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This paper investigates the intrinsic geometry of a convex surface in the Galilean space R1
3. The Galilean

space, as a special case of a pseudo-Euclidean space, possesses a degenerate metric. The angle between two
directions is defined using a parabolic method, which is itself degenerate. The three-dimensional Galilean
space, similar to the Euclidean space, is based on a three-dimensional affine space. While the fundamental
geometric objects in these spaces coincide structurally, the geometric quantities associated with them differ
significantly from those in Euclidean geometry. It becomes necessary to introduce and rigorously define
various geometric characteristics of objects in Galilean space. Therefore, special attention in this work is
given to the total angle around the vertex of a cone, the angle between curves on a convex surface, and
the variation of curve turning on a convex surface. A geodesic on a convex surface is defined as a curve
with bounded variation of turning. A triangle is defined as a curve homeomorphic to a circle, bounded by
three geodesics. Using the concept of the total angle around the vertex of a cone, we define the intrinsic
curvature of convex surfaces in Galilean space and obtain an analogue of the Gauss–Bonnet theorem for
convex surfaces in Galilean geometry. The results obtained extend classical notions of intrinsic geometry
under a degenerate metric.

Keywords: Galilean space, convex surface, intrinsic geometry, intrinsic curvature, Gauss–Bonnet theorem,
degenerate metric, tangent cone, geodesic, curves with bounded variation of turning.
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Introduction

Modern differential geometry successfully applies methods of both intrinsic and extrinsic geometry
to the study of curves and surfaces in various spaces. One such space is the Galilean space R1

3, where
a degenerate metric coexists with the affine structure. This metric does not depend on all coordinates,
leading to fundamental differences in the definitions of distances, angles, and curvature, as compared
to the Euclidean case.

It is well known that the study of surface geometry is traditionally divided into “intrinsic” and
“extrinsic” components. In Euclidean space, the first fundamental form plays a central role in intrinsic
geometry. However, in Galilean space, the first fundamental form of a surface is degenerate, and
Gauss’s theorem, stating that the Gaussian curvature of a surface can be expressed entirely in terms of
the coefficients of the first fundamental form and their derivatives-does not hold. Therefore, it becomes
necessary to redefine intrinsic curvature, highlighting specific geometric characteristics that arise due
to the degeneracy of the metric.

The aim of this paper is to define the fundamental geometric characteristics of convex surfaces and
to construct an analogue to the intrinsic geometry of a surface within the Galilean space. Due to the
degenerate nature of the metric, it is not possible to directly apply classical Euclidean definitions such
as geodesics, arc length, or intrinsic curvature. Consequently, this paper introduces new approaches:
using angles between generators of tangent cones, curves with bounded variation of turning, and
cylindrical mappings.
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This work builds upon the results of previous studies by A.D. Alexandrov and O. Roschel, and
contributes to the further developing of the theory of convex surfaces in pseudo-Euclidean spaces [1,2].

Since the 2000s, there has been an increasing interest in the geometry of Galilean space. In this
context, special attention should be given to the works [3–5].

1 Galilean space and fundamental concepts

The Galilean space R1
3 is an affine space A3 equipped with two scalar products defined for vectors

X = {x1, y1, z1} and Y = {x2, y2, z2}:
1. (X,Y ) = (X,Y )1 = x1 · x2,
2. (X,Y ) = (X,Y )2 = y1 · y2 + z1 · z2, when (X,Y )1 = 0.
The norm of a vector is defined as the square root of its scalar square, and the distance between

two points equals the norm of the vector connecting them [6].
The motions of Galilean space, i.e., linear transformations preserving distances between correspon-

ding points, are described by the system [7]:

x′ = x+ a,

y′ = αx+ y cosφ+ z sinφ+ b,

z′ = βx− y sinφ+ z cosφ+ c.

Here a, b, c are translation parameters, α, β correspond to a Galilean shear (related to the parabolic
angle h), and ϕ denotes the Euclidean rotation angle in the (y, z)-plane.

Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) be an orthonormal basis of the space. Then it is easy
to establish that a motion maps a plane parallel to the vectors e2, e3 into another parallel plane. These
planes are Euclidean and are called special planes. Planes not parallel to e2 and e3 are called planes
in general position. Vectors parallel to special planes are also called special vectors.

A sphere in Galilean space R1
3 is a set of all points equidistant from a point X0 and is defined by

the equation:
(x− x0, x− x0) = r2.

If the center of the sphere is at the origin and the radius is 1, then

(x, x)1 = x2 = 1.

The set of all points whose coordinates satisfy the sphere equation forms a set of parallel special
planes located at unit distance from the origin.

Unit vectors in the directions of X and Y have the coordinates:

X̃ =

{
1,
y1

x1
,
z1

x1

}
, Ỹ =

{
1,
y2

x2
,
z2

x2

}
.

These vectors are the radius vectors of points on the unit sphere.
The angle between spatial vectors is defined as the distance between the endpoints of their corre-

sponding unit vectors on the sphere, and is given by:

h =

√(
y1

x1
− y2

x2

)2

+

(
z1

x1
− z2

x2

)2

.

It is evident that 0 ≤ h < ∞, and h → ∞ if one of the vectors approaches a special direction.
When h = 0, the vectors are parallel.
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The angle between a spatial vector X̃ = (x1, y1, z1) and a special vector Ỹ = (x2, y2, z2) is defined
as:

f =
( ~X, ~Y )

|Y |2
=

y1
x1
y2 + z1

x1
z2√

y2
2 + z2

2

.

The geometric interpretation of the angle f is the projection length of the unit vector X̃ onto the
direction of Ỹ in the special plane. The projection is taken along the vector e1. If ~X is parallel to e1,
then f = 0.

The angle between special vectors is given by the standard Euclidean formula:

cosϕ =
y1y2 + z1z2√

y2
1 + z2

1 ·
√
y2

2 + z2
2

=
( ~X, ~Y )2

| ~X|2 · |~Y |2
.

Thus, the angle between lines in Galilean space is defined via the angle between their direction
vectors.

Let F be a surface in R1
3 that does not possess special tangent planes. We introduce a special

curvilinear coordinate system by considering all intersections of F with special planes x = const. We
choose the family of curves formed by these intersections as u = u0 coordinate lines, and arbitrary
transverse curves on F as v = v0 lines. Then the surface can be parameterized as:

~r(u, v) = ue1 + y(u, v)e2 + z(u, v)e3.

Here, the vectors ~ru and ~rv form a basis of the Galilean tangent plane at each point. The direction
of ~rv corresponds to the distinguished direction in the Galilean plane.

Let a curve on F be given by the equation v = v(u). The arc length of the curve between points
A(u0) and A(u1), where u0 6= u1, is computed as follows:

ds = |~rudu+ ~rvdv| = |du|.

Hence, the square of the arc length differential on the surface equals the square of the increment of the
coordinate u:

ds2 = du2.

This expression is referred to as the first fundamental form of the surface.
When du = 0, i.e., u = const, the corresponding curve lies entirely in a special plane. In this case,

the differential of arc length is given by

ds2 = (y2
v + z2

v)dv2 = G(u, v)dv2.

We refer to this as the first supplementary fundamental form of the surface. Thus, with the chosen
curvilinear coordinates, the coefficients of the first fundamental forms are E1 = 1, and G = y2

v + z2
v .

Suppose two points emanate from a point M(u0, v0) on a surface in general position (i.e., whose
tangents are not parallel to a special plane). Let d~r and δ~r be the differentials of the radius vector
along these curves. The angle θ between them is defined as the angle between the vectors d~r and δ~r.

Hence,

θ =
√
G(u, v)

(
dv

du
− δv

δu

)
.

Similar to the Euclidean case, the concept of surface area can be introduced. The area of a domain
D on the surface is given by

S =

∫∫
D

√
G(u, v) du dv.

