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This paper explores new analogues of the Leibniz rule for Hadamard and Caputo–Hadamard fractional
derivatives. Unlike classical derivatives, fractional ones have a strong nonlocal character, meaning that
the value of the derivative at a given point depends on the entire history of the function. Because of this
nonlocality, the standard product rule cannot be directly applied. The study develops refined formulas for
differentiating the product of two functions, which include additional integral terms representing memory
effects inherent to fractional calculus. The paper also establishes a series of inequalities that make it possible
to estimate the fractional derivatives of nonlinear expressions, such as powers of a function, through the
derivative of the function itself. In particular, it is shown that a specific inequality holds for positive functions
that relates the fractional derivative of the function power to the function product and its fractional
derivative. These theoretical results are of great importance for the study of linear and nonlinear fractional
diffusion equations. They provide useful tools for proving the existence, uniqueness, and stability of their
solutions and for deriving a priori estimates that describe the qualitative behavior of such systems.
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Introduction

In the theory of differential calculus, the Leibniz’s rule is one of the most important rules. Leibniz’s
rule states that: for two differentiable functions u(x) and v(x), the derivative of their product u(x)v(x)
is given by

d

dx
(u(x)v(x)) = u′(x)v(x) + u(x)v′(x). (1)

The Leibniz’s rule is applied to many problems in PDEs, including a priori estimates for solutions to
linear and nonlinear parabolic problems.

However, in the case of fractional derivatives, it is not possible to obtain a simple expression
analogous to (1). Tarasov [1] demonstrated that the formula

Dα(u(x)v(x)) = Dαu(x)v(x) + u(x)Dαv(x)

α is an integer. This limitation arises from the inherently nonlocal nature of fractional derivatives.
Nevertheless, various analogues of the classical The Leibniz rule for fractional derivatives have been
deve-loped in the literature. In particular, the foundations of fractional calculus and the main properties
of fractional operators, including Hadamard-type derivatives, were systematically presented in the
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monographs [2–4]. Further generalizations of the Leibniz formula for fractional derivatives of different
types were obtained in [5–8], where both analytical and operator approaches were discussed. The
results concerning fractional diffusion equations and applications of fractional Leibniz-type rules to
boundary and initial value problems can be found in [9–11]. For example, in [9] Alsaedi, Ahmad and
Kirane obtained an analogue of the Leibniz’s rule in the following form:

Dα(uv)(t) = u(t)Dαv(t) + v(t)Dαu(t)

− u(t)v(t)

Γ(1− α)tα
− α

Γ(1− α)

∫ t

0

(u(s)− u(t))(v(s)− v(t))

(t− s)1+α ds,

where Dα is the Riemann-Liouville fractional derivative of order α ∈ (0, 1):

Dαu(t) =
1

(Γ(1− α)

d

dt

∫ t

0
(t− s)−αu(s)ds.

Later in [10], Cuesta et al. extended this formula to the Riemann-Liouville fractional derivative of
variable order α(t) ∈ (0, 1), t > 0. This makes fractional calculus particularly relevant in fields such
as physics, biology, materials science, and economics, where traditional approaches are insufficient to
describe real-world phenomena. The application of fractional models in continuum mechanics and
physical systems was discussed in [12, 13], while the classical foundations of fractional calculus were
established in [14, 15]. Further developments related to anomalous diffusion processes and boundary
value problems in mathematical physics were presented in [16,17].

In recent years, there has been a growing interest in the study of both linear and nonlinear differ-
ential equations involving Hadamard and Hadamard-type fractional derivatives. Fundamental results
on the theory and applications of such derivatives can be found in [15,18,19]. Theoretical and numer-
ical studies addressing the well-posedness, regularity, and stability of related equations are provided
in [20–22]. Moreover, generalized forms of the Leibniz-type rule for Hadamard fractional operators
and their applications to extremum principles have been explored in [23–25]. In [24], it was proved
that the Hadamard multi-index fractional diffusion problem has at most one classical solution, and
this solution depends continuously on its initial boundary conditions. In [25], Kirane and Torebek
obtained new estimates for the fractional Hadamard derivatives of a function at its extreme points,
and using the extremum principle, showed that linear and nonlinear fractional diffusion equations with
initial-boundary conditions have at most one classical solution, and this solution continuously depends
on the initial and boundary conditions. For Hadamard fractional differential equations with initial
boundary conditions involving a fractional Laplace operator, Wang, Ren, and Baleanu [24] applied the
maximum principle and obtained certain existence and uniqueness results.

