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This paper presents a numerical study of source identification problems for one-dimensional telegraph-
parabolic equations subject to Dirichlet and Neumann boundary conditions. In these inverse problems, the
unknown source terms are assumed to be space-dependent, which introduces both analytical and compu-
tational challenges. The study begins by discretizing the considered problems using the finite difference
method – first in space and subsequently in time – resulting in a system of discrete equations. Stability
results for the solutions of the resulting finite difference schemes are established to ensure the reliability
of the numerical approach. A numerical algorithm is proposed for solving the discrete inverse problems.
The algorithm begins by eliminating the unknown source terms, which transforms the original discretized
problem into a new nonlocal problem with unknown initial data. To approximate this initial data, an
iterative procedure based on fixed-point iterations is constructed. Once the transformed nonlocal problem
is solved, the solution of the main finite difference scheme and approximations of the unknown source term
are recovered. Numerical results for two test problems are presented to illustrate the proposed method
in practice. The findings confirm the accuracy of the approach in solving space-dependent inverse source
problems.
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Introduction

Partial differential equations with unknown source terms are widely used in the mathematical
modelling of real-world phenomena in various applied fields (see, e.g., [1] and the references therein). A
problem involving a differential equation with a time- and/or space-dependent source term is referred
to as a source identification problem (SIP). These types of inverse problems have been extensively
studied in the literature (see, e.g., [2–4] and the references therein).

In recent years, the analysis of SIPs for mixed-type differential equations, as well as the development
and investigation of numerical methods for their solution, has attracted significant attention (see, e.g.,
[5, 6] for parabolic-elliptic, [7–9] for elliptic-hyperbolic, and [10, 11] for telegraph-parabolic SIPs). By
mixed-type, we mean that the differential equation is of one type in one part of the domain and of a
different type in another part. For instance, consider a physical system initially modelled by the heat
equation. At a certain moment in time, due to an instantaneous change in the system, the governing
model transitions to the wave equation with a damping term. In such cases, the resulting differential
equations are referred to as telegraph-parabolic equations.
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Consider the following abstract formulation for telegraph-parabolic equations with an unknown
space-dependent source term p:

w′′(t) + αw′(t) +Aw(t) = p+ f(t), t ∈ (0, 1),

w′(t) +Aw(t) = p+ g(t), t ∈ (−1, 0),
w(0+) = w(0−), w′(0+) = w′(0−),

w(−1) = ϕ, w(λ) = ψ, λ ∈ (−1, 1],

(1)

where the problem is posed in a Hilbert space H with a self-adjoint positive definite (SAPD) operator
A satisfying A ≥ δI, for some δ > α2

4 and α > 0. Here, ϕ, ψ ∈ D(A) and the functions f(t) and
g(t) are assumed to be continuously differentiable on [0, 1] and [−1, 0], respectively. The existence,
uniqueness, and stability of solutions of the problem (1) in the space C(H) of continuous H-valued
functions w(t) defined on the interval [−1, 1], equipped with the norm

‖w‖C(H) = max
t∈[−1,1]

‖w(t)‖H

are established in [10].
For the approximate solution of the abstract problem (1), the following stable difference scheme

(DS) of first-order accuracy is constructed in [11]:

wk+1−2wk+wk−1

τ2
+ α

wk+1−wk

τ +Awk+1 = p+ fk, 1 ≤ k ≤ N − 1,

wk−wk−1

τ +Awk = p+ gk, −N + 1 ≤ k ≤ 0,

w1−w0
τ = p−Aw0 + g0,

w−N = ϕ, w` = ψ,

(2)

where τ = 1
N is sufficiently small positive number, tk = kτ, −N ≤ k ≤ N , ` = dλτ e, fk = f(tk),

1 ≤ k ≤ N − 1 and gk = g(tk), −N + 1 ≤ k ≤ 0.
The unique solvability of the DS (2) and the stability estimates for its solution were established

in [11]. However, the abstract results for the DS (2), presented in [11], require further investigation from
an implementation perspective. In the present paper, we consider the application of the aforementioned
abstract results to two SIPs for one-dimensional telegraph-parabolic equations with Dirichlet and
Neumann boundary conditions. We provide a complete discretization of the considered problems and
propose a numerical algorithm for solving the resulting DSs. Numerical examples are presented to
illustrate the proposed numerical procedure.

1 SIPs for one-dimensional telegraph-parabolic equations

In this section, we consider two SIPs for one-dimensional telegraph-parabolic equations: one with
Dirichlet boundary conditions and the other with Neumann boundary conditions. Since the discretiza-
tion procedures for the considered problems are very similar, we describe the approach for both SIPs
simultaneously.

