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The transmission mechanisms of most infectious diseases are generally well understood from an epidemio-
logical standpoint. To mathematically and quantitatively characterize the spread of these diseases, various
classical epidemic models-such as the SIR, SIS, SEIR, and SIRS frameworks-have been formulated and thor-
oughly investigated. In the present paper, the initial value problem for the system of semilinear parabolic
differential equations arising in epidemic models with a general semilinear incidence rate in a Hilbert space
with a self-adjoint positive definite operator is investigated. The main theorem on the existence and unique-
ness of bounded solutions for this system is established. In applications, theorems on the existence and
uniqueness of bounded solutions for two types of systems of semilinear partial differential equations arising
in epidemic models are proved. A first-order accurate finite difference scheme is developed to construct
approximate solutions for this system. We further prove a theorem that guarantees the existence and
uniqueness of bounded solutions for the discrete problem, independently of the time step. The theoretical
results are supported by applications, where bounded solutions of the continuous system and their corre-
sponding discrete approximations are demonstrated. Finally, numerical results are presented to illustrate
the effectiveness and accuracy of the proposed scheme.

Keywords: system of semilinear partial differential equations(SPDEs), EM, bounded solution(BS), numer-
ical results, Hilbert space, self-adjoint positive definite operator,existence and uniqueness (EU), difference
scheme(DS).
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Introduction

The mechanism of disease transmission is typically well understood from an epidemiological
perspective for most infectious diseases. To describe mathematically and quantitatively the spread
of such diseases, numerous classical EMs have been developed and extensively studied, including the
SIR, SIS, SEIR, and SIRS models [1-3].

In particular, the studies presented in [1] focus on the numerical solution of systems of linear
parabolic equations modeling the transmission of HIV from mother to child. Numerical simulations
were provided to support the theoretical results.

In the papers [4-6], the authors study a diffusive SIR epidemic model with nonlinear incidence in
a heterogeneous environment. They establish the boundedness and uniform persistence of solutions
to the system, as well as the global stability of the constant endemic equilibrium in the case of a
homogeneous environment.

The papers |7, 8] study the dynamical behavior of a diffusive epidemic SIRI system with distinct
dispersal rates. The overall solution of the system is derived using L, theory and Young’s inequality.
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The uniform boundedness of the solution is established, and the asymptotic smoothness of the semi-
flow, as well as the existence of a global attractor, is discussed.

Finally, the papers [9,10] focus on a reaction-diffusion SEIR (susceptible-exposed-infected-recovered)
epidemic model with a mass-action infection mechanism. The basic reproduction number of the SEIR
model is defined, and its properties are studied under conditions of low mobility of the susceptible
and exposed /infected populations, respectively. In a homogeneous environment, the global asymptotic
stability of both the disease-free equilibrium and the endemic equilibrium is determined by the ba-
sic reproduction number. Furthermore, the asymptotic behavior of the endemic equilibrium (when it
exists) is analyzed in a spatially heterogeneous environment with low migration rates of the susceptible,
exposed, or infected populations.

Various classes of mixed boundary value problems for systems of partial differential equations can be
transformed into initial value problems for systems of semilinear ordinary differential equations [11,12]

D) 4t () + Aw' (1) = —F (8, (£), 0 (£)),
Wl (6 )t (1) + Awt (1) = F (8w (), w7 () — T(tw? (2), Q)

3
W 4w’ (1) + Aw’ (8) = T(t,w* (t)), t € (0,b),
w(0) =", n=1,3

in a Hilbert space X with an unbounded elliptic operator A.

Throughout this paper, a theorem on the EU of BSs to the abstract problem (1) is proved. The
results are illustrated by their application to a system of semilinear parabolic equations, demonstrating
their effectiveness in both one- and multi-dimensional settings with appropriate boundary conditions.
Furthermore, a discrete analogue of the theoretical results is developed for a first-order accurate time-
difference scheme. Numerical simulations are included to illustrate and validate the theoretical results.

1 BS of the differential problem (1)

Let N be a Hilbert space, and let A be a positive definite self-adjoint operator such that A > 61
for some § > 0. Throughout this paper, the family {exp(—tA), ¢t > 0} denotes the strongly continuous
exponential operator-function.

