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In this work, numerical algorithms of higher-order accuracy are constructed and studied for a pseu-
doparabolic equation that describes the filtration process in fractured-porous media. The increase in the
order of accuracy is achieved in various ways. First, only the spatial variables are approximated, as in the
method of lines. Then, to solve the resulting system of linear ordinary differential equations, the finite
difference method and the finite element method are applied. The application of these methods makes it
possible to achieve a higher order of approximation for the difference schemes. Schemes of fourth-order
accuracy in the spatial variables and second-order in time are presented, as well as schemes of fourth-order
accuracy in all variables. Based on the stability theory of three-level difference schemes, stability conditions
for the proposed algorithms are obtained. Using a special technique for solving the difference schemes, a
priori estimates are derived, and based on them, theorems on convergence and accuracy are proven in
the class of smooth solutions to the differential problem. An implementation algorithm is proposed for
the difference scheme constructed using the finite element method. Test examples for one-dimensional
and two-dimensional equations are also provided, demonstrating the higher-order accuracy of the proposed
schemes.
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Introduction

In the general case, pseudoparabolic equations are written in the following form:

0
—|A(u B(u)=0

Q)] + B(u) =0,
these equations belong to composite-type equations. Here A(u), B(u) are elliptic operators [1|. Prob-
lems in semiconductor physics, plasma physics, and hydrodynamics of stratified and filtered liquids are
examples of such equations. Let us present some of them. Mathematical models of Rossby waves in
oceanology [2| are given as

0
—Lu + ﬁu/2 = g(l‘at)? (l’,t) € QTa

ot
3
Lu= 3" Ly, Ly = 0*u/022,, u'y = Ou/dxy, B is a constant, and the equation
m=1
9 2
a(Lu—l—@u)—l—,u Lu+ M= g(x,t), (z,t) € Qr (1)
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describes the process of filtration in a fractured porous liquid [1]. Here 6, u, A are constants. Besides,
we can mention the equation of moisture transfer in soils [3]:

where Lu = i L, Lpu= (ka(z)t'n) ,+ & (ka(z)t'n) . Here Qr = {(z,t) : 2 € Q, t € (0,T]},
m=1
Q={x=(x1, z2,23): 0 < xp < lp, k=1,2,3}.

Such problems were studied by analytical methods in [4-6]. Numerical methods for solving prob-
lems of this type were considered in [1,2], where difference schemes with second-order accuracy in both
variables were constructed under the assumption of sufficient smoothness of the solution to the dif-
ferential problem. In [7-9] for Sobolev-type equations, high-order accuracy schemes were constructed
and studied in classes of nonsmooth solutions.

Initial high-order accuracy difference schemes for multidimensional parabolic equations were deve-
loped and analyzed in [10-12|, where it was demonstrated that fourth-order accuracy in spatial variables
and second-order accuracy in time could be achieved. In [13-15], compact difference schemes for various
parabolic equations were constructed and investigated. In particular, monotone difference schemes for
linear non-homogeneous parabolic equations and Fisher (Kolmogorov—Petrovskii-Piskunov) equations
were constructed in [13]. The convergence of the proposed methods in the uniform metric C' is proved.
The results obtained are generalized to arbitrary semilinear parabolic equations with a nonlinear sink
of arbitrary type and to quasilinear equations. Note also the paper [14], which studies compact and
monotone difference schemes: first- and second-order in time and fourth-order in space, developed
for linear, semilinear and quasilinear parabolic equations. Similar results were obtained in [15] for
one-dimensional and multidimensional quasilinear stationary equations; where conservative compact
and monotone difference schemes were constructed. Compact and monotone difference schemes of
the fourth-order accuracy in spatial variables (and first-order in time) that maintain the conservatism
properties were constructed and investigated for the first time in [16]. High-order accuracy difference
schemes for convection-diffusion problems are constructed in paper [17,18].

This paper examines the issues of constructing and studying high accuracy difference schemes for
equation (1) with first kind boundary conditions. In this case, the main attention is paid to obtaining
an estimate of the accuracy of difference schemes in classes of smooth solutions. The approximation
error was studied, stability conditions were obtained, and theorems on the convergence and accuracy
of the considered schemes were proved. In addition, test calculations are performed to confirm the
high accuracy of difference schemes.