Mathematics Series. No. 4(120)/2025 35



A. Artykbaev, B.M. Sultanov

2 Convergence of convex surfaces in R1
3

The degeneracy of the scalar product induces a degenerate metric in the Galilean space R1
3. If

two points lie on different planes, then the distance between the special planes to which they belong
is defined as the distance between the points. When the points lie on the same special plane, the
distance between them is defined as the length of the segment connecting them. Special planes in R1

3

are Euclidean planes.
Suppose that a sequence of convex polyhedra Fn converges to a convex surface F , and a sequence

of points xn ∈ Fn converges to a point x ∈ F .
We consider only such approximations for which the points xn and yn-converging respectively to x

and y-remain at distances of the same order.

Theorem 1. Let a sequence of closed convex polyhedra Fn converge to a closed convex surface F ,
and let sequences of points xn, yn ∈ Fn converge to points x, y ∈ F , respectively. Then the distances
between xn and yn, measured on Fn, converge to the distance between x and y, measured on F , i.e.,

ρF (x, y) = lim
n→∞

ρFn(xn, yn).

Proof. Suppose the points xn and yn lie on different special planes and converge to points x and y
lying on corresponding special planes. Then we have:

ρEn(xn, yn) ≤ ρE(x, y),

where ρE denotes Euclidean distance. Moreover, in Galilean space, for points lying on different special
planes, the distances are equal:

ρFn(xn, yn) = ρF (x, y),

since in this case the measured distance is formally defined: it does not depend on the surface itself.
If the points xn and yn lie on the same special plane, then the metric is considered as a second-

order metric, and we have ρ2(xn, yn) = ρE(xn, yn). Instead of computing the direct distance between
the points, we consider the length Ln of a polygonal line on the special plane connecting xn and yn.
This broken line arises from the intersection of Fn with the special plane. Since the special plane is
Euclidean, distances on Fn within it are measured via the polygonal path joining xn and yn, and thus

ρ2(xn, yn) = Ln(xn, yn).

When Fn → F , the Euclidean length of the polygonal line Ln(xn, yn) converges to the length of
the curve L(x, y) on the special plane. Therefore,

lim
n→∞

ρ(xn, yn) = lim
n→∞

Ln(xn, yn) = L(x, y) = ρ2(x, y).

The theorem is thus proved.

3 The total angle around the vertex of a cone

The definition of the total angle around the vertex of a cone in Galilean space was introduced in
the work [8] of A. Artykbayev. The main challenge in this definition lies in the concept of the angle
between a vector and a special plane. Therefore, cones are divided into two classes: cones that do not
have special supporting planes and cones that do.

In both cases, the total angle around the cone’s vertex is defined using a circle of unit radius
centered at the vertex of the cone.

36 Bulletin of the Karaganda University



The intrinsic geometry ...

When the cone does not possess special supporting planes, the total angle around its vertex is
defined via the intersection of the cone with special planes. Since special planes determine a sphere in
Galilean space [8], intersecting the cone with these planes yields hyperbolas with asymptotes parallel
to lines passing through the cone’s vertex.

The sphere in Galilean space consists of two parallel special planes. If one of these sections is
reflected symmetrically onto the other, we obtain both branches of the hyperbola on the same special
plane.

Let V be a convex cone in R1
3 that does not have any special supporting plane. Intersect V with

a special plane π0 passing through the cone’s vertex. Let µ1 and µ2 be the generatrices of the cone
lying on this intersection. Let γ1 and γ2 be the curves formed by intersecting the cone V with the unit
sphere of Galilean space, i.e., with the pair of special planes located at unit distance from the cone’s
vertex. Clearly, the curves γ1 and γ2 have asymptotes parallel to the lines µ1 and µ2, respectively.

This configuration, when visualized on a special plane, appears as shown in Figure 1.

Figure 1. Intersection of a convex cone with special planes in Galilean space R1
3

Let us denote the angular quantity by

ω = AD +BC −
^
AB −

^
DC > 0.

The total angle around the cone’s vertex is defined as the limit of ω as the points A,B,C,D on
the respective branches of the curves γ1 and γ2 tend to infinity.

In [8], the limit was proven to be bounded. Furthermore, in [9], an analytical formula for this total
angle was obtained when the equations of the curves γ1 and γ2 are known explicitly.