In [26], the authors have given a small generalization of the Gronwall inequality, which they used
to study a solution to a generalized Cauchy-type problem with a Hilfer–Hadamard-type fractional
derivative. The Leibniz’s rule for fractional derivatives of constant order was introduced in [9] as an
extension of the classical product rule for integer-order derivatives. This differentiation rule (as well
as other fractional rules found in the literature) includes additional terms that account for the non-
local nature of fractional derivatives, particularly in the case of fractional derivatives of variable order
(FDVO). The authors present a contemporary proof of the maximum principle applicable to the linear
and nonlinear Riemann–Liouville fractional diffusion equations using the following inequality, for any
integer p ≥ 2 and u ≥ 0

Dα
a+,tu

p ≤ pup−1Dα
a+,tu,

{
for p even,
for p odd whenever.

(2)

In [10], the authors further advance this concept by extending this property to fractional derivatives
with a variable order α(t). They derive a Leibniz inequality and an integration by parts formula. They
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also studied an initial value problem with their time variable order fractional derivative and present a
regularity result for it, and study its on the asymptotic behavior.

Motivated by the neet to explore in the context of Hadamard derivatives, we embarked on an inves-
tigation of the Leibniz inequality for both linear and nonlinear diffusion equations. After establishing
inequality (2) for Hadamard and Hadamard-type fractional derivatives using the Gronwall inequality,
we explored a priori decay estimates for the solutions.

Our main results are given in the following form:

Lemma 1. Let u, v satisfy the following condition

u ∈ AC[a, T ] and v ∈ AC[a, T ], 0 < α ≤ 1.

Then, the following holds true

Dα
a+,t[uv](t) = u(t)Dα

a+,tv(t) + v(t)Dα
a+,tu(t)

− u(t)v(t)

Γ(1− α)
(
log t

a

)α − α

Γ(1− α)

∫ t

a

(u(s)− u(t))(v(s)− v(t))

s
(
log t

s

)1+α ds.

This leads to the following cases.

Corollary 1. If u and v have the same signs, then

Dα
a+,t(uv)(t) ≤ u(t)Dα

a+,tv(t) + v(t)Dα
a+,tu(t). (3)

Let u ∈ AC[a, T ] and 0 < α ≤ 1. Applying u = v in inequality (3), we get the following statement

2u(t)Dα
a+,tu(t) ≥ Dα

a+,tu
2(t). (4)

Then
Dα
a+,tu

p ≤ pup−1Dα
a+,tu, (5)

where p ≥ 2 and u ≥ 0. Using mathematical induction we can prove inequality (5).

Lemma 2. Let u, v satisfy the following condition

u ∈ AC[a, T ] and v ∈ AC[a, T ], 0 < α ≤ 1.

Then, the following holds true

C
HD

α
a+,t[uv](t) = u(t)CHD

α
a+,tv(t) + v(t)CHD

α
a+,tu(t)

− (u(a)− u(t))(v(a)− v(t))

Γ(1− α)
(
log t

a

)α
− α

Γ(1− α)

∫ t

a

(u(s)− u(t))(v(s)− v(t))

s
(
log t

s

)1+α ds.

This leads to the following cases.

Corollary 2. If u and v have the same signs, then

C
HD

α
a+,t(uv)(t) ≤ u(t)CHD

α
a+,tv(t) + v(t)CHD

α
a+,tu(t). (6)

Then
C
HD

α
a+,tu

p ≤ pup−1C
HD

α
a+,tu, (7)

where p ≥ 2 and u ≥ 0. Applying mathematical induction we can prove inequality (7).
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1 Preliminaries

1.1 The weighted space of continuous functions space

Let us consider the weighted space of continuous functions denoted by Cγ,log[a, b], where 0 ≤ γ < 1.
A function f : (a, b]→ R belongs to this space if the function

(
log t

a

)γ
f(t) can be continuously extended

to the closed interval [a, b]. More precisely,

Cγ,log[a, b] =

{
f : (a, b]→ R

∣∣∣ (log
t

a

)γ
f(t) ∈ C[a, b]

}
.

The norm associated with this space is given by

‖f‖Cγ,log[a,b] =

∥∥∥∥(log
t

a

)γ
f(t)

∥∥∥∥
C[a,b]

.

It is worth noting that for γ = 0, this space reduces to the classical space of continuous functions, i.e.,
C0,log[a, b] = C[a, b].

For any positive integer n, we work within the Banach space Cnδ,γ [a, b] of functions possessing conti-
nuous δ-derivatives up to order n − 1 on [a, b], and a δn-derivative on (a, b] such that
δnf ∈ Cγ,log[a, b]. The dilation operator is defined as δ = t ddt . Functions in this space satisfy the
norm condition

‖f‖Cnδ,γ =

n−1∑
k=0

‖δkf‖C[a,b] + ‖δnf‖Cγ,log[a,b] <∞.

In the special case of n = 0, the space C0
δ,γ [a, b] coincides with Cγ,log[a, b].

