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This paper investigates the dynamical behavior of Lotka—Volterra type operators defined on the four and five
dimensional simplexes, focusing on their fixed points and structural representation through directed graphs
(tournaments). For several classes of such operators, we derive algebraic and combinatorial conditions
under which the configuration of fixed points exhibits transitive, cyclic, or homogeneous structures. Using
methods from algebraic graph theory, Lyapunov stability theory, and Young’s inequality, explicit criteria are
established for the existence, uniqueness, and stability of interior and boundary fixed points. A detailed
analysis is provided for the class of operators whose associated skew-symmetric matrices are in general
position. The connection between the minors of these matrices and the orientation of arcs in the tournament
is clarified, revealing how dynamical transitions correspond to changes in tournament type. Furthermore,
we demonstrate that under certain parameter regimes, fixed points coincide with evolutionarily stable
strategies (ESS) in replicator dynamics, thus bridging discrete population models and evolutionary game
theory. The obtained results enrich the theory of quadratic stochastic and Lotka—Volterra operators,
providing new insights into nonlinear mappings on simplexes, combinatorial dynamics, and applications to
models of interacting populations.
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Introduction

A number of applied studies are devoted to the investigation of dynamical systems — both conti-
nuous and discrete — as well as systems involving fractional-order derivatives [1-3]. To this day, all three
types of systems remain relevant; however, they differ in the methods of analysis and in the nature of the
results obtained [4-6]. The application areas of such models are wide-ranging and include medicine
(covering problems in epidemiology, oncology, and population genetics), ecology, economics, com-
puter virology, and many others [7-9]. Building on these applications, we now turn to the theoretical
foundations of a particular class of discrete dynamical systems — the so-called quadratic stochastic
operators — which play a central role in many models, especially in population genetics and game
dynamics.

Let us start by recalling the known facts that we will rely on in the article, as well as recalling the
works of some authors on its topic. It is known that [10], a (m — 1)-dimensional standard simplex in
R™ is defined as the relation

m
Sm—l — {x = (q;l, ,(L‘m) x; >0, sz = ].} c R™,
=1
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It is easy to verify that S™ ! is a convex and compact subset of R™.

A class of mappings defined on S™~! known as quadratic stochastic operators was introduced by
Bernstein [11] and further developed by R.N. Ganikhodzhaev in [12,13]. Such mappings are defined
by a set of coefficients P;;y for 4,j,k = 1,...,m, satisfying the conditions

m
P1,]7k; = P]%k Z O, ZPZjJi‘ = 1’
k=1
and act according to the equations
m
ay, = (Va), = Z Py iz, k=1,...,m.
=1

This mapping was introduced by R.N. Ganikhodzhaev in [12].

Definition 1. A quadratic stochastic mapping is called a Lotka—Volterra mapping if the inheritance
coefficients satisfy the condition Pj;; = 0 for all k ¢ {i,5}.

It is known (see [14]) that any Lotka—Volterra mapping defined on S™~! can be represented as

m
$;€:$k(1+zakz$z), k=1,...,m, (1)

i=1

where
2P — 1, ifi#£k, ) ,

g =4k _ f with |ag| <1, kyi=1,...,m. (2)

0, ifi =k,
Here, A = (ay;) is a real skew-symmetric matrix, satisfying A = —AT, where A7 denotes the

transpose of A.

Definition 2. [15] A skew-symmetric matrix is called a matrix of general position if all of its principal
minors of even order are nonzero.

Since ag; = —agg, all off-diagonal entries are antisymmetric. In particular, ag; # 0 for ¢ # k if and
only if the corresponding P;; 1, # %

It is known that each skew-symmetric matrix in general position can be associated with a complete-
oriented graph (tournament) [15].

Let A = (ag;) be a skew-symmetric matrix in general position associated with Lotka—Volterra
mapping (1), where the coefficients satisfy conditions (2). We place m points on a plane and label
them 1,2,...,m. For each pair of distinct indices ¢ # k, we draw a directed edge from vertex i to
vertex k if a;; > 0 (equivalently, ag; < 0).

This construction defines a well-posed directed graph. We then call the constructed graph the
tournament of dynamic system (1) with the skew-symmetric matrix A = (ag;) and denote it by T),.