To define the curvature of fundamental sets on a convex surface, we use of the total angle around
the cone’s vertex in Galilean space.

When the cone has special supporting planes, its intersection with the unit sphere centered at the
vertex is a closed curve. The length of this closed curve is then taken as the total angle around the
vertex of the cone possessing a special supporting plane [10,11].

4 Angle between curves on a convex surface in Galilean space R1
3

To define the angle between two curves on a convex surface, we use the angle between the genera-
trices of the tangent cone. At every point on a convex surface in Galilean space, a tangent cone exists.
This follows from the fact that Galilean space is affine, and affine structures are preserved in Galilean
geometry.
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When the convex surface is regular, the tangent cone degenerates into a plane. The geometry on
this plane is Galilean.

Let l1 and l2 be two generatrices of a convex cone V , directed into the same half-space with respect
to a special plane π0. The generatrices l1 and l2 intersect the curve γi (for i = 1 or 2, depending on
the direction of l1 and l2). The length of the arc of the curve γi enclosed between l1 and l2 is taken as
the angle ϕ+ between them.

We intersect the cone V with a plane passing through the bisector of the angle formed by the
generatrices µ1 and µ2, and parallel to the Ox-axis. This intersection is referred to as the principal
section of the cone V .

Generatrices of the cone directed into opposite half-spaces with respect to both the special plane
and the principal section, and forming equal angles with the generatrices lying in the principal section,
are called conjugate generatrices. The angle between conjugate generatrices is defined to be half of the
total angle around the vertex of the cone.

When l̃1 and l̃2 are generatrices directed into different half-spaces divided by the special plane π0,
the angle between them is given by

ϕ−{l̃1, l̃2} =
ω

1
− β?,

where β? is the angle ϕ−{l̃1, l̃2
?
}, and l̃2

?
is the generatrix conjugate to l̃2. It is easy to verify that

ϕ+{l̃1, l̃2
?
} = ϕ−{l̃1

?
, l̃2}.

It can be shown that for three generatrices of the cone not directed into the same half-space and
distinct from µ1 and µ2, the sum of the angles between them equals the total angle around the vertex
of the cone.

If the cone V degenerates into a plane or a dihedral angle, the defined angles ϕ+ and ϕ− coincide
with the angle between rays in the Galilean plane R2. In such cases, the total angle is zero.

Now consider an arbitrary point M on the surface F , and let V be the tangent cone at this point.
Let {γ} denote the family of curves on the surface F issuing from the point M and having a direction
not lying in the special plane π0. The direction of any curve in {γ} coincides with a generatrix of the
tangent cone V .

The angle between two such curves issuing from the point M on the convex surface F is defined as
the angle between their directions — that is, the angle between the corresponding generatrices of the
tangent cone.

This notion of angle does not satisfy all the properties of angles between curves on convex surfaces
in Euclidean geometry. For instance, in Euclidean space, if L1, L2, and L3 are three curves forming
angles α1, α2, and α3, then the sum of any two of these angles is at least as great as the third.

This property holds in Galilean space only for curves directed into the same half-space.
The angle defined in this manner is naturally called the “parabolic angle”. It can take any positive

value. When the direction of one of the curves tends to lie infinitely close to the special plane, the
angle increases without bound.

5 Curves of bounded variation of turning in R1
3

To introduce the analogue of a shortest path in R1
3, we first define curves of bounded variation

of turning. Let γ be a curve in the space R1
3 connecting points A and B that lie on different special

planes. Inscribe a polygonal line Ln into γ, and denote by µ(Ln) the sum of (parabolic) angles of this
polygonal line. The upper limit of the values µ(Ln) over all such inscribed polygonal lines Ln is called
the variation of turning of the curve γ. If µ(γ) is finite, then γ is called a curve of bounded variation
of turning.
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Lemma 1. If γ is a curve of bounded variation of turning connecting points A and B on different
special planes, then it intersects each special plane of R1

3 in at most one point.

Proof. Suppose γ has two points of intersection with some special plane, or contains a component
lying entirely within a special plane. Then one can inscribe a polygonal line Ln such that at least one
of its segments lies entirely within the special plane. The angle of the polygon at the ends of such a
segment becomes unbounded. This contradicts the boundedness of the variation of turning.

