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Inequalities for analytic functions associated with hyperbolic cosine
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In this paper, we investigate the geometric properties of a specific subclass of analytic functions satisfying
the condition f ′(z) ≺ cosh(

√
z) meaning that the function f ′(z) is subordinate to the function cosh(

√
z).

Also, we focus on deriving sharp inequalities for Taylor coefficients, particularly for b2 and the modulus of the
second derivative f ′′(z). Utilizing the Schwarz lemma, both on the unit disc and on its boundary, we provide
essential insights into the distortion and growth behaviors of these functions. The paper demonstrates the
sharpness of these inequalities through extremal functions and applies the Julia–Wolff lemma to establish
boundary behavior results. These findings contribute significantly to the understanding of the analytic
functions associated with the hyperbolic cosine function, with potential applications in geometric function
theory. It is considered that the extremal functions obtained in this study could be potential hyperbolic
activation functions in neural network architectures. This perspective builds a conceptual bridge between
geometric function theory and artificial intelligence, indicating that insights from complex analysis can
inspire the development of more effective and theoretically grounded activation mechanisms in deep learning.
Empirical evaluation of architectures built with novel activation functions may be considered as potential
future work.
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Introduction

Let A represent the class of functions of the form f(z) = z + b2z
2 + b3z

3 + ..., analytic in the unit
disc D = {z : |z| < 1}. Also, let W be the subclass of A satisfying the condition

f ′(z) ≺ cosh
√
z,

where the symbol "≺" indicates the principle of subordination [1]. Also, we choose the branch of the
square root function so that

cosh
√
z = 1 +

z

2!
+
z2

4!
+
z3

6!
+ ...

The conformal mapping cosh
√
z : D → C maps the unit disc D onto the region{

α ∈ C :
∣∣∣ln(α+

√
α2 − 1

)∣∣∣ < 1
}

defined on the principal branch of the logarithm and the square root function [2].
Determining the upper bound for Taylor coefficients has been a key area of focus in understanding

geometric properties, offering important insights into different subclasses of W. In this section, we
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establish an upper bound for b2, a coefficient of the function f(z). To achieve this, we will apply the
Schwarz lemma. Furthermore, the following section will evaluate the modulus of the second derivative
of f(z) from below, requiring the use of the Schwarz lemma on the boundary.

The Schwarz lemma asserts that for any analytic function p(z) mapping the unit disc D into itself
and satisfying p(0) = 0, |p(z)| ≤ |z| for z ∈ D and |p′(0)| ≤ 1. In simpler terms, it asserts that if
a function maps the unit disc into itself and maps its origin to the origin, then the function cannot
magnify the distances between points inside the disc by more than 1 [1].

Extending the Schwarz lemma to the boundary of the unit disc offers deep insights into the behavior
of analytic functions close to this boundary, proving especially beneficial when studying functions that
approach the disc’s edge. In this paper, we set out to examine the application and significance of this
remarkable theorem to various classes of functions. The Schwarz lemma implies the boundary Schwarz
lemma |p′(1)| ≥ 1. Osserman and Unkelbach [3, 4] showed that in this case, we have in fact∣∣p′(1)

∣∣ ≥ 1 +
1− |p′(0)|
1 + |p′(0)|

=
2

1 + |p′(0)|
,

where p satisfies the conditions of the Schwarz lemma, p extends continuously to the boundary point
1∈ ∂D = {z : |z| = 1}, |p(1)| = 1 and p′(1) exists. These inequalities are sharp. In mathematical
literature, these inequalities and their generalizations are topics of continuous discussion and hold
great importance in the geometric theory of functions [5–7]. Some properties of analytic function
classes related to the Jack and the Schwarz lemmas were studied in [8]. In [9], a new bound for the
Schwarz inequality was obtained for analytic functions mapping the unit disk onto itself.

If we use the principle of subordination for the class we defined above, there exists a Schwarz
function p(z) such that

f ′(z) = cosh
√
p(z).

Here, the function p(z) meets the criteria of the Schwarz lemma [1]. Therefore, applying the
Schwarz lemma, we derive

f ′′(z) =
p′(z)

2
√
p(z)

sinh
√
p(z)

and

f ′′(0) =
p′(0)

2
lim
z→0

sinh
√
p(z)√

p(z)
.

Therefore, we have

f ′′(0) =
p′(0)

2

and ∣∣f ′′(0)
∣∣ ≤ 1

2
.