First, consider the following SIP for one-dimensional telegraph-parabolic equations

wtt(t, x) + α wt(t, x)−
(
a(x) wx(t, x)

)
x

= p(x) + f(t, x), x ∈ (0, 1), t ∈ (0, 1),

wt(t, x)−
(
a(x) wx(t, x)

)
x
= p(x) + g(t, x), x ∈ (0, 1), t ∈ (−1, 0),

w(0+, x) = w(0−, x), wt(0
+, x) = wt(0

−, x), x ∈ [0, 1],

w(−1, x) = ϕ(x), w(1, x) = ψ(x), x ∈ [0, 1],

w(t, 0) = w(t, 1) = 0, t ∈ [−1, 1]

(3)
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with homogeneous Dirichlet boundary conditions. Here and throughout the paper, p(x) denotes the
unknown source term, a(x) ≥ a > 0, ϕ(x), ψ(x), f(t, x), and g(t, x) are given sufficiently smooth
functions, and α is a positive constant. SIP (3) can be reduced to the abstract problem (1) in a Hilbert
space H = L2(0, 1) with a SAPD operator A = Ax defined by the formula

Axw(x) = −
(
a(x)wx(x)

)
x

(4)

with domain D(Ax) =
{
w(x) : w(x), wx(x),

(
a(x)wx

)
x
∈ L2[0, 1], w(0) = w(1) = 0

}
.

Second, consider the SIP for one-dimensional telegraph-parabolic equations with Neumann bound-
ary conditions

wtt(t, x) + αwt(t, x)−
(
a(x)wx(t, x)

)
x
+ δw(t, x) = p(x) + f(t, x), x ∈ (0, 1), t ∈ (0, 1),

wt(t, x)−
(
a(x)wx(t, x)

)
x
+ δw(t, x) = p(x) + g(t, x), x ∈ (0, 1), t ∈ (−1, 0),

w(0+, x) = w(0−, x), wt(0
+, x) = wt(0

−, x), x ∈ [0, 1],

w(−1, x) = ϕ(x), w(1, x) = ψ(x), x ∈ [0, 1],

wx(t, 0) = wx(t, 1) = 0, t ∈ [−1, 1],

(5)

where δ is a positive constant. SIP (5) can be reduced to the abstract problem (1) in a Hilbert space
H = L2(0, 1) with a SAPD operator A = Ax defined by the formula

Axw(x) = −
(
a(x)wx(x)

)
x
+ δw (6)

with domain D(Ax) =
{
w(x) : w(x), wx(x),

(
a(x)wx

)
x
∈ L2(0, 1), wx(0) = wx(1) = 0

}
.

By means of the abstract result from [10], both problems (3) and (5) have a unique smooth solution{
w(t, x), p(x)

}
for given smooth data satisfying all compatibility conditions.

We start the discretization of SIPs (3) and (5) by defining the grid space [0, 1]h ={
x
∣∣ xm = m h, 0 ≤ m ≤ M, M h = 1

}
.

Let us introduce the Hilbert space L2h = L2 ([0, 1]h) of grid functions ϕh(x) = {ϕm}M0 defined on

[0, 1]h and equipped with the norm
∥∥ϕh∥∥

L2h
=

( ∑
x∈[0,1]h

∣∣ϕh(x)∣∣2 h)1/2

. To the differential operator

Ax, defined by formula (4), we associate the difference operator Axh, given by the formula

Axhϕ
h(x) =

{
−
(
a(x)ϕmx̄ (x)

)
x

}M−1

1
,

which acts in the space of grid functions ϕh(x) = {ϕm}M0 satisfying boundary conditions ϕ0 = ϕM = 0.
Here and throughout the paper,

ϕmx̄ =

{
ϕm − ϕm−1

h

}M
1

and ϕmx =

{
ϕm+1 − ϕm

h

}M−1

0

.

Similarly, to the differential operator Ax, defined by formula (6), we assign the corresponding difference
operator Axh, given by the formula

Axhϕ
h(x) =

{
−
(
a(x)ϕmx̄ (x)

)
x
+ δϕm(x)

}M−1

1
,

acting in the space of grid functions ϕh(x) = {ϕm}M0 , subject to the boundary conditions ϕ0 = ϕ1 and
ϕM = ϕM−1.
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Note that in both cases, Axh corresponds to the second-order accuracy centered difference
approximation of the respective differential operator Ax, incorporating Dirichlet and Neumann bound-
ary conditions, respectively. Moreover, Axh is a SAPD operator in L2h in both cases.

