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Classification and reduction to canonical form of linear differential
equations partial of the sixth-order with non-multiple characteristics

A.T. Abdukodirov∗, T.A. Tulkinboev

Fergana State University, Fergana, Uzbekistan
(E-mail: abdurashid1976@mail.ru, tulqinjon98@mail.ru)

This paper studies the problems of classification and reduction to canonical form of linear partial differential
equations of the sixth-order with non-multiple characteristics and constant coefficients. Considering that
with the growth of the order of the equation or the increase in the number of independent variables,
the problems of classification and reduction to canonical form become more complicated. The article
first provides a general formula for the coefficients of the new equation obtained after the transformation
of variables, and then formulates and proves three lemmas that play an important role in finding the
canonical form of the equation. The classification problems are considered and the corresponding canonical
types of equations are found by a new method in four cases in which the equation with partial derivatives
of the sixth-order has: 1) six different real characteristics; 2) four different real roots and two complex-
conjugate characteristics; 3) two real roots and four different complex-conjugate characteristics; 4) six
different complex-conjugate characteristics and, consequently, the corresponding theorem is proved.

Keywords: a sixth-order partial differential equation, hyperbolic differential operator, elliptic differen-
tial operator, classification of differential equations, canonical form of differential equations, non-multiple
characteristics, multiple characteristics, real characteristics, complex characteristics, equations of
characteristics.

2020 Mathematics Subject Classification: 35G05.

Introduction

In order to achieve meaningful outcomes in the study of boundary or initial value problems for
partial differential equations, it is essential to begin by identifying the type of equation and deriving
its corresponding canonical form. This classification and transformation play a fundamental role in
understanding the general properties of the solutions, ensuring the correct formulation of boundary
value problems, informing the selection of suitable solution methods, and facilitating the analysis of
both direct and inverse problems. Furthermore, in certain cases, establishing the canonical form may
enable the derivation of a general solution or the reduction of the order of the equations .

Therefore, the comprehensive classification, identification of the equation type, and derivation of
the corresponding canonical form represent a task of great importance in the theory of differential
equations, carrying not only theoretical relevance but also practical significance.
∗Corresponding author. E-mail: abdurashid1976@mail.ru
Received: 31 October 2024; Accepted: 6 June 2025.
c© 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Classification and reduction to canonical ...

The classification and determination of the canonical forms of second-order partial differential
equations are well known. A comprehensive treatment of the classification and canonical form reduction
for third- and fourth-order equations was provided in [1] and [2], respectively. Further investigations
into fifth-order equations were conducted in [3], while the study presented in [4] addressed the derivation
of canonical forms for n-th order partial differential equations involving two independent variables.

A significant number of studies have been devoted to the investigation of boundary value prob-
lems for high-order partial differential equations. For example, in [5] and [6], initial-boundary value
problems for high even-order partial differential equations are analyzed. In [7], a completely new
numerical method is proposed for solving general linear and nonlinear high-order partial differential
equations. In [8], an initial-boundary value problem for a high-order partial differential equation in the
multidimensional case is studied.

However, to this day, the issues of complete classification and determination of canonical forms
of linear partial differential equations of sixth and higher orders remain unstudied. Although sixth-
order partial differential equations do indeed arise in applied problems (for example, wave motion in
water with surface tension is described by a sixth-order equation [9]), significant research has also been
devoted to the study of boundary value problems for sixth-order partial differential equations. For
instance, in [10] and [11], sixth-order partial differential equations are analyzed with respect to the
Painlevé property and the behavior of their solutions. In [12], the reduction of equations describing
orthotropic bodies to a sixth-order partial differential equation and its analysis is presented. In [13], a
nonlocal inverse boundary value problem for a sixth-order partial differential equation with additional
integral conditions is investigated.

Therefore, the wide range of applications involving sixth-order partial differential equations under-
scores the need for a comprehensive investigation into their full classification and reduction to canonical
forms.

It should be noted that the classification and determination of canonical forms of partial differen-
tial equations are carried out based on the classification of the roots of the corresponding algebraic
equations. As the order of the equation increases or the number of independent variables grows, the
problems of classification and reduction to canonical form become increasingly complex. The complete
classification of second-order partial differential equations and the determination of their corresponding
canonical forms have been studied in three cases; for third-order equations — in four cases; and for
fourth- and fifth-order partial differential equations — in nine and twelve cases, respectively.

Based on the above analysis, it can be concluded that the classification of sixth-order linear partial
differential equations is fundamentally influenced by the quantity and multiplicity of real and complex
roots of the corresponding sixth-degree algebraic equations.

For sixth-degree linear algebraic equations, one of the following scenarios invariably applies:
1) six distinct real roots;
2) four distinct real roots accompanied by one pair of complex conjugates;
3) two distinct real roots along with two distinct pairs of complex conjugates;
4) three distinct pairs of complex conjugate roots;
5) one double real root plus four distinct real roots;
6) two double real roots and two distinct real roots;
7) three double real roots;
8) one double root, one triple root, and one simple real root;
9) one triple root together with three distinct real roots;
10) two triple real roots;
11) one double root and one quadruple real root;
12) one quadruple root with two distinct real roots;
13) one quintuple root alongside one simple real root;
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14) one sextuple real root;
15) one double root, two distinct real roots, and one pair of complex conjugates;
16) one double real root and two distinct pairs of complex conjugates;
17) one double real root and one double pair of complex conjugates;
18) one triple root, one simple real root, and one pair of complex conjugates;
19) one quadruple real root and one pair of complex conjugates;
20) two distinct real roots and two distinct double pairs of complex conjugates;
21) two distinct pairs of complex conjugates plus two distinct double pairs of complex conjugates;
22) two distinct double real roots and one pair of complex conjugates;
23) three distinct double pairs of complex conjugate roots.
Consequently, the comprehensive classification and reduction to canonical form of sixth-order equa-

tions can be systematically explored through exactly 23 distinct cases, each corresponding to one of
the possible root structures of sixth-degree algebraic equations.

In this study, within the scope of the article, we focus on the classification and reduction to canonical
form of sixth-order linear partial differential equations possessing non-multiple characteristics.

1 Main part

In some domain Ω of the plane xOy, we consider the sixth-order partial differential equation with
two independent variables, linear with respect to the highest derivatives:

L[u] =
6∑

k=0

Ak
∂6u

∂x6−k∂yk
= F, (1)

where Ak (k = 0, 6) are given constants, and F is a continuous function depending on x, y, u and its

partial derivatives with respect to x, y up to the fifth order inclusive, where
6∑

k=0

A2
k 6= 0.

Using the transformation of variables ξ = ξ(x, y), η = η(x, y), allowing for the inverse transforma-
tion, that is, fulfilling condition J = ξxηy − ξyηx 6= 0, from (1), we obtain

M [u] =
6∑

k=0

ak
∂6u

∂ξ6−k∂ηk
= F1, (2)

where F1 is a function depending on ξ, η, u and its partial derivatives with respect to ξ, η up to the
fifth order inclusive, and ak are new coefficients that are linearly dependent on Ak, k = 0, 6.

Taking into account the notation

f (zx, zy) = A0z
6
x +A1z

5
xzy +A2z

4
xz

2
y +A3z

3
xz

3
y +A4z

2
xz

4
y +A5zxz

5
y +A6z

6
y ,

the coefficients ak (k = 0, 6) of equation (2) can be written as

ak =
1

k!

(
ηx

∂

∂ξx
+ ηy

∂

∂ξy

)k
f (ξx, ξy) ≡

1

(6− k)!

(
ξx

∂

∂ηx
+ ξy

∂

∂ηy

)6−k
f (ηx, ηy) . (3)

Let us choose variables ξ and η such that equation (1) has a canonical form and so that the largest
coefficients of equation (2) vanish. Since, from formula (3) it is clear that all coefficients of equation
(2) are related to the function f (zx, zy) and its partial derivatives with respect to the arguments, we
will consider an equation with partial derivatives of the first order:

A0z
6
x +A1z

5
xzy +A2z

4
xz

2
y +A3z

3
xz

3
y +A4z

2
xz

4
y +A5zxz

5
y +A6z

6
y = 0. (4)
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Let z = ϕ(x, y) be a particular solution of this equation. If we set ξ = ϕ(x, y), then the coefficient
a0 will obviously be equal to zero. Thus, the above-mentioned problem of choosing new independent
variables will be related to the solution of equation (4), and the solution of equation (4) is related by
the general integral of the following ordinary differential equation

A0(dy)6−A1(dy)5dx+A2(dy)4(dx)2−A3(dy)3(dx)3 +A4(dy)2(dx)4−A5dy(dx)5 +A6(dx)6 = 0. (5)

Equation (5) is called characteristics equation for equation (1), and its integrals are called
characteristics. Dividing both parts of (5) by (dx)6 and introducing the notation t = dy/dx, we
have the following algebraic equation

A0t
6 −A1t

5 +A2t
4 −A3t

3 +A4t
2 −A5t+A6 = 0. (6)

Considering t = dy/dx, we can see that finding the general integral of the ordinary differential
equation (5) is connected with the roots (algebraic with respect to t (t = dy/dx) of the equation (6).

Similarly, as in [4], we will prove the following three lemmas, which play an important role in
finding the canonical form of equation (1):

Lemma 1. If the function z = ϕ(x, y) is a solution to equation (4), then the relation ϕ(x, y) = const
is a general integral of the ordinary differential equation (5).

Proof. Since the function z = ϕ(x, y) is a solution to equation (4), then the equality

A0ϕ
6
x +A1ϕ

5
xϕy +A2ϕ

4
xϕ

2
y +A3ϕ

3
xZ

3
y +A4ϕ

2
xϕ

4
y +A5ϕxϕ

5
y +A6ϕ

6
y = 0

is an identity in the domain where the solution is considered. Dividing both sides of the last equation
by ϕ6

y, we obtain the following identity:

A0

(
−ϕx
ϕy

)6

−A1

(
−ϕx
ϕy

)5

+A2

(
−ϕx
ϕy

)4

−A3

(
−ϕx
ϕy

)3

+A4

(
−ϕx
ϕy

)2

−A5

(
−ϕx
ϕy

)
+A6 = 0. (7)

It is known that if a function y, determined from an implicit relation ϕ(x, y) = const, satisfies equa-
tion (5), then ϕ(x, y) = const is a general integral of the ordinary differential equation (5). Let
y = f(x,C) be this function. Then

dy

dx
= −

[
ϕx(x, y)

ϕy(x, y)

]
y=f(x,C)

. (8)

Here, the square brackets and the index y = f(x,C) indicate that on the righthand side of equal-
ity (8) the variable y is not an independent variable, but has a value equal to f(x,C). It follows that
y = f(x,C) satisfies equation (5), since

A0

(
dy

dx

)6

−A1

(
dy

dx

)5

+A2

(
dy

dx

)4

−A3

(
dy

dx

)3

+A4

(
dy

dx

)2

−A5

(
dy

dx

)
+A6 =

=

[
A0

(
−ϕx
ϕy

)6

−A1

(
−ϕx
ϕy

)5

+A2

(
−ϕx
ϕy

)4

−A3

(
−ϕx
ϕy

)3

+

+A4

(
−ϕx
ϕy

)2

−A5

(
−ϕx
ϕy

)
+A6

]
y=f(x,C)

= 0,

by virtue of (7) the expression in square brackets is equal to zero for all values of x, y, and not only
for y = f(x,C).
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Lemma 2. If ϕ(x, y) = const is a k-fold (k ≤ 6) general integral of equation (5), then for z = ϕ(x, y)
the function f (zx, zy) and all its derivatives with respect to zx, zy up to and including (k − 1) order
are equal to zero.

Proof. Let ϕ(x, y) = const be a k-fold general integral of equation (5), and t1, t2, . . . , t6 be the roots
of equation (6), where t1 (t1 = −ϕx/ϕy) is the corresponding k-fold root of equation (6). Then, based
on the corollary of Bezout’s theorem, equation (6) can be written in the form

A0 (t− t1)k
6∏

j=k+1

(t− tj) = 0. (9)

If we consider t = dy/dx, the equation (9) takes the form

A0 (dy − t1dx)k
6∏

j=k+1

(dy − tjdx) = 0.

Taking this into account, the function f (zx, zy) and the equation (4) can be written as

f (zx, zy) = A0 (zx + t1zy)
k

6∏
j=k+1

(zx + tjzy) and A0 (zx + t1zy)
k

6∏
j=k+1

(zx + tjzy) = 0, respectively.

Therefore, for z = ϕ(x, y), we have

f (zx, zy) = A0 (zx + t1zy)
k

6∏
j=k+1

(zx + tjzy) = 0.

It easily follows from this that all derivatives of the function f (zx, zy) with respect to zx, zy up to
(k − 1) order inclusive for z = ϕ(x, y) are equal to zero.

Lemma 3. When transforming variables ξ = ξ(x, y), η = η(x, y) that allow inverse transformation,
the number and multiplicity of real and complex roots of equation (6) are invariant, and the identity
holds D̃6 = J30D6, where

D6 = A10
0

∏
6≥i>j≥1

(ti − tj)2 (10)

is the discriminant of the equation (6), and

D̃6 = a100
∏

6≥i>j≥1
(µi − µj)2 (11)

is the discriminant of the following equation

a0µ
6 − a1µ5 + a2µ

4 − a3µ3 + a4µ
2 − a5µ+ a6 = 0 (µ = dη/dξ), (12)

where t1, t2, . . . , t6 and µ1, µ2, . . . , µ6 are the roots of the equations (6) and (12), respectively.
Proof. As shown above, when transforming the variables ξ = ξ(x, y), η = η(x, y), the equation (1)

with the condition J = ξxηy − ξyηx 6= 0, was transformed into equation (2). By introducing the
notation t = dy/dx, µ = dη/dξ into the equations of the characteristics for equations (1) and (2),
algebraic equations (6) and (12) were found, respectively. Then, taking into account t = dy/dx and
µ = dη/dξ, we have the following relation

µ =
dη(x, y)

dξ(x, y)
=
ηxdx+ ηydy

ξxdx+ ξydy
=
ηx + ηy(dy/dx)

ξx + ξy(dy/dx)
=
ηx + ηyt

ξx + ξyt
. (13)
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Classification and reduction to canonical ...

From (13), we find the relation between the roots µi and ti of the equations (6) and (12) in
the form µi = (ηx + ηy · ti) / (ξx + ξy · ti). It follows that the number and multiplicity of the real
and complex roots of equations (6) and (12) are the same. That is, when transforming variables
ξ = ξ(x, y), η = η(x, y), allowing for an inverse transformation, the number and multiplicity of the real
and complex roots of equation (6) are invariant. In addition, we have

µk − µj = J (tk − tj) [(ξx + tkξy) (ξx + tjξy)]
−1 , k, j = 1, 6.

Using these equalities, from (11), we find

D̃ = a100 J
30 [(ξx + t1ξy) · (ξx + t2ξy) · . . . · (ξx + t6ξy)]

−10 ∏
6≥k>j≥1

(tk − tj)2 .

From here, opening the brackets inside the square bracket and taking into account equality (10),
we obtain

D̃ = a100 J
30 ·D

[
ξ6x + (t1 + t2 + . . .+ t6) · ξ5xξy + . . .+ t1 · t2 · . . . · t6ξ6y

]−10
A−100 . (14)

On the other hand, according to Vieta’s formulas, the following equalities hold:

t1 + t2 + . . .+ t6 =
A1

A0
, t1t2 + t1t3 + . . .+ t5t6 =

A2

A0
, . . . , t1 · . . . · t6 =

A6

A0
. (15)

Based on (15), equality (14) takes the form

D̃ = a100 J
30D

(
A0ξ

6
x +A1ξ

5
xξy + . . .+A6ξ

6
y

)−10
.

Since, according to formula (3), a0 = A0ξ
6
x + A1ξ

5
xξy + . . . + A6ξ

6
y , then from the latter it follows

that D̃ = J30D. From this equality, by virtue of J 6= 0, it follows that when transforming variables,
the sign of the discriminant D is invariant.

Without loss of generality, we can assume [4] that condition A0 > 0 is also satisfied.
As is well established from the corollary to the Fundamental Theorem of Algebra, any polynomial of

degree n over the field of complex numbers possesses exactly n roots, counted with their multiplicities.
Accordingly, equation (6) has exactly six roots — real and/or complex conjugates — taking multiplicities
into account.

Given that the algebraic equation (6) presents 23 possible root configurations, the corresponding
partial differential equation (1) may be analyzed in all these cases. Nevertheless, owing to limitations of
space, the present study will concentrate solely on the four cases in which equation (6) has exclusively
simple (non-repeated) roots.

1. Let equation (6) have six different real roots t1 = λ1, t2 = λ2, t3 = λ3, t4 = λ4, t5 = λ5, t6 = λ6
and λ1 > λ2 > λ3 > λ4 > λ5 > λ6. Then, equation (5) has six different real general integrals:

Ψ1(x, y) = y − λ1x = const, Ψ2(x, y) = y − λ2x = const, Ψ3(x, y) = y − λ3x = const,

Ψ4(x, y) = y − λ4x = const, Ψ5(x, y) = y − λ5x = const, Ψ6(x, y) = y − λ6x = const.

If we take into account (15), then equation (1) can be written as:

A0

[
∂6u

∂x6
+ (λ1 + λ2 + λ3 + λ4 + λ5 + λ6)

∂6u

∂x5∂y
+ (λ1λ2 + λ1λ3 + . . .+ λ5λ6)

∂6u

∂x4∂y2
+ . . .

. . .+ (λ1λ2λ3λ4λ5λ6)
∂6u

∂y6

]
= F.
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Using first-order differential operators of the form
(
∂
∂x + λi

∂
∂y

)
, the last equation can be formally

written as:

A0

[
6∏

k=1

(
∂

∂x
+ λk

∂

∂y

)]
u = F. (16)

By introducing the following notations
(λ1 − λ5)
(λ1 − λ6)

= µ1,
(λ2 − λ5)
(λ2 − λ6)

= µ2,
(λ3 − λ5)
(λ3 − λ6)

= µ3,

(λ4 − λ5)
(λ4 − λ6)

= µ4, let us change the variables by

ξ = (1 +
√
µ3µ4) y − (λ5 + λ6

√
µ3µ4)x, η = (1−√µ3µ4) y − (λ5 − λ6

√
µ3µ4)x. (17)

Then, taking (17) into account, we have

∂

∂x
= ξx

∂

∂ξ
+ nx

∂

∂η
= − (λ5 + λ6

√
µ3µ4)

∂

∂ξ
− (λ5 − λ6

√
µ3µ4)

∂

∂η
,

∂

∂y
= ξy

∂

∂ξ
+ ny

∂

∂η
= (1 +

√
µ3µ4)

∂

∂ξ
+ (1−√µ3µ4)

∂

∂η
.

Substituting these expressions of
∂

∂x
and

∂

∂y
into the equation (16), we obtain[

(λ1 − λ5 +
√
µ3µ4 (λ1 − λ6))

∂

∂ξ
+ (λ1 − λ5 −

√
µ3µ4 (λ1 − λ6))

∂

∂η

]
×

×
[
(λ2 − λ5 +

√
µ3µ4 (λ2 − λ6))

∂

∂ξ
+ (λ2 − λ5 −

√
µ3µ4 (λ2 − λ6))

∂

∂η

]
×

×
[
(λ3 − λ5 +

√
µ3µ4 (λ3 − λ6))

∂

∂ξ
+ (λ3 − λ5 −

√
µ3µ4 (λ3 − λ6))

∂

∂η

]
×

×
[
(λ4 − λ5 +

√
µ3µ4 (λ4 − λ6))

∂

∂ξ
+ (λ4 − λ5 −

√
µ3µ4 (λ4 − λ6))

∂

∂η

]
×

×
[
√
µ3µ4 (λ5 − λ6)

(
∂

∂ξ
− ∂

∂η

)][
(λ6 − λ5)

(
∂

∂ξ
+

∂

∂η

)]
u = F1.

Let us divide both sides of the last equation by

−√µ3µ4 (λ1 − λ6) (λ2 − λ6) (λ3 − λ6) (λ4 − λ6) (λ5 − λ6)2 ( 6= 0).

Then, we have[
(µ1 +

√
µ3µ4)

∂

∂ξ
+ (µ1 −

√
µ3µ4)

∂

∂η

]
×
[
(µ2 +

√
µ3µ4)

∂

∂ξ
+ (µ2 −

√
µ3µ4)

∂

∂η

]
×

×√µ3
[
(
√
µ3 +

√
µ4)

∂

∂ξ
+ (
√
µ3 −

√
µ4)

∂

∂η

]
×√µ4

[
(
√
µ4 +

√
µ3)

∂

∂ξ
+ (
√
µ4 −

√
µ3)

∂

∂η

]
×

×
(
∂2u

∂ξ2
− ∂2u

∂n2

)
= F2, (18)

where F2 = F1/
{
−√µ3µ4 (λ1 − λ6) (λ2 − λ6) (λ3 − λ6) (λ4 − λ6) (λ5 − λ6)2

}
.
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And the equation (18) can be rewritten as:[
∂

∂ξ
+

(
µ1 −

√
µ3µ4

)(
µ1 +

√
µ3µ4

) ∂
∂η

]
×

[
∂

∂ξ
+

(
µ2 −

√
µ3µ4

)(
µ2 +

√
µ3µ4

) ∂
∂η

]
×

×

[
∂2

∂ξ2
−
(√
µ3 −

√
µ4
)2(√

µ3 +
√
µ4
)2 ∂2

∂η2

]
×
(
∂2u

∂ξ2
− ∂2u

∂η2

)
= F3

or (
∂

∂ξ
+ c1

∂

∂η

)(
∂

∂ξ
+ c2

∂

∂η

)(
∂2

∂ξ2
− b2 ∂

2

∂η2

)(
∂2u

∂ξ2
− ∂2u

∂η2

)
= F3,

where c1 =

(
µ1 −

√
µ3µ4

)(
µ1 +

√
µ3µ4

) , c2 =

(
µ2 −

√
µ3µ4

)(
µ2 +

√
µ3µ4

) , b2 =

(√
µ3 −

√
µ4
)2(√

µ3 +
√
µ4
)2 ,

F3 = F2/
{√

µ3µ4
(
µ1 +

√
µ3µ4

) (
µ2 +

√
µ3µ4

) (√
µ3 +

√
µ4
)2}

.

Example 1. Consider the following sixth-order partial differential equation:

uxxxxxx + 6uxxxxxy − 10uxxxxyy − 100uxxxyyy − 111uxxyyyy + 94uxyyyyy + 120uyyyyyy = 0. (19)

The characteristic equation corresponding to the equation (19) has the form

(dy)6 − 6(dy)5(dx)− 10(dy)4(dx)2 + 100(dy)3(dx)3 − 111(dy)2(dx)4 − 94(dy)(dx)5 + 120(dx)6 = 0.

It is easy to verify that this equation has six different real roots for t = dy/dx:

t1 = 1, t2 = −1, t3 = 2, t4 = 3, t5 = −4, t6 = 5.

Then, equation (19) can be written as follows:(
∂

∂x
+

∂

∂y

)(
∂

∂x
− ∂

∂y

)(
∂

∂x
+ 2

∂

∂y

)(
∂

∂x
+ 3

∂

∂y

)(
∂

∂x
− 4

∂

∂y

)(
∂

∂x
+ 5

∂

∂y

)
u = 0. (20)

After the transformation ξ = (1 +
√

7)y + (4 − 5
√

7)x, η = (1 −
√

7)y + (4 + 5
√

7)x, we obtain
∂
∂x =

(
4− 5

√
7
)
∂
∂ξ +

(
4 + 5

√
7
)
∂
∂η ,

∂
∂y =

(
1 +
√

7
)
∂
∂ξ +

(
1−
√

7
)
∂
∂η . Considering these, from (20), we

have (
∂

∂ξ
+ c1

∂

∂η

)(
∂

∂ξ
+ c2

∂

∂η

)(
∂2

∂ξ2
− b2 ∂

2

∂η2

)(
∂2u

∂ξ2
− ∂2u

∂η2

)
= 0,

where c1 =
(5+4

√
7)

(5−4
√
7)
, c2 =

(3+6
√
7)

(3−6
√
7)
, b2 =

(
28+11

√
7

3
√
7

)2
.

2. Let the equation (6) have four different real roots t1 = λ1, t2 = λ2, t3 = λ3, t4 = λ4 and two
complex conjugate roots t5 = α + βi, t6 = α − βi. Then the equation (5) has four different real and
two different complex conjugate general integrals:

Ψ1(x, y) = y − λ1x = const, Ψ2(x, y) = y − λ2x = const, Ψ3(x, y) = y − λ3x = const,
Ψ4(x, y) = y − λ4x = const, ϕ(x, y) = y − αx− iβx = const, ϕ∗(x, y) = y − αx+ iβx = const,

where α, β ∈ R and β 6= 0.
If we take into account (15), then the equation (1) can be written as:

A0

[
∂6u

∂x6
+ (λ1 + λ2 + λ3 + λ4 + t5 + t6)

∂6u

∂x5∂y
+ (λ1λ2 + λ1λ3 + . . .+ t5t6)

∂6u

∂x4∂y2
+ . . .

... + (λ1λ2λ3λ4t5t6)
∂6u

∂y6

]
= F.

Mathematics Series. No. 3(119)/2025 11



A.T. Abdukodirov, T.A. Tulkinboev

Hence, similarly to equation (16), we have

A0

{
4∏

k=1

(
∂

∂x
+ λk

∂

∂y

)}(
∂2u

∂x2
+ 2α

∂2u

∂x∂y
+
(
α2 + β2

) ∂2u
∂y2

)
= F. (21)

Let us change the variables by the following formulas

ξ = y − αx, η = βx. (22)

Then
∂

∂x
= ξx

∂

∂ξ
+ nx

∂

∂η
= −α ∂

∂ξ
+ β

∂

∂η
,

∂

∂y
= ξy

∂

∂ξ
+ ny

∂

∂η
=

∂

∂ξ
.

Substituting these expressions of
∂

∂x
and

∂

∂y
into the equation (21), we have

A0β
2

{
4∏

k=1

[
(λk − α)

∂

∂ξ
+ β

∂

∂η

]}(
∂2u

∂ξ2
+
∂2u

∂η2

)
= F1. (23)

Assume that (λ1 − α) (λ2 − α) (λ3 − α) (λ4 − α) 6= 0. Then, dividing both parts of the equality (23)
by A0β

2 (λ1 − α) (λ2 − α) (λ3 − α) (λ4 − α) and introducing the notation

µ5 =
β

λ1 − α
, µ6 =

β

λ2 − α
, µ7 =

β

λ3 − α
, µ8 =

β

λ4 − α
,

we obtain (
∂

∂ξ
+ µ5

∂

∂η

)(
∂

∂ξ
+ µ6

∂

∂η

)(
∂

∂ξ
+ µ7

∂

∂η

)(
∂

∂ξ
+ µ8

∂

∂η

)(
∂2u

∂ξ2
+
∂2u

∂η2

)
= F4,

or (
∂2

∂ξ2
+ (µ5 + µ6)

∂2

∂ξ∂η
+ µ5µ6

∂2

∂η2

)(
∂2

∂ξ2
+ (µ7 + µ8)

∂2

∂ξ∂η
+ µ7µ8

∂2

∂η2

)
×

×
(
∂2u

∂ξ2
+
∂2u

∂η2

)
= F4, (24)

where F4 = F1/
[
A0β

2 (λ1 − α) (λ2 − α) (λ3 − α) (λ4 − α)
]
.

If µ5 = −µ6, µ7 = −µ8, then the equation (24) takes the form(
∂2

∂ξ2
− µ25

∂2

∂η2

)(
∂2

∂ξ2
− µ27

∂2

∂η2

)(
∂2u

∂ξ2
+
∂2u

∂η2

)
= F4.

Let µ5 6= −µ6, µ7 6= −µ8, then
∂2

∂ξ2
+ (µ5 + µ6)

∂2

∂ξ∂η
+ µ5µ6

∂2

∂η2
and

∂2

∂ξ2
+ (µ7 + µ8)

∂2

∂ξ∂η
+

+ µ7µ8
∂2

∂η2
are hyperbolic differential operators, since (µ5 + µ6)

2 − 4µ5µ6 = (µ5 − µ6)2 > 0 and

(µ7 + µ8)
2 − 4µ7µ8 = (µ7 − µ8)2 > 0.

To further simplify equation (24), we make a change of variables by

s = s(ξ, η), t = t(ξ, η) (25)

and J = sξtη − sηtξ 6= 0, then ∂
∂ξ = sξ

∂
∂s + tξ

∂
∂t ,

∂
∂η = sη

∂
∂s + tη

∂
∂t . Taking this into account, from

equation (24), we obtain a new equation in the following form(
(sξ + µ5sη)

∂

∂s
+ (tξ + µ5tη)

∂

∂t

)(
(sξ + µ6sη)

∂

∂s
+ (tξ + µ6tη)

∂

∂t

)
×

12 Bulletin of the Karaganda University



Classification and reduction to canonical ...

×
((
s2ξ + (µ7 + µ8) sξsη + µ7µ8s

2
η

) ∂2
∂s2

+
(
t2ξ + (µ7 + µ8) tξtη + µ7µ8t

2
η

) ∂2
∂t2

+

+ (2 (sξtξ + µ7µ8sηtη) + (µ7 + µ8) (sξtη + sηtξ))
∂2

∂s∂t

)
×

×
((
s2ξ + s2η

) ∂2u
∂s2

+ 2 (sξtξ + sηtη)
∂2u

∂s∂t
+
(
t2ξ + t2η

) ∂2u
∂t2

)
= F5, (26)

where F5 is a function depending on s, t, u and its partial derivatives with respect to s, t up to the fifth
order inclusive.

To make equation (26) simpler, we take a replacement for (25) as

s = η + µ0ξ, t = µ0η − ξ, (27)

where µ0 is one of two solutions of the equation

µ2 − 2 (1− µ7µ8)
µ7 + µ8

µ− 1 = 0, (28)

that is, µ0 =
1− µ7µ8
µ7 + µ8

+

√
(1− µ7µ8)2

(µ7 + µ8)
2 + 1 > 0 or µ0 =

1− µ7µ8
µ7 + µ8

−

√
(1− µ7µ8)2

(µ7 + µ8)
2 + 1 < 0. In this

case, sξ = tn = µ0, sn = −tξ = 1 and therefore J = sξtn − sntξ = µ20 + 1 6= 0. In addition,
the equalities 2(sξtξ + µ7µ8sηtη) + (µ7 + µ8)(sξtη + sηtξ) = 2(−µ0 + µ7µ8µ0) + (µ7 + µ8) × (µ20 −

− 1) =

[
µ2 − 2(1− µ7µ8)

µ7 + µ8
µ− 1

]
(µ7 + µ8)=0, sξtξ + sηtη = −µ0 + µ0 = 0 are valid. If we take into

account these equalities, then equation (26) takes the form(
(µ0 + µ5)

∂

∂s
+ (−1 + µ5µ0)

∂

∂t

)(
(µ0 + µ6)

∂

∂s
+ (−1 + µ6µ0)

∂

∂t

)
×

×
[(
µ20 + (µ7 + µ8)µ0 + µ7µ8

) ∂2
∂s2

+
(
1− (µ7 + µ8)µ0 + µ7µ8µ

2
0

) ∂2
∂t2

]
×

×
((
µ20 + 1

) ∂2u
∂s2

+
(
1 + µ20

) ∂2u
∂t2

)
= F5.

Then, dividing both parts and both sides of the last equation by(
µ20 + 1

)
(µ0 + µ5) (µ0 + µ6) (µ0 + µ7) (µ0 + µ8) and introducing the notations c3 =

(µ5µ0 − 1)

(µ0 + µ5)
,

c4 =
(µ6µ0 − 1)

(µ0 + µ6)
, b21 =

(1− µ7µ0)(µ8µ0 − 1)

(µ0 + µ7)(µ0 + µ8)
, we come(

∂

∂s
+ c3

∂

∂t

)(
∂

∂s
+ c4

∂

∂t

)(
∂2

∂s2
− b21

∂2

∂t2

)(
∂2u

∂s2
+
∂2u

∂t2

)
= F6, (29)

where F6 = F5/
[(
µ20 + 1

)
(µ0 + µ5) (µ0 + µ6) (µ0 + µ7) (µ0 + µ8)

]
.

Let us prove that b21 > 0. Introducing the notations ν1 =
µ0µ7 − 1

µ0 + µ7
, ν2 =

µ0µ8 − 1

µ0 + µ8
and taking

into account that µ0 is one of the two solutions of equation (28), that is, µ20 + µ0
2 (µ7µ8 − 1)

(µ7 + µ8)
−

− 1 = 0, we have ν1 + ν2 =
µ0µ7 − 1

µ0 + µ7
+
µ0µ8 − 1

µ0 + µ8
=

µ20 + µ0
2 (µ7µ8 − 1)

(µ7 + µ8)
− 1

(µ0 + µ7) (µ0 + µ8)
(µ7 + µ8) = 0. Then

b21 = −(µ0µ7 − 1) (µ0µ8 − 1)

(µ0 + µ7)(µ0 + µ8)
= −ν1ν2 =

1

4

[
(ν1 + ν2)

2 − 4ν1ν2

]
=

1

4
(ν1 − ν2)2 > 0.
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It is easy to verify that if one of the expressions λk − α(k = 1, 2, 3, 4) is equal to zero, that is, for
example λ1 − α = 0, then the equation (23) takes the form{

4∏
k=2

[
(λk − α)

∂

∂ξ
+ β

∂

∂η

]}(
∂3u

∂ξ2∂η
+
∂3u

∂η3

)
= F1/

(
A0β

3
)

and this equation, as in case (29), after changing variables by s = η+µ0ξ, t = µ0η− ξ, can be brought
to the form (

∂

∂s
+ µ0

∂

∂t

)(
∂

∂s
+ c4

∂

∂t

)(
∂2

∂s2
− b21

∂2

∂t2

)(
∂2u

∂s2
+
∂2u

∂t2

)
= F7,

where F7 = F1/
[
A0β

3 (λ2 − α) (λ3 − α) (λ4 − α)
(
µ20 + 1

)
(µ0 + µ6) (µ0 + µ7) (µ0 + µ8)

]
.

Example 2. Consider the following sixth-order partial differential equation:

uxxxxxx + 24uxxxxxy + 239uxxxxyy + 1264uxxxyyy + 3663uxxyyyy + 5240uxyyyyy + 2625uyyyyyy = 0. (30)

The characteristic equation corresponding to the equation (30) has the form

(dy)6−24(dy)5(dx)+239(dy)4(dx)2−1264(dy)3(dx)3+3663(dy)2(dx)4−5240(dy)(dx)5+2625(dx)6 = 0.

It is easy to verify that this equation has four different real roots and two complex conjugate roots
for t = dy/dx:

t1 = 5, t2 = 3, t3 = 1, t4 = 7, t5 = 4 + 3i, t6 = 4− 3i.

Then, equation (30) can be written as follows:(
∂

∂x
+ 5

∂

∂y

)(
∂

∂x
+ 3

∂

∂y

)(
∂

∂x
+

∂

∂y

)(
∂

∂x
+ 7

∂

∂y

)(
∂2

∂x2
+ 8

∂2

∂x∂y
+ 25

∂2

∂y2

)
u = 0. (31)

After the transformation ξ = y − 4x, η = 3x, we obtain: ∂
∂x = −4 ∂

∂ξ + 3 ∂
∂η ,

∂
∂y = ∂

∂ξ . Considering
these from (31), we have (

∂2

∂ξ2
− 9

∂2

∂η2

)(
∂2

∂ξ2
− ∂2

∂η2

)(
∂2

∂ξ2
+

∂2

∂η2

)
u = 0.

3. Let equation (6) have two different simple real roots and four complex conjugate roots:

t1 = λ1, t2 = λ2, t3 = δ + γi, t4 = δ − γi, t5 = α+ βi, t6 = α− βi,

where λ1, λ2, α, β, δ, γ ∈ R such that β 6= 0, γ 6= 0, (α− δ)2 + (|β| − |γ|)2 6= 0.
Then the equation (5) has one real and four different complex conjugate general integrals

Ψ1(x, y) = y − λ1x = const, Ψ2(x, y) = y − λ2x = const,
Ψ3(x, y) = y − δx− iγx = const, Ψ4(x, y) = y − δx+ iγx = const,
ϕ(x, y) = y − αx− iβx = const, ϕ∗(x, y) = y − αx+ iβx = const.

Using the same reasoning as when obtaining equation (21), equation (1) can be written as

A0

(
∂

∂x
+ λ1

∂

∂y

)(
∂

∂x
+ λ2

∂

∂y

)(
∂2

∂x2
+ 2δ

∂2

∂x∂y
+
(
δ2 + γ2

) ∂2
∂y2

)
×

×
(
∂2u

∂x2
+ 2α

∂2u

∂x∂y
+
(
α2 + β2

) ∂2u
∂y2

)
= F. (32)
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Let us consider the substitution (22). Then, from equation (32), similarly to (23), we obtain the
equation

A0β
2

[
(λ1 − α)

∂

∂ξ
+ β

∂

∂η

] [
(λ2 − α)

∂

∂ξ
+ β

∂

∂η

]
×

×
[(
α2 + δ2 + γ2 − 2αδ

) ∂2
∂ξ2

+ 2β(δ − α)
∂2

∂ξ∂η
+ β2

∂2

∂η2

](
∂2u

∂ξ2
+
∂2u

∂η2

)
= F1. (33)

Hence, dividing both parts of (33) by A0β
2 (λ1 − α) (λ2 − α)

[
(α− δ)2 + γ2

]
(6= 0) and introducing

the notations µ5 =
β

λ1 − α
, µ6 =

β

λ2 − α
, µ9 =

β(δ − α) + γβi

(α− δ)2 + γ2
= δ1 + γ1i, µ10 =

β(δ − α)− γβi
(α− δ)2 + γ2

=

= δ1 − γ1i,
β(δ − α)

(α− δ)2 + γ2
= δ1,

γβ

(α− δ)2 + γ2
= γ1, we have an equation in the form

(
∂2

∂ξ2
+ (µ5 + µ6)

∂2

∂ξ∂η
+ µ5µ6

∂2

∂η2

)(
∂2

∂ξ2
+ (µ9 + µ10)

∂2

∂ξ∂η
+ µ9µ10

∂2

∂η2

)
×

×
(
∂2u

∂ξ2
+
∂2u

∂η2

)
= F8, (34)

where F8 = F1/A0β
2
[
(λ1 − α) (λ2 − α)

(
(α− δ)2 + γ2

)]
.

Moreover, since (µ9 + µ10)
2 − 4 (µ9µ10) = (µ9 − µ10)2 = −γ21 < 0, then ∂2

∂ξ2
+ (µ9 + µ10)

∂2

∂ξ∂η +

+ µ9µ10
∂2

∂η2
is an elliptic differential operator.

If µ9 = −µ10, then at δ1 = 0 equation (34) takes the form(
∂

∂ξ
+ µ5

∂

∂η

)(
∂

∂ξ
+ µ6

∂

∂η

)(
∂2

∂ξ2
+ γ21

∂2

∂η2

)(
∂2u

∂ξ2
+
∂2u

∂η2

)
= F9,

where F9 = F1/A0β
2
[
(λ1 − α) (λ2 − α) γ2

]
.

To further simplify equation (34) for δ1 6= 0, we choose the substitution (27) as a change of variables,
where µ0 is one of the two solutions of equation

µ2 − 2 (1− µ9µ10)
µ9 + µ10

µ− 1 = 0,

then, similarly to case 2, we obtain the equation(
∂

∂s
+ c3

∂

∂t

)(
∂

∂s
+ c4

∂

∂t

)(
∂2

∂s2
+ b22

∂2

∂t2

)(
∂2u

∂s2
+
∂2u

∂t2

)
= F10,

where b22 =
(µ0µ9 − 1) (µ0µ10 − 1)

(µ0 + µ9) (µ0 + µ10)
, F10 = F5/

[(
µ20 + 1

)
(µ0 + µ6) (µ0 + µ9) (µ0 + µ10)

]
.

Let us prove that b22 > 0. Introducing the notations ν3 =
µ0µ9 − 1

µ0 + µ9
, ν4 =

µ0µ10 − 1

µ0 + µ10
and taking

into account that is, we have ν3 +ν4 =
µ20 + 2µ0(µ9µ10−1)

(µ9+µ10)
− 1

(µ0 + µ9) (µ0 + µ10)
(µ9 + µ10), µ20 +

2µ0 (µ9µ10 − 1)

(µ9 + µ10)
−1 = 0,

ν3 + ν4 = 0. Then b22 =
(µ0µ9 − 1) (µ0µ10 − 1)

(µ0 + µ9)(µ0 + µ10)
= ν3ν4 = 1

4

[
4ν3ν4 − (ν3 + ν4)

2
]

= −1
4(ν3 − ν4)2 =

= −1

4

(
2γ1i(1 + µ0)

2

(µ0 + δ1)
2 + γ21

)2

> 0.
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Example 3. Consider the following sixth-order partial differential equation:

uxxxxxx + 11uxxxxxy + 60uxxxxyy + 130uxxxyyy − 51uxxyyyy − 781uxyyyyy − 650uyyyyyy = 0. (35)

The characteristic equation corresponding equation (35) has the form

(dy)6 − 11(dy)5(dx) + 60(dy)4(dx)2 − 130(dy)3(dx)3 − 51(dy)2(dx)4 + 781(dy)(dx)5 − 650(dx)6 = 0.

It is easy to verify that this equation has two different simple real roots and four complex conjugate
roots for t = dy/dx:

t1 = 1, t2 = −2, t3 = 3 + 4i, t4 = 3− 4i, t5 = 3 + 2i, t6 = 3− 2i.

Then, equation (35) can be written as follows:(
∂

∂x
+

∂

∂y

)(
∂

∂x
− 2

∂

∂y

)(
∂2

∂x2
+ 6

∂2

∂x∂y
+ 25

∂2

∂y2

)(
∂2

∂x2
+ 6

∂2

∂x∂y
+ 13

∂2

∂y2

)
u = 0. (36)

After the transformation ξ = y − 3x, η = 2x, we obtain: ∂
∂x = −3 ∂

∂ξ + 2 ∂
∂η ,

∂
∂y = ∂

∂ξ . Considering
these, from (36), we have(

∂

∂ξ
− ∂

∂η

)(
∂

∂ξ
− 2

5

∂

∂η

)(
∂2

∂ξ2
+

1

4

∂2

∂η2

)(
∂2

∂ξ2
+

∂2

∂η2

)
= 0.

4. If equation (6) has six different complex conjugate roots:

t1 = σ + ζi, t2 = σ − ζi, t3 = δ + γi, t4 = δ − γi, t5 = α+ βi, t6 = α− βi,

where α, β, δ, γ, σ, ζ ∈ R such that β 6= 0, γ 6= 0, ζ 6= 0,[
(α− δ)2 + (|β| − |γ|)2

] [
(α− σ)2 + (|β| − |ζ|)2

] [
(δ − σ)2 + (|ζ| − |γ|)2

]
6= 0,

then after replacing (22), from equation (1), similarly to equation (33), we obtain the equation

A0β
2

[(
α2 + σ2 + ζ2 − 2ασ

) ∂2
∂ξ2

+ 2β(σ − α)
∂2

∂ξ∂η
+ β2

∂2

∂η2

]
×

×
[(
α2 + δ2 + γ2 − 2αδ

) ∂2
∂ξ2

+ 2β(δ − α)
∂2

∂ξ∂η
+ β2

∂2

∂η2

](
∂2u

∂ξ2
+
∂2u

∂η2

)
= F1. (37)

Hence, dividing both parts of (37) by A0β
2
[
(α− σ)2 + ζ2

] [
(α− δ)2 + γ2

]
(6= 0) and introduc-

ing the notations µ11 =
β(σ − α) + ζβi

(α− σ)2 + ζ2
= σ1 + ζ1i, µ12 =

β(σ − α)− ζβi
(α− σ)2 + ζ2

= σ1 − ζ1i, µ9 =

=
β(δ − α) + γβi

(α− δ)2 + γ2
= δ1 + γ1i, µ10 =

β(δ − α)− γβi
(α− δ)2 + γ2

= δ1 − γ1i,
β(σ − α)

(α− σ)2 + ζ2
= σ1,

ζβ

(α− σ)2 + ζ2
=

= ζ1,
β (δ − α)

(α− δ)2 + γ2
= δ1,

γβ

(α− δ)2 + γ2
= γ1, we have the following equation

(
∂2

∂ξ2
+ (µ11 + µ12)

∂2

∂ξ∂η
+ µ11µ12

∂2

∂η2

)(
∂2

∂ξ2
+ (µ9 + µ10)

∂2

∂ξ∂η
+ µ9µ10

∂2

∂η2

)
×

×
(
∂2u

∂ξ2
+
∂2u

∂η2

)
= F11, (38)
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where F11 = F1/A0β
2
[(

(α− σ)2 + ζ2
) (

(α− δ)2 + γ2
)]
.

Moreover, since (µ11 + µ12)
2 − 4 (µ11µ12)

2 = (µ11 − µ12)2 = −ζ21 < 0, (µ9 + µ10)
2 − 4 (µ9µ10)

2 =

= (µ9 − µ10)2 = −γ21 < 0, then
∂2

∂ξ2
+ (µ11 + µ12)

∂2

∂ξ∂η
+ µ11µ12

∂2

∂η2
and

∂2

∂ξ2
+ (µ9 + µ10)

∂2

∂ξ∂η
+

+ µ9µ10
∂2

∂η2
are elliptic differential operators.

If µ11 = −µ12, µ9 = −µ10, that is, when σ1 = 0, δ1 = 0, equation (38) takes the form(
∂2

∂ξ2
+ ζ21

∂2

∂η2

)(
∂2

∂ξ2
+ γ21

∂2

∂η2

)(
∂2u

∂ξ2
+
∂2u

∂η2

)
= F11.

To further simplify equation (38) for σ1 6= 0 and δ1 6= 0, we introduce the substitution (27), where
µ0 is one of the two solutions of equation

µ2 − 2 (1− µ9µ10)
µ9 + µ10

µ− 1 = 0,

then, similarly to case 3 , we obtain the equation[
∂2

∂s2
+ (c5 + c6)

∂2

∂s∂t
+ c5c6

∂2

∂t2

](
∂2

∂s2
+ b22

∂2

∂t2

)(
∂2u

∂s2
+
∂2u

∂t2

)
= F12,

where c5 = [µ11µ0 − 1] / [µ11 + µ0] , c6 = [µ12µ0 − 1] / [µ12 + µ0],
F12 = F5/

[(
µ20 + 1

)
(µ0 + µ9) (µ0 + µ10) (µ0 + µ11) (µ0 + µ12)

]
.

Since (c5 + c6)
2 − 4c5c6 = (c5 − c6)2 =

(
2ζ1i(1 + µ0)

2

(µ0 + σ1)
2 + ζ21

)2

< 0 and b22 > 0, then the differential

operators
∂2

∂s2
+ (c5 + c6)

∂2

∂s∂t
+ c5c6

∂2

∂t2
and

∂2

∂s2
+ b22

∂2

∂t2
the last equation are elliptic.