We will now demonstrate that the final inequality is sharp. Let

f(z) = 2
√
z sinh

√
z − 2 cosh

√
z + 2.

Then,
f ′(z) = cosh

√
z,

f ′′(z) =
1

2
√
z

sinh
√
z√

z

and ∣∣f ′′(0)
∣∣ =

1

2
.
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Lemma 1. If f ∈ W, then ∣∣f ′′(0)
∣∣ ≤ 1

2
.

This result is sharp, as demonstrated by the extremal function

f(z) = 2
√
z sinh

√
z − 2 cosh

√
z + 2.

The subsequent lemma, referred to as the Julia–Wolff lemma, is required for the following discus-
sion [10].

Lemma 2 (Julia–Wolff lemma). If p is an analytic function in the unit disc D with p(0) = 0 and
p (D) ⊂ D, and additionally, p has an angular limit p(1) at 1 ∈ ∂D where |p(1)| = 1, then the angular
derivative p′(1) exists and 1 ≤ |p′(1)| ≤ ∞.

1 Main results

This section focuses on examining the second derivative of the analytic function f(z). During
this analysis, we will derive stronger inequalities by considering the coefficients of the Taylor series
expansion of f(z). Additionally, we will provide an inequality that demonstrates the relationship
between these coefficients.

Theorem 1. Let f(z) ∈ W. Suppose that, for 1 ∈ ∂D, f has an angular limit f(1) at 1,
f ′(1) = cosh 1. Then we have the inequality∣∣f ′′(1)

∣∣ ≥ sinh 1

2
. (1)

This result is sharp, with equality for the function

f(z) = 2
√
z sinh

√
z − 2 cosh

√
z + 2.

Proof. Let
f ′(z) = cosh

√
p(z).

Then,

f ′′(z) =
p′(z)

2
√
p(z)

sinh
√
p(z),

f ′′(1) =
p′(1)

2
√
p(1)

sinh
√
p(1)

and
f ′′(1) =

p′(1)

2
sinh 1.

Since the function p(z) satisfies the conditions of the Schwarz lemma at the boundary, we obtain

1 ≤
∣∣p′(1)

∣∣ =
2 |f ′′(1)|

sinh 1

and ∣∣f ′′(1)
∣∣ ≥ sinh 1

2
.

Now, we will prove that inequality (1) is sharp. Let

f(z) = 2
√
z sinh

√
z − 2 cosh

√
z + 2.
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Then,

f ′′(z) =
1

2
√
z

sinh
√
z√

z

and ∣∣f ′′(1)
∣∣ =

sinh 1

2
.

Theorem 2. Assuming the same conditions as in Theorem 1, we obtain∣∣f ′′(1)
∣∣ ≥ sinh 1

1 + 2 |f ′′(0)|
. (2)

Inequality (2) is sharp, achieving equality for the function

f(z) = 2
√
z sinh

√
z − 2 cosh

√
z + 2.

Proof. Let p(z) be as defined in the proof of Theorem 1. Thus, by the Schwarz lemma on the
boundary,

2

1 + |p′(0)|
≤
∣∣p′(1)

∣∣ =
2 |f ′′(1)|

sinh 1
.

Since ∣∣p′(0)
∣∣ = 2

∣∣f ′′(0)
∣∣ ,

we take
2

1 + 2 |f ′′(0)|
≤ 2 |f ′′(1)|

sinh 1

and ∣∣f ′′(1)
∣∣ ≥ sinh 1

1 + 2 |f ′′(0)|
.

Next, we will demonstrate that inequality (2) is sharp. Consider

f(z) = 2
√
z sinh

√
z − 2 cosh

√
z + 2.

Then, we have ∣∣f ′′(1)
∣∣ =

sinh 1

2
.

However, we also have

z + b2z
2 + b3z

3 + ... = 2
√
z sinh

√
z − 2 cosh

√
z + 2,

1 + 2b2z + 3b3z
2 + ... = cosh

√
z

and
2b2 + 6b3z + ... =

1

2

sinh
√
z√

z
.

Upon taking the limit as z approaches 0 in the final equation, we find that b2 = 1
4 . Consequently, this

yields
sinh 1

1 + 2 |f ′′(0)|
=

sinh 1

2
.
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Theorem 3. Under the conditions of Theorem 1, we obtain

∣∣f ′(1)
∣∣ ≥ sinh 1

2

(
1 +

2 (1− 4 |b2|)2

1− 16 |b2|2 +
∣∣6b3 − 2

3b
2
2

∣∣
)
. (3)

The bound is sharp with the extremal function given by

f(z) = sinh z.