Additionally, we make use of the space ACnδ [a, b], which consists of functions f : [a, b]→ C for which
the (n − 1)-th δ-derivative, δn−1f , belongs to the space of absolutely continuous functions AC[a, b].
Explicitly,

ACnδ [a, b] =
{
f : [a, b]→ C

∣∣∣ δn−1f ∈ AC[a, b]
}
.

It is evident that AC1
δ [a, b] coincides with AC[a, b].

These functional spaces and operators provide a natural framework for analyzing differential equa-
tions involving weighted logarithmic behaviors and dilation-invariant properties, which are especially
relevant in the study of nonlocal models and fractional dynamics (see more details [4, 17] and links
therein).

Definition 1. [4, p. 110] Let f ∈ L1
loc([a, b]). The Hadamard fractional integral Iαa+,t of order

α ∈ (0, 1) (a > 0) is defined as

Iαa+,tf (t) =
1

Γ (α)

t∫
a

(
log

t

s

)α−1

f (s)
ds

s
.

Definition 2. [4, p. 111] Let a > 0 and f ∈W 1
2 ([a, b]) . The Hadamard fractional derivative of order

α ∈ (0, 1) is defined by

Dα
a+,tf (t) = t

d

dt
I1−α
a+,tf (t) = t

d

dt

1

Γ (1− α)

t∫
a

(
log

t

s

)−α
f (s)

ds

s
.
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Property 1. [4, p. 116] Let 0 < α < 1 and 0 < a, b < ∞. If f ∈ Cµ,log[a, b] (0 ≤ µ < 1) and
I1−α
a+,tf ∈ C1

δ,µ[a, b], then

(
Iαa+,tD

α
a+,tf

)
(t) = f(t)−

(
I1−α
a+,tf

)
(a)

Γ(α)

(
log

t

a

)α−1

, t ∈ [a, b]

holds at any point t ∈ (a, b].

Definition 3. [4, p. 115] The Hadamard-type fractional derivative of order α ∈ (0, 1) with a > 0,
then for f(t) ∈ AC[a, b]

C
HD

α
a+,tf(t) =

1

Γ(1− α)

∫ t

a

(
log

t

s

)−α
f ′(s)ds.

Alternatively, for u ∈ C1[a, t] an equivalent representation is

C
HD

α
a+,tu(t) =

t

Γ(1− α)

d

dt

∫ t

a

u(s)− u(t)

s log(t/s)α
ds

Definition 4. [4, p. 42] The Mittag-Leffler function with two parameters is represented as

Eα,β(z) :=
∞∑
k=0

zk

Γ(αk + β)
, (z, β ∈ C, <(α) > 0).

Lemma 3. [26, Lemma 3.1] Let α > 0, u(t), v(t) be nonnegative functions and locally integrable
on 0 < a ≤ t < T ≤ ∞, and M(t) is a nonnegative, nondecreasing continuous function defined on
0 < a ≤ t < T ≤ ∞,M(t) ≤ m (constant)

u(t) ≤ v(t) +M(t)

∫ t

a

(
log

t

s

)α−1

u(s)
ds

s
,

then

u(t) ≤ v(t) +

∫ t

a

[ ∞∑
k=1

(M(t)Γ(α))k

Γ(kα)

(
log

t

s

)kα−1 v(s)

s

]
ds.

Lemma 4. Let a nonnegative absolutely continuous function y(t) satisfy the inequality

∂αa,ty(t) ≤ θy(t) + µ(t), 0 < α ≤ 1

for almost all t in [a, T ], where θ > 0 and µ(t) is an integrable nonnegative function on [a, T ]. Then

y(t) ≤ y(a)Eα,1

(
θ

(
log

t

a

)α)
+ Γ(α)Eα,α

(
θ

(
log

t

a

)α)
∂−αa,t µ(t),

where the function Eα,β(z) is the Mittag-Leffler function.

Remark 1. The case α = 1 of Lemma 4 is studied in [17, p. 152].

Proof. Let ∂αa,ty(t)− θy(t) = g(t), then

y(t) = y(a)Eα,1

(
θ

(
log

t

a

)α)
+

∫ t

a

(
log

t

τ

)α−1

Eα,α

(
θ

(
log

t

τ

)α) g(τ)

τ
dτ.
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By virtue of the inequality g(t) ≤ µ(t), the positivity of the Mittag-Leffler function Eα,α
(
θ
(
log t

τ

)α)
for given parameters, and the growth of the function Eα,α(t), from [26], we obtain

y(t) ≤ y(a)Eα,1

(
θ

(
log

t

a

)α)
+

∫ t

a

(
log

t

τ

)α−1

Eα,α

(
θ

(
log

t

τ

)α) µ(τ)

τ
dτ

≤ y(a)Eα,1

(
θ

(
log

t

a

)α)
+ Γ(α)Eα,α

(
θ

(
log

t

a

)α)
∂−αa,t µ(t),

which completes the proof.