A directed graph is called a tournament if, for every pair of distinct vertices ¢ and k, exactly one
of the edges (i, k) or (k,i) is present. A graph in which every two vertices are connected by an edge is
called a complete graph. If each edge of a complete graph is assigned a direction, the resulting directed
graph is a tournament [16-18|.

Two tournaments are said to be isomorphic if there exists a bijection between their vertex sets that
preserves the direction of all edges.

It is known that there are 12 pairwise non-isomorphic tournaments with 5 vertices [17].

A tournament is called strong if, for any two vertices, there exists a directed path from one to the
other. Among the 12 tournaments with 5 vertices, 6 are strong [15].
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A tournament is said to be transitive if it contains no strong subtournaments. Equivalently, a
tournament is transitive if it does not contain any directed cycles. Among the tournaments with 5
vertices, exactly 1 is transitive, 6 are strong, and the remaining 5 are neither strong nor transitive.

Definition 3. |15] A tournament is homogeneous if every sub-tournament is either strong or tran-
sitive.

In this paper, we study the structure of the set of fixed points (referred to as the card of fized
points) and characterize the fixed points of strong and homogeneous tournaments.

Every face of the simplex S™ ! is invariant under the Lotka—Volterra mapping, and the restriction
V' to this face is also a Lotka-Volterra mapping [12-14].

In recent works [19-21] Lotka—Volterra mappings have been studied from the perspective of dynam-
ical systems, population genetics, and game theory. A particularly fruitful approach is to analyze their
fixed points and dynamical behavior via combinatorial structures such as tournaments and their geo-
metric realizations on simplex [22-24|. Lotka—Volterra mappings are popular in modeling the spread of
viral diseases. In [25-27], degenerate Lotka—Volterra mappings and their applications were considered.

In this paper, we focus on the structure of the set of fixed points — referred to as the card of
fized points — for various types of Lotka—Volterra operators V. We pay special attention to operators
corresponding to strong and homogeneous tournaments. Also explore conditions for the existence of
fixed points on the interior and the faces of the simplex, as well as criteria for their stability and
evolutionary significance.

Additionally, we establish links with replicator dynamics and evolutionary game theory, including
conditions under which fixed points of the system can be interpreted as evolutionary stable strategies

(ESS).
1 Card of fixed points
Introduce the following notation:
P,={x €T, :Ayz >0}, Qo ={z €T, : Ayx <0},

where ', denotes the face of the simplex S™~! corresponding to the index set o C I = {1,2,...,m},
and A, is the submatrix of A corresponding to the indices in a.

It is known [14], each of the sets P, and (), contains a unique fixed point. In some cases, it is
possible that P, = Q.

The set of all fixed points of the operator V, Fix(V) = {x € S™~!: Vo = x} can be represented
as a set of points in a plane. For each o C I, the fixed point P, is connected to the fixed point @, by
a directed arc pointing from P, to ),. The resulting directed graph is called the card of fixed points
of the operator V, and is denoted by Gy [14,15].

Definition 4. Two fixed points (vertices of the graph Gy) z(a) and x(f3) are called adjacent if the
following conditions hold:

L af = 18],
2. lan gl =la| -1,
where |a| denotes the number of elements in « C I = {1,2,...,m}.

In other words, z(«) and () correspond to faces of the same dimension and their supports differ
by exactly one index.

For example, all vertices of the simplex (corresponding to one-element subsets) are pairwise adja-
cent. However, the fixed points z({2,3,5}) and x({1,2,4}) are not adjacent.

Theorem 1. Any two adjacent vertices in the graph Gy are connected by a directed arc.
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Proof. Let z(ar) and x(8) be adjacent vertices of Gy, corresponding to the subsets
a,BCI=1{1,2,...,m}. By definition of adjacency, |a| = |5|, and |a N 5| = |a] — 1. Let v = a U,
so that |y| = |a| + 1.

Let us denote v = {i1,42,...,4t}, with ¢ = |y|. Then, without loss of generality, we may assume

OJZ{iQ,ig,...,’it}, 5={i1,i2,...,’it_1}.

Now consider the restriction of the mapping V' to the face I, € S™~L. Since z(a) and z(f) lie in
I, we consider the action of the submatrix A, from the skew-symmetric matrix A on the face I'.
Recall the property of Lotka—Volterra mappings on invariant faces: for a fixed point x € I',

supp x Nsupp(Ayx) = &, suppz Usupp(Ayx) = .