Lemma 2. If γ is a curve of bounded variation of turning in Galilean space R1
3, then it also has

bounded variation of turning in Euclidean space.

Proof. Let Ai−1Ai and AiAi+1 be segments of a polygonal line inscribed in γ. Let hi be the angle
between these segments in R1

3, and ϕ?i be the Euclidean measure of that angle. Then the following
inequality holds:

0 ≤ ϕ?i ≤ tanϕ?i ≤ hi.

Since γ is of bounded variation in R1
3, we have

n∑
i=1

hi < ∞, and thus
n∑
i=1

ϕ?i is also finite. Therefore,

the variation of turning in Euclidean space is bounded.

Lemma 3. Curves of bounded variation of turning have right and left semi-tangents at every point.
These are not parallel to the special plane.

This follows from the properties of Euclidean curves of bounded variation of turning. Since such
curves also have bounded variation in Euclidean space, the tangents cannot be parallel to the special
plane; otherwise, it contradicts boundedness.

Variation of turning can also be defined equivalently. Let γ be a curve with a right (or left) semi-
tangent at each point. Take a finite number of points Ak on γ, and at each point place the right
semi-tangent tk. The supremum of the sum of angles between successive semi-tangents over all such
finite systems of points Ak is called the variation of turning of γ. This definition is equivalent to the
one given above, as proved analogously in Euclidean geometry [12].

Let A and B be points on different special planes in R1
3. Consider circular cones SA and SB with

vertices at A and B, respectively, and with their directrices centered along the segment AB (lying
in a special plane). These cones intersect. The class of closed convex surfaces formed by all possible
intersections of such cones is denoted by SAB.

Lemma 4. If mAB is a family of curves connecting A and B and having variation of turning not
greater than N , then there exists a surface F in the class SAB such that all curves in the family lie
within F .

Proof. From the set of surfaces, choose one. For this surface the total angle around the vertices
satisfies:

γA = γB = 2πN.

Consider a broken line consisting of the generatrices of intersecting cones SA and SB, with a vertex
at their intersection point. The turn at this vertex is not less than N . This follows from the triangle
formed by the broken line and the segment AB, where the base angles are N , and the vertex angle is
at least the sum of the base angles. The same argument applies if any vertex of the broken line does
not correspond to a generatrix of surface F . In such case, that part cannot lie on the cone, implying
the curve cannot lie outside F .

Theorem 2. Let γ1, γ2, . . . , γn be an infinite sequence of curves with bounded turning variation,
each with variation no greater than N . If γn converges to a curve γ, then γ is also with bounded
turning variation and its variation does not exceed N .
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Proof. The proof is analogous to the corresponding result in Euclidean space [12].
Let X and Y be arbitrary points on a convex polyhedron Q without special supporting planes. If

X and Y lie on the same special plane, they are connected by a planar convex polygon with bounded
turning. If they lie on different special planes, they can still be connected by a polygonal line on Q
with bounded turning.

Lemma 5. Any two points X and Y on a convex polyhedron Q without special planes can be
connected by a polygonal line LXY on Q with bounded turning.

Proof. Let points X and Y lie on the singular planes πX and πY , respectively. Consider the
intersection of the polyhedron Q with the singular planes πX and πY , and denote by QAB the portion
of Q between these two planes. At the points X and Y , the boundary of the polyhedron QAB has two
directions: l1X , l2X at X and l1Y , l2Y at Y .

Now consider the spatial segment connecting the points X and Y . We construct through X and Y
a general-position plane πXY such that the boundary edge directions of the broken line LXY , formed by
the intersection of πXY with the polyhedron QXY , do not coincide with the directions of the boundary
at X and Y . The broken line LXY contains no segments lying on singular planes. Indeed, the extreme
segments are chosen in such a way that they do not lie on any singular plane. The intermediate
segments cannot lie on singular planes either, since the polyhedron Q contains no such planes.