1.2 The proof of the main results

In this subsection, we give a detailed proof of our main results.

The proof of Lemma 1. In view of the expression

u(s)v(s) = (u(s)− u(t))(v(s)− v(t)) + u(t)v(s) + u(s)v(t)− u(t)v(t)

and the Definition 2

Dα
a+,t[uv](t) =

t

Γ(1− α)
lim
ε→0

1

ε

[ ∫ t+ε

a

u(s)v(s)

s
(
log t+ε

s

)αds− ∫ t

a

u(s)v(s)

s
(
log t

s

)αds],
we arrive at

Dα
a+,t[uv](t) =

t

Γ(1− α)
lim
ε→0

1

ε

[
(I1(ε)− I1(0)) + u(t) (I2(ε)− I2(0))

+ v(t) (I3(ε)− I3(0))− u(t)v(t) (I4(ε)− I4(0))

]
,

(8)

with

I1(ε) =

∫ t+ε

a

(u(s)− u(t))(v(s)− v(t))

s
(
log t+ε

s

)α ds, I2(ε) =

∫ t+ε

a

v(s)

s
(
log t+ε

s

)αds,
I3(ε) =

∫ t+ε

a

u(s)

s
(
log t+ε

s

)αds, I4(ε) =

∫ t+ε

a

1

s
(
log t+ε

s

)αds.
Hence, u(t) (I2(ε)− I2(0)) and v(t) (I3(ε)− I3(0)) are standard Hadamard derivatives, then

tu(t)

Γ(1− α)
lim
ε→0

1

ε

[∫ t+ε

a

v(s)

s
(
log t+ε

s

)αds− ∫ t

a

v(s)

s
(
log t

s

)αds
]

= u(t)Dα
a+,tv(t),

tv(t)

Γ(1− α)
lim
ε→0

1

ε

[∫ t+ε

a

u(s)

s
(
log t+ε

s

)αds− ∫ t

a

u(s)

s
(
log t

s

)αds
]

= v(t)Dα
a+,tu(t).

Similarly, for the last term we have

u(t)v(t) (I4(ε)− I4(0)) =
tu(t)v(t)

Γ(1− α)
lim
ε→0

1

ε

[∫ t+ε

a

1

s
(
log t+ε

s

)αds− ∫ t

a

1

s
(
log t

s

)αds
]

=
tu(t)v(t)

Γ(1− α)
· d
dt

∫ t

a

1

s
(
log t

s

)αds
=

u(t)v(t)

Γ(1− α)
(
log t

a

)α .
Mathematics Series. No. 4(120)/2025 185



A.G. Smadiyeva

Now for the most complex term, we apply differentiation under the integral and use integration by
parts, which gives

t

Γ(1− α)
lim
ε→0

1

ε

[∫ t+ε

a

(u(s)− u(t))(v(s)− v(t))

s
(
log t+ε

s

)α ds−
∫ t

a

(u(s)− u(t))(v(s)− v(t))

s
(
log t

s

)α ds

]

= − α

Γ(1− α)

∫ t

a

(u(s)− u(t))(v(s)− v(t))

s
(
log t

s

)1+α ds.

The combination of integrals in (8) completes the proof.

The proof of Lemma 2. Similar to the previous Lemma, we now use the decomposition

u(s)v(s)− u(t)v(t) = (u(s)− u(t))(v(s)− v(t)) + u(t)(v(s)− v(t)) + v(t)(u(s)− u(t)).

Then taking into account Definition 3, we obtain

C
HD

α
a+,t[uv](t) = J1 + J2 + J3,

where

J1 =
t

Γ(1− α)

d

dt

∫ t

a

(u(s)− u(t))(v(s)− v(t))

s
(
log t

s

)α ds,

J2 = u(t) · t

Γ(1− α)

d

dt

∫ t

a

v(s)− v(t)

s
(
log t

s

)α ds,
J3 = v(t) · t

Γ(1− α)

d

dt

∫ t

a

u(s)− u(t)

s
(
log t

s

)α ds.

From the Caputo–Hadamard derivative definition

C
HD

α
a+,tv(t) =

t

Γ(1− α)

d

dt

∫ t

a

v(s)− v(t)

s
(
log t

s

)α ds,
this yields

J2 = u(t) · CHDα
a+,tv(t),

J3 = v(t) · CHDα
a+,tu(t).

We now calculate

J1 =
t

Γ(1− α)

d

dt

∫ t

a

(u(s)− u(t))(v(s)− v(t))

s
(
log t

s

)α ds.

