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This paper investigates the dynamical behavior of Lotka–Volterra type operators defined on the four and five
dimensional simplexes, focusing on their fixed points and structural representation through directed graphs
(tournaments). For several classes of such operators, we derive algebraic and combinatorial conditions
under which the configuration of fixed points exhibits transitive, cyclic, or homogeneous structures. Using
methods from algebraic graph theory, Lyapunov stability theory, and Young’s inequality, explicit criteria are
established for the existence, uniqueness, and stability of interior and boundary fixed points. A detailed
analysis is provided for the class of operators whose associated skew-symmetric matrices are in general
position. The connection between the minors of these matrices and the orientation of arcs in the tournament
is clarified, revealing how dynamical transitions correspond to changes in tournament type. Furthermore,
we demonstrate that under certain parameter regimes, fixed points coincide with evolutionarily stable
strategies (ESS) in replicator dynamics, thus bridging discrete population models and evolutionary game
theory. The obtained results enrich the theory of quadratic stochastic and Lotka–Volterra operators,
providing new insights into nonlinear mappings on simplexes, combinatorial dynamics, and applications to
models of interacting populations.
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Introduction

A number of applied studies are devoted to the investigation of dynamical systems — both conti-
nuous and discrete — as well as systems involving fractional-order derivatives [1–3]. To this day, all three
types of systems remain relevant; however, they differ in the methods of analysis and in the nature of the
results obtained [4–6]. The application areas of such models are wide-ranging and include medicine
(covering problems in epidemiology, oncology, and population genetics), ecology, economics, com-
puter virology, and many others [7–9]. Building on these applications, we now turn to the theoretical
foundations of a particular class of discrete dynamical systems — the so-called quadratic stochastic
operators — which play a central role in many models, especially in population genetics and game
dynamics.

Let us start by recalling the known facts that we will rely on in the article, as well as recalling the
works of some authors on its topic. It is known that [10], a (m − 1)-dimensional standard simplex in
Rm is defined as the relation

Sm−1 = {x = (x1, ..., xm) : xi ≥ 0,

m∑
i=1

xi = 1} ⊂ Rm.
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It is easy to verify that Sm−1 is a convex and compact subset of Rm.
A class of mappings defined on Sm−1 known as quadratic stochastic operators was introduced by

Bernstein [11] and further developed by R.N. Ganikhodzhaev in [12, 13]. Such mappings are defined
by a set of coefficients Pij,k for i, j, k = 1, . . . ,m, satisfying the conditions

Pij,k = Pji,k ≥ 0,
m∑
k=1

Pij,k = 1,

and act according to the equations

x′k = (V x)k =

m∑
i,j=1

Pij,kxixj , k = 1, . . . ,m.

This mapping was introduced by R.N. Ganikhodzhaev in [12].

Definition 1. A quadratic stochastic mapping is called a Lotka–Volterra mapping if the inheritance
coefficients satisfy the condition Pij,k = 0 for all k /∈ {i, j}.

It is known (see [14]) that any Lotka–Volterra mapping defined on Sm−1 can be represented as

x
′
k = xk(1 +

m∑
i=1

akixi), k = 1, . . . ,m, (1)

where

aki =

{
2Pik,k − 1, if i 6= k,

0, if i = k,
with |aki| ≤ 1, k, i = 1, . . . ,m. (2)

Here, A = (aki) is a real skew-symmetric matrix, satisfying A = −AT , where AT denotes the
transpose of A.

Definition 2. [15] A skew-symmetric matrix is called a matrix of general position if all of its principal
minors of even order are nonzero.

Since aki = −aik, all off-diagonal entries are antisymmetric. In particular, aki 6= 0 for i 6= k if and
only if the corresponding Pij,k 6= 1

2 .
It is known that each skew-symmetric matrix in general position can be associated with a complete-

oriented graph (tournament) [15].
Let A = (aki) be a skew-symmetric matrix in general position associated with Lotka–Volterra

mapping (1), where the coefficients satisfy conditions (2). We place m points on a plane and label
them 1, 2, . . . ,m. For each pair of distinct indices i 6= k, we draw a directed edge from vertex i to
vertex k if aik > 0 (equivalently, aki < 0).

This construction defines a well-posed directed graph. We then call the constructed graph the
tournament of dynamic system (1) with the skew-symmetric matrix A = (aki) and denote it by Tm.

A directed graph is called a tournament if, for every pair of distinct vertices i and k, exactly one
of the edges (i, k) or (k, i) is present. A graph in which every two vertices are connected by an edge is
called a complete graph. If each edge of a complete graph is assigned a direction, the resulting directed
graph is a tournament [16–18].