By applying the spectral representation of a self-adjoint positive definite operator in a Hilbert
space, we obtain the following estimate:

lexp(—tA)[[x_n < eiétv t>0. (2)

A vector-valued function w(t) = (w!(t), w?(t), w3(t))T is said to be a solution of problem (1) if the
following conditions are satisfied:

(i) For each m € {1,2,3}, w™(t) is a continuously differentiable function on the interval (0, b).

(i) For all t € [0,b] and each m = 1,3, the element w™(¢) belongs to the domain D(A) of the
operator A, and the function Aw™(t) is continuous on [0, b].

(iii) The functions F (¢, w!(t),w?(t)) and Y(t,w?(t)) are continuous for all ¢ € [0, b].

(iv) The function w(t) satisfies the system of equations and initial conditions given in (1).

The proof of the main theorem regarding the EU of a BS of problem (1) is based on reducing the
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problem to an equivalent system of integral equations

(

wl(t) = e He=Atyl — ({te“(t)‘)eA(t)‘)F (/\,wl()\),w2 ()\))d)\,
w?(t) = e~ WOt Aty2 4 f e~ TN =AUV (X w' (N), w® (X)) dA
0
_ [ e OEN AT (A (V) dA, ¥
0
w3(t) = e Mte=Aty3 4 b;e_“(t_)‘)e_A(t_A)T (A, w? (X)) dX

in C'(N) and the use of successive approximations. Here, C' (R) stands for the Banach space of the
continuous functions z(t) defined on [0, ] with values in X, equipped with the norm

Izlle = max Iz @)l -

We introduce the equivalent norm

Iz lle,= max e @)y, L>0.

The recursive formula for the solution of problem (3) is

t
nw(t) = e He=Atyl — fe—w—ﬂe—f‘(t—ﬂf (A (n = Dw" (N), (n — Dw* () dA,
nw (t) —(pu+&)t 7At¢2
t
+ [ e WO A=V [ (X, (n — Dw' (N), (n — 1)w* (X)) dA
¥ (4)
t
— [ em WO = AL=NT (A (n — 1)u” (V) dA,
0
t
nw3(t) = e e~ Aty3 4 [ emnlt=N) =A=MY (A, (n=Dw*(N)d\, n=1,2,...,
0
[ Ow™(t), m=1,3 are given.

Theorem 1. Assume the following conditions are satisfied:
1. For each m = 1,3, the initial function ¢™ belong to the domain D(A) of the operator A, and

9™ | pay = M. (5)
2. The function F : [0,b] x X x N — N is continuous and satisfies the uniform bound:
[F(t,w(t), u(®))lx < Mo, (6)

for all (t,w,u) € [0,b] x N x V. In addition, the mapping f fulfills a Lipschitz condition that
holds uniformly in ¢:

17t w,w) = £t 2,0)[n < Li (fw =zl + [lu=vllx) - (7)
3. The function Y : [0, ] x X — N is uniformly Lipschitz continuous w.r.t. the variable ¢:
1T, w(t)llx < Ms (8)
for all (¢, w) € [0,b] x V. In addition, Y satisfies a Lipschitz condition uniformly w.r.t. ¢:
IT(t,w) =Y (X, 2) [l < Lofjw — z|x. (9)
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Here, L, for r = 1,2 and M, for r = 1,2, 3 are positive constants. Then, under these assumptions,
there exists a unique solution w(t) = (wl(t),wQ(t),w?’(t))T of the problem (1), which is bounded in
the product space C3(R) = C(R) x C(R) x C(R).

Proof. Since w?(t) does not appear in equations for dw;t(t) and dw;t(t) , it is sufficient to analyze the
behaviors of solutions w' () and w?(t) of (1) in the norm of the space Cp, (R).

According to the method of recursive approximation (4), we get

w™(t) )+ D[+ Dw™ ) —iw™B)], m =12, (10)
i=0

where i
m eiu ei l/) ) m = 17 37
Ow (t) = { e—(,u—l—ﬁ)te—At,(/]27 m = 2.
Using formula (4) and estimates (2), (5), (6) and (8), we obtain
e M |[1w' () — Ou' (t)Iy

My
L+ L

9

S/O oxp (= (p+ L) (t = M) lle V)1 (A, 00" (1), 00" (A)) [[wdA <
e 1w () — 0w?(#) |

t
< [ exp (= €5 L = AN I I (0,001 (0,00 0) i + 1T (3, 0u” () ]
My + M3
T p+&+L
for any ¢ € [0, b]. Using the triangle inequality, we get

