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This article is devoted to the study of source identification problems for reverse parabolic partial differential
equations with nonlocal boundary conditions. The principal aim of the work is to construct and analyze
stable difference schemes that can be effectively employed for obtaining approximate solutions of such
inverse problems. In particular, attention is focused on the Rothe difference scheme, and stability estimates
for the corresponding discrete solutions are rigorously derived. These estimates guarantee the reliability and
convergence of the proposed numerical method. A stability theorem for the solution of the difference scheme
related to the source identification problem is proved. To establish the well-posedness of the underlying
differential problem, the operator-theoretic approach is employed, ensuring a solid analytical foundation
for the numerical method. Furthermore, the investigation is extended to an abstract setting for difference
schemes, which is then applied to the numerical solution of reverse parabolic equations under boundary
conditions of the first kind. This unified framework emphasizes both the theoretical justification and the
computational effectiveness of the proposed approach. Finally, the efficiency of the developed method is
demonstrated through a numerical illustration with a test example.
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Introduction

In recent decades, the importance of SIPs in the mathematical modeling of real-world processes
has grown significantly (see [1, 2]). Comprehensive reviews, detailed references, and classifications of
recent studies devoted to SIPs for parabolic PDEs can be found in [3–5]. The solvability of various
inverse problems for parabolic equations was investigated in [6–8], while the well-posedness of SIPs
for hyperbolic–parabolic equations was analyzed in [9]. The work [10] focused on the identification of
a space-dependent source term in the heat equation. A numerical algorithm for solving certain SIPs
for parabolic equations backward in time was proposed in [11]. The authors of [12] examined the
backward-in-time problem for a semilinear system of parabolic equations, whereas [13] developed a
regularization technique for the spherically symmetric backward heat conduction problem. Moreover,
a numerical approach for the backward heat conduction problem was introduced in [14]. In addition,
several stable difference schemes for various direct nonlocal problems associated with reverse parabolic
equations have been developed by different researchers (see, for instance, [15, 16] and the references
therein).
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We denote by H, a Hilbert space and by A : H → H, a SAPDO such that A > δI for a real number
δ > 0, and I identity operator. Let γk, µk, k = 1, ..., s be given real numbers so that

|µ1|+ ...+ |µs| < 1, 0 ≤ γ1 < γ2 < ... < γs < 1 (1)

hold.
We study SIP to search for a pair (v, p) that satisfies reverse parabolic equation

dv

dt
(t)− Av(t) = p+ g(t), 0 < t < 1 (2)

and the following initial condition
v(0) = φ (3)

with a nonlocal condition

v(1) =

s∑
k = 1

µkv(γk) + ϕ (4)

for a given smooth function g : [0, 1]→ H and elements ϕ, φ ∈ H.
The well-posedness of the SIP (2)–(4) was established in the paper [17]. The aim of the current

study is a stable DS for approximate solution of the SIP (2)–(4), under the assumption (1). Namely,
we study the Rothe DS for approximate solution of this SIP and establish stability estimates for its
solutions. Subsequently, this approach is employed to obtain stability estimates for the approximate
solution of the SIP for a parabolic PDE. A numerical illustration of the test example is carried out.

1 Rothe DS

Denote by [0, 1]τ = {tk = kτ, k = 0, 1, · · · , N, Nτ = 1}, the set of uniform grid points for any
natural number N .

Let C([0, 1]τ , H) denote a linear space of grid functions ϑτ = {ϑk}N1 taking values in the space
H, and let Cτ (H) = C([0, 1]τ , H), Cατ (H) = Cα([0, 1]τ , H) be the corresponding Banach space of grid
functions equipped with the appropriate norms

‖ϑτ‖Cτ (H) = max
1≤k≤N

‖ϑk‖H, ‖ϑτ‖Cατ (H) = ‖ϑτ‖Cτ (H) + max
1≤k<k+r≤N

(rτ)−α‖ϑk+r − ϑk‖H,

where α ∈ (0, 1) is a given number.
Let us denote by R = (I + τ A)−1 the resolvent of A. Then (see [18]) the estimates

‖Rk‖H→H ≤ (1 + δτ)−k, ‖τRk‖H→H ≤ k−1, k ≥ 1 (5)

are valid. Let us li =
[γi
τ

]
, ρi = γi

τ − li, i = 1, ..., s.