Two tournaments are said to be isomorphic if there exists a bijection between their vertex sets that
preserves the direction of all edges.

It is known that there are 12 pairwise non-isomorphic tournaments with 5 vertices [17].
A tournament is called strong if, for any two vertices, there exists a directed path from one to the

other. Among the 12 tournaments with 5 vertices, 6 are strong [15].
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A tournament is said to be transitive if it contains no strong subtournaments. Equivalently, a
tournament is transitive if it does not contain any directed cycles. Among the tournaments with 5
vertices, exactly 1 is transitive, 6 are strong, and the remaining 5 are neither strong nor transitive.

Definition 3. [15] A tournament is homogeneous if every sub-tournament is either strong or tran-
sitive.

In this paper, we study the structure of the set of fixed points (referred to as the card of fixed
points) and characterize the fixed points of strong and homogeneous tournaments.

Every face of the simplex Sm−1 is invariant under the Lotka–Volterra mapping, and the restriction
V to this face is also a Lotka-Volterra mapping [12–14].

In recent works [19–21] Lotka–Volterra mappings have been studied from the perspective of dynam-
ical systems, population genetics, and game theory. A particularly fruitful approach is to analyze their
fixed points and dynamical behavior via combinatorial structures such as tournaments and their geo-
metric realizations on simplex [22–24]. Lotka–Volterra mappings are popular in modeling the spread of
viral diseases. In [25–27], degenerate Lotka–Volterra mappings and their applications were considered.

In this paper, we focus on the structure of the set of fixed points — referred to as the card of
fixed points — for various types of Lotka–Volterra operators V . We pay special attention to operators
corresponding to strong and homogeneous tournaments. Also explore conditions for the existence of
fixed points on the interior and the faces of the simplex, as well as criteria for their stability and
evolutionary significance.

Additionally, we establish links with replicator dynamics and evolutionary game theory, including
conditions under which fixed points of the system can be interpreted as evolutionary stable strategies
(ESS).

1 Card of fixed points

Introduce the following notation:

Pα = {x ∈ Γα : Aαx ≥ 0}, Qα = {x ∈ Γα : Aαx ≤ 0},

where Γα denotes the face of the simplex Sm−1 corresponding to the index set α ⊂ I = {1, 2, . . . ,m},
and Aα is the submatrix of A corresponding to the indices in α.

It is known [14], each of the sets Pα and Qα contains a unique fixed point. In some cases, it is
possible that Pα = Qα.

The set of all fixed points of the operator V , Fix(V ) = {x ∈ Sm−1 : V x = x} can be represented
as a set of points in a plane. For each α ⊂ I, the fixed point Pα is connected to the fixed point Qα by
a directed arc pointing from Pα to Qα. The resulting directed graph is called the card of fixed points
of the operator V , and is denoted by GV [14, 15].

Definition 4. Two fixed points (vertices of the graph GV ) x(α) and x(β) are called adjacent if the
following conditions hold:

1. |α| = |β|,
2. |α ∩ β| = |α| − 1,

where |α| denotes the number of elements in α ⊂ I = {1, 2, . . . ,m}.
In other words, x(α) and x(β) correspond to faces of the same dimension and their supports differ

by exactly one index.
For example, all vertices of the simplex (corresponding to one-element subsets) are pairwise adja-

cent. However, the fixed points x({2, 3, 5}) and x({1, 2, 4}) are not adjacent.

Theorem 1. Any two adjacent vertices in the graph GV are connected by a directed arc.
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Proof. Let x(α) and x(β) be adjacent vertices of GV , corresponding to the subsets
α, β ⊂ I = {1, 2, . . . ,m}. By definition of adjacency, |α| = |β|, and |α ∩ β| = |α| − 1. Let γ = α ∪ β,
so that |γ| = |α|+ 1.

Let us denote γ = {i1, i2, . . . , it}, with t = |γ|. Then, without loss of generality, we may assume

α = {i2, i3, . . . , it}, β = {i1, i2, . . . , it−1}.

Now consider the restriction of the mapping V to the face Γγ ⊂ Sm−1. Since x(α) and x(β) lie in
Γγ , we consider the action of the submatrix Aγ from the skew-symmetric matrix A on the face Γγ .

Recall the property of Lotka–Volterra mappings on invariant faces: for a fixed point x ∈ Γγ ,

suppx ∩ supp(Aγx) = ∅, suppx ∪ supp(Aγx) = γ.