Since the plane πXY is in general position, it is a Galilean plane. Consider the convex polygon
formed by the segment XY and the broken line LXY on this plane. In this polygon, the sum of the
angles not supported by singular directions equals the sum of the angles with singular supporting
directions. Hence,

µ(LXY ) = αX + αY ,

where αX and αY are the angles at the vertices X and Y supported by singular directions. These
values αX and αY are finite because the segment XY and the extreme edges of the broken line LXY ,
which form these angles, are spatial (i.e., not singular). Therefore, the value µ(LXY ) is bounded. This
completes the proof of the lemma.

Consider a sequence of convex polyhedra Fn with common boundary Ln, all lacking special sup-
porting planes. Suppose each Ln is a polygonal line with bounded turning on Fn, and the sequence
Fn converges to a convex surface F with boundary L.

Lemma 6. If a sequence of polygonal lines γn with bounded turning on Fn converges to a curve γ
on F , then γ also has bounded turning variation.

This follows from Theorem 2 and the assumption that F does not have special supporting planes.

6 An analogue of a geodesic on a surface in R1
3

The degeneracy of the metric in Galilean space R1
3 prevents the definition of a geodesic via standard

metric methods. The distance between two points lying on different special planes is equal to the
interval between those planes [13].

An interesting phenomenon arises: all curves connecting two given points that do not lie on the
same special plane have equal length. This effect can be interpreted within Newtonian mechanics as
worldline length invariance connecting given events. In other words, in Newtonian mechanics, time
is independent of the velocity of bodies. Hence, the natural question arises — by what criterion can
a curve on the surface be distinguished as a substitute for the shortest path, i.e., a curve possessing
properties similar to those of a Euclidean geodesic?

Let F be a convex surface in Galilean space. Consider a family {γ} of curves lying on the surface
and connecting two given points on the Galilean surface.

40 Bulletin of the Karaganda University



The intrinsic geometry ...

Definition 1. A curve γ from the family {γ} that has the least turning variation is called the
shortest curve between the given points on the surface.

This provides one possible definition of a geodesic in R1
3.

Accordingly, a geodesic is defined as a continuous curve that is the shortest (in the sense of minimal
turning variation) over each of its sufficiently small subarcs. A triangle on the surface is defined as
a figure homeomorphic to a circle and bounded by three such shortest curves. A geodesic triangle is
defined as a figure bounded by three geodesics.

7 Intrinsic curvature of a convex surface

The degeneracy of the metric in Galilean space necessitates a new approach to defining the intrin-
sic geometry of a surface. Intrinsic geometry includes those properties of a surface that depend on
the properties of its metric. In Euclidean space, the intrinsic curvature of a convex surface is fully
determined by the internal metric of the surface. A similar approach in Galilean space does not yield
satisfactory results. Therefore, we attempt to study the intrinsic geometry of a convex surface using
its extrinsic geometry in Galilean space. We define the intrinsic curvature of a set on a convex surface
in Galilean space by analogy with the Euclidean case, initially for three types of “elementary” sets:
open triangles, open geodesics, and points. An open triangle excludes its vertices and sides; its sides
do not lie on special planes. An open geodesic is a geodesic excluding its endpoints.

For an open triangle T on F , the curvature is defined as

ω(T ) = α− β + γ.

Here α, β, γ are the triangle’s angles, and each side lies in a different half-space determined by a special
plane through the vertex.

The curvature of an open geodesic is taken to be zero.
A point’s curvature on a convex surface is defined as the total angle around the vertex of the

tangent cone at that point.
We consider sets on a convex surface that do not share common points pairwise. Such sets are

called “elementary”. Based on the definition of elementary set curvature, we define a bounded set’s
curvature on a convex surface.

Definition 2. The intrinsic curvature of a bounded closed set on a convex surface is defined as the
infimum of the curvatures of all elementary sets containing it.

We define the intrinsic curvature of Borel sets on a convex surface as the least upper bound (supre-
mum) of the curvatures of all bounded closed subsets contained in it.

The definitions of intrinsic curvature of a set on a convex surface in Galilean space given above
are analogous to those in Euclidean geometry. The main difference lies in how the curvature of the
“elementary” (or “basic”) sets is defined.