Lemma 1. The operator

Sτ = I−

(
1−

s∑
i = 1

µi

)
RN −

s∑
i = 1

µiR
N−li

has an inverse Tτ = S−1
τ and it is bounded such that:

‖ Tτ ‖H→H≤M. (6)
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Proof. Since operator
(
I− RN

)
and its inverse are bounded, operator Sτ can be rewritten in the

form

Sτ =
(
I− RN

)(
1 +

s∑
i = 1

µi
(
I− RN

)−1
(
RN − RN−li

))
=
(
I− RN

)
Qτ .

Hence, to complete the proof it is sufficient to prove that the operator Qτ is invertible and Q−1
τ is

bounded. Spectral resolution of a SAPD operator (see [19]) and the assumption (1) give us

‖ Q−1
τ ‖H→H≤ supδ<λ<∞

1∣∣∣∣1+
s∑

i = 1
µi(1− (1+τλ) −N)

−1
((1 + τ λ)−N−(1 + τ λ)−(N−li))

∣∣∣∣ ≤
1

1−
s∑

i = 1
|µi|
≤M1.

Therefore, the proof of Lemma 1 is complete.

1.1 Stable DS

Now, we the consider the Rothe DS
τ−1(ϑk − ϑk−1) + Aϑk−1 = gk + p, gk = g(tk), 1 ≤ k ≤ N,

ϑN −
s∑

i = 1
µi ϑli = ϕ, ϑ0 = φ,

(7)

of approximate solution of the problem (2)-(3).
We now derive the solution of problem (7). One can see that a unique solution of the difference

problem 
τ−1(ϑk − ϑk−1) + Aϑk−1 = gk + p, 1 ≤ k ≤ N,

ϑN is given

exists and the formula

vk = RN−kvN + τ
N∑

j=k+1

Rj−k (p+ gj) , 0 ≤ k ≤ N − 1 (8)

holds. Applying formula (8) and the corresponding conditions, we get

RNϑN +

N∑
j=1

Rjpτ = φ−
N∑
j=1

Rjgjτ,

and (
I−

s∑
i = 1

µiR
N−li

)
ϑN −

s∑
i = 1

µi
∑N

j=li+1 R
j−lipτ =

s∑
i = 1

µi
∑N

j=li+1 R
j−ligjτ + ϕ.

Since

N∑
j=1

Rjτ = A−1 (I− RN ),
N∑

j=li+1

Rj−liτ = A−1 (I− RN−li),

we have that

RNϑN + (I− RN )A−1p = φ−
N∑
j=1

Rjgjτ (9)
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and (
I−

s∑
i = 1

µiR
N−li

)
ϑN −

s∑
i = 1

µi(I− RN−li)A−1p =
s∑

i = 1
µi
∑N

j=li+1 R
j−ligjτ + ϕ. (10)

The determinant operator ∆ for the system of equations (9) and (10) is defined by

∆ = −RN
s∑

i = 1
µi(I− RN−li)− (I− RN )

(
I−

s∑
i = 1

µiR
N−li

)

= RN
s∑
i= 1

µi − I + RN +
s∑

i =1
µiR

N−li = −
[
I−

(
1−

s∑
i = 1

µi

)
RN −

s∑
i= 1

µiR
N−li

]
.

Using Lemma 1, we get

ϑN = Tτ


φ− N∑

j=1

Rjgjτ

 (I− RN )

−

 s∑
i = 1

µi

N∑
j=li+1

Rj−ligjτ + ϕ

 (
I−

s∑
i=1

µiR
N−li

) (11)

and

A−1p = Tτ

{(
s∑

i = 1
µi
∑N

j=li+1 R
j−ligjτ + ϕ

)
RN −

(
φ−

∑N
j=1 R

jgjτ
) (

I−
s∑

i= 1
µiR

N−li
)}

. (12)

Therefore, DS (7) is uniquely solvable and defined by the formulas (8), (11) and (12).
Theorem 1. For the solution ({ϑk}Nk=1 , p) of problem (7) in Cτ (H) × H, the following stability

estimates
‖ p ‖H≤Mδ

(
‖ Aφ ‖H + ‖ Aϕ ‖H +α−1 ‖ {gk}Nk=1 ‖Cατ (H)

)
, (13)

‖ {ϑk}Nk=1 ‖Cτ (H) ≤ Mδ

(
‖ φ ‖H + ‖ ϕ ‖H + ‖ {gk}Nk=1 ‖Cτ (H)

)
(14)

hold, where the value of Mδ does not depend on τ, α, φ, ϕ, and {gk}Nk=1 .