That is, the nonzero coordinates of Aγx are complementary to the support of x within γ.
Applying this to x(α), which has support α = {i2, . . . , it}, we obtain that (Aγx(α))i1 6= 0, and all

other coordinates of Aγx(α) vanish. Similarly, since β = {i1, . . . , it−1}, the only nonzero coordinate of
Aγx(β) is (Aγx(β))it 6= 0.

We now consider the signs of these nonzero coordinates. If

sign(Aγx(α))i1 · sign(Aγx(β))it < 0,

then, the directions of the corresponding arcs go from one to the other, and x(α) and x(β) form a
directed pair (Pα, Qα), meaning they are connected by an arc in GV .

If the signs are the same, then both x(α) and x(β) would have outgoing arcs in the same direction
on the face Γγ , which contradicts the uniqueness of the sink (i.e., the unique point with all incoming
arcs) in the fixed point diagram on Γγ .

Hence, in either case, the pair (x(α), x(β)) must be connected by a directed arc in GV .

2 Main results

Consider the general form of the Lotka–Volterra operator V1:

V1 :



x
′
1 = x1(1− a12x2 − a13x3 − a14x4 + a15x5),

x
′
2 = x2(1 + a12x1 − a23x3 − a24x4 − a25x5),

x
′
3 = x3(1 + a13x1 + a23x2 − a34x4 − a35x5),

x
′
4 = x4(1 + a14x1 + a24x2 + a34x3 − a45x5),

x
′
5 = x5(1− a15x1 + a25x2 + a35x3 + a45x4).

(3)

The operator V1 corresponds to the strong and homogeneous tournament shown in Figure 1.

Figure 1. The tournament associated with the operator V1
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The corresponding skew-symmetric matrix A1 = (aij) associated with mapping (3) has the form:

A1 =


0 −a12 −a13 −a14 a15

a12 0 −a23 −a24 −a25

a13 a23 0 −a34 −a35

a14 a24 a34 0 −a45

−a15 a25 a35 a45 0

 .

In order for the operator V1 to correspond to a matrix in general position, it is required that all
even-order principal minors of the matrix A1 be nonzero.

For second-order minors, the condition aki > 0 ensures their positivity. Calculating the principal
minors of order four (there are five such minors), we obtain:

∆11
1 = (a23a45 + a25a34 − a24a35)2, ∆22

2 = (a15a34 + a14a35 − a13a45)2,

∆33
3 = (a15a24 + a14a25 − a12a45)2, ∆44

4 = (a15a23 + a13a25 − a12a35)2,

∆55
5 = (a14a23 + a12a34 − a13a24)2.

Since the matrix A1 is in general position, all even-order principal minors are nonzero, i.e., ∆ii
i 6= 0 for

all i = 1, . . . , 5.
Let us define the expressions inside the squares as:

∆1 = a23a45 + a25a34 − a24a35,

∆2 = a15a34 + a14a35 − a13a45,

∆3 = a15a24 + a14a25 − a12a45,

∆4 = a15a23 + a13a25 − a12a35,

∆5 = a14a23 + a12a34 − a13a24.

Theorem 2. If ∆2,∆3,∆4 > 0, then the card of the fixed point operator V1 is transitive (Figure 2)

Figure 2. The transitive card of the fixed point

Proof. As shown in Figure 1, the tournament contains three cyclic triples: 125, 135, 145. These
correspond to the following fixed points:

M125 =

(
a25

a12 + a15 + a25
,

a15

a12 + a15 + a25
, 0, 0,

a12

a12 + a15 + a25

)
,

M135 =

(
a35

a13 + a15 + a35
, 0,

a15

a13 + a15 + a35
, 0,

a13

a13 + a15 + a35

)
,

M145 =

(
a45

a14 + a15 + a45
, 0, 0,

a15

a14 + a15 + a45
,

a14

a14 + a15 + a45

)
,
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where all coefficients are assumed to be positive.
Now, define the following functions:

ϕ125(x) = (xa251 xa152 xa125 )
1

a12+a15+a25 , ϕ135(x) = (xa351 xa153 xa135 )
1

a13+a15+a35 ,

ϕ145(x) = (xa451 xa154 xa145 )
1

a14+a15+a45 .

We now apply “Young’s inequality” [28], which states that for any ck ≥ 0, pk ≥ 0, such that
m∑
k=1

pk = 1, the following holds:
m∏
k=1

cpkk ≤
m∑
k=1

ckpk.