Ms + M3
L+ L

Ms + M3

—Lt 2
lw=(t <M
e

e 1w () [l < My +

for any ¢ € [0,b]. Using formula (4) and estimates (2), (6), (7) and (9), we obtain

e [2w! () — 1w (8) |1

< /0 exp (= (u+ L) (t = N)e e VY IF (A 1w' (), 1w’ (V) = £ (A, 0w' (A), 0w® (1)) [lndA

< 2L (Ms + M3) <2 (L1 + Lo) (Ms + M)
(n+L1)? (n+ L)

e M 202 (1) — 1w (1)

)

< /O exp (—(u+ &+ L) (t—A)e PN e AVIF (A 1w' (A), 1w (V) — F (X, 0w' (), 0w® (X)) [[ndA

+/0 exp (—(u+E+ L) (t = N)e e VT (A 1w* (A) =T (A, 00 (1)) [lnd

(2L1 + LQ) (M2 + M3) < 2 (L1 + LQ) (MQ + Mg)
(n+L)* B (n+ L)
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for any t € [0,b]. Then,

M- M. 2 (L Lo) (M- M.
eIt 2w (1) |x < My + 2 + M3 (L1 + L) (M2 + M3)

pt L (n+ L) ’
_ Mo + M. 2 (Lq + Lo) (M + M-
e LtH2w2(t)||N§Ml+ 2 3 + ( 1 2)( 22 3)
ptL (u+L)

for any t € [0, 0]. Let

21 (Ly + L))"t (My + Ms)

eiLtHnwm(t) —(n=1w"@)x < (n+L)" |

m=1,2.

Thus, we arrive at
e M (n+ 1) w' (8) — naw' (1)

t
< / eI I = AN (A nw' (), na® (A)) = F (A (n = 1) w' (V) (n = 1) w® (V) [lndX
0

_ 202" YLy + Ly)" Y (My + Ms) L (L1 + L)™ (Mo + Ms)
— ( +L)n+1 — (M +L)n+1

e (n + 1) w?(#) — nw?(t) |y

)

t
< / e WFEFDU=N o= LA =AU (3 1wt (M), Tw? (V) — F (A, 0w’ (M), 0w® (V) [JxdA
0

_ 2Ly + Lo) 2" (L + Lo)"” Y (M + Mz) _ 2" (Ly + L)" (Ms + Ms)
(M+L)n+1 — (M+L)n+1

for any t € [0,b]. Then,
e (n+ 1) w™ (1)l
My + M;s n 2 (L1 + La) (M2 + M3) I 2" (Ly + L))" (M + M)

< My + , m=1,2
wt L (n+L)* (j+ L)
for each t € [0,b]. Then, for any n, n > 1, we have
2" (L1 + Lo)"™ (My + M.
e*LtH(n+1)w1(t)—nw1(t)HN§ (L1 + Lo) (n+f+ 3), m=1,2,
(b +L)
and
—Lt m
e (n+ 1) w™ (@)l
Mo+ Mg 2(Ly + Lo) (My + M. 2" (L1 + Lo)" (Mo + M.
< My + 2 + M3 (L1 + La) (M3 + M3) N (L1 + Lo)" (M + 3)’ m=1,2

- ptL (n+ L)? (u+ L)"!
by induction. It follows from this and formula (10) that

e lw™ (@)l < 0w™(®)lx + Z e H (i + 1w () — iw™ (t) |

(L1 + Lo)' (Mo + M.
<M1+Z < iL()z+§+ Jom=12
(1

which proves the existence of a BS of problem (1) in norm Cf, ([0,b],R). From this, it follows the
existence of a BS of problem (1) in norm C ([0, ], X). Theorem 1 is proved.
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Now, consider the applications of Theorem 1.
First, we investigate the initial-boundary value problem for one-dimensional system of SPDEs

P — (a(2) VL (1.2)), — B (a(=2)Ts (1, —2)). + (0 4+ ) (1, 2)
:2—F( z; Ut (t,z), (t,2)),
P (a()V2(1,2)), — B (a(=2) V- (1, —2)), + (6 + p+ ) Wt 2)

2(
= F(t 2, Ut (t,z),‘lf (t,2)) = T(t, 2, ¥*(t, 2)), (11)