Proof. Let p(z) denote the same function as in the proof of Theorem 1 and let u(z) = z. According
to the maximum principle, for every z ∈ D, it follows that |p(z)| ≤ |u(z)|. Therefore, h(z) = p(z)

u(z) is
an analytic function and |h(z)| < 1 for |z| < 1. By Taylor expansion of the function p(z), we have
p(z) = c1z + c2z

2 + c3z
3 + ... . Thus, we take

h(z) =
p(z)

u(z)
=
c1z + c2z

2 + c3z
3 + ...

z
= c1 + c2z + c3z

2 + ... ,

|h(0)| = |c1|

and ∣∣h′(0)
∣∣ = |c2| .

Through straightforward computations, we obtain

1 + 2b2z + 3b3z
2 + ... = cosh

√
p(z) = 1 +

p(z)

2!
+
p(z)2

4!
+
p(z)3

6!
+ ... ,

2b2z + 3b3z
2 + ... =

c1z + c2z
2 + c3z

3 + ...

2!
+

(
c1z + c2z

2 + c3z
3 + ...

)2
4!

+ ...

=
1

2!
z
(
c1 + c2z + c3z

2 + ...
)

+
1

4!
z2
(
c1 + c2z + c3z

2 + ...
)2

+ ...,

2b2 + 3b3z + ... =
1

2!

(
c1 + c2z + c3z

2 + ...
)

+
1

4!
z
(
c1 + c2z + c3z

2 + ...
)2

+ ...,

b2 =
1

4
c1

and
3b3 =

1

2
c2 +

1

24
c21.

Thus, based on the expression for h(z), we have

|h(0)| = 4 |b2| (4)

and ∣∣h′(0)
∣∣ =

∣∣∣∣6b3 − 2

3
b22

∣∣∣∣ .
The combined function

w(z) =
h(z)− h(0)

1− h(0)h(z)
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is analytic in the unit disc D, w(0) = 0, |w(z)| < 1 for z ∈ D and |w(1)| = 1 for 1 ∈ ∂D. By the
Schwarz lemma on the boundary, we obtain

2

1 + |w′(0)|
≤
∣∣w′(1)

∣∣ =
1− |h(0)|2∣∣∣1− h(0)h(1)

∣∣∣2
∣∣h′(1)

∣∣ ≤ 1 + |h(0)|
1− |h(0)|

(∣∣p′(1)
∣∣− ∣∣u′(1)

∣∣) .
Since ∣∣w′(0)

∣∣ =
|h′(0)|

1− |h(0)|2
=

∣∣6b3 − 2
3b

2
2

∣∣
1− 16 |b2|2

,

we take
2

1 +
|6b3− 2

3
b22|

1−16|b2|2

≤ 1 + 4 |b2|
1− 4 |b2|

(
2 |f ′′(1)|

sinh 1
− 1

)
and ∣∣f ′(1)

∣∣ ≥ sinh 1

2

(
1 +

2 (1− 4 |b2|)2

1− 16 |b2|2 +
∣∣6b3 − 2

3b
2
2

∣∣
)
.

We will now demonstrate that the inequality (3) achieves equality. Consider

f(z) = sinh z.

Then,
f ′(z) = cosh z

and
f ′′(1) = sinh 1.

On the other hand, we have

z + b2z
2 + b3z

3 + ... = sinh z = z +
z3

3!
+
z5

5!
+ ...,

b2z
2 + b3z

3 + ... =
z3

3!
+
z5

5!
+ ...

and

b2 + b3z + ... =
z

3!
+
z3

5!
+ ... .

Passing to the limit (z → 0) in the last equality yields b2 = 0. Similarly, using straightforward calcu-
lations, we obtain b2 = 1

3! . Therefore, we obtain

sinh 1

2

(
1 +

2 (1− 4 |b2|)2

1− 16 |b2|2 +
∣∣6b3 − 2

3b
2
2

∣∣
)

= sinh 1.

