(0p)) T I U ||E“dO (La(op)) T 1 U ”C“ W2(0,))

< M) [ 0= 07 19l gatomn + 1 F lon, ceatosn ]+uf||w22(0,b>

Here, the constant M (J) is independent of the functions g(¢, z), f(¢, z), and £(2).

Proof of Theorem 2 builds upon the theoretical framework developed in Theorem 1, utilizing the
symmetry properties of the operator associated with problem (16).

Secondly, let 2 denote the open unit cube in the n-dimensional FEuclidean space R, defined by
2, € (0,1) for k = 1,n with S, so that Q = QU S. Within the domain [—d,d] x 2, we formulate the
BVP for a multi-dimensional mixed problem as follows:

Uy — > (ar(2)Us,)z, = g(t,2), t €10,d], z € Q,
7“:1

U + Z(ar( JUz)z = (L, 2), L€ [=d,0], z €9, (17)

Z/I(O+ z) UO0—, 2), U(0+,2) =U(0—,2), z € Q,
U(t,z) =0, z€ S, [—d,d]

0 —
with the integral condition U(d, z) f w(HU(T, 2)dr + £(2), z € Q. Here, a.(z) (z € Q), g(t,2)

(t € (0,d), z € Q), and f(t,2) (t € (—d, O), z € Q) are given smooth functions, with a,.(z) > a > 0.
We introduce the Hilbert space La(2) consisting of all square-integrable functions £(z) defined on

Q, endowed with the norm
€l / / 1€(2)|2dz - - - dz

z€Q

and the Hilbert spaces W3 (2), W2(£2) defined on €, endowed with the norms

€z =€ Neay +,| [ [ S e P

zeq =1

and

h h
= *dz ~dzp,
I L R VA D >SS
2cQ "
Problem (17) admits a unique smooth solution w(¢,x) for smooth functions a,(x), g(t,z), and
f(t,z). Using this approach, the mixed problem (17) can be reduced to the nonlocal BVP (1) in the

Hilbert space H = Lo(Q) with a SAPDO A presented as in (17).
Theorem 3. The solution of nonlocal BVP (17) satisfies the CI

elley: ra0) + Wl (o) + WUl , vz

< M(0) |p (1 =)t lglles oy + Hchgd’O(LQ(ﬁ))] + ||£||W22(Q)]'

The proof of Theorem 3 relies on the result given in Theorem 1, together with the symmetry
properties of the operator associated with problem (17), and the CI for solutions of elliptic differential
problems in Lo(12) as established in [24].
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Conclusion

In the present paper, a nonlocal boundary value problem for an elliptic-parabolic equation subject
to an integral condition is investigated. The well-posedness of the problem in weighted Holder spaces
is established. As an application, we derive coercivity inequalities for the solutions of mixed nonlo-
cal boundary value problems associated with elliptic-parabolic equations. By applying the methods
developed in this paper and in [25], we can establish the boundedness of solutions to a semilinear
elliptic-parabolic equation.
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