Proof. From (12) it follows that

p = Tτ

{
Aϕ− ARNφ− τ

∑N
j=1 AR

N−j+1 (gj − gN ) −(I− RN −
s∑

i = 1
µi (I− Rli))gN

−τ
s∑

i = 1
µi

(∑li
j=1 A Rli−j+1 (gj − gN )

)}
.

Applying to the right side of the last formula the Cauchy–Shwarz and triangle inequalities and
estimates (5), (6), one can obtain estimate (13):

‖p‖H ≤‖ Tτ ‖H→H

(
‖Aϕ‖H +

∥∥ARN∥∥
H→H
‖φ‖H +

∑N−1
j=1

∥∥ARN−j+1
∥∥
H→H
‖gj − gN‖H τ

+

(
1 +

∥∥RN∥∥
H→H

+
s∑

i = 1
|µi |

(
1 +

∥∥Rli∥∥
H→H

))
‖gN‖H

)

≤Mδ

(
‖φ‖H + ‖ Aϕ ‖H +α−1 ‖ {gk}Nk=1 ‖Cατ (H)

)
.
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Using relation (8), the triangle inequality and the estimates (5), (6), we show that

‖ϑk‖H ≤
∥∥ R k

∥∥
H→H

‖φ‖H + τ
∑k

j=1

∥∥ R k−j+1
∥∥
H→H

‖gj‖H

+
(
1 +

∥∥ R k
∥∥
H→H

)
‖Tτ‖H→H

{
‖ϕ‖H +

∥∥RN∥∥
H→H
‖φ‖H + τ

∑N
j=1

∥∥RN−j+1
∥∥
H→H
‖gj‖H

+τ
s∑

i = 1
|µi|

∑li
j=1

∥∥Rli−j+1
∥∥
H→H
‖gj‖H

}
≤Mδ

(
‖φ‖H + ‖ Aϕ ‖H +α−1 ‖ {gk}Nk=1 ‖Cατ (H)

)
for any index k. From that, the estimate (14) follows.

2 The boundary value problem and its approximation

Let Ω = (0, l)n ⊂ Rn , S = ∂Ω,Ω = Ω ∪ S and (1) holds. Assume that φ ∈ L2(Ω), ϕ ∈ W2
2(Ω) and

g ∈ Cα(L2(Ω)), ar are smooth functions such that ∀x ∈ Ω, ar(x) ≥ a0 > 0, r = 1, ..., n, σ is a given
positive real number.

Let us consider in [0, 1] × Ω, SIP for a multi-dimensional reverse parabolic PDE with the
Dirichlet-type boundary condition

ϑt(x, t) +
n∑
i=1

(ai(x)ϑxi(x, t))xi − σϑ(x, t) = g(x, t) + p(x), 0 < t < 1, x = (x1, · · ·, xn) ∈ Ω,

ϑ(x, 0) = φ(x), ϑ(x, 1) =
s∑

k = 1

µkϑ(x, γk) + ϕ(x), x ∈ Ω,

ϑ(x, t) = 0, 0 ≤ t ≤ 1, x ∈ S.
(15)

The well-posedness of the SIP (15) was established in the paper [17].
Now, we will discretize SIP (15) in two steps. Let us take hrMr = l, r = 1, · · · , n. In the first step,

we define the grid spaces Ω̃h = {x = xm = (h1m1, · · · , hnmn); m = (m1, · · · ,mn),mr = 0, · · · ,Mr},
Ωh = Ω̃h ∩ Ω, Sh = Ω̃h ∩ S and the difference operator Axh by

Axh ϑ
h(x) = −

n∑
r= 1

(
ar(x)ϑhxr(x)

)
xr,jr

+ σϑh(x)

whose domain consists of all grid functions ϑh(x) satisfying the homogeneous boundary conditions
ϑh(x) = 0 for all x ∈ Sh.

By using Axh, we arrive at some infinite system of ordinary differential equations. Then, in the
second step of discretization, we obtain the first-order of ADS

τ−1
(
ϑhk(x)− ϑhk−1(x)

)
− Axhϑ

h
k−1(x) = fh(tk, x) + ph(x), tk = τk, 1 ≤ k ≤ N, x ∈ Ω̃h,

ϑh0(x) = φh(x), ϑhN (x) =
s∑

i = 1
µi ϑ

h
li

(x) + ϕh(x), x ∈ Ω̃h, li =
[
si
τ

]
, i = 1, ..., s.