P2 (a(2) W3 (1,2)), — Bla(—2) Vs (t,—2)), + (5 + ) V(¢ 2)
—T(t 20 (t,2)), t € (0,b), —d < z < d,
U™(t,+d) =0, t € [0,b], m =1,3,

, 1
Um0, z) =¢™(z), ¥"™(£d) =0, z € [-d,d], m=1,3,

where a(z) and 1(z) are given sufficiently smooth functions. Here, § > 0 is a sufficiently large number.
We will suppose that a > a(z) =a(—2) >6>0,0 —a|B| > 0.
Theorem 2. Suppose the following conditions are satisfied:

1. For each m = 1,3, the initial function ¢™ belongs to the Sobolev space W2[—d, d], and

||wm||w22[_d7d] < Ml-

2. The function
F :[0,0] x [=d,d] x Lo[—d,d] x Lo[—d,d] — La|—d, d]

is continuous in the time variable ¢t and satisfies the uniform bound
HF(t? " w(t, ‘)7 u(t7 '))HLg[—d,d} < M

for all (¢,-,w,u) € [0,b] x La[—d,d] x Lo[—d,d]. Moreover, F satisfies a Lipschitz condition
uniformly in %:

1F (s w,u) = F (@)l aq < I (||w —PllLyj—aq + llu— q”Lg[—d,d]) :

3. The function
T :[0,0] x [—d,d] x Lo[—d,d] — La|—d, d]

is continuous in ¢ and satisfies the uniform bound:

ICCE, - wts D py—aq < Ms

for all (t,w) € [0,b] x La[—d,d]. Additionally, T satisfies a Lipschitz condition uniformly in ¢:

I w) =T )l g < Lo llw —ull py_qq -

Here and in the sequel, the constants L,, (for m = 1,2) and M,, (for m = 1, 3) are assumed to be
positive.

Then, wunder the above assumptions, there exists a unique solution W(t,z) =
T

= <\P1(t, 2), W2(t, z), U3(t, z)> to problem (11), which is bounded in the space C3(Ly[—d,d]) =

C (La[—d,d]) x C (La[—d,d]) x C (Lo[—d,d]).
The proof of Theorem 2 is based on the abstract Theorem 1, the self-adjointness and positivity in
Ly [—d, d] of a differential operator A* defined by the formula

Aw(z) = = (a(2)w:(2), — B(a(=2)w: (=2)), + dw (2)
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with the domain D(A%) = {w € W3 [—d,d] : w(—d) = w (d) = 0} [13] and on the estimate

| exp{—t A"} 1y—d.d)—Lo[—daq) < 1, > 0.

Second, we study the initial-boundary value problem for a multidimensional system of SPDEs

oV (ts) _ é(ar(z)qz;)zr F (54 p) ULt 2) = —F (t, 2,0 (£, 2), T2 (, 2)),

P 5 (0202 )20 + (04 i+ §) V(1 2)

= £z (12, W (,2) = X020 (1 2), 2
OV 5 (ar(2) U3 )z + (6 + 1) W31, 2)

— Ytz U (1, 2)), tE (0,0), 2 = (21,0 20) € D,
UP(0,2) =9P(z), z€Q, p=1,3
UP(t,z) =0, t€[0,b], z€ S, p=1,3

where a,(z) and ¢P(z) are given sufficiently smooth functions and § > 0 is a sufficiently large number
and a,(z) > 0. Here, 2 C R" is an open and bounded domain whose boundary S is smooth and we
put Q =QuUS.

Theorem 3. Suppose the following conditions are satisfied:

1. For each m = 1,3, the initial function ¥™ belongs to the Sobolev space W2 (), and

19" w2 @) < M.