Example 4. Consider the following sixth-order partial differential equation:

uxxxxxx+24uxxxxxy +254uxxxxyy +1504uxxxyyy +5233uxxyyyy +10120uxyyyyy +8500uyyyyyy = 0. (39)

The characteristic equation corresponding to equation (39) has the form

(dy)6−24(dy)5(dx)+254(dy)4(dx)2−1504(dy)3(dx)3+5233(dy)2(dx)4−10120(dy)(dx)5+8500(dx)6 = 0.

It is easy to verify that this equation has six different complex conjugate roots for t = dy/dx:

t1 = 4 + i, t2 = 4− i, t3 = 4 + 2i, t4 = 4− 2i, t5 = 4 + 3i, t6 = 4− 3i.

Then, equation (39) can be written as follows:(
∂2

∂x2
+ 8

∂2

∂x∂y
+ 17

∂2

∂y2

)(
∂2

∂x2
+ 8

∂2

∂x∂y
+ 20

∂2

∂y2

)(
∂2

∂x2
+ 8

∂2

∂x∂y
+ 25

∂2

∂y2

)
u = 0. (40)

After the transformation ξ = y − 4x, η = 3x we obtain: ∂
∂x = −4 ∂

∂ξ + 3 ∂
∂η ,

∂
∂y = ∂

∂ξ . Considering
these from (40), we have(

∂2

∂ξ2
+ 9

∂2

∂η2

)(
∂2

∂ξ2
+

9

4

∂2

∂η2

)(
∂2

∂ξ2
+

∂2

∂η2

)
u = 0.

Thus, we have proved the following
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Theorem 1. Let one of the following statements be true with respect to equation (6):
1) has six different real roots;
2) has four different real roots and two complex conjugate roots;
3) has two real roots and four different complex conjugate roots;
4) has six different complex conjugate roots.
Then, in the domain Ω, equation (1) can be reduced to the one of the following canonical forms

1)
(
∂

∂ξ
+ c1

∂

∂η

)(
∂

∂ξ
+ c2

∂

∂η

)(
∂2

∂ξ2
− b2 ∂

2

∂η2

)(
∂2u

∂ξ2
− ∂2u

∂η2

)
= F3;

2)
(
∂

∂s
+ c3

∂

∂t

)(
∂

∂s
+ c4

∂

∂t

)(
∂2

∂s2
− b21

∂2

∂t2

)(
∂2u

∂s2
+
∂2u

∂t2

)
= F6;

3)
(
∂

∂s
+ c3

∂

∂t

)(
∂

∂s
+ c4

∂

∂t

)(
∂2

∂s2
+ b22

∂2

∂t2

)(
∂2u

∂s2
+
∂2u

∂t2

)
= F10;

4)
[
∂2

∂s2
+ (c5 + c6)

∂2

∂s∂t
+ c5c6

∂2

∂t2

](
∂2

∂s2
+ b22

∂2

∂t2

)(
∂2u

∂s2
+
∂2u

∂t2

)
= F12.

It should be noted that equations (1), similar to equations of hyperbolic and/or elliptic type,
possess simple (non-repeated) real and/or complex characteristics. Consequently, in all cases considered
above, the discriminant is non-zero. Moreover, the canonical forms of equation (1) may contain both
hyperbolic and/or elliptic differential operators.

Remark 1. The classification and reduction to canonical form of sixth-order linear partial differential
equations with multiple real characteristics are studied in ten distinct cases. Analogously, the following
theorem can be proven:

Theorem 2. Assume that equation (6) exhibits one of the following root configurations:
1) one double root and four distinct real roots;
2) one double root and one quadruple real root;
3) two triple real roots;
4) one quintuple root and one simple real root;
5) one sextuple real root;
6) two double roots and two distinct real roots;
7) three double real roots;
8) one double root, one triple root, and one simple real root;
9) one triple root and three distinct real roots;
10) one quadruple root and two distinct real roots.
Then, in the domain Ω, equation (1) can be reduced to one of the following canonical forms

corresponding to the root structures:
1)
(
∂
∂ξ + c1

∂
∂η

)(
∂
∂ξ + c2

∂
∂η

)(
∂4u
∂ξ4
− ∂4u

∂ξ2∂η2

)
= F3;

2) ∂6

∂ξ4∂η2
u = F1/ (λ1 − λ2)6;

3) ∂6

∂ξ3∂η3
u = F1/

{
− (λ1 − λ2)6

}
;

4) ∂6

∂ξ∂η5
u = F1/

{
− (λ1 − λ2)6

}
;

5) ∂6u
∂η6

= F1/ (λ1 − λ2)6;

6)
(
∂
∂ξ + c3

∂
∂η

)2 (
∂4u
∂ξ4
− ∂4u

∂ξ2∂η2

)
= F5;

7)
(
∂
∂ξ + c4

∂
∂η

)2
∂4u

∂ξ2∂η2
= F6;

8) ∂6u
∂ξ4∂η2

+ c4
∂6u

∂ξ3∂η3
= F7;

9)
(
∂
∂ξ + c5

∂
∂η

)(
∂5u

∂ξ2∂η3
+ c6

∂5u
∂ξ∂η4

)
= F8;
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10) ∂6u
∂ξ2∂η4

+ c7
∂6u
∂ξ∂η5

= F9.

Remark 2. The classification and reduction to canonical form of sixth-order linear partial differential
equations with multiple and complex characteristics are studied in nine distinct cases. Analogously,
the following theorem can be proven:

Theorem 3. Assume that equation (6) exhibits one of the following root structures:
1) one double real root, two distinct real roots, and one pair of complex conjugate roots;
2) two distinct double real roots and one pair of complex conjugate roots;
3) one triple real root, one simple real root, and one pair of complex conjugate roots;
4) one quadruple real root and one pair of complex conjugate roots;
5) one double real root and two distinct double pairs of complex conjugate roots;
6) two distinct real roots and two distinct double pairs of complex conjugate roots;
7) one double real root and two distinct pairs of complex conjugate roots;
8) two distinct pairs of complex conjugate roots and two distinct double pairs of complex conjugate

roots;
9) two distinct triple pairs of complex conjugate roots.
Then, in the domain Ω, equation (1) can be reduced to one of the following canonical forms

corresponding to the root structures:

1)
(
∂

∂s
+ c1

∂

∂t

)2( ∂2

∂s2
− b2 ∂

2

∂t2

)(
∂2u

∂s2
+
∂2u

∂t2

)
= F4; 2)

(
∂2

∂s2
− b21

∂2

∂t2

)2(
∂2u

∂s2
+
∂2u

∂t2

)
= F6;

3)
(
∂

∂s
+ c2

∂

∂t

)(
∂5u

∂s2∂t3
+
∂5u

∂t5

)
= F8; 4)

(
∂6u

∂s2∂t4
+
∂6u

∂t6

)
= F10; 5)

(
∂3

∂s2∂t
+
∂3

∂t3

)2

u= F12;

6)
(
∂2

∂s2
− b21

∂2

∂t2

)(
∂2

∂s2
+
∂2

∂t2

)2

u= F14; 7)
(
∂

∂s
+ c1

∂

∂t

)2( ∂2

∂s2
+ b22

∂2

∂t2

)(
∂2u

∂s2
+
∂2u

∂t2

)
= F16;

8)
(
∂2

∂s2
+ b22

∂2

∂t2

)(
∂2

∂s2
+
∂2

∂t2

)2

u= F18; 9)
(
∂2

∂ξ2
+

∂2

∂η2

)3

u = F19.

It should be noted that equation (1), like parabolic-type equations, exhibits multiple characteristics.
Consequently, in all the cases discussed above, the discriminant is zero (D = 0). Nonetheless, the
canonical forms of equation (1) may still involve both hyperbolic and/or elliptic differential operators.

Conclusion

In this paper, we prove a theorem on the canonical forms of equation (1) and three lemmas that
play an important role in finding the canonical form of the equation (1).

Arguing similarly, we can find canonical forms of equation (1) in cases with multiple characteristics,
provided that the coefficients of the equation (1) are sufficiently smooth functions.

We can give a number of examples when only finding the canonical form of an equation helps to
obtain serious results. Considering the canonical form of the equation (1), when studying some bound-
ary value problems, we can use potential theory or the Green or Riman function method. Therefore,
the found canonical forms of linear differential equations with partial derivatives of the sixth-order
with non-multiple characteristics and with constant coefficients allow us to correctly formulate and
systematically study correct boundary value problems for such equations. These problems are the
subject of further research.

From the canonical form of the equation (1), obtained in the first case considered above, it is clear
that if the function F3 does not depend on the unknown function u and its derivatives, then it is
possible to find a general solution to equation (1).
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Based on the proposed method for finding the canonical form of the equation (1), it is possible
to study the problems of classification and reduction to canonical form of differential equations of
higher-order with partial derivatives.
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This article addresses the non-linear optimization problem of oscillatory processes governed by partial
integro-differential equations involving a Fredholm integral operator. A distinctive feature of the problem
is that both the objective functional and the functions describing external and boundary influences are
non-linear with respect to the vector controls. The integro-differential equation describing the state of the
oscillatory process includes Fredholm integral operator, which has a significant impact on the structure and
properties of the solutions. The algorithm for constructing the complete solution to this problem, as well as
the effect of the Fredholm integral operator on the solution of the corresponding boundary value problem,
has been published in previous studies. This article is dedicated to the investigation of the convergence
of approximate solutions to the exact solution of the considered non-linear optimization problem. The
influence of the Fredholm integral operator on the convergence behavior of the approximations is examined.
It is demonstrated that the presence of the integral operator necessitates the construction of three distinct
types of approximations of the optimal process: “Resolvent” approximations, based on the resolvent of the
kernel of the integral operator; Approximations by optimal controls, constructed through the approximation
of control functions; Finite-dimensional approximations.

Keywords: optimal control, optimal process, minimal value of functional, non-linear optimization problem,
approximations of complete solution, resolvent approximation, finite-dimensional approximation, conver-
gence.
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Introduction

Optimal control of systems with distributed parameters is one of the intensively developing scientific
directions of Optimal control theory. Dynamics of systems with distributed parameters is described
by partial differential equations, integral, integro-differential and more complex functional equations.
Methods for solving linear optimization problems in programming control of systems with distributed
parameters are based on the methods of classical variational calculus, the maximum principle, and
they have been developed in studies [1–3]. The mathematical model [4, 5] of many applied problems
need to solve non-linear optimization problems, for which methods for solving them are not sufficiently
developed [6, 7]. A research group of Kyrgyz mathematicians, led by Professor A. Kerimbekov, is
actively investigating the solvability of non-linear optimization problems [8–10] and the convergence
of their approximate solutions [11, 12]. The results of the authors’ research on solutions to non-linear
optimization problems are presented in works [13,14].
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In the paper [14], we have considered the non-linear optimization problem of oscillation processes
described by integro-differential equations in partial derivatives with the integral Fredholm operator and
an algorithm was developed for constructing a complete solution to this problem. It is established that
the presence of the integral operator significantly affects the solvability of the non-linear optimization
problem, in particular, when constructing a generalized solution to the boundary value problem of the
controlled process and when proving the existence and uniqueness of a solution to system of non-linear
integral equations.

In [14], the problem of non-linear optimization for oscillatory processes described by integro-
differential equations with the participation of the Fredholm integral operator was investigated. An
algorithm for constructing a complete solution to this problem was developed. It was established
that the presence of the Fredholm integral operator has a significant effect on the solvability of the
non-linear optimization problem, in particular, on the construction of a generalized solution to the
boundary value problem of the controlled process and on the proof of the existence and uniqueness of
a solution to a system of non-linear integral equations with respect to optimal controls.

This paper continues the study of the complete solution of the non-linear optimization problem
developed in [14], in particular, with the aim of studying the convergence of its approximations. It
is shown that the presence of the Fredholm integral operator necessitates constructing three types of
approximations of the optimal process: approximation through the resolvent of the kernel of the integral
operator, approximation by optimal controls, and finite-dimensional approximation. Accordingly, three
types of approximations of the minimum value of the objective functional are also considered. Sufficient
conditions are established for the convergence of approximations of both distributed and boundary
vector optimal controls, three types of approximations of the optimal process, and approximations of
the minimum value of the functional.

1 Formulation of the Non-linear Optimization Problem and Its Complete Solution

Consider the following non-linear optimization problem, where it is required to minimize the
quadratic integral functional [14].

J [ū(t, x), ϑ̄(t, x)] =

∫
Q

[V (T, x)− ξ1(x)]2 dx+

∫
Q

[Vt(T, x)− ξ2(x)]2 dx+

+

∫ T

0

[
α

∫
Q
h2[t, x, ū(t, x)]dx+ β

∫
γ
b2[t, x, ϑ̄(t, x)]dx

]
dt, α, β > 0,

(1)

on the set of solutions to the boundary value problem

Vtt(t, x)−AV (t, x) = λ

∫ T

0
K(t, τ)V (τ, x)dτ + f [t, x, ū(t, x)], x ∈ Q ⊂ Rn, 0 < t < T, (2)

V (0, x) = ψ1(x), Vt(0, x) = ψ2(x), x = (x1, x2, . . . , xn) ∈ Q, (3)

ΓV (t, x) ≡
n∑

i,k=1

aik(x)Vxk(t, x) cos(δ, xi) + a(x)V (t, x) = p[t, x, ϑ̄(t, x)], x ∈ γ, 0 < t < T. (4)

It should be noted that the characteristics of the data in problem (1)–(4) are preserved as presented
in [14]. It is assumed that the functions describing external and boundary influences satisfy the
following monotonicity conditions with respect to the functional variables:

fui [t, x, ū(t, x)] 6= 0, i = 1, 2, . . . ,m, ∀(t, x) ∈ H(QT ), (5)
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pϑi [t, x, ϑ̄(t, x)] 6= 0, i = 1, 2, . . . , r, ∀(t, x) ∈ H(γT ).

The conditions stated in (5) guarantee a one-to-one correspondence between the elements of the space
of controls (ū0(t, x), ϑ̄0(t, x)) and the space of states V (t, x) the controlled process.

The complete solution of nonlinear optimization problem (1)–(4) is defined in the form of a triple(
(ū0(t, x), ϑ̄0(t, x)), V 0(t, x), J [ū0(t, x), ϑ̄0(t, x)]

)
[14], where:

1) the distributed vector optimal control ū0(t, x) and the boundary vector optimal control ϑ̄0(t, x)
are determined by the formulas

ū0(t, x) = ϕ̄[t, x, θ0
1(t, x), α], θ0

1(t, x) = lim
n→∞

θ
(n)
1 (t, x), x ∈ Q, (6)

ϑ̄0(t, x) = ῡ[t, x, θ0
2(t, x), β], θ0

2(t, x) = lim
n→∞

θ
(n)
2 (t, x), x ∈ γ, (7)

where functions θ(n)
1 (t, x) and θ(n)

2 (t, x) are defined as solutions of the operator equation

θn(t, x) = F
[
θn−1(t, x)

]
, n = 1, 2, 3, . . . ,

with

θ(n)(t, x) =

{
θ

(n)
1 (t, x), x ∈ Q,
θ

(n)
2 (t, x), x ∈ γ,

and satisfy the estimate

‖θ(0)(t, x)− θ(n)(t, x)‖H(Q̄T ) ≤
Cn(α, β)

1− C(α, β)
‖F (θ0(t, x))− θ0(t, x)‖H(Q̄T ), (8)

where

θ0(t, x) =

{
θ10(t, x), x ∈ Q,
θ20(t, x), x ∈ γ,

is an arbitrary vector function in the space H(Q̄T ), and

C(α, β) =
√
f2

0mϕ
2
0(α) + p2

0rυ
2
0(β)
√

2E0G0T < 1, (9)

with constants f0, p0, ϕ0(α), υ0(β), E0, and G0 defined appropriately.
2) V 0(t, x) is an optimal process, determined by the following formula

V 0(t, x) =
∞∑
n=1

(
ψn(t, λ) +

1

λn

∫ T

0
En(t, η, λ)

(∫
Q
f [η, ξ, ū0(η, ξ)]zn(ξ)dξ+

+

∫
γ
p[η, ξ, ϑ̄0(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x),

(10)

where

ψn(t, λ) = ψ1n

[
cosλnt+ λ

∫ T

0
Rn(t, s, λ) cos sds

]
+
ψ2n

λn

[
sinλnt+ λ

∫ T

0
Rn(t, s, λ) sinλnsds

]
,

En(t, η, λ) =

{
sinλn(t− η) + λ

∫ T
η Rn(t, s, λ) sinλn(s− η)ds, 0 ≤ η ≤ t,

λ
∫ T
η Rn(t, s, λ) sinλn(s− η)ds, t ≤ η ≤ T.

3) J [ū0(t, x), ϑ̄0(t, x)] is a minimum value of the functional determined by the following formula
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J [ū0(t, x), ϑ̄0(t, x)] =

∫
Q

([
V 0(T, x)− ξ1(x)

]2
+
[
V 0
t (T, x)− ξ2(x)

]2)
dx+

+

(
α

∫
Q
h2[t, x, ū0(t, x)]dx+ β

∫
γ
b2[t, x, ϑ̄0(t, x)]dx

)
dt, α > 0, β > 0.

(11)

2 Approximations of the Complete Solution to a Non-linear Optimization Problem

The main objective of this work is to investigate the construction of approximate solutions to non-
linear optimization problem (1)–(4) and to analyze their convergence. Since the complete solution
to the problem is represented as a triple

(
(ū0(t, x), ϑ̄0(t, x)), V 0(t, x), J [ū0(t, x), ϑ̄0(t, x)]

)
consisting

of the optimal control, the optimal process, and the minimum value of the functional, we consider
approximations of each of these components separately.

2.1 Convergence of Approximations of Vector Optimal Controls

In formulas (6) and (7), replacing functions θ0
1(t, x) and θ0

2(t, x) with functions θ(k)
1 (t, x) and

θ
(k)
2 (t, x), we find the k-th approximation of the vector distributed control by the formula

ū(k)(t, x) = ϕ̄[t, x, θ
((k))
1 (t, x), α], x ∈ Q, k = 1, 2, 3, . . . ,

and similarly, we find the k-th approximation of the boundary vector control by the formula

ϑ̄(k)(t, x) = ῡ[t, x, θ
(k)
2 (t, x), β], x ∈ γ, k = 1, 2, 3, . . . ,

where ϕ̄[t, x, θ
(k)
1 (t, x), α] and ῡ[t, x, θ

(k)
2 (t, x), β] are known vector functions.

Lemma 1. The k-th approximations of the distributed and boundary vector controls for non-linear
optimization problem (1)–(4) converge to the optimal distributed and boundary vector controls, re-
spectively, in the norms of the Hilbert spaces Hm(QT ) and Hr(γT ).

Proof. Let us introduce the notation

Ū(t, x) =

{
ū(t, x), x ∈ Q,
ϑ̄(t, x), x ∈ γ.

Using inequalities (8) and (9), we calculate the following norm:

‖Ū(t, x)− Ūn(t, x)‖2H(Q̄T ) = ‖ū0(t, x)− ūn(t, x)‖2Hm(Q̄T ) + ‖ϑ̄0(t, x)− ϑ̄n(t, x)‖2Hk(γ̄T ) ≤

≤ ϕ2
0(α)‖θ0

1(t, x)− θn1 (t, x)‖2H(QT ) + υ2
0(β)‖θ0

2(t, x)− θn2 (t, x)‖2H(γT ) ≤ Ψ2(α, β)‖θ0(t, x)− θn(t, x)‖2H(Q̄T ),

Ψ2(α, β) = max{ϕ2
0(α), υ2

0(β)}, from which the assertion of the lemma follows.

2.2 Approximations of the Optimal Process and Their Convergence

The presence of the Fredholm integral operator in boundary value problem (2)–(4), according to
formula (10), leads to the construction of the following three types of approximations of the optimal
process: approximations based on the resolvent of the kernel of the integral operator; approximations
induced by the approximations of the optimal controls; finite-dimensional approximations. Each of
these approximation types will be considered separately below.
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2.2.1 “Resolvent” Approximations of the Optimal Process and Their Convergence

Functions defined by the formulas

V (m)(t, x) =

∞∑
n=1

(
ψ(m)
n (t, λ) +

1

λn

∫ T

0
E(m)
n (t, η, λ)×

×
(∫

Q
f [η, ξ, ū0(η, ξ)]zn(ξ)dξ +

∫
γ
p[η, ξ, ϑ̄0(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x), m = 1, 2, 3, ...,

are called m-th approximations of the optimal process with respect to the resolvent or “resolvent”
approximations of the optimal Process. Here,

ψ(m)
n (t, λ) = ψ1n

[
cosλnt+ λ

∫ T

0
R(m)
n (t, s, λ) cosλnsds

]
+
ψ2n

λn

[
sinλnt+ λ

∫ T

0
R(m)
n (t, s, λ) sinλnsds

]
,

E(m)
n (t, η, λ) =

{
sinλn(t− η) + λ

∫ T
η R

(m)
n (t, s, λ) sinλn(s− η)ds, 0 ≤ η ≤ t,

λ
∫ T
η R

(m)
n (t, s, λ) sinλn(s− η)ds, t ≤ η ≤ T,

R(m)
n (t, s, λ) =

m∑
n=0

λi−1Kn,i(t, s), n = 1, 2, 3, . . .

Lemma 2. “Resolvent” approximations V (m)(t, x) of the optimal process under the conditions of
non-linear optimization problem (1)–(4) converge to the optimal process V 0(t, x) in the norm of the
Hilbert space H(QT ).

Proof. We evaluate the following norm

‖V 0(t, x)− V (m)(t, x)‖2H(QT ) ≤ 2T
2λ2T 2K0

λ2
1

(
|λ| T

√
K0

λ1

)2m (
1− 1

ln |λ| T
√
K0
λ1

)2
×

×
(
‖ψ1(x)‖2H(Q)+

1

λ2
1

‖ψ2(x)‖2H(Q)+‖f [η, ξ, ū0(η, ξ)]‖2H(QT )+‖p[η, ξ, ϑ̄
0(η, ξ)]‖2H(γT )

) ∞∑
n=1

1

λ2
n

→ 0, m→∞,

from which, by virtue of the condition |λ| T
√
K0
λ1

< 1, the assertion of the lemma follows.

2.2.2 m, k-th Approximations of the Optimal Process and Their Convergence

Functions defined by following the formula

V
(m)
k (t, x) =

∞∑
n=1

(
ψ(m)
n (t, λ) +

1

λn

∫ T

0
E(m)
n (t, η, λ)×

×
(∫

Q
f [η, ξ, ū(k)(η, ξ)]zn(ξ)dξ +

∫
γ
p[η, ξ, ϑ̄(k)(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x),

are called m, k-th approximations of the optimal process with respect to controls, where ū(k)(t, x) are
k-th approximations of the distributed vector control, and ϑ̄(k)(t, x) are k-th approximations of the
boundary vector control.

Lemma 3. m, k-th approximations V (m)
k (t, x) of the optimal process under the conditions of non-

linear optimization problem (1)–(4) converge to the “resolvent” approximations V (m)(t, x) when k →∞
for any m = 1, 2, 3, . . . in the norm of the space H(QT ).
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Proof. The evaluation of the following norm leads directly to the conclusion of Lemma 3.

‖V (m)(t, x)− V (m)
k (t, x)‖2H(QT ) ≤ 4T

(
1 +

λ2T 2K0(
λ1 − |λ|T

√
K0

)2
)
×

×
∞∑
n=1

1

λ2
n

(
f2

0 ‖ū0(η, ξ)− ū(m)(η, ξ)‖2H(QT ) + p2
0‖ϑ̄0(η, ξ)− ϑ̄(m)(η, ξ)‖2H(γT )

)
→ 0, k →∞,

which is obtained taking into account the estimate∫ T

0

(
E(m)
n (t, η, λ)

)2
dη ≤ 2T

(
1 + λ2 T 2K0(

λn − λT
√
K0

)2
)
.

2.2.3 Finite-Dimensional Approximations of the Optimal Process and Their Convergence

Functions defined by the following formula

V
(m)
k,l (t, x) =

l∑
n=1

(
ψ(m)
n (t, λ) +

1

λn

∫ T

0
E(m)
n (t, η, λ)×

×
(∫

Q
f [η, ξ, ū(k)(η, ξ)]zn(ξ)dξ +

∫
γ
p[η, ξ, ϑ̄(k)(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x),

m = 1, 2, 3, . . . , µm <∞, k = 1, 2, 3, . . . , µk <∞, l = 1, 2, 3, . . . , µl <∞,

(12)

are called m, k, l-th approximations or finite-dimensional approximations of the optimal process.

Lemma 4. m, k, l-th approximations V (m)
k,l (t, x) or finite-dimensional approximations of the optimal

process under the conditions of non-linear optimization problem (1)–(4) converge to m, k-th approxi-
mations V (m)

k (t, x) when l→∞ for any m, k in the norm of the space H(QT ).
Proof. The assertion of the lemma follows from the following relation:

‖V (m)
k (t, x)− V (m)

k,l (t, x)‖2H(QT ) ≤
∞∑

n=l+1

∫ T

0

∫
Q

(
V (m)(t, x)− V (m)

k (t, x)
)2
dxdt ≤

≤ 4T

(
1 +

λ2T 2K0(
λ1 − |λ|T

√
K0

)2
)
×

×
∞∑

n=l+1

1

λ2
n

(
f2

0 ‖ū0(η, ξ)− ū(m)(η, ξ)‖2H(QT ) + p2
0‖ϑ̄0(η, ξ)− ϑ̄(m)(η, ξ)‖2H(γT )

)
→ 0, l→∞,

which holds due to the convergence of the remainder terms of the convergent series for each fixedm, k.

2.3 Approximations of the Generalized Derivative of the Optimal Process and Their Convergence

Similarly, the convergence of approximations was investigated for the generalized derivative of the
optimal process determined by the following formula

V 0
t (t, x) =

∞∑
n=1

(
ψ′nt(t, λ) +

1

λn

∫ T

0
E′nt(t, η, λ)

(∫
Q
f [η, ξ, ū0(η, ξ)]zn(ξ)dξ+

+

∫
γ
p[η, ξ, ϑ̄0(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x),
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where

ψ′nt(t, λ) = ψ1n

(
−λn sinλnt+ λ

∫ T

0
R′nt(t, s, λ) cosλns ds

)
+

ψ2nλn(
λn cosλnt+ λ

∫ T
0 R′nt(t, s, λ) sinλns ds

) ,

E′nt(t, η, λ) =

{
λn cosλn(t− η) + λ

∫ T
η R′nt(t, s, λ) sinλn(s− η)ds, 0 ≤ η ≤ t,

λ
∫ T
η R′nt(t, s, λ) sinλn(s− η)ds, t ≤ η ≤ T,

and it is an element of the space H(QT ) [14].

2.3.1 “Resolvent” Approximations of the Generalized Derivative of the Optimal Process and Their
Convergence

Functions defined by the following formula

V m
t (t, x) =

∞∑
n=1

(
ψ′mnt (t, λ) +

1

λn

∫ T

0
E′mnt (t, η, λ)×

×
(∫

Q
f [η, ξ, ū0(η, ξ)]zn(ξ)dξ +

∫
γ
p[η, ξ, ϑ̄0(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x), m = 1, 2, 3, ...,

are called m-th approximations or “resolvent” approximations of the generalized derivative of the
optimal process.

Lemma 5. “Resolvent” approximations V ′mt (t, x) of the generalized derivative of the optimal process
under the conditions of non-linear optimization problem (1)–(4), converge to the generalized derivative
optimal process V ′0t (t, x) in the norm of the Hilbert space H(QT ).

Proof. The assertion of Lemma 5 follows from the following relation

‖V 0
t (t, x)− V m

t (t, x)‖2H(QT ) ≤ 4Tλ2T 2K0

(
|λ|

√
K0T 2

λ2
1

)2m(
1− 1

ln
(
|λ|T

√
K0

))×
×
(
‖ψ1(x)‖2H(Q) +

1

λ2
1

‖ψ2(x)‖2H(Q) + (13)

+
(
‖f [η, ξ, ū0(η, ξ)]‖2H(QT ) + ‖p[η, ξ, ϑ̄0(η, ξ)]‖2H(QT )

) ∞∑
n=1

1

λ2
n

)
→ 0, m→∞

which holds due to the condition |λ|
√
K0T 2

λ1
< 1.

2.3.2 m, k-th Approximations of the Generalized Derivative of the Optimal Process and Their
Convergence

Functions defined by the following formula

V ′mtk (t, x) =
∞∑
n=1

(
ψ′mnt (t, λ) +

1

λn

∫ T

0
E′mnt (t, η, λ)×

×
(∫

Q
f [η, ξ, ū(k)(η, ξ)]zn(ξ)dξ +

∫
γ
p[η, ξ, ϑ̄(k)(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x),

(14)

are called m, k-th approximations of the generalized derivative of the optimal process.
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Lemma 6. m, k-th approximations V ′mtk (t, x) of the generalized derivative of the optimal process
under the conditions of non-linear optimization problem (1)–(4) converge to the m-th approxima-
tions V ′(m)

t (t, x) of the generalized derivative of the optimal process when k → ∞ for any value of
m = 1, 2, 3, . . . in the norm of the space H(QT ).

Proof. Proof of the lemma follows from the following relation:

‖V m
t (t, x)− V m

tk (t, x)‖2H(QT ) ≤4T 3

(
1 +

λ2K0T

λ2
1

)
·
(
f2

0

∥∥∥ū0(t, x)− ū(k)(t, x)
∥∥∥2

H(QT )
+

+ p2
0

∥∥∥ϑ̄0(t, x)− ϑ̄(k)(t, x)
∥∥∥2

H(γT )

)
→ 0, k →∞.

2.3.3 Finite-Dimensional Approximations of the Generalized Derivative of the Optimal Process and
Their Convergence

Functions defined by the following formula

V ′mtk,l(t, x) =
l∑

n=1

(
ψ′mnt (t, λ) +

1

λn

∫ T

0
E′mnt (t, η, λ)×

×
(∫

Q
f [η, ξ, ū(l)(η, ξ)]zn(ξ)dξ +

∫
γ
p[η, ξ, ϑ̄(l)(η, ξ)]zn(ξ)dξ

)
dη
)
zn(x),

are called m, k, l-th approximations or finite-dimensional approximations of the generalized derivative
of the optimal process.

Lemma 7. Finite-dimensional approximations V ′mtk,l(t, x) of the generalized derivative of the optimal
process under the conditions of non-linear optimization problem (1)–(4) converge to m, k-th approx-
imations V ′mtk (t, x) of the generalized derivative of the optimal process when l → ∞ for any value of
m, k in the norm of space H(QT ).

Proof. Proof of the lemma follows from the following inequality

∥∥V m
tk (t, x)− V m

tk,l(t, x)
∥∥2

H(QT )
≤8T

(
1 +

λ2

λ2
n

· K0T
2λ2

n(
λn|λ|

√
K0T 2

)2
)
·

( ∞∑
n=i+1

λ2
nψ

2
1n +

∞∑
n=i+1

ψ2
1n+

+
∞∑

n=i+1

∫ T

0
f2
n[η, ūk] dη +

∞∑
n=i+1

∫ T

0
p2
n[η, ϑ̄k] dη

)
→ 0, l→∞,

which hold due to the convergence of the remainder terms of convergent series.

2.4 Approximations of the Minimum Value of the Functional and Their Convergence

The minimum value of functional (11), in accordance with the approximations of the optimal
process, has three types of approximations.

Let us first derive the following formula that will be repeatedly used in proving the convergence of
approximations of the minimum value of the functional:

|J [û, ϑ̂]− J [ũ, ϑ̃]| ≤ ‖V (T, x) +W (T, x)− 2ξ1(x)‖H(Q) · ‖V (T, x)−W (T, x)‖H(Q)

+ ‖Vt(T, x) +Wt(T, x)− 2ξ2(x)‖H(Q) · ‖Vt(T, x)−Wt(T, x)‖H(Q)

+ αh0 · ‖h[t, x, û(t, x)] + h[t, x, ũ(t, x)]‖H(QT ) · ‖û(t, x)− ũ(t, x)‖H(QT )

+ βb0 · ‖b[t, x, ϑ̂(t, x)] + b[t, x, ϑ̃(t, x)]‖H(γT ) · ‖ϑ̂(t, x)− ϑ̃(t, x)‖H(γT ),
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2.4.1 Finite-dimensional approximations of the functional minimum value and their convergence

According to formulas (12) and (13), finite-dimensional approximations of the functional minimum
value are calculated by the formula

Jk,jm [ū(k)(t, x), ϑ̄(k)(t, x)] =

∫
Q

[(
V

(m)
k,j (T, x)− ξ1(x)

)2
+
(
Vtk,j (T, x)− ξ2(x)

)2]
dx+

+

∫ T

0

[
α

∫
Q
h2(t, x, ū(k)(t, x)) dx+ β

∫
γ
b2(t, x, ϑ̄(k)(t, x)) dx

]
dt.

Lemma 8. Finite-dimensional approximations Jkm[ū0(t, x), ϑ̄0(t, x)] of the functional minimal value
under the conditions of the non-linear optimization problem (1)–(4) converge to the m-th approxima-
tions of the functional minimal value when k → ∞ for all fixed values of m, k in the norm of real
numbers space R.

Proof. In formula (14), by replacing

V (t, x)→ V
(m)
k,l (t, x), Vt(t, x)→ V

(m)
tk (t, x), W (t, x)→ V

(m)
k,j (t, x), Wt(t, x)→ V

(m)
tk,j (t, x),

we obtain the inequality∣∣∣J (k)
m [ūk(t, x), ϑ̄(k)(t, x)]− Jk,jm [ū(k)(t, x), ϑ̄(k)(t, x)]

∣∣∣ ≤ C(2)
∥∥V m

k (T, x)− V m
k,j(T, x)

∥∥
H(Q)

+

+ C(3)
∥∥V m

tk (T, x)− V m
tk,j(T, x)

∥∥
H(γ)

→ 0, k →∞,

where C(2), C(3) are constants.

3 Main results

Theorem 1. (Convergence of Finite-Dimensional Approximations to the Optimal Process). Let the
following conditions be satisfied:

1) Functions of external and boundary influences satisfy the Lipschitz condition for functional
variables (for controls):

‖f [η, ξ, û(η, ξ)]− f [η, ξ, ũ(η, ξ)]‖2H(QT ) ≤ f
2
0 ‖û(η, ξ)− ũ(η, ξ)‖2H(QT ), f2

0 = const,

‖p[η, ξ, ϑ̂(η, ξ)]− p[η, ξ, ϑ̃(η, ξ)]‖2H(QT ) ≤ p
2
0‖ϑ̂(η, ξ)− ϑ̃(η, ξ)‖2H(QT ), p2

0 = const.

2) The intermediate vectors ϕ̄[t, x, θ1(t, x), α], x ∈ Q, and ῡ[t, x, θ2(t, x), β], x ∈ γ, of the functions
satisfy the Lipschitz condition with respect to functional variables:

‖ϕ̄[t, x, θ̂1(t, x), α]− ϕ̄[t, x, θ̃1(t, x), α]‖H(QT ) ≤ ϕ0(α)‖θ̂1(t, x)− θ̃1(t, x)‖H(QT ), ϕ0(α) > 0,

‖ῡ[t, x, θ̂2(t, x), β]− ῡ[t, x, θ̃2(t, x), β]‖H(QT ) ≤ υ0(β)‖θ̂2(t, x)− θ̃2(t, x)‖H(QT ), υ0(β) > 0.

3) With respect to the parameters of non-linear optimization problem (1)–(4), the following in-
equality holds:

C(α, β) =
√
f2

0mϕ
2
0(α) + p2

0rυ
2
0(β)
√

2E0G0T < 1.

Then finite-dimensional approximations V (m)
k,l (t, x) of the optimal process V 0(t, x) under the condi-

tions of the non-linear optimization problem (1)–(4) converge to the optimal process when m, k, l→∞
in the norm of the space H(QT ).
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Proof. Based on Lemmas 1–4, the assertion of the theorem follows from the inequality:

‖V 0(t, x)− V (m)
k,l (t, x)‖H(QT ) ≤‖V 0(t, x)− V (m)(t, x)‖H(QT ) + ‖V (m)(t, x)− V (m)

k (t, x)‖H(QT )+

+ ‖V (m)
k (t, x)− V (m)

k,l (t, x)‖H(QT ) → 0, m, k, l→∞.

Theorem 2. (Convergence of finite-dimensional approximations of the generalized derivative to the
generalized derivative of the optimal process). Let the conditions of Theorem 1 be satisfied. Then
Finite-dimensional approximations V (m)

tk,l (t, x) of the generalized derivative of the optimal under the
conditions of non- linear optimization problem (1)–(4)converge to generalized derivative V 0

t (t, x) of the
optimal process when m, k, l→∞ in the norm of the space H(QT ).

Proof. Proof of the lemma follows from following inequality

‖V 0
t (t, x)− V (m)

tk,l (t, x)‖H(QT
=‖V 0

t (t, x)− V (m)
t (t, x)‖H(QT ) + ‖V (m)

t (t, x)− V (m)
tk (t, x)‖H(QT )+

+ ‖Vtk(t, x)− V (m)
tk,l (t, x)‖H(QT ) → 0, l→∞.

Theorem 3. (Convergence of finite-dimensional approximations of the functional minimum value
to the minimum value of the functional). Let the conditions of Theorem 1 be satisfied, then Finite-
dimensional approximations Jkm[ū0(t, x), ϑ̄0(t, x)] of the functional minimal value under the conditions
of non-linear optimization problem (1)–(4) converge to functional minimal value J [ū0(t, x), ϑ̄0(t, x)]
when m, k, l→∞ in the norm of real numbers space R.

Proof. Proof of Theorem 3 follows from the inequality

|J [ū0(t, x), ϑ̄0(t, x)]− Jk,jm [ū(k)(t, x), ϑ̄(k)(t, x)]| ≤ |J [ū0(t, x), ϑ̄0(t, x)]− Jm[ū0(t, x), ϑ̄0(t, x)]|+

+|Jm[ū0(t, x), ϑ̄0(t, x)]− Jkm[ū(k)(t, x), ϑ̄(k)(t, x)]| +

+|Jkm[ū(k)(t, x), ϑ̄(k)(t, x)]− Jk,jm [ū(k)(t, x), ϑ̄(k)(t, x)]| → 0, m, k, l→∞.

Conclusion

In this paper, the influence of the Fredholm integral operator in the integro-differential equation
on the convergence of approximate solutions to a nonlinear optimization problem is investigated. It
is established that the presence of the Fredholm integral operator leads to the identification of three
distinct types of approximations of the optimal process (“Resolvent” approximations, based on the re-
solvent of the kernel of the integral operator; Approximations by optimal controls, constructed through
the approximation of control functions; Finite-dimensional approximations) and corresponding approx-
imations of the minimum value of the functional.
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On solving the second boundary value problem for the Viscous
Transonic Equation
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In a rectangular domain, the second boundary value problem for the Viscous Transonic Equation is con-
sidered. The uniqueness of the solution to the problem is proved using the energy integral method. The
existence of a solution is proved by the method of separation of variables, i.e. it is sought in the form of a
product of two functions X (x) and Y (y). For definition Y (y), an ordinary differential equation of the sec-
ond order with two boundary conditions on the boundaries of segment [0, q] is obtained. For this problem,
the eigenvalues and the corresponding eigenfunctions are found at n ∈ N . For definition X (x), an ordinary
differential equation of the third order with three boundary conditions on the boundaries of segment [0, q] is
obtained. The solution to this problem is found in the form of an infinite series, uniform convergence, and
the possibility of term-by-term differentiation under certain conditions on the given functions is proven.
The convergence of the second-order derivative of the solution with respect to variable y is proved using
the Cauchy-Bunyakovsky and Bessel inequalities. When substantiating the uniform convergence of the
solution, the absence of a “small denominator” is proved.

Keywords: equations with multiple characteristics, boundary value problem, uniqueness, existence, method
of separated variables, eigenvalue, eigenfunction, functional series, absolute and uniform convergence.

2020 Mathematics Subject Classification: 35G15.

Introduction

Third-order partial differential equations are considered when solving problems in the theory of
nonlinear acoustics and in the hydrodynamic theory of space plasma and fluid filtration in porous
media [1, 2]. Quite often, sharp changes in flow parameters occur in narrow regions adjacent to shock
waves. The gradients of flow parameters in them can be so significant that, along with the nonlinear
nature of the movement, it becomes necessary to take into account the influence of viscosity and
thermal conductivity. Such currents are called short waves. The theory of transonic flows refers to the
theory of short waves. It should be noted that recently in the literature this equation is increasingly
called the viscous transonic equation, or simply the VT equation.

In [3], taking into account the properties of viscosity and thermal conductivity of the gas, a thir-
dorder equation with multiple characteristics was obtained from the Navier-Stokes system, containing
the second derivative with respect to time

uxxx + uyy −
ν

y
uy = uxuxx, ν = const.

This equation, at ν = 1, describes an axisymmetric flow, while at ν = 0, it describes a plane-parallel
flow [4].

∗Corresponding author. E-mail: yusupjonapakov@gmail.com
Received: 27 December 2024; Accepted: 6 June 2025.
c© 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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L. Cattabriga in [5] for equation D2n+1
x u−D2

yu = 0 constructed a fundamental solution in the form
of a double improper integral and studied the properties of the potential and solved boundary value
problems.

In [6, 7], fundamental solutions for a third-order equation with multiple characteristics were con-
structed, containing second derivatives with respect to time, expressed through degenerate hypergeo-
metric functions, their properties were studied, and estimates were found for |t| → ∞.

In [8], the Dirichlet problem for third-order hyperbolic equations was investigated, while in [9], an
analogue of the Goursat problem for a third-order equation with singular coefficients was studied.

In works [10, 11], nonlocal problems for third-order differential equations were examined, while in
works [12–14], the stability of boundary value problems for third-order partial differential equations is
studied.

In works [15–17], boundary value problems for third-order partial differential equations were inves-
tigated.

1 Formulation of the problem

In the domain D = {(x, y) : 0 < x < p, 0 < y < q }, consider the equation:

L [u] ≡ ∂3u

∂x3
+
∂2u

∂y2
= 0, (1)

where p > 0, q > 0 are given sufficiently smooth functions.
Problem A. Find a function u (x, y) from class C3,2

x,y (D) ∩ C2,1
x,y

(
D
)
, that satisfies equation (1) in

the domain D and the following boundary conditions:

uy (x, 0) = uy (x, q) = 0, (2)
au (0, y) + buxx (0, y) = ψ1 (y) ,

cu (p, y) + duxx (p, y) = ψ2 (y) ,

ux (0, y) = ψ3 (y) ,

(3)

where a, b, c and d are given constants, and also a2+b2 6= 0, a2+c2 6= 0, c2+d2 6= 0, and ψi (y) , i = 1, 3 ,
are given sufficiently smooth functions, and

ψ′i (0) = ψ′i (q) = 0, i = 1, 3. (4)

Note that a similar problem for the adjoint equation was studied in [18–19]. The boundary value
problem close to the topic of this work was studied in [20–22]. The case a = 1, b = 0, c = 1, d = 0
was considered in work [23].

2 The uniqueness of solution

Theorem 1. If Problem A has a solution, then if conditions ab ≤ 0, cd ≥ 0 are met, it is unique.

Proof. Assume the opposite, let Problem A have two solutions u1 (x, y) and u2 (x, y). Then the
function u (x, y) = u1 (x, y) − u2 (x, y) satisfies equation (1) with homogeneous boundary conditions.
Let us prove that u (x, y) ≡ 0 is in D.

In the domain D the identity

uL [u] = uuxxx + uuyy = 0,
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or

uL[u] ≡ ∂

∂x

(
uuxx −

1

2
u2
x

)
+

∂

∂y
(uuy)− u2

y = 0 (5)

holds. Integrating identity (5) over the domain D and taking into account homogeneous boundary
conditions, we obtain

p∫
0

q∫
0

∂
∂x

[
u (x, y) uxx (x, y)− 1

2 u
2
x (x, y)

]
dxdy+

+
p∫
0

q∫
0

∂
∂y [u (x, y) uy (x, y)]dxdy −

p∫
0

q∫
0

u2
y (x, y) dxdy = 0.

Taking into account homogeneous boundary conditions and requiring a 6= 0, c 6= 0, we obtain

d

c

q∫
0

u2
xx (p, y) dy − b

a

q∫
0

u2
xx (0, y) dy +

1

2

q∫
0

u2
x (p, y) dy +

p∫
0

q∫
0

u2
y (x, y) dxdy = 0.

Taking into account the condition ab ≤ 0, cd ≥ 0, we obtain uy (x, y) = 0. From this, it follows
that u (x, y) = f (x). Substituting u (x, y) into equation (1), we get f ′′′ (x) = 0. The solution to this
equation is f (x) = C1x

2 +C2x+C3. To satisfy the boundary conditions in equation (3), the constants
C1, C2, C3 are determined, 

2bC1 + aC3 = ψ10,

C1

(
cp2 + 2d

)
+ cC3 = ψ20,

C2 = ψ30.

The value of the main determinant of this system is as follows:

∆ =

∣∣∣∣∣∣
2b 0 a

cp2 + 2d cp c
0 1 0

∣∣∣∣∣∣ = acp2 + 2ad− 2bc.

Assume that ∆ = 0. In this case, acp2 + 2ad − 2bc = 0, and from this, we derive p2 = 2

(
b

a
− d

c

)
which represents the uniqueness condition. According to the theorem and the condition a2 + c2 6= 0, if
we consider p2 < 0, it leads to a contradiction because p > 0. Thus, ∆ 6= 0. Consequently, this implies
C1 = C2 = C3 = 0 then f (x) = 0. Hence, the function u (x, y) ≡ 0 for all (x, y) ∈ D. Finally, from
the last equation, it follows that u1 (x, y) = u2 (x, y).

In cases b 6= 0, d 6= 0; a 6= 0, d 6= 0; c 6= 0, b 6= 0 similarly we obtain the equality of u (x, y) ≡ 0
in D.

The proof of Theorem 1 is complete.

3 Existence of a solution

Theorem 2. If the functions are ψi (y) ∈ C2 [0 < y < q] , i = 1, 3 and conditions (4) are satisfied,
then a solution to Problem A exists.

Proof. To prove the existence of a solution to Problem A, we search in the form

u (x, y) = X (x)Y (y) . (6)
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Substituting (6) into equation (1) and separating the variables, and taking into account the boundary
condition (2), we obtain a Sturm-Liouville type problem with respect to the function Y (y) [24]:{

Y ′′ + λY = 0,

Y ′ (0) = Y ′ (q) = 0,
(7)

where λ is the separation parameter.
We know that the solution to problem (7) is expressed as follows:

Yn (y) = Bn cos
nπ

q
y.

It is known that a nontrivial solution to the problem (7) exists only when

λ0 = 0, λn =

(
nπ

q

)2

, n ∈ N.

λn, with n ∈ N ∪ {0}, are the eigenvalues, and their corresponding eigenfunctions are as follows:

Yn (y) =


1
√
q
, n = 0,√

2

q
cos

nπ

q
y, n ∈ N.