1 Statement of the problem

Let the following initial and boundary conditions be specified for (1):

ul,_g = uo(z), z € Q=Q+T, (2)

Ulyer—pn = m(t), t € (0,T7. (3)

Let u(z,t) € H = V[c}zl (Q), %—? € L3[0,T]. Let us put the following problem in correspondence to
(1)-(3): )

3 ( o ,19) + as(u(t),9) + ar(u(t), ) = (g(t),9), w(0)=wo, V¥(z) € H, (4)

where

(u,?) // (Zuwkﬂzk +9u19>dac as(u, V) //Zuzkﬂxkdx ai(u,V) = /\//uﬁdac
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u=wu(t) € H,Vt € [0,T], i.e. u(t) is a function of abstract argument ¢ with values in Hilbert space
H. In W4 (Q) we define the scalar product

(u(x), 9(x)) = // <m9+mz ;Zn - ﬁ ) do

s 22,23) gy = // (u +Z (axm) )

Here c3|lull] < as(u,u) < Csllulf, 0 < as(u,u) < Callulf, 0 < ai(u,u) < Ctllulf, es > 0,
Cr = C1(N), C2 = Ca(p), C3 = C3(0).

and the norms

2 Approximation in space

We introduce subspace Hj, C H. The scalar product and energy norm [14] in Hy, are defined by

(y,9) 4 = (Ay, ) and ||y|| 4 = \/ (Y, y) 4, respectively. Let us approximate equation (1) in space vari-
ables. We introduce a grid wy, = wp, X W, X Opy, On,, = {xm = imhm, tm =0, N, hm =ln/Nn } ,
o

m=1,2,3 in Q. Here &), = wp, + 7. We define Hy, = W4 (wp,) with the norm defined as

N1 N2 N3

19115, = Zzzhﬂlzhzaz #)? <M,

i1 ip i3
where M is a positive constant, J = ¥(i1h1,i2hg, ishs),
Uz, = [U(i1h1,i2ha,i3h3) — U((i1 — 1)h1,i2he, i3hs)] /ha,
Uz, = [V(i1h1, i2he, i3hs) — O(i1h1, (i2 — 1)ha,i3h3)] /ha ,
Uz, = [V(i1h1,i2h2, i3h3) — V(i1h1,i2he, (i3 — 1)h3)] /h3 .

Approximating a,,(u, ) by quadrature formulas, from (4) we come to the definition of an approxi-
mate grid solution:

asn (d“h“),ﬂ) T apn(un(t),9) + avp(un(t), 9) = (an(t), 0), VO(z) € Hp,

dt
up(0) = ug,p-
This corresponds to the following problem:
du
D20 | A1) = n(®). un0) = o, 6)

where D = Z A + 0E, A = /2 Z Ay + AE, Ay = Yoz, Uno = Phuo(x), P, - H — Hy,
gn(t) = Phg( )
Yoz, = (Y((31 + 1Ry, ioha,ighs) — 2y(ivh, igha, izhs) +y((i1 — 1)h,d0ha,i3hs))/ hi,

Yaozs = (Y(i1hi, (iz + 1)ha,izhs) — 2y(i1h1,iaha, izhs) + y(i1h1, (i — 1)ha,i3h3))/ b3,
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Yuszs = (Y(i1h,i2ha, (i3 + 1)hs) — 2y((i1h1, i2ha, ishs)) + y(irh1,izha, (is — 1)h3))/ hj.

Operators D € Hy, and A € Hj, are approximates respectively,
L+0E, u’L+\E (6)

with second-order error.
Based on the Taylor expansion formula, we obtain:

3 3
_ h?n
A=Y Apu+t > T AmAs + O(|h|h, (7)
m=1 m,l=1
m#l

where |h| = \/h? + B3 + h2. Then, from (7), neglecting O(|h|*), we obtain the following operators:
D=A+0E, A=p*A+)\E, (8)

which approximate (6) to the fourth-order in h. Hence, instead of (5), we obtain the semi-discrete

problem:

_d _
D% + Auy, = gn, 1€ (O,T], uh(O) = Up0, (9)

_ _ 3
where D € H,, A€ Hy, gh =9+ > %Amg.
m=1
It’s clear that
D=D*>0, D=D*>0, A=A*">0, A=A">0. (10)