Using this, one derives the following estimates:

ϕ125(V x) ≤ ϕ125(x)

∆125
(∆125 −∆4x3 −∆3x4) , (4)

ϕ135(V x) ≤ ϕ135(x)

∆135
(∆135 + ∆4x2 −∆2x4) , (5)

ϕ145(V x) ≤ ϕ145(x)

∆145
(∆145 + ∆3x2 + ∆2x3) . (6)

Here, the constants are:

∆125 = a12 + a15 + a25, ∆135 = a13 + a15 + a35, ∆145 = a14 + a15 + a45.

We now determine the directions of arcs between the fixed points:
1. “Between M125 and M135”: In inequalities (4) and (5), the term involving ∆4 appears with

opposite signs. If ∆4 > 0, then in (4) this term decreases ϕ125(V x), while in (5) it increases ϕ135(V x).
This implies the direction of the fixed-point flow is M125 →M135.

2. “BetweenM135 andM145”: In inequalities (5) and (6), ∆2 appears with opposite signs. If ∆2 > 0,
this implies the direction M135 →M145.

3. “Between M125 and M145”: Comparing (4) and (6), if ∆3 > 0, the sign of the corresponding
term shows the direction M125 →M145.

As a result, all three fixed points are connected in a consistent directed order:

M125 →M135 →M145 ←M125,

and the resulting subgraph forms a transitive triangle, as shown in Figure 2.

Let V x = x, i.e., x is a fixed point of the mapping. The eigenvalues of the Jacobian matrix at the
fixed point are found as the solutions of the characteristic equation:

det(J(x)− λE) = 0, (7)

where J(x) is the Jacobian matrix of the mapping V evaluated at the fixed point x, and E is the
identity matrix.

The nature of the fixed point can be characterized based on the eigenvalues of the Jacobian. To
do this, we first introduce some definitions regarding the classification of fixed points [29].

To investigate the nature of fixed points of the mapping, we introduce the following definitions
from [29].
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Definition 5. A fixed point is called an attractor if all eigenvalues of the Jacobian matrix (i.e., the
solutions of equation (7)) have modulus strictly less than one.

Definition 6. A fixed point is called a repeller if all eigenvalues of the Jacobian matrix have modulus
strictly greater than one.

Definition 7. A fixed point is called a saddle point if the spectrum of the Jacobian contains eigen-
values with modulus both less than and greater than one. In other words, it is neither an attractor
nor a repeller.

Corollary 1. If ∆2,∆3,∆4 > 0, then the fixed point M125 of the operator V1 is a repeller, the fixed
point M145 is an attractor, and the fixed point M135 is a saddle point.

Proof. Using equation (7), we compute the eigenvalues of the Jacobian matrix at each fixed point.
Let us denote the diagonal entries of the Jacobian matrix at a general point x as:

t1 = 1− a12x2 − a13x3 − a14x4 + a15x5,

t2 = 1 + a12x1 − a23x3 − a24x4 − a25x5,

t3 = 1 + a13x1 + a23x2 − a34x4 − a35x5,

t4 = 1 + a14x1 + a24x2 + a34x3 − a45x5,

t5 = 1− a15x1 + a25x2 + a35x3 + a45x4.

Then the Jacobian matrix J takes the form:

J =


t1 −a12x1 −a13x1 −a14x1 −a15x1

a12x2 t2 −a23x2 −a24x2 −a25x2

a13x3 a23x3 t3 −a34x3 −a35x3

a14x4 a24x4 a34x4 t4 −a45x4

−a15x5 a25x5 a35x5 a45x5 t5

 .

Substituting the coordinates of the fixed point M125 into J , we obtain:

J(M125) =



1 −a12a25
∆125

−a13a25
∆125

−a14a25
∆125

a15a25
∆125

a12a15
∆125

1 −a23a15
∆125

−a24a15
∆125

−a25a15
∆125

0 0 1 + a13a25+a23a15−a35a12
∆125

0 0

0 0 0 1 + a14a25+a24a15−a45a12
∆125

0

−a15a12
∆125

a25a12
∆125

a35a12
∆125

a45a12
∆125

1


,

where ∆125 = a12 + a15 + a25.
From this matrix, two eigenvalues are immediately identified as: λ1 = 1 + ∆4

∆125
, λ2 = 1 + ∆3

∆125
,

corresponding to the diagonal entries.
The remaining eigenvalues are obtained from the characteristic equation for the 3 × 3 leading

principal minor: ∣∣∣∣∣∣∣∣
1− λ −a12a25

∆125

a15a25
∆125

a12a15
∆125

1− λ −a25a15
∆125

−a15a12
∆125

a25a12
∆125

1− λ

∣∣∣∣∣∣∣∣ = 0.