(8)

Note that the system of eigenfunctions (8) of problem (7) is complete and orthonormal in the
L2 (0, q) space [25].

1) When λ0 = 0, we get the following problem for the function X (x):
X ′′′0 = 0,

aX0 (0) + bX ′′0 (0) = ψ10,

cX0 (p) + dX ′′0 (p) = ψ20,

X ′0 (0) = ψ30.

(9)

The solution to the boundary value problem equation (9) is as follows:

X0 (x) = C1x
2 + C2x+ C3,

then, taking into account (6) and (9), from equality (7) we search the solution to Problem A in the
form:

u0 (x) =
1
√
q

(
C1x

2 + C2x+ C3

)
. (10)

Taking into account condition (3), we obtain a system of algebraic equations:
2bC1 + aC3 = ψ10,

C1

(
cp2 + 2d

)
+ cC3 = ψ20,

C2 = ψ30,

(11)

where ψi0, i = 1, 3, are the Fourier coefficients of the function ψi (y) , i = 1, 3, i.e.,

ψi0 =

√
1

q

q∫
0

ψi (y) dy, i = 1, 3.
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Now we find the solution of system (11). To do this, we first calculate the main determinant of
system (11), which has the following form

∆ =

∣∣∣∣∣∣
2b 0 a

cp2 + 2d cp c
0 1 0

∣∣∣∣∣∣ = acp2 + 2ad− 2bc.

Since p > 0, then ∆ 6= 0 and system (11) has a solution:

C1 =
−cψ10 + aψ20 − acpψ30

acp2 + 2ad− 2bc
,

C2 = ψ30,

C3 =
ψ10

(
cp2 + 2d

)
− 2bψ20 + 2bcpψ30

acp2 + 2ad− 2bc
.

Substituting Ci, i = 1, 3 into (10), we obtain

u0 (x) =

√
1

q

1

acp2 + 2ad− 2bc

[
ψ10

(
−cx2 + cp2 + 2d

)
+

+ ψ20

(
ax2 − 2b

)
+ ψ30

(
acp2x+ 2adx− 2bcx+ 2bcp

)]
.

(12)

In what follows, the maximum value among all positive known numbers found in estimates will be
denoted by M . Now we find estimates (12) and u0 (x) in the domain D. From (12) we have

|u0 (x)| ≤M [|ψ10|+ |ψ20|+ |ψ30|] ≤M,∣∣u0
′′′ (x)

∣∣ ≤M.

2) Now, when λn =
(
nπ
q

)2
, n ∈ N , we get the following problem for the function X (x):


X ′′′n − λnXn = 0,

aXn (0) + bX ′′n (0) = ψ1n,
cXn (p) + dX ′′n (p) = ψ2n,

X ′n (0) = ψ3n;

(13)

here

ψi n =

√
2

q

q∫
0

ψi (y) cos

(
nπ

q
y

)
dy, i = 1, 3, n ∈ N.

The general solution to the equation in problem (13) has the form:

Xn (x) = C1ne
kn x + e−

1
2
kn x

(
C2n cos

√
3

2
knx+ C3n sin

√
3

2
knx

)
, (14)

where

kn = 3
√
λn =

(
nπ

q

) 2
3

, n ∈ N.
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Taking into account the boundary conditions of problem (13) for the solution in the form of (14), we
obtain the following:

C1n

(
a+ bk2

n

)
+ C2n

(
a− bk2n

2

)
− C3n

√
3bk2n
2 = ψ1n,

C1ne
knp
(
c+ dk2

n

)
+ C2ne

− 1
2
knp
(
c cos

(√
3

2 knp
)

+ dk2
n cos

(√
3

2 knp−
2π
3

))
+

+C3ne
− 1

2
knp
(
c sin

(√
3

2 knp
)

+ dk2
n sin

(√
3

2 knp−
2π
3

))
= ψ2n,

knC1n − 1
2knC2n +

√
3

2 knC3n = ψ3n.

(15)

So, to determine the coefficients Cin, i = 1, 3, we received a system of algebraic equations (15).
Let us introduce the notation:

αn = cos

(√
3

2
knp

)
, βn=sin

(√
3

2
knp

)
, γn = cos

(√
3

2
knp−

2π

3

)
, δn = sin

(√
3

2
knp−

2π

3

)
.

Then (15) has the following form:
C1n

(
a+ bk2

n

)
+ C2n

(
a− bk2n

2

)
− C3n

√
3bk2n
2 = ψ1n,

C1ne
knp
(
c+ dk2

n

)
+ C2ne

− 1
2
knp
(
cαn + dk2

nγn
)

+ C3ne
− 1

2
knp
(
cβn + dk2

nδn
)

= ψ2n,

knC1n − 1
2knC2n + C3n

√
3

2 kn = ψ3n.

(16)

The main determinant of system (16) has

∆ =

∣∣∣∣∣∣∣
a+ bk2

n a− 1
2bk

2
n −

√
3

2 bk
2
n

eknp
(
c+ dk2

n

)
e−

kn
2
p
(
cαn + dk2

nγn
)

e−
kn
2
p
(
cβn + dk2

nδn
)

kn −1
2kn

√
3

2 kn

∣∣∣∣∣∣∣ =

√
3

2
k5
ne
knp∆,

where

∆ =

(
c

k2
n

+ d

)(
b− a

k2
n

)
+e−

3kn
2
p

{(
ac

k4
n

− 2ad

k2
n

+
2bc

k2
n

− bd
)

cos

√
3

2
knp+

√
3

(
ac

k4
n

+ bd

)
sin

√
3

2
knp

}
.

We show that ∆ 6= 0. To do this, we prove the following lemma:

Lemma 1. The boundary value problem
X ′′′n − λnXn = 0,

aXn (0) + bX ′′n (0) = 0,
cXn (p) + dX ′′n (p) = 0,

X ′n (0) = 0,

(17)

has only a trivial solution.

Proof. Let’s assume the opposite, let Xn (x) 6= 0. Consider the identity

Xn

(
X ′′′n − λnXn

)
= 0,

or (
XnX

′′
n −

1

2

(
X ′n

)2)′ − λnX2
n = 0,
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integrating over interval (0 < x < p) , and taking into account the boundary conditions, we obtain

d

c
X ′′n

2
(p)− b

a
X ′′n

2
(0) +

1

2
Xn
′2 (p) + λn

p∫
0

X2
ndx = 0.

Since ab ≤ 0, cd ≥ 0, λn > 0, then Xn ≡ 0.
Lemma 1 has been proved.

If there is a number n∗ such that ∆ (n∗) = 0, then there are constants C∗1 , C∗2 , C∗3 that are not all
equal to zero at the same time, satisfying the system

C∗1n∗
(
a+ bk2

n∗
)

+ C∗2n∗

(
a− bk2

n∗

2

)
− C∗3n∗

√
3bk2

n∗

2
= 0,

C∗1n∗
kn∗p (c+ dk2

n∗
)

+ C∗2n∗e−
1
2
kn∗p

(
c cos

√
3

2
kn∗p+ dk2

n∗ cos

(√
3

2
kn∗p− 2π

3

))
+

+ C∗3n∗e−
1
2
kn∗p

(
c sin

√
3

2
kn∗p+ dk2

n∗ sin

(√
3

2
kn∗p− 2π

3

))
= 0,

kn∗C∗1n∗ −
1

2
kn∗C∗2n∗ +

√
3

2
kn∗C∗3n∗ = 0.

From this we have that the function

Xn∗ (x) = C∗1n∗ekn∗ x + e−
1
2
kn∗ x

(
C∗2n∗ cos

√
3

2
kn∗x+ C∗3n∗ sin

√
3

2
kn∗x

)
is a solution to boundary value problem (17), but according to the proven lemma it should be

C∗1n∗ekn∗ x + e−
1
2
kn∗ x

(
C∗2n∗ cos

√
3

2
kn∗x+ C∗3n∗ sin

√
3

2
kn∗x

)
≡ 0,

but this is impossible due to the linear independence of the functions

ekn∗ x, e−
1
2
kn∗ x cos

√
3

2
kn∗x, e−

1
2
kn∗ x sin

√
3

2
kn∗x.

Hence the function in the form:

u∗ (x, y) = u0 (x) +

√
2

q

+∞∑
n∗=1

Xn∗ (x) cos
n∗π

q
y

are nontrivial solutions to Problem A, and this contradicts the uniqueness theorem. So ∆ (n) 6= 0,
n ∈ N .

Note that in case a = 1, b = 0, c = 1, d = 0, we obtain the result from [23], as a special case.

C1n = 2e−knp
√

3∆

[
ψ1n

k2n
e−

kn
2
p
(
c
k2n

cos
(√

3
2 knp−

π
6

)
+ d cos

(√
3

2 knp+ π
6

))
−
√

3
2
ψ2n

k2n

(
a
k2n
− b
)

+

+ψ3ne
− kn

2 p

kn

((
a
k2n
− 1

2b
)(

c
k2n
− 1

2d
)

sin
√

3
2 knp+

√
3

2

(
ad
k2n
− bd+ bc

k2n

)
cos

√
3

2 knp
)]
,

C2n = 2√
3∆

[
ψ1n

k2n

(
e−

3kn
2
p
(
c
k2n

sin
√

3
2 knp+ d sin

(√
3

2 knp−
2π
3

))
−
√

3
2

(
c
k2n

+ d
))

+
√

3
2
ψ2n

k2n
e−knp

(
a
k2n

+ 2b
)
−

−ψ3n

kn

(
e−

3kn
2
p
(
a
k2n

+ b
)(

c
k2n

sin
√

3
2 knp+ d sin

(√
3

2 knp−
2π
3

))
+
√

3
2 b
(
c
k2n

+ d
))]

,
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C3n = 2√
3∆

[
−ψ1n

k2n

(
c

2k2n
+ d

2 − e
− 3kn

2
p
(
c
k2n

cos
√

3
2 knp+ d cos

(√
3

2 knp−
2π
3

)))
+ 3aψ2n

2k4n
e−knp+

+ψ3n

kn

(
e−

3kn
2
p
(
a
k2n

+ b
2

)(
c
k2n

cos
√

3
2 knp+ d cos

(√
3

2 knp−
2π
3

))
−
(
a
k2n
− b

2

)(
c
k2n

+ d
))]

.

Then the solution to Problem A is written in the following form:

u (x, y) = u0 (x) +

√
2

q

+∞∑
n=1

[
C1ne

kn x + e−
1
2
kn x

(
C2n cos

√
3

2
knx+ C3n sin

√
3

2
knx

)]
cos

nπ

q
y. (18)

Now we prove the absolute and uniform convergence of series (18) in the domain D. From (18) we
have

|u (x, y)| ≤ |u0 (x)|+
√

2
q

+∞∑
n=1

∣∣∣[C1ne
kn x + e−

1
2
kn x

(
C2n cos

√
3

2 knx+ C3n sin
√

3
2 knx

)]
cos nπq y

∣∣∣ ≤
≤M

+∞∑
n=1

∣∣[|C1n| ekn x + |C2n|+ |C3n|
]∣∣. (19)

Estimating Cin, i = 1, 3, we get

|C1n| ≤Me−knp
[
|ψ1n|
k2
n

+
|ψ2n|
k2
n

+
|ψ3n|
kn

]
,

|C2n| ≤M
[
|ψ1n|
k2
n

+
|ψ2n|
k2
n

+
|ψ3n|
kn

]
,

|C3n| ≤M
[
|ψ1n|
k2
n

+
|ψ2n|
k2
n

+
|ψ3n|
kn

]
.

Substituting the found estimates for Cin, i = 1, 3 into (19), we have

|u (x, y)| ≤M
+∞∑
n=1

ekn(x−p)
[
|ψ1n|
k2
n

+
|ψ2n|
k2
n

+
|ψ3n|
kn

]
≤M

+∞∑
n=1

[
|ψ1n|
k2
n

+
|ψ2n|
k2
n

+
|ψ3n|
kn

]
. (20)

Integrating by parts ψ1n, ψ2n, ψ3n and taking into account condition (4), we obtain

ψin =
( q
π

)2 Ψin

n2
, i = 1, 3,

where

Ψin = −
√

2

q

q∫
0

ψ′′i (y) cos
nπy

q
dy.

Then

|ψin| ≤M
|Ψin|
n2

, i = 1, 3, M = const > 0.

Taking these estimates into account, from (20) we find

|u (x, y)| ≤M
+∞∑
n=1

[
|Ψ1n|
n

10
3

+
|Ψ2n|
n

10
3

+
|Ψ3n|
n

8
3

]
<∞.

It follows that series (18) converges absolutely and uniformly.
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Now we prove that the derivatives of series (18) included in equation (1) also converge absolutely
and uniformly in the domain D. To do this, we calculate the derivatives with respect to y, from (18)
we obtain

∂2u

∂y2
= −

√
2

q

(
π

q

)2 +∞∑
n=1

n2

[
C1ne

kn x + e−
1
2
kn x

(
C2n cos

√
3

2
knx+ C3n sin

√
3

2
knx

)]
cos

nπ

q
y,

taking into account the estimate u(x, y), we have∣∣∣∣∂2u

∂y2

∣∣∣∣ ≤M +∞∑
n=1

[
|Ψ1n|
n

4
3

+
|Ψ2n|
n

4
3

+
|Ψ3n|
n

2
3

]
.

Using the Cauchy-Bunyakovsky and Bessel inequalities, we obtain

∣∣∣∂2u∂y2

∣∣∣ ≤M [
+∞∑
n=1

|Ψ1n|
n

4
3

+
+∞∑
n=1

|Ψ2n|
n

4
3

+

√
+∞∑
n=1
|Ψ3n|2

√
+∞∑
n=1

1

n
4
3

]
≤

≤M

[
+∞∑
n=1

|Ψ1n|
n

4
3

+
+∞∑
n=1

|Ψ2n|
n

4
3

+ ‖ψ′′3n (y)‖

√
+∞∑
n=1

1

n
4
3

]
<∞;

here
+∞∑
n=1

|Ψ3n|2 ≤
∥∥ψ′′3n (y)

∥∥2

L2[0,q]
.

Consequently, the series corresponding to the function ∂2u
∂y2

converges absolutely and uniformly. The
absolute and uniform convergence of the third derivative with respect to x of series (18) follows from∣∣∣∂3u∂x3

∣∣∣ ≤ ∣∣∣∂2u∂y2

∣∣∣ and what was proven above.
Theorem 2 is proven.

Conclusion

In this paper, the second boundary value problem for the Viscous Transonic Equation in a rectan-
gular domain is investigated. The uniqueness of the solution to the problem is proved using the energy
integral method. The existence of a solution is proved using the method of separation of variables.
The solution to the problem is found in the form of an infinite series, uniform convergence, and the
possibility of term-by-term differentiation under certain conditions on the given functions is proved.
The convergence of the second-order derivative of the solution with respect to the variable is proved
using the Cauchy-Bunyakovsky and Bessel inequalities. When substantiating the uniform convergence
of the solution, the absence of a “small denominator” is proved.
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In this paper, the solvability of initial-boundary value problems for a nonlocal analogue of a hyperbolic
equation in a cylindrical domain is studied. The elliptic part of the considered equation involves a nonlocal
Laplace operator, which is introduced using involution-type mappings. Two types of boundary conditions
are considered. These conditions are specified as a relationship between the values of the unknown function
at points in one half of the lateral part of the cylinder and the values at points in the other part of
the cylinder boundary. The boundary conditions specified in this form generalize known periodic and
antiperiodic boundary conditions for circular domains. The unknown function is represented in the form
u(x) = v(x) + w(x), where v(x) is the even part of the function and w(x) is the odd part of the function
with respect to the mapping. Using the properties of these functions, we obtain auxiliary initial-boundary
value problems with classical hyperbolic equations. In this case, the boundary conditions of these problems
are specified in the form of the Dirichlet and Neumann conditions. Further, using the known assertions
for the auxiliary problems, theorems on the existence and uniqueness of the solution to the main problems
are proved. The solutions to the problems are constructed as a series in systems of eigenfunctions of the
Dirichlet and Neumann problems for the classical Laplace operator.

Keywords: antiperiodic condition, Dirichlet problem, eigenfunctions, eigenvalues, Fourier series, hyper-
bolic equation, initial-boundary value problem, involution, Neumann problem, nonlocal operator, periodic
condition.

2020 Mathematics Subject Classification: 35L05, 35L20, 35P10.

Introduction

This paper considers differential equations that belong to the class of equations containing shifts
of arguments. Such equations are widely used in describing various scientific models, for example, in
modeling immune processes [1, 2], in various population models [3, 4], in modeling the dynamics of
nonlinear optical systems [5, 6], and other systems.

Among equations with shifts of arguments, equations with involution occupy a special place.
Boundary value and initial-boundary value problems for analogues of elliptic and parabolic equa-
tions with involution have been studied by Al-Salti et al. [7, 8], Ashyralyev and Sarsenbi [9, 10],
Baranetskij et al. [11], Borikhanov and Mambetov [12], Kozhanov and Bzheumikhova [13], Mussirepova
et al. [14, 15], and Yarka et al. [16].

The analogues of hyperbolic equations with involution were considered in [17–19]. In [17], a non-
local analogue of a hyperbolic equation with involution with respect to the time variable was exam-
ined. In the paper, the initial problem was solved by reducing it to an equivalent initial problem
∗Corresponding author. E-mail: batirkhan.turmetov@ayu.edu.kz
This work is funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of

Kazakhstan (grant No.AP23488086).
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for a fourth-order equation without involution. The estimates of stability of the solution and its first-
and second-order derivatives of the above problem were established. Similar studies were conducted
in [18, 19]. In these works, hyperbolic equations with involution with respect to the spatial variable
are considered in the one-dimensional case.

In this paper we investigate the solvability of initial-boundary value problems with periodic and
antiperiodic boundary conditions in the multidimensional case. Moreover, periodic and antiperiodic
boundary conditions are specified on the boundary of a circular cylinder. Boundary value problems
with periodic and antiperiodic boundary conditions in circular domains for the Poisson equation were
first studied in [20, 21], and for the nonlocal Poisson equation they were investigated in [22]. Note
also that boundary value problems with periodic conditions for a hyperbolic equation in rectangular
domains were studied in [23].

Let us turn to the formulation of the problems that are considered in this paper. Let Ω be a unit
ball, ∂Ω be a unit sphere, QT = Ω× (0, T ) be an open cylinder. For any x = (x1, x2, ..., xn) we assign
a point Sx = (−x1, α2x2, ..., αnxn), where αj , j = 2, 3, ..., n takes one of the values ±1.

Let us introduce the operator

Lxv(x) ≡ a04v(x) + a14v(Sx),

where a0, a1 are real numbers, 4 = ∂2

∂x21
+ ...+ ∂2

∂x2n
is the Laplace operator.

Denote

∂Ω+ = {x ∈ ∂Ω : x1 ≥ 0}, ∂Ω− = {x ∈ ∂Ω : x1 ≤ 0}, I = {x ∈ ∂Ω : x1 = 0}.

In the domain QT we consider a following problem:

∂2u(t, x)

∂t2
− Lxu(t, x) = f(t, x), (t, x) ∈ QT , (1)

u(0, x) = ϕ(x), ut(0, x) = ψ(x), x ∈ Ω, (2)

u(t, x) + (−1)ku(t, Sx) = 0, 0 ≤ t ≤ T, x ∈ ∂Ω+, (3)

∂νu(t, x)− (−1)k∂νu(t, Sx) = 0, 0 ≤ t ≤ T, x ∈ ∂Ω+, (4)

where k takes one of the values ±1 , ∂ν = ∂
∂r is the normal vector, r = |x|, ϕ(x) and ψ(x) are the given

functions.
A classical solution to problem (1)–(4) is a function u(t, x) from the class C2,2

t,x (QT ) ∩ C1,1
t,x (QT )

satisfying conditions (1)–(4) in the usual sense.

1 Initial-boundary value problem with Dirichlet boundary condition

In this section we present the well-known statements from V.A. Ilyin’s paper [24] regarding the
initial-boundary value problem for the classical wave equation

4z(t, x)− 1

a2

∂2z(t, x)

∂t2
= −f(t, x), f(t, x) ∈ QT . (5)

For equation (5), problems with initial conditions

z(0, x) = τ(x), zt(0, x) = ρ(x), x ∈ Ω, (6)

and with the Dirichlet boundary condition

z(t, x) = 0, [0, T ]× ∂Ω, (7)
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or with the Neumann boundary condition

∂νz(t, x) = 0, [0, T ]× ∂Ω, (8)

were studied.
A classical solution to the problem with conditions (5)–(7) (or with conditions (5), (6) and (8)) is

a function z(t, x) from the class C2,2
t,x (QT )∩C1,1

t,x (QT ) satisfying conditions (5)–(7) (or with conditions
(5), (6) and (8)) in the usual sense. The following assertions are proved.

Lemma 1. [24] Let the functions τ(x), ρ(x) and f(t, x) satisfy the following conditions:
1) the function τ(x) is continuous in the domain Ω and has continuous derivatives up to order

[n/2] + 2 and square-integrable derivatives of order [n/2] + 3 in this domain. In addition,

τ(x) = 4τ(x) = ... = 4kτ(x) = 0, k = [(n+ 4)/4];

2) the function ρ(x) is continuous in the domain and has continuous derivatives up to order [n/2]+1
and square-integrable derivatives of order [n/2] + 2 in this domain. In addition,

ρ(x) = 4ρ(x) = ... = 4kρ(x) = 0, k = [(n+ 2)/4];

3) the function f(t, x) is continuous in a closed cylinder QT = Ω × [0, T ] and has continuous
derivatives up to order [n/2] + 1 and square-integrable derivatives of order [n/2] + 2 in this cylinder.
In addition,

f(t, x) = 4f(t, x) = ... = 4kf(t, x) = 0, k = [(n+ 2)/4].

Then, a classical solution to problem (5)–(7) exists, is unique, and can be represented as

z(t, x) =

∞∑
m=1

{
τm cos a

√
µmt+

ρm
a
√
µ
m

sin a
√
µmt

}
zm,D(x)+

+

∞∑
m=1

{
a
√
µ
m

∫ t

0
fm(s) sin a

√
µmt− s

}
zm,D(x).

Here zm,D(x) are normalized eigenfunctions of the Dirichlet problem

4z(x) + µz(x) = 0, x ∈ Ω, z(x) = 0, x ∈ ∂Ω, (9)

and τm, ρm, and fm(t) are Fourier coefficients in the expansion of functions τ(x), ρ(x) and f(t, x) in
the system zm,D(x) , i.e., τm = (τm, zm,D(x)), ρm = (ρm, zm,D(x)) and fm = (fm, zm,D(x)).

Lemma 2. [24] Let the functions τ(x), ρ(x) and f(t, x) satisfy the following conditions:
1) the function τ(x) is continuous in the domain Ω and has continuous derivatives up to order

[n/2] + 2 and square-integrable derivatives of order [n/2] + 3 in this domain. In addition,

τ(x) = 4τ(x) = ... = 4kτ(x) = 0, k = [(n+ 2)/4];

2) the function ρ(x) is continuous in the domain and has continuous derivatives up to order [n/2]+1
and square-integrable derivatives of order [n/2] + 2 in this domain. In addition,

ρ(x) = 4ρ(x) = ... = 4kρ(x) = 0, k = [n/4];
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3) the function f(t, x) is continuous in a closed cylinder QT = Ω × [0, T ] and has continuous
derivatives up to order [n/2] + 1 and square-integrable derivatives of order [n/2] + 2 in this cylinder.
In addition,

f(t, x) = 4f(t, x) = ... = 4kf(t, x) = 0, k = [n/4].

Then, a classical solution to the initial boundary value problem for equation (5) with conditions
(6), (8) exists, is unique and can be represented as

z(t, x) =
∞∑
m=1

{
τm cos a

√
µmt+

ρm
a
√
µ
m

sin a
√
µmt

}
zm,N (x)+

+

∞∑
m=1

{
a
√
µ
m

∫ t

0
fm(s) sin a

√
µm(t− s)ds

}
zm,N (x).

Here zm,N (x) are normalized eigenfunctions of the Neumann problem

4z(x) + µz(x) = 0, x ∈ Ω, z(x) = 0, x ∈ ∂Ω, (10)

and τm, ρm and fm(t) are Fourier coefficients in the expansion of functions τ(x), ρ(x) and f(t, x) in
the system zm,N (x).

Further, we present some properties of eigenfunctions zm,D(x) and zm,N (x). In [21], the following
statement is proved.

Lemma 3. All eigenfunctions of the Dirichlet problem (9) and the Neumann problem (10) can be
chosen so that they have one of the symmetry properties:

z(x)− z(Sx) = 0, (11)

or
z(x) + z(Sx) = 0. (12)

2 The main problem

Let u(t, x) be a solution to problem (1)–(4) in the case k = 1. From equation (1) we obtain the
system ut(t, x)− a04u(t, x)− a14u(t, Sx) = f(t, x),

ut(t, Sx)− a14u(t, x)− a04u(t, Sx) = f(t, Sx).
(13)

We denote the operator of the type ISu(t, x) = u(t, Sx) as IS . In [25] it was proved that if S is an
orthogonal matrix, then the operator IS commutes with the operators 4 and Λ ≡ r ∂∂r , where r = |x|.
In our case, the mapping matrix S is orthogonal and therefore from (13) it follows that

f(t, x) + f(t, Sx) = ut(t, x)− a04u(t, x)− a14u(t, Sx) + ut(t, Sx)− a14u(t, x)− a04u(t, Sx) =

= ∂t[u(t, x) + u(t, Sx)]− ao4[u(t, x) + u(t, Sx)]− a14[u(t, x) + u(t, Sx)] =

= ∂t[u(t, x) + u(t, Sx)]− (a0 + a1)4[u(t, x) + u(t, Sx)],

f(t, x)− f(t, Sx) = ut(t, x)− a04u(t, x)− a14u(t, Sx)− [ut(t, Sx)− a14u(t, x)− a04u(t, Sx)] =

= ∂t[u(t, x)− u(t, Sx)]− ao4[u(t, x)− u(t, Sx)]− a14[u(t, x)− u(t, Sx)] =

= ∂t[u(t, x)− u(t, Sx)]− (a0 − a1)4[u(t, x)− u(t, Sx)].
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Let us introduce the notations

v(t, x) =
1

2
[u(t, x) + u(t, Sx)], w(t, x) =

1

2
[u(t, x)− u(t, Sx)].

It is obvious that u(t, x) = v(t, x) + w(t, x) and for all x ∈ Ω the symmetry properties

v(t, Sx) = v(t, x), w(t, Sx) = −w(t, x)

are satisfied.
Then, for the functions v(t, x) and w(t, x), we obtain the following equations

vtt(t, x)− (a0 + a1)4v(t, x) = f+(t, x), wtt(t, x)− (a0 − a1)4w(t, x) = f−(t, x),

where 2f±(t, x) = f(t, x)± f(t, Sx).

From initial conditions (2) for the functions v(t, x) and w(t, x), we obtain

v(0, x) =
1

2
[u(0, x) + u(0, Sx)] =

1

2
[ϕ(x) + ϕ(Sx)] ≡ ϕ+(x),

vt(0, x) =
1

2
[ut(0, x) + ut(0, Sx)] =

1

2
[ψ(x) + ψ(Sx)] ≡ ψ+(x),

w(0, t) =
1

2
[u(0, x)− u(0, Sx)] =

1

2
[ϕ(x)− ϕ(Sx)] ≡ ϕ−(x),

wt(0, x) =
1

2
[ut(0, x)− ut(0, Sx)] =

1

2
[ψ(x)− ψ(Sx)] ≡ ψ−(x).

Further, from boundary condition (3) it follows that if 0 ≤ t ≤ T, x ∈ ∂Ω+, then

v(t, x) |t∈[0,T ],x∈Ω+
= u(t, x) + u(t, Sx) |t∈[0,T ],x∈∂Ω+

= 0,

and if x ∈ ∂Ω−, then Sx ∈ ∂Ω+, hence

v(t, x) |t∈[0,T ],x∈∂Ω−= u(t, x) + u(t, Sx) |t∈[0,T ],x∈∂Ω−= u(t, Sx) + u(t, x) |t∈[0,T ],Sx∈∂Ω+
= 0.

Thus, for the function v(t, x) for all t ∈ [0, T ] and x ∈ ∂Ω, we have v(t, x) = 0.

From the symmetry properties of functions v(t, x) and w(t, x), we get the following equalities:

∂νv(t, Sx) |∂Ω= Λv(t, Sx) |∂Ω= Λv(t, x) |∂Ω= ∂νv(t, x) |∂Ω,

∂νw(t, Sx) |∂Ω= Λw(t, Sx) |∂Ω= −Λw(t, x) |∂Ω= −∂νw(t, x) |∂Ω .

Then from boundary condition (4) for the function w(t, x) for all t ∈ [0, T ] and x ∈ ∂Ω, we obtain the
following edge condition

∂νw(t, x) = 0.

Hence, if u(t, x) is a solution to problem (1)–(4) for k = 1, then the function v(t, x) satisfies the
conditions of the problem

vtt(t, x)− (a0 + a1)4v(t, x) = f+(t, x), (t, x) ∈ QT , (14)

v(0, x) = ϕ+(x), vt(0, x) = ψ+(x), x ∈ Ω, (15)

v(t, x) = 0, [0, T ]× ∂Ω. (16)
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Therefore, the function w(t, x) satisfies the conditions of the problem

wtt(t, x)− (a0 − a1)4v(t, x) = f−(t, x), (t, x) ∈ QT , (17)

w(0, x) = ψ−(x), wt(0, x) = ψ−(x), x ∈ Ω, (18)

∂νw(t, x) = 0, [0, T ]× ∂Ω. (19)

Thus, we have obtained two auxiliary initial-boundary value problems for the classical wave equation.
In the first problem, the boundary condition is specified in the form of the Dirichlet condition, and in
the second problem, in the form of the Neumann condition.

Further, we assume that a0 ± a1 > 0 and rewrite equations (14) and (17) as

4v(t, x)− 1

ε2
0

vtt(t, x) = − 1

ε2
0

f+(t, x), (t, x) ∈ QT ,

4w(t, x)− 1

ε2
1

wtt(t, x) = − 1

ε2
1

f−(t, x), (t, x) ∈ QT ,

where ε0 =
√
a0 + a1, ε1 =

√
a0 − a1 .

To study the solvability of problem (14)–(16), we can use the assertion of Lemma 1. If the functions
f+(t, x), ϕ+(x) and ψ+(x) satisfy the conditions of this lemma, then the classical solution to problem
(14)–(16) exists, is unique, and can be represented as

v(t, x) =

∞∑
m=1

{
ϕ+
m cos ε0

√
µm,Dt+

ψ+
m

ε0
√
µm,D

sin ε0
√
µm,Dt

}
zm,D(x)+

+
∞∑
m=1

{
1

ε0
√
µm,D

∫ t

0
f+
m(s) sin ε0

√
µm,D(t− s)ds

}
zm,D(x), (20)

where ϕ+
m = (ϕ+, zm,D), ψ+

m = (ψ+, zm,D) and f+
m(t) = (f+, zm,D).

Similarly, if the functions f−(t, x), ϕ− and ψ− satisfy the conditions of Lemma 2, then the classical
solution to problem (17)-(18) exists, is unique, and is represented as

w(t, x) =

∞∑
m=1

{
ϕ−m cos ε1

√
µm,N t+

ψ−m
ε1
√
µm,N

sin ε1
√
µm,N t

}
zm,N (x)+

+
∞∑
m=1

{
1

ε1
√
µm,N

∫ t

0
f−m(s) sin ε1

√
µm,N (t− s)ds

}
zm,N (x), (21)

where ϕ−m = (ϕ−, zm,D), ψ+
m = (ψ+, zm,D) and f−m(t) = (f−, zm,D).

Let us transform the functions v(t, x) and w(t, x) from equalities (20) and (21). To do this, we
use the properties of the eigenfunctions zm,D(x) and zm,N (x) formulated in Lemma 3. In this case, we
renumber the eigenfunctions zm,D(x) as follows: we denote the eigenfunctions with property (11) as
z2m,D(x), and the eigenfunctions with property (12) as z2m−1,D(x). We will use a similar notation for
the eigenfunctions zm,D(x) and zm,N (x).

Then, for the coefficients of the function ϕ(x), we have

ϕ+
m =

1

2

∫
Ω

[ϕ(x) + ϕ(Sx)]zm,D(x)dx =
1

2

∫
Ω

ϕ(x)[zm,D(x) + zm,D(Sx)]dx.
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Further, if m = 2j − 1, j = 1, 2, ..., then z2j−1,D(x) + z2j−1,D(Sx) = 0 and if m = 2j, j = 1, 2, ...,
then z2j,D(x) + z2j,D(Sx) = 2z2j,D(x), thus

ϕ+
2m =

∫
Ω

ϕ(x)zm,D(x)dx = ϕ2m, m ≥ 1.

Similarly, for the coefficients ϕ−2m−1, we obtain the equalities

ϕ−2m−1 =

∫
Ω

ϕ(x)z2m−1,N (x)dx = ϕ2m−1, m ≥ 1.

Similar equalities can be obtained for the coefficients f±m(t, x) and ψ−(x) :

ψ+
2m = ψ2m ≡ (ψ, z2m,D), ψ−2m−1 = ψ2m−1 ≡ (ψ, z2m−1,N ),

f+
2m(t) = f2m ≡ (f, z2m,D), f−2m−1(t) = f2m−1 ≡ (f, z2m−1,N ).

Then, formula (20), or more precisely the solution to problem (14)–(16) can be rewritten as

v(t, x) =

∞∑
m=1

{
ϕ2m cos ε0

√
µ2m,Dt+

ψ2m

ε0
√
µ2m,D

sin ε0
√
µ2m,Dt

}
z2m,D(x)+

+
∞∑
m=1

{
1

ε0
√
µ2m,D

∫ t

0
f2m(s) sin ε0

√
µ2m,D(t− s)ds

}
z2m,D(x), (22)

and formula (21) as

w(t, x) =
∞∑
m=1

{
ϕ2m−1 cos ε1

√
µ2m−1,N t+

ψ2m−1

ε1
√
µ2m−1,N

sin ε1
√
µ2m−1,N t

}
z2m−1,N (x)+

+

∞∑
m=1

{
1

ε1
√
µ2m−1,N

∫ t

0
f2m−1(s) sin ε1

√
µ2m−1,N (t− s)ds

}
z2m−1,N (x). (23)

Now we present the main assertion regarding problem (1)–(4).

Theorem 1. Let k = 1, a0 ± a1 > 0, functions f(t, x), ϕ(x) and ψ(x) satisfy the conditions of
Lemma 1. Then, the classical solution to problem (1)–(4), exists, is unique, and can be represented as

u(t, x) =
∞∑
m=1

{
ϕ2m cos

√
(a0 + a1)µ2m,Dt+

ψ2m√
(a0 + a1)µ2m,D

sin (a0 + a1)
√
µ2mt

}
z2m,D(x)+

+

∞∑
m=1

{
ϕ2m−1 cos

√
(a0 − a1)µ2m−1,N t+

ψ2m−1√
(a0 − a1)µ2m−1,N

sin
√

(a0 − a1)µ2m−1,N t

}
z2m−1,N (x)+

+
∞∑
m=1

{
1√

(a0 + a1)µ2m,D

∫ t

0
f2m(s) sin

√
(a0 + a1)µ2m,D(t− s)ds

}
z2m,D(x)+

+
∞∑
m=1

{
1√

(a0 − a1)µ2m−1,N

∫ t

0
f2m−1(s) sin

√
(a0 − a1)µ2m−1,N (t− s)ds

}
z2m−1,N (x). (24)
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Proof. If the functions f(t, x), ϕ(x) and ψ(x) satisfy the conditions of Lemma 1, then the functions
f+(t, x), ϕ+(x) and ψ+(x) satisfy the same conditions. Then, by the assertion of Lemma 1, the solution
to problem (14)–(16) exists, is unique, and can be represented in the form (20). If the functions
f−(t, x), ϕ−(x) and ψ−(x) satisfy the conditions of Lemma 1, they also satisfy the conditions of
Lemma 2. Then, by the assertion of Lemma 2, the solution to problem (17)–(19) with functions exists,
is unique, and can be represented in the form (21). Note that the functions v(t, x) and w(t, x) from
equalities (22) and (23) have the symmetry properties v(t, Sx) = v(t, x) and w(t, Sx) = −w(t, x). We
will show that the function u(t, x) = v(t, x) + w(t, x) will be a classical solution to problem (1)–(4).

Indeed, the following equalities hold for this function

utt(t, x)− Lxu(t, x) =

= vtt(t, x)− a04v(t, x)− a14v(t, Sx) + wtt(t, x)− a04w(t, x)− a14w(t, Sx) =

= vtt(t, x)− (a0 + a1)4v(t, x) + wtt(t, x)− (a0 − a1)4w(t, x) =

= f+(t, x) + f−(t, x) = f(t, x),

u(0, x) = v(0, x) + w(0, x) = ϕ+(x) + ϕ−(x) = ϕ(x), x ∈ Ω,

ut(0, x) = vt(0, x) + wt(0, x) = ψ+(x) + ψ−(x) = ψ(x), x ∈ Ω.

From the symmetry conditions, as well as from boundary conditions (16) and (19) for x ∈ ∂Ω+ for
k = 1, we obtain

u(t, x) + u(t, Sx) = v(t, x) + w(t, x) + v(t, Sx) + w(t, Sx) =

= [v(t, x) + v(t, Sx)] + [w(t, x) + w(t, Sx)] = 2v(t, x) + [w(t, x)− w(t, Sx)] = 0

and

∂νu(t, x)− ∂νu(t, Sx) = ∂ν [v(t, x)− v(t, Sx)] + ∂ν [w(t, x) + w(t, Sx)] =

= ∂ν [0] + ∂νw(t, x) = 0.

Thus, boundary conditions (3) and (4) are also satisfied. Then, substituting the values of the
functions v(t, x) and w(t, x) from equalities (22) and (23) into the left-hand side of the equality u(t, x) =
v(t, x) + w(t, x), we obtain representation (24). The theorem is proved.

We conduct similar studies in the case k = 2. In this case, if we choose functions v(t, x) and w(t, x)
in the form (13), then we obtain a problem with conditions (14), (15) and the Neumann boundary
condition ∂νv(t, x) = 0, [0, T ]× ∂Ω.

Hence, for the function w(t, x), we obtain a problem with conditions (17), (18) and the Dirichlet
boundary condition w(t, x) = 0, [0, T ]× ∂Ω. The main assertion regarding problem (1)–(4) in the case
k = 2 is the following theorem.

Theorem 2. Let k = 2, a0 ± a1 > 0, functions f(t, x), ϕ(x) and ψ(x) the functions and satisfy the
conditions of Lemma 1. Then the classical solution to problem (1)–(4) exists, is unique and can be
represented in the form
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u(t, x) =
∞∑
m=1

{
ϕ2m−1 cos

√
(a0 + a1)µ2m−1,Dt+

ψ2m−1√
(a0 + a1)µ2m−1,D

sin(a0 + a1)
√
µ2mt

}
z2m−1,D(x)+

+

∞∑
m=1

{
ϕ2m cos

√
(a0 − a1)µ2m,N t+

ψ2m√
(a0 − a1)µ2m,N

sin(a0 − a1)
√
µ2m,N t

}
z2m,N (x)+

+
∞∑
m=1

{
1√

(a0 + a1)µ2m−1,D

∫ t

0
f2m−1(s) sin

√
(a0 + a1)µ2m−1,D(t− s)ds

}
z2m−1,D(x)+

+

∞∑
m=1

{
1√

(a0 − a1)µ2m,N

∫ t

0
f2m(s) sin

√
(a0 − a1)µ2m,N (t− s)ds

}
z2m,N (x).

Conclusion

In this paper, the initial-boundary value problem for an analogue of a hyperbolic equation with
involution is studied in a multidimensional circular cylinder. Periodic and antiperiodic conditions are
considered as boundary conditions. The unknown function is represented as the sum of an even and odd
part with respect to the involution transformation. For auxiliary functions, initial-boundary functions
for the classical hyperbolic equation are obtained. Using known assertions for the obtained problems,
theorems on the existence and uniqueness of the main problems are proved.

It is planned to study similar problems for analogues of hyperbolic equations with multiple involu-
tion.
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In 1978, the journal Differential Equations published an article by A.M. Nakhushev, that presented a
method for correctly formulating a boundary value problem for a class of second-order parabolic-hyperbolic
equations in an arbitrarily bounded domain with a smooth or piecewise smooth boundary. In that work, a
boundary value problem was formulated and investigated using the method of a priori estimates, which is
currently called the first boundary value problem for a second-order mixed parabolic-hyperbolic equation.
In this work, a boundary value problem for a third-order model parabolic-hyperbolic equation is formulated
and investigated in a mixed domain, following the approach of A.M. Nakhushev for second-order mixed
parabolic-hyperbolic equations. In one part of the mixed domain, the equation under consideration is
a degenerate hyperbolic equation of the first kind of the second order, and in the other part, it is a
nonhomogeneous equation of the third order with multiple characteristics and reverse-time parabolic type.
For various values of the parameter, existence and uniqueness theorems for a regular solution are proved.
The uniqueness theorem is proved using the method of energy integrals combined with A.M. Nakhushev’s
method. The existence theorem is proved by the method of integral equations. In terms of the Mittag-
Leffler function, the solution of the problem is found and written out explicitly. Sufficient smoothness
conditions for the given functions are found, which ensure the regularity of the obtained solution.

Keywords: second order degenerate hyperbolic equation of the first kind, third-order equation with multiple
characteristics, third-order parabolic-hyperbolic equation, Volterra integral equation, Fredholm integral
equation, Tricomi method, method of integral equations, integral equation method, Mittag-Leffler functions.

2020 Mathematics Subject Classification: 35M12.

Introduction

Boundary value problems for model second order parabolic-hyperbolic equations were first studied
in [1,2]. The classification of parabolic-hyperbolic equations into equations with characteristic and non-
characteristic lines of type change was carried out by [3]. Moreover, in the work of [1], the problem was
studied for a model equation of parabolic-hyperbolic type with a characteristic line of type change, and
in the work of [2], the problem was studied for a model equation with a non-characteristic line of type
change. In 1978, the journal Differential Equations published an article by A.M. Nakhushev, which
provided a method for correctly formulating a boundary value problem for a general second-order
parabolic-hyperbolic equation in an arbitrary bounded domain with a smooth or piecewise smooth
boundary. The boundary value problem investigated in the aforementioned work by A.M. Nakhushev
is currently called the first boundary value problem for a mixed parabolic-hyperbolic equation. The
most complete review on boundary value problems for parabolic-hyperbolic equations one can find in
monographs [4, 5].

The paper considers one mixed problem for a third-order parabolic-hyperbolic model equation. One
part of the mixed domain, involves a third order nonhomogeneous parabolic type equation with multiple
characteristics, while the other part involves a second order degenerate hyperbolic type equation of the
first kind. The paper presents proofs of the existence and uniqueness theorems for a regular solution.
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The uniqueness proof is based on the method of energy integrals combined with A.M. Nakhushev’s
method. The existence proof is based on the method of integral equations. In solving the problem, we
also used the Mittag-Leffler function and wrote down the solution explicitly.

1 Formulation of the problem

On the Euclidean plane with independent variables x and y consider the equation

0 =

{
(−y)m uxx − uyy + λ (−y)(m−2)/2 ux, y < 0,
uxxx + uy − f, y > 0,

(1)

where λ, m are the given numbers, and m > 0, |λ| ≤ m
2 ; f = f(x, y) is the given function; u = u(x, y)

is the desired function.
Equation (1) is a model third order equation of the parabolic-hyperbolic type. For y < 0, it is

equivalent to the degenerate hyperbolic equation of the first kind

(−y)m uxx − uyy + λ (−y)
m−2

2 ux = 0, (2)

and for y > 0 with the third-order inhomogeneous parabolic type equation with multiple characteristics

uxxx + uy = f(x, y). (3)

The paper [6] is devoted to the study of the problem with a shift for a degenerate hyperbolic
equation of the first kind of the form (2), and the local first and second boundary value problems
for a degenerate hyperbolic equation of the second kind are investigated in the papers [7, 8]. The
papers [9, 10] are devoted to the study of nonlocal problems of degenerate hyperbolic equations with
singular coefficients. In [11], a nonlocal problem of the Frankl type for a second-order mixed parabolic-
hyperbolic equation with a characteristic line of type change is investigated. The papers [12, 13] are
devoted to the problems of conjugation of the generalized diffusion equation and degenerate hyperbolic
equations. The problem with a shift for one second-order mixed parabolic-hyperbolic equation with
two perpendicular lines of type change is studied in the paper [14]. Nonlocal problems with a shift
in the conjugation of a third-order equation with multiple characteristics and a degenerate hyperbolic
equation of the first kind of the second order are formulated and investigated in [15, 16]. A nonlocal
problem for a third-order mixed parabolic-hyperbolic equation is investigated in [17].

Equation (1), in this paper, is considered in the mixed domain Ω = Ω1 ∪ Ω2 ∪ I, where Ω1 is
the domain limited by the characteristics σ1 = AC : x − 2

m+2 (−y)(m+2)/2 = 0 and σ2 = CB :

x + 2
m+2 (−y)(m+2)/2 = r of equation (2) for y < 0, coming out from the point C = (r/2, yc),

yc = −
[

(m+2) r
4

] 2
m+2 , passing through the points A = (0, 0), B = (r, 0) and the segment J = AB

of the straight line y = 0; and Ω2 is the rectangular domain with vertices at A = (0, 0), A0 = (0, h),
B0 = (r, h) and B = (r, 0), h = const > 0; J = {(x, 0) : 0 < x < r} is the interval of AB of the
straight line y = 0.

A regular, in the domain Ω, solution to equation (1) we call the function u = u(x, y) by the
class C

(
Ω̄
)
∩C1 (Ω)∩C2 (Ω1)∩Cx, y3, 1 (Ω2); ux(x, 0), uy(x, 0) ∈ L1 (J), when substituted, equation (1)

becomes an identity.
Problem 1. Find a solution to equation (1) regular in the domain and satisfies the conditions

u(0, y) = ϕ1(y), u(r, y) = ϕ2(y), ux(r, y) = ϕ3(y), 0 < y < h, (4)

u [θ0(x)] = ψ(x), 0 ≤ x ≤ r, (5)
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where θ0(x) =
(
x
2 , −

(
m+2

4

)2/(m+2)
x2/(m+2)

)
is the affix of the intersection point of a characteristic

emanating from the point (x, 0) ∈ J with the characteristic AC; ϕ1(y), ϕ2(y), ϕ3(y) are the functions
defined on the segment 0 ≤ y < h; ψ(x) is the function given on the segment 0 ≤ x ≤ r with the
matching condition ϕ1(0) = ψ(0) satisfied.