That is, the nonzero coordinates of A,x are complementary to the support of x within ~.

Applying this to z(«), which has support a = {ia,...,i;}, we obtain that (Ayz(«a));; # 0, and all
other coordinates of Ayx(c) vanish. Similarly, since 5 = {i1,...,%—1}, the only nonzero coordinate of
Ayx(B) is (Ayz(B))i, # 0.

We now consider the signs of these nonzero coordinates. If
sign(A,z(a));, - sign(Ayz(8))i, <O,

then, the directions of the corresponding arcs go from one to the other, and z(a) and z(3) form a
directed pair (P,, Q. ), meaning they are connected by an arc in Gy.

If the signs are the same, then both x(«) and z (/) would have outgoing arcs in the same direction
on the face I'y, which contradicts the uniqueness of the sink (i.e., the unique point with all incoming
arcs) in the fixed point diagram on T'.

Hence, in either case, the pair (z(«),z(f)) must be connected by a directed arc in Gy . O

2  Main results

Consider the general form of the Lotka—Volterra operator Vi:

71(1 — a12w2 — a1373 — a14T4 + a15x5),

22(1 + a12x1 — @233 — a24T4 — A25%5),

X
X

Vi T
xy = x4(1 + a14%1 + agqwe + azqrs — a457s),
X

( )
( )
23(1 + a1371 + ag3r2 — 3474 — a3575), (3)
( )
( )

U mTsy Wy s =TS

T5(1 — ai15x1 + assx9 + assT3 + a45x4).

The operator V; corresponds to the strong and homogeneous tournament shown in Figure 1.

1

Figure 1. The tournament associated with the operator V;
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The corresponding skew-symmetric matrix A; = (a;;) associated with mapping (3) has the form:

0 —aip —ai3 —a as
az 0  —azs —azy —azs
A= a3  as3 0  —ass —ass
aly a4 asy 0 —ays
—ais A G35 Q45 0

In order for the operator Vj to correspond to a matrix in general position, it is required that all
even-order principal minors of the matrix A; be nonzero.

For second-order minors, the condition ax; > 0 ensures their positivity. Calculating the principal
minors of order four (there are five such minors), we obtain:

ALY = (agsaus + agsass — assass)®, A3 = (ar5ass + ar4a3s — arzass)’,
AP = (a15a04 + ar4a05 — a12a5)®, AL = (ar5a23 + a13a25 — a12a35)?,
A = (ai4a23 + a12a34 — a13a24)”.
Since the matrix A; is in general position, all even-order principal minors are nonzero, i.e., A;Z # 0 for

alli=1,...,5.
Let us define the expressions inside the squares as:

Ay = azzays + azsa34 — 24035,
Ay = ai5a34 + ai4a3s — a13a4s,
A3z = a15a24 + a14a25 — a12a45,
Ay = aisaz3 + aizags — ai2azs,

AS = 14023 + 012034 — G13024.

Theorem 2. If Ag, A3, Ay > 0, then the card of the fixed point operator V; is transitive (Figure 2)

125

145 < 135

Figure 2. The transitive card of the fixed point

Proof. As shown in Figure 1, the tournament contains three cyclic triples: 125,135,145. These
correspond to the following fixed points:

a5 ais
M125 - < ) 707 0 >
a12 +ais + azs arz +ais + azs a2 + ais + a2s
ass ais
M135 - < aOa 70 )
a3+ a5 +ass a1z t+ais+aszs aiz+as + ass
Q45 ais
Miys = <,0,0 >
a14 + a1s + aqs ais + ais + ass’ ais + ais -I— a45
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where all coefficients are assumed to be positive.
Now, define the following functions:

1 1
80125@) _ (mtlmsxglsxglz)a12+a15+a25 , 30135(55) — (1‘61135$§15xi5l13)a13+a15+a35 ,
1
pras(®) = (@52 5ag) FarmaTes
We now apply “Young’s inequality” [28], which states that for any ¢ > 0, pr > 0, such that

m

>~ pr = 1, the following holds:
k=1

o m m
H ar < Z CkPk-
P =1

Using this, one derives the following estimates:

p125(V) < 9012;(:) (A2 — Agxsz — Azzy), (4)
x

p135(V) < SOIAST;) (A135 + Agxo — Agzy), (5)
T

g0145(Vl‘) < SDZLTL) ) (A145 + Aszxo + A2x3) . (6)

Here, the constants are:
Aigs = a12 + ai5 + a5, Aizs = a13 + a5 +azs, Az = aa + a1 + ags.