In what follows, in (9), we use u = ujy, € Hy, instead of uy, i.e. equations (9), (10) have the following
form:
Di+ Au =g, u(0)= up, (11)

where @ = du/dt.
8 Approximation in time

Let y approximate u = uy € Hp. We introduce a grid w; = {t, =n7r, n=1,2,.... M, 7 =T/M}
uniform in ¢. Here 7 > 0 is the time step. We replace system (11) with the following difference scheme:

Dy + Ay 77 =, ) =g, y' =i, (12)

where yo = (y" ™! = y"71)/(27), ¥ = y(tn), w1 = (E — 7D~ ' A)jug + 7D~'g(x,0), ¢ approximates g,

2

-
=y +71(01 — Uz)y; + ?(Ul + 02) Yzt (13)

Yy = oy + (1= 01 — o)y + ooy

where yz = (y" ™! — 2y" + y" 1) /72, We write the difference scheme (12) using identity (13) in the
following form:
By, +7°Dyg + Ay =@, 3y’ =wo, y' =ui, (14)

with the operators

D= (01 +02)A/2, B=D+1(01 — 02)A. (15)
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We denote the errors of scheme (14) by z = y — u. Then, from (14) for z, we obtain:
Bz; + 72Dz + Az =1, 2°=0, 2'=0, (16)

where 1 is the approximation error of scheme (14) for the solution wu(z,t) of the equation (1). By
direct calculation we can verify that 1» = O(72 + |h|*). Now we approximate (11) by the difference
scheme |[8]:

Dy, —vAg + Ay®® = o1, 1Dy + ady, + BAY"D) = s, (17)

' =uo, §°=D7'(f°— Aug), (18)
(yn-i-l _ yn)/T yt — (yn-i—l . )/7_7 y(0.5) — (yn—I—l +yn)/27 y(0.5) _ (yn—f—l _|_yn)/2,

where y; =
+
=1 f t)dt, v2 = - f G0 (519 + 50P)dt, s = 157 — 35a/3, s = 140y — 3500/3,

19%1 =1/2, 192 =76(1—€) (€ —1/2), € =771(t —t,). Thus, consider the following algorithms:

— scheme 1° — a difference approximation of fourth order in space (8) and second order in time
(12);

— scheme 2° — a difference approximation of fourth order in space (8) and fourth order in time

(17), (18).
4 Stability and accuracy

To study the stability of scheme (12), we use well-known theorems on the stability of three-layer
difference schemes. Since D, B are self-adjoint positive difference operators, according to Theorem 1
from [19, p.231|, provided that the following conditions are met:

_ _ 1-
A>0, D> ZA’ (19)
BTl is0 ,>1 (20)
2 er 1 ) p — )
the following a priori estimate holds:
[v" Mg < oyl n=0,1,s p>1, (21)

2 2
where [|y"flo = 1 [y +y" 5 + [l =" [5o1 4
Conditions (19), (20) considering (15) take the following form:

o1+ 092 1\ -
——]A 22
( ! 4) =0, (22)
o1+ 02 Tp—1]| -
— ——[A>0 2
[ 5 + 7(01 02)+2p+1] > (23)

Since p > 1, from (22), (23) we obtain that the difference scheme (12) is stable for all 7 and h, if its
parameters satisfy the following inequalities

o1+09>0.5, o> o09. (24)

Consequently, the following theorem holds.

Theorem 1. If conditions (24) are satisfied, scheme (12) is stable with respect to the initial data
and estimate (21) holds for its solution y™ € Hp,.
Based on Theorem 1 and Theorem 3 in [19, p. 257], the following statement holds.
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Theorem 2. Let conditions (24) be satisfied. Then the solution to the difference scheme (12) is
stable with respect to the initial data and the right-hand side, and for its solution y™ € Hj, the
following a priori estimate holds:

Il < (1l + 3 357, ) )
k=0

where By = B/(27) = e
Considering (16) and (25), we obtain the following theorem.

-
—7A

Theorem 3. Let conditions (24) be satisfied. Then the solution to scheme (12) y" € Hj, converges
to a smooth solution to the differetial problem (1)—(3), i.e.

Yy (@i, tn) — u(l‘i»tn)nlh < M(’h|4 + 7'2)» (T4, tn) € Wrp = Wy X Why, Wr=wrU {0}.