Let M be an “elementary” set on a convex surface F . Suppose it can be represented as a disjoint
union of basic sets

M =
n∑
i=1

Bi.

Then, the intrinsic curvature of the set M is defined as the sum of the curvatures of its basic compo-
nents:

ω(M) =
n∑
i=1

ω(Bi).

The intrinsic curvature of a Borel set on a convex surface is defined as the exact least upper bound
of the curvatures of all bounded closed subsets contained in it.

Mathematics Series. No. 4(120)/2025 41



A. Artykbaev, B.M. Sultanov

The curvature value of a set on a convex surface does not depend on the particular way it is
decomposed into basic sets.

This fact, along with the non-negativity and complete additivity of the intrinsic curvature of a
convex surface for elementary sets, is proved in the same way as in Euclidean geometry. This is
justified by the observation that the cylindrical mapping of a convex surface can be regarded as the
projection of its spherical mapping onto a cylinder. The generating curve of the cylinder corresponds
to a great circle on the unit sphere. As a result, the cylindrical mapping of a convex surface in
Galilean space inherits all the essential properties of the spherical mapping. These properties ensure
the correctness of the intrinsic curvature’s stated properties.

Theorem 3. The intrinsic curvature of a Borel set on a convex surface is equal to its extrinsic
curvature.

Proof. The concept of extrinsic curvature is defined in [8]. The authors show the cylindrical map-
ping is a projection of the Euclidean spherical mapping onto the sphere in the isotropic space R1

3. The
isotropic sphere is interpreted as the co-Euclidean plane S1

2 . To prove the theorem, it suffices to show
that the curvature of basic sets equals the area of their cylindrical image. Indeed, the spherical image
of an open triangle maps to a triangle on the co-Euclidean plane. The quantity defining the curvature
of the open triangle on F equals the area of the triangle on S1

3 . The intrinsic curvature of an open
geodesic equals the area of its cylindrical image, which is a curve on the plane.

The total angle around the vertex of a cone is taken to be equal to the area of its cylindrical image.
The theorem for any Borel set on a convex surface follows from the fact that the cylindrical mapping

of a convex surface in Galilean space is a central projection of the Euclidean spherical mapping.

Theorem 4. Intrinsic curvature is a non-negative and fully additive function on Borel sets of a
convex surface.

Proof. The extrinsic curvature of convex surfaces in Galilean space is a non-negative and fully
additive function on Borel sets of the surface. Therefore, intrinsic curvature, being equal to extrinsic
curvature, also possesses these properties.

8 Gauss–Bonnet formula in Galilean space

The results obtained in the previous sections allow us to approach a generalization of the Gauss–
Bonnet formula for an arbitrary domain on a convex surface in Galilean space. However, a completely
new difficulty arises here, related to the discontinuity of the angle between vectors when a vector
traverses a closed region. In particular, when one of the vectors is parallel to a singular plane, the
angle between vectors becomes unbounded. To eliminate this peculiarity, the domain must satisfy
certain conditions.

Let Q be a convex domain on a convex surface F , that has no singular supporting planes, and is
bounded by smooth curves

α1, α2, . . . , αk, β1, β2, . . . , βp.

Assume that the curves α1 and βp, as well as αk and β1, share common endpoints A and B, respectively.
The points A and B lie on the singular planes that bound the domain. The directions of the curves
α1, βp at point A, and αk, β1 at point B, are not parallel to the singular planes.

Let ϕi and ψj denote the angles between the curves (αi, αi+1) and (βj , βj+1), respectively. Let ϕ
and ψ denote the angles at the points A and B, respectively.

A domain Q satisfying the above conditions is called admissible.
Then, the following theorem holds.
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Theorem 5. Let D ⊂ F be an admissible domain on a convex surface F in Galilean space. Then
the generalized Gauss–Bonnet formula holds:

∫∫
D

K dσ = ϕ+ ψ −
k∑
i=1

ϕi +

∫
αi

k(αi) ds

− n∑
j=1

ψj +

∫
βj

k(βj) ds

 ,
where:
• K is the Gaussian curvature on the surface F ,
• dσ is the surface area element,
• k(αi), k(βj) are the geodesic curvatures of the boundary curves,
• ds is the arc length element,
• ϕi, ψj are the turning angles between boundary curve segments,
• ϕ, ψ are the interior angles at the corner points A and B.