With the help of the corresponding operator Axh, the first step of the discretization of both SIPs
(3) and (5) leads to the following problem:

d2wh(t,x)
dt2

+ αdw
h(t,x)
dt +Axhw

h(t, x) = ph(x) + fh(t, x), t ∈ (0, 1),

dwh(t,x)
dt +Axhw

h(t, x) = ph(x) + gh(t, x), t ∈ (−1, 0),

wh(0+, x) = wh(0−, x), dwh(0+,x)
dt = dwh(0−,x)

dt ,

wh(−1, x) = ϕh(x), wh(1, x) = ψh(x),

(7)

where x ∈ [0, 1]h.
Now, in the second step of the discretization process, we define τ = 1

N , tk = kτ, −N ≤ k ≤ N and
replace problem (7) with DS (2)

wh
k+1(x)−2wh

k (x)+wh
k−1(x)

τ2
+ α

wh
k+1(x)−wh

k (x)

τ +Axhw
h
k+1 (x) = ph(x) + fhk (x), 1 ≤ k ≤ N − 1,

wh
k (x)−wh

k−1(x)

τ +Axhw
h
k (x) = ph(x) + ghk (x), −N + 1 ≤ k ≤ 0,

wh
1 (x)−wh

0 (x)
τ = ph(x)−Axhwh0 (x) + gh0 (x),

wh−N (x) = ϕh(x), whN (x) = ψh(x),

(8)

where x ∈ [0, 1]h, fhk (x) = fh(tk, x), 1 ≤ k ≤ N − 1 and ghk (x) = gh(tk, x), −N + 1 ≤ k ≤ 0.
Then, the following theorem follows readily from the abstract result stated in Theorem 1.

Theorem 1. The solution of DS (8) satisfies the following stability estimate

max
−N≤k≤N

∥∥whk∥∥L2h
+
∥∥∥(Axh)−1 ph

∥∥∥
L2h

≤M(δ, α)

[
max

1≤k≤N−1

∥∥fhk ∥∥L2h
+ max
−N+1≤k≤0

∥∥ghk∥∥L2h
+
∥∥ϕh∥∥

L2h
+
∥∥ψh∥∥

L2h

]
.

Here, M(δ, α) is independent of τ , h, ϕh(x), ψh(x), fhk (x) and ghk (x).

2 Numerical algorithm

In this section, we propose a numerical algorithm to solve the difference scheme (8). The approach
relies on a suitable substitution that eliminates the unknown source term ph. Let us denote

whk(x) = vhk (x) + (Axh)
−1 ph(x), x ∈ [0, 1]h, −N ≤ k ≤ N.

Then, the scheme (8) results in the following auxiliary DS

vhk+1(x)−2vhk (x)+vhk−1(x)

τ2
+ α

vhk+1(x)−vhk (x)

τ +Axhv
h
k+1 (x) = fhk (x), 1 ≤ k ≤ N − 1,

vhk (x)−vhk−1(x)

τ +Axhv
h
k (x) = ghk (x), −N + 1 ≤ k ≤ 0,

vh1 (x)−vh0 (x)
τ = −Axhvh0 (x) + gh0 (x),

vh−N (x) = vhN (x) + ϕh(x)− ψh(x),

(9)
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where x ∈ [0, 1]h. Note that the scheme (9) no longer involves the unknown source ph. However, it
exhibits a non-local nature due to the coupling between vh−N and vhN , and therefore it cannot be solved
using a standard time-marching approach.

We attempt to solve the non-local difference problem (9) iteratively. Let {vhk (x; θ)} be the solution
of the following scheme

vhk+1(x;θ)−2vhk (x;θ)+vhk−1(x;θ)

τ2
+ α

vhk+1(x;θ)−vhk (x;θ)

τ +Axhv
h
k+1(x; θ) = fhk (x), 1 ≤ k ≤ N − 1,

vhk (x;θ)−vhk−1(x;θ)

τ +Axhv
h
k (x; θ) = ghk (x), −N + 1 ≤ k ≤ 0,

vh1 (x;θ)−vh0 (x;θ)
τ = −Axhvh0 (x; θ) + gh0 (x),

vh−N (x) = θh(x),

(10)

where x ∈ [0, 1]h. For {vhk (x; θ)} to be a solution of the scheme (9), the initial vector θ = θh(x), where
x ∈ [0, 1]h, must satisfy the following condition

θ = vhN (x; θ) + ϕh(x)− ψh(x), x ∈ [0, 1]h.