(16)

Let L2h = L2(Ω̃h) and W2
2h = W2

2(Ω̃h) be spaces of the grid functions ϑh(x) = {ϑ(h1m1, · · · , hnmn)}
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defined on Ω̃h, equipped with the norms

∥∥ϑh∥∥
L2h

=
(∑

x∈Ω̃h
|ϑh(x)|2h1 · · ·hn

)1/2
,
∥∥ϑh∥∥

W22h
=
∥∥ϑh∥∥

L2h

+
(∑

x∈Ω̃h

∑n
r= 1

∣∣(ϑh)xr
∣∣2 h1 · · ·hn

)1/2
+
(∑

x∈Ω̃h

∑n
r= 1

∣∣(ϑh(x))xrxr, mr
∣∣2 h1 · · ·hn

)1/2
.

Denote by Cτ (L2h) = C([0, 1]τ , L2h), the Banach space of L2h-valued grid functions ϑτ = {ϑk}N1
with norm

‖ϑτ‖Cτ (L2h) = max
1≤k≤N

‖ϑk‖L2h .

Let Cα(L2h) = Cα([0, 1]τ , L2h) and Cατ (L2h) = Cατ ([0, 1]τ , L2h) be respectively the Hölder space and
the weighted Hölder space with the norms defined by (1) for H = L2h.

Theorem 2. Assume that τ and |h| =
√
h2

1 + · · ·+ h2
n are sufficiently small positive numbers,

φh ∈ L2h, ϕ
h ∈ D(Axh),

{
ghk
}N

1
∈ Cατ (L2h). Then, for the solutions of DS (16), the following stability

estimates hold:

∥∥ph∥∥Cτ (L2h)
≤Mδ

(∥∥φh∥∥
L2h

+
∥∥Axhϕh∥∥L2h

+ α−1
∥∥∥{ghk}N1 ∥∥∥Cατ (L2h)

)
,

∥∥∥{ϑhk}N1 ∥∥∥Cτ (L2h)
≤Mδ

(∥∥φh∥∥
L2h

+
∥∥ϕh∥∥

L2h
+
∥∥∥{ghk}N1 ∥∥∥Cτ (L2h)

)
,

where Mδ is independent of τ, φh(x), ϕh(x), and ghk (x), k = 1, · · · , N − 1.

The proof of Theorem 2 is based on estimates (13), (14), the theorem on the coercivity inequality
for the solution of the elliptic difference problem in L2h ([20]) and the triangle inequality.

3 Numerical algorithm and example

In [0, π]× [0, 1], we consider a test example to search for a pair of functions (p(x), ν(x, t)) for SIP
of reverse parabolic equation so that



νt(x, t) + (1 + 3x)2 νxx(x, t) + 6 (1 + 3x) νx(x, t)− ν(x, t) = p(x) + g(x, t), 0 < x < π, 0 < t < 1,

ν(x, 0) = φ(x), ν(x, 1) =
3∑

k=1

µk ν(x, sk) + ϕ(x), 0 ≤ x ≤ π,

ν(0, t) = 0, ν(1, t) = 0, 0 ≤ t ≤ 1.
(17)

Here ζ(x) = sin(x), φ(x) = ζ(x), µ1 = µ2 = µ3 = 1
6 , s1 = 0.3, s2 = 0.5, s3 = 0.7,

g(x, t) =
((
−4− (1 + 3x)2

)
ζ(x) + 6 (1 + 3x) cos(x)

)
e−3t, ϕ(x) =

(
1− 1

6

(
e−0.9 + e−1.5 + e−2.1

))
ζ(x).

The exact solution is
(
ζ(x), e−3tζ(x)

)
.

We use the algorithm to solve (17). It contains three steps. In the first step we search for solution
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of an auxiliary direct problem without source

ωt(x, t) + (1 + 3x)2 ωxx(x, t) + 6 (1 + 3x)ωx(x, t)− ω(x, t)

= (1 + 3x)2 φxx(x, t) + 6 (1 + 3x)φx(x, t) + g(x, t), 0 < t < 1, 0 < x < π,

ω(x, 1)−
3∑

k=1

µkω(x, sk) = ϕ(x), 0 ≤ x ≤ π,

ω(0, t) = 0, ω(1, t) = 0, 0 ≤ t ≤ 1.

(18)

Later, in the second step, we find a source function using the formula

p(x) = (1 + 3x)2 ωxx(x, 0) + 6 (1 + 3x)ωx(x, 0)− ω(t, 0).