Theorem 4. Let f ∈ W and f(z)− z has no critical point in D except z = 0 and b2 > 0. Then∣∣∣∣3b3 − 1

3
b22

∣∣∣∣ ≤ 4 |b2 ln (4b2)| . (5)

This result is sharp.
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Proof. Given that b2 > 0 in the expression of the function f(z), and considering inequality (4),
assuming that f(z)− z has no critical point in D except z = 0, we denote the analytic branch of the
logarithm by lnh(z), normalized under the condition

lnh(0) = ln (4b2) < 0.

The fractional function
Θ(z) =

lnh(z)− lnh(0)

lnh(z) + lnh(0)

is analytic in the unit disc D, |Θ(z)| < 1 for z ∈ D and Θ(0) = 0. By the Schwarz lemma, we obtain

1 ≥
∣∣Θ′(0)

∣∣ =
|2 lnh(0)|

|lnh(0) + lnh(0)|2

∣∣∣∣h′(0)

h(0)

∣∣∣∣ =
−1

2 lnh(0)

∣∣∣∣h′(0)

h(0)

∣∣∣∣ = −
∣∣6b3 − 2

3b
2
2

∣∣
8b2 ln (4b2)

and ∣∣∣∣3b3 − 1

3
b22

∣∣∣∣ ≤ 4b2 ln (4b2) .

Now, we will show that inequality (5) is sharp. Let

p(z) = ze
1+z
1−z

ln 4b2 = zg(z),

where g(z) = e
1+z
1−z

ln 2b1 . Thus, we have

g(z) =
p(z)

z
=
c1z + c2z

2 + c3z
3 + ....

z
= c1 + c2z + c3z

2 + ... .

Then
g(0) = c1 = 4b2, g′(0) = c2 = 6b3 −

2

3
b22.

Following straightforward computations, we obtain

g′(z) =
2

(1− z)2
ln (4b2) e

1+z
1−z

ln(4b2)

and
g′(0) = 8b2 ln (4b2) .

Thus, we obtain ∣∣∣∣3b3 − 1

3
b22

∣∣∣∣ = 4 |b2 ln (4b2)| .

Based on the findings from [5], this theorem derives the modulus of the function’s derivative at
point 1 by considering its Taylor expansions around two points.

Theorem 5. Let f ∈ W and f ′(a) = 1 for 0 < |a| < 1. Suppose that for 1 ∈ ∂D, f has an angular
limit f(1) at 1, f ′(1) = cosh 1. Then, we have the inequality

|f ′′(1)| ≥ sinh 1
2

(
1 + 1−|a|2

|1−a|2 + |a|−2|f ′′(0)|
|a|+2|f ′′(0)|

×
[
1 +

|a|2+4|f ′′(0)||f ′′(a)|(1−|a|2)−2|f ′′(a)|(1−|a|2)−2|f ′′(0)|
|a|2+4|f ′′(0)||f ′′(a)|(1−|a|2)+2|f ′′(a)|(1−|a|2)+2|f ′′(0)|

1−|a|2

|1−a|2

])
. (6)

Inequality (6) is sharp, with equality for each possible value of |f ′′(0)| and |f ′′(a)|.
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Proof. According to the Schwarz–Pick lemma [1], we have∣∣∣∣∣ s(z)− s(a)

1− s(a)s(z)

∣∣∣∣∣ ≤
∣∣∣∣ z − a1− az

∣∣∣∣ = |ρ(z)|

and
|s(z)| ≤ |s(a)|+ |ρ(z)|

1 + |s(a)| |ρ(z)|
, (7)

where s : D → D is an analytic function and a ∈ D. If t : D → D is analytic and 0 < |a| < 1, letting
s(z) = t(z)−t(0)

z(1−t(0)t(z))
in (7), we obtain

∣∣∣∣∣∣ t(z)− t(0)

z
(

1− t(0)t(z)
)
∣∣∣∣∣∣ ≤

∣∣∣∣ t(a)−t(0)
a(1−t(0)t(a))

∣∣∣∣+ |ρ(z)|

1 +

∣∣∣∣ t(a)−t(0)
a(1−t(0)t(a))

∣∣∣∣ |ρ(z)|

and

|t(z)| ≤
|t(0)|+ |z| |A|+|ρ(z)|1+|A||ρ(z)|

1 + |t(0)| |z| |A|+|ρ(z)|1+|A||ρ(z)|

, (8)

where
A =

t(a)− t(0)

a
(

1− t(0)t(a)
) .