We now determine the directions of arcs between the fixed points:

1. “Between Mj9s and Mjss™: In inequalities (4) and (5), the term involving A4 appears with
opposite signs. If Ay > 0, then in (4) this term decreases ¢125(Vx), while in (5) it increases ¢135(V ).
This implies the direction of the fixed-point flow is Myo5 — Mi3s.

2. “Between M35 and My45”™: In inequalities (5) and (6), Ay appears with opposite signs. If Ay > 0,
this implies the direction Miss — Migs.

3. “Between Mjos and Mjss”: Comparing (4) and (6), if Az > 0, the sign of the corresponding
term shows the direction Mis5 — Miys.

As a result, all three fixed points are connected in a consistent directed order:

Mios — Mizs — Mygs < Mios,

and the resulting subgraph forms a transitive triangle, as shown in Figure 2. O

Let Va =z, i.e., x is a fixed point of the mapping. The eigenvalues of the Jacobian matrix at the
fixed point are found as the solutions of the characteristic equation:

det(J(z) — AE) = 0, (7)

where J(z) is the Jacobian matrix of the mapping V evaluated at the fixed point z, and E is the
identity matrix.

The nature of the fixed point can be characterized based on the eigenvalues of the Jacobian. To
do this, we first introduce some definitions regarding the classification of fixed points [29].

To investigate the nature of fixed points of the mapping, we introduce the following definitions
from [29].
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Definition 5. A fixed point is called an attractor if all eigenvalues of the Jacobian matrix (i.e., the
solutions of equation (7)) have modulus strictly less than one.

Definition 6. A fixed point is called a repeller if all eigenvalues of the Jacobian matrix have modulus
strictly greater than one.

Definition 7. A fixed point is called a saddle point if the spectrum of the Jacobian contains eigen-

values with modulus both less than and greater than one. In other words, it is neither an attractor
nor a repeller.

Corollary 1. If Ag, Az, Ag > 0, then the fixed point M;s5 of the operator V7 is a repeller, the fixed
point M145 is an attractor, and the fixed point Mjss is a saddle point.

Proof. Using equation (7), we compute the eigenvalues of the Jacobian matrix at each fixed point.
Let us denote the diagonal entries of the Jacobian matrix at a general point x as:

t1 =1—a12z2 — a13r3 — A1474 + a1575,

to = 1+ a1271 — ag3®3 — a24T4 — A25Ts,

ts = 1+ a1321 + a23x2 — a34%4 — a35s,

ty =1+ a141 + a4 + a343 — ag5s,

ts = 1 —ai5z1 + agsr2 + 3523 + a4524.

Then the Jacobian matrix J takes the form:

t —a12T1 —aG13T1 —A14T1 —a15%1

1222 ta —Q23T2  —aA24T2 —A25T2

J=| aizrs  az3 l3 —Qa34T3 —a35x3

14T4  A24T4 (3474 t4 —Q45T4
—a15T5  G25%5  A35T5 4575 ts

Substituting the coordinates of the fixed point Mjs5 into J, we obtain:

1 __a12a35 __a13a35 __Gj4a25 a15a25

A12s A1zs A12s A12s
a12a15 1 __a23a1s __a24a15 __aszsa1s
A12s A1zs A12s A1zs
_ a13025+023Q15—0A35Q12
J(Ms)=| 0 0 1+ 701 0 o |,
0 0 0 1 4 2140251024015~ 045012 0
A12s
__aisaiz a25a12 a35a12 a45a12 1
A12s A12s A12s A12s

where A195 = a12 + a5 + ass.
From this matrix, two eigenvalues are immediately identified as: A\; = 1 + AA1357 Ao =1+ 2
corresponding to the diagonal entries.