2. The function
F : [O,b] X [O,Z] X Lg(ﬁ) X LQ(Q) — Lg(ﬁ)

is continuous in the time variable ¢, and satisfies the uniform bound:
HF(t"’w(t")vu( ))HL <M2

for all (t,w,u) € [0,b] x La(Q) x Lo(Q). Moreover, F satisfies a Lipschitz condition uniformly
in t:
HF(t, '7w7u) - F(t7 5P, Q)HLQ(ﬁ) <Ly <||w _pHLg(ﬁ) + Hu - q”Lg(ﬁ)) :
3. The function
T [O,b] X [O,l] X Lg(ﬁ) — Lg(ﬁ)
is continuous in ¢, and satisfies the uniform bound:
1T (¢, -, w(t, ))”Lg(ﬁ) < Ms
for all (t,w) € [0,b] x La(Q). T satisfies a Lipschitz condition uniformly in ¢:
(- w) =T( - Py < Lo llw = pll,@)

Then, under the above assumptions, there exists a unique solution W(t,z) =
= (Vl(¢, 2), U2(¢, z), UP(¢, z))T to problem (12), which is bounded in the space C*(L3(Q)) = C' (L2(Q2)) x
C (@) % C (L2(2)).

The proof of Theorem 3 is based on the abstract Theorem 1, on the self-adjointness and positivity
in La(Q) of a differential operator A* defined by the formula

n

A*Q(z) = — Z(ar(z)gzﬁw +6Q(2)

r=1
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with domain [12]
= {w(2) ), (ar(2)wz, )z € La(), 1<r <n, w(z) =0, z€ S}

and on the estimate
lexp{—tA™}| 1, @)@ < 1o t € [0,00)

and the following theorem on coercivity inequality for the solution of the elliptic problem in Lo () [12].

2 BS of the difference scheme

For the approximate solution of (1) we consider a grid space

[O,b]T:{tk:kT, k=1,N, NT:b}.

We consider the first order of accuracy difference scheme

11

% + 'U’ullc + Aullc = _F(tk‘?ullc’ui)?
2 To

% (§+p) ui + Aui = F(tk’ullwui) - T(tmui), (13)

M + puy, + Auj = Y(ty,uy), k=1,N,

ubh =yP, p=1,3

for the approximate solution of problem (1). The proof method for the basic theorem on the EU of
a BS of difference scheme (13) uniformly w.r.t. 7 is based on reducing (13) to an equivalent system
of semilinear difference equations. Actually, an equivalent system of semilinear difference equations
for (13) is

uj, = Rt — Z VRETEN (tn g, )T

= RE B [ ) = T ()] 7 1)

k
ui = RFY3 + 5 RFMIY (4, ul )T, k=1,N

in C3 (R) = C-(R) x C-(N) x C,(N) and the use of successive approximations. Here and in the future
Ri={I+7((p+&T+A) L R=[T+7(ul +A))~! and C,(R) stands for the Banach space of mesh

functions w” = {wp}p:0 defined on [0, b], with values in R, equipped with the norm
T
07 oy = ma [yl

The recursive formula for the solution of DS (13) is

1 1
ruk—ruk 1

=1 4+ m“ul,lc + Aru}c = —f (tg, (r — 1) ulz, (r—1) ui),
7"[14277”[1,2
AL (E 4 ) rug + Arud = F (b, (r— D g, (r = 1) ug) — T (b, (r — 1) ),

—f—;u“uk—i—Aruk =T(tg, (r —1)uy), k
ruf =y¢P, p=1,3, r=1,2,.
0uk, k= O,N, p=1,3 are given.

3 T
rukfruk 1

[l
=

\

From (14) and (15) it follows

k .
rup = RFypl — Zl (RELE (b, (r = D)y, (r — 1) ud) T,
rul = REg? + Ez VRETERF (e, (r = Dy, (r = 1) ug) = Yt (r — 1) up)] 7, (16)

ru = RFy3 + Eilek_mHT(tk, (r—1) ui)T, k=1,N, r=1,2,..,
Oup, k=0,N, p=1,3 are given.
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Theorem 4. Let the assumptions of Theorem 1 be satisfied and
w6 > 2(L1+L2).

Then, there exists a unique BS u”™ = {uy}Y_, of difference problem (13) in C3(R) uniformly w.r.t. 7.
Proof. Since uz does not appear in equations for %, m = 1,2, it is sufficient to analyze the
behaviors of solutions u, and u; of (13). According to the recursive approximation method (16), we get

oo
uf = Ou + Y [(i+ Dug —iuf’], m=1,2, (17)
=0
where
REym™ m =1,3,
Oup' = (18)
Ry?, m=2.