2 Uniqueness theorem

Let there be a regular solution u = u(x, y) of equation (1) in the domain Ω by the class
C
(
Ω̄
)
∩ C1 (Ω) and let

u(x, 0) = τ(x), 0 ≤ x ≤ r, (6)

uy(x, 0) = ν(x), 0 < x < r. (7)

Then, passing in equation (1) to the limit at y → +0, taking into account the notations (6), (7)
and conditions (4), we immediately obtain the first fundamental relationship between the functions
τ(x) and ν(x), transferred from the parabolic part Ω2 of the domain Ω to the line of type change J :

τ ′′′(x) + ν(x) = f(x, 0), 0 < x < r, (8)

τ(0) = ϕ1(0), τ(r) = ϕ2(0), τ ′(r) = ϕ3(0). (9)

Next, find the relationship between the functions τ(x) and ν(x), brought from the hyperbolic
domain Ω1 of equation (1) to the segment AB of the straight line y = 0. To do this, we first note that
in the characteristic coordinates ξ = x− 2

m+2 (−y)
m+2

2 , η = x+ 2
m+2 (−y)

m+2
2 , equation (2) becomes

the Euler–Darboux–Poisson equation

∂2u

∂ξ ∂η
− β1

η − ξ
∂u

∂η
+

β2

η − ξ
∂u

∂ξ
= 0,

where β1 = m−2λ
2(m+2) , β2 = m+2λ

2(m+2) . Designate additionally: β = β1 + β2 = m
m+2 .

First assume |λ| < m
2 and then τ(x) ∈ C[0, r] ∩ C2 (0, r), ν(x) ∈ C1 (0, r) ∩ L1 (0, r). Hence, the

regular solution to problem (6), (7) for equation (2) in Ω1 is written out by the formula in [18; p. 14]:

u(x, y) =
Γ (β)

Γ (β1) Γ (β2)

1∫
0

τ
[
x+ (1− β) (−y)1/(1−β) (2t− 1)

]
tβ2−1 (1− t)β1−1 dt+

+
Γ (2− β) y

Γ (1− β1) Γ (1− β2)

1∫
0

ν
[
x+ (1− β) (−y)1/(1−β) (2t− 1)

]
t−β1 (1− t)−β2 dt, (10)

where Γ (p) =
∞∫
0

exp (−t) tp−1 dt is the Euler integral of the second kind (Gamma function).

Satisfying in (10) condition (5), we get:

u [θ0(x)] = u
[x

2
, − (2− 2β)β−1 x1−β

]
=

Γ (β)

Γ (β1) Γ (β2)

1∫
0

τ (xt) tβ2−1 (1− t)β1−1 dt−

−(2− 2β)β−1 x1−β Γ (2− β)

Γ (1− β1) Γ (1− β2)

1∫
0

ν (xt) t−β1 (1− t)−β2 dt = ψ(x).
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Introducing the new integration variable z = xt, rewrite the last equality as

Γ (β) x1−β

Γ (β1) Γ (β2)

x∫
0

τ (z) zβ2−1

(x− z)1−β1 dz −
(2− 2β)β−1 Γ (2− β)

Γ (1− β1) Γ (1− β2)

1∫
0

ν (z) z−β1

(x− z)β2
dz = ψ(x).

Employing the fractional integro-differentiation operator Dα
cx (in the Riemann–Liouville sense) [19],

rewrite the last equality as follows

Γ (β) x1−β

Γ (β2)
D−β10x

{
τ (t) tβ2−1

}
− (2− 2β)β−1 Γ (2− β)

Γ (1− β1)
Dβ2−1

0x

{
ν (t) t−β1

}
= ψ(x). (11)

Inverting equation (11) relative to the function ν(x), and using the well-known weighted Riemann–
Liouville fractional integral and differential operators with the same origins [19; p. 18], find

ν(x) = γ1D
1−β
0x τ (t)− γ2 x

β1 D1−β2
0x ψ (t) , (12)

where γ1 = Γ(1−β1) Γ(β) (2−2β)1−β

Γ(β2) Γ(2−β) , γ2 = Γ(1−β1)(2−2β)1−β

Γ(2−β) .
Indeed relation (12) is the main fundamental relation between the sought functions τ(x) and ν(x)

transferred from the domain Ω1 to the line of type change J when |λ| < m
2 .

In the case if λ = m
2 , the coefficients β1 = 0, β2 = β = m

m+2 , γ1 = γ2 = (2−2β)1−β

Γ(2−β) , and the solution
to problem (6), (7) for equation (2) can be written by the formula [18; p. 15]:

u(x, y) = τ

[
x+

2

m+ 2
(−y)(m+2)/2

]
+

2y

m+ 2

1∫
0

ν

[
x+

2

m+ 2
(−y)(m+2)/2 (2t− 1)

]
(1− t)−β dt.

(13)
Satisfying condition (5) in representation (13), we arrive at the fundamental relationship between the
functions τ(x) and ν(x) as bellow

ν(x) = γ1

[
D1−β

0x τ (t)−D1−β
0x ψ (t)

]
. (14)

In the case if λ = −m
2 , then β1 = β = m

m+2 , β2 = 0, γ1 = 0, γ2 = 21−β (1− β)−β . The solution to
problem (6), (7) for equation (2) here has the form [18; p. 15]:

u(x, y) = τ

[
x− 2

m+ 2
(−y)(m+2)/2

]
+

2y

m+ 2

1∫
0

ν

[
x− 2

m+ 2
(−y)(m+2)/2 (2t− 1)

]
(1− t)−β dt.

(15)
By (15) under condition (5), we immediately get:

ν(x) = −21−β (1− β)−β xβ ψ′(x). (16)

The following theorem on the unique solution to Problem 1 is true.

Theorem 1. There cannot be more than one regular solution for Problem 1 in the domain Ω.
Proof. Let’s take a homogeneous problem equivalent to Problem 1. For instance, assume that

f(x, y) ≡ 0 ∀ (x, y) ∈ Ω̄2, ϕ1(y) = ϕ2(y) = ϕ3(y) ≡ 0 ∀ y ∈ [0, h] and ψ(x) ≡ 0 ∀ x ∈ [0, r].
Moreover, taking into account that τ(0) = ψ(0) = 0 by relations (12), (14), (16) for different λ, obtain
the bellow equalities:

ν(x) = γ1D
1−β
0x τ (t) = γ1D

−β
0x τ

′ (t) = γ1 ∂
1−β
0x τ (t) , −m

2
< λ ≤ m

2
, (17)
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ν(x) ≡ 0, λ = −m
2
, (18)

where ∂α0xϕ (t) is the fractional differential operator (in the sense of Caputo).
To further discuss, make use of the operator ∂α0xϕ (t) following property [20]: for any absolutely

continuous function ϕ = ϕ(x) on the segment [0, r] that satisfies the condition ϕ(0) = 0, the inequality

ϕ(x) ∂α0xϕ (t) ≥ 1

2
∂α0xϕ

2 (t) , 0 < α ≤ 1 (19)

holds.
Let us consider the integral

I =

r∫
0

τ(x) ν(x) dx. (20)

When −m
2 < λ ≤ m

2 by (17) and (20), taking into account inequality (19), we arrive at

I =

r∫
0

τ(x) ν(x) dx = γ1

r∫
0

τ(x) ∂1−β
0x τ (t) dx ≥

≥ γ1

2

r∫
0

∂1−β
0x τ2 (t) dx =

γ1

2Γ (β)

r∫
0

(r − x)β−1 τ2(x) dx ≥ 0. (21)

On the other hand, for a homogeneous problem equivalent to Problem 1 write, bearing in mind
(8), (9), the integral (20) as follows

I =

r∫
0

τ(x) ν(x) dx = −
r∫

0

τ(x) τ ′′′(x) dx = −1

2

[
τ ′(0)

]2 ≤ 0. (22)

By inequalities (21) and (22) it follows that the integral I = 0, which as follows from the equality,

I =
γ1

2Γ (β)

r∫
0

(r − x)β−1 τ2(x) dx = 0

may occur if and only if τ(x) ≡ 0 ∀x ∈ [0, r]. Then basing on relations (8) and (17) find out that
ν(x) ≡ 0 for all x ∈ [0, r] and any λ ∈

(
−m

2 ; m
2

]
.

However, if λ = −m
2 , then by (8), (9), and (18) we come to the homogeneous problem

τ(0) = 0, τ(r) = 0, τ ′(r) = 0 (23)

for equation
τ ′′′(x) = 0, 0 < x < r. (24)

Just like in the case λ ∈
(
−m

2 ; m
2

]
, the solution to problem (23) for equation (24) cannot be

anything but trivial: τ(x) ≡ 0 and ν(x) ≡ 0 for all x ∈ [0, r].
Consequently, as per formula (10), (13) and (15), the solution u(x, y) ≡ 0 in Ω1 to be considered

as the solution to homogeneous Cauchy problem (6), (7) for equation (2) for all λ ∈
[
−m

2 ; m
2

]
.

Let’s show now that even for the homogenous problem

Lu = uxxx + uy = 0, (x, y) ∈ Ω2, (25)
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u(0, y) = 0, u(r, y) = 0, ux(r, y) = 0, 0 < y < h, (26)

u(x, 0) = 0, 0 ≤ x ≤ r (27)

in the domain Ω2 regular solutions are not possible except for trivial ones.
Indeed, let’s assume that problems (25)–(27) have a nontrivial solution u = u(x, y) 6= 0. Following

the work [4; p. 237], in equation (26) put
u(x, y) = υ(x, y) exp (µ y) , (28)

where µ = const is some real number.
In this case, by (25) relative to the function υ = υ(x, y), we arrive at the equation

Lµυ = υxxx + υy + µυ = 0, (x, y) ∈ Ω2 (29)

with initial boundary conditions

υ(0, y) = 0, υ(r, y) = 0, υx(r, y) = 0, 0 < y < h, (30)

υ(x, 0) = 0, 0 ≤ x ≤ r. (31)

Since, by assumption u = u(x, y) 6= 0, then, as follows from (28), the solutions to problems
(29)–(31) will also be non-trivial υ = υ(x, y) 6= 0.

Introduce an auxiliary domain Ω2ε = {(x, y) : ε < x < r − ε, ε < y < h− ε, ε > 0}, where the
identity

2 (υ, Lµυ)0 = 2

∫
Ω2ε

υ Lµυ dΩ2ε = 2

∫
Ω2ε

υ [υxxx + υy + µυ] dΩ2ε =

=

∫
Ω2ε

[
∂

∂x

(
2 υ υxx − υ2

x

)
+

∂

∂y

(
υ2
)

+ 2µυ2

]
dΩ2ε = 0

is valid.
Applying Green’s formula to the latter equality, obtain

2 (υ, Lµυ)0 =

∫
Γ2ε

(
2 υ υxx − υ2

x

)
dy − υ2 dx+ 2µ

∫
Ω2ε

υ2(x, y) dΩ2ε = 0, (32)

where Γ2ε is the auxiliary boundary for Ω2ε. Let us pass to the limit in the last equality at ε→ 0. It
is easy to see that in this case the auxiliary domain Ω2ε goes into the domain Ω2, and the boundary
Γ2ε of the auxiliary domain Ω2ε goes into the boundary Γ2 of the domain Ω2. Taking into account the
homogeneous initial-boundary conditions (26)-(27) and the above circumstances, by (32) we arrive at
the equality

2 (υ, Lµυ)0 =

h∫
0

υ2
x(0, y)dy +

r∫
0

υ2 (x, h) dx+ 2µ

∫
Ω2

υ2(x, y) dΩ2 = 0. (33)

By choosing a positive value for the parameter µ > 0, we note that (33) can occur if and
only if υ(x, y) ≡ 0 in the closure of the domain Ω̄2, which contradicts the initial assumption that
υ = υ(x, y) 6= 0. However then u(x, y) ≡ 0 in Ω̄2 as follows by (28). Thus, u(x, y) ≡ 0 in Ω̄, that is, the
solution to problem (1), (4), (5) is unique in the class of regular functions. The theorem is proved.
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3 Existence theorem

Let us move on to the existence of a regular solution in Ω to Problem 1.
Theorem 2. Let the given functions f(x, y), ϕ1(y), ϕ2(y), ϕ3(y), ψ(x) be such that they have the

properties

ϕ1(y) ∈ C [0, h] ∩ C2 (0, h) , ϕ2(y) ∈ C [0, h] ∩ C2 (0, h) , ϕ3(y) ∈ C [0, h] ∩ C1 (0, h) ; (34)

ψ(x) ∈ C1 [0, r] ∩ C2 (0, r) ; (35)

f(x, y) ∈ C1
(
Ω̄2

)
. (36)

Then there is a regular solution to problem (1), (4), (5) in the domain Ω.
Proof. In fact, following the fundamental relationships (8), (12) and (14) obtained above, with

respect to the sought functions τ(x) and ν(x) at λ ∈
(
−m

2 ; m
2

]
we arrive at the system of equations{

ν(x) = γ1D
1−β
0x τ (t)− γ2 x

β1 D1−β2
0x ψ (t) ,

τ ′′′(x) + ν(x) = f(x, 0).
(37)

From system (37) we arrive at the problem of finding a regular solution τ = τ(x) of an ordinary
differential equation of the third order of the form

τ ′′′(x) + γ1D
1−β
0x τ (t) = f(x, 0) + γ2 x

β1 D1−β2
0x ψ (t) , 0 < x < r, (38)

satisfying conditions (9).
Repeating integration of (38) three times from 0 to x, arrive at an integral equation equivalent to

the given differential equation:

τ(x) = − γ1

Γ (β + 2)

x∫
0

(x− t)β+1 τ (t) dt+
1

2

x∫
0

(x− t)2 F (t) dt+ c1 + c2 x+
1

2
c3 x

2, (39)

where F (x) = f(x, 0) + γ2 x
β1 D1−β2

0x ψ (t), and c1, c2, c3 are still arbitrary constants.
Equation (39) is the Volterra integral equation of the second kind with convolution kernel

K (x, t) = (x−t)β+1

Γ(β+2) . The functions Kn (x, t) = (x−t)n(β+2)+β+1

Γ[n(β+2)+β+2] , n = 0, 1, 2, . . . are considered iter-
ated kernels of K (x, t), and the function

R (x, t; β) =

∞∑
n=0

(−γ1)n Kn (x, t) = (x− t)β+1
∞∑
n=0

[
(−γ1) (x− t)(β+2)

]n
Γ [n (β + 2) + β + 2]

is the resolving kernel K (x, t) of equation (39).
With the Mittag-Leffler function, the resolving R (x, t; β) of equation (39) kernel K (x, t) of equa-

tion (39) takes the following form

R (x, t; β) = (x− t)β+1 E1/(β+2)

[
−γ1 (x− t)β+2 ; β + 2

]
,

where Eρ (z, µ) =
∞∑
n=0

zn

Γ(ρ−1 n+µ)
is the Mittag-Leffler function.

The solution of (39) can be written with the resolving R (x, t; β) of K (x, t) as follows

τ(x) = c1 + c2 x+
1

2
c3 x

2 +
1

2

x∫
0

(x− t)2 F (t) dt− c1 γ1

x∫
0

R (x, t; β) dt−
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− c2 γ1

x∫
0

tR (x, t; β) dt− γ1 c3

2

x∫
0

t2R (x, t; β) dt− γ1

2

x∫
0

R (x, t; β)

 t∫
0

(t− s)2 F (s) ds

 dt. (40)

By direct calculation find out that

x∫
0

R (x, t; β) dt =

x∫
0

(x− t)β+1 E1/(β+2)

[
−γ1 (x− t)β+2 ; β + 2

]
dt =

= xβ+2E1/(β+2)

(
−γ1 x

β+2; β + 3
)

;

x∫
0

tR (x, t; β) dt = xβ+3E1/(β+2)

(
−γ1 x

β+2; β + 4
)

;

x∫
0

t2R (x, t; β) dt = 2xβ+4E1/(β+2)

(
−γ1 x

β+2; β + 5
)

;

x∫
0

R (x, t; β)

 t∫
0

(t− s)2 F (s) ds

 dt =

x∫
0

 x∫
s

(t− s)2R (x, t; β) dt

F (s) ds =

= 2

x∫
0

(x− t)β+4E1/(β+2)

[
−γ1 (x− t)β+2 ; β + 5

]
F (t) dt.

Considering the above calculations, rewrite representation (40) as follows

τ(x) =
[
1− γ1 x

β+2E1/(β+2)

(
−γ1 x

β+2; β + 3
)]
c1+

+
[
x− γ1x

β+3E1/(β+2)

(
−γ1 x

β+2; β + 4
)]
c2+

+
1

2

[
x2 − 2γ1 x

β+4E1/(β+2)

(
−γ1 x

β+2; β + 5
)]
c3+

+
1

2

x∫
0

{
(x− t)2 − 2 γ1 (x− t)β+4 E1/(β+2)

[
−γ1 (x− t)β+2 ; β + 5

]}
F (t) dt. (41)

Satisfying conditions (9) for (41), get to the next system of equation with respect to c2, c3:

τ(0) = c1 = ϕ1(0),

[
r − γ1 r

β+3E1/(β+2)

(
−γ1 r

β+2; β + 4
)]
c2 + 1

2

[
r2 − 2γ1 r

β+4E1/(β+2)

(
−γ1 r

β+2; β + 5
)]
c3 =

= ϕ2(0)−
[
1− γ1 r

β+2E1/(β+2)

(
−γ1 r

β+2; β + 3
)]
ϕ1(0)−

−1
2

r∫
0

{
(r − t)2 − 2 γ1 (r − t)β+4 E1/(β+2)

[
−γ1 (r − t)β+2 ; β + 5

]}
F (t) dt;

[
1− γ1r

β+2E1/(β+2)

(
−γ1 r

β+2; β + 3
)]
c2 +

[
r − γ1 r

β+3E1/(β+2)

(
−γ1 r

β+2; β + 4
)]
c3 =

= ϕ3(0) + γ1 r
β+1E1/(β+2)

(
−γ1 r

β+2; β + 2
)
ϕ1(0)−

−
r∫
0

{
(r − t)− γ1 (r − t)β+3 E1/(β+2)

[
−γ1 (r − t)β+2 ; β + 4

]}
F (t) dt .

(42)
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The determinant

∆ =
[
r − γ1 r

β+3E1/(β+2)

(
−γ1 r

β+2; β + 4
)]2
− 1

2

[
1− γ1r

β+2E1/(β+2)

(
−γ1 r

β+2; β + 3
)]
×

×
[
r2 − 2γ1 r

β+4E1/(β+2)

(
−γ1 r

β+2; β + 5
)]

of system (42) is always different from zero by virtue of the uniqueness theorem proved above, that is,
the constants c1, c2, c3 in (41) are uniquely determined by conditions (9) and system (42).

Thus, the unique solution to problem (38), (9) for any λ ∈
(
−m

2 ; m
2

]
is obtained by formula (41),

where the constants c1, c2, c3 are uniquely determined by (42).
Next, by relations (8) and (16) for λ = −m

2 in view of conditions (9), obtain

τ(x) =
1

2r2

{
2 (r − x)2 ϕ1(0) + 2x (2r − x) ϕ2(0) + 2rx (x− r)ϕ3(0)+

+ (r − x)2

r∫
0

t2
[
f (t, 0) + 21−β (1− β)−β tβ ψ′ (t)

]
dt−

−r2

r∫
x

(t− x)2
[
f (t, 0) + 21−β (1− β)−β tβ ψ′ (t)

]
dt

}
.

Once the function τ(x) is obtained, the second desired function ν(x), depending on λ, can be
obtained using relations (8), (12), (14) or (16). Then the regular solution to Problem 1 in the domain
Ω1 is defined as the solution to the Cauchy problem (6)-(7) for equation (2) and is written out according
to one of the formulas (11), (13) or (15). And in the domain Ω2 we arrive at the initial-boundary
value problem (4), (6) for equation (3), the solution of which is written out in the monograph of
T.D. Dzhuraev. Note that the conditions (34), (35), (36) listed in Theorem 2 ensure the regularity of
the obtained solution in the domain Ω.

Conclusion

In the work in the mixed domain one boundary value problem for the model equation of parabolic-
hyperbolic type of the third order is investigated. Theorems of existence and uniqueness of a regular
solution of the problem under study are proved. To prove the uniqueness theorem the method of energy
integrals is applied together with the method of A.M. Nakhushev. To prove the existence theorem the
method of integral equations is applied. In terms of the Mittag-Leffler function the solution of the
problem is found and written out in explicit form.
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This paper investigates the interaction between Formal Concept Analysis (FCA) and graph theory, with a
focus on understanding the structure and representation of concept lattices derived from bipartite directed
graphs. We establish connections between the complete formal contexts and their associated bipartite
digraphs, providing a foundation for studying modular lattices. Particular attention is given to the structure
of concept lattices arising from such contexts and their relationship to the combinatorial properties of the
corresponding graphs. The results show that the concept lattice of a complete formal context is isomorphic
to a modular lattice of height 2 if and only if its associated bipartite digraph is a disconnected union
of bicliques. This establishes a precise correspondence between a specific class of formal contexts and
well-studied objects in graph theory. Several examples are presented to illustrate these properties and
demonstrate the application of the obtained results. The analysis opens the way for further exploration of
lattices associated with more complex graph structures and contributes to a deeper understanding of the
relationship between discrete mathematics and formal methods of knowledge representation.

Keywords: formal context, full context, formal concept, concept lattice, context graph, bipartite digraph,
biclique, modular lattice.
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Introduction

Formal Concept Analysis (FCA) is a powerful mathematical framework for data analysis and
knowledge representation, based on the duality between objects and attributes within a formal con-
text. FCA was introduced in the early 1980s by Rudolf Wille as a mathematical theory [1, 2]. This
framework provides a systematic method for deriving concept lattices, which capture hierarchical rela-
tionships between object-attribute pairs. These lattices have applications spanning fields such as data
mining, machine learning, and ontology engineering [3, 4].

Graph theory [5], on the other hand, offers a complementary perspective by modelling relationships
as vertices and edges. The interplay between FCA and graph theory has been a subject of growing
interest, particularly in the study of bipartite graphs. In FCA, the incidence relation of a formal
context corresponds naturally to a bipartite graph, establishing a direct link between these domains.

This paper investigates the structural properties of concept lattices derived from bipartite graphs,
with an emphasis on modular lattices. By characterizing the graph-theoretic properties of bipartite
digraphs corresponding to such lattices, we aim to deepen the understanding of their formation and
representation.

The main contributions of this work are as follows:
1) We introduce and formalize the notion of full formal contexts, which simplify the study of concept

lattices by reducing redundancy in object-attribute relations.
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2) We establish a bijective correspondence between full formal contexts and bipartite digraphs,
showing that the concept lattice of a context is determined by its graph structure (Theorem 1).

3) We prove that the concept lattice of a full formal context is isomorphic to a modular lattice
of height 2 if and only if the associated bipartite graph is a disjoint union of complete bipartite
graphs (Theorem 2).

4) We provide examples, including the graph of a function and its context lattice, to demonstrate
the practical implications of our results.

For more information on the basic notions and results of FCA, lattice theory and graph theory
introduced below, and used throughout this paper, we refer the reader to [2, 5, 6].

1 Preliminaries

First, we provide the main definitions.
Definition 1. A graph is an algebraic structure G = (V,E) where E is a binary relation on V . The

set V is called a set of vertices (or nodes), and E ⊆ V ×V is a set of edges. A graph is called undirected
if (a, b) ∈ E then (b, a) ∈ E, and it is called directed or a digraph if (a, b) ∈ E then (b, a) /∈ E.

Definition 2. A digraph G = (V,E) is called bipartite if its vertex set V can be partitioned into
two disjoint subsets V1 and V2 such that:
• Every edge e ∈ E connects a vertex in V1 to a vertex in V2.
• No edge exists between two vertices of the same subset.
A complete bipartite digraph (biclique) G = (V,E) is a bipartite digraph in which the vertex set

V can be partitioned into two disjoint subsets V1 and V2 such that every vertex in V1 is connected to
every vertex in V2 and there are no edges within V1 or within V2. Remark. Usually, a biclique is a
complete bipartite undirected graph (see [5]).

Definition 3. A formal context K = (G,M, I) consists of the set of objects G, the set of attributes
M , and the incidence relation I ⊆ G×M .

For a formal context K = (G,M, I) and A ⊆ G, B ⊆M we put αK(∅) = M , βK(∅) = G and

αK(A) = {m ∈M | (∀g ∈ A) [ (g,m) ∈ I ]},

βK(B) = {g ∈ G | (∀m ∈ B) [ (g,m) ∈ I ]}.

The mappings βK ◦ αK : P(G) → P(G) and αK ◦ βK : P(M) → P(M) are closure operators. The set
LK(G) (LK(M)) of the closed subsets of G (M) with respect to βK ◦αK (αK ◦βK) forms a lattice under
inclusion ⊆ (conclusion ⊇). And LK(G) is dually isomorphic to LK(M).

If K is clear from the discussion then we omit the subscript K — e.g., for example, we write α(A)
instead of αK(A).

Definition 4. A formal concept of the context K is a pair (A,B) such that A ⊆ G, B ⊆ M ,
B = αK(A), and A = βK(B). For a formal concept ∆ = (A,B), A is called the extent of ∆, and B is
the intent of ∆.

The ordering � of the concepts of K is defined as follows:

(A0, B0) � (A1, B1) ⇔ A0 ⊆ A1 ⇔ B0 ⊇ B1.

The Basic Theorem on Concept Lattices (see [1]) establishes that ordering � on the set of all concepts
of K induces a complete lattice which is called the concept lattice of K, and we denote it by L(K).

From the definition of the partial order �, one can see that for a formal context K = (G,M, I) the
mapping ϕ : L(K)→ LK(G) defined by ϕ((A,B)) = A, establishes an isomorphism between L(K) and
LK(G).
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For the sets A,B and a binary relation R ⊆ A×B, we put

πA(R) = {a ∈ A | ∃b [ (a, b) ∈ R ]}, πB(R) = {b ∈ B | ∃a [ (a, b) ∈ R ]}.

A formal context K = (A,B, I) is called full if πA(I) = A, πB(I) = B and αK(A) = βK(B) = ∅.
For a formal context K = (A,B, I) we define the graph GK = (A∪B; I) that consists of the set of

vertices A ∪B and the set of edges I ⊆ A×B. The graph GK = (A ∪B; I) is called a context graph
if A ∩ B = ∅. Such a graph we call a context graph. It is easy to see that GK is a bipartite digraph.
We also note that any bipartite digraph G = (A ∪ B; I) with I ⊆ A × B defines the formal context
KG = (A,B, I). Similar constructions occur in many papers (see for example [7, 8]).

For any graph G = (G,R) we define the formal context KG = (G,G,R) and the concept lattice
L(KG), respectively.

The next theorem, as the reviewer noted: “Theorem 1 is a simple observation which, seemingly,
is a “folklore” assertion. For example, in [7], the definition of a formal context is followed by the
remark that “The correspondence to a bipartite graph (network) is at hand”, brief description of this
correspondence, and the conclusion that “In the following we use the terms network, (bipartite) graph,
and formal context interchangeably in the sense above”. However, I have not found a published formal
proof of the assertion”. For convenience we provide the formal proof.

Theorem 1. Let K = (A,B, I) be a full formal context in which A ∩ B = ∅. And let G be the
corresponding context graph (A ∪B; I). Then L(K) ∼= L(KG).

Proof. By definition, KG = {A ∪B,A ∪B, I} and

αKG
(X) = {m ∈ A ∪B | (∀g ∈ X) [ (g,m) ∈ I ]},

βKG
(Y ) = {g ∈ A ∪B | (∀m ∈ Y ) [ (g,m) ∈ I ]}.

By αK(πA(I)) = ∅ and βK(πB(I)) = ∅, one can see that

αKG
(X) =

{
αK(X), if X ⊆ A,
∅, otherwise,

βKG
(Y ) =

{
βK(Y ), if Y ⊆ B,
∅, otherwise.

Therefore,

βKG ◦ αKG
(X) =

{
βK ◦ αK(X), if αKG

(X) 6= ∅,
A ∪B, otherwise,

αKG ◦ βKG
(Y ) =

{
αK ◦ βK(Y ), if βKG

(Y ) 6= ∅,
A ∪B, otherwise.

It means that a pair (X,Y ) is a concept of KG if and only if (X,Y ) is a concept of K for all X,Y 6= ∅.
Also (A∪B,∅) and (∅, A∪B) are the concepts of KG. Since the context K is full, (A,∅) and (∅, B)
are the concepts of K.

Hence the mapping ϕ : L(KG)→ L(K), defined by

ϕ((X,Y )) =


(X,Y ), X, Y 6= ∅,
(A,∅), Y = ∅,
(∅, B), X = ∅,

is one to one and onto. It is easy to see that ϕ preserves partial order�. Therefore, ϕ is an isomorphism.
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These allow us to study the concept lattices through the bipartite digraphs. We demonstrate this
approach in the next section.

2 Representation of Mn

For any n > 2, by Mn (Mω) we denote a modular lattice of height 2 with n (ω) atoms.

Theorem 2. Let K = (A,B, I) be a full formal context in which A ∩ B = ∅. Then the concept
lattice L(K) is isomorphic to Mn for some n ≤ ω if and only if the context graph GK = (A ∪B; I) is
a disjoint union of n complete bipartite digraphs.

Proof. ⇒ By L(K) ∼= L(A), we have L(A) ∼= Mn. Since β(B) = ∅, ∅ = 0L is the least element
of L(A). By α(A) = ∅ and β(∅) = A ∪ B, we get that A ∪ B = 1L is the greatest element of L(A).
Let S be the set of all non-empty proper closed subsets of A. Since L(A) ∼= Mn, A0 ∩ A1 = ∅ and
A0 ∨A1 = A ∪B for any A0, A1 ∈ S with A0 6= A1. Since πA(I) = A, ∪{C | C ∈ S} = A. Hence S is
a partition of A.

Let α(S) = {α(C) | C ∈ S}. By definition, α(C) is a closed subset of B. Since β(B) = ∅,
β(∅) = A, as K is full, and βα(C) = C, then α(C) is non-empty proper subset of B for all C ∈ S,
as well as α(C0) 6= α(C1) for all C0, C1 ∈ S and C0 6= C1. Since L(B) is dual isomorphic to L(A),
L(B) ∼= Mn. Let D = α(C0)∩α(C1), C0 6= C1. Then, by definition, β(D) ⊃ C0 and is a closed subset
of A. Since the height of L(A) is equal to 2, β(D) = A. It implies D = ∅, that is, α(C0)∩α(C1) = ∅.
Thus, α(C0) ∩ α(C1) = ∅ for all C0, C1 ∈ S, C0 6= C1.

Let D = B\ ∪ {α(C) | C ∈ S}. By definition of D, β(D) /∈ S. Also β(D) 6= ∅ because in this case
∪{α(C) | C ∈ S} is empty. Thus β(D) = A. It implies D is empty. Hence B = ∪{α(C) | C ∈ S}.
Thus, we establish that {α(C) | C ∈ S} is a partition of the set B.

Now we need to show that ∪{C × α(C) | C ∈ S} = I. First we note that α(c) = α(C) for any
c ∈ C. Indeed, assume that α(c) ⊃ α(C) for some c ∈ C and C ∈ S. Since α(c) is a closed subset in B
and L(B) ∼= Mn (because L(B) is dually isomorphic to L(A)), α(c) = B. Therefore, c ∈ β(B). Since K
is full, β(B) = ∅. Contradiction. Thus, α(c) = α(C) for any c ∈ C. Hence ∪{C × α(C) | C ∈ S} ⊆ I.
Let (a, b) ∈ I. Then a ∈ β(b) whence (a, b) ∈ C × α(C). Thus ∪{C × α(C) | C ∈ S} = I.
⇐ Since the graph GK = (A ∪ B; I) is a disjoint union of n complete bipartite digraphs,

GK = (∪i≤nAi,∪i≤nBi;∪i≤nIi) for some partitions {Ai | i ≤ n}, {Bi | i ≤ n} of the sets A and
B respectively, and I = ∪i≤nIi where Ii = Ai ×Bi.

The condition I = ∪i≤nIi = ∪i≤nAi × Bi give us that πA(I) = A, πB(I) = B and the sets
{b ∈ B | (a, b) ∈ I for all a ∈ A} and {a ∈ A | (a, b) ∈ I for all b ∈ B} are empty. These mean that
αK(πA(I)) = ∅ and βK(πB(I)) = ∅. Therefore, by Theorem 1, we get L(K) ∼= L(KG). Thus we need
to show that L(KG) ∼= Mn.

For the formal context KG we have

αKG
(X) =

{
Bi, if X ⊆ Ai,

∅, otherwise,

βKG
(X) =

{
Ai, if X ⊆ Bi,

∅, otherwise.

Thus, for any Ai and X ⊃ Ai, we have

βKG ◦ αKG
(Ai) = Ai,

βKG ◦ αKG
(X) = A ∪B.
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That is, Ai, 1 ≤ i ≤ n, and A ∪ B are the closed subsets in A ∪ B with respect to closure operator
βKG ◦ αKG

. Therefore, Ai ∨ Aj = A ∪ B. Since {Ai | i ≤ n} forms a partition of A then Ai ∩ Aj = ∅
for all i 6= j ≤ n. It means that L(A) ∼= Mn. Hence L(KG) ∼= Mn because L(KG) ∼= L(A).

Recall that a bipartite dimension of a graph is the minimum number of complete bipartite graphs
whose union is the given graph. Thus

Corollary 1. Let K be a formal context and L(K) ∼= Mn. Then the bipartite dimension of the graph
GK is equal to n.

3 Examples

Here we provide some examples.
Example 1. (cf. [9, 10]) Let f : A→ B be a function from A onto B and

gr(f) = {(x, y) | f(x) = y for all x ∈ A , y ∈ B}

the graph of function f . Consider a formal context K = (A,B, gr(f)), where A represents objects, B
represents attributes, and the incident relation is gr(f). Then the concept K = (A,B, gr(f)) satisfies
Theorem 2. Hence L(K) ∼= M|B| where |B| is the size of B, and the bipartite dimension of the graph
GK is equal to |B|.

Indeed, let, for any b ∈ B,
Ab = {x ∈ A | f(x) = b} ⊆ A.

Since f is a function and maps A onto B,

A =
⋃
b∈B

Ab, Ab ∩Ac = ∅,

for any b, c ∈ B, b 6= c. Moreover, (Ab ∪ {b}, gr(f|Ab
)) forms a complete digraph (biclique) (Fig. 1).

Thus, K = (A,B, gr(f)) is a disjoint union of the bicliques (Ab ∪{b}, gr(f|Ab
)), b ∈ B. By Theorem 2,

L(K) ∼= M|B|.

{b}

Ab

Figure 1. Bipartite digraph (Ab ∪ {b}, gr(f|Ab
))

More general
Example 2. Let f : A → B be a many-valued function from A onto B and gr(f) = {(x, y) | y ∈

f(x) for all x ∈ A} the graph of the many-valued function f . And let the set of images of points of A
forms a partition of B, that is the set of all proper subsets of B of the form {f(a) ⊂ B | a ∈ A} is a
partition of B. Then the concept K = (A,B, gr(f)) satisfies Theorem 2. Hence L(K) ∼= Mn, where n
is the bipartite dimension of the graph GK.
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Conclusion

In this paper, we explored the interplay between Formal Concept Analysis and graph theory, focus-
ing on the structural representation of concept lattices through bipartite digraphs. The introduction
of full formal contexts allowed us to establish a bijective correspondence between these contexts and
bipartite digraphs, providing a framework for studying modular lattices. We demonstrated that the
concept lattice of a full formal context is isomorphic to a modular lattice of height 2 if and only if its
corresponding bipartite digraph is a disjoint union of complete bipartite graphs. This result not only
advances the theoretical understanding of FCA but also provides practical tools for analyzing data
structures in diverse applications. Future research may investigate the extension of these results to
other types of lattices and exploring their computational implications.
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On the solvability of one inverse problem for a fourth-order equation
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In this paper, for a fourth-order equation in a rectangular domain, an inverse problem of finding the
unknown right-hand side, which depends on one variable, is considered. Criteria for the uniqueness and
existence of a solution to the inverse problem under consideration for a fourth-order equation are established.
The solution to the problem is constructed as the sum of a series in eigenfunctions of the corresponding
spectral problem. The uniqueness of the solution to the inverse problem follows from the completeness
of the system of eigenfunctions. Sufficient conditions are established for the boundary functions that
guarantee theorems of existence and stability of the solution to the problem. In a closed domain, absolute
and uniform convergence of the found solution to the inverse problem in the form of a series in the class of
regular solutions is shown, as well as series obtained by term-by-term differentiation with respect to t and
x three and four times, respectively. The stability of the solution of the inverse problem in the norms of
the space of square-summable functions and in the space of continuous functions with respect to changes
in the input data has also been proven.

Keywords: fourth-order equation, inverse problem, classical solution, method of separation of variables,
uniform convergence of the solution, uniqueness, existence, stability of the solution.

2020 Mathematics Subject Classification: 35R30.

Introduction

Boundary value and inverse problems for fourth-order differential equations are widely used in
modeling processes in various fields of science and technology: in studying the dynamics of compressible
stratified fluid, wave propagation in dispersive media, ship vibrations, oscillations of rods, beams
and plates. Such problems are often reduced to studying fourth-order equations with various types
of conditions. Numerous studies have been devoted to boundary value problems for fourth-order
equations.

In the monograph by Smirnov [1], problems for a model equation of mixed type of the fourth order
in various geometric domains are considered. In the work by Amirov and Khojanov [2], the global
solvability of initial-boundary value problems for nonlinear analogues of the Boussinesq equation is
proved, which expands the range of studied problems of mathematical physics.

The inverse problem for a parabolic equation of the fourth order with a complex-valued coefficient is
considered in [3], where a theorem on the existence and uniqueness of a solution is proved. The articles
[4–6] consider boundary value problems with local conditions for fourth-order equations in rectangular
domains. Thus, in [4] the problems with the third derivative with respect to time are analyzed, and in
[5] and [6] – problems with the lowest term and mixed type of equation, respectively.

In the works [7, 8] the boundary value problems with nonlocal conditions are studied. The authors
prove that the eigenfunctions and associated functions of the corresponding spectral problem form a
Riesz basis, and the solution to the problem is expressed as a biorthogonal series. This is important
for constructing analytical solutions in complex domains.

In the works [9, 10] the boundary value problems for fourth-order mixed-type equations are studied.
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Initial-boundary value problems for beam and plate vibrations are studied in the works of Sabitov
and co-authors [11–13]. The use of the method of separation of variables allows us to establish
solvability conditions and construct explicit representations of solutions for equations taking into
account rotational motion and various types of fixings.

Some boundary-value problems for nonhomogeneous biharmonic equation is presented in [14], where
the conditions for periodic boundary are studied. In the work of Urinov and Azizov [15], an inverse
problem for a fourth-order equation with an unknown right-hand side is considered, a uniqueness
theorem is proved, and a constructive solution method is given.

A classification of fourth-order equations with two independent variables is given in the monograph
by Dzhuraev and Sopuev [16], where an extensive bibliography on this topic is also presented and
various types of boundary value problems are considered.

Inverse problems, as shown in [17–19], have numerous applications in seismology, geophysics,
biomedicine, and computed tomography. Here, both problems of restoring the right-hand side and
coefficient inverse problems are considered. In particular, Sabitov and Martemyanova [17] investigated
a nonlocal inverse problem for a mixed-type equation, and Khojanov [18, 19] proposed methods for
restoring special types of right-hand sides in parabolic equations.

General approaches to solving inverse problems and theoretical foundations are presented in classical
monographs [20–22], which present regularization methods, a functional-analytical apparatus, and
examples of formulations in mathematical physics.

Thus, the present study continues the development of the theory of fourth-order equations,
relying on the indicated scientific achievements, and is aimed at formulating and solving new classes
of boundary and inverse problems with practical significance.

1 Formulation of the problem

In the domain Ω = {(x, t) : 0 < x < p, 0 < t < β}, we consider the equation

Lu ≡ uttt − uxxxx − b2u = f (x) , (1)

where b = const.
Problem 1. Find functions u (x, t) and f (x) in the domain Ω that satisfy the conditions

u (x, t) ∈ C3,1
x,t

(
Ω̄
)
∩ C4,3

x,t (Ω) , f (x) ∈ C (0, p) ∩ L2 (0, p) , (2)

Lu (x, t) = f (x) , (3)

u (x, 0) = ϕ (x) , ut (x, 0) = ψ (x) , u (x, β) = ξ (x) , ut (x, β) = µ (x) , 0 ≤ x ≤ p, (4)

u (0, t) = u (p, t) = 0, uxx (0, t) = uxx (p, t) = 0, 0 ≤ t ≤ β, (5)

where ϕ (x) , ξ (x) , ψ (x) , µ (x) are the given functions, and ϕ(i) (0) = ϕ(i) (p) = 0, ξ(i) (0) = ξ(i) (p) = 0,
i = 0, 2, ψ (0) = ψ (p) = 0, µ (0) = µ (p) = 0.

By the classical solution of the inverse boundary value problem (2)–(5) we mean a pair {u (x, t) , f (x)}
of functions u (x, t) ∈ C4,3

x,t (Ω) and f (x) ∈ C (0, β), satisfying conditions (2)–(5) in the usual sense.

2 Uniqueness and existence of a solution to the inverse problem

We solve problems (2)–(5) at f (x) ≡ 0 using the method of separation of variables u (x, t) =
= X (x)T (t). Then we have the following spectral problem for the function X (x):

XIV (x)− ηX (x) = 0, 0 < x < p,
X (0) = X (p) = X ′′ (0) = X ′′ (p) = 0,

(6)

76 Bulletin of the Karaganda University



On the solvability of ...

where η is the separation constant. Problem (6) has a solution

Xk (x) =

√
2

p
sinλkx, λk = 4

√
ηk =

kπ

p
, k = 1, 2, ... . (7)

We look for a solution to problem (2)–(5) in the form

u (x, t) =

∞∑
k=1

Tk (t)Xk (x) , (8)

f (x) =
∞∑
k=1

fkXk (x) , (9)

where

Tk (t) =

∫ p

0
u (x, t)Xk (x) dx, (10)

fk =

∫ p

0
f (x)Xk (x) dx. (11)

Based on (10), we introduce the functions

Tk,ε (t) =

∫ p−ε

ε
u (x, t)Xk (x) dx, (12)

where ε is a fairly small number. We differentiate equalities (12) three times and take into account (1),
we have

T ′′k,ε (t) =

∫ p−ε

ε

[
f(x) + uxxxx (x, t) + b2u (x, t)

]
Xk (x) dx. (13)

In integral (13), integrating four times by parts and passing to the limit at ε→ 0 taking into account
boundary conditions (5), we have the differential equations:

T ′′′k (t)− v3
kTk (t) = fk, (14)

where v3
k = λ4

k + b2.
General solutions of equation (14) take the form

Tk (t) = ake
vkt + e−

1
2
vkt

(
bk cos

√
3

2
vkt+ ck sin

√
3

2
vkt

)
− v−3

k fk, (15)

where ak, bk, ck are arbitrary constants.
To determine the coefficients ak, bk, ck and fk we use conditions (4), which go over

Tk (0) = ϕk, Tk
′
(0) = ψk, Tk (β) = ξk, Tk

′
(β) = µk, (16)

where
ϕk =

∫ p
0 ϕ (x)Xk (x) dx, ψk =

∫ p
0 ψ (x)Xk (x) dx,

ξk =
∫ p

0 ξ (x)Xk (x) dx, µk =
∫ p

0 µ (x)Xk (x) dx.
(17)
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Substituting solutions (15) into (16), we obtain a system of equations for determining ak, bk, ck
and fk: 

ak + bk − v−3
k fk = ϕk,

2ak − bk +
√

3ck = 2v−1
k ψk,

ake
3
2
vkβ + bk cos

√
3

2 vkβ + ck sin
√

3
2 vkβ − v

−3
k e

1
2
vkβfk = ξke

1
2
vkβ,

ake
3
2
vkβ − bk cos

(√
3

2 vkβ −
π
3

)
− ck sin

(√
3

2 vkβ −
π
3

)
= v−1

k µke
1
2
vkβ.

(18)

The determinant of system (18) takes the form:

∆k (β) = 2evkβ

(
chvkβ − cos

√
3

2
vkβ · ch

1

2
vkβ −

√
3 sin

√
3

2
vkβ · sh

1

2
vkβ

)
. (19)

Now we represent (19) in the form

∆k (β) = 2evkβchvkβ ·

[
1−Ak sin

(√
3

2
vkβ + γk

)]
, (20)

where γk = arcsin
ch 1

2
vkβ√

2chvkβ−1
, Ak =

√
2chvkβ−1
chvkβ

.

Lemma 1. For any β > 0 the following estimate is valid

|∆k (β)| ≥ C0e
2vkβ, (21)

where C0 is a positive constant.

Proof. Taking into account Ak < 1, from (20), we have

|∆k (β)| ≥ evkβ ·
(
evkβ + e−vkβ

)
·

[
1−Ak

∣∣∣∣∣sin
(√

3

2
vkβ + γk

)∣∣∣∣∣
]
≥ e2vkβ · [1−Ak] ≥ C0e

2vkβ.

The lemma is proved.

Then system (18) has a unique solution

ak = 1√
3vk∆k(β)

[
2vkϕke

1
2
vkβ sin

√
3

2 vkβ +
√

3ψk + 2ψke
1
2
vkβ sin

(√
3

2 vkβ −
π
3

)
−

−2vkξke
1
2
vkβ sin

√
3

2 vkβ +
√

3µke
vkβ − 2µke

1
2
vkβ sin

(√
3

2 vkβ + π
3

)]
,

(22)

bk = e
1
2 vkβ√

3vk∆k(β)

[√
3vkϕke

3
2
vkβ + 2vkϕk sin

(√
3

2 vkβ −
π
3

)
−

−2ψk sin
(√

3
2 vkβ −

π
3

)
− 2
√

3ψke
vkβ cos

(√
3

2 vkβ + π
3

)
−
√

3vkξke
3
2
vkβ−

−2vkξk sin
(√

3
2 vkβ −

π
3

)
− 2µk sin

√
3

2 vkβ + 2
√

3µke
vkβsh1

2vkβ
]
,

(23)
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ck = e
1
2 vkβ√

3vk∆k(β)

[
vkϕke

3
2
vkβ − 2vkϕk cos

(√
3

2 vkβ −
π
3

)
+ 2ψke

3
2
vkβ+

+2ψk cos
(√

3
2 vkβ −

π
3

)
− 2
√

3ψke
vkβ sin

(√
3

2 vkβ + π
3

)
− vkξke

3
2
vkβ+

+2vkξk cos

(√
3

2
vkβ −

π

3

)
+ µke

3
2
vkβ + 2µk cos

√
3

2
vkβ − 3µke

1
2
vkβ

]
, (24)

fk =
v2k

∆k(β)

{
vkϕk

[
2e

3
2
vkβ cos

(√
3

2 vkβ −
π
3

)
− 1
]

+

+ψk

[
−2e

3
2
vkβ cos

(√
3

2 vkβ + π
3

)
+ 1
]

+ vkξk

[
2e

1
2
vkβ cos

(√
3

2 vkβ + π
3

)
− e2vkβ

]
+

+µk

[
−2e

1
2
vkβ cos

(√
3

2 vkβ −
π
3

)
+ e2vkβ

]}
.