The remaining eigenvalues are obtained from the characteristic equation for the 3 x 3 leading
principal minor:

1— )\ —a120% a15a25
A12s A12s
a12a15 1— ) —a@sas | _
A12s A12s )
__aisa12 a25a12 1— )\
A12s A12s

Solving it, we find: A\34 =141, /%, A5 = 1. Thus, the spectrum of the Jacobian at Mjas is:

Ay As \/m}
o(J(Mias)) =<1, 1+ Ll 1, 2R
( ( 125)) { A125 A125 A125
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Similarly, we have:

Ay AV .\/m}
o(J(Myzs)) =1, 1— =% 14 22 g4 (213915035 L
(J(Mizs)) { Aq3s Aq3s Aq3s

A3 Ag . 6L14a15a45}
o(J(Mus)) =41, 1— =8 1 22y, (G505 1
(J(Mis5)) { Atz A1ys A5

Assuming Ag, Az, Ay > 0, we observe:

— for Myo5: all real parts of the eigenvalues are strictly greater than 1. Hence, Mio5 is a “repeller”;

— for Mis5: one eigenvalue has real part greater than 1, another less than 1. Hence, M35 is a
“saddle point”;

— for My45: all real parts of the eigenvalues are less than 1. Hence, M145 is an “attractor”. O

Theorem 8. If Ag, Ay > 0 and Az < 0, then the fixed point card of the operator V; is cyclic and,
in addition to the fixed points Miye5, Miss, and Mi,5, contains an internal fixed point with all five
coordinates nonzero (see Figure 3).

125

145 d ¢ 135

Figure 3. Cyclic structure of the fixed point graph with an additional internal fixed point

Proof. The cyclic structure of the fixed point graph Gy follows from Theorem 2, which characterizes
the orientation of arcs between the fixed points Miss, Mi35, and M145 depending on the signs of Ao,
Az, and Ag.

When Ay, Ay > 0 and Az < 0, the inequalities derived in Theorem 2 imply the formation of a
cycle:

Myo5 — M35 — Mygs — Mios.

Let o = {1,2,3,4,5} denote the full support. Then T, is the interior of the simplex S4.

Since M5, Mi3s, and Miy5 form a cyclic triple, none of them can serve as the sink (i.e., the unique
fixed point @, ) of the face I'y. By the uniqueness of such a point ([15], it follows that I', must contain
an additional fixed point M, which lies strictly inside the simplex. Hence, all coordinates of M, are
Nnonzero.

Therefore, under the stated conditions, the graph Gy acquires a cyclic structure and includes an
internal fixed point with full support. O

Next, we consider another representative of the Lotka—Volterra mapping and the corresponding
tournament.
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4 3

Figure 4. A strong, homogeneous tournament with four cyclic triples

Figure 4 illustrates a strong homogeneous tournament containing four cyclic triples. This tournament
corresponds to the Lotka—Volterra operator V5, defined by:

/

z1(1 — a1o2 — a1373 — a1474 + a1575),

aclz = 22(1 4+ a12w1 — a2323 — 2474 + a2575),

Vo 33;) = 23(1 4+ a1321 + a3x2 — a34T4 — a35T5), (8)
vy = 24(1 + a1471 + a2 + 3473 — A15T5),
\ x’5 = x5(1 — a1571 — a2522 + assx3 + as4sx4).

The corresponding skew-symmetric matrix A, associated with this operator is given by:

0 —a12 —ai3 —as ais
a2 0 —azs —azx azs
Ay =] a3  as3 0  —ass —ass
a4 a4 a4 0 —ags
—ais —a 435 Q45 0

If we compute all principal minors of order four of the skew-symmetric matrix As, we obtain squares
of certain expressions. Let these expression denoted by A; # 0, for i =1,...,5:

A1 = agqazs — azaqs + azsazs, Ao = a14a35 — a13045 + 15034,
A3 = ai4as5 — a15a24 + a12a45, A4 = a12a35 — a15a23 + a13a25,
Az = a12a34 — 13024 + 14023.
The Lotka—Volterra operator V5 defined in equation (8) admits four cyclic triples: 135, 145, 235,
and 245. These cyclic triples correspond to strong sub-tournaments of the tournament on the 4-simplex

5S4 (see Figure 4), each containing a unique internal fixed point.
These fixed points are given by:

ass ais a13
Ml35 - < 3 05 ) 07 > )
a13 + ais + ass a13 + a1 + ass a13 + ais + ass
a4s ais Q14
M145 - 5 07 07 ) )
a4 + ais + ags a4 +a1s + a4 a4 + ars + aqs
ass azs a23
M235 - <0) 3 ) 07 > )
az3 + ags + ass a3 + azs + ass az3 + ags + ass
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a45 azs a4 >
b

M245 — <0) ) Oa )
az4 + ags5 + ays a4 + ags + a45” a4 + ags + ags

where all coefficients a;; are assumed to be strictly positive.