Applying the spectral representation of the self-adjoint positive definite operator in a Hilbert space,
we get the following estimates

1 1
R < — R < . 19
IRl < g PRl < T 55 (19)
From formula (18) and estimates (19) it follows that
10uf [l < Mlep™ [l < M. (20)

Using formula (16), estimates (19), we get

Mo
p+o

k
ILuj = Ouillx < > 1B FHIIIF (b, Ougy, Oty )Inr <

m=1

)

d My + M
_ 2 3
102 = 0wl < D7 | RET4 | (1 (b Ortg, 0 )l 11 (s, Oty ) ] 7 < 52
— pt0+¢
for any k = 1, N. Using the triangle inequality and estimate (20), we get

Ms + Ms
+6

My + M3

Tukllx < M
| Tug|lx < M+ 1o

luj|lx < My +

for each k =1, N. Using formula (16), estimates (19), (6) and (7), we can write

2(L1 + Lo) (M2 + M3)
(1 + )

k
12u, = Tug e < D B (s Lutgy, Tug,) = F (b, Oty Oty e <

m=1

)

k
1267 — Tule <Y IRY I (s Lty 1103,) = F (i, Oty Oy |
m=1
2 (Ll + LQ) (Mg + Mg)
(1 +0+¢)?

k
+ 2 IR Y (b, Lug,) = L (b, O e <

m=1
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for any k = 1, N. Then,

My + M3 n 2(L1 + Lo) (M2 + Ms)

12uiflx < My +
g g+ (1 +6)>2

9

My + M; 2 (L1 + LQ) (Mg + Mg)
p+o (104 6)>

12uj|lx < My +

for each k =1, N. Let

n—1 n—1
2" (L1 + Lo)" " (M2 + M3) m—1.9

nul’ — (n— Dultx < , ,
I~ (= D < T

Using formula (16), estimates (19), (7) and (6), we get

k
0+ 1) up = nuglln < YIRS (i natgy, (0= 1) ) = F (i gy, (0= 1) ) [T
m=1
< (2 (Ll + LQ))" (MQ + Mg)
— (M+5)n+l

)

k
(0 + 1) ug = nuill < > IR I (s ity ntizy) = F (tms (10 = 1) gy, (0= 1) g )[|nr

m=1
k
+ Z |RE MY (b ) — Y (E, (00— 1) i) [|n7
m=1
< 2L+ L))" (Ma + Ms)
(+d+&"

for each k = 1, N. Then,

My + M. 2(Ly + Lo) (M2 + M. 2 (Ly + Ls))" (Ms + M.

wto (1 +0)* (n+o+o™ " 7
My + M. 2(Ly + Lo) (Mo + M. 2 (L1 + Ls))"™ (Mo + M.

It D)l < oy 4 M2t Ms | 200+ Lo) Myt My) |y @ULa o+ L))" (Mo o+ M)
o (1 +9) (1 +9)

for every k = 1, N. Therefore, for any n,n > 1, we have that

2" (L1 + Lo)"™ (Ms + Ms)
(M +5)n+1

| (n 4 1) uj, — nugllx < , p=12

and
n

2" (L1 + La)" (M + M)

by induction. From this and formula (17) it follows that

, p=12

oo
gl < N0uf s + D N+ Duf = rf
r=0
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L1+L2 (MngMg)
<M1+Z (i +0) ;o p=1,2

This proves the existence of a BS of DS (13) that is bounded in C2(X) uniformly w.r.t. 7. Theorem 4
is proved.

Now, let us consider the applications of Theorem 4. First, the mixed problem (11) for one-
dimensional system of SPDEs is considered. The discretization of problem (11) is carried out in
two steps.

In the first step, we define the grid space as follows:

[—d,dp ={z:2,=rh, n=—-K,K, Kh=d}.

We introduce the Hilbert spaces Loy, = La([—d,d];) and W3, = Wi([—d,d]) of the grid functions
Yh(2) = {4}, defined on [—d, d]p,, equipped with the norms

[+

1/2

- ¥ e[|

ZE[—d,d]h

s e

ze|—da,dlp

Lop

1/2

[+ lls, = " '

2
W3,

respectively. To the differential operator A generated by problem (11), we assign the difference operator
A7 by the formula

P (2) = {=(al2)¥z(2))zr — Bal(=2)pz(—2)),, + 60 ML, (21)

acting in the space of grid functions ¥"(2) = {¢"}% satisfying the conditions % = & = 0. With
the help of A7, we arrive at the initial value problem