Solving it, we find: λ3,4 = 1± i
√

a12a15a35
∆125

, λ5 = 1. Thus, the spectrum of the Jacobian at M125 is:

σ(J(M125)) =

{
1, 1 +

∆4

∆125
, 1 +

∆3

∆125
, 1± i

√
a12a15a35

∆125

}
.
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Similarly, we have:

σ(J(M135)) =

{
1, 1− ∆4

∆135
, 1 +

∆2

∆135
, 1± i

√
a13a15a35

∆135

}
,

σ(J(M145)) =

{
1, 1− ∆3

∆145
, 1− ∆2

∆145
, 1± i

√
a14a15a45

∆145

}
.

Assuming ∆2,∆3,∆4 > 0, we observe:
– for M125: all real parts of the eigenvalues are strictly greater than 1. Hence, M125 is a “repeller”;
– for M135: one eigenvalue has real part greater than 1, another less than 1. Hence, M135 is a

“saddle point”;
– for M145: all real parts of the eigenvalues are less than 1. Hence, M145 is an “attractor”.

Theorem 3. If ∆2,∆4 > 0 and ∆3 < 0, then the fixed point card of the operator V1 is cyclic and,
in addition to the fixed points M125, M135, and M145, contains an internal fixed point with all five
coordinates nonzero (see Figure 3).

Figure 3. Cyclic structure of the fixed point graph with an additional internal fixed point

Proof. The cyclic structure of the fixed point graph GV follows from Theorem 2, which characterizes
the orientation of arcs between the fixed points M125, M135, and M145 depending on the signs of ∆2,
∆3, and ∆4.

When ∆2,∆4 > 0 and ∆3 < 0, the inequalities derived in Theorem 2 imply the formation of a
cycle:

M125 →M135 →M145 →M125.

Let α = {1, 2, 3, 4, 5} denote the full support. Then Γα is the interior of the simplex S4.
SinceM125,M135, andM145 form a cyclic triple, none of them can serve as the sink (i.e., the unique

fixed point Qα) of the face Γα. By the uniqueness of such a point ([15], it follows that Γα must contain
an additional fixed point Mα, which lies strictly inside the simplex. Hence, all coordinates of Mα are
nonzero.

Therefore, under the stated conditions, the graph GV acquires a cyclic structure and includes an
internal fixed point with full support.

Next, we consider another representative of the Lotka–Volterra mapping and the corresponding
tournament.
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Figure 4. A strong, homogeneous tournament with four cyclic triples

Figure 4 illustrates a strong homogeneous tournament containing four cyclic triples. This tournament
corresponds to the Lotka–Volterra operator V2, defined by:

V2 :



x
′
1 = x1(1− a12x2 − a13x3 − a14x4 + a15x5),

x
′
2 = x2(1 + a12x1 − a23x3 − a24x4 + a25x5),

x
′
3 = x3(1 + a13x1 + a23x2 − a34x4 − a35x5),

x
′
4 = x4(1 + a14x1 + a24x2 + a34x3 − a45x5),

x
′
5 = x5(1− a15x1 − a25x2 + a35x3 + a45x4).

(8)

The corresponding skew-symmetric matrix A2 associated with this operator is given by:

A2 =


0 −a12 −a13 −a14 a15

a12 0 −a23 −a24 a25

a13 a23 0 −a34 −a35

a14 a24 a34 0 −a45

−a15 −a25 a35 a45 0

 .

If we compute all principal minors of order four of the skew-symmetric matrix A2, we obtain squares
of certain expressions. Let these expression denoted by ∆i 6= 0, for i = 1, . . . , 5:

∆1 = a24a35 − a23a45 + a25a34, ∆2 = a14a35 − a13a45 + a15a34,

∆3 = a14a25 − a15a24 + a12a45, ∆4 = a12a35 − a15a23 + a13a25,

∆5 = a12a34 − a13a24 + a14a23.

The Lotka–Volterra operator V2 defined in equation (8) admits four cyclic triples: 135, 145, 235,
and 245. These cyclic triples correspond to strong sub-tournaments of the tournament on the 4-simplex
S4 (see Figure 4), each containing a unique internal fixed point.