Finally, in the third step we put in the right side of the reverse parabolic PDE and solve it to get the
solution ν(x, t),

Applying (16), we have the following DS

τ−1
(
ωnk − ωnk−1

)
+ (1 + 3xn)2 h−2

(
ωn+1
k−1 − 2ωnk−1 + ωn−1

k−1

)
+6 (1 + 3xn) (2h)−1 (ωn+1

k−1 − ω
n−1
k−1

)
− ωnk−1 = (1 + 3xn)2h−2

(
φn+1 − 2φn + φn−1

)
+6 (1 + 3xn) (2h)−1

(
φn+1 − φn−1

)
+ gnk , tk = k τ, 1 ≤ k ≤ N, xn = n h, 1 ≤ n ≤M − 1,

ωnN −
1
6 (ωl1 + ωl2 + ωl3) = ϕn, 0 ≤ n ≤M,

ω0
k = 0, ωMk = 0, 0 ≤ k ≤ N

(19)
for approximate solution (18). The approximate value of p at grid points xn is calculated using the
formula

pn = (1 + 3xn) h−2
(
ωn+1

0 − 2ωn0 + ωn−1
0

)
+ 6 (1 + 3xn) (2h)−1 (ωn+1

0 − ωn−1
0

)
− ωn0 ,

n = 1, ...,M − 1.

DS (19) can be rewritten in the matrix form

Anωn+1 +Bnωn + Cn ωn−1 = Iθn, n = 1, · · · ,M − 1, ω0 =
−→
0 , ωM =

−→
0 . (20)

Here, ωn =
[
ω n

0 · · · ω 0
N

]t
, ωn±1 =

[
ω n±1

0 · · · ω n±1
N

]t
, θn =

[
θ n

0 · · · θ n
N

]t are
(N+1)×1 column vectors, An, Bn, Cn are (N+1)2 square matrices, I is the (N+1)2 identity matrix,

An =


0 . . . 0 0

anI

0
...
0

 , Cn =


0 . . . 0 0

cnI

0
...
0

 ,

Bn =



0 0 0 · · · −1
6 · · · 0 0 1

d bn 0 · · · 0 · · · 0 0 0
0 d bn · · · 0 · · · 0 0 0
...

...
... · · · · · · · · ·

...
...

...
0 0 0 · · · 0 · · · d bn 0
0 0 0 · · · 0 · · · 0 d bn


,
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an = (1 + 3xn)2 h−2 + 6 (1 + 3xn) (2h)−1 , bn = −1− 1
τ − 2 (1 + 3xn)2 h−2,

cn = (1 + 3xn)2 h−2 − 6 (1 + 3xn) (2h)−1 , d = − 1
τ ,

θn0 = ψn, n = 1, · · · ,M − 1,

θnk = g(tk, xn) + (1 + 3xn)2 h−2
(
φn+1 − 2φn + φn−1

)
+6 (1 + 3xn) (2h)−1

(
φn+1 − φn−1

)
, k = 1, · · · , N, n = 1, · · · ,M − 1.

We use the modified Gauss elimination method to solve (20).
Numerical results are carried out using MATLAB. The numerical solutions of DS are evaluated for

distinct values of (N,M). ωkn represents the numerical value of ν(t, x) at (t, x) = (tk, xn) and pn is the
numerical value of p(x) at x = xn. The errors in the numerical solutions are computed by

Eν = max0≤k≤N

(
M−1∑
n=1
|ν(xn, tk)− νnk |

2 h

) 1
2

,

EpM =

(
M−1∑
n=1
|p(xn)− pn|2 h

) 1
2

.

In Table 1 we give the error between the exact solution and the numerical solution of the difference
scheme for distinct values of N and M . The table demonstrates that doubling the grid resolution
results in approximately a twofold reduction in error.

T a b l e 1

Error analysis

DS | N =M 20 40 80

Eν 1.308× 10−2 6.723× 10−3 3.447× 10−3

Ep 1.432× 10−2 7.012× 10−3 3.465× 10−3

Conclusion

In this work we consider SIPs for reverse parabolic PDEs with initial and nonlocal boundary
conditions. The main goal is to develop and analyze stable difference schemes, particularly the Rothe
scheme, for accurate numerical solutions. Stability estimates are rigorously proved, ensuring reliability
and convergence. The well-posedness of the problem is established, providing a strong analytical
basis. The study also extends to an abstract setting of difference schemes and applies the results to
reverse parabolic equations with first-kind boundary conditions. Numerical experiments confirm the
effectiveness of the proposed method.

In future work, we plan to construct and analyze high-order accurate and stable difference schemes
for the approximate solution of such SIPs.
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