If we take
t(z) =

p(z)

z z−a
1−az

,

then, we have

t(0) =
p′(0)

−a
, t(a) =

p′(a)
(

1− |a|2
)

a

and

A =

p′(a)(1−|a|2)
a + p′(0)

a

a

(
1 + p′(0)

a

p′(a)(1−|a|2)
a

) ,
where |A| ≤ 1. Let |t(0)| = b and let

B =

∣∣∣∣p′(a)(1−|a|2)a

∣∣∣∣+
∣∣∣p′(0)a ∣∣∣

|a|
(

1 +
∣∣∣p′(0)a ∣∣∣ ∣∣∣∣p′(a)(1−|a|2)a

∣∣∣∣) .
From (8), we obtain

|p(z)| ≤ |z| |ρ(z)|
b+ |z| B+|ρ(z)|

1+B|ρ(z)|

1 + b |z| B+|ρ(z)|
1+B|ρ(z)|

and
1− |p(z)|

1− |z|
≥

1 + b |z| B+|ρ(z)|
1+B|ρ(z)| − b |z| |ρ(z)| − |z|2 |ρ(z)| B+|ρ(z)|

1+B|ρ(z)|

(1− |z|)
(

1 + b |z| B+|ρ(z)|
1+B|ρ(z)|

) = I.
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Let V (z) = 1 + b |z| B+|ρ(z)|
1+B|ρ(z)| and R(z) = 1 +B |ρ(z)|. Considering the functions V (z) and R(z) in the

earlier inequality, we obtain

I =
1

V (z)R(z)

{
1− |z|2 |ρ(z)|

1− |z|
+B |ρ(z)| 1− |z|

2

1− |z|
+ bB |z| 1− |ρ(z)|2

1− |z|

}
. (9)

Since

lim
z→1

V (z) = lim
z→1

(
1 + b |z| B + |ρ(z)|

1 +B |ρ(z)|

)
= 1 + b,

lim
z→1

R(z) = lim
z→1

(1 +B |ρ(z)|) = 1 +B

and

1− |ρ(z)|2 = 1−
∣∣∣∣ z − a1− az

∣∣∣∣2 =

(
1− |a|2

)(
1− |z|2

)
|1− az|2

,

passing to the angular limit in (9) yields

∣∣p′(1)
∣∣ ≥ 1 +

1− |a|2

|1− a|2
+

1− b
1 + b

[
1 +

1−B
1 +B

1− |a|2

|1− a|2

]
.

Moreover, since

1− b
1 + b

=
1− |t(0)|
1 + |t(0)|

=
1−

∣∣∣p′(0)a ∣∣∣
1 +

∣∣∣p′(0)a ∣∣∣ =
|a| − |p′(0)|
|a|+ |p′(0)|

=
|a| − 2 |f ′′(0)|
|a|+ 2 |f ′′(0)|

,

1−B
1 +B

=

1−

∣∣∣∣∣ p′(a)(1−|a|2)a

∣∣∣∣∣+∣∣∣ p′(0)a

∣∣∣
|a|

(
1+

∣∣∣ p′(0)a

∣∣∣∣∣∣∣ p′(a)(1−|a|2)a

∣∣∣∣)

1 +

∣∣∣∣ p′(a)(1−|a|2)a

∣∣∣∣+∣∣∣ p′(0)a

∣∣∣
|a|

(
1+

∣∣∣ p′(0)a

∣∣∣∣∣∣∣ p′(a)(1−|a|2)a

∣∣∣∣)
,

1−B
1 +B

=
|a|2 + 2 |f ′′(0)| 2 |f ′′(a)|

(
1− |a|2

)
− 2 |f ′′(a)|

(
1− |a|2

)
− 2 |f ′′(0)|

|a|2 + 2 |f ′′(0)| 2 |f ′′(a)|
(

1− |a|2
)

+ 2 |f ′′(a)|
(

1− |a|2
)

+ 2 |f ′′(0)|

and

1−m
1 +m

=
|a|2 + 4 |f ′′(0)| |f ′′(a)|

(
1− |a|2

)
− 2 |f ′′(a)|

(
1− |a|2

)
− 2 |f ′′(0)|

|a|2 + 4 |f ′′(0)| |f ′′(a)|
(

1− |a|2
)

+ 2 |f ′′(a)|
(

1− |a|2
)

+ 2 |f ′′(0)|
,

we obtain ∣∣p′(1)
∣∣ ≥ 1 +

1− |a|2

|1− a|2
+
|a| − 2 |f ′′(0)|
|a|+ 2 |f ′′(0)|

×

1 +
|a|2 + 4 |f ′′(0)| |f ′′(a)|

(
1− |a|2

)
− 2 |f ′′(a)|

(
1− |a|2

)
− 2 |f ′′(0)|

|a|2 + 4 |f ′′(0)| |f ′′(a)|
(

1− |a|2
)

+ 2 |f ′′(a)|
(

1− |a|2
)

+ 2 |f ′′(0)|

1− |a|2

|1− a|2

 .
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From the definition of p(z), we have

∣∣p′(1)
∣∣ =

2 |f ′′(1)|
sinh 1

.