This term is nonlocal, and it was shown earlier that

t

Γ(1− α)

d

dt

∫ t

a

(u(s)− u(t))(v(s)− v(t))

s
(
log t

s

)α ds

= −(u(a)− u(t))(v(a)− v(t))

Γ(1− α)
(
log t

a

)α − α

Γ(1− α)

∫ t

a

(u(s)− u(t))(v(s)− v(t))

s
(
log t

s

)α+1 ds.

Finally, combining the integrals, we complete our proof.
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2 Applications

In this section, due to the obtained results we explored a-priori estimates of the solutions.

2.1 Time-fractional diffusion equations

Let us consider the following time-fractional diffusion equation

Dα
a+,tu = b(t)∆xu+ c(t, x)u+ f(t, x), (t, x) ∈ (a, T ]× Ω := Q, (9)

where Ω ⊂ RN is a bounded domain with regular boundary ∂Ω, and the Dirichlet boundary condition

u(t, x) = 0, t > a, x ∈ ∂Ω (10)

or the Neumann boundary condition

∂u

∂η
= 0, t > a, x ∈ ∂Ω, (11)

where η is the outward normal and the initial condition is

lim
t→a

Γ(α)

(
log

t

a

)1−α
u(a, x) = u0(x). (12)

Here
(A) b(t) is a nonnegative continuous function;
(B) ||c(t, x)||C(([a,T );L2(Ω)) = d;
(C) ||f(t, x)||C(([a,T );L2(Ω)) = h.

Theorem 1. Let u0 ∈ L2(Ω) and statements (A), (B), (C) hold true. If u satisfies (9)–(12) for every
t ∈ (a, T ], then

||u||C1−α,log((a,T ];L2(Ω)) ≤ K1(T ) ||u0||L2(Ω) +K2(T ) ||f ||C((a,T ];L2(Ω)) ,

where

K1(T ) =

[
1

Γ(α)
+ (2d+ 1)

(
log

T

a

)α
Eα,2α

(
(2d+ 1)

(
log

T

a

)α)]
and

K2(T ) =

(
log

T

a

)[
1

Γ(α+ 1)
+ (2d+ 1)

(
log

T

a

)α
Eα,2α+1

(
(2d+ 1)

(
log

T

a

)α)]
.

Proof. Multiplying (9) by u and integrating over Ω, we get∫
Ω

(Dα
a+,tu)udx = b(t)

∫
Ω

(∆xu)udx+

∫
Ω
c(t, x)u2dx+

∫
Ω
f(t, x)udx.

We begin by integrating by parts and then apply (4) together with Holder’s inequality to get

1

2
Dα
a+,t

∫
Ω
u2dx ≤ b(t)

∫
∂Ω
u
∂u

∂n
dσ − b(t)

∫
Ω
∇u∇udx

+

∫
Ω
c(t, x)u2dx+

(∫
Ω
|f(t, x)|2dx

) 1
2
(∫

Ω
|u|2dx

) 1
2

.
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Taking into account (B) and using −b(t)
∫

Ω
∇u∇udx ≤ 0, we have

Dα
a+,t

∫
Ω
u2dx ≤ 2d

∫
Ω
u2dx+ 2

(∫
Ω
|f(t, x)|2dx

) 1
2
(∫

Ω
|u|2dx

) 1
2

.

At this stage, applying Young’s inequality to the last term of the previous inequality, we deduce that

Dα
a+,t

∫
Ω
u2dx ≤ (2d+ 1)

∫
Ω
u2dx+

∫
Ω
|f(t, x)|2dx. (13)

Let us define y(t) = ||u(t, ·)||2L2(Ω) and taking into account (C) in (13), we get the time-fractional
differential inequality

Dα
a+,ty(t) ≤ (2d+ 1) y(t) + h. (14)

Applying the integral Iαa+,t to both sides of the inequality (14) and using the Property 1, we obtain

y(t) ≤
(
I1−α
a+,ty

)
(a)

Γ(α)

(
log

t

a

)α−1

+
1

Γ(α)

∫ t

a

(
log

t

s

)α−1

[(2d+ 1)y(s) + h]
ds

s

=
2d+ 1

Γ(α)

∫ t

a

(
log

t

s

)α−1

y(s)
ds

s

+

(
I1−α
a+,ty

)
(a)

Γ(α)

(
log

t

a

)α−1

+
h

Γ(1 + α)

(
log

t

a

)α
︸ ︷︷ ︸

g(t)

.

Using Lemma 3 to the last estimate, it yields

y(t) ≤ g(t) +

∫ t

a

[ ∞∑
k=1

(2d+ 1)k

Γ(kα)

(
log

t

a

)kα−1 g(s)

s

]
ds

j=k+1
≤ (2d+ 1)

∫ t

a

[
Eα,α

(
(2d+ 1)

(
log

t

s

)α)(
log

t

s

)α−1 g(s)

s

]
ds.