(25)

So we obtained a solution of problem (2)–(5) in the form (8)–(9), where Xk (x) , Tk (t) and fk are
determined from (7), (15) and (25), respectively, and the coefficients ak, bk, ck are determined from
(22)–(24).

Now we will prove the uniqueness of the solution of problem (2)–(5). Let ξ (x) ≡ 0, µ (x) ≡ 0,
ϕ (x) ≡ 0, ψ (x) ≡ 0 on [0, p]. Then ϕk ≡ 0, ψk ≡ 0, ξk ≡ 0, µk ≡ 0 from (15) and (25) it follows
that Tk (t) ≡ 0 on [0, β] and fk ≡ 0 for all k ∈ N . Then from equalities (10)–(11) we have that for all
t ∈ [0, β] ∫ p

0
u (x, t)Xk (x) dx ≡ 0,

∫ p

0
f (x)Xk (x) dx ≡ 0, k ∈ N.

From here, due to the completeness of (7) in space L2 [0, p] and the continuity of the function u (x, t)
and f (x) respectively, on the domain Ω̄ and (0, p), it follows that u (x, t) ≡ 0 in Ω̄ and f (x) ≡ 0 on
(0, p). So it’s proven.

Theorem 1. If there is a solution of the problem (2)–(5), then it is unique.
Lemma 2. For large natural k, the following estimates are valid:

|Tk (t)| ≤ C1

[
|ϕk|+ k−1 1

3 |ψk|+ |ξk|+ k−1 1
3 |µk|

]
,∣∣∣Tk ′ (t)∣∣∣ ≤ C2

[
k1 1

3 |ϕk|+ |ψk|+ k1 1
3 |ξk|+ |µk|

]
,

∣∣∣Tk ′ ′ (t)∣∣∣ ≤ C3

[
k2 2

3 |ϕk|+ k1 1
3 |ψk|+ k2 2

3 |ξk|+ k1 1
3 |µk|

]
,

(26)

∣∣∣Tk ′ ′ ′ (t)∣∣∣ ≤ C4

(
k4 |ϕk|+ k2 2

3 |ψk|+ k4 |ξk|+ k2 2
3 |µk|

)
.

Here and below Ci are positive constants.

Proof. From (22)–(25), taking Lemma 1 into account, we obtain the following estimates:

|ak| ≤ C5e
−2kβ

(
|ϕk|+ k−1 1

3 |ψk|+ |ξk|+ k−1 1
3 |µk| e

2
3
kβ
)
,

|bk| ≤ C6

(
|ϕk|+ k−1 1

3 |ψk|+ |ξk|+ k−1 1
3 |µk|

)
,

|ck| ≤ C7

(
|ϕk|+ k−1 1

3 |ψk|+ |ξk|+ k−1 1
3 |µk|

)
,

|fk| ≤ C8

(
k4 |ϕk|+ k2 2

3 |ψk|+ k4 |ξk|+ k2 2
3 |µk|

)
.

(27)
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From (15) we have
|Tk (t)| ≤ |ak| evkt + |bk| e−

1
2
vkt + |ck| e−

1
2
vkt + v−3

k |fk| . (28)

We substitute (27) into (28). This estimate implies the validity of the first estimate required in the
lemma. The proof of the validity of the remaining estimates is shown similarly. The lemma is proved.

Lemma 3. Let ϕ (x) , ξ (x) ∈ C5 [0, p] , ϕ(2i) (0) = ϕ(2i) (p) = 0, ξ(2i) (0) = ξ(2i) (p) = 0, i = 0, 1, 2;
ψ (x) , µ (x) ∈ C4 [0, p] , ψ(2i) (0) = ψ(2i) (p) = 0, µ(2i) (0) = µ(2i) (p) = 0, i = 0, 1. Then the represen-
tations are valid

ϕk =
1

λ5
k

ϕ̄
(5)
k , ψk =

1

λ4
k

ψ̄
(4)
k , ξk =

1

λ5
k

ξ̄
(5)
k , ξk =

1

λ4
k

ξ̄
(4)
k , (29)

where
ϕ̄

(5)
k =

√
2
p

∫ p
0 ϕ

(5) (x) cosλkxdx, ψ̄
(4)
k =

√
2
p

∫ p
0 ψ

(4) (x) sinλkxdx,

ξ̄
(5)
k =

√
2
p

∫ p
0 ξ

(5) (x) cosλkxdx, µ̄
(4)
k =

√
2
p

∫ p
0 µ

(4) (x) sinλkxdx.

Integrating the first and third integrals in (17) by parts five times, and the second and fourth integrals
by parts four times, taking into account the conditions of the lemma, we obtain representations (29).

Theorem 2. Let the functions ϕ (x), ψ (x) , ξ (x) and µ (x) satisfy the conditions of Lemma 3. Then
there is a unique solution of problem (2)–(5), which is determined by the series (8)–(9).

Proof. We formally differentiate series (8) term by t three times and by x four times and have

uttt (x, t) =
∞∑
k=1

Tk
′ ′ ′

(t)Xk (x) , (30)

uxxxx (x, t) =
∞∑
k=1

λ4
kTk (t)Xk (x) . (31)

From (26) we have

C4

√
2

p

∞∑
k=1

(
k4 |ϕk|+ k2 2

3 |ψk|+ k4 |ξk|+ k2 2
3 |µk|

)
. (32)

Based on (29), the convergence of series (32) is proved, i.e., the following series

C̄4

∞∑
k=1

(
1

k

∣∣∣ϕ̄(5)
k

∣∣∣+
1

k1 1
3

∣∣∣ψ̄(4)
k

∣∣∣+
1

k

∣∣∣ξ̄(5)
k

∣∣∣+
1

k1 1
3

∣∣∣µ̄(4)
k

∣∣∣)
converges. From convergence (32), due to the Weierstrass criterion, series (8), (30), (31) uniformly
converge in the domain Ω̄ and series (9) on [0, p]. The theorem is proved.

3 Stability of the solution

Let us introduce the following norms:

‖u (x, t)‖L2[0,p] =

(∫ p

0
|u (x, t)|2 dx

) 1
2

, ‖u (x, t)‖C(Ω̄) = max
Ω̄
|u (x, t)| ,

‖f (x)‖Wn
2 [0,p] =

(∫ p

0

(
n∑
k=0

∣∣∣f (k) (x)
∣∣∣2 dx)) 1

2

, n ∈ N.
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Theorem 3. Let the conditions of Theorem 2 be satisfied, then for solution (8), (9) of Problem 1
the following estimates are valid:

‖u (x, t)‖L2[0,p] ≤ C9

[
‖ϕ‖L2

+ ‖ψ‖L2
+ ‖ξ‖L2

+ ‖µ‖L2

]
, (33)

‖f (x)‖L2[0,p] ≤ C10

[
‖ϕ‖W 4

2
+ ‖ψ‖W 3

2
+ ‖ξ‖W 4

2
+ ‖µ‖W 3

2

]
, (34)

‖u (x, t)‖C(Ω̄) ≤ C11

[
‖ϕ‖W 1

2
+ ‖ψ‖W 0

2
+ ‖ξ‖W 1

2
+ ‖µ‖W 0

2

]
, (35)

‖f (x)‖C[0,p] ≤ C12

[
‖ϕ‖W 5

2
+ ‖ψ‖W 4

2
+ ‖ξ‖W 5

2
+ ‖µ‖W 4

2

]
. (36)

Proof. From (8), (21) and the first inequality of Lemma 2 we have

‖u (x, t)‖2L2
=
∑∞

k=1 T
2
k (t) ≤ C2

1

∑∞
k=1

[
|ϕk|+ k−1 1

3 |ψk|+ |ξk|+ k−1 1
3 |µk|

]2
≤

≤ 4C2
1

∑∞
k=1

[
|ϕk|2 + k−2 2

3 |ψk|2 + |ξk|2 + k−2 2
3 |µk|2

]
≤

≤ C2
9

[
‖ϕ‖2L2

+ ‖ψ‖2L2
+ ‖ξ‖2L2

+ ‖µ‖2L2

]
.

(37)

From inequality (37) estimate (33) follows:

‖f (x)‖2L2[0,p] =
∑∞

k=1 |fk|
2 ≤ C2

8

∑∞
k=1

(
k4 |ϕk|+ k2 2

3 |ψk|+ k4 |ξk|+ k2 2
3 |µk|

)2
≤

≤ 4C2
8

∑∞
k=1

[(
k4 |ϕk|

)2
+
(
k2 2

3 |ψk|
)2

+
(
k4 |ξk|

)2
+
(
k2 2

3 |µk|
)2
]
.

The coefficients ϕk, ψk, ξk and µk can be represented in the form

ϕk =
1

λ4
k

ϕ̄
(4)
k , ψ3 =

1

λ3
k

ψ̄
(3)
k , ξk =

1

λ4
k

ξ̄
(4)
k , µ3 =

1

λ3
k

µ̄
(3)
k ,

where
ϕ̄

(4)
k =

√
2
p

∫ p
0 ϕ

(4) (x) sinλkxdx, ψ̄
(3)
k = −

√
2
p

∫ p
0 ψ

(3) (x) cosλkxdx,

ξ̄
(4)
k =

√
2
p

∫ p
0 ξ

(4) (x) sinλkxdx, µ̄
(3)
k = −

√
2
p

∫ p
0 µ

(3) (x) cosλkxdx.

Then
‖f (x)‖2L2[0,p] ≤ 4C̄2

8

∑∞
k=1

[∣∣∣ϕ̄(4)
k

∣∣∣2 +
∣∣∣ψ̄(3)
k

∣∣∣2 +
∣∣∣ϕ̄(4)
k

∣∣∣2 +
∣∣∣µ̄(3)
k

∣∣∣2] ≤
≤ 4C̄2

8

[∥∥ϕ(4)
∥∥2

L2
+
∥∥ψ(3)

∥∥2

L2
+
∥∥ξ(4)

∥∥2

L2
+
∥∥µ(3)

∥∥2

L2

]
≤

≤ C2
10

[
‖ϕ‖2W 4

2
+ ‖ψ‖2W 3

2
+ ‖ξ‖2W 4

2
+ ‖µ‖2W 3

2

]
.

(38)

The validity of estimate (34) follows from (38).
Let (x, t) be an arbitrary point from the domain Ω̄. From the first estimate (26) we have

|u (x, t)| ≤ C1

∞∑
k=1

(
|ϕk|+ k−1 1

3 |ψk|+ |ξk|+ k−1 1
3 |µk|

)
. (39)
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The coefficients ϕk, ξk are presented in the form

ϕk =
1

λk
ϕ̄

(1)
k , ξk =

1

λk
ξ̄

(1)
k ,

where

ϕ̄
(1)
k =

√
2

p

∫ p

0
ϕ′ (x) cosλkxdx, ξ̄

(1)
k =

√
2

p

∫ p

0
ξ′ (x) cosλkxdx.

From (39) we have

|u (x, t)| ≤ C1
∑∞

k=1

(
k−1

∣∣∣ϕ̄(1)
k

∣∣∣+ k−1 1
3 |ψk|+ k−1

∣∣∣ξ̄(1)
k

∣∣∣+ k−1 1
3 |µk|

)
≤

≤ C12

(∑∞
k=1

1
k2

) 1
2

[(∑∞
k=1

∣∣∣ϕ̄(1)
k

∣∣∣2) 1
2

+
(∑∞

k=1 |ψk|
2
) 1

2
+

(∑∞
k=1

∣∣∣ξ̄(1)
k

∣∣∣2) 1
2

+
(∑∞

k=1 |µk|
2
) 1

2

]
≤

≤ C13

[
‖ϕ′‖L2

+ ‖ψ‖L2
+ ‖ξ′‖L2

+ ‖µ‖L2

]
≤ C11

[
‖ϕ‖W 1

2
+ ‖ψ‖W 0

2
+ ‖ξ‖W 1

2
+ ‖µ‖W 0

2

]
.

This implies estimate (35). Based on the last estimate (27), we have

|f (x)| ≤ C8
∑∞

k=1

(
k4 |ϕk|+ k2 2

3 |ψk|+ k4 |ξk|+ k2 2
3 |µk|

)
≤

≤ C14
∑∞

k=1
1
k

(∣∣∣ϕ̄(5)
k

∣∣∣+
∣∣∣ψ̄(4)
k

∣∣∣+
∣∣∣ξ̄(5)
k

∣∣∣+
∣∣∣µ̄(4)
k

∣∣∣) ≤
≤ C14

(∑∞
k=1

1
k2

) 1
2

[(∑∞
k=1

∣∣∣ϕ̄(5)
k

∣∣∣2) 1
2

+

(∑∞
k=1

∣∣∣ψ̄(4)
k

∣∣∣2) 1
2

+

(∑∞
k=1

∣∣∣ξ̄(5)
k

∣∣∣2) 1
2

+

(∑∞
k=1

∣∣∣µ̄(4)
k

∣∣∣2) 1
2

]
≤

≤ C15

(∥∥ϕV ∥∥
L2

+
∥∥ψIV ∥∥

L2
+
∥∥ξV ∥∥

L2
+
∥∥µIV ∥∥

L2

)
≤ C12

(
‖ϕ‖W 5

2
+ ‖ψ‖W 4

2
+ ‖ξ‖W 5

2
+ ‖µ‖W 4

2

)
.

From this inequality follows (36). The theorem is proved.

Conclusion

In this paper, the inverse problem for a fourth-order equation is considered. The solution is
constructed as a series. The uniqueness of the solution to the inverse problem follows from the
completeness of the system of eigenfunctions. The stability of the solution to the inverse problem
is proven. The results obtained can be used for further development of various direct and inverse
problems for a fourth-order equation.
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Fractional Hermite-Hadamard-type inequalities represent a significant area of study in convex analysis due
to their extensive applications in mathematical and applied sciences. These inequalities provide powerful
tools for estimating the integral mean of a convex function in terms of its values at the endpoints of a
given interval. In this paper, we focus on the development and refinement of fractional Hermite-Hadamard-
type inequalities for the class of twice differentiable m-convex functions. Utilizing advanced analytical
techniques, such as Hölder’s inequality and the power mean integral inequality, we derive new bounds that
generalize existing results in the literature. These findings not only extend classical inequalities to a broader
class of convex functions but also provide sharper and more versatile estimations. The presented results are
expected to have significant implications in various mathematical domains, including fractional calculus,
optimization, and mathematical modeling. This work contributes to the ongoing efforts to generalize and
refine integral inequalities by incorporating fractional operators and broader convexity assumptions, offering
a deeper understanding of the behavior of m-convex functions under fractional integration.

Keywords: integral inequality, fractional Hermite-Hadamard inequality, convex functions, m−convex func-
tions, twice differentiable functions, Euler Beta function, Hölder’s integral inequality, power mean integral
inequality.
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“All analysts spend half their time hunting through the literature for inequalities which
they want to use and cannot prove.”

– Hardy

Introduction

Let ξ : I ⊂ R→ R be a convex function. Then

ξ

(
$1 +$2

2

)
≤ 1

$2 −$1

$2∫
$1

ξ(ζ)dζ ≤ ξ($1) + ξ($2)

2

is known in the literature as Hermite-Hadamard dual inequality [1]. If ξ is concave, then both in-
equalities hold in the reserved direction. We note that Hadamard’s inequality may be regarded as a
refinement of the concept of convexity and it easily follows from well-known Jensen’s inequality.
∗Corresponding Author. E-mail: mbilalfawad@gmail.com
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Hermite-Hadamard type inequalities play a significant role in the study of convex functions and
have attracted considerable attention in mathematical analysis and its applications. These inequal-
ities provide valuable estimates for the average value of a convex function in terms of its endpoint
evaluations. Over the years, various generalizations and extensions have been developed to encompass
broader classes of functions, including s-convex, h-convex, and m-convex functions and many more.
For further study related to the topic we refer [2–4] to the interested readers.

The concept of m-convexity, introduced as a generalization of classical convexity, is particularly
useful in optimization theory, economics, and applied analysis [5]. In 1984, Toader defined the class of
m−convex functions [6] as:

Definition 1. A function ξ : [0, $2]→ R is called m−convex, if ξ satisfies

ξ(vζ1 +m(1− v)ζ2) ≤ vξ(ζ1) +m(1− v)ξ(ζ2),

for all ζ1, ζ2 ∈ [0, $2] and m, v ∈ [0, 1].
Remark 1. If we put m = 0 and m = 1 in the above definition then m−convexity changes into

Star-shaped [1] and classical convexity [7], respectively.
In parallel, the development of fractional calculus the study of integrals and derivatives of arbitrary

(non-integer) order – has led to new avenues for generalizing classical inequalities. Fractional integrals,
such as the Riemann–Liouville and Hadamard fractional integrals, have proven to be powerful tools in
extending integral inequalities to fractional settings (for example see [8–10]).

By combining the frameworks of fractional calculus and m-convexity, researchers have established
fractional Hermite-Hadamard type inequalities form-convex functions, which provide sharper and more
generalized bounds than their classical counterparts. These inequalities not only refine existing results
but also open up possibilities for applications in diverse fields such as control theory, mathematical
physics, signal processing, and differential equations (for further study see [11] and [12]).

Theorem 1. If 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1 and g ∈ Lq, then ξg ∈ L1 and∫
|ξ(ζ)g(ζ)|dζ ≤ ‖ξ‖p‖g‖q, (1)

where ξ ∈ Lp if ‖ξ‖p =
(∫
|ξ(ζ)|pdζ

) 1
p <∞.

The above inequality is known as Hölder’s inequality [13].
Remark 2. Note that Cauchy−Schwarz inequality would be obtained by taking p = q = 2. Also, if

we put q = 1 and let p → ∞, then we attain,∫
|ξ(ζ)g(ζ)|dζ ≤ ||ξ||∞||g||1,

where ||ξ||∞ stands for essential supremum of |ξ|, i.e.,

||ξ||∞ = ess sup
∀ζ
|ξ(ζ)|.

Another representation of Hölder’s inequality is known in literature as Power mean integral in-
equality [14], defined as:

Theorem 2. If ξ and g are real valued functions defined on I with |ξ| and |ξ||g|q are integrable on
I then for q ≥ 1, we have:

$2∫
$1

|ξ(ζ)||g(ζ)|dζ ≤

 $2∫
$1

|ξ(ζ)|dζ

1− 1
q
 $2∫
$1

|ξ(ζ)||g(ζ)|qdζ

 1
q

. (2)
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Now, we are going to give some necessary definitions and mathematical results related to fractional
calculus which will be used further in this article.

Definition 2. [15] Let ξ ∈ L[$1, $2]. The Riemann−Liouville integrals Jα$1
+ξ(ζ) and Jα$2

−ξ(ζ) of
order α > 0 are defined by

Jα$1
+ξ(ζ) =

1

Γ(α)

ζ∫
$1

(ζ − v)α−1ξ(v)dv, ζ > $1

and

Jα$2
−ξ(ζ) =

1

Γ(α)

$2∫
ζ

(v − ζ)α−1ξ(v)dv, ζ < $2,

respectively, where Γ(α) =
∞∫
0

e−uuα−1du is the Gamma function.

Remark 3. Note that if we take α = 0, then J0
$1

+ξ(ζ) = J0
$2

−ξ(ζ) = ξ(ζ) and if we take α = 1,
then the fractional integrals reduce to the classical one.

In 2013 Bhatti et al. proved the following three distinct results related to fractional Hermite-
Hadamard-type inequality for the class of twice differentiable convex functions [16].

Theorem 3. Let ξ : I ⊂ R → R be a twice differentiable function on I◦ such that |ξ′′| is a convex
function on I. Suppose that $1, $2 ∈ I◦ with $1 < $2 and ξ′′ ∈ L[$1, $2], then the below stated
inequality for fractional integrals with α > 0 holds:∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ α($2 −$1)

2

2(α+ 1)(α+ 2)

[
|ξ′′($1)|+ |ξ′′($2)|

2

]
≤ ($2 −$1)

2

(α+ 1)
β(2, α+ 1)

[
|ξ′′($1)|+ |ξ′′($2)|

2

]
,

where β is the Euler Beta function.

Theorem 4. Let ξ : I ⊂ R → R be a twice differentiable function on I◦. Assume that p ∈ R,
p > 1 such that |ξ′′|

p
p−1 is a convex function on I. Suppose that $1, $2 ∈ I◦ with $1 < $2 and

ξ′′ ∈ L[$1, $2], then the below stated inequality for fractional integrals with α > 0 holds:∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

(α+ 1)
β

1
p (p+ 1, αp+ 1)

[
|ξ′′($1)|q + |ξ′′($2)|q

2

] 1
q

,

where β is the Euler Beta function.

Theorem 5. Let ξ : I ⊂ R→ R be a twice differentiable function on I◦. Assume that q ≥ 1, p > 1
such that |ξ′′|q is a convex function on I. Suppose that $1, $2 ∈ I◦ with $1 < $2 and ξ′′ ∈ L[$1, $2],
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then the below stated inequality for fractional integrals with α > 0 holds:∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ α($2 −$1)

2

4(α+ 1)(α+ 2)

[(
2α+ 4

3α+ 9
|ξ′′($1)|q +

α+ 5

3α+ 9
|ξ′′($2)|q

) 1
q

+

(
α+ 5

3α+ 9
|ξ′′($1)|q +

2α+ 4

3α+ 9
|ξ′′($2)|q

) 1
q

]
.

The structure of this article unfolds as follows: In the subsequent section, we aim to establish
three unique outcomes concerning fractional Hermite-Hadamard-type inequalities applicable to the
category of twice differentiable m−convex functions. Our approach will leverage diverse techniques,
encompassing Hölder’s and power mean integral inequalities. These findings are anticipated to exhibit
a broader scope compared to those presented in [16]. The third section will provide a concluding
statement, while the final section will offer insights and future prospects for readers interested in
further exploration.

1 Various Estimations of Right Bound of Fractional Hermite-Hadamard-type Inequalities for Twice
Differentiable m−Convex Functions

In order to prove our main results we need to recall following lemma from [16].
Lemma 1. Let ξ : I ⊂ R → R be a twice differentiable function on I◦, the interior of I. Assume

that $1, $2 ∈ I◦ with $1 < $2 and ξ′′ ∈ L[$1, $2], then the below stated identity for fractional
integrals with α > 0 holds:

ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

=
($2 −$1)

2

2(α+ 1)

1∫
0

v(1− vα)[ξ′′(v$1 + (1− v)$2) + ξ′′((1− v)$1 + v$2)]dv,

where Γ(α) =
∞∫
0

e−uuα−1du.

Now, we are going to state and prove of our new results related to fractional Hermite-Hadamard-
type inequalities for twice differentiable m−convex functions.

Theorem 6. Let ξ : I ⊂ [0,∞) → R be a twice differentiable function on I◦, the interior of I.
Assume that $1, $2 ∈ I◦ with $1 < $2 and ξ′′ ∈ L[$1, $2]. If |ξ′′| is m−convex on I for some
m ∈ (0, 1], then the below stated inequality for fractional integrals with α > 0 holds:∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣ ≤ α($2 −$1)
2

6(α+ 1)(α+ 3)

×
[
|ξ′′($1)|+ |ξ′′($2)|+m

(α+ 5)

2(α+ 2)

(∣∣∣ξ′′ ($1

m

)∣∣∣+
∣∣∣ξ′′ ($2

m

)∣∣∣)] .
Proof. By using Lemma 1 and the property of absolute value, we have,∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2(α+ 1)

1∫
0

|v(1− vα)|[|ξ′′(v$1 + (1− v)$2)|+ |ξ′′((1− v)$1 + v$2)|]dv. (3)
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As we have |ξ′′| is a m−convex function, so we can take

∣∣ξ′′ (v$1 + (1− v)$2)
∣∣ ≤ v ∣∣ξ′′ ($1)

∣∣+m(1− v)
∣∣∣ξ′′ ($2

m

)∣∣∣
and ∣∣ξ′′ ((1− v)$1 + v$2)

∣∣ ≤ m(1− v)
∣∣∣ξ′′ ($1

m

)∣∣∣+ v|ξ′′($2)|.

Utilizing the above two results, (3) becomes∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2(α+ 1)

1∫
0

[
v2(1− vα)|ξ′′($1)|+mv(1− v)(1− vα)

∣∣∣ξ′′ ($2

m

)∣∣∣
+mv(1− v)(1− vα)

∣∣∣ξ′′ ($1

m

)∣∣∣+ v2(1− vα)|ξ′′($2)|
]
dv.

After arranging and using the following facts the result of Theorem 6 is accomplished.

1∫
0

v2(1− vα)dv =
α

3(α+ 3)

and

1∫
0

v(1− vα)(1− v)dv =
α(α+ 5)

6(α+ 2)(α+ 3)
.

Remark 4. The following well-known results would be captured as special cases of our obtained
result by varying different values of m and α:

1. If we choose m = 1 in Theorem 6, then we get first inequality of Theorem 3.
2. If we choose α = m = 1 in Theorem 6, then we get Hermite-Hadamard-type inequality for twice

differentiable convex function [17].

Corollary 1. If we choose α = 1 in Theorem 6, then we get the following Hermite-Hadamard-type
inequality for twice differentiable m−convex function:∣∣∣∣∣∣ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫
$1

ξ(ζ)dζ

∣∣∣∣∣∣
≤ ($2 −$1)

2

48

[
|ξ′′($1)|+ |ξ′′($2)|+m

(∣∣∣ξ′′ ($1

m

)∣∣∣+
∣∣∣ξ′′ ($2

m

)∣∣∣)] .
Theorem 7. Let ξ : I ⊂ [0,∞) → R be a twice differentiable function on I◦, the interior of I.

Assume that $1, $2 ∈ I◦ with $1 < $2 and ξ′′ ∈ L[$1, $2]. If |ξ′′|q is m−convex on I for some
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m ∈ (0, 1] and q ≥ 1 then the following inequality for fractional integrals with α > 0 and 1
p + 1

q = 1
holds: ∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2(α+ 1)
β

1
p (p+ 1, αp+ 1)

×

( |ξ′′($1)|q +m
∣∣ξ′′ ($2

m

)∣∣q
2

) 1
q

+

(
m
∣∣ξ′′ ($1

m

)∣∣q + |ξ′′($2)|q

2

) 1
q

 ,
where β is the Euler Beta function.

Proof. By using Lemma 1 and the property of absolute value, we have∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2(α+ 1)

1∫
0

|v(1− vα)|[|ξ′′(v$1 + (1− v)$2)|+ |ξ′′((1− v)$1 + v$2)|]dv. (4)

Applying (1) to
1∫
0

|v(1 − vα)||ξ′′(v$1 + (1 − v)$2)|dv and
1∫
0

|v(1 − vα)||ξ′′((1 − v)$1 + v$2)|dv

implies

1∫
0

|v(1− vα)||ξ′′(v$1 + (1− v)$2)|dv

≤

 1∫
0

|v(1− vα)|pdt


1
p
 1∫

0

|ξ′′(v$1 + (1− v)$2)|qdv


1
q

and

1∫
0

|v(1− vα)||ξ′′((1− v)$1 + v$2)|dv

≤

 1∫
0

|v(1− vα)|pdt


1
p
 1∫

0

|ξ′′((1− v)$1 + v$2)|qdv


1
q

.

As we have |ξ′′|q is a m−convex function, so we can take∣∣ξ′′ (v$1 + (1− v)$2)
∣∣q ≤ v ∣∣ξ′′ ($1)

∣∣q +m(1− v)
∣∣∣ξ′′ ($2

m

)∣∣∣q
and ∣∣ξ′′ ((1− v)$1 + v$2)

∣∣q ≤ m(1− v)
∣∣∣ξ′′ ($1

m

)∣∣∣q + v|ξ′′($2)|q.
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Utilizing the above four results, (4) becomes∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2(α+ 1)

 1∫
0

vp(1− vα)pdt


1
p

×


|ξ′′($1)|q

1∫
0

vdv +m
∣∣∣ξ′′ ($2

m

)∣∣∣q 1∫
0

(1− v)dv


1
q

+

m ∣∣∣ξ′′ ($1

m

)∣∣∣q 1∫
0

(1− v)dv + |ξ′′($2)|q
1∫

0

vdv


1
q

 .
After using the following facts, the result of Theorem 7 is accomplished.

1∫
0

vdv =

∫ 1

0
(1− v)dv =

1

2

and
1∫

0

vp(1− vα)pdt ≤
1∫

0

vp(1− v)αpdv = β(p+ 1, αp+ 1).

Remark 5. Following well-known results would be captured as special cases of our obtained result
by varying different values of m and α:

1. If we choose m = 1 in Theorem 7, then we get Theorem 4.
2. If we choose α = m = 1 in Theorem 7, then we get Theorem 10 of [18].
Corollary 2. Under the assumptions of the Theorem 7,
1. If we put p = q = 2, then we get the result obtained by using Cauchy− Schwarz integral inequality

as: ∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2
3
2 (α+ 1)

β
1
2 (3, 2α+ 1)

×

[(
|ξ′′($1)|2 +m

∣∣∣ξ′′ ($2

m

)∣∣∣2) 1
2

+

(
m
∣∣∣ξ′′ ($1

m

)∣∣∣2 + |ξ′′($2)|2
) 1

2

]
,

where β is the Euler Beta function.
2. If we put q = 1 and p =∞, then we get the result involving essential supremum norm as:∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

4(α+ 1)
||X||∞

[
|ξ′′($1)|+m

∣∣∣ξ′′ ($2

m

)∣∣∣+m
∣∣∣ξ′′ ($1

m

)∣∣∣+ |ξ′′($2)|
]
,
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where ||X||∞ = ess sup
v∈[0,1]

1∫
0

v(1− v)α.

3. If we choose α = 1, then we get the following Hermite-Hadamard-type inequality for twice
differentiable m−convex function:∣∣∣∣∣∣ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫
$1

ξ(ζ)dζ

∣∣∣∣∣∣ ≤ ($2 −$1)
2

4
β

1
p (p+ 1, p+ 1)

×

( |ξ′′($1)|q +m
∣∣ξ′′ ($2

m

)∣∣q
2

) 1
q

+

(
m
∣∣ξ′′ ($1

m

)∣∣q + |ξ′′($2)|q

2

) 1
q

 .
Theorem 8. Let ξ : I ⊂ [0,∞) → R be a twice differentiable function on I◦, the interior of I.

Assume that $1, $2 ∈ I◦ with $1 < $2 and ξ′′ ∈ L[$1, $2]. If |ξ′′|q is m−convex on I for some
m ∈ (0, 1] and q ≥ 1 then the following inequality for fractional integrals with α > 0 holds:∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ α($2 −$1)

2

4(α+ 1)(α+ 2)(3(α+ 3))
1
q

[(
2(α+ 2)|ξ′′($1)|q +m(α+ 5)

∣∣∣ξ′′ ($2

m

)∣∣∣q) 1
q

+
(
m(α+ 5)

∣∣∣ξ′′ ($1

m

)∣∣∣q + 2(α+ 2)|ξ′′($2)|q
) 1

q

]
.

Proof. By using Lemma 1 and the property of absolute value, we have∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2(α+ 1)

1∫
0

|v(1− vα)|[|ξ′′(v$1 + (1− v)$2)|+ |ξ′′((1− v)$1 + v$2)|]dv. (5)

Applying (2) to
1∫
0

|v(1 − vα)||ξ′′(v$1 + (1 − v)$2)|dv and
1∫
0

|v(1 − vα)||ξ′′((1 − v)$1 + v$2)|dv

implies

1∫
0

|v(1− vα)||ξ′′(v$1 + (1− v)$2)|dv

≤

 1∫
0

v(1− vα)dv

1− 1
q
 1∫

0

v(1− vα)|ξ′′(v$1 + (1− v)$2)|qdv


1
q

and
1∫

0

|v(1− vα)||ξ′′((1− v)$1 + v$2)|dv

≤

 1∫
0

v(1− vα)dv

1− 1
q
 1∫

0

v(1− vα)|ξ′′((1− v)$1 + v$2)|qdv


1
q

.

92 Bulletin of the Karaganda University



Some Generalized Fractional ...

Since |ξ′′|q is an m−convex function, so we can take∣∣ξ′′ (v$1 + (1− v)$2)
∣∣q ≤ v ∣∣ξ′′ ($1)

∣∣q +m(1− v)
∣∣∣ξ′′ ($2

m

)∣∣∣q
and ∣∣ξ′′ ((1− v)$1 + v$2)

∣∣q ≤ m(1− v)
∣∣∣ξ′′ ($1

m

)∣∣∣q + v|ξ′′($2)|q.

Utilizing the above four results, (5) becomes∣∣∣∣ξ($1) + ξ($2)

2
− Γ(α+ 1)

2($2 −$1)α
[Jα$1

+ξ($2) + Jα$2
−ξ($1)]

∣∣∣∣
≤ ($2 −$1)

2

2(α+ 1)

 1∫
0

v(1− vα)dv

1− 1
q

×


|ξ′′($1)|q

1∫
0

v2(1− vα)dv +m
∣∣∣ξ′′ ($2

m

)∣∣∣q 1∫
0

v(1− v)(1− vα)dv


1
q

+

m ∣∣∣ξ′′ ($1

m

)∣∣∣q 1∫
0

v(1− vα)dv + |ξ′′($2)|q
1∫

0

v2(1− v)dv


1
q

 .
After arranging and using the following facts the result of Theorem 8 is accomplished.

1∫
0

v(1− vα)dv =
α

2(α+ 2)
,

1∫
0

v2(1− vα)dv =
α

3(α+ 3)

and
1∫

0

v(1− v)(1− vα)dv =
α(α+ 5)

6(α+ 2)(α+ 3)
.

Remark 6. Following well-known results would be captured as special cases of our obtained result
by varying different values of m and α:

1. If we choose m = 1 in Theorem 8, then we get Theorem 5.
2. If we choose α = m = 1 in Theorem 8, then we get Theorem 8 of [18].
Corollary 3. If we choose α = 1 in Theorem 8, then we get the following Hermite-Hadamard-type

inequality for twice differentiable m−convex function:∣∣∣∣∣∣ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫
$1

ξ(ζ)dζ

∣∣∣∣∣∣ ≤ ($2 −$1)
2

24(2)
1
q

×
[(
|ξ′′($1)|q +m

∣∣∣ξ′′ ($2

m

)∣∣∣q) 1
q

+
(
m
∣∣∣ξ′′ ($1

m

)∣∣∣q + |ξ′′($2)|q
) 1

q

]
.
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2 Conclusion

The fractional Hermite-Hadamard inequality stands out as one of the most renowned within the
realm of inequalities, boasting numerous generalizations across different classes of convex functions in
existing literature. In this article, we present its extension for twice differentiable m−convex functions.
Section 1 unveils three distinct findings concerning the estimated right bound of the fractional Hermite-
Hadamard inequality in an absolute sense for twice differentiablem−convex functions. Here, we employ
various methodologies, including Hölder’s and Power mean integral inequalities. While some of these
results are novel, others have been previously documented in the articles [16–18]. The final section is
dedicated to providing remarks and offering future avenues of exploration for interested readers.

Now, we are going to summarize the results of Section 1 in Table 1.

T a b l e 1

Result Summary of Section 1

S. No m α Results Found in
1 1 − FHHTI for Ordinary Convex Functions [16]
2 − 1 HHTI for m−Convex Functions This Article
3 1 1 HHTI for Ordinary Convex Functions [17,18]

In the preceding table, the abbreviations FHHTI and HHTI refer to the Fractional Hermite-
Hadamard type inequality and the Hermite-Hadamard type inequality, respectively, while the symbol
“ – ” indicates validity for any value.

Now we are going to give some remarks and future ideas related to our stated results.

3 Remarks and Future Ideas

1. All the inequalities given in this article can be stated in the reverse direction for concave functions
using the simple relation that ξ is concave if and only if ξ is convex.

2. One may also work on Fejér inequality by introducing weights in fractional Hermite-Hadamard
inequality.

3. One may do similar work by using various distinct classes of convex functions.
4. One may try to state all the results given in this article for the discrete case.
5. One may also state all the results given in this article for Multi-dimensions.
6. One can extend this work to time scale domain or Quantum Calculus.
7. One can try to attain this work for Fuzzy theory.
8. One can try to work for finding refined bounds of all results.
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We consider a linear singularly perturbed differential system, one of the points of the spectrum of the
limiting operator of which goes to zero on some discrete subset of the segment of the independent variable.
The problem belongs to the class of problems with unstable spectrum. Previously, S.A. Lomov’s regular-
ization method was used to construct asymptotic solutions of a similar system. However, it was applied
in the case of absence of fast oscillations. The presence of the latter does not allow us to approximate the
exact solution by a degenerate one, since the limit transition in the initial system when a small parameter
tends to zero in a uniform metric is impossible. Therefore, when constructing the asymptotic solution, it is
necessary to take into account the effects introduced into the asymptotics by fast oscillations. In developing
the corresponding algorithm, one could use the ideas of the classical Lomov regularization method, but
considering that its implementation requires numerous calculations (e.g., to construct the main term of the
asymptotics in the simplest case of the second-order zero eigenvalue of the limit operator one has to solve
three algebraic systems of order higher than the first), the authors considered it necessary to develop a
more economical algorithm based on regularization by means of normal forms.

Keywords: singularly perturbed problem, normal form, discrete irreversibility of the operator, instabil-
ity of the spectrum, regularized asymptotics, asymptotic solution, solvability of iterative problems, limit
transition.

2020 Mathematics Subject Classification: 34E05, 34E15, 34E20.

1 Problem formulation and its regularization

Consider the singularly perturbed Cauchy’s problem

ε
dy

dt
= A0 (t) y + h0 (t) + h1 (t) ei

β(t)
ε , y (0, ε) = y0, t ∈ [0, T ] (10)

where y = {y1 (t) , ..., yn (t)} is an unknown vector function, hj = {h1j (t) , ..., hnj (t)} are known
vector functions, y0 =

{
y0

1, ..., y
0
n

}
is the known constant vector, β′(t) > 0 is the frequency of rapidly

oscillating inhomogeneity, ε > 0 is a small parameter. Let
{
λj (t) , j = 1, n

}
be the spectrum of the

matrix A0 (t). Assuming that the conditions:
1) A0 (t) ∈ C∞ ([0, T ] ,Cn×n) , hj (t) ∈ C∞ ([0, T ] , Cn) , j = 0, 1, β (t) ∈ C∞

(
[0, T ] ,C1

)
;

2) there exists the subset B ⊂ [0, T ] such that

a) λ1 (t) = l1 (t)
r∏
j=1

(t− tj)sj , l1 (t) < 0, l1 (t) ∈ C∞ [0, T ] , sj = 2mj ∈ Z+, tj ∈ [0, T ] ,

j = 1, r, λk (t) 6= 0 ∀t ∈ [0, T ] , k = 2, n;

∗Corresponding author. E-mail: bkalimbetov@mail.ru
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b) λi (t) 6= λj (t) , λj (t) 6= β′ (t) , i 6= j, i, j = 1, n, ∀t ∈ [0, T ] ;
c) β′ (t) > 0, Reλi (t) ≤ 0 ∀t ∈ [0, T ] , i = 1, n

are satisfied, we develop an algorithm for constructing the asymptotic solution of the problem (10).
The problem (10) belongs to the class of complex problems for the study of singularly perturbed
systems with unstable spectrum [1]. In [2], a regularization method is developed for the case when the
spectrum of the variable limit operator vanishes at individual points. In [3], the Cauchy problem, is
studied in the presence of a “weak” turning point of the limit operator, and estimates are provided that
characterize the behavior of singularities at ε→ +0. A generalization of the ideas of the regularization
method for problems with a turning point at which the eigenvalues “stick together” at t = 0 and
initializations are considered in works [4, 5]. An analytical method for solving a Burgers-type equation
in a Banach space is investigated in [6]. Namely, after artificially introducing a small parameter
into the equation, the existence of an analytical solution with respect to this parameter is proven.
The concept of a pseudoanalytic (pseudoholomorphic) solution introduced by S.A. Lomov initiated
the development of singularly perturbed analytic theory. In [7, 8], formally singularly perturbed
equations are considered in topological algebras, which allows one to formulate the basic concepts of
singularly perturbed analytic theory from the standpoint of maximum generality, and conditions for
the existence of solutions holomorphic in the parameter are found in the case when the perturbing
operator is bilinear. The study of finding conditions for the ordinary convergence of series in powers of
a small parameter, representing solutions to perturbation theory problems, is considered in [9]. Their
results were generalized to integro-differential equations in [10]. This paper is the first to apply the
normal form method to study such problems. The purpose of this paper is to develop this algorithm to
construct asymptotic solutions of the problem (10) in the presence of a rapidly oscillating inhomogeneity
h0 (t) ei

β(t)
ε .

Since the function e
1
ε
β(t) satisfies the differential equation

ε
dyn+1(t, ε)

dt
= iβ′(t)yn+1(t, ε), yn+1(0, ε) = e

i
ε
β(0),

then from the system (10) of order n it will be necessary to pass to the system of order (n+ 1):

ε
d

dt

(
y(t, ε)

yn+1(t, ε)

)
=

(
A0(t) h1(t)

0 iβ′(t)

)(
y(t, ε)

yn+1(t, ε)

)
+

(
h0(t)

0

)
,

(
y(0, ε)

yn+1(t, ε)

)
+

(
y0

e
i
ε
β(0)

)
or

ε
dz

dt
= A (t) z + h (t) , z (0, ε) = z0, t ∈ [0, T ] , (1)

where notations

z = {y, yn+1} , z0 =
{
y0, e

i
ε
β(0)
}
, A (t) =

(
A0 (t) h1 (t)

0 iβ′ (t)

)
, h (t) =

(
h0 (t)

0

)
are introduced.

Let’s denote by ei =

{
0, ..., 0, 1

(i)
, 0, ..., 0

}
the i-th ort in Cn+1, 1̄ = {1, ..., 1} ∈ Rn+1 is the vector

consisting solidly of units, λn+1 (t) = iβ′ (t), and through Λ (t) = diag {λ1 (t) , ..., λn+1 (t)} is the
diagonal matrix with the spectrum of the matrix A (t) on the diagonal. We regularize the problem (1)
with the vector u = {u1, ..., un, un+1} of the regularizing variables satisfying the normal form∗

ε
du

dt
= Λ (t)u+ g0 (t) e1 +

m∑
j=1

εj
r∑
i=1

gj (t) e1, u (0, ε) = 1̄, (2)

∗On regularization by means of normal forms, see, for example, [10].
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where the functions gj (t) ∈ C∞
(
[0, T ] ,C1

)
are calculated in the process of constructing the asymptotic

solution of problem (1). The extended system corresponding to problem (1) will have the form

ε
∂z̃

∂t
+
∂z̃

∂u

Λ (t)u+ g0 (t) e1 +

m∑
j=1

εj
r∑
i=1

gj (t) e1

−A (t) z̃ = h(t), z̃ (t, u, ε) |t=0,u=1̄ = y0, (3)

where the function z̃ = z̃ (t, u, ε) is such that its contraction on the solution u = u (t, ε) of the normal
form (2) coincides with the exact solution z (t, ε) of problem (1). Since problem (3) is regular in ε at
ε→ +0, its solution can be sought in the form of series

z̃ (t, u, ε) =
∞∑
k=0

εkzk (t, u) (4)

by non-negative powers of the parameter ε. Substituting series (4) into (3) and equating the coefficients
at the same powers of ε, we obtain the following iterative problems:

Lz0 ≡
∂z0

∂u
Λ (t)u−A (t) z0 = h (t)− ∂z0

∂u
g0 (t) e1, z0 (0, 1̄) = z0; (40)

Lz1 = −∂z0

∂t
− ∂z0

∂u
g1 (t) e1 −

∂z1

∂u
g0 (t) e1, y1 (0, 1̄) = 0; (41)

Lzk+1 = −∂zk
∂t
− ∂z0

∂u
gk+1 (t) e1 −

∂zk+1

∂u
g0 (t) e1−

k∑
j=1

∂zj
∂u

gk+1−j (t) e1, zk+1 (0, 1̄) = 0, k > 1. (4k+1)

Here gkj (t) ≡ 0 at k ≥ m+ 1.

2 Solvability of the first iterative problem

Under the described conditions on the spectrum of operator A(t) there exists a matrix
C(t) ≡ (c1(t), . . . , cn+1(t)) with columns cj(t) ∈ C∞([0, T ],Cn+1) such that for all t ∈ [0, T ] the
identity

C−1(t)A(t)C(t) ≡ Λ(t) = diag(λ1(t), . . . , λn+1(t)) (5)

holds. Let’s denote by dj(t) the j-th column of the matrix [C−1(t)]∗, j = 1, n+ 1. It is clear that for
each t ∈ [0, T ] the following equality holds A∗(t)dj(t) = λj(t)dj(t) (ci(t), dj(t)) ≡ δij (i, j = 1, n+ 1),
where δij is Kronecker’s symbol (here and below (∗, ∗) denotes the scalar product in Cn+1). Note that
identity (5) excludes the rotation points in system (1).

The solution of each iterative problem (4k) we will be defined in the space U of functions
z(t, u) = {z1, ...zn+1} of the form

z (t, u) =

n+1∑
j=1

zj (t)uj + z0 (t) , zj(t) ∈ C∞([0, T ],Cn+1), j = 0, n+ 1 (6)

in which the scalar product (at each t ∈ [0, T ])

< w, z >≡

〈
n+1∑
j=1

wj (t)uj + w0 (t) ,
n+1∑
j=1

zj (t)uj + z0 (t)

〉
,

n+1∑
j=0

(wj (t) , zj (t)) ≡
n+1∑
j=0

wTj (t) z̄j (t)
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is introduced. Without developing the general theory of solvability of iterative problems (4k), let us
try to solve the problem (40). By defining its solution as an element of the space U given by (6):

z0 (t, u) =

n+1∑
j=1

z
(0)
j (t)uj + z

(0)
0 (t) , (7)

we obtain the following system of equations for the coefficients z(0)
j (t):

−A (t) z
(0)
0 (t) = h (t)− g0 (t) z

(0)
1 (t) , (8)

[λj (t) I −A (t)] z
(0)
j (t) = 0, j = 1, n+ 1. (9)

Solutions of the systems (9) are defined in the form z
(0)
j (t) = αj (t) cj (t), where αj (t) ∈ C∞

(
[0, T ] ,C1

)
are arbitrary scalar functions, j = 1, n+ 1. To compute these functions, we proceed to the iterative
system (41). Defining its solution in the space U as a function

z1 (t, u) =
n+1∑
j=1

z
(1)
j (t)uj + z

(1)
0 (t) ,

we get similar systems

−A (t) z
(1)
0 (t) = −ż(0)

0 (t)− z(0)
1 (t) g1 (t)− g0 (t) z

(1)
1 (t) ,

[λj (t) I −A (t)] z
(1)
j (t) = −α̇j (t) cj (t)− αj (t) ċj (t) , j = 1, n+ 1. (10)

For the solvability of systems (10) in the class C∞
(
[0, T ] ,Cn+1

)
it is necessary and sufficient that

(−α̇j (t) cj (t)− αj (t) ċj (t) , dj (t)) ≡ 0, j = 1, n+ 1

from where we find the functions

αj (t) = αj (0) exp

−
t∫

0

(ċj (θ) , dj (θ)) dθ

 , j = 1, n+ 1.