L() + puth(t, 2) + Azuth(t, 2) = —F(t, z;u (¢, 2), u™" (¢, 2)),

L (t 2D 4+ &) uPh(t, 2) + Azuh(t, 2) = F(t, 2z;u™ (¢, 2),u" (t, 2))

—Th(t zu (t,2)), (22)
% + P (t, 2) + Az udh(t, 2) = Y (t, 20" (t,2)), t € (0,b), z € [—d, d]p,

umh(o’z) = me(z), m = 17737 S [_d> d]h

for an infinite system of semilinear ordinary differential equations. In the second step, we replace
problem (22) by DS (13)

1
Sl +Muk +Ahuk = —Fh(tk,z,u,lf,ui),
2
% +(E+p) Uk + Ahuk = F"(ty, Z>u11g7ui) = T (t, Z’ui)’ (23)
ST Afud = Th(tg, 2, 0)), k=T,
u =™ m=1,3.

Theorem 5. Let the assumptions of Theorem 2 be satisfied and p + § > 2 (L1 + Lg). Then, there
exists a unique solution u” = {uk},ivzo of DS (23) that is bounded in C2 (Loy) uniformly w.r.t. 7 and h.

The proof of Theorem 5 is based on the main Theorem 4 and the symmetry properties of the
difference operator A} defined by formula (21).
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Second, the initial-boundary value problem (12) for multidimensional system of SPDEs is consid-
ered. The discretization of problem (12) is also carried out in two steps. In the first step, let us define
the grid sets

Q= {z =z, = (M1, ey hpry), 7= (11, 1n), k=0,N;, h;

=
I
=
~.
I
—
S
—

QhZQhﬂQ, ShZQhﬂS.

We introduce the Banach spaces Lg, = L2(Q) and WQQh = W2(Qy,) of the grid functions
Y(2) = {(h171, ..., hury)} defined on Qy,, equipped with the norms

ol = (5 )
=+ (S50, [0

ze€QpT

respectively. To the differential operator A generated by problem (12), we assign the difference operator
A7 by the formula

n
Zul = —Z (ar(z)u%>z ) (24)
—1 T

acting in the space of grid functions u”(z), satisfying the conditions u(z) = 0 for all z € Sy It is
known that Aj is a self-adjoint positive definite operator in La(€25). With the help of A}, we arrive at
the initial value problem

dulh(t,z 2

;;ﬁfl-%uu”%t 2) + Ajull(t, 2) = =Mt zu™ (8, 2), u™ (8, 2)),

B (o © w1, 2) + AP (1 2) = F (2 (1 2) 0 (1, 2)

—'I;Lh(t zu (t, 2)), (25)
3 —

du (t 2) —I—,uugh(t, 2) + Az 3h( 2) = Th(t,z;u2h (t,2)), t € (0,b), z € O,

umh(O, 2)=9Y"(z), m=1,3, 2 € Qy

for an infinite system of semilinear ordinary differential equations. In the second step, we replace

problem (25) by DS (13)

1 1
S g Ay = =Mt 2, ),
2 2
S (€ )+ AR = oz 0) = 02, (26)
S+ Afud = T (b, z,up), k=T
uo = ’(/)m - 173

Theorem 6. Let the assumptions of Theorem 3 be satisfied and p+ 0 > 2(L; 4+ La). Then, there
exists a unique solution u” = {uk},ivzo of DS (26) that is bounded in C2 (Loy) uniformly w.r.t. h and 7.
The proof of Theorem 6 is based on Theorem 4 and the symmetry properties of the difference

operator A} defined by formula (24) and the theorem on the coercivity inequality of an elliptic problem
in Lop, [13].
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8 Numerical experiments

When analytical methods fail to provide exact solutions or become intractable, numerical methods
play a crucial role in obtaining approximate solutions of partial differential equations. Over the years,
numerous significant contributions have been made in this area, and various reliable techniques have
been developed.

In the present section, we focus on the numerical approximation of the solution to a given initial-
boundary value problem. Specifically, we employ a finite DS of first-order accuracy. To solve the
resulting discrete system, we apply a modified Gauss elimination method.