Consequently, it follows that

y(t) ≤
(
I1−α
a+,ty

)
(a)

Γ(α)

(
log

t

a

)α−1

+
h

Γ(1 + α)

(
log

t

a

)α
+

(
I1−α
a+,ty

)
(a)(2d+ 1)

Γ(α)

∫ t

a

[
Eα,α

(
(2d+ 1)

(
log

t

s

)α)(
log

t

s

)2(α−1)
]
ds

s

+
(2d+ 1)h

Γ(1 + α)

∫ t

a

[
Eα,α

(
(2d+ 1)

(
log

t

s

)α)(
log

t

s

)α−1(
log

t

a

)α]
ds

s
.

(15)

Applying formula (2.2.51) from [4, p. 86], we have the following calculations

1

Γ(α)

∫ t

a

[
Eα,α

(
(2d+ 1)

(
log

t

s

)α)(
log

t

s

)2(α−1)
]
ds

s

=

(
log

t

a

)2α−1

Eα,2α

(
(2d+ 1)

(
log

t

a

)α) (16)
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and

1

Γ(α+ 1)

∫ t

a

[
Eα,α

(
(2d+ 1)

(
log

t

s

)α)(
log

t

s

)α−1(
log

t

a

)α]
ds

s

=

(
log

t

a

)2α

Eα,2α+1

(
(2d+ 1)

(
log

t

a

)α)
.

(17)

Substituting (16), (17) in to the inequality (15), we obtain

y(t) ≤
(
I1−α
a+,ty

)
(a)

(
log

t

a

)α−1 [
1

Γ(α)
+ (2d+ 1)

(
log

t

a

)α
Eα,2α

(
(2d+ 1)

(
log

t

a

)α)]
+ h

(
log

t

a

)α [
1

Γ(α+ 1)
+ (2d+ 1)

(
log

t

a

)α
Eα,2α+1

(
(2d+ 1)

(
log

t

a

)α)]
.

(18)

By multiplying both sides of (18) by
(

log
t

a

)1−α

, we get

(
log

t

a

)1−α

y(t) ≤
(
I1−α
a+,ty

)
(a)

[
1

Γ(α)
+ (2d+ 1)

(
log

t

a

)α
Eα,2α

(
(2d+ 1)

(
log

t

a

)α)]
+ h

(
log

t

a

)[
1

Γ(α+ 1)
+ (2d+ 1)

(
log

t

a

)α
Eα,2α+1

(
(2d+ 1)

(
log

t

a

)α)]
≤
(
I1−α
a+,ty

)
(a)

[
1

Γ(α)
+ (2d+ 1)

(
log

T

a

)α
Eα,2α

(
(2d+ 1)

(
log

T

a

)α)]
+ h

(
log

T

a

)[
1

Γ(α+ 1)
+ (2d+ 1)

(
log

T

a

)α
Eα,2α+1

(
(2d+ 1)

(
log

T

a

)α)]
.

Then, we have
||u||C1−α,log((a,T ];L2(Ω)) ≤ K1(T ) ||u0||L2(Ω) +K2(T ) ||f ||C((a,T ],L2(Ω)) ,

which gives the desired result.

2.2 The porous medium equation

Next, we study the porous medium equation

Dα
a+,tu(t, x) = a(t, x)∆um(t, x) + f(t, x), (t, x) ∈ (a, T ]× Ω := Q, (19)

with the initial condition

lim
t→a

Γ(α)

(
log

t

a

)1−α
u(t, x) = lim

t→a

(
I1−α
a+ u

)
(t, x) = φ(x), x ∈ Ω (20)

and the boundary condition
u(t, x) = 0, t > a, x ∈ ∂Ω, (21)

where m > 1 and a(t, x), f(t, x) are nonnegative continuous functions.
Theorem 2. Let Ω ⊂ Rn and φ ∈ Lp(Ω). The function u ∈ C1−α,log((a, T ];Lp(Ω)) is a solution of

problem (19)–(21) and

||u||C1−α,log((a,T ];Lp(Ω)) ≤ K3(T ) ||φ)||Lp(Ω) +K4(T ) ||f ||C((a,T ];Lp(Ω)) ,

where
K3(T ) =

[
1

Γ(α)
+M

(
log

T

a

)α
Eα,2α

(
M

(
log

T

a

)α)]
,

K4(T ) =

(
log

T

a

)[
1

Γ(α+ 1)
+M

(
log

T

a

)α
Eα,2α+1

(
M

(
log

T

a

)α)]
.
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Proof. Multiplying (19) by pup−1 (p ≥ 2), and integrating over Ω, we arrive at∫
Ω
pup−1Dα

a+udx−
∫

Ω
a(t, x)pup−1∆umdx−

∫
Ω
pup−1f(t, x)dx = 0.