The initial values for these functions are found from the condition z0 (0, 1̄) = z0, which, taking into
account (7), is written in the form

n+1∑
j=1

αj (0) cj (0) = z0 − z(0)
0 (0) ⇔ αj (0) =

(
z0 − z(0)

0 (0) , dj (0)
)
, j = 1, n+ 1. (11)

However, no function has yet been found in (11) z(0)
0 (t). Substituting z(0)

1 (t) = α1 (t) c1 (t) in (8) and

making in the obtained system the transformation z(0)
0 (t) = C (t) ξ ≡ (c1 (t) , ..., cn+1 (t))

 ξ1

...
ξn+1

,

we obtain the following equations for the vector components ξ:

−λ1 (t) ξ1 = (h (t) , d1 (t))− g0 (t)α1 (t) ,

−λj (t) ξj = (h (t) , dj (t)) , j = 2, n+ 1.
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Since λj (t) 6= 0 at j = 2, n+ 1, then the last equations of this system have unique solutions

ξj (t) = −(h (t) , dj (t))

λj (t)
, j = 2, n+ 1.

In view of condition 2a), the first equation of the above system is solvable in the class C∞
(
[0, T ] ,C1

)
then and only when

Dν (α1g0) (tj) = Dν (h, d1) (tj) , j = 1, r, ν = 0, sj − 1

(here and throughout the following, Dν (f) (tj) denotes the ν-th derivative of a function f (t) at the
point tj).

It follows that the function α1 (t) g0 (t) is the Lagrange-Sylvester’s polynomial of the function
(h (t) , d1 (t)), i.e.,

α1 (t) g0 (t) =
r∑
j=1

sj−1∑
ν=0

Dν (h, d1) (tj)Kji (t) , (12)

where
{
Kji (t) , j = 1, r, i = 0, sj − 1

}
is the basis system of Lagrangian-Sylvester’s polynomials

constructed by the polynomial ψ (t) =
r∏
j=1

(t− tj)sj [10; §9.2]. Suppose that the number α1 (0) =

=
(
z0 − z(0)

0 (0) , d1 (0)
)
6= 0. Then it follows from (12) that the function g0 (t) is represented as

g0 (t) =
1

α1 (0) p1 (t)

r∑
j=1

sj−1∑
ν=0

Dν (h, d1) (tj)Kjν (t) , (13)

where p1 (t) = exp

{
−

t∫
0

(ċ1 (θ) , d1 (θ)) dθ

}
. From (8), taking into account formula (12), we find the

function z(0)
0 (t):

z
(0)
0 (t) = −A−1 (t)

(
h (t)− g0 (t) z

(0)
1 (t)

)
=

= −C (t) Λ−1 (t)C−1 (t) (h (t)− g0 (t)α1 (t) c1 (t)) =

= −(h (t) , d1 (t))− g0 (t)α1 (t)

λ1 (t)
c1 (t)−

n+1∑
j=2

(h (t) , dj (t))

λj (t)
cj (t) ≡ (14)

≡ −
(h (t) , d1 (t))−

r∑
j=1

sj−1∑
ν=0

Dν (h, d1) (tj)Kjν (t)

λ1 (t)
c1 (t)−

n+1∑
j=2

(h (t) , dj (t))

λj (t)
cj (t) .

Hence, we can see that the function z
(0)
0 (t) does not depend on α1(0). This allows us to find

values αj (0):

α1 (0) =
(
z0 − z(0)

0 (0) , d1 (0)
)

=
(
z0, d1 (0)

)
+

+
(h(0),d1(0))−

r∑
j=1

sj−1∑
ν=0

Dν(h,d1)(tj)Kjν(0)

λ1(t) ,

(15)
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αj (0) =
(
z0, dj (0)

)
+
n+1∑
j=2

(
(h(0),dj(0))

λj(0) cj (0) , dj (0)
)

=

=
(
z0, dj (0)

)
+

(h(0),dj(0))
λj(0) , j = 2, n+ 1

(16)

unambiguously and hence compute the solution (7) to problem (40) in the space U in a single-valued
way. We come to the following result.

Theorem 1. Let conditions 1), 2a), 2b) be satisfied and the number α1(0), defined by formula (15),
is not equal to zero. Then whatever the functions z1 (t, u) ∈ U and g1 (t) ∈ C∞

(
[0, T ] ,C1

)
, there

exists a single function g0(t) ∈ C∞([0, T ],C1), computed by formulas (13), such that the problem (40)
under the additional condition〈

−∂z0

∂t
− ∂z0

∂u
g1 (t) e1 −

∂z1

∂u
g0 (t) e1, dj (t)uj

〉
≡ 0 ∀t ∈ [0, T ], j = 1, n+ 1

has a single solution in the class U . This solution is given by formula (7), where the functions αj(t) have

the form αj (t) = αj (0) exp

{
−

t∫
0

(ċj (θ) , dj (θ)) dθ

}
, j = 1, n+ 1, and the numbers αj (0) calculated

by the formulas (16).

Remark. If the right part h (t) of system (1) is such that the following equations

Dν (h) (tj) = 0⇔ Dν (h1) (tj) = 0, j = 1, r, ν = 0, sj − 1 (∗)

are satisfied, then, as can be seen from formulas (13) and (14), the function g0 (t) ≡ 0, and the function
z

(0)
0 (t) will have the form

z
(0)
0 (t) = −(h (t) , d1 (t))

λ1 (t)
c1 (t)−

n+1∑
j=2

(h (t) , dj (t))

λj (t)
cj (t) . (∗∗)

3 Algorithm for constructing solutions to iterative problems (4k) at k ≥ 1

Carrying out calculations similar to those used in constructing the solution of the first iterative
problem (40), we obtain the following algorithm for the sequential solution of the problems (4k) , k ≥ 1.

1) Each of the iterative systems (4k) , k ≥ 1, is represented as

Lẑk ≡
∂ẑk
∂u

Λ (t)u−A (t) ẑk = −∂ẑk−1

∂t
, (17)

−A (t) z
(0)
k (t) = −

∂z
(0)
k−1

∂t
− ∂ẑ0

∂u
gk (t) e1 −

∂ẑk
∂u

g0 (t) e1−
k−1∑
j=1

∂ẑk
∂u

gk−j (t) e1 (18)

according to the representation of the solution z (t, u) ∈ U as zk = ẑk (t, u) + z
(0)
k (t), where

ẑk (t, u) =
n+1∑
j=1

ẑ
(k)
j (t)uj ∈ Û , ẑ

(0)
k (t) ∈ U (0) = C∞

(
[0, T ] ,Cn+1

)
.

2) We solve the system (17) in the space Û . For its solvability in this space it is necessary and
sufficient that the identities

〈
−∂ẑk−1

∂t , dj (t)uj

〉
≡ 0, j = 1, n+ 1 hold [10].
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3) Writing the solution of the system (17) in the form ẑk (t, u) =
n+1∑
j=1

ẑ
(k)
j (t)uj , substitute it into

system (18) and find uniquely the function gk (t) (using Lagrange-Sylvester’s polynomials) and the
solution ẑ(0)

k (t) ∈ U (0) of system (18) in the space U (0).
4) Let’s compose the function zk (t, u) = ẑk (t, u) + z

(0)
k (t); it is a solution of the system (4k), but

is found ambiguously so far. To finally compute this function, we proceed to the following iterative
problem (4k+1).

The corresponding system Lẑk+1 = −∂ẑk
∂t will have a solution in Û if and only if the following

conditions hold
< −∂ẑk

∂t
, dj (t)uj >≡ 0, j = 1, n+ 1.

These conditions and the initial condition zk (0, 1̄) = 0 for the problem (4k) , k ≥ 1 allow us to find
the solution of zk (t, u) ∈ U in an unambiguous way.

4 Construction of the asymptotic solution of problem (1)

Let us proceed to the computation of the asymptotic solution of problem (1). Let the solutions
z0(t, u), ...zN (t, u) ∈ U of the problems (40) , ..., (4N ) respectively be constructed by the above algo-
rithm. The functions g0(t), ..., gN (t), participating in the formation of the normal form (2) (of order
m = N) will be uniquely found. This form has the following solution:

uj(t, ε) = e
ε−1

t∫
0

λj(s)ds
, j = 2, n+ 1,

u1(t, ε) = e
ε−1

t∫
0

λ1(s)ds

1 + 1
ε

t∫
0

e
ε−1

x∫
0

λ1(s)ds
g0(x)dx

+
N−1∑
k=0

εk
t∫

0

e
ε−1

x∫
0

λ1(s)ds
gk+1(x)dx.

(19)

Let us make a partial sum SN (t, u, ε) =
N∑
j=0

εjzj(t, u) of the series (4) and form a contraction of this sum

on the solution (19) of the normal form (2). We denote the obtained function by zεN (t). The following
statement holds (which is proved in the same way as the analogous statement in [10; Chap. 3]).

Lemma 1. Let α1(0), defined by formula (15), is not zero, and conditions 1), 2a) – 2c) are satisfied.
Then the function zεN (t) satisfies the problem

ε
dzεN (t)

dt
−A(t)zεN (t) = h(t) + εNRN (t, ε), zεN (0) = z0,

where ‖RN (t, ε)‖C[0,T ] ≤ R̄, R̄ > 0 is a constant independent of (t, ε) ∈ [0, T ]× (0, ε0] (ε0 > 0 is small
enough).

Using this lemma, we prove the following result as in [10; Chap. 3, §3.5].

Theorem 2. Let all conditions of the lemma be satisfied. Then the following statements are true:
1. If the right-hand side h(t) of problem (1) does not satisfy the requirement (∗), then there is an

estimate
‖z(t, ε)− zεN (t)‖C[0,T ] ≤ CNε

N , (20)

where z(t, ε) is the exact solution of problem (1), and zεN (t) is the above constructed constriction of
the N -th partial sum of the series sum of series (4) on the solution u = u(t, ε) of the normal form (2) of
order m = N + 1, CN > 0 is a constant independent of (t, ε) ∈ [0, T ]× (0, ε0], ε0 > 0 is small enough.
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2. If the right-hand side h(t) of problem (1) satisfies the requirement (∗∗), then the estimate

‖z(t, ε)− zεN (t)‖C[0,T ] ≤ CN+1ε
N+1,

where z(t, ε) and zεN (t) are the same functions as in (20) CN+1 > 0 is a constant independent of
(t, ε) ∈ [0, T ]× (0, ε0], ε0 > 0 is quite small.

5 Example

Consider the differential equation

εẏ = −t2l0 (t) y + h0 (t) + h1 (t) e
i
ε
β(t), y(0, ε) = y0, t ∈ [0, T ], (21)

where y = y(t, ε) is a scalar function, the coefficient a(t) = −t2l0 (t) goes to zero only at the point t = 0
and l0(t) < 0, ∀t ∈ [0, T ], l0 (t), h0 (t) , h1 (t) ∈ C∞ ([0, T ] ,R). For this equation we can write out
the exact solution, but it will be very difficult to obtain the asymptotics at ε→ +0. Let’s attempt to
apply the algorithm developed above to extract the leading asymptotic term in this problem’s solution.
Denoting, as before,

z = {y, y2} , z0 =
{
y0, e

i
ε
β(0)
}
, A (t) =

(
a (t) h1 (t)

0 iβ′ (t)

)
,

h (t) =

(
h0 (t)

0

)
, λ1 (t) = a (t) = −t2l0 (t) , λ2 (t) = iβ′ (t) ,

we obtain the system

ε
dz

dt
= A (t) z + h (t) , z (0, ε) = z0, t ∈ [0, T ] . (22)

Calculating the eigenvalues and eigenvectors of the matrices A (t) and A∗ (t), we’ll have:

c1 (t) =

(
1
0

)
, c2 (t) =

(
h0(t)

−a(t)+λ2(t)

1

)
,

d1 (t) =

(
1

h0(t)

a(t)−λ2(t)

)
, d2 (t) =

(
0
1

)
.

By Theorem 2, in the case of (h (t) , d1 (t)) 6≡ 0 ⇔ h1 (t) 6≡ 0 solution of the first-order normal form
(2) (m = 1):

εu̇1 = λ1(t)u1 + (g0(t) + εg1(t)), u1 (0, 1) = 1,

εu̇2 = λ2(t)u2, u2 (0, 1) = 1
(23)

contains a negative degree ε−1 since g0(t) = α−1
1 (t) (h(t), d1(t)) 6= 0. Thus the solution of problem (23)

tends to infinity at ε → +0. The physical content of the problem corresponds to bounded solutions,
so we will consider problem (22) under the condition (h (t) , d1 (t)) = h1 (t) ≡ 0, ∀t ∈ [0, T ]. Then
g0(t) ≡ 0, and the leading asymptotic term in the solution to problem (22) is given by (7)

zε0 (t) = α1 (t) c1 (t) e
1
ε

t∫
0

λ1(θ)dθ

1 +

t∫
0

e
− 1
ε

s∫
0

λ1(θ)dθ
g1 (s) ds

+

+α2 (t) c2 (t) e
1
ε

t∫
0

λ2(θ)dθ
− (h (t) , d2 (t))

λ2 (t)
c2 (t),
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where the functions α1 (t) and α2 (t) are calculated from the solvability condition of the problem (41)
in the space U . Given our notations, we write the main term of the asymptotics of the solution of
problem (21) in the following form

yε0 (t)=

(
y0 +

h0 (0) e
i
ε
β(0)

a (0)− iβ′ (0)

)
e

1
ε

t∫
0

a(θ)dθ

1 +

t∫
0

e
− 1
ε

s∫
0

a(θ)dθ
g1 (s) ds

+
h0 (t) e

i
ε
β(t)

−a (t) + iβ′ (t)
. (24)

Conclusion

From (24) we see that if h0(t) 6= 0 on the segment [0, T ] , the exact solution y (t, ε) of problem (24)
has no limit at ε → +0 due to the oscillatory inhomogeneity e

i
ε
β(t) included in (24). If h0 (t) = 0,

∀t ∈ ∈ [0, T ], then the main term of the asymptotics (24) takes the form of

yε0 (t) = y0e
− 1
ε

t∫
0

θ2l0(θ)dθ

1 +

t∫
0

e
1
ε

s∫
0

θ2l0(θ)dθ
g1 (s) ds

 .
The zero of t = 0 of the function a(t) = −t2l0 (t) affects that the summand

y0e
− 1
ε

t∫
0

θ2l0(θ)dθ
t∫

0

e
1
ε

s∫
0

θ2l0(θ)dθ
g1 (s) ds

outside the boundary zone [0, δ (ε)] of length of order 3
√
ε “slows down” the tendency of the exact

solution y (t, ε) of problem (21) to the limit ¯̄y (t) ≡ 0.
In the case of an exponential boundary layer occurring at a (t) < 0, ∀t ∈ [0, T ], the exact solution

y (t, ε) differs from the limit outside the boundary layer by an order of magnitude of ε [11]. Thus, the
effect of the slowed limit transition (as the small parameter approaches zero) in a singularly perturbed
problem is associated with the point wise features of its spectrum.
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Numerical solution of singularly perturbed parabolic differential
difference equations
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This study presents a computational method for the singularly perturbed parabolic differential difference
equations with small negative shifts in convection and reaction terms. To handle the small negative shifts,
the Taylor series expansion is applied. Then, the resulting asymptotically equivalent singularly perturbed
parabolic convection-diffusion-reaction problem is discretized in the time variable using the implicit Euler
technique on a uniform mesh, while the upwind method on a Shishkin mesh is used to discretize the space
variable. Almost first-order convergence was achieved by establishing the stability and parameter-uniform
convergence of the method. The Richardson extrapolation approach improved the rate of convergence to
nearly second-order. Numerical experiments have been carried out in order to support the findings from the
theory. The numerical results are presented in tables in terms of maximum absolute errors and graphs. The
present results improve the existing methods in the literature. This finding highlights the efficiency of the
method, paving the way for its application in other types of singularly perturbed parabolic problems. This
method is capable of greatly improving computing performance in a variety of scenarios, which researchers
can further explore.

Keywords: singular perturbation problem, differential difference equation, implicit Euler technique, upwind
method, Shishkin mesh, parameter-uniform convergence, Richardson extrapolation.

2020 Mathematics Subject Classification: 65M06, 65M12, 65M15, 65M50.

Introduction

In singularly perturbed differential equations, the highest-order derivative term in the differential
equation is multiplied by a small perturbation parameter ε (0 < ε � 1). Various numerical solutions
have been developed in the literature for a singularly perturbed parabolic problem with general shift
arguments in the space variable in [1], retarded terms in [2–4], delay and advances in both reaction
terms, differential-difference equations [5–7], functional-differential equations in [8–10]. Some numeri-
cal techniques have been devised in [11,12] to solve a singularly perturbed parabolic problem with delay
in the reaction terms. Authors in [13–16] developed the numerical solutions for singularly perturbed
parabolic differential equation with negative shifts in convection and reaction terms. Recently, au-
thors in [17] considered and solved singularly perturbed partial functional-differential equation. Some
numerical methods are devised in [18–20] to solve different types of singularly perturbed parabolic
problems.

Therefore, the main purpose of this study is to construct an improved numerical method using
implicit Euler method for time direction and upwind method on a Shishkin mesh for space direction
together with Richardson extrapolation technique to solve the following singularly perturbed parabolic
differential equation with negative shifts in convection and reaction terms

Lε,µu ≡ ut − εuxx + r(x)ux(x− µ, t) + s(x)u(x− µ, t) = f(x, t), (1)

∗Corresponding author. E-mail: Fasikag@du.edu.et
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c© 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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with the initial data
u(x, 0) = φb(x), x ∈ Ω̄, (2)

and the interval-boundary data{
u(x, t) = φl(x, t), (x, t) ∈ [−µ, 0]× Ωt,

u(1, t) = φr(1, t), t ∈ Ωt,
(3)

where (x, t) ∈ D = Ωx × Ωt = (0, 1) × (0, T ] and D̄ = Ω̄ × Ω̄t = [0, 1] × [0, T ] for some positive
number T > 0. The parameter ε is a perturbation parameter such that 0 < ε � 1, while the
positive parameter µ is a small delay parameter (or negative shift) fulfilling µ < ε. It is assumed
that r(x), s(x), φb(x), φl(x, t), φr(1, t) and f(x, t) are sufficiently smooth and bounded to ensure the
possibility of a particular solution, and that s(x) satisfies

s(x) ≥ β > 0, x ∈ Ω̄,

for some constant β. Note that (1) contains negative shifts in the convection and reaction terms. When
µ = 0, (1) would reduce to the singularly perturbed parabolic differential equation. With a small ε,
we observe layers that rely on the value of r(x). We are interested in a related class of problems where
both the convection and reaction terms have negative shifts, making it a two-parameter problem. A
regular boundary layer appears in the region of the left boundary when r(x) < 0, and a boundary layer
is located close to the right when r(x) > 0.

1 The continuous problem

It is reasonable to use the Taylor series approximation for terms involving delay in the case
µ < ε [21]. Now, approximating u(x− µ, t) and ux(x− µ, t) yields the following

u(x− µ, t) ≈ u(x, t)− µux(x, t) +
µ2

2
uxx(x, t) +O(µ3),

ux(x− µ, t) ≈ ux(x, t)− µuxx(x, t) +O(µ2).

(4)

Plugging (4) into (1)–(3), we obtain an asymptotically equivalent time-dependent singularly perturbed
convection-diffusion-reaction continuous problem of the following form

Lcεu ≡ ut − cε(x)uxx + q(x)ux + s(x)u(x, t) = f(x, t), (x, t) ∈ D, (5)

with the initial condition
u(x, 0) = φb(x) ≥ 0, x ∈ Ω̄x, (6)

and the boundary conditions

u(0, t) = φl(t), u(1, t) = φr(t) ≥ 0, t ∈ Ω̄t, (7)

where cε(x) = ε − µ2

2 s(x) + µr(x) and q(x) = r(x) − µs(x). With α and β being the lower limits
for r(x) and s(x), respectively, we assume that 0 < cε(x) ≤ ε − µ2

2 β + µα = cε. We make the
supposition that q(x) = r(x)−µs(x) ≥ γ > 0, which suggests the presence of a boundary layer close to
x = 1 with width O(ε). The compatibility condition at the corner points, along with the smoothness
of φl(t), φb(x), φr(t), can guarantee the existence and uniqueness of the solution for (1)–(3). We
now offer bounds on the derivatives of the solution of (1)–(3). To get the bounds, one needs certain
information about the solution.
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Lemma 1. The solution u(x, t) of (5)–(7) satisfies

|u(x, t)− φb(x)| ≤ Ct,
|u(x, t)− φl(t)| ≤ C(1− x), (x, t) ∈ D̄,

where C is a constant independent of cε.

Setting cε = 0 in (5)–(7) gives the reduced problem as
∂u0

∂t + q(x)∂u
0

∂x + s(x)u0(x, t) = f(x, t), (x, t) ∈ D,
u0(0, t) = φb(x), x ∈ Ω̄x,

u0(0, t) = φl(t), u0(1, t) 6= φr(t), t ∈ Ω̄t.

(8)

The solutions u(x, t) of (5)–(7) and u0(x, t) of (8) are extremely similar for small values of cε. In order
to show the bounds of the solution u(x, t) of (5)–(7), we assume φb(x) = 0 without compromising
generality. Since φb(x) is sufficiently smooth, using the property of norm, we prove the following
lemma:

Lemma 2. The bound of the solution u(x, t) to (5)–(7) is given by

|u(x, t)| ≤ C, (x, t) ∈ D̄.
Proof. From Lemma 1, we have

|u(x, t)− φb(x)| ≤ Ct.

From triangular inequality, we have

|u(x, t)| − |φb(x)| ≤ |u(x, t)− φb(x)| ≤ Ct.

This implies that
|u(x, t)| ≤ Ct+ |φb(x)|, (x, t) ∈ D̄.

Since t ∈ [0, T ] and φb(x) is bounded, we have

|u(x, t)| ≤ C,

which is the required result.

The problem (5)–(7) satisfies the following maximum principle.

Lemma 3. Let Θ be a sufficiently smooth function defined on D which satisfies Θ(x, t) ≥ 0,
∀(x, t) ∈ ∂D. Then, LcεΘ(x, t) ≥ 0, (x, t) ∈ D implies that Θ(x, t) ≥ 0, ∀(x, t) ∈ D̄.

Proof. See [16].

For the solution of (1), the above maximum principle immediately leads to the stability bound.

Lemma 4. The solution u(x, t) of the continuous (5)–(7) is bounded as

|u(x, t)| ≤ max {|φb(x)| , |φl(t)| , |φr(t)|}+
‖f‖
β
.

Proof. We define two barrier-functions $± as

$±(x, t) = max {|φb(x)| , |φl(t)| , |φr(1, t)|}+
‖f‖
β
± u(x, t).

Evaluating the barrier functions at the initial and boundary conditions, the required bound follows.
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Theorem 1. [22] For 0 ≤ l ≤ 2, 0 ≤ k ≤ 3, 0 ≤ l+ k ≤ 3, the solution u(x, t) of (5)–(7) is bounded
by ∣∣∣∣∂l+ku(x, t)

∂xl∂tk

∣∣∣∣ ≤ C (1 + c−lε e
−γ(1−x)/cε

)
.

Stronger bounds should be derived using Shishkin-type decomposition because the bounds on the
solution’s derivatives are not sufficiently sharp for the proof of uniform convergence. This can be
achieved by decomposing the solution u as

u = v + w,

v is a regular component and w is a singular component. The solution of the non-homogeneous equation
is the regular component v{

Lcεv(x, t) = f(x, t), x ∈ D,
v(0, t) = 0, t ∈ Ωt, v(x, 0) = φb(x), x ∈ Ω̄x,

and the singular component w represents the homogeneous equation’s solution
Lcεw(x, t) = 0, x ∈ D,
w(0, t) = 0, w(1, t) = u(1, t)− v(1, t), t ∈ Ωt,

w(x, 0) = 0, x ∈ Ω̄x.

We can further decompose the regular component v as

v = v0 + cεv1 + c2
εv2,

where v0 is the solution of the reduced problem and v1 and v2 are the solution of{
(v1)t + r(x)(v1)x + s(x)v1 = (v0)xx, (x, t) ∈ D,
v1(x, 0) = 0, x ∈ Ω̄x, v1(0, t) = 0, t ∈ Ω̄t,

and {
Lcε(v2)(x, t) = (v1)xx, (x, t) ∈ D,
v2(x, t) = 0, (x, t) ∈ ∂D.

Now, we state the bounds for regular and singular components.

Theorem 2. Let v be a regular solution. Then v and its derivative satisfy the bound∣∣∣∣∂i+jv(x, t)

∂xi∂tj

∣∣∣∣ ≤ C(1 + c2−k
ε ), k = 0, 1, 2.

The derivative of regular solution generally bounded as∣∣∣∣∂i+jv(x, t)

∂xi∂tj

∣∣∣∣ ≤ C, k = 0, 1, 2, 3.

Proof. See the proof in [22].

Theorem 3. Let w be the solution of (5)–(7). The bound of w is given by

|w(x, t)| ≤ Ce−γ(1−x)/cε , (x, t) ∈ D.
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Proof. Considering the barrier functions Ψ±(x, t) = C
(
e−γ(1−x)/cε

)
et ± w(x, t), (x, t) ∈ D̄ and

evaluating at the boundaries yields the required result.

Theorem 4. Solution of the singular component w and it derivatives satisfies the bound∣∣∣∣∂i+jw(x, t)

∂xi∂tj

∣∣∣∣ ≤ Cc−iε e−γ(1−x)/cε , k = 0, 1, 2, 3.

Proof. The proof follows from Theorem 3 and [22].

2 The discrete problem

We use a Shishkin mesh for the space direction and a uniform mesh for the time direction to
discretize the problem. The space domain [0, 1] is divided into two sub-domains [0, 1−σ] and (1−σ, 1],
to construct the Shishkin mesh. The transition parameter 1 − σ, which divides the coarse and fine
regions of the mesh, is determined by taking

σ = min

{
1

2
,
σ0cε
γ

lnN

}
,

where σ0 denotes a constant that represents the order of the method. We denote the space mesh points
by

ΩN
x =

{
0 = x0, x1, ...xN/2 = 1− σ, ..., xN = 1

}
,

where

xi =

{
iH, i = 0, ...N2 ,

1− σ +
(
i− N

2

)
h, i = N

2 + 1, .....N,

and let N ≥ 4 be a positive even integer. Furthermore, we denote the space mesh size hi as follows

hi =

{
H = 2(1−σ)

N , i = 1, ...., N2 ,

h = 2σ
N , i = N

2 + 1, ..., N.

To do the analysis, it was assumed that σ = σ0cε
γ lnN ; if not, N is exponentially larger than ε. It is

clear from the above equation that N−1 ≤ H ≤ 2N−1, h = 2σ0cε
γ N−1 lnN , and the uniform mesh can

be obtained by choosing σ = 1/2. A uniform mesh with a time step of ∆t will be used for the time
domain [0, T ] so that

ΩM
t =

{
tn = n∆t, n = 0, .....M, ∆t =

T

M

}
,

where M is the number of mesh intervals in the time variable over the interval [0, T ]. We define the
discretized domain DN,∆t = ΩN

x × ΩM
t . Before formulating the numerical method, we introduce the

difference operators for a given mesh function v(xi, tn) = vni as follows

δ+
x v

n
i =

vni+1 − vni
hi+1

, δ−x v
n
i =

vni − vni−1

hi
,

δ2
xv
n
i =

2(δ+
x v

n
i − δ−x vni )

h̃i
and δ−t v

n
i =

vni − v
n−1
i

∆t
,

where h̃i is defined by h̃i = hi + hi+1, i = 1, ....N − 1. We now use the upwind method for the
space derivative and the implicit Euler method for the time derivative to approximate (5)–(7). The
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discretisation of (5)–(7) thus assumes the following form:
(δ−t + LN,∆tcε )Un+1

i = fn+1
i , i = 1, ...N − 1, n = 0, ...,M − 1,

Un+1
0 = φl(tn+1), Un+1

N = φr(tn+1), n = 0, ...,M − 1,

U0
i = φb(xi), i = 1, ...N − 1,

(9)

where
LN,∆tcε Un+1

i = −cεδ2
xU

n+1
i + riδ

−
x U

n+1
i + siU

n+1
i .

The system of equations that follows is obtained by rearranging the terms in (9)
r−i U

n+1
i−1 + r0

iU
n+1
i + r+

i U
n+1
i+1 = gni , i = 1, .....N − 1, n = 0, ....M − 1,

Un+1
0 = φl(tn+1), Un+1

N = φr(tn+1),

U0
i = φb(xi), i = 1, ...N − 1,

where the coefficients are given byr−i = ∆t

(
− 2cε

h̃ihi
− ri
hi

)
, r+

i = ∆t

(
− 2cε

h̃ihi+1

)
, r0

i = 1 + ∆tsi − r−i − r
+
i ,

ri = r(xi), si = s(xi), gni = Uni + ∆tfn+1
i .

The coefficient matrix of the discrete scheme in (9) gives an (N − 1) × (N − 1) linear equation that
can be solved uniquely using the Thomas algorithm for the unknowns U1, · · · , UN−1.

3 Convergence analysis

It can be shown that the discrete maximum principle, which gives the difference operator
(δ−t + LN,∆tcε ) ε−uniform stability, is satisfied by the finite difference operator (δ−t + LN,∆tcε ) defined
in (9).

Lemma 5. Assume that the mesh function Ψ(xi, tn) satisfies Ψ(xi, tn) ≥ 0 on (xi, tn) ∈ DN,∆t. Then,
(δ−t +LN,∆tcε )Ψ(xi, tn) ≥ 0, (xi, tn) ∈ DN,∆t implies that Ψ(xi, tn) ≥ 0 at each point of (xi, tn) ∈ D̄N,∆t.

The proposed method described in (9) converges ε-uniformly with first-order accuracy in both space
and time variables as stated in the following theorem.

Theorem 5. Let U be the numerical solution in (9) and u be the continuous solution in (5)–(7).
Therefore, the discrete solution’s error UN,∆t fulfills the bound

|u(xi, tn)− Uni | ≤ C(N−1 lnN + ∆t), 1 ≤ i ≤ N − 1.

Proof. Readers who are interested may read the proof’s details in [23].

The objective of this study was to obtain second-order ε-uniform convergence with respect to both the
space and time directions by using the Richardson extrapolation technique to the discrete solution Uni
of (9). Before introducing this technique, some lemmas are presented as follows:

Lemma 6. On D̄N
x = {xi}N0 , define the following mesh functions

Si =
i∏

k=1

(
1 +

αhk
cε

)−1

, 1 ≤ i ≤ N,

with the usual convention that S0 = 1 for i = 0. Then, there exists a positive constant C1 such that
for i = 1, · · · , N − 1, we have

(δ−t + LN,Mcε )Si ≥
C1

cε + αhi
Si. (10)
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Moreover, for N/2 + 1 ≤ i ≤ N − 1 and constant C2, we have

(δ−t + LN,Mcε )Si ≥ C2c
−1
ε Si. (11)

Proof. Now, Si − Si−1 = αhi
cε
Si−1. So, we have

(δ−t + LN,Mcε )Si = − 2α

(hi + hi+1)
(Si − Si−1) + α

α

cε
Si−1 + βSi

≥ α

cε
Si−1

[
ri −

2αhi
(hi + hi+1)

]
≥ Cα

cε + αhi
Si, 1 ≤ i ≤ N − 1.

As a result, since h/cε < 4/γ, (10) is proven, and (11) is a straightforward consequence of it.

Lemma 7. The following inequality is satisfied by the mesh function Si

e−γ(1−xi)/cε ≤
N∏

k=i+1

(
1 +

αhk
cε

)−1

= Si, 0 ≤ i ≤ N, (12)

and on Shishkin mesh, the mesh function Scε,i also satisfies the following inequality

N∏
k=i+1

(
1 +

αhk
cε

)−1

≤ CN−4(1−i/N), N/2 ≤ i ≤ N − 1. (13)

We solve the discrete scheme in (9) on the fine mesh D2N,∆t/2 = Ω̄2N
x × Ω̄

∆t/2
t with 2N mesh intervals

in the space direction and 2M mesh intervals in the time direction, where Ω̄2N
x is a piecewise uniform

Shishkin mesh with the same transition point 1−σ as ΩN
x . This improves the accuracy of the numerical

solution UN,∆t using the Richardson extrapolation technique. Actually, by dividing each mesh interval
of ΩN

x in half, the discrete domain Ω̄2N
x may be produced. It is evident from this construction that

DN,∆t = (xi, tn) ⊂ D2N,∆t/2 =
{

(x̃i, t̃n)
}
. Thus, the suitable mesh widths inD2N,∆t/2 may be obtained

using

x̃i − x̃i−1 =

{
H/2, for x̃i ∈ Ω̄2N

x ∩ [0, 1− σ],

h/2, for x̃i ∈ Ω̄2N
x ∩ [1− σ, 1],

and t̃n − t̃n−1 = ∆t/2, t̃n ∈ Ω̄
∆t/2
t . On the mesh DN,∆t, let U(xi, tn) represent the numerical solution

of the discrete scheme in (9). Thus, using Theorem 5, one may write on (xi, tn) ∈ DN,∆t

UN,∆t(xi, tn)− u(xi, tn) = C(N−1 lnN + ∆t) +RN,∆t(xi, tn)

= C(N−1(γσ/σ0cε) + ∆t) +RN,∆t(xi, tn),
(14)

where C is fixed constant and the remainder term RN,∆t(xi, tn) is o(N−1 lnN + ∆t). Similarly, if
Ũ2N,∆t/2 is the solution of the discrete (14) for (x̃i, t̃n) ∈ D2N,∆t/2, then

Ũ2N,∆t/2(x̃i, t̃n)− ũ(x̃i, t̃n) = C

(
(2N)−1(σγ/σ0cε) + ∆t/2

)
+R2N,∆t/2(xi, tn), (15)

by considering the fact that Ũ(x̃i, t̃n) is obtained using the same transition point 1−σ and the remainder
term R2N,∆t/2(xi, tn) is o(N−1 lnN + ∆t). Now, eliminating the terms O(N−1) and O(∆t) from (14)
and (15) leads to the following approximation

uni −
(

2Ũ2N,∆t/2(xi, tn)− UN,∆t(xi, tn)

)
= −2R2N,∆t/2(xi, tn) +RN,∆t(xi, tn)

= o(N−1 lnN + ∆t), (xi, tn) ∈ D̄N,∆t.
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Therefore, we will utilize the following extrapolation formula:

UN,∆textp (xi, tn) = 2Ũ2N,∆t/2(xi, tn)− UN,∆t(xi, tn), (xi, tn) ∈ D̄N,M , (16)

to get a more accurate predicted numerical solution for u(x, t). After extrapolating UN,∆t, we obtain
the estimate of the nodal error |u(xi, tn)− UN,∆ttextp (xi, tn)| by splitting the solution UN,∆t on the mesh
D̄N,M
σ into the sum

UN,∆t = V N,∆t +WN,∆t,

where the following discrete problems are solved by the regular component V N,∆t and the singular
component WN,∆t, respectively{

LN,∆tcε V N,∆t = f, DN,∆t, V N,∆t = v, ∂DN,∆t,

LN,∆tcε WN,∆t = 0, DN,∆t, WN,∆t = w, ∂DN,∆t.
(17)

Likewise, on the fine mesh D̄2N,∆t/2, we decomposed the solution Ũ2N,∆t/2 into the regular component
Ṽ 2N,∆t/2 and the singular component W̃ 2N,∆t/2 given by

Ũ2N,∆t/2 = Ṽ 2N,∆t/2 + W̃ 2N,∆t/2.

The error can then be expressed using the form given below.

UN,∆t − u =
(
V N,∆t − v

)
+
(
WN,∆t − w

)
,

Ũ2N,∆t/2 − u =
(
Ṽ 2N,∆t/2 − v

)
+
(
W̃ 2N,∆t/2 − w

)
.

Lemma 8. Let cε ≤ N−1. Then, the error associated with the smooth component V N,∆t after
extrapolation fulfills the bound

|v(xi, tn)− V N,∆t
extp (xi, tn)| ≤ C

(
N−2 + ∆t2

)
, 1 ≤ i ≤ N − 1.

Proof. It may be deduced from the extrapolation formula (15), Lemma 7, and (17) that

v(xi, tn)− V N,∆t
extp (xi, tn) = v(xi, tn)−

(
2Ṽ 2N,∆t/2(xi, tn)− V N,∆t(xi, tn)

)
= −2

(
Ṽ 2N,∆t/2 − v

)
(xi, tn) +

(
V N,∆t − v

)
(xi, tn)

= O
(
N−2 + ∆t2

)
,

from which the expected result is obtained.

Lemma 9. The extrapolated error for the layer component WN,∆t satisfies

|w(xi, tn)−WN,∆t
extp (xi, tn)| ≤ C(N−2 + ∆t2), 1 ≤ i ≤ N/2.

Proof. Assume 1 ≤ i ≤ N/2. This allows us to demonstrate, using (13) and the argument provided
in [24] over D̄N,M , that

|WN,∆t(xi, tn)| ≤ C
N∏

j=i+1

(
1 +

αhj
cε

)−1

≤ CN−2.

We then derive |w(xi, tn)| ≤ CN−2 from (12) and Theorem 3. So, we have

|WN,∆t − w(xi, tn)| ≤ C(N−2 + ∆t2).

In the same way, |W̃N,∆t − w(xi, tn)| ≤ C(N−2 + ∆t2). The extrapolation formula (16) is used to
acquire a required extrapolated error bound.
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Lemma 10. Once the layer component WN,∆t has been extrapolated, the error associated with it
satisfy ∣∣∣w(xi, tn)−WN,∆t

extp (xi, tn)
∣∣∣ ≤ C (N−2 ln2N + ∆t2

)
, N/2 < i < N.

Proof. See [23].

The following theorem is the main finding of this study.

Theorem 6. Let cε ≤ N−1. Suppose u be the continuous problem solution and UN,∆ttextp be the
solution that was obtained by solving the discrete problem using the Richardson extrapolation strategy.
Consequently, the error connected to the solution UN,∆ttextp meets∣∣∣u(xi, tn)− UN,∆textp (xi, tn)

∣∣∣ ≤ C (N−2 ln2N + ∆t2
)
, 1 ≤ i ≤ N − 1. (18)

Proof. For each (xi, tn) ∈ D̄N,∆t, we have

u(xi, tn)− UN,∆textp =
(
v(xi, tn)− V N,∆t

extp

)
+
(
w(xi, tn)−WN,∆t

extp

)
.

Thus, when Lemma 8 for the regular component and Lemmas 9 and 10 for the singular component are
combined, the result (18) is obtained immediately.

4 Numerical computations and discussions

In order to verify the performance of the present method with the theoretical findings discussed in
the preceding parts, we do numerical calculations in this section.

Example 1. Consider a singularly perturbed parabolic problem [16]:
∂u
∂t − ε

∂2u
∂x2 + (2− x2)∂u∂x + (x2 + 1 + cos(πx))u = 10t2x(1− x)e−t, (x, t) ∈ [0, 1]× [0, 1],{

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 1.

Example 2. Consider a singularly perturbed parabolic problem [16]:
∂u
∂t − ε

∂2u
∂x2 + (2− x2)∂u(x−µ,t)

∂x + (x2 + 1 + cos(πx))u(x− µ, t) = 10t2(1− x)e−t, (x, t) ∈ [0, 1]× [0, 1],{
u(x, 0) = 0, 0 ≤ x ≤ 1,

u(x, t) = 0, µ ≤ x ≤ 0, 0 ≤ t ≤ 1, u(1, t) = 0, 0 ≤ t ≤ 1.

Example 3. Consider a singularly perturbed parabolic problem [22]:
∂u
∂t − ε

∂2u
∂x2 + ∂u

∂x + (1 + x2)u = 50(x(1− x))3,

(x, t) ∈ [0, 1]× [0, 2],{
u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 2.

Since there are no exact solutions for the examples, we estimate the maximum absolute errors for each
(ε, µ) using the double mesh principle via the following formula:

eN,∆tε,µ = max
0≤i≤N ;0≤j≤M

∣∣UN,∆t(xi, tn)− U2N,∆t/2(xi, tn)
∣∣,
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before extrapolation and after extrapolation, we use the formula

(eN,∆tε,µ )extr = max
0≤i≤N ;0≤j≤M

∣∣(UN,∆t)extr(xi, tn)− (U2N,∆t/2)extr(xi, tn)
∣∣,

where UN,∆t(xi, tn) is the numerical solution with (N,∆t) mesh points and U2N,∆t/2(xi, tn) is the
numerical solution at the finer mesh with (2N,∆t/2) mesh points before extrapolation. The numerical
solutions after extrapolation are (UN,∆t)extr(xi, tn) using the mesh points (N,∆t) with mesh sizes hi
and ∆t and (U2N,∆t/2)extr(xi, tn) using the mesh points (2N,∆t/2) with mesh sizes hi

2 and ∆t
2 . The

(ε, µ)-maximum errors before and after extrapolations were calculated using the following formulas,
respectively

eN,∆t = max
ε,µ

eN,∆tε,µ and (eN,∆t)extr = max
ε,µ

(eN,∆tε,µ )extr.

Furthermore, we compute the numerical rate of convergence before and after extrapolation with the
following formulas, respectively

ρN,∆tε,µ = log2

(
eN,∆tε,µ

e
2N,∆t/2
ε,µ

)
and (ρN,∆tε,µ )extr = log2

(
(eN,∆tε,µ )extr

(e
2N,∆t/2
ε,µ )extr

)
.

The (ε, µ)-maximum rates of convergence before and after extrapolations were calculated using the
following formulas, respectively

ρN,∆t = max
ε,µ

ρN,∆tε,µ and ρN,∆textr = max
ε,µ

(ρN,∆tε,µ )extr.

T a b l e 1

Computation of maximum point-wise errors and rate of convergence for N = 1
∆t
, µ = 0, Example 1

ε ↓ Extrapolation N = 32 64 128 256 512
Before Extrapolation 8.5069e-03 5.1386e-03 2.8624e-03 1.5340e-03 8.0921e-04

Rate 0.7273 0.8442 0.8999 0.9227
10−6 After Extrapolation 6.4391e-04 2.1982e-04 6.5090e-05 1.8622e-05 5.8390e-06

Rate 1.5505 1.7558 1.8054 1.6732
Before Extrapolation 8.5068e-03 5.1384e-03 2.8621e-03 1.5337e-03 8.0896e-04

Rate 0.7273 0.8442 0.9001 0.9229
10−8 After Extrapolation 6.4325e-04 2.1923e-04 6.4592e-05 1.8006e-05 5.2361e-06

Rate 1.5529 1.7630 1.8429 1.7819
Before Extrapolation 8.5068e-03 5.1384e-03 2.8621e-03 1.5337e-03 8.0896e-04

Rate 0.7273 0.8442 0.9001 0.9229
10−10 After Extrapolation 6.4325e-04 2.1923e-04 6.4584e-05 1.8001e-05 5.2298e-06

Rate 1.5529 1.7632 1.8431 1.7832
Before Extrapolation 8.5068e-03 5.1384e-03 2.8621e-03 1.5337e-03 8.0896e-04

Rate 0.7273 0.8442 0.9001 0.9229
10−12 After Extrapolation 6.4325e-04 2.1923e-04 6.4584e-05 1.8001e-05 5.2298e-06

Rate 1.5529 1.7632 1.8431 1.7832
eN,∆t Before Extrapolation 8.5069e-03 5.1386e-03 2.8624e-03 1.5340e-03 8.0921e-04
ρN,∆t Rate 0.7273 0.8442 0.8999 0.9227
eN,∆t
extr After Extrapolation 6.4391e-04 2.1982e-04 6.5090e-05 1.8622e-05 5.8390e-06
ρN,∆t
extr Rate 1.5505 1.7558 1.8054 1.6732
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T a b l e 2

Computation of maximum point-wise errors and rate of convergence for N = 1
∆t

, µ = 0.3ε, Example 2

ε ↓ Extrapolation N = 32 64 128 256 512
Before Extrapolation 1.9445e-02 1.0633e-02 6.0314e-03 3.2579e-03 1.7222e-03

Rate 0.8709 0.8180 0.8886 0.9197
10−6 After Extrapolation 1.6756e-03 6.1162e-04 1.9601e-04 7.6087e-05 2.8981e-05

Rate 1.4540 1.6417 1.3652 1.3925
Before Extrapolation 1.9445e-02 1.0633e-02 6.0307e-03 3.2572e-03 1.7215e-03

Rate 0.8709 0.8182 0.8887 0.9200
10−8 After Extrapolation 1.6737e-03 6.0967e-04 1.9661e-04 7.6346e-05 2.8879e-05

Rate 1.4569 1.6327 1.3647 1.4025
Before Extrapolation 1.9445e-02 1.0633e-02 6.0307e-03 3.2572e-03 1.7215e-03

Rate 0.8709 0.8182 0.8887 0.9200
10−10 After Extrapolation 1.6737e-03 6.0965e-04 1.9662e-04 7.6352e-05 2.8886e-05

Rate 1.4570 1.6326 1.3647 1.4023
Before Extrapolation 1.9445e-02 1.0633e-02 6.0307e-03 3.2572e-03 1.7215e-03

Rate 0.8709 0.8182 0.8887 0.9200
10−12 After Extrapolation 1.6737e-03 6.0965e-04 1.9662e-04 7.6352e-05 2.8886e-05

Rate 1.4570 1.6326 1.3647 1.4023
eN,∆t Before Extrapolation 1.9445e-02 1.0633e-02 6.0314e-03 3.2579e-03 1.7222e-03
ρN,∆t Rate 0.8709 0.8180 0.8886 0.9197
eN,∆t
extr After Extrapolation 1.6756e-03 6.1162e-04 1.9662e-04 7.6352e-05 2.8981e-05
ρN,∆t
extr Rate 1.4540 1.6372 1.3647 1.3976

T a b l e 3

Comparison using N = 1
∆t

, µ = 0.3ε for Example 2

Extrapolation N = 16 32 64 128
Present method

Before Extrapolation 3.4791e-02 1.9445e-02 1.0633e-02 6.0314e-03
Rate 0.8393 0.8709 0.8180

After Extrapolation 4.0244e-03 1.6756e-03 6.1162e-04 1.9662e-04
Rate 1.2641 1.4540 1.6372

Result in [16]
Before Extrapolation 1.3567e-02 7.7535e-03 4.1434e-03 2.5115e-03

Rate 0.8072 0.9040 0.7223
After Extrapolation 7.5907e-03 2.3678e-03 8.2018e-04 2.5398e-04

Rate 1.6807 1.5295 1.6912
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T a b l e 4

Computation of maximum point-wise errors and rate of convergenceat µ = 0 for Example 3 with [22]

ε ↓ Extrapolation N = 32 64 128 256 512
∆t = 0.05 0.05

2
0.05
22

0.05
23

0.05
24

Before Extrapolation 1.2677e-2 7.4327e-3 4.0929e-3 2.1883e-3 1.1609e-3
Rate 0.7703 0.8608 0.9033 0.9146

2−6 After Extrapolation 2.4529e-3 8.7923e-4 2.7423e-4 8.0145e-5 2.2686e-5
Rate 1.4802 1.6809 1.7747 1.8208

Before Extrapolation 1.4598e-2 8.9967e-3 5.1615e-3 2.8253e-3 1.5371e-3
Rate 0.6983 0.8016 0.8694 0.8782

2−10 After Extrapolation 3.8898e-3 1.6408e-3 5.8963e-4 1.8545e-4 5.3233e-5
Rate 1.2453 1.4765 1.6688 1.8006

Before Extrapolation 1.5433e-2 9.6028e-3 5.5900e-3 3.0789e-3 1.6913e-3
Rate 0.6845 0.7806 0.8604 0.8643

2−14 After Extrapolation 4.0459e-3 1.7118e-3 6.2066e-4 1.9732e-4 5.6955e-5
Rate 1.2409 1.4636 1.6533 1.7926

Before Extrapolation 1.5485e-2 9.6442e-3 5.6179e-3 3.0960e-3 1.7018e-3
Rate 0.6831 0.7796 0.8596 0.8633

2−18 After Extrapolation 4.0560e-3 1.7174e-3 6.2226e-4 1.9783e-4 5.7064e-5
Rate 1.2398 1.4646 1.6533 1.7936

Before Extrapolation 1.5488e-2 9.6468e-3 5.6198e-3 3.0970e-3 1.7025e-3
Rate 0.6830 0.7795 0.8597 0.8632

2−20 After Extrapolation 4.0565e-3 1.7177e-3 6.2234e-4 1.9785e-4 5.7068e-5
Rate 1.2398 1.4647 1.6533 1.7937

eN,∆t Before Extrapolation 1.5488e-2 9.6470e-3 5.6199e-3 3.0971e-3 1.7025e-3
ρN,∆t Rate 0.6830 0.7795 0.8596 0.8633
eN,∆t
extr After Extrapolation 4.0566e-3 1.7178e-3 6.2237e-4 1.9786e-4 5.7069e-5
ρN,∆t
extr Rate 1.2398 1.4647 1.6533 1.7937

Result in [22]
eN,∆t 1.021e-2 3.225e-3 1.066e-3 3.479e-4 1.111e-4
ρN,∆t 1.663 1.598 1.615 1.646 -

The computed maximum point-wise errors and the rate of convergence for Examples 1 and 2 are
given in Tables 1 and 2, respectively. From these results, it is clear that the present method gives an
ε-uniform convergence for Examples 1 and 2 before and after extrapolation. Comparison of Example 2
is given in Table 3. The computed maximum point-wise errors and the rate of convergence for Example
3 are given in Table 4 with its comparison. Numerical simulations for Examples 1 and 2 are plotted
in Figure 1 and Example 3 in Figure 2. The maximum point-wise errors for Examples 1, 2, and
3 are plotted using log-log scale, as can be seen in Figures 3, 4, and 5, respectively. These figures
clearly show that Richardson extrapolation increases the rate of convergence of the upwind scheme
from O(N−1 lnN + ∆t) to O(N−2 ln2N + ∆t2). Figures 6 and 7 show the effect of the perturbation
parameter ε in terms of line graphs for Examples 1, 2, and 3. The effect of the singular perturbation
parameter on the boundary layer of the solution for all Examples is shown in Figures 6 and 7. As
observed in these Figures, as ε → 0 strong boundary layer is formed near x = 1. The effect of the
time level t in terms of line graphs for Examples 1, 2, and 3 is given in Figures 8 and 9. As observed
from Figures 8 and 9, a strong boundary layer is formed near x = 1, and as the size of the time level
increases, the thickness of the layer increases.
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(a) Example 1 when µ = 0 (b) Example 2 when µ = 0.3ε

Figure 1. Surface plot of the numerical solution for N = 64 = M and ε = 10−6

(a) At N = 64,M = 80 and ε = 2−6 (b) At N = 64,M = 80 and ε = 2−16

Figure 2. Surface plot of the numerical solution for Example 3 for µ = 0
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Figure 3. Log-log plot of the maximum point-wise errors at µ = 0 for Example 1
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Figure 4. Log-log plot of the maximum point-wise errors at µ = 0.3ε for Example 2
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Figure 5. Log-log plot of the maximum point-wise errors at µ = 0 for Example 3
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Figure 6. Effect of the perturbation parameter ε on the numerical solution

120 Bulletin of the Karaganda University



Numerical solution of singularly ...