Proof. We begin by computing the intrinsic curvature of a convex geodesic polygon on a convex
polyhedral surface. Let Fn be a sequence of convex polyhedral surfaces converging to a convex surface
F that has no singular supporting planes.

Let Qn be a geodesic polygon on Fn, bounded by geodesic arcs αin and βjm, such that Qn consists
of a collection of non-overlapping geodesic triangles. These triangles are chosen in such a way that
none of their sides lie on singular planes. Furthermore, the vertices of the polyhedron Fn contained in
Qn are the vertices of these triangles.

By definition, the intrinsic curvature ω(Qn) of the polygon Qn is equal to the sum of the intrinsic
curvatures of the sets contained within it:

ω(Qn) =
∑

ω(Te) +
∑

ω(Xm) +
∑

ω(Ln),

where:
• Te are the open triangles in the triangulation,
• Xm are the vertices of the triangles Te contained in Qn,
• Ln are the sides of the triangles (excluding endpoints).
The intrinsic curvature ω(Ln) = 0 for all segments Ln, since geodesic arcs have zero intrinsic

curvature except at their endpoints.
The vertices of triangles Te in Qn are of two types:
1. vertices located inside the polygon Qn,
2. vertices lying on the boundary of the polygon.

The boundary vertices are further subdivided into:
• points lying on An or Bn,
• points lying on the geodesic arcs αin or βjm.
The sum of all angles around an interior vertex of Qn is equal to the negative of the intrinsic

curvature at that vertex. The angle at a boundary vertex equals the turning angle of the boundary at
that point.

Thus, we obtain:

∑
ω(Te) = ϕn + ψn −

k∑
i=1

(ϕin + ∆αin)−
p∑
j=1

(ψjn + ∆βjn)−
∑

ω(Xm),

where ∆αin, ∆βjn denote the total turning (geodesic curvature integrals) along the respective arcs
αin, βjn.
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Hence, the total intrinsic curvature of the polygon Qn is

ω(Qn) = ϕn + ψn −
k∑
i=1

(ϕin + ∆αin)−
p∑
j=1

(ψjn + ∆βjn)−
∑

ω(Xm).

Finally, passing to the limit and applying arguments analogous to those used in Euclidean geometry,
we obtain the required formula.

In Galilean space, consider a closed surface F possessing two conical points A and B, each admitting
a singular supporting plane. Assume that SA and SB are the tangent cones at points A and B,
respectively. Let the total angles around the vertices of these cones be γA and γB.

Then the Gauss–Bonnet formula for the closed surface F takes the form∫
Φ

K dσ = γA + γB,

where:
• K is the Gaussian curvature,
• dσ is the surface area element,
• γA, γB are the total cone angles at the conical points A and B.
This formula reflects the concentration of curvature at the conical points on the surface and gen-

eralizes the classical result to surfaces with isolated singularities in Galilean geometry.

Conclusion

This work presents a systematic exposition of the intrinsic geometry of convex surfaces in Galilean
space. It is shown that, despite the degeneracy of the metric, it is possible to construct a consistent
theory that incorporates the notions of length, angle, geodesics, and curvature. One of the key results
is the formulation and proof of an analogue of the Gauss–Bonnet theorem, valid for convex surfaces
without special supporting planes. It is also demonstrated that the intrinsic curvature coincides with
the extrinsic curvature defined via cylindrical mapping, highlighting the deep connection between the
intrinsic and extrinsic properties of convex geometry in Galilean space. The results obtained may
serve as a foundation for further investigations of geometric structures in non-smooth spaces and have
potential applications in mechanics, optics, and relativity theory, where space-time models may admit
degenerate metrics. These results can be applied in classical mechanics, where Galilean space models
Newtonian spacetime. They may also be useful in optics and relativity theory for studying degenerate
metrics.
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