In view of the expression

p

∫
Ω
a(t, x)up−1∆umdx = p

∫
∂Ω
a(t, x)up−1um−1 ∂

∂η
udσ

− p
∫

Ω
(p− 1)a(t, x)up−2um−1|∇u|2dx

= −p
∫

Ω
(p− 1)a(t, x)up−2um−1|∇u|2dx,

it follows that ∫
Ω
pup−1Dα

a+udx+ p

∫
Ω

(p− 1)a(t, x)up−2um−1|∇u|2dx

− p
∫

Ω
up−1f(t, x)dx = 0.

(22)

Applying (7) and the Hölder inequality to (22), we obtain∫
Ω
Dα
a+u

pdx+
4p(p− 1)d1

(p+m− 1)2

∫
Ω

∣∣∣∇u p+m−1
2

∣∣∣2 dx
− p

(∫
Ω
|f(t, x)|pdx

)1/p(∫
Ω
updx

)1−1/p

≤ 0.

(23)

Using Young’s inequality in the last term of (23), it follows that∫
Ω
Dα
a+u

pdx+
4p(p− 1)d1

(p+m− 1)2

∫
Ω

∣∣∣∇u p+m−1
2

∣∣∣2 dx
− εp

∫
Ω
|f(t, x)|p dx− p− 1

ε
p
p−1

∫
Ω
updx ≤ 0, ε > 0.

Let’s make the following notations

y(t) = ||u(t, ·)||pLp(Ω), H = εp||f(t, ·)||pLp(Ω), M =
p− 1

ε
p
p−1

.

Then, we have
Dα
a+y(t) ≤My(t) +H. (24)

Starting from (24), by performing the same actions as in the proof of the previous theorem, we
obtain the following conclusion(

log
t

a

)1−α
y(t) ≤

(
I1−α
a+,ty

)
(a)

[
1

Γ(α)
+M

(
log

t

a

)α
Eα,2α

(
M

(
log

t

a

)α)]
+H

(
log

t

a

)[
1

Γ(α+ 1)
+M

(
log

t

a

)α
Eα,2α+1

(
M

(
log

t

a

)α)]
≤
(
I1−α
a+,ty

)
(a)

[
1

Γ(α)
+M

(
log

T

a

)α
Eα,2α

(
M

(
log

T

a

)α)]
+H

(
log

T

a

)[
1

Γ(α+ 1)
+M

(
log

T

a

)α
Eα,2α+1

(
M

(
log

T

a

)α)]
.
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Hence, we deduce that

||u||C1−α,log((a,T ];Lp(Ω)) ≤ K3(T ) ||φ||Lp(Ω) +K4(T ) ||f ||C((a,T ];Lp(Ω)) ,

where
K3(T ) =

[
1

Γ(α)
+M

(
log

T

a

)α
Eα,2α

(
M

(
log

T

a

)α)]
and

K4(T ) =

(
log

T

a

)[
1

Γ(α+ 1)
+M

(
log

T

a

)α
Eα,2α+1

(
M

(
log

T

a

)α)]
.

Therefore, we have proven the statement.

2.3 Fractional-order diffusion equation

In the next case, we consider the fractional-order diffusion equation

C
HD

α
a+,tu = log

(
t

a

)
∆xu+ c(t, x)u+ f(t, x), (t, x) ∈ (a, T ]× Ω, (25)

with the Dirichlet boundary condition

u(t, x) = 0, t > a > 0, x ∈ ∂Ω (26)

and with the Cauchy condition
u(a, x) = u0(x), (27)

where the functions c(t, x), f(t, x) satisfy
(A) ‖c(t, x)‖C(([a,T );L2(Ω)) = d, c(t, x) ≤ 0;
(B) ‖f(t, x)‖C(([a,T );L2(Ω)) = h.
Theorem 3. Suppose u0 ∈ L2(Ω) and (A), (B) hold. If the function u(t, x) satisfies the problem

(25)–(27) for each t ∈ (a, T ], then the following estimate holds

‖u‖C((a,T ];L2(Ω)) ≤ K5(T ) ‖u0‖L2(Ω) +K6(T )‖f‖C((a,T ];L2(Ω)),

where

K5(T ) = 1 + (2d+ 1)

∫ T

a

[
Eα,α

(
(2d+ 1)

(
log

t

s

)α)(
log

t

s

)α−1
]
ds

s

and

K6(T ) =

(
log

T

a

)α [ 1

Γ(α+ 1)
+ (2d+ 1)

(
log

T

a

)α
Eα,2α+1

(
(2d+ 1)

(
log

T

a

)α)]
.

Proof. Multiplying each term of equation (25) by the function u and integrating over Ω,∫
Ω

(
C
HD

α
a+,tu

)
udx = log

(
t

a

)∫
Ω

(∆xu)udx+

∫
Ω
c(t, x)u2dx+

∫
Ω
f(t, x)udx.