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.05

0.1

0.15

0.2

0.25

u(
x,

t)

=2-0

=2-4

=2-8

(a) At N = 64,M = 80, µ = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.05

0.1

0.15

0.2

0.25

u(
x,

t)

=2-6

=2-12

=2-18

(b) At N = 64,M = 80, µ = 0

Figure 7. Effect of the parameter ε on the solution for Example 3
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Figure 8. Effect of time t level on the solution
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Figure 9. Effect of time t level on the solution interms of line graph for Example 3
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Conclusion

This study presents a computational method that is almost second-order convergent for singularly
perturbed parabolic differential difference equations with negative shifts. The Taylor series approxima-
tion is used to estimate the terms that involve delays. An implicit Euler technique for the time direction
on a uniform mesh and an upwind difference method on a Shishkin mesh in the space direction are used
to discretise the resulting singularly perturbed parabolic convection-diffusion-reaction equation. The
stability and uniform convergence of the proposed method are established very well. The proposed
method gives almost first-order convergence both in the time and space variables. The Richardson
extrapolation technique is then applied to accelerate the order of convergence of the method in the
time and space variables. Theoretically, we have proved that the extrapolation provides almost second-
order ε−uniform convergence. To validate the applicability of the proposed method, some numerical
examples are computed for different values of the perturbation parameter and delay parameter.
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The present article deals with the problem of characterizing a widely large class of associative and possibly
non-commutative rings. So, we define and explore the class of rings R for which each element in R is
a sum of a tripotent element from R and an element from the subring ∆(R) of R which commute with
each other, calling them strongly ∆-tripotent rings, or shortly just SDT rings. Succeeding in obtaining
a complete description of these rings R modulo their Jacobson radical J(R) as the direct product of a
Boolean ring and a Yaqub ring, our results somewhat generalize those established by Koşan-Yildirim-Zhou
in Can. Math. Bull. (2019). Specifically, it is proved that if a ring R is SDT, then the factor ring R/J(R)
is always reduced and 6 lies in J(R). Even something more, as already noticed before, it is shown that
the quotient R/J(R) is a tripotent ring, which means that each of its elements satisfies the cubic equation
x3 = x. Furthermore, examining triangular matrix rings Tn(R), we succeeded to classify its structure
rather completely in the case where R is a local ring and n ≥ 3 by establishing a satisfactory necessary and
sufficient condition in terms of the ring R and its sections, resp., divisions.

Keywords: idempotent, tripotent, strongly nil-clean ring, Boolean ring, semi-tripotent ring, ∆ subring,
Jacobson radical, triangular matrix ring.

2020 Mathematics Subject Classification: 16N40, 16S50, 16U99.

Introduction and Motivation

Throughout this paper, all rings are assumed to be unital and associative. Almost all symbols,
notation and concepts are standard being consistent with the classical book [1]. The Jacobson radical,
the lower nil-radical, the set of nilpotent elements, the set of idempotent elements, and the set of units
of R are denoted, respectively, by J(R), Nil∗(R), Nil(R), Id(R), and U(R). Additionally, we write
Mn(R), Tn(R) and R[x] for the n×n full matrix ring, the n×n upper triangular matrix ring, and the
polynomial ring over R, respectively.

The core focus of this exploration is the set

J(R) ⊆ ∆(R) = {x ∈ R : x+ u ∈ U(R) for all u ∈ U(R)}
= {x ∈ R : 1− xu is invertible for all u ∈ U(R)}
= {x ∈ R : 1− ux is invertible for all u ∈ U(R)},

which was examined by Lam in [2; Exercise 4.24] and recently explored in detail by Leroy-Matczuk
in [3]. It was indicated in [3; Theorems 3 and 6] that ∆(R) represents the (proper) largest Jacob-
son radical subring of R that remains closed under multiplication by all units (resp., quasi-invertible
elements) of R, and it is an ideal of R exactly when ∆(R) = J(R).

In the contemporary ring theory, the class of strongly nil-clean rings possesses significant impor-
tance. A ring R is called strongly nil-clean if every element of R can be expressed as the sum of an
∗Corresponding author. E-mail: danchev@math.bas.bg
The first and second authors are supported by Bonyad-Meli-Nokhbegan and receive funds from this foundation.
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idempotent in R and a nilpotent element in R that commute with each other (see [4–6]). Later on,
Chen and Sheibani generalized in [7] this concept and introduced the so-called strongly 2-nil-clean
rings: a ring R is defined as strongly 2-nil-clean if every element of R can be written as the sum of a
tripotent element of R (i.e., an element x ∈ R such that x3 = x) and a nilpotent element of R that
commute.

On the other hand, in a way of similarity, strongly J-clean rings are those rings in which every
element can be written as the sum of an idempotent and an element from the Jacobson radical that
commute [8, 9]. In this vein, Koşan et al. introduced in [10] the so-termed semi-tripotent rings R in
which each element is the sum of a tripotent element from R and an element from J(R).

Considering and analyzing these definitions, as well as the fact that ∆(R) is a (possibly proper)
subset of J(R), that is not necessarily an ideal, and which also does not have useful properties like the
set Nil(R), a question naturally arises about the properties of those rings R for which each element
is the sum of a tripotent element from R and an element from ∆(R) that commute with each other.
The main objective of the current article is namely to investigate these types of rings and to conduct
a comprehensive study of their structure.

Thereby, we come to the following key notion, motivated by the discussion alluded to above.

Definition 1. We say that R is a strongly ∆-tripotent ring, or just an SDT ring for short, if every
element of R is the sum of a tripotent from R and an element from ∆(R) that commute with each
other. Such a sum’s presentation is also said to be an SDT representation.

Our further plan in the organization of our study is the following: In the next section, we obtain
some crucial examples and principal properties of such rings establishing their connection with many
standard properties – e.g., such as uniquely clean (see Corollary 2). In the subsequent section, we
achieve the major result describing the algebraic structure of the SDT rings in an appropriate form
showing that these rings modulo their Jacobson radical are the direct product of a Boolean ring
and a Yaqub ring (see Theorem 1). Some other closely related statements are also proved such as
Propositions 2 and 6. In the fourth section, we study the behavior of the given SDT concept under
various ring extensions and, specifically, we characterize when Tn(R) is an SDT ring by finding a
necessary and sufficient condition, provided that R is local and n ≥ 3 (see Theorem 2). In the final fifth
section, we conclude with some commentaries and two challenging open problems (see, e.g., Problems 1
and 2) which, hopefully, will stimulate a future intensive examination of the present subject.

1 Examples and Basic Properties

The following claim can easily be proven, so we omit the details leaving them to the interested
reader for check.

Lemma 1. (1) Suppose R =
∏

i∈I Ri. Then, R is an SDT ring if, and only if, for each i ∈ I, Ri is
an SDT ring.

(2) Suppose R is a ring and I is an ideal of R such that I ⊆ J(R). Then, R/I is an SDT ring.

We proceed by proving the following three technical assertions.

Lemma 2. For every e = e3 ∈ R and d ∈ ∆(R), we have (e± e2)d, d(e± e2), 2e2d, and 2ed ∈ ∆(R).
Proof. For every e = e3 ∈ R, we have

((1− e2)− e)((1− e2)− e) = 1 = ((1− e2) + e)((1− e2) + e).

Therefore, (1 − e2 ± e) ∈ U(R), so it follows from [3; Lemma 1(2)] that, for every d ∈ ∆(R), both
((1 − e2 ± e)d and d((1 − e2 ± e) ∈ ∆(R). Since ∆(R) is a subring of R, we have (e ± e2)d and
d(e± e2) ∈ ∆(R). This implies that 2ed and 2e2d ∈ ∆(R), as required.
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Lemma 3. Let R be an SDT ring, and a ∈ R. If a2 ∈ ∆(R), then a ∈ ∆(R).
Proof. Assume that a = e+d is an SDT representation. We have a2 = e2 +2ed+d2. By Lemma 2,

it must be that
e2 = a2 − 2ed− d2 ∈ ∆(R) ∩ Id(R) = {0},

which implies e = 0. Thus, a = d ∈ ∆(R), as expected.

Lemma 4. Let R be an SDT ring. Then, for every a ∈ R, a− a3 ∈ ∆(R).
Proof. Assume a = e+ d is an SDT representation. We calculate that

a− a3 = (d− d3)− (2e2d+ 2ed)− (e2d+ ed2).

Furthermore, according to Lemma 2, it suffices to show that e2d + ed2 ∈ ∆(R). But, Lemma 2
tells us that e2d + ed2 ∈ ∆(R) precisely when ed + e2d2 ∈ ∆(R). Consequently, we show that
ed+ e2d2 ∈ ∆(R).

To this target, assume ed = f + b is an SDT representation. Then,

e2d2 = f2 + 2fb+ b2.

Thus,
ed+ e2d2 = (f + f2) + (b+ 2fb+ b2).

Now, multiplying by d and d2 both sides of the previous relation, we have

ed2 + e2d3 = (f + f2)d+ (b+ 2fb+ b2)d ∈ ∆(R),

ed3 + e2d4 = (f + f2)d2 + (b+ 2fb+ b2)d2.

Owing to Lemma 2, we infer that ed2 + e2d3, ed3 + e2d4 ∈ ∆(R). Also,

ed2 + e2d3 = ed2 + e2d3 − ed3 + ed3 − e2d2 + e2d2 = e2d2 + ed3 + (e2 − e)d3 + (e− e2)d2.

Thus, in virtue of Lemma 2, it follows that e2d2 + ed3 ∈ ∆(R). Therefore, we get{
e2d2 + ed3 ∈ ∆(R),

ed3 + e2d4 ∈ ∆(R),
=⇒ e2d2 + e2d4 ∈ ∆(R).

We now have that
(ed+ e2d2)2 = e2d2 + 2ed3 + e2d4 ∈ ∆(R).

So, Lemma 3 enables us that ed+ e2d2 ∈ ∆(R), as pursued.

We now arrive at the following concrete application of the last lemma.
Example 1. Let R be an arbitrary ring. Then, R[x] is not an SDT ring.
Proof. Assume the contrary. Then, applying Lemma 4, we derive that x− x3 ∈ ∆(R[x]), and thus

1− x+ x3 ∈ U(R[x]), which is the wanted contradiction.

With the previous example in mind, the ring R[x] is surely not SDT. However, a logical question
arises about the form of elements with an SDT representation in the polynomial ring R[x]. We will
attempt to answer this question below.

Recall that a ring R is said to be 2-primal if Nil∗(R) = Nil(R). For instance, it is well known that
any commutative ring and any reduced ring are definitely 2-primal.

Likewise, for an endomorphism σ of R, the ring R is called σ-compatible if, for every a, b ∈ R, the
equality ab = 0 if, and only if, aσ(b) = 0 [11]. In this case, it is clear that σ is always injective.

We now manage to prove the following two pivotal statements.
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Proposition 1. Let R be a 2-primal and α-compatible ring. Then,

∆(R[x, α]) = ∆(R) +Nil∗(R[x, α])x.

Proof. Assuming f =
∑n

i=0 aix
i ∈ ∆(R[x, α]), then, for each u ∈ U(R), we have that

1 − uf ∈ U(R[x, α]). Thus, taking into account [12; Corollary 2.14], 1 − ua0 ∈ U(R) holds and,
for every 1 ≤ i ≤ n, it holds uai ∈ Nil∗(R). Since Nil∗(R) is an ideal, we deduce a0 ∈ ∆(R) and hence,
for each 1 ≤ i ≤ n, we obtain ai ∈ Nil∗(R). Since R is a 2-primal ring, [12; Lemma 2.2] applies to get
that Nil∗(R)[x, α] = Nil∗(R[x, α]), as desired.

Conversely, assume f ∈ ∆(R) + Nil∗(R[x, α])x and u ∈ U(R[x, α]). Then, employing [12; Corol-
lary 2.14], we have u ∈ U(R) + Nil∗(R[x, α])x. But, since R is a 2-primal ring, we receive
1− uf ∈ U(R) +Nil∗(R[x, α])x ⊆ U(R[x, α]), whence f ∈ ∆(R[x, α]), as promised.

Proposition 2. Let R be a 2-primal and α-compatible ring, and let e3 = e =
∑n

i=0 eix
i ∈ R[x, α].

Then, e30 = e0 and, for every 1 ≤ i ≤ n, the inclusion ei ∈ Nil(R) is true.
Proof. It is easy to see that e30 = e0, so it suffices to show that, for every 1 ≤ i ≤ n, the re-

lation ei ∈ Nil(R) is valid. Since e3 = e, we inspect that enαn(en)α2n(en) = 0. And because R is
α-compatible, [13; Lemma 2.1] is applicable to get that e3n = 0.

Now, set g := f − enx
n. Since f3 = f and en ∈ Nil∗(R), we have g − g3 ∈ Nil∗(R)[x, α], so

ḡ = ḡ3 ∈ R/Nil∗(R)[x, α]. Thus, one verifies that

en−1α
n−1(en−1)α

2n−2(en−1) ∈ Nil∗(R).

But, since R is an α-compatible ring, [13; Lemma 2.1] works to obtain that en−1 ∈ Nil(R). Continuing
in this aspect, it can be shown that, for each 1 ≤ i ≤ n, the condition ei ∈ Nil(R) is fulfilled, as asked
for.

To specify the elements with an SDT representation of the ring R[x, α], we need new notation. For
convenience of the exposition, we just put the set of elements with an SDT representation in the ring
R to be abbreviated as SDT (R).

So, we have the validity of the following.

Lemma 5. Let R be a 2-primal and α-compatible ring. Then,

SDT (R[x, α]) ⊆ SDT (R) +Nil∗(R)[x, α]x.

Proof. Assume f =
∑n

i=0 fix
i ∈ SDT (R[x, α]) and f =

∑n
i=0 eix

i +
∑n

i=0 dix
i is an SDT represen-

tation. In accordance with Propositions 1 and 2, we have e0 = e30 and d0 ∈ ∆(R), and hence clearly
e0d0 = d0e0, so that f0 ∈ SDT (R).

Moreover, with the aid of Proposition 2, for every 1 ≤ i ≤ n, it must be that ei, di ∈ Nil∗(R),
whence fi = ei + di ∈ Nil∗(R), as required.

The next affirmation is crucial.

Lemma 6. Let R be an SDT ring. Then, R/J(R) is reduced.
Proof. Assume x2 ∈ J(R) ⊆ ∆(R). Thus, by Lemma 3, we have x ∈ ∆(R). Let r ∈ R. Since

1− r2x2 ∈ U(R), we may set u := 1− rx2r ∈ U(R). Therefore,

(1− rx)(1 + rx) = 1− rx+ xr − rx2r = xr − rx+ u.

It suffices to show that xr − rx ∈ ∆(R). To this goal, assume r = e+ d is an SDT representation.
Then,

xr − rx = x(e+ d)− (e+ d)x = xe− ex+ (xd− dx),

128 Bulletin of the Karaganda University



Generalizing Semi-n-Potent Rings

and as x, d ∈ ∆(R), it is just sufficient to prove that xe− ex ∈ ∆(R).
Since [

e2x(1− e2)
]2

= 0 =
[
(1− e2)xe2

]2
.

Lemma 3 assures that {
e2x(1− e2) ∈ ∆(R) =⇒ e2x− e2xe2 ∈ ∆(R),

(1− e2)xe2 ∈ ∆(R) =⇒ xe2 − e2xe2 ∈ ∆(R).

However, because ∆(R) is closed under addition, we arrive at e2x− xe2 ∈ ∆(R). Consequently,

xe− ex = xe+ xe2 − xe2 − ex− e2x+ e2x = e2x− xe2 + x(e+ e2)− (e+ e2)x ∈ ∆(R).

Hence,
(1− rx)(1 + xr) ∈ U(R).

But R was arbitrary, and so x ∈ J(R), as needed.

Given the truthfulness of Lemma 4, we have that, for every SDT ring R, 6 = 23 − 2 ∈ ∆(R). This
raises a logical question: if R is an SDT ring, is 6 ∈ J(R)? We will answer this query in the following
lemma.

Lemma 7. Let R be an SDT ring. Then, 6 ∈ J(R).

Proof. Invoking Lemma 4, we know that 6 ∈ ∆(R), which implies 12 = 6 + 6 ∈ ∆(R). Letting
r ∈ R be arbitrary, and letting r = e+ d be an SDT representation, Lemma 2 ensures that

1− 12r = 1− 12e− 12d = 1− 2(6e)− 12d ∈ 1 + ∆(R) ⊆ U(R).

Thus, 12 ∈ J(R).
Furthermore, since 62 = 36 = 3 × 12 ∈ J(R), Lemma 6 helps us to conclude that 6 ∈ J(R), as

stated.

As a useful consequence, we deduce the following.

Corollary 1. Let R be an SDT ring. Then, the following two points hold:
(1) 2 ∈ U(R) if, and only if, 3 ∈ J(R).
(2) 3 ∈ U(R) if, and only if, 2 ∈ J(R).

Proof. The proof is pretty straightforward being based on Lemma 7, so we leave it voluntarily.

The next two assertions are worthy of documentation.

Proposition 3. Let R be an SDT ring such that 2 ∈ U(R). Then, ∆(R) is an ideal. In particular,
under these conditions, ∆(R) = J(R).

Proof. Since ∆(R) is closed under addition, it is sufficient to show that, for any d ∈ ∆(R) and
r ∈ R, the relations rd, dr ∈ ∆(R) are valid. Assume, for this aim, that rd = e+b and r = f+b′ are two
SDT representations. Exploiting Lemma 2, we know 2fd ∈ ∆(R). Since 2 ∈ U(R), [3; Lemma 1(2)]
teaches us that fd ∈ ∆(R). So, we have

rd = e+ b = fd+ b′d =⇒ e− fd = b′d− b ∈ ∆(R).

But, since fd ∈ ∆(R), it follows that e ∈ ∆(R), so e2 ∈ ∆(R) ∩ Id(R) = {0}, which forces e = 0.
Therefore, rd = b ∈ ∆(R). Similarly, it can be shown that dr ∈ ∆(R), guaranteeing the claim.
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Proposition 4. Let R be an SDT ring with 3 ∈ U(R). Then, for any a ∈ R, we have a = f + b,
where f = f2 ∈ R, b ∈ ∆(R) and fb = bf .

Proof. Suppose a = f + d is an SDT representation. Then,

a− a2 = (f − f2) + (d− 2fd− d2).

Since 3 ∈ U(R) by Corollary 1, we get 2 ∈ J(R). Thus, (f − f2)2 = −2(f − f2) ∈ J(R) and, with
Lemma 7 at hand, we observe that f − f2 ∈ J(R). This gives a− a2 ∈ ∆(R).

On the other hand, since

a− f2 = (a− a2) + 2(a2 − f2 − fd)− d2 ∈ ∆(R),

by setting e := f2, we finish the proof after all.

A ring R is called an SDI ring if, for every r ∈ R, there exist e = e2 ∈ R and b ∈ ∆(R) such that
r = e+ b and eb = be. Recall also that a ring is called a ∆U ring, provided 1 + ∆(R) = U(R) [14].

The following closely related results are of some interest as well.

Lemma 8. Every SDI ring is a ∆U ring.

Proof. Suppose u ∈ U(R) and u = e+ d is an SDI representation. Then, we have

e = u− d ∈ U(R) + ∆(R) ⊆ U(R) ∩ Id(R) = {1},

as required.

Lemma 9. ([14; Proposition 2.3]) The ring R is a ∆U ring if and only if U(R) + U(R) ⊆ ∆(R);
and then, U(R) + U(R) = ∆(R).

Recall that a ring R is said to be uniquely clean, provided that each element in R has a unique
representation as the sum of an idempotent and a unit [15].

The next valuable consequence gives some transversal between the notions of SDI rings and unique
cleanness.

Corollary 2. Let R be a ring. Then the following are equivalent:
(1) R is uniquely clean.
(2) R is SDI and all idempotents are central.

Proof. (1) ⇒ (2). Assume R is a uniquely clean ring. Consulting with [15; Lemma 4], every
idempotent in R is central. Besides, by virtue of [15; Theorem 20], for every a ∈ R, there exists a
unique idempotent e such that a−e ∈ J(R) ⊆ ∆(R). Thus, there exists d ∈ ∆(R) such that a = e+d.
Since all idempotents are central, we have ed = de.

(2) ⇒ (1). Assume R is an SDI ring, and let a ∈ R be arbitrary. Suppose a + 1 = e + d is
an SDI representation. Then, a = e + (d − 1), which is a clean representation. Assume now that
e + u = f + v are two clean representations. So, Lemma 9 informs us that e − f = v − u ∈ ∆(R).
Since all idempotents are central, we find e − f = (e − f)3, and so (e − f)2 ∈ ∆(R) ∩ Id(R) = {0}.
Therefore, e− f = (e− f)3 = (e− f)(e− f)2 = 0. Hence, e = f , as it must be.
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2 The Main Characterizations

We start our considerations here with some relationships between certain classes of rings.

Proposition 5. Suppose R is an SDT ring and a domain. Then, R is a local ring.

Proof. Let a ∈ R. We want to show that either a ∈ U(R) or a ∈ ∆(R). To that end, suppose
a = e + d is an SDT representation. If e = 0, then a = d ∈ ∆(R). If e 6= 0, then as e3 = e it must
be e(1 − e2) = 0. But, since R is a domain, (1 − e)(1 + e) = 1 − e2 = 0, so either e = 1 or e = −1.
Therefore, either a = 1 + d ∈ U(R) or a = −1 + d ∈ U(R). It can next easily be shown that R is a
local ring if, and only if, R = U(R) ∪∆(R), as required.

As an immediate consequence, we yield:

Corollary 3. Suppose R is a strongly 2-nil clean and local ring. Then, R is an SDT ring.

Proof. It is pretty easy, because in a local ring the containment Nil(R) ⊆ J(R) always holds.

The next assertion is of some importance by giving some close relevance between the notion of a
semi-tripotent ring as stated in [10] and the new concept of an SDT ring given above.

Proposition 6. Suppose R is a semi-tripotent and local ring. Then, R is an SDT ring.

Proof. Since R is a local ring, either 2 ∈ J(R) or 2 ∈ U(R). If 2 ∈ J(R), then in virtue of
[10; Theorem 3.5] the factor-ring R/J(R) is Boolean. On the other hand, as R is local, it has to be
that R/J(R) ∼= Z2, and so R = J(R) ∪ (1 + J(R)), yielding R is an SDT ring. If, however, 2 ∈ U(R),
then again [10; Theorem 3.5] works to get that the quotient-ring R/J(R) is a Yaqub ring. However,
because R is local, it must be that R/J(R) ∼= Z3, and thus R = J(R) ∪ (1 + J(R)) ∪ (−1 + J(R))
implying R is an SDT ring, as asserted.

It is well known that a ring is Boolean if and only if it is a subdirect product of copies of Z2.
Analogously, in [7], Chen and Sheibani called a non-zero ring R a Yaqub ring if it is a subdirect
product of copies of Z3. They proved that R is a Yaqub ring if, and only if, 3 is nilpotent and R is a
tripotent ring (that is, each of its element is tripotent).

We are now ready to attack the chief characterizing result, thereby completely describing the
structure of the SDT rings.

Theorem 1. Assume R is an SDT ring. Then, R/J(R) is a tripotent ring, i.e., R/J(R) ∼= R1 ×R2,
where R1 is a Boolean ring and R2 is a Yaqub ring.

Proof. Referring to Lemma 7, we have 6 ∈ J(R). Set R̄ := R/J(R). Thanks to the famous Chinese
Remainder Theorem, we write R̄ ∼= R1×R2, where R1 := R̄/2R̄ and R2 := R̄/3R̄. Since R is an SDT
ring, Lemma 1(2) guarantees that R̄ is an SDT ring too. Therefore, again in view of Lemma 1(1),
R1 is an SDT ring. Since 2 = 0 in R1, we have 3 ∈ U(R1). Thankfully, Proposition 4 yields R1 is
an SDI ring. Also, Lemma 6 implies that R1 is reduced, and thus all idempotents in R1 are central.
Therefore, Corollary 2 shows that R1 is a uniquely clean ring. Note that, as J(R) = 0, it must be that
J(R1) = 0. Using now [15; Theorem 19], we conclude that R1 is a Boolean ring, as formulated.

On the other hand, since 3 = 0 in R2 6= {0}, we have 2 ∈ U(R2). Knowing Proposition 3, we
obtain J(R2) = ∆(R2). This means, with the help of Lemma 4, that, for any a ∈ R2, the relations
a− a3 ∈ ∆(R2) = J(R2) = 0 are true. Thus, for any a ∈ R2, we get that a = a3. Furthermore, using
[7; Lemma 4.4], we infer that R2 is a Yaqub ring, as given.
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It is worthwhile noticing that the extra requirement on the first direct component R1 and the
second direct component R2 to be not simultaneously {0} can be freely ignored here, as opposed to
what was shown in [16], where an analogous shortcoming was unambiguously detected for the main
result of the paper [17].

Let R be a ring, and let a ∈ R. Suppose annla := {r ∈ R : ra = 0} and annra := {r ∈ R : ar = 0}.
We continue by verifying the following two needed technicalities.

Lemma 10. Let R be a ring and a = e + d an SDT representation in R. Then, annl(a) ⊆ annl(e)
and annr(a) ⊆ annr(e).

Proof. Assume ra = 0. Now, Lemma 2 applies to ensure that there exists d′ ∈ ∆(R) such that
a2 = e2 + d′. Since ra = 0, we have re2 + rd′ = 0. Now, multiplying by e from the right, we get
re + red′ = 0, and so re(1 + d′) = 0. Since d′ ∈ ∆(R), it follows that 1 + d′ ∈ U(R) which forces
re = 0. Thus, r ∈ annl(e). Similarly, it can be shown that the inclusion annr(a) ⊆ annr(e) is too
valid, as required.

Lemma 11. Let R be a ring and e ∈ R an idempotent. If a ∈ eRe is an SDT element in R, then a
is an SDT element in the corresponding corner subring eRe.

Proof. Write a = f + d, where f = f3, d ∈ ∆(R) and fd = df . Since 1 − e ∈ annl(a) ∩ annr(a),
Lemma 10 is a guarantor that 1 − e ∈ annl(f) ∩ annr(f) implying (1 − e)f = f(1 − e) = 0. Thus,
f = ef = fe. Likewise, since a ∈ eRe, we receive a = ea = ae = eae. But, subsequently multiplying
a = f + d by e from the left and right, we obtain that a = efe + ede. Note that, since f = ef = fe
and f is a tripotent, efe is also a tripotent. So, it suffices to show that ede ∈ ∆(eRe).

On the other hand, since f = ef = fe = efe and a = ea = ae = eae, it is evident that

d = ed = de = ede ∈ ∆(R) ∩ eRe.

Now, we show that eRe∩∆(R) ⊆ ∆(eRe) always holds. To this purpose, assume r ∈ eRe∩∆(R) and
u ∈ U(eRe). Then, (u+(1−e))(u−1 +(1−e)) = 1, so u+(1−e) ∈ U(R). Since r ∈ ∆(R), there exists
v ∈ R such that (1−(u+(1−e))r)v = 1. But r ∈ eRe, so that (1−ur)v = 1. Furthermore, multiplying
subsequently by e from the left and right, we extract that (e−ur)eve = e forcing r ∈ ∆(eRe). Finally,
d ∈ ∆(eRe), and we are done.

As an automatic consequence, we yield the following.

Corollary 4. Let R be a ring, and let e ∈ R be an idempotent. If R is an SDT ring, then so is the
corresponding corner subring eRe.

Furthermore, in regard to the last corollary, a logically arising question is whether or not the
converse in its formulation holds, that is, if both eRe and (1− e)R(1− e) are SDT rings, is it true that
so does R? However, the next construction, suggested to us by Dr. Omer Cantor to whom we express
our sincere gratitude, illustrates that this question has a negative solution. In fact, let R := M2(Z2)
and set e := E11. An easy check shows that both eRe and (1 − e)R(1 − e) are isomorphic to Z2, so
they are obviously SDT rings. However, it is readily to verify that ∆(R) = (0) by direct computation
and, of course, some elements of R, such as E12, are not tripotent or even not n-potent for any natural
number n ≥ 3. Therefore, R is not an SDT ring, as suspected.

3 Triangular Matrix Rings

As usual, a ring R is termed local, provided R/J(R) is a division ring, that is, each element in
R \ J(R) is a unit, which set-theoretically means that R = J(R) ∪ U(R).

We begin here with the following technicality.
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Lemma 12. Let R be a local ring with 2 ∈ U(R). Then, R has only trivial tripotent elements.
Proof. Suppose that e = e3 ∈ R. If e ∈ J(R), then e(1− e2) = 0, whence e = 0. If now e ∈ U(R),

then e2 = 1, and so (1 − e)(1 + e) = 0. Since (1 − e) + (1 + e) = 2 ∈ U(R) and R is a local ring,
we have either 1 − e ∈ U(R) or 1 + e ∈ U(R). This, in turn, means that either e = 1 or e = −1, as
required.

Based on the above claim, we now considerably extend the well-known Workhorse Lemma (see [18;
Lemma 6]) as follows.

Lemma 13. (Generalized Workhorse Lemma) Let R be a local ring such that 2 ∈ U(R), n ≥ 2 and
A,E ∈ Tn(R). Suppose that, for all (i, j) 6= (1, n), (E3)ij = Eij and (AE − EA)ij = 0. Suppose also
that

A =

a α c
B β

b

 and E =

e γ z
F δ

f

 ,

where B,F ∈ Tn−2(R), a, b, c, e, f, z ∈ R, α, γ ∈ M1,n−2(R) and β, δ ∈ Mn−2,1(R). Then, the
following items are fulfilled:

(i) Given e = f = 1, then E3 = E if and only if z = −1/2(γFδ+ 2γδ), and in this case, AE = EA.
(ii) Given e = f = −1, then E3 = E if and only if z = −1/2(γFδ − 2γδ), and in this case,

AE = EA.
(iii) Given e = f = 0, then E3 = E if and only if z = γFδ, and in this case, AE = EA.
(iv) Given e = 1 and f = −1, then E3 = E. Further, AE = EA if and only if z satisfies the

equation az − zb = γβ − αδ + 2c.
(v) If e = −1 and f = 1, then E3 = E. Further, AE = EA if and only if z satisfies the equation

az − zb = γβ − αδ − 2c.
(vi) If e = 1 and f = 0, then E3 = E. Further, AE = EA if and only if z satisfies the equation

az − zb = γβ − αδ + c.
(vii) If e = 0 and f = 1, then E3 = E. Further, AE = EA if and only if z satisfies the equation

az − zb = γβ − αδ − c.
(viii) If e = −1 and f = 0, then E3 = E. Further, AE = EA if and only if z satisfies the equation

az − zb = γβ − αδ − c.
(w) If e = 0 and f = −1, then E3 = E. Further, AE = EA if and only if z satisfies the equation

az − zb = γβ − αδ + c.

Proof. (i) It is apparent that E3 = E if and only if z = −1/2(γFδ+2γδ). We show that AE = EA.
Given the assumptions, we have

z = −1/2(γFδ + 2γδ), (1)

γF = −γF 2, (2)

Fδ = −F 2δ, (3)
α+ γB = aγ + αF, (4)
Fβ + δb = Bδ + β. (5)

In virtue of the above equations, we compute that

(EA)1n = c+ γβ + zb
(1)
= c+ γβ − 1/2γFδb− γδb

(5)
= c+ γβ + γ(Fβ −Bδ − β) + 1/2γF (Fβ −Bδ − β)

= c+ γβ + γFβ − γBδ − γβ + 1/2γF 2β − 1/2γFBδ − 1/2γFβ

(2)
= c− γBδ − 1/2γFBδ.
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(AE)1n = az + αδ + c
(1)
= −aγδ − 1/2aγFδ + αδ + c

(4)
= (αF − α− γB)δ + 1/2(αF − α− γB)Fδ + αδ + c

= αFδ − αδ − γBδ + 1/2αF 2δ − 1/2αFδ − 1/2γBFδ + αδ + c

(3)
= c− γBδ − 1/2γBFδ = c− γBδ − 1/2γFBδ.

Note that, since (AE − EA)ij = 0, we establish FB = BF .
(ii) The proof is similar to part (i).
(iii) It is obvious that E3 = E if and only if z = γFδ. We show that AE = EA. Given the

assumptions, we have

z = γFδ, (6)

γ = γF 2, (7)

δ = F 2δ, (8)
γB = aγ + αF, (9)
Bδ = Fβ + δb. (10)

From the above equations, we calculate that

(EA)1n = γβ + zb
(6)
= γβ + γFδb

(10)
= γβ + γF (Bδ − Fβ)

= γβ + γFBδ − γF 2β

(7)
= γFBδ.

(AE)1n = az + αδ
(6)
= aγFδ + αδ

(9)
= (γβ − αF )Fδ + αδ

= γBFδ − αF 2δ + αδ

(8)
= γBFδ = γFBδ.

(iv) Assume e = 1 and f = −1. Then, under the assumptions, we deduce that

γF = −γF 2, F 2δ = Fδ =⇒ γFδ = −γF 2δ = −γFδ =⇒ 2 γFδ = 0.

But, since 2 ∈ U(R), we have γFδ = 0. Thus, we get (E3)1n = γFδ + z = z = E1n and, therefore,
E3 = E. Moreover, it is clear that EA = AE if and only if

az + αδ − c = c+ γβ + zb,

which is equivalent to
az − zb = γβ − αδ + 2c.

(v) The proof is similar to part (iv).
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(vi) Assume e = 1 and f = 0. So, under the given assumptions, we have

γF = −γF 2, δ = F 2δ =⇒ γFδ = −γF 2δ = −γδ.

Consequently, we derive (E3)1n = z + γδ + γFδ = z = E1n, and hence E3 = E. It is also readily
checked that EA = AE if and only if

az − zb = γβ − αδ + c.

Finally, one sees that points (vii), (viii) and (w) possess proofs which are similar to that of (vi).

The next preliminary facts are worthy of discussion: let a ∈ R. The mappings la : R → R
and ra : R → R represent the (additive) abelian group endomorphisms defined respectively by
la(r) = ar and ra(r) = ra for all r ∈ R. Consequently, the expression la − rb defines an abelian
group endomorphism such that (la − rb)(r) = ar − rb for any r ∈ R. According to [5], a local ring R
is classified as bleached if, for any a ∈ U(R) and b ∈ J(R), both la − rb and lb − ra are surjective. The
category of bleached local rings includes many well-established examples, such as commutative local
rings, local rings with nil Jacobson radicals, and local rings in which some power of each element of
their Jacobson radicals is central [18; Example 13].

Now, we need the following.

Lemma 14. Let R be a local ring such that 2 ∈ U(R), and suppose that A ∈ Tn(R). Write A as
(aij). Then, for any set {eii}ni=1 of tripotents in R such that eii = ejj whenever laii − rajj is not a
surjective abelian group endomorphism of R, there exists a tripotent E ∈ Tn(R) such that AE = EA
and Eii = eii for every i ∈ {1, . . . , n}.

Proof. Leveraging Lemma 13, the proof process mirrors that of [18; Lemma 7]. To avoid redun-
dancy, we omit the detailed proof.

We are now in a position to attack the main result in this section, in which the proof we shall apply
the established above Theorem 1.

Theorem 2. Let R be a local ring and n > 2. Then, the following conditions are equivalent:
(1) Tn(R) is an SDT ring;
(2) either
(2.1) R is a bleached ring and R/J(R) ∼= Z2;

or
(2.2) R is a bleached ring, R/J(R) ∼= Z3 and, if a, b ∈ R such that a− 1 ∈ ∆(R) and b+ 1 ∈ ∆(R),

then la − rb : R→ R is surjective.

Proof. Since R is a local ring, we have either 2 ∈ J(R) or 2 ∈ U(R). We prove the theorem for
both cases independently.

Case 1: If 2 ∈ J(R).
(1) ⇒ (2.1). Since 2 belongs to J(R), Theorem 1 discovers that R/J(R) is a Boolean ring. But,

since R is local, we must have R/J(R) ∼= Z2. Because Tn(R) is an SDT ring, Corollary 4 gives that
T2(R) is an SDT ring too. Moreover, Proposition 4 allows us to detect that T2(R) is an SDI ring.

Suppose now a ∈ U(R) and b ∈ J(R). We intend to show that la − rb : R → R is surjective.
Thereby, it suffices to prove that, for every v ∈ R, there exists x ∈ R such that ax − xb = v. Put

r :=

(
a v
0 b

)
. Assume r = g + j is an SDI representation, where g =

(
e x
0 f

)
and j =

(
d y
0 d′

)
.

Since e is an idempotent and a ∈ U(R), we deduce e = 1. However, since f is an idempotent and
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b ∈ J(R), we derive f = 0. Thus, g =

(
1 x
0 0

)
. Since rg = gr, we now have ax − xb = v. Therefore,

la − rb : R→ R is surjective. Similarly, we can show that lb − ra : R→ R is surjective, as desired.
(2.1) ⇒ (1). Since 2 ∈ J(R), we only have the case R/J(R) ∼= Z2. Thus, by [8; Theorem 4.4],

there is nothing left to prove.
Case 2: If 2 ∈ U(R).
(1)⇒ (2.2). Since 2 belongs to U(R), Theorem 1 demonstrates that R/J(R) is a Yaqub ring. But,

since R is local, we must have R/J(R) ∼= Z3. Because Tn(R) is an SDT ring, Corollary 4 gives that
T2(R) is an SDT ring too.

Suppose now a ∈ U(R) and b ∈ J(R). We intend to show that la − rb : R → R is surjective.
Thereby, it suffices to establish that, for each v ∈ R, there is x ∈ R such that ax − xb = v. Set

r :=

(
a v
0 b

)
. Assume r = g+ j is an SDT representation, where g =

(
e x
0 f

)
and j =

(
d y
0 d′

)
. Since

b ∈ J(R) and f is a tripotent, we detect f = 0. On the other hand, Lemma 12 allows us to conclude
that R has no non-trivial tripotents. Hence, since a ∈ U(R), e is simultaneously a unit and a tripotent

element, and thus either e = 1 or e = −1. If g =

(
1 x
0 0

)
, then since rg = gr, we have ax − xb = v.

If, however, g =

(
−1 x
0 0

)
, then again since rg = gr, we have a(−x) − (−x)b = v. Consequently,

la − rb : R→ R is surjective. Similarly, we can establish that lb − ra : R→ R is surjective.
We now show that under the given assumptions, the SDT representation of elements is unique. In

this light, suppose e+ d = f + b are two SDT representations in R. Note that, Lemma 12 manifestly
yields e, f ∈ {−1, 0, 1}, so that one easily sees that either e = f or e = −f . If e = −f , then
2e = b− d ∈ ∆(R). Since 2 ∈ U(R), we have e ∈ ∆(R). Thus, e2 ∈ ∆(R) ∩ Id(R) = {0}, which leads
to e = 0. Therefore, e = f = 0.

Suppose now that a = 1 + d and b = −1 + d′ are two SDT representations. Assume that

r =

(
a v
0 b

)
is an element of T2(R). Also, suppose that r = g + w is an SDT representation, where

g =

(
e x
0 f

)
and w =

(
d y
0 d′

)
.

Bearing in mind the above note, we can assume without loss of generality that e = 1 and f = −1.
Since gw = wg and 2 ∈ U(R), we deduce a(1/2)x− (1/2)xb = v. This obviously implies that the map
la − rb : R→ R is surjective.

(2.1)⇒ (1). Suppose A ∈ Tn(R). We show that A has an SDT representation such that A = E+D
in Tn(R). Since R/J(R) ∼= Z3, we see with no any technical difficulty that R = J(R) ∪ (1 + J(R)) ∪
(−1 + J(R)). First, we construct the elements on the main diagonal E. Suppose

eii :=


0 if aii ∈ J(R),

1 if aii ∈ 1 + J(R),

−1 if aii ∈ −1 + J(R).

Therefore, one inspects that aii − eii ∈ J(R) for each i. Notice that, since 2 ∈ U(R), it must be
that (1 + J(R)) ∩ (−1 + J(R)) = ∅. If eii 6= ejj , then we come to

(1) eii ∈ U(R) and ejj ∈ J(R),

(2) eii ∈ J(R) and ejj ∈ U(R),

(3) eii and ejj ∈ U(R).
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We prove that, in all three cases, laii − rajj : R→ R is necessarily surjective.
In fact, for case (1), aii ∈ U(R) and ajj ∈ J(R) and, because R is bleached, laii − rajj : R → R is

indeed surjective.
The case (2) is observed to be similar to case (1).
In case (3), with no harm of generality, assuming eii = 1 and ejj = −1, we obtain that aii − 1,

ajj + 1 ∈ ∆(R). Therefore, by the requested assumption, laii − rajj : R → R is surjective. Hence,
with Lemma 14 in hand, there is a tripotent E ∈ Tn(R) such that AE = EA and Eii = eii for each
i ∈ {1, . . . , n}. In addition,

A− E ∈ J(Tn(R)) ⊆ ∆(Tn(R)),

thus completing the proof.

The case when n = 2 can be considered separately in the following manner.

Example 2. Suppose R is an integral domain and an SDT ring. Then, T2(R) is an SDT ring.

Proof. Utilizing Proposition 2, R is a local ring. In the other vein, since R is a domain, arguing as
in the proof of Proposition 2, we can assume that R has no non-trivial tripotents.

Since R is local, we have either 2 ∈ U(R) or 2 ∈ J(R). First, we assume that 2 ∈ J(R), and let

A =

(
a β
0 b

)
∈ T2(R). Note that an SDT ring with 2 ∈ J(R) is always an SDI ring. We show that

T2(R) is also SDI. Precisely, we consider the following four cases:
1. If a, b ∈ J(R), then A ∈ J(R), so A = 0 +A is an SDI representation.
2. If a, b ∈ U(R), then since R is both SDI and local, we have a − 1 ∈ J(R) and b − 1 ∈ J(R).

Therefore,

A = I2 +

(
a− 1 β

0 b− 1

)
is an SDI representation for A.

3. a ∈ U(R), b ∈ J(R). Since R is an SDI ring, we obtain a− 1 ∈ J(R). Thus,

A =

(
1 α
0 0

)
+

(
a− 1 β − α

0 b

)
is an SDT representation, where α = β((a− 1) + (1− b))−1.

4. b ∈ U(R), a ∈ J(R). Since R is an SDI ring, we receive b− 1 ∈ J(R). So,

A =

(
0 α
0 1

)
+

(
a β − α
0 b− 1

)
is an SDT representation, where α = β((b− 1) + (1− a))−1.

Now, suppose 2 ∈ U(R).
1. If a, b ∈ J(R), then A ∈ J(R), so A = 0 +A is an SDT representation.
2. Given a, b ∈ U(R). If the SDT representations of a and b are of the form a = 1 + (a − 1) and

b = 1 + (b− 1), then

A = I2 +

(
a− 1 β

0 b− 1

)
is an SDT representation for A.