We can then construct an iterative procedure, such as fixed point iterations, to approximate the initial
vector θ. Taking all of the above into account, the following algorithm can be used to solve the
difference scheme (8).

1. To approximate the initial vector θ iteratively, we use the following formula:

θm+1 = vhN (x; θ
m) + ϕh(x)− ψh(x), x ∈ [0, 1]h, m = 0, 1, 2, . . .

At each iteration step, the difference scheme (10) must be solved to compute vhN (x; θ
m).

2. Next, we approximate the source p(x) using the formula

ph(x) = Axh

(
ϕh(x)− θ

)
, x ∈ [0, 1]h,

where θ is the initial vector, approximated in the first step.
3. Finally, we obtain the solution of the difference scheme (8) using the formula:

whk(x) = vhk (x) + ϕh(x)− θ, x ∈ [0, 1]h, −N + 1 ≤ k ≤ N − 1.

Here, vhk (x) is the solution of the difference scheme (10) with the initial vector θ obtained from
the iterative procedure.

3 Numerical example

First, we consider the following initial-boundary value problem

wtt + 2wt − wxx = p(x) + f(t, x), x ∈ (0, 1), t ∈ (0, 1),

wt − wxx = p(x) + g(t, x), x ∈ (0, 1), t ∈ (−1, 0),
w(0+, x) = w(0−, x), wt(0

+, x) = wt(0
−, x), x ∈ [0, 1],

w(−1, x) = e1 sinπx, w(1, x) = e−1 sinπx, x ∈ [0, 1],

w(t, 0) = 0, w(t, 1) = 0, t ∈ [−1, 1],

(11)

where f(t, x) = g(t, x) =
(
(π2 − 1)e−t − 1

)
sinπx. The analytical solution of problem (11) is

w(t, x) = e−t sinπx, x ∈ [0, 1], t ∈ [−1, 1]
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with the source term p(x) = sinπx, x ∈ (0, 1).
Second, we consider the initial-boundary value problem

wtt + 2wt − wxx + 3w = p(x) + f(t, x), x ∈ (0, 1), t ∈ (0, 1),

wt − wxx + 3w = p(x) + g(t, x), x ∈ (0, 1), t ∈ (−1, 0),
w(0+, x) = w(0−, x), wt(0

+, x) = wt(0
−, x), x ∈ [0, 1],

w(−1, x) = e1 cosπx, w(1, x) = e−1 cosπx, x ∈ [0, 1],

wx(t, 0) = wx(t, 1) = 0, t ∈ [−1, 1],

(12)

where f(t, x) = g(t, x) =
(
(π2 + 2)e−t − 1

)
cosπx. The analytical solution of problem (12) is

w(t, x) = e−t cosπx, x ∈ [0, 1], t ∈ [−1, 1]

with the source term p(x) = cosπx, x ∈ (0, 1).
The numerical solutions for SIPs (11) and (12) are computed using the first-order accuracy DS and

the aforementioned numerical procedure for various values of M = N . To evaluate the accuracy of
the method, we compute the error between the analytical and numerical solutions using the following
formulas:

Ep = max
n
|p(xn)− pn| , Ew = max

k,n

∣∣∣w(tk, xn)− wkn∣∣∣ .
Here, wkn and pn denote the corresponding numerical approximations of the exact solution {w(t, x), p(x)}
at the grid points t = tk and x = xn. Figure 1 shows the errors between the exact and numerical
solutions of problems (11) and (12) for different values of τ , confirming the first-order convergence of
the proposed method. Since we have taken M = N , which implies h = τ , and the error of the method
is O(τ + h2), observe only the temporal errors here, i.e., the first-order convergence of the method.

Figure 1. The errors between the analytical solutions of problems (11) (on the left) and (12) (on the
right) and their numerical solutions, computed using the first-order DS for various values of the time

step τ

Conclusion

In this work, we developed an algorithm for the numerical solution of one-dimensional telegraph-
parabolic equations with an unknown source term dependent on a spatial variable. The local inverse
problems considered are transformed into corresponding nonlocal direct problems, which are then solved
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using an iterative technique similar to the shooting method. Numerical experiments are provided to
illustrate the procedure in practice.

Our results demonstrate first-order convergence of the proposed numerical method. It is of practical
importance to develop higher order accuracy stable DSs so that more accurate results can be obtained
in less computational time. Future work will also focus on the investigation of SIPs for telegraph-
parabolic equations with time-dependent sources.
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