These fixed points are given by:

M135 =

(
a35

a13 + a15 + a35
, 0,

a15

a13 + a15 + a35
, 0,

a13

a13 + a15 + a35

)
,

M145 =

(
a45

a14 + a15 + a45
, 0, 0,

a15

a14 + a15 + a45
,

a14

a14 + a15 + a45

)
,

M235 =

(
0,

a35

a23 + a25 + a35
,

a25

a23 + a25 + a35
, 0,

a23

a23 + a25 + a35

)
,
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M245 =

(
0,

a45

a24 + a25 + a45
, 0,

a25

a24 + a25 + a45
,

a24

a24 + a25 + a45

)
,

where all coefficients aij are assumed to be strictly positive.
For the operator V2, applying Young’s inequality yields the following estimates:

ϕ135(V x) ≤ ϕ135(x)

∆135
(∆135 + ∆4x2 −∆2x4) ,

ϕ145(V x) ≤ ϕ145(x)

∆145
(∆145 + ∆3x2 + ∆2x3) ,

ϕ235(V x) ≤ ϕ235(x)

∆235
(∆235 −∆4x3 −∆3x4) ,

ϕ245(V x) ≤ ϕ245(x)

∆245
(∆245 −∆4x3 −∆3x4) ,

for all x ∈ S4, where

∆135 = a13 + a15 + a35, ∆145 = a14 + a15 + a45, ∆235 = a23 + a25 + a35, ∆245 = a24 + a25 + a45.

If the second and fourth even-order principal minors of the skew-symmetric matrix A2 are nonzero,
then A2 is said to be in general position. In this case, the card of fixed points of the operator V2 has
the structure shown in Figure 5.

Figure 5. The card of fixed points for the mapping V2

In the card of fixed points, no directions are initially indicated, as the orientations on the faces of
the simplex depend on the signs of the expressions ∆i, for i = 1, 2, 3, 4, 5.

The orientation of a graph refers to assigning a direction (arrow) to each of its edges, i.e., specifying
an order for every pair of adjacent vertices. A directed graph, or digraph, is one in which no two
vertices are connected by a pair of edges pointing in opposite directions. Thus, every orientation of an
undirected graph yields a digraph [17].

For a graph with four vertices, there are 24 = 16 possible orientations. Among these 16 digraphs,
some are isomorphic — that is, structurally identical up to a relabeling of vertices. There are ex-
actly four non-isomorphic directed graphs with four vertices that contain a directed cycle. These are
illustrated in Figure 6.
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Figure 6. The four non-isomorphic directed graphs

Theorem 4. Let the following conditions hold:

1. If ∆1,∆4 < 0, then the card of fixed points of the operator V2 has the structure shown in Figure 6,
case a).

2. If ∆1,∆3,∆4 < 0, then the card of fixed points of the operator V2 has the structure shown in
Figure 6, case b).

3. If ∆3,∆4 < 0, then the card of fixed points of the operator V2 has the structure shown in Figure 6,
case c).

The proof of Theorem 4 follows directly from Theorems 2 and 3.

Theorem 5. If A2 is a skew-symmetric matrix in general position, then the card of fixed points of
the operator V2 cannot take the form shown in Figure 6 case d).

Proof. The fact that the card of fixed points of the operator V2 cannot take the form shown in
Figure 6, case d) follows from a uniqueness fakt stated in [15]. Specifically, if the skew-symmetric
matrix is in general position, then the sets of points P and Q are each unique [13,15].

However, in the fixed point diagram shown in Figure 6 case d), there are two P -points, namely
(145, 235), and two Q-points, namely (135, 245), which contradicts this uniqueness.

Let us consider the mapping V3 : S4 → S4 defined by the following system of equations:

V3 :



x
′
1 = x1(1 + a12x2 + a13x3 − a14x4 − a15x5),

x
′
2 = x2(1− a12x1 + a23x3 + a24x4 − a25x5),

x
′
3 = x3(1− a13x1 − a23x2 + a34x4 + a35x5),

x
′
4 = x4(1 + a14x1 − a24x2 − a34x3 + a45x5),

x
′
5 = x5(1 + a15x1 + a25x2 − a35x3 − a45x4),

where the coefficients satisfy the conditions 0 < aki ≤ 1 for all i, k.
The strong, homogeneous tournament corresponding to this operator is illustrated in Figure 7.
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Figure 7. The strong, homogeneous tournament corresponding to the operator V3

It has five cyclic triples: 124, 134, 135, 235, 245, each of whose corresponding faces contains exactly one
fixed point:

M124 =

(
a24

a12 + a14 + a24
,

a14

a12 + a14 + a24
, 0,

a12

a12 + a14 + a24
, 0

)
,

M134 =

(
a34

a13 + a14 + a34
, 0,

a14

a13 + a14 + a34
,

a13

a13 + a14 + a34
, 0

)
,

M135 =

(
a35

a13 + a15 + a35
, 0,

a15

a13 + a15 + a35
, 0,

a13

a13 + a15 + a35

)
,

M235 =

(
0,

a35

a23 + a25 + a35
,

a25

a23 + a25 + a35
, 0,

a23

a23 + a25 + a35

)
,

M245 =

(
0,

a45

a24 + a25 + a45
, 0,

a25

a24 + a25 + a45
,

a24

a24 + a25 + a45

)
.