Let us consider the accuracy of scheme (17), (18). Let 2™ = y™ — u", 2" = ¢ — 4". Substituting
y" =2"+u" and y" = 2" 4+ 4" into (17), (18), we obtain:
Dz — i +720% =y, Dz +am + f20V =y, 0=0, =0,

2

Y1 =0, o = (o B = A+ T [(a+38 =) AT - (37— 2a3)] + O (),

where @ = u(t,), t, =t,+ 601, 0 <6 < 1. Hence, if the following conditions are met
vy=a+8, a B, 7=0(%), (26)

then 1 = by = O (14).
For vector scheme (17), (18) with commuting operators D and A, i.e. AD = DA, the following
estimate was obtained in [8]:

lun(t) = u(®)l| 5z + lune(t) = w(t)ll 5 < M7

Condition fll? = DA is overloaded. To avoid it, we introduce w = DYy, W= D'/2y instead of
y,1y. Note that (D1/2)* = D'/2 > 0 and there is an inverse operator D~/% = (D*1/2)* > 0.
After obvious transformations, from (17), (18) we obtain:

Dwt - %Zhbt + Aw©®) = D1, VDU% + Oélewt + ﬁjw(0-5) = ¥2, (27)

w® = DY2yg,  @® = DY2(3° — Aug),

where ¢; = D*1/2<pj, 7 =12 D=E, A=D"124AD~1/2 Here D, A are self-adjoint, positive, and
commutating operators. Eliminating  from (27) we obtain:

Biw"™™ + Bow™ + Bsw™ ' =7 F,, n=1,2,.., (28)
where w?, w! are given
~ 9 T ~ ~ 7'2
By =D+ (v + B)AD + —2(3ﬁ+a)
2

By = —2yD* + (3/5 —a) A%
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~ 7'2

B3—7D2—§(’Y+5) D+ 5(354‘@)1‘12,

~ T =\ - 72~~n =T\ 7'2~~n7
Fy = (vD + §BA) PL+ 5 A% — (vD - *5A> - S AGT

We rewrite equation (28) in canonical form:
Ewg + 7?Rwy, + Aw = F. (29)
The operators in (29) have the following form:

B=7(B1—Bs) =7(y+ B)AD,

D _ 1 _1 2 2 72
R—QT(Bl—i-B?,)—T(’}/D +12(35+a)A>,

1 -
A= —(Bi+ Bz + B3) = TBA?,

B ~ ~¢)n + @’n—l 2 ~
F=1yD@y;+ TBAT—— + S AGL ;. (30)

—_

Here B, A are self-adjoint positive operators, R* = R.
The scheme stability condition (29) R > A/4 is satisfied if,

a>0, v>0, (31)

B is a free parameter. Therefore, based on the methodology given in [19,20], for solving scheme (29),
we obtain the following estimate:

1 — _
™% < ¥l + 5 227 1l (32)
k=0

From (32) considering (30), we obtain:

Iyl 42 < [|9°]] 12 +

901+S0]f !

2

~k HA 1D+ vfﬁ

Mmax | —2— H (33)
k By +B) -
where M is a positive constant.
Let us apply (33) to estimate the error z = y — u of scheme (29), which satisfies equation Bz; +

2Rz, + Az = 1), where ¢ = F — (Bu; + 72 Rug + Au). Hance, we get the following estimate for z:
Ut + w 7 k
M | st ;5 e ilis- )
( B+ 7+ ipa 12¢/B+p) I AD
Here 11, 19 are the approximation errors of the vector scheme (17).
Similarly we obtain results for 2 = ¢ — u(t,). Therefore, [[2"| 2 = |[u™ — y"| 2 = O(r?) and

12| 42 = [la™ — §™|| 2 = O(7*) at time point t,,, n=1,2,... Based on (26), (31), (33), we obtain the
following result.

12 ’y—l—ﬁ

AD-1!

12" 42 <
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Theorem 4. Let conditions (26), (31) be satisfied. Then, for u(x,t) € C%[0,T], scheme (17), (18)
converges to the solution to problem (11), i.e. the following accuracy estimates hold:

Izl 72 < M7, [12(0))]] g2 < M7, VWt € [0,T].

Similarly, we obtain accuracy estimates for scheme 29.