For the operator Vs, applying Young’s inequality yields the following estimates:

X
p135(Vr) < ¢§?§5) (A135 + Agzo — Agzy),

©145(x)
ANPE

x
pa35(Vx) < p235(7) (Agss — Ayxz — Aszy),

w145 (V) < (A1a5 + Agza + Agzs),

i
wous(Vx) < pa5(2) (Agas — Ayxsz — Azzy),

for all z € S*, where
Aizs = a13 + a5 +azs, Az = aia +a15 +ass, Aozs = az + ass +azs, Aoz = a4 + azs + ags.

If the second and fourth even-order principal minors of the skew-symmetric matrix Ay are nonzero,
then A, is said to be in general position. In this case, the card of fixed points of the operator V5 has
the structure shown in Figure 5.

135 115
235 245

Figure 5. The card of fixed points for the mapping V5

In the card of fixed points, no directions are initially indicated, as the orientations on the faces of
the simplex depend on the signs of the expressions A;, for i = 1,2, 3,4, 5.

The orientation of a graph refers to assigning a direction (arrow) to each of its edges, i.e., specifying
an order for every pair of adjacent vertices. A directed graph, or digraph, is one in which no two
vertices are connected by a pair of edges pointing in opposite directions. Thus, every orientation of an
undirected graph yields a digraph [17].

For a graph with four vertices, there are 2 = 16 possible orientations. Among these 16 digraphs,
some are isomorphic — that is, structurally identical up to a relabeling of vertices. There are ex-
actly four non-isomorphic directed graphs with four vertices that contain a directed cycle. These are
illustrated in Figure 6.
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135 145 135 145
\ \ N
4
235 245 235 245
a) b)
135 * 145 135 < 145
\ h
Y
235 > 245 235 > 245
c) d)

Figure 6. The four non-isomorphic directed graphs

Theorem 4. Let the following conditions hold:

1. If A1, Ay < 0, then the card of fixed points of the operator V5 has the structure shown in Figure 6,
case a).

2. If A, A3, A4 < 0, then the card of fixed points of the operator V5 has the structure shown in
Figure 6, case b).

3. If A3z, A4 < 0, then the card of fixed points of the operator V5 has the structure shown in Figure 6,
case C).

The proof of Theorem 4 follows directly from Theorems 2 and 3.
Theorem 5. If As is a skew-symmetric matrix in general position, then the card of fixed points of

the operator V5 cannot take the form shown in Figure 6 case d).

Proof. The fact that the card of fixed points of the operator V5 cannot take the form shown in
Figure 6, case d) follows from a uniqueness fakt stated in [15|. Specifically, if the skew-symmetric
matrix is in general position, then the sets of points P and @ are each unique [13,15].

However, in the fixed point diagram shown in Figure 6 case d), there are two P-points, namely
(145,235), and two Q-points, namely (135, 245), which contradicts this uniqueness. O

Let us consider the mapping V3 : §* — S4 defined by the following system of equations:

Ty = 71(1 + a1272 + a1373 — A14T4 — A15T5),

Ty = w2(1 — a1271 + ag3w3 + 2474 — a2575),

Ty = 74(1 + a1471 — a24T2 — a347T3 + A45T5),

( )
( )
Va: Qg =a3(1 — a1321 — azs®s + azas + azsas),
( )
( )

| T5 = x5(1 + a1571 + ag572 — a3503 — A4574),

where the coefficients satisfy the conditions 0 < ay; < 1 for all 4, k.
The strong, homogeneous tournament corresponding to this operator is illustrated in Figure 7.
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Figure 7. The strong, homogeneous tournament corresponding to the operator Vs