Taking into account the estimate (6) and using Hölder’s inequality for the last term of the previously
mentioned inequality, we arrive at

1

2
C
HD

α
a+,t

∫
Ω
u2dx ≤ log

(
t

a

)∫
∂Ω
u
∂u

∂n
dσ − log

(
t

a

)∫
Ω
∇u∇udx

+

∫
Ω
c(t, x)u2dx+

(∫
Ω
|f(t, x)|2dx

) 1
2
(∫

Ω
|u|2dx

) 1
2

.
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Applying Young’s inequality to the last term of the previous inequality and in view of

− log

(
t

a

)∫
Ω
∇u∇udx ≤ 0

with the notation (A), (B) and y(t) = ‖u(t, x)‖2L2(Ω), we obtain

C
HD

α
a+,ty(t) ≤ (2d+ 1)y(t) + h. (28)

By applying the integral HIαa+,t to both sides of inequality (28) and using Property 1, we derive the
following expression

y(t) ≤ y(a) +
2d+ 1

Γ(α)

∫ t

a

(
log

t

s

)α−1

y(s)
ds

s
+

h

Γ(α)

∫ t

a

(
log

t

s

)α−1 ds

s

= y(a) +
h

Γ(1 + α)

(
log

t

a

)α
︸ ︷︷ ︸

g(t)

+
2d+ 1

Γ(α)

∫ t

a

(
log

t

s

)α−1

y(s)
ds

s
.

According to the result of Lemma 3, we deduce that

y(t) ≤ g(t) +

∫ t

a

[ ∞∑
k=1

[(2d+ 1)Γ(α)]k

Γ(kα)

(
log

t

a

)kα−1 g(s)

s

]
ds

j=k+1
≤ g(t) + (2d+ 1)Γ(α)

∫ t

a

[
Eα,α

(
(2d+ 1)Γ(α)

(
log

t

s

)α)(
log

t

s

)α−1 g(s)

s

]
ds.

Therefore, it follows that

y(t) ≤ y(a) +
h

Γ(1 + α)

(
log

t

a

)α
+ y(a)(2d+ 1)Γ(α)

∫ t

a

[
Eα,α

(
(2d+ 1)Γ(α)

(
log

t

s

)α)(
log

t

s

)α−1
]
ds

s

+
(2d+ 1)Γ(α)h

Γ(α+ 1)

∫ t

a

[
Eα,α

(
(2d+ 1)Γ(α)

(
log

t

s

)α)(
log

t

s

)2α−1
]
ds

s
.

In view of formula (2.2.51) in [4, p. 86], we arrive at the following:

1

Γ(α+ 1)

∫ t

a

[
Eα,α

(
(2d+ 1)

(
log

t

s

)α)(
log

t

s

)2α−1
]
ds

s

=

(
log

t

a

)2α

Eα,2α+1

(
(2d+ 1)

(
log

t

a

)α)
.

It implies that

y(t) ≤ y(a)

[
1 + (2d+ 1)Γ(α)

∫ T

a

[
Eα,α

(
(2d+ 1)Γ(α)

(
log

t

s

)α)(
log

t

s

)α−1
]
ds

s

]

+ h

(
log

T

a

)α [ 1

Γ(α+ 1)
+ (2d+ 1)Γ(α)

(
log

T

a

)α
Eα,2α+1

(
(2d+ 1)Γ(α)

(
log

T

a

)α)]
.
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Finally, we conclude

‖u‖C((a,T ];L2(Ω)) ≤ K5(T ) ‖u0‖L2(Ω) +K6(T )‖f‖C((a,T ],L2(Ω)),

where

K5(T ) = 1 + (2d+ 1)Γ(α)

∫ T

a

[
Eα,α

(
(2d+ 1)Γ(α)

(
log

t

s

)α)(
log

t

s

)α−1
]
ds

s

and

K6(T ) =

(
log

T

a

)α [ 1

Γ(α+ 1)
+ (2d+ 1)

(
log

T

a

)α
Eα,2α+1

(
(2d+ 1)

(
log

T

a

)α)]
,

which completes the proof.

Conclusion

In this work, we have established new analogues of the Leibniz rule for the Hadamard and Caputo–
Hadamard fractional derivatives, taking into account their inherent nonlocal properties. The refined
differentiation formulas and derived inequalities provide a deeper understanding of how fractional
derivatives interact with nonlinear functions. In particular, the obtained estimates form an analytical
foundation for studying fractional diffusion equations of various types. The results can be effectively
applied to prove the existence, uniqueness, and stability of solutions, as well as to derive a priori bounds
essential for the qualitative analysis of such models. Future research may extend these methods to
systems with variable order or to multidimensional fractional operators.
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