We use the following notation:

∆1 = a24a35 − a23a45 + a25a34, ∆2 = a14a35 − a15a34 + a13a45,

∆3 = a14a25 − a12a45 + a15a24, ∆4 = a12a35 − a15a23 + a13a25, (9)
∆5 = a13a24 − a12a34 + a14a23.

For the operator V3, we also apply Young’s inequality and obtain the following estimates:

ϕ124(V x) ≤ ϕ124(x)

∆124
(∆124 −∆5x3 −∆3x5) ,

ϕ134(V x) ≤ ϕ134(x)

∆134
(∆134 + ∆5x2 + ∆2x5) ,

ϕ135(V x) ≤ ϕ135(x)

∆135
(∆135 + ∆4x2 −∆2x4) ,

ϕ235(V x) ≤ ϕ235(x)

∆235
(∆235 −∆4x1 + ∆1x4) ,

ϕ245(V x) ≤ ϕ245(x)

∆245
(∆245 + ∆3x1 −∆1x3) .

for all x ∈ S4, where

∆124 = a12 + a14 + a24, ∆134 = a13 + a14 + a34, ∆135 = a13 + a15 + a35,

∆235 = a23 + a25 + a35, ∆245 = a24 + a25 + a45.
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Theorem 6. Let the quantities ∆1,∆2,∆3,∆4,∆5 be defined as in (9). Then:
1. If ∆1,∆2,∆3,∆4 < 0 and ∆5 > 0, then the fixed point card of the operator V3 contains a

Hamiltonian cycle, and the operator admits an internal fixed point with all five coordinates
nonzero (see Figure 8, case a) ).

2. If ∆2,∆3,∆4 < 0 and ∆1,∆5 > 0, then the fixed point card of the operator V3 takes the form
shown in Figure 8, case b).

3. If ∆2,∆4 < 0 and ∆1,∆3,∆5 > 0, then the fixed point card of the operator V3 takes the form
shown in Figure 8, case c).

4. If ∆1 ·∆2 ·∆3 ·∆4 ·∆5 6= 0, then the fixed point card of the operator V3 cannot take the form
shown in Figure 8, case d).

Figure 8. Possible cards of fixed points of the operator V3

The proof of Theorem 6 follows directly from Theorems 2 and 3.
Theorem 6 characterizes the types of fixed point configurations of the operator V3 depending on

the signs of the expressions ∆i. In particular, case 1. indicates the existence of an internal fixed point.
The following lemma makes this statement precise.

Lemma 1. Let the operator V3 : S4 → S4 be defined by the system

V3(x)k = xk

(
1 +

5∑
i=1

akixi

)
, k = 1, . . . , 5,

where aki = −aik, xi ≥ 0,
5∑
i=1

xi = 1, and ∆i are the fourth-order principal minors of the skew-

symmetric matrix A = (aij). Then:
1. If ∆1,∆2,∆3,∆4 < 0 and ∆5 > 0, then the operator V3 has at least one internal fixed point
x∗ ∈ int(S4).

2. If at least three of the values ∆i are positive, then there are no internal fixed points.
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Proof. Consider the directed graph (tournament) GV3 corresponding to the operator V3, where the
vertices represent the coordinates xi, and the direction of the edges is determined by the sign of the
coefficients aki.

1. Existence of an internal point. According to results by Hofbauer J. and Ganikhodzhaev R.
[13, 19], if the tournament GV3 contains a Hamiltonian cycle, then the operator V3 has at
least one internal fixed point. This behavior occurs when the fixed points on the faces (e.g.,
M124,M134,M135,M235,M245) are connected by directed transitions forming a cycle. The conditions
∆1,∆2,∆3,∆4 < 0 and ∆5 > 0 ensure the required orientation of the transitions between faces,
forming a Hamiltonian cycle.

2. Non-existence of an internal point. If at least three of the values ∆i are positive, the structure of
GV3 does not contain a full directed cycle (it becomes either transitive or splits into sub-tournaments).
This implies that all trajectories of V3 are attracted to fixed points on the boundary faces of the
simplex, and internal fixed points are either unstable or do not exist.

3 Connection with replicator dynamics and evolutionary stability

The Lotka–Volterra operators considered in this paper are structurally close to replicator dynamics
from evolutionary game theory. In both models, the trajectories are confined to the standard simplex
Sm−1, and fixed points correspond to stationary population states.