We thus obtain inequality (6).
Let a be any real number in the interval (−1, 0), and let c and d be arbitrary real numbers such

that 0 < c = |p′(0)| < |a|, 0 < d = |p′(a)| < |a|
(1−|a|2)

to show that inequality (6) is sharp. Let

T =
c
a +

d(1−|a|2)
a

a
(

1 + cd1−|a|2
a2

) =
1

a2

d
(

1− |a|2
)

+ c

1 + cd1−|a|2
a2

.

Consider the function

p(z) = z
z − a
1− az

−c
a + z T+ρ(z)

1+ρ(z)T

1− c
az

T+ρ(z)
1+ρ(z)T

. (10)

From equation (10), after performing straightforward calculations, we derive p′(0) = c and p′(a) = d.
Therefore, we obtain

p′(1) = 1 +
1− a2

(1− a)2
+
a+ c

a− c

1 +
a2 + cd

(
1− |a|2

)
− d

(
1− |a|2

)
− c

a2 + cd
(

1− |a|2
)

+ d
(

1− |a|2
)

+ c

1− a2

(1− a)2

 .

By selecting appropriate signs for the numbers a, c and d, we can infer from the final equation that
inequality (6) is sharp.

2 Conclusions and discussion

In this paper, geometric properties of a specific subclass of analytic functions satisfying the con-
dition f ′(z) ≺ cosh

√
z are investigated. Considering the Schwarz lemma and the boundary Schwarz

lemma, significant results on distortion and growth behaviours of these functions have been obtained.
Accordingly, two extremal functions have been based on the results of theorems presented in this paper.

The extremal functions obtained in this paper have been considered as activation functions for
artificial neural networks. There are already studies in the literature that examine the use of extremal
functions as activation functions [11, 12]. In [11], the authors propose a complex-valued activation
function obtained using the Schwarz lemma. The authors stated that effective results have been
obtained in both classification and function approximation problems according to simulation results.
In [12], similar functions obtained in this study are presented as activation functions.

There are also various studies that propose hyperbolic functions to be used as activation functions,
which is also valid for our study [13–15]. In one of the recent studies, hyperbolic sine has been
used for deep learning in Tensorflow and Keras [13]. In [14], hyper-sinh-convolutional network has
been proposed for early detection of Parkinson’s disease from spiral drawings. Husein et al. used a
hyperbolic activation function to achieve effective instance image retrieval [15]. In our study, we present
two hyperbolic activation functions, defined as g(z) = sinhz and q(z) = 2

√
zsin
√
z − 2 cosh

√
z + 2.

At this point, it is worth noting that the activation functions defined in our study are not arbitrarily
selected but they emerge as intuitive outcomes of the problem addressed in this study.

In conclusion, this paper aims to strengthen the connection between complex analysis and arti-
ficial intelligence in this paper by introducing the use of extremal functions within neural network
architectures. We consider that the obtained results show that mathematical findings from geometric
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function theory can inspire new directions in neural network research. Empirical evaluation of the
new activation functions across various learning tasks and architectures to fully assess their practical
impact and limitations can be considered as potential future work.
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8 Mateljević, M., Mutavdžić, N., & Örnek, B.N. (2022). Note on some classes of holomorphic
functions related to Jack’s and Schwarz’s lemma. Applicable Analysis and Discrete Mathematics,
16 (1), 111–131. https://doi.org/10.2298/AADM200319006M

9 Mercer, P.R. (2018). An improved Schwarz lemma at the boundary. Open Mathematics, 16 (1),
1140–1144. https://doi.org/10.1515/math-2018-0096

10 Pommerenke, C. (1992) Boundary Behaviour of Conformal Maps. Berlin: Springer–Verlag.
https://doi.org/10.1007/978-3-662-02770-7
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