Theorem 5. Let the approximation conditions (26) be satisfied. Then, if condition (31) is satisfied,
the solution to scheme 2% converges to a sufficiently smooth solution to problem (1)—(3), i.e.

@)l + 12, < MBI +79), 2,2 € Hy.

5 Algorithm for implementing the scheme
To implement (27) we rewrite it in the following form:
muw™ £ mpd™ = g1, ma w4 magi™ T = ¢, (34)

where

my = D + 7';1/2, mig = —7'2;1/12, mo1 = ad, may = yf) + 7‘6;1/2,

b1 = 731 + (D n TA/2) W' — 72 A0 /12, ¢y = T2 + aAw" + (7[) n 7521/2) W,

The integrals @1, @9 can be calculated, for example, using Simpson’s formula.
Considering the commutability of A, D, we eliminate w" ! from (34):

cy"™tt = F, (35)

where C' = yD? + 7(8 4 7)AD/2 + 72(36 + a) A% /12, F = maa¢y — miagha.
To solve (35), we factorize the operator C:

C =~CCy =~[D? — (z1 + x2)TAD + z1297% A%, Cp = (D — x7A), k=1,2.
Therefore, the algorithm for solving (35) has the following form:
FC10 =F, Cow™! =w.
The value of @™ is determined from
<’yl~? + TBA/2> Wt = ¢y — aAw™ T

The implementation of scheme (12) is not difficult, for example, for 01 = 02 = 0, it is implemented as
follows:
(D —orA)y"™ = (1 -20)7Ay" + (D + orA)y"  + 716, n=1,2,..,

0 1
Y =Uno, Y = Upa-

28 Bulletin of the Karaganda University



Difference schemes of high ...

6 Numerical experiments

6.1 One-dimensional case
Let us choose the parameters of problem (1)-(3): [ =n, T =1, u =60 =1, A = —1. Then,
instead of (1)—(3), we obtain:
ot \ Ox? Oz -
(x,t) eQr={z: O0<z<m, te(0,1]},
uw(0,t) = u(m,t) =0, te(0,1],
u(z,0) = sinz, x € [0,7].

The exact solution is u(z,t) = e *sinx. The parameters of scheme (17), (18) are given by the values

of y =72 a=972/7, B=—-27%/T7.
The order of the convergence rate is determined by the following formulas: p" = logy(||z|| /|21 2]
p" =logy(|l=l| / H21/2 ), where 219 = Ynj2.r/2 — Un/2.r/2-

),

Table 1
Convergence rates in spatial and temporal variables

h T Error Order
0.01 0.01 0.00038 —
0.005 0.005 1.93E — 05 4.26

0.0025 0.0025 | 1.27FE — 06 3.93
0.00125 | 0.00125 | 8.09F — 08 3.98

6.2 Two-dimensional case

We choose the parameters of problem (1)—(3) in the following form: I} =lo =n, T=1,u=0 =1,
A = —1. Then, instead of (1)—(3), we obtain:

—u=0,

9 (0*u  O*u 0’u  0*u
o (w*ay? “) o2 T oy
(,y,t) eQr={(z,y): O<z<m O0<y<m te(0,1]},
u(r,y,t) =0, (v,y) €09, te(0,1],
u(z,y,0) = sinzsiny, x € [0,7], y € [0,n].

The exact solutions is u(z,y,t) = e 'sinxsiny. The parameters of scheme (17), (18) are given by

the values of v = 7%, a =972/7, B = —272/17.

Table 2

Convergence rates in spatial and temporal variables

hi ho T Error Order
1/10 | 1/10 | 0.05 | 3.78E — 02 -
1/20 | 1/20 | 0.05 | 2.49F — 03 3.97
1/40 | 1/40 | 0.05 | 1.61E — 04 3.98
1/80 | 1/80 | 0.05 | 1.01E — 05 3.97

Tables 1 and 2 show the rate of convergence of the approximate solution to the exact solution when
conditions (26), (31) are satisfied.
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Conclusion

A high-accuracy numerical method was developed and investigated for solving the first boundary

value problem for a pseudoparabolic equation. Based on the stability theory results for difference
schemes, it was possible to obtain a priori estimates and, on their basis, prove the convergence of the
constructed algorithm with a fourth-order rate in both variables. An algorithm for implementing the
methods is given. Based on a computational experiment, test calculations were verified to confirm the
theoretical data.
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