Furthermore, we provide an error analysis for both the first-order and second-order accurate DSs,
highlighting their performance and convergence behavior. We now consider the following initial-
boundary value problem for a system of SPDEs:

Ul(t,2) +vUi(t, )— BUL (¢, 2)

= (=14 v+ B)e 'sinz —sin (V' (¢, 2)T3(t, 2) — e *'sin’ 2)
W2(t, 2) + (u+ &) T2(t, z) —dV2 (t,2)

=(-1+v+E&+detsing,

+sin (Ul(t, 2)U(¢, 2) — e *sin® z) — cos (P2(¢,2) — e 'sinz), (27)
T (t,2) + vVt 2) — T3 (¢, 2)

= (=1+v+~)e " sinz 4+ cos (\IIQ(t, 2)—et sinz) , t€(0,1), z € (0,n),

U™(0,z) =sinz, z € [0,7], m=1,3,
U™ (t,0) = UM (t,7) = 0, t € [0,1], m = 1,3.

The spatial variable z may be treated as either discrete or continuous, depending on the context.
In all cases, 2z represents population mobility, such as travel or migration between cities, towns, or even

countries.
The exact solution of problem (27) is given by:

U™ (t,z) =e 'sinz, m=1,3.

We now present a first-order accurate iterative DS for approximating the solution of the initial-
boundary value problem (27):

1 1,k 1,k—1 1,k 1,k
= (run — Uy ) + vru, — % (runH — 2run + ru
- . 1,k _ .
= (=1+v+B)etsinz, —sin ((r— Dup™(r — 1udF — e 20k sin? z,,
1 2,k 2,k—1 d 2,k

(run — TUy ) +(p+ §)ru,2{k — 3z <7“un’+1 —2ru2 4 ru2 k )
=(-14+v+E&+d)e*sinz,
. 1,k 2.k *Qt .. 9 . 2.k by
+ sin ((r — Duy™(r — Duy” — kgin® 2 ) — sin ((r — Duy™ — e e gin zn) , (28)

1 3.k 3,k—1 3.k 1,k
= (run — ruy ) + vruy” — % (runH 2run +ru,)” 1)

= (=14 v +v)e *sinz, + sin ((r—l) 2k _ etk sinzn),
tk—kT k=1N, Nr=1, z,=nh, n=1,K — 1, Kh =,
run’ :wm(zn), Uy k—ruK =0, k=0,N,
0ul* is the initial guess, m=1,3, k=0, N, n =0, K.

To solve the DS (28), we follow the iterative procedure described below. For each time step
k=0, N — 1 and spatial index n =0, K:
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Initialize iteration with r» = 1.
Assume (r — 1)1@’g is known for all m.

Compute ruﬁ’k using the difference equations.
k

WD =

If the maximum absolute error between (r — 1)u,”" and rupt exceeds a prescribed tolerance,

increment r — r 4+ 1 and repeat from step 2. Otherwise, accept ruff’k as the solution.

The errors of numerical solutions are computed by

(rEm)% = max
k=T,N, n=1,K—1

U (tg, zp) — runm’k ,

3
Il
w

where U™ (g, z,) is the exact solution, and ru?’k is the numerical approximation at the grid point
(tg, zn) for each m.
The results of the error computations for different grid resolutions are presented in Table 1.

Table 1

Maximum error (rE™)Y for different values of N = K and r = 6

(rE™)Y [N=K=20 [ N=K=40 | N=K =80
m=1 0.0068 0.0032 0.0016
m=2 0.0071 0.0033 0.0016
m=3 0.0073 0.0034 0.0017

As observed in Table 1, when the values of N and K are doubled, the error decreases approximately
by a factor of 1/2, which is consistent with the behavior of a first-order accurate finite DS as defined
in equation (28). The numerical results confirm both the stability and the accuracy of the proposed
DS.

Conclusion

In the present paper, we have established a theorem concerning the EU of a BS for a semilinear
system of parabolic equations that models the spread of epidemics with a general semilinear incidence
rate. The single-step DS of the w.r.t. for the numerical approximation of the semilinear system has
been investigated.

Furthermore, we proved a theorem concerning the EU of a BS for the DS, uniformly w.r.t. the
time step 7. The BSs of the semilinear parabolic system and its corresponding numerical scheme were
derived. Finally, numerical results were presented for a test problem to illustrate the effectiveness and
precision of the proposed DS. Applying methods from this paper and from papers [14] and [15] we can
present similar results from this paper for a BS for a semilinear system of delay parabolic equations
that models the spread of epidemics with a delay semilinear incidence rate.
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