It has five cyclic triples: 124,134,135, 235, 245, each of whose corresponding faces contains exactly one
fixed point:

a24 a14 a12
Moy = ) , 0, ————
a12 + a4 +ag4 a2 +aiq + azy aiz + a4 + ag’
as4 a4
M3y = ( , 0, ; 0)
a13 + a4 + as4 ais+ais+asy’ aiz+ ais + as4
ass ais
M35 = < , 0, , 0, >
a13 + ais + ass a13 + ais + ass a1z + ais + ass
Myss — <0 ass azs 0 >
- b b M M
az3 + ags + ags  ag3 + azs + ass a23 + a2s + ass
M. (o 45 0 @25 )
245 — 5 s Uy
a24 + ags + ags asy + ags + ags’ agy + ass + Q45

We use the following notation:

A1 = ag4a35 — a23a45 + a25a34, Ao = a14a35 — 15034 + 13045,
A3 = a14a25 — a12045 + a15024, Ay = a12a35 — a15a23 + a13a25, (9)

As = a13a24 — a12a34 + G14023.

For the operator V3, we also apply Young’s inequality and obtain the following estimates:

p124(Vx) < $rza() (A124 — Aszz — Aszs),

p134(Vz) < (A134 + Asxo + Agxs)

p135(Vx) < P135(2) (A13s + Agza — Aoxy),

a35(V) < () (Agsgs — Ayxy + Ajzy),

P45 (1)

A (A245 + Aszy — Alxg) .
245

wou5(Vx) <

for all z € S*, where
Ajos = a12 + a1q + asq, A3 = a13 + a1a +aza, Aizs = a1z + ais + ass,

Aog3s = ag3 + ags +azs, Aoz = agg + a5 + ags.
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Theorem 6. Let the quantities Ay, Ay, Az, Ay, A5 be defined as in (9). Then:

1. If Ay, A9, A3, A4 < 0 and As > 0, then the fixed point card of the operator V3 contains a
Hamiltonian cycle, and the operator admits an internal fixed point with all five coordinates
nonzero (see Figure 8, case a) ).

2. If Ao, A3, Ay < 0 and Ay, As > 0, then the fixed point card of the operator V3 takes the form
shown in Figure 8, case b).

3. If Ay, Ay < 0 and Ay, Az, As > 0, then the fixed point card of the operator V3 takes the form
shown in Figure 8, case c).

4. If Ay - Ao - Ag- Ay - As # 0, then the fixed point card of the operator V3 cannot take the form
shown in Figure 8, case d).

245 245 134

25 134 245 134

135

c)
Figure 8. Possible cards of fixed points of the operator V3

The proof of Theorem 6 follows directly from Theorems 2 and 3.

Theorem 6 characterizes the types of fixed point configurations of the operator V3 depending on
the signs of the expressions A;. In particular, case 1. indicates the existence of an internal fixed point.
The following lemma makes this statement precise.

Lemma 1. Let the operator V3 : S* — S% be defined by the system
5
Va(@)k = o (1 +Zakimi> , k=1,...,5
i=1

5
where ag; = —az, ©; > 0, >, x; = 1, and A; are the fourth-order principal minors of the skew-

=1
symmetric matrix A = (a;;). Then:
1. If Ay, Aq, A3, Ay < 0 and As > 0, then the operator V3 has at least one internal fixed point
r* € int(S%).
2. If at least three of the values A; are positive, then there are no internal fixed points.
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Proof. Consider the directed graph (tournament) Gy, corresponding to the operator V3, where the
vertices represent the coordinates z;, and the direction of the edges is determined by the sign of the
coefficients a;.

1. Euxistence of an internal point. According to results by Hofbauer J. and Ganikhodzhaev R.
[13, 19|, if the tournament Gy, contains a Hamiltonian cycle, then the operator V3 has at
least one internal fixed point. This behavior occurs when the fixed points on the faces (e.g.,
Mio4, Mi34, M35, Mass, Maygs) are connected by directed transitions forming a cycle. The conditions
A1, A9, A3, Ay < 0 and Az > 0 ensure the required orientation of the transitions between faces,
forming a Hamiltonian cycle.

2. Non-existence of an internal point. If at least three of the values A; are positive, the structure of
Gy, does not contain a full directed cycle (it becomes either transitive or splits into sub-tournaments).
This implies that all trajectories of V3 are attracted to fixed points on the boundary faces of the
simplex, and internal fixed points are either unstable or do not exist. O

8 Connection with replicator dynamics and evolutionary stability

The Lotka—Volterra operators considered in this paper are structurally close to replicator dynamics
from evolutionary game theory. In both models, the trajectories are confined to the standard simplex
S™~1 and fixed points correspond to stationary population states.