3.1 Replicator dynamics and stability

The replicator equation for a population with m strategies and payoff matrix A = (aij) has the
form [30–32]: ẋi = xi

(
(Ax)i − x>Ax

)
, where x ∈ Sm−1, and (Ax)i denotes the fitness of strategy i.

A point x∗ ∈ Sm−1 is a fixed point if all strategies present in x∗ have equal fitness: (Ax∗)i = x∗>Ax∗

for all x∗i > 0.

3.2 Evolutionarily stable strategy (ESS)

A point x∗ ∈ Sm−1 is called an evolutionarily stable strategy (ESS) if the following two conditions
are satisfied:

1. x∗ is a Nash equilibrium: x∗>Ax∗ ≥ x>Ax∗ for all x ∈ Sm−1;
2. if x 6= x∗ and x∗>Ax = x∗>Ax∗, then x>Ax < x∗>Ax.
This means that small deviations from x∗ result in lower fitness for mutants, and strategy x∗ cannot

be invaded.

3.3 Analogy with Lotka–Volterra operators

Consider the discrete Lotka–Volterra operator:

x′k = xk

(
1 +

m∑
i=1

akixi

)
, k = 1, . . . ,m.

After normalization and transition to continuous time, this system approximates the replicator form:

ẋk = xk

(
m∑
i=1

akixi − Φ(x)

)
, where Φ(x) is the average fitness. This supports the interpretation of

coefficients aij as measures of fitness differences or interactions between strategies.
Thus, interior fixed points of the operator V , i.e., those with all coordinates positive, can be

interpreted as candidates for ESS.
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3.4 Classification of fixed points

Let Mα ⊂ S4 be a fixed point associated with a face Γα defined by a cyclic triple. Then:

• if all eigenvalues of the Jacobian matrix at Mα have modulus less than one, the point is asymp-
totically stable and may be ESS;

• if the point is a saddle or repeller, then it cannot be evolutionarily stable.

Proposition 1. Let x∗ be a fixed point of a Lotka–Volterra operator V . Then:

• if x∗ is a strict local maximum of a potential function (if one exists), then x∗ is an ESS;

• if x∗ is a saddle or repeller, then it is not evolutionarily stable.

As an example, we can consider the operator V2. Under the conditions ∆2,∆3,∆4 < 0, ∆1,∆5 > 0,
the fixed point structure corresponds to Figure 8, case b), where there exists a unique interior fixed
point. If the eigenvalues of the Jacobian matrix at this point all have modulus less than one, the point
is asymptotically stable and can be interpreted as an ESS.

The connection with replicator dynamics provides a biological interpretation of the behavior of
Lotka–Volterra operators. Attracting interior fixed points behave as stable combinations of strategies
or species, while saddle points correspond to unstable ecological or strategic equilibria.

4 Conclusion

In this work, we analyzed the structure of the set of fixed points — referred to as the card of fixed
points — for Lotka–Volterra type operators defined on the standard simplex Sm−1. By associating these
nonlinear maps with skew-symmetric matrices in general position, we established a correspondence
between the dynamical system and directed graphs, particularly focusing on strong and homogeneous
tournaments.

This graph-theoretical interpretation allowed us to classify the qualitative behavior of the system
based on the topology of the corresponding tournament - including the presence of Hamiltonian cycles
and internal fixed points. Analytical conditions were derived using the signs of even-order principal
minors ∆i, which determine the number and nature of fixed points. Additionally, Young’s inequality
was applied to obtain upper estimates for the evolution of invariant functions defined on simplex faces.

Beyond theoretical significance, the results of this study find direct applications in several domains
where discrete population dynamics are modeled. In evolutionary biology, Lotka–Volterra operators
serve as simplified models of frequency-dependent selection, where fixed points correspond to evolu-
tionarily stable strategies (ESS). Interior fixed points represent coexistence states, while saddle points
and repellers describe unstable or metastable configurations.

In socio-economic systems, such as market competition, opinion dynamics, or resource allocation,
agent interactions can also be described using skew-symmetric structures. In this context, the tourna-
ment representation reflects dominance, influence, or preference relations. Therefore, the topological
classification of fixed point cards provides insights into long-term system behavior based on interaction
patterns.

The proposed approach can be further extended to systems with noise, spatial heterogeneity, or
adaptive responses, making it a promising tool for modeling complex real-world phenomena. Future
directions may include the development of algorithms to infer tournament structure from empirical
data and applying the derived stability criteria to detect equilibrium configurations in evolutionary
and economic games.
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