3.1 Replicator dynamics and stability

The replicator equation for a population with m strategies and payoff matrix A = (a;;) has the
form [30-32]: 4; = z; ((Az); — 2" Az), where € S™~1, and (Az); denotes the fitness of strategy 1.
A point z* € S™ 1 is a fixed point if all strategies present in z* have equal fitness: (Az*); = z* T Az*
for all 7 > 0.

3.2 Evolutionarily stable strategy (ESS)

A point z* € S™ 1 is called an evolutionarily stable strategy (ESS) if the following two conditions
are satisfied:

1. z* is a Nash equilibrium: z*T Az* > 2" Az* for all z € §™1;

2. if x # 2* and * " Az = 2* T Az*, then o' Az < 2*T Ax.

This means that small deviations from z* result in lower fitness for mutants, and strategy =* cannot
be invaded.

3.8 Analogy with Lotka—Volterra operators

Consider the discrete Lotka—Volterra operator:

m
x;:xk(l—FZakixi), k::1,...,m.
i=1

After normalization and transition to continuous time, this system approximates the replicator form:
m

T = Tk <Z QT — @(x)) , where ®(z) is the average fitness. This supports the interpretation of
i=1

coefficients a;; as measures of fitness differences or interactions between strategies.
Thus, interior fixed points of the operator V, i.e., those with all coordinates positive, can be
interpreted as candidates for ESS.
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3.4 Classification of fized points

Let M, C S* be a fixed point associated with a face I',, defined by a cyclic triple. Then:

e if all eigenvalues of the Jacobian matrix at M, have modulus less than one, the point is asymp-
totically stable and may be ESS;

e if the point is a saddle or repeller, then it cannot be evolutionarily stable.

Proposition 1. Let * be a fixed point of a Lotka—Volterra operator V. Then:
e if x* is a strict local maximum of a potential function (if one exists), then z* is an ESS;

e if * is a saddle or repeller, then it is not evolutionarily stable.

As an example, we can consider the operator V5. Under the conditions As, Ag, Ay < 0, A1, Az > 0,
the fixed point structure corresponds to Figure 8, case b), where there exists a unique interior fixed
point. If the eigenvalues of the Jacobian matrix at this point all have modulus less than one, the point
is asymptotically stable and can be interpreted as an ESS.

The connection with replicator dynamics provides a biological interpretation of the behavior of
Lotka—Volterra operators. Attracting interior fixed points behave as stable combinations of strategies
or species, while saddle points correspond to unstable ecological or strategic equilibria.

4 Conclusion

In this work, we analyzed the structure of the set of fixed points — referred to as the card of fized
points — for Lotka—Volterra type operators defined on the standard simplex S™ 1. By associating these
nonlinear maps with skew-symmetric matrices in general position, we established a correspondence
between the dynamical system and directed graphs, particularly focusing on strong and homogeneous
tournaments.

This graph-theoretical interpretation allowed us to classify the qualitative behavior of the system
based on the topology of the corresponding tournament - including the presence of Hamiltonian cycles
and internal fixed points. Analytical conditions were derived using the signs of even-order principal
minors A;, which determine the number and nature of fixed points. Additionally, Young’s inequality
was applied to obtain upper estimates for the evolution of invariant functions defined on simplex faces.

Beyond theoretical significance, the results of this study find direct applications in several domains
where discrete population dynamics are modeled. In evolutionary biology, Lotka—Volterra operators
serve as simplified models of frequency-dependent selection, where fixed points correspond to evolu-
tionarily stable strategies (ESS). Interior fixed points represent coexistence states, while saddle points
and repellers describe unstable or metastable configurations.

In socio-economic systems, such as market competition, opinion dynamics, or resource allocation,
agent interactions can also be described using skew-symmetric structures. In this context, the tourna-
ment representation reflects dominance, influence, or preference relations. Therefore, the topological
classification of fixed point cards provides insights into long-term system behavior based on interaction
patterns.

The proposed approach can be further extended to systems with noise, spatial heterogeneity, or
adaptive responses, making it a promising tool for modeling complex real-world phenomena. Future
directions may include the development of algorithms to infer tournament structure from empirical
data and applying the derived stability criteria to detect equilibrium configurations in evolutionary
and economic games.
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