If the SDT representations of a and b are of the form a = −1 + (a+ 1) and b = −1 + (b+ 1), then

A = −I2 +

(
a+ 1 β

0 b+ 1

)
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is an SDT representation for A.
If the SDT representations of a and b are of the form a = −1 + (a+ 1) and b = 1 + (b− 1), then

A =

(
−1 α
0 1

)
+

(
a+ 1 β − α

0 b− 1

)
is an SDT representation, where α = 2β(2 + (b− 1)− (a+ 1))−1.

If the SDT representations of a and b are of the form a = 1 + (a− 1) and b = −1 + (b+ 1), then

A =

(
1 α
0 −1

)
+

(
a− 1 β − α

0 b+ 1

)
is an SDT representation, where α = 2β(2 + (a− 1)− (b+ 1))−1. Note that 2 ∈ U(R) is assumed.

3. Given a ∈ U(R) and b ∈ J(R). If the SDT representation of a is of the form a = 1 + (a − 1),
then

A =

(
1 α
0 0

)
+

(
a− 1 β − α

0 b

)
is an SDT representation for A, where α = β((1− b)− (1− a))−1.

If the SDT representation of a is of the form a = −1 + (a+ 1), then

A =

(
−1 α
0 0

)
+

(
a+ 1 β − α

0 b

)
is an SDT representation for A, where α = β((1 + b)− (1 + a))−1.

4. Given a ∈ J(R) and b ∈ U(R). If the SDT representation of b is of the form b = 1 + (b − 1),
then

A =

(
0 α
0 1

)
+

(
a β − α
0 b− 1

)
is an SDT representation for A, where α = β((b− 1) + (1− a))−1.

If the SDT representation of b is of the form b = −1 + (b+ 1), then

A =

(
0 α
0 −1

)
+

(
a β − α
0 b+ 1

)
is an SDT representation for A, where α = β((1 + a)− (1 + b))−1, as claimed.

Now, we manage to examine the above stated example in a more general situation like the following
one.

Proposition 7. Let R be a ring that has no non-trivial tripotent elements. Then, the following
conditions are equivalent:

(1) T (R, V ) is an SDT ring.
(2) Either R/J(R) ∼= Z2 or R/J(R) ∼= Z3.

Proof. (1) ⇒ (2). If T (R, V ) is an SDT ring, it is easily verified that R is also an SDT ring.
Moreover, since R has no non-trivial tripotent elements, as shown in Proposition 2, we can prove
that R is a local ring. Therefore, according to a combination of the locality of R and Theorem 1, we
conclude R/J(R) ∼= Z2 or R/J(R) ∼= Z3.

(2) ⇒ (1). If R/J(R) ∼= Z2, then from [15; Theorem 15] we deduce that T (R, V ) is a uniquely
clean ring. Thus, it is an SDI ring and, consequently, an SDT ring.
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If, however, R/J(R) ∼= Z3, we so derive

R = J(R) ∪ (1 + J(R)) ∪ (−1 + J(R)).

Assume now that
(
a v
0 a

)
∈ T (R, V ) is fulfilled. So, we have:

(a) If a ∈ J(R), then
(
a v
0 a

)
∈ J(T (R, V )).

(b) If a ∈ 1 + J(R), then (
a v
0 a

)
= I2 +

(
a− 1 v

0 a− 1

)
,

which is an SDT representation.

(c) If a ∈ −1 + J(R), then (
a v
0 a

)
= −I2 +

(
a+ 1 v

0 a+ 1

)
,

which is an SDT representation, as claimed.

We finish our examinations with the following exhibitions which we leave to the interested reader
for a direct check.

Example 3. Let R be a ring in which all tripotent elements are central. Then, the following issues
hold:

(1) R is an SDT ring if and only if R[[x]] is an SDT ring.
(2) R is an SDT ring if and only if R[x]/(xn) is an SDT ring.
(3) R is an SDT ring if and only if T (R,R) is an SDT ring.

Concluding Discussion and Questions

As above noticed, in [10] the authors defined and investigated those rings R, calling them semi-
tripotent, whose elements are a sum of a tripotent element from R and an element from the Jacobson
radical of R which, generally, need not commute each other.

Now, regarding Proposition 6, one may ask whether the classes of semi-tripotent rings and SDT
rings are independent of each other; that is, does there exist an SDT ring what is not semi-tripotent
as well as a semi-tripotent ring that is not SDT? However, it was proved in [10; Theorem 3.5 (6)] that
R/J(R) has the same presentation as in our Theorem 1 plus the requirement that all idempotents of
R lift modulo J(R). That is why, it quite surprisingly follows that every SDI ring whose idempotent
lift modulo the Jacobson radical is always semi-tripotent. However, as the opposite claim of Theorem 1
is not at all guaranteed in order to be a satisfactory criterion, we do not know yet if any semi-tripotent
ring is SDT. Likewise, due to the lifting restriction of the idempotents, the reciprocal implication
cannot happen in all generality or, in other words, there is an SDT ring that is not semi-tripotent.

Our first intriguing query is related to the study in-depth of a generalized version of the SDT rings
like this, which presents a more general setting of the semi-n-potent rings as defined in [10].

Problem 1. Describe those rings R, naming them strongly ∆ n-potent, whose elements are a sum
of a n-potent element in R (i.e., an element a ∈ R such that an = a for some n ∈ N) and an element
from ∆(R) that commute with each other.

On the other side, in conjunction with [19], we close our work with the following interesting question.

Problem 2. Characterize those rings R, calling them C∆ rings, whose elements are a sum of an
element from the center Z(R) and from ∆(R).
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The study of classes of first-order countable language models and their properties is an important direction
in model theory. Of particular interest are axiomatizable classes of models (varieties, quasivarieties, finitely
axiomatizable classes, Jonssonian classes, etc.). In this paper we present the results obtained on the prop-
erties of formula-definable classes of models and formula-definable semigroups of elementary types, namely,
we study the properties of semigroups of elementary types of models in a first-order language. We consider
products of elementary types which form a commutative semigroup with unit. A two-place relation of ab-
sorption of one elementary type by another is introduced, which allows us to distinguish formula-definable
semigroups of elementary types and corresponding classes of models. On the basis of the axiomatizabil-
ity property of formula-definite semigroups of elementary types, their connection with ultraproducts and
infinite products is established. Examples of idempotently formula-definite and non-idempotently formula-
definite semigroups are given, and their peculiarities are discussed. The paper demonstrates both the study
of semigroups of elementary types and the study of properties of formula-definite classes of models.

Keywords: idempotent, axiomatizable class, formula-definable semigroups, properties of semigroups, model
companion, formula-definable model, elementary types of model classes, non-formula-definable model classes,
countable signature.

2020 Mathematics Subject Classification: 03C30, 03C45, 03C50, 03C52.

Introduction

On the set of elementary types of a countable signature σ of the first-order language L, the product
of elementary types is considered. This forms a commutative semigroup with an identity element.
Certain properties of subsemigroups of the semigroup of elementary types are established. Within this
semigroup, a binary relation of absorption of one elementary type by another is studied. This allows for
the identification of formula-definable semigroups of elementary types and formula-definable classes of
models. Several properties of formula-definable semigroups of elementary types and formula-definable
classes of models are proven.

1 Definitions and preliminary results

Let L be a language of countable signature σ of first order. For any model A of the language L, let
Th(A) denote the set of all sentences (closed formulas) of the language L that are true in the model
A. The theory Th(A) is called the elementary type of the model A.

An arbitrary (abstract) class of all models of the counting signature σ of the first-order language L is
divided into classes by the relation of elementary equivalence of models (classification of A. Tarski [1,2]).
This results in a set of classes (elementary types).
∗Corresponding author. E-mail: kasatova_aida@mail.ru
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The cardinality of the set ThL, consisting of all elementary types of the countable signature σ in
L, does not exceed 2ω. In what follows, T denotes the elementary type of a model.

Historically, within the class of all models of the language L, greatest research interest has been
focused on axiomatizable subclasses of models defined by certain theories: varieties, quasivarieties,
finitely axiomatizable classes, Jonsson classes, etc.

The symbol ∗ indicates a known result, with references provided.

Theorem 1. * [1] Filtered and direct products of models preserve elementary equivalence.

Definition 1. The product of the elementary types T1 of model A and T2 of model B is defined
as T1 · T2 = Th(A × B), where A × B is the Cartesian product of models A and B. Analogously,
infinite products of theories

∏
i∈I Ti, ultrapowers

∏
i∈I Ti/D, ultraproducts T I/D with ultrafilters D,

and filtered products of theories are defined.

Proposition 1. Definition 1 is well-defined.
Proof. It follows from Theorem 1*.

The algebra 〈ThL, ·〉 is a commutative semigroup with an identity element.
If K is some class of models of the language L, then the set of elementary types of all models in

the class K is denoted by ThK and is called the set of elementary types of the class K. If H is a set
of elementary types of theories in L, then KH is the class of all models of all elementary types in H.

Examples of subsemigroups of 〈ThL, ·〉 with specific properties are studied in various articles, books,
and monographs: semigroups of elementary types of models of Horn classes, varieties, and quasivari-
eties [1, 2]. J. Wierzejewski [3] proved that the set of stable (superstable, ω-stable) elementary types
of models forms a semigroup of stable (superstable, ω-stable) types under the product. M.V. Shvidef-
ski [4] explored the complexity of the lattice of subsemigroups of the semigroup of elementary types.
D.E. Palchunov [5] studied the semigroup of elementary types of Boolean algebras.

Later in the text, in the class of all models of the language L, a binary relation of one model
absorbing another is defined.

Definition 2. A model A absorbs a model B, if Th(A × B) = Th(A), where A × B is the direct
product of models.

Then the definitions are given and the following statements are obtained, which immediately follow
from the corresponding theorems with the sign *.

Definition 3. We say that an elementary type T2 absorbs an elementary type T1, denoted T1 ≤ T2,
if T1 · T2 = T2. An elementary type T is called idempotent, if T · T = T . A model A is called an
idempotent model, if Th(A×A) = Th(A).

Model B absorbs model A, if Th(A) ≤ Th(B).
The absorption relation on the set ThL is antisymmetric and transitive.

Definition 4. A set H of elementary types of models in the language L is called an axiomatizable
set of elementary types if the class KH , consisting of all models of all elementary types in H, forms an
axiomatizable class.

Not every set of elementary types is axiomatizable.
The problem of axiomatizability of model classes is one of the central questions in model

theory [1, 2, 5].

Theorem 2. * (J. Keisler [1]) A class of models is axiomatizable, if and only if it is closed under
ultraproducts and elementary equivalence.

Proposition 2. A set H of elementary types is axiomatizable, if and only if H is closed under
ultraproducts.
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Proof. Follows from Theorem 2*.

Theorem 3. * [1] For any two sets of models {Ai | i ∈ I}, {Bi | i ∈ I}, and any ultrafilter D on I,
the following holds:

∏
i∈I

(Ai ×Bi)/D ∼=
∏
i∈I

Ai/D ×
∏
i∈I

Bi/D.

Proposition 3. For any two sets of elementary types {Ti | i ∈ I}, {T ′i | i ∈ I}, and any ultrafilter D
on I, the following holds:

∏
i∈I

(Ti · T ′i )/D =
∏
i∈I

Ti/D ×
∏
i∈I

T ′i/D.

Proof. Follows from Definition 1 of the ultraproduct of elementary types and Theorem 3*.

Theorem 4. [1] For any model A and any ultrafilter D, the following holds: A ≡ AI/D.

Proposition 4. For any elementary type T and any ultrafilter D, the following holds: T = T I/D.

Proof. Follows from Definition 1 of the ultrapower of elementary types and Theorem 4*.

Theorem 5. * Let A, B, and C be models of the language L. If A×B × C ≡ A, then A×B ≡ A
(≡ denotes elementary equivalence of models).

Proposition 5. Let T1 , T2 , T3 be elementary types. If T1 · T2 · T3 = T3 , then T1 · T3 = T3.

Proof. Follows from Definition 1 of the product of elementary types and Theorem 5*.

The main focus of the above results is the transition from studying the properties of model classes
to examining the properties of sets of elementary types of these classes. This enables consideration of
the semigroup 〈ThL, ·〉 and the properties of its subsemigroups. That is, it allows us to discover new
properties of model classes using the direct product operation for models.

Studies on axiomatizable classes of models closed with respect to direct products are available in
textbooks and articles of many authors. However, the problem of characterizations of axiomatizable
classes closed with respect to direct products is still open [6–8].

2 Formula-definable semigroups of elementary types

This section presents results related to formula-definable semigroups of elementary types and
formula-definable model classes.

Definition 5. [8, 9] A set of elementary types H of a signature is called a formula-definable set of
elementary types if there exists an elementary type T such that for any elementary type T1, holds
T1 ∈ H if and only if T1 · T = T . In this case, the elementary type T is called the determinant of
the set H. If the determinant of H is idempotent, H is called an idempotent formula-definable set of
elementary types.

Definition 6. A class of models K is called a formula-definable model class if ThK is a formula-
definable set of elementary types. If ThK is an idempotent formula-definable set of elementary types,
K is called an idempotent formula-definable model class. The model of the determinant of the set ThK
is called the determinant of the class K [10].
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Examples:
1. The class of models with a single equivalence relation is formula-definable. The determinant

of this class of models is a model with an infinite number of equivalence classes, each of which is
infinite [11].

2. The set of all ω-stable, the set of all superstable and the set of all stable elementary types, these
sets are not formula-definite sets of elementary types.

Example 1 is fairly self-explanatory.
Explanation of Example 2:
From an example provided in [3], there exists an unstable elementary type T such that T · T is

ω-stable. If the set of all ω-stable types were formula-definable, i.e., defined by some elementary type
T1, it would follow that T ·T ·T1 = T1. Then, by Proposition 5, T ·T1 = T1. Hence, the set of all ω-stable
elementary types is not formula-definable. The same reasoning applies to the sets of superstable and
stable types.

By analogy, this is true for the set of all superstable and the set of all stable elementary types.

Theorem 6. If a set of elementary types H is closed under direct products, then there exists an
idempotent T such that for any T1 ∈ H, holds T1 · T = T .

Proof. Since H is closed under infinite products and the cardinality of elementary types is at most
2ω, there exists an elementary type T in H such that the product of all types in H equals elementary
type T . Applying Proposition 5, we conclude that for any T1 ∈ H, holds T1 · T = T . The type T is
idempotent.

However, the idempotent T obtained in Theorem 6 may not necessarily serve as the determinant
of H.

Thus, a set of elementary types closed under infinite products may not be an idempotent formula-
definable set, even if it is an axiomatizable set. Examples of such sets of elementary types can be found
among quasivarieties. We will provide such an example later.

Theorem 7. * (J. Keisler [1]) By any proposition ϕ one can efficiently find a number n such that
for any index set I and any models Ai , i ∈ I, there exists a subset J in I that contains at most n
elements, and for any V , J ⊆ V ⊆ I,

∏
i∈V Ai |= ϕ if and only if

∏
i∈I Ai |= ϕ.

Theorem 8. A formula-definable set of elementary types H is closed under ultraproducts, finite,
and infinite direct products of elementary types. That is, H is an axiomatizable set of elementary
types, forms a commutative semigroup with an identity, and the formula-definable class KH of models
is an axiomatizable class.

Proof. Let T1, ..., Tn ∈ H. By definition, H is a formula-definable set, so there exists a type T such
that Ti · T = T , i ≤ n. Since the operation · is commutative and associative, T1 · ... · Tn · T = T , which
implies T1 · ... · Tn ∈ H. Thus, H is closed under finite products.

Let {Ti | i ∈ I, Ti ∈ H} The equality
∏

i∈I Ti · T = T follows from the closedness with respect to
finite products and Theorem 7 *. Therefore, H is closed under infinite products.

Let
∏

i∈I Ti/D be an ultraproduct of elementary types with ultrafilter D, where Ti ∈ H for i ∈ I.
Using Propositions 3 and 4,∏

i∈I
Ti/D · T =

∏
i∈I

Ti/D · T I/D =
∏
i∈I

(Ti · T )/D = T.

Hence, H is closed under ultraproducts, meaning H is an axiomatizable set of elementary types.
Consequently, the formula-definable class of models is axiomatizable class of models.
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Not every axiomatizable class of models is a formula-definable class. For instance, the axiomatizable
class of fields is not a formula-definable class. If it were, the product of fields would have to be a field,
which is not generally true.

Therefore, the set of formula-definable sets of elementary types is a proper subset of the set of all
axiomatizable sets of elementary types.

A formula-definable set of elementary types forms a commutative semigroup with an identity,
referred to as a formula-definable semigroup of elementary types [9]. Each elementary type T defines
a formula-definable set of elementary types GT = {T1 | T1 · T = T, T1 ∈ ThL}. This set GT is
axiomatizable, and the class of models HGT is formula-definable class of models.

Definition 7. If the determinant of a formula-definable semigroup of elementary types is idempotent,
then such a semigroup is called an idempotent formula-definable semigroup of elementary types. The
class of all models of all elementary types in this semigroup is called an idempotent formula-definable
model class.

Not every determinant of a formula-definable semigroup is idempotent. For example, the elementary
theory of a dense order without endpoints defines a formula-definable semigroup of theories but is not
itself idempotent.

Theorem 9. A formula-definable semigroup G of elementary types is an idempotent formula-
definable semigroup, and the class HG of models of this semigroup is an idempotent formula-definable
model class.

Proof. Since G is a formula-definable semigroup, by Theorem 8 it is closed under infinite products.
By Theorem 6, there exists an idempotent T ∈ G such that for any T1 ∈ G, holds T1 · T = T . We
now show that the idempotent T is the determinant of G. Since G is formula-definable, there exists a
determinant TG such that for any elementary type T1 ∈ ThL holds T1 ∈ G if and only if T1 ·TG = TG.
If for some of elementary type T ′ ∈ ThL holds T ′ · T = T , then T ′ · T · TG = TG.

By Proposition 5, T ′ ·TG = TG. Therefore, T ′ ∈ G, meaning G is an idempotent formula-definable
semigroup, and HG is an idempotent formula-definable model class.

Examples of formula-definable and non-formula-definable model classes.
An example of minimal quasivarieties from A.I. Maltsev’s work [2]:
“Consider the signature with two predicate symbols P and Q. The quasivariety K, defined by the

formulas x = y and P (x)→ Q(x), consists of three single-element models U1, U2, U3, having respective
diagrams:

D(U1) = {P (a), Q(a)}, D(U2) = {¬P (a),¬Q(a)}, D(U3) = {¬P (a), Q(a)}.

The model U1 is unitary, the model U2 is absolutely free. The pair U1, U2 forms a minimal quasi-
variety defined by the formulas

x = y, P (x)→ Q(x), Q(x)→ P (x),

while the pair U1, U3 forms a minimal quasivariety defined by the formulas x = y,Q(x), and the
quasivariety K itself is not minima”.

In this example, we can see that the subquasivariety {U1, U2} is not an idempotently formula-
definable class, but the subquasivariety {U1, U3} is an idempotently formula-definable class like the
quasivariety K itself.

That is, we have examples of idempotently formula-definable semigroups of elementary types and
not idempotently formula-definable semigroups of elementary types.
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Each idempotent defines a unique idempotent formula-definable semigroup of theories. And to
each idempotent formula-definable semigroup of elementary types corresponds a unique idempotent
determinant of this semigroup. This semigroup is an axiomatizable set of theories by Theorem 8.

By analogy, this can be said of idempotently formula-definable model classes.
From the previous considerations we see that idempotent formula-definable semigroups of elemen-

tary types differ from semigroups in the classical sense in that they consider infinite products and
Proposition 5 and the idempotent determinant for each idempotent formula-definable semigroup of
elementary types plays the role of a zero element.

Among quasivarieties there are quasivarieties V which are not idempotently formula-definable
classes of models. But:

Theorem 10. If K is a variety of models, then ThK is an idempotent formula-definable semigroup of
elementary types of class K. In other words, any variety of models is an idempotent formula-definable
class.

Proof. This follows from Theorem 6 and the fact that a variety is defined by identities that are
stable under direct products of models.

For example, the set of all elementary types of Boolean algebras, under the product operation, forms
an idempotent formula-definable semigroup. We give examples of formula-definable model classes that
are quasivarieties but are not varieties.

Theorem 11. * [2] The class of semigroups embeddable in groups forms a quasivariety.

Let V be the class of semigroups embeddable in groups. Then, the corresponding set ThV , con-
sisting of all elementary types of semigroups in V , forms a semigroup under the product of elementary
types. Moreover, it is closed under infinite products.

Question: Is the quasivariety of semigroups embeddable in groups an idempotent formula-definable
class?

It is known [2] that for commutative semigroups, the validity of the quasidentity of contraction in
the semigroup

xy = xz → y = z (*)

is sufficient for embedding the semigroup into a group.
Thus, the class of commutative semigroups satisfying the quasidentity forms a quasivariety of

semigroups embeddable in groups. Consequently, the set of all elementary types of such semigroups
forms a semigroup of elementary types.

Theorem 12. Let K be the class of commutative semigroups (with reduction) satisfying the quasi-
dentity (*), and let ThK denote the set of all elementary types of semigroups in K. Then ThK is an
idempotent formula-definable semigroup, andK is an idempotent formula-definable class of semigroups
embeddable in groups.

Proof. Since K, the class of commutative semigroups embeddable in groups, is a quasivariety, ThK
is closed under infinite products. By Theorem 6, there exists an idempotent T such that for any
T1 ∈ ThK holds T1 · T = T . But, since K is defined by the quasidentity (*), this identity is present in
T due to the multiplicative stability of quasidentities under products. Additionally, in any semigroup
true xx = xx→ x = x.

If T ′ is the elementary type of a commutative semigroup that does not satisfy (*), then T ′ ·T 6= T .
Thus, elementary type T serves as the determinant of ThK , making ThK an idempotent formula-
definable semigroup.
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It is clear that in this case, the class K is a quasivariety that is not a variety. Moreover, since in
a semigroup embeddable in a group there can exist only one idempotent, which is the identity, the
semigroup ThK itself is not embeddable in a group.

The following theorem gives a sufficient condition when the formula-definite class will be an induc-
tive class, that is, closed with respect to the union of chains.

Theorem 13. A formula-definite class K of models will be an inductive class, when the determinant
T of the semigroup of elementary types of this class is a ∀∃-elementary type.

Proof. Let M1 ⊆M2 ⊆ ... be a chain of models in K. By Theorem 8, K is an axiomatizable class.
Take any model A of the elementary type T and consider the chain M1 ×A ⊆M2 ×A ⊆ .... Take the
union of this chain. Since T is ∀∃-elementary type, the union of this chain is the model of T . Since K
is a formula-definable, axiomatizable class of models, the union M1 ⊆M2 ⊆ ... is a model in K.

Theorem 14. If G1, G2 are formula-definable semigroups of elementary types, their intersection
G1 ∩G2 is also a formula-definable semigroup of elementary types.

Proof. The intersection G1 ∩ G2 6= �, as G1 and G2 both contain the identity element. G1 ∩ G2

is closed under infinite direct products of theories. By Theorem 8, there exists an idempotent T such
that for any T ′ ∈ G1 ∩ G2 holds T ′ · T = T . It remains to show that the elementary type T is the
determinant of the semigroup G1 ∩ G2. Let T1 and T2 be determinants of the semigroups G1 and
G2, respectively. If for some elementary type TC ∈ ThL, TC · T = T , then T1 · T · TC = T1 and
T2 · T · TC = T2. By Proposition 5, T1 · TC = T1 and T2 · TC = T2. Thus, TC ∈ G1 ∩ G2, that is,
T · TC = T , meaning T is the determinant of the semigroup G1 ∩G2.

This theorem allows us to construct, for any set of elementary types M , a minimal formula-
definable semigroup G such that M ⊆ G, where the model class KG is the minimal formula-definable
class satisfying KM ⊆ KG. The class KG is an axiomatizable class of models.

Conclusion

In this paper we investigated properties of semigroups of elementary types of models in a first-
order language. The formula-definite semigroups of elementary types, their relation to axiomatizable
classes of models and the role of idempotent elements in their structure are considered. The presented
results emphasize the importance of studying semigroups of elementary types for analyzing properties
of classes of models and reveal new approaches to their classification.

The revealed properties of formula-definite and idempotently formula-definite semigroups demon-
strate the potential of using these structures to solve open questions in model theory, such as the
problem of axiomatizability of classes closed with respect to products. The examples given in the
paper illustrate the variety and complexity of such structures.
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Well-posed problems for the Laplace-Beltrami operator on a
stratified set consisting of punctured circles and segments
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The Laplace-Beltrami operator is studied on a stratified set consisting of two punctured circles and an
interval. A complete description of all well-posed boundary value problems for the Laplace-Beltrami op-
erator on such a set is given. In the second part of the paper, a class of self-adjoint well-posed problems
for the Laplace-Beltrami operator on the specified stratified set is identified. The obtained results can
be considered as a generalization of known results on geometric graphs. In particular, the stratified set
under consideration can be interpreted as graphs with loops. Studies on the spectral asymptotics of Sturm-
Liouville operators on plane curves homotopic to a finite interval are also closely related to the present
results paper. Since the punctured circle is diffeomorphic to a finite interval, the spectral methods applied
to differential operators on a finite interval can be modified to study the spectral properties of differential
operators on the punctured circle. The main results of this paper are obtained by modifications of methods
that were previously used in the study of the asymptotic behavior of the eigenvalues of the Sturm-Liouville
operator on a finite interval.

Keywords: graph, Laplace-Beltrami operator, unique solution, punctured circle, inhomogeneous system of
equations, differential operators, eigenvalue, inhomogeneous equation, local coordinate.

2020 Mathematics Subject Classification: 05C07, 05C25, 05C30, 05C17.

1 Stratified set Ω and functions over Ω

We consider the stratified set Ω formed by two punctured circles C1, C2 and interval l = (0, 1) as
well as two points A and B. In this case, Ω is a connected set (Fig. 1), the role of one-dimensional
strata is played by C1, C2, l, and the role of zero-dimensional strata is played by single-point sets {A}
and {B}.

Figure 1. Stratified set Ω on the plane
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The facts given about the stratified set are sufficient for us; more general information about stratified
sets can be found in the works [1, 2]. According to the work [3], a measure Ω is introduced on the set
µ, as well as the corresponding function spaces. According to the specified work [4,5] Ω is represented
as a union of two non-intersecting parts: Ω0 = C1 ∪ l ∪ C2 and ∂Ω0 = {A,B}.

2 Correctly solvable problems for the Laplace-Beltrami operator on a punctured circle C1

For convenience, we assume that the punctured circle C1 is given by equation

C1 = {x1 = (x11, x
2
1) ∈ R2\{(0, 0)} : (x21)

2 + (x11 + 1)2 = 1}.

It is clear that the punctured circle C1 can be defined using one card{
x11 = cos t1 − 1,

x21 = sin t1.

Moreover, the local coordinate t1 runs through the interval (0, 2π). In C1, one can define classes
of functions and the Laplace-Beltrami operator as was done in work [4]. In particular, the Laplace-
Beltrami operator in this case represents the operator of twofold differentiation with respect to the
variable t1, if the function on C1, is represented as a function on the interval (0, 2π). If the function on
C1 is represented as a function of x ∈ C1 then the value of the Laplace-Beltrami operator coincides with
a two-fold tangent derivative. Since the Laplace-Beltrami operator is defined invariantly with respect
to local coordinates, then when solving the corresponding equations, the equation can be solved in
derivative local coordinates. Local coordinates can be chosen at one’s discretion, and then the solution
found in the chosen coordinates must be able to be written in other arbitrary local coordinates. From
the above reasoning, it follows that the statement is true.

Theorem 1. For any numbers a, b and any function f(x), defined on C1 and belonging to L2(C1)
the inhomogeneous equation

(I −∆C1)u(x) = f(x), x ∈ C1 (1)

with conditions at the point A(0, 0)

U0(u) = a1, U1(u) = b1 (2)

has a unique solution u(x) ∈W 2
2 (C1).

Remark 1. If a point P on a circle precedes a point Q on the same circle, we briefly write P ≺ Q.
If points P and Q belong to the same oriented map, then the precedence of one point over another
point of the same map is defined according to the orientation. Therefore, the notion of one-sided limit
lim
P→Q
P≺Q

f(P ) = f(Q− 0) is correctly defined.

In Theorem 1, ∆C1 denotes the Laplace-Beltrami operator on C1. Here, in conditions (1), (2) there
are linear functionals U0(·), U1(·), which are defined in the following way:

U0(u) = lim
x→A
x�A
x∈C1

u(x)− lim
x→A
A�x
x∈C1

u(x),

U1(u) = lim
x→A
x�A
x∈C1

∂u(x)

∂τ
− lim

x→A
A�x
x∈C1

∂u(x)

∂τ
,

where ∂u
∂τ -means the derivative along the tangent to C1 at point x. The proof of Theorem 1 can be

found in the work of [4]. From Theorem 1 and from the results of M. Otelbaev [5–7] the following
theorem follows.
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Theorem 2. (i) For any function f(x), defined on C1 and belonging to L2(C1) the inhomogeneous
equation

(I −∆C1)u(x) = f(x), x ∈ C1,

with conditions

U0(u) =

∫
C1

(I −∆C1)u(x)σ0(x)dlx, U1(u) =

∫
C1

(I −∆C1)u(x)σ1(x)dlx, (3)

has a unique solution u(x) ∈W 2
2 (C1), if σ0, σ1 ∈ L2(C1).

(ii) Let us assume that we add some conditions to the inhomogeneous operator equation (1) with
conditions (2) so that equation (1) for all f ∈ L2(C1) has a unique solution u(x) ∈W 2

2 (C1).
Then the added conditions are equivalent to conditions (3) for some σ0, σ1 ∈ L2(C1).
Proof. Proof of Theorem 2. The first part of Theorem 2 follows directly from Theorem 1 if

a1 =

∫
C1

f(x)σ0(x)dlx, b1 =

∫
C1

f(x)σ1(x)dlx.

Now let us prove the second part of Theorem 2. By assumption, we add some conditions to
equation (1) so that equation (1) for all f ∈ L2(C1) has a unique solution u(x), and

‖u(x)‖L2(C1) ≤M‖f(x)‖L2(C1), (4)

where M does not depend on f .
So there is only one solution u(x), subject to inequality (4). It follows from the embedding theorem

that there exist values of linear functionals U0(u), U1(u). It is easy to understand that linear functionals
U0(·), U1(·) according to inequality (4), are also functionals bounded in L2(C1). Therefore, according
to F. Riesz’s theorem on the general form of a linear continuous functional in space L2(C1) there exist
functions σ0(x), σ1(x) ∈ L2(C1) such that

U0(u) =

∫
C1

f(x)σ0(x)dlx, U1(u) =

∫
C1

f(x)σ1(x)dlx.

Now it remains to replace f(x) with (I − ∆C1)u(x), from which the validity of the second part of
Theorem 3 follows.

3 Well-solved problems for the Laplace-Beltrami operator on a stratified set Ω

In the previous paragraph we wrote out correctly solvable problems for the Laplace-Beltrami op-
erator on a punctured circle C1. In the same way, one can write out all possible correctly solvable
linear problems for the Laplace-Beltrami operator on a punctured circle C2. Note that correctly solv-
able linear problems for the operator of twofold differentiation on the interval l = (0, 1) are well
known to [5–7]. Now, using the above results, we write out all possible correctly solvable linear prob-
lems for the Laplace-Beltrami operator on a stratified set Ω, consisting of C1, C2 and l. In this point,
the punctured circle C1 is defined as follows

C1 = {x1 = (x11, x
2
1) ∈ R2\({0, 0}) : (x11 + 1)2 + (x21)

2 = 1},

where the role of local coordinates is played by the variable t ∈ (0, 2π):{
x11 = cos t− 1,

x21 = sin t.
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The punctured circle C2 is defined as the following set

C2 = {x2 = (x12, x
2
2) ∈ R2\{(1, 0)} : (x12 − 2)2 + (x22)

2 = 1},

where the role of local coordinates is played by the variable τ :

x12 = 2 + cos τ, x22 = sin τ, τ ∈ (π, 3π).

Interval l is defined as the horizontal open segment

l = {x3 = (x13, x
2
3) ∈ R2 : 0 < x13 = S < 1, x23 = 0}.

Here the role of the local coordinate is played by the parameter S, which runs through the interval
(0, 1). An analogue of Theorem 1 can be formulated for a punctured circle C2 and interval l. As a
result, we have the following statement.

Theorem 3. For any numbers a1, b1, a2, b2, a3, b3 and any functions ~F = {f1(x1), f2(x2), f3(s) ∈
L2(Ω)} non-homogeneous system of equations

(I −∆C1)u1(x1) = f1(x1), x1 ∈ C1,

(I −∆C2)u2(x2) = f2(x2), x2 ∈ C2,

u3(s)− u′′3(s) = f3(s), s ∈ (0, 1),

(5)

with conditions
U0(u1) = a1, U1(u1) = b1,

V0(u2) = a2, V1(u2) = b2,

u3(0) = a3, u3(1) = b3

(6)

has a unique solution u = (u1, u2, u3) ∈W 2
2 (Ω).

In Theorem 3 ∆C2 denotes the Laplace-Beltrami operator on C2. Also, linear forms determined by
limiting ratios are designated by V0(·) and V1(·):

V0(u2) = lim
x→B
x�B
x∈C2

u2(x)− lim
x→B
B�x
x∈C2

u2(x),

V1(u2) = lim
x→B
x�B
x∈C2

∂u2(x)

∂τ
− lim

x→B
B�x
x∈C2

∂u2(x)

∂τ
,

where B = (1, 0) and ∂u
∂τ -means the derivative along the tangent to C2 at point x.

Similar results for graphs without loops were studied in [8]. This theorem can be interpreted as
correctly solvable problems for the Laplace-Beltrami operator on graphs with loops. From Theorem 3
and the results [5–7] of the assertion follows.

Theorem 4. (i) For any function ~F = {f1, f2, f3} ∈ L2(Ω) inhomogeneous system of equations (5)
with conditions
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

U0(u1) =
∫
C1

(I −∆C1)u1(x1)σ1(x1)dl1 +
∫
C2

(I −∆C2)u2(x2)ρ1(x2)dl2 +
1∫
0

(u3(s)− u′′3(s))ϕ1(s)ds,

U1(u1) =
∫
C1

(I −∆C1)u1(x1)σ2(x1)dl1 +
∫
C2

(I −∆C2)u2(x2)ρ2(x2)dl2 +
1∫
0

(u3(s)− u′′3(s))ϕ2(s)ds,

V0(u2) =
∫
C1

(I −∆C1)u1(x1)σ3(x1)dl1 +
∫
C2

(I −∆C2)u2(x2)ρ3(x2)dl2 +
1∫
0

(u3(s)− u′′3(s))ϕ3(s)ds,

V1(u2) =
∫
C1

(I −∆C1)u1(x1)σ4(x1)dl1 +
∫
C2

(I −∆C2)u2(x2)ρ4(x2)dl2 +
1∫
0

(u3(s)− u′′3(s))ϕ4(s)ds,

u3(0) =
∫
C1

(I −∆C1)u1(x1)σ5(x1)dl1 +
∫
C2

(I −∆C2)u2(x2)ρ5(x2)dl2 +
1∫
0

(u3(s)− u′′3(s))ϕ5(s)ds,

u3(1) =
∫
C1

(I −∆C1)u1(x1)σ6(x1)dl1 +
∫
C2

(I −∆C2)u2(x2)ρ6(x2)dl2 +
1∫
0

(u3(s)− u′′3(s))ϕ6(s)ds,

(7)
has a unique solution u = {u1, u2, u3 ∈W 2

2 (Ω)}, if

σj ∈ L2(C1), ρj ∈ L2(C2), ϕj ∈ L2(0, 1), j = 1, 2, 3, 4, 5, 6.

(ii) Let us assume that we add some conditions to the inhomogeneous system of equations (5)
with conditions (6) so that equation (5) for all ~F = {f1, f2, f3} ∈ L2(Ω) has a unique solution
u = (u1, u2, u3) ∈W 2

2 (Ω)). Then the added conditions are equivalent to conditions of the form (7)
for some

σj ∈ L2(C1), ρj ∈ L2(C2), ϕj ∈ L2(0, 1), j = 1, 2, 3, 4, 5, 6.

The proof of Theorem 4 repeats the proof of Theorem 2, only the theorem of F. Riesz is used,
which concerns the Hilbert space L2(Ω).

The formulation of correct boundary value problems for the Laplace operator in a punctured ball
was discussed in the works [9–11]. A description of all possible well-defined problems for the Laplace-
Beltrami operator on a punctured sphere can be found [12–14]. Everywhere correctly solvable problems
for differential operators in punctured domains or in domains with cuts can be interpreted as singular
perturbations of regular differential operators. From this point of view, singular differential operators
are studied in the works [15–17], differential operators for the Dirichlet and Neumann problems are
studied in the works [18,19].

4 Examples of well-posed problems on a stratified set

In this section we will give specific examples that follow from the first part of Theorem 4. Let us
recall Lemma 1 from work [4].

Lemma 1. [4] For any smooth 2π-periodic function F̂ (t) the integral identity is valid

t∫
0

F̂ (t)dt =

∫
γ1x

F (ξ1, ξ2)(ξ1dξ2 − ξ2dξ1),

where γ1x positively oriented arc of a punctured circle C1
1 , connecting the dots (0, 0) and

x = (x1, x2) ∈ C1.
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Here the function F (x) for x ∈ C1 is generated by the function F̂ (t) for t ∈ (0, 2π) as follows: first,
we expand F̂ (t) into a trigonometric series

F̂ (t) =
a0
2

+
∞∑
k=1

(ak cos kt+ bk sin kt), t ∈ (0, 2π)

and then according to the formulas x1+1 = cos t, x2 = sin t we move from t to variables (x1, x2) = x ∈ C1

F (x) =
a0
2

+
∞∑
k=1

(akTk(x
1 + 1) + bkx

2Uk−1(x
1 + 1)),

where Tk and Uk−1 Chebyshev polynomials of the first and second kind, respectively. Similarly, the

integral
τ∫
0

σ̂(τ)dτ at τ ∈ (π, 3π) we can rewrite it through the integral

∫
γ2x

σ(ξ1, ξ2)(ξ1dξ2 − ξ2dξ1),

where γ2x positively oriented arc pierced circle C2, connecting points (−1, 0) and x = (x1, x2) ∈ C2.
Here also σ(x) for x ∈ C2 is generated by the function σ̂(τ) for τ ∈ (π, 3π) as follows:

First, we expand σ̂(τ) for τ ∈ (π, 3π) into a trigonometric series

σ̂(τ) =
c0
2

+
∞∑
k=1

(ck cos kτ + dk sin kτ), τ ∈ (π, 3π),

and then according to the formulas x1 − 2 = cos τ, x2 = sin τ we move from the parameter τ to the
variables (x1, x2) = x ∈ C2

σ(x) =
c0
2

+
∞∑
k=1

(ckTk(x
1 − 2) + dkx

2Uk−1(x
1 − 2)).

In conditions (7) the integrals
∫
C1

f1(x1)σ1x1dl1 and
∫
C2

f2(x2)σ2x2dl2. These integrals can be rewritten

in terms of local coordinates t and τ , respectively:

∫
C1

f1(x1)σ1(x1)dl1 =

2π∫
0

f1(cos t− 1, sin t)σ1(cos t− 1, sin t)dt =

2π∫
0

f̂1(t)σ̂1(t)dt,

∫
C2

f2(x2)σ2(x2)dl2 =

3π∫
π

f2(2 + cos τ, sin τ)σ2(2 + cos τ, sin τ)dτ =

3π∫
π

f̂2(τ)σ̂2(τ)dτ.

Now we are ready to rewrite the integral
∫
C1

(I −∆C1)u1(x1)σ1(x1)dl1 in a form convenient for us

∫
C1

(I −∆C1)u1(x1)σ1(x1)dl1 =

∫
C1

f1(x1)σ1(x1)dl1 =

2π∫
0

f̂1(t)σ̂1(t)dt =

2π∫
0

(
û1(t)− û′′1(t)

)
σ̂1(t)dt.
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We apply the integration by parts to the last integral, assuming that σ̂1(t) is twice continuously
differentiable function. As a result, we have

2π∫
0

(
û1(t)− û′′1(t)

)
σ̂1(t)dt =

2π∫
0

û1(t)
(
σ̂1(t)− σ̂′′1(t)

)
dt− û′1(t)σ̂1(t)

∣∣∣t=2π

t=0
+ û1(t)σ̂′1(t)

∣∣∣t=2π

t=0
=

=

2π∫
0

û1(t)
(
σ̂1(t)− σ̂′′1(t)

)
dt−û′(2π−0)σ̂1(2π − 0)+û1(2π−0)σ̂′(2π − 0)+û′1(+0)σ̂1(+0)−û1(+0)σ̂′1(+0).

Now, as a result of the change of variables from the local coordinate t to the variables (x11, x
2
1) = x, we

have ∫
C1

(I −∆C1)u1(x1)σ1(x1)dl1 =

∫
C1

u1(x1)(I −∆C1)σ1(x1)dl1 −−
∂u1
∂τ

(≺ (0, 0)σ1(≺ (0, 0))+

+ u1(≺ (0, 0))
∂

∂τ
σ1(≺ (0, 0)) +

∂u1(≺ (0, 0))

∂τ
σ1(≺ (0, 0))− u1(≺ (0, 0))

∂σ1
∂τ

(≺ (0, 0)), (8)

where
g(≺ (0, 0)) = lim

x1→(0,0)
x1≺(0,0)
x1∈C1

g(x1), g(� (0, 0)) = lim
x1→(0,0)
x1�(0,0)
x1∈C1

g(x1),

∂g(≺ (0, 0))

∂τ
= lim

x1→(0,0)
x1≺(0,0)
x1∈C1

∂g(x1)

∂τ
,
∂g(� (0, 0))

∂τ
= lim

x1→(0,0)
x1�(0,0)
x1∈C1

∂g(x1)

∂τ
,

where ∂
∂τ is derivative along the tangent to C1 at point x1. In the same way, for any two sufficiently

smooth C2 functions on u2(x2), ρ2(x2) the following identity holds∫
C2

(I −∆C2)u2(x2)ρ2(x2)dl2 =

∫
C2

u2(x2)(I −∆C2)ρ2(x2)dl2−

− ∂u2(≺ (−1, 0))

∂τ
ρ2 ≺ (−1, 0)) + u2(≺ (−1, 0))

∂ρ2(≺ (−1, 0))

∂τ
+ (9)

+
∂u2(� (−1, 0))

∂τ
ρ2(� (−1, 0))− u2(� (−1, 0))

∂ρ2(� (−1, 0))

∂τ
,

where ∂
∂τ is derivative along the tangent to C2 at the point x2. The given auxiliary statements

allow us to obtain consequences of Theorem 4. Now we will specify the choice of boundary functions
σj(x1), ρj(x2), ϕj(x3) for j = 1, 2, 3, 4, 5, 6 from Theorem 4. Let for j = 1, 2, 3, 4, 5, 6 the functions
σj(x1), ρj(x2), ϕj(x3) be chosen so that

(I −∆C1)σj(x1) = 0, x1 ∈ C1,

(I −∆C2)ρj(x2) = 0, x2 ∈ C2,

ϕj(s)− ϕ′′j (s) = 0, s ∈ (0, 1).
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Then, from relations (8) and (9) we have∫
C1

(I −∆C1)u1(x1)σj(x1)dl1 = −∂u1(≺ (0, 0))

∂τ
σj(≺ (0, 0))+

+u1

(
≺ (0, 0)

)∂σj(≺ (0, 0))

∂τ
+
∂u1(� (0, 0))

∂τ
σj(� (0, 0))− u1(� (0, 0))

∂σj(� (0, 0))

∂τ
,

∫
C2

(I −∆C2)u2(x2)ρj(x2)dl1 = −∂u2(≺ (−1, 0))

∂τ
ρj(≺ (−1, 0))+

+u2

(
≺ (−1, 0)

)∂ρj(≺ (−1, 0))

∂τ
+
∂u2(� (−1, 0))

∂τ
ρj(� (−1, 0))− u2(� (−1, 0))

∂ρj(� (−1, 0))

∂τ
,

1∫
0

(u3(s)− u′′3(s))ϕj(s)ds = −du3(1− 0)

ds
ϕj(1− 0) + u3(1− 0)

dϕj(1− 0)

ds
+

du3(+0)

ds
ϕj(+0)− u3(+0)

dϕj(+0)

ds
.

Thus, the boundary conditions (7) from Theorem 4 take the form for j = 1, 2, 3, 4, 5, 6

Uj = σ̂j(+0)
[
û′1(+0)− cosh 2π û′1(2π − 0) + sinh 2π û′1(2π − 0)

]
+

+σ̂j
′(+0)

[
cosh 2πû′1(2π − 0)− sinh 2π û′1(2π − 0)− û′1(+0)

]
+

+ρ̂j(π + 0)
[
û′2(π + 0)− cosh 2π û′2(3π − 0) + sinh 2π û′2(3π − 0)

]
+

+ ρ̂j
′(π + 0)

[
cosh 2πû′2(3π − 0)− sinh 2π û′1(3π − 0)− û′2(π + 0)

]
+ (10)

+ϕj(+0)
[
u′3(+0) +

cosh 1

sinh 1
u3(0)− 1

sinh 1
u3(1− 0)

]
+

+ϕj(1− 0)
[cosh 1

sinh 1
u3(1− 0)− u′3(1− 0)− 1

sinh 1
u3(+0)

]
,

where
U1(u1) = û1(+0)− û1(2π − 0), U2(u1) = û′1(+0)− û′1(2π − 0),

U3(u2) = û2(π + 0)− û2(3π − 0), U4(u2) = û′2(π + 0)− û′2(3π − 0),

U5(u3) = u3(+0), U6(u3) = u3(1− 0).

5 Self-adjoint well-solved problems

In the previous paragraph, examples of correctly solvable problems that are set using boundary
conditions. Now we will select from them those problems that are self-adjoint. Correctly-solvable
problems correspond to operators whose resolvent sets contain λ = 0. At the same time, self-adjoint
well-solvable problems correspond to operators whose eigenvalues provide nonzero real numbers. Thus,
in this section, such well-solvable problems are distinguished whose spectrum is discrete and consists
of nonzero real eigenvalues. Recall that for any two sufficiently smooth functions u1(x1), u2(x2), u3(s)
and ϑ1(x1), ϑ2(x2), ϑ3(s) the identity holds

∫
C1

(I −∆C1)u1(x1)ϑ1(x1)dl1 +

∫
C2

(I −∆C2)u2(x2)ϑ2(x2)dl2 +

1∫
0

(u3(s)− u′′3(s))ϑ3(s)ds =
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=

∫
C1

u1(x1)(I −∆C1)ϑ1(x1)dl1 +

∫
C2

u2(x2)(I −∆C2)ϑ2(x2)dl2 +

1∫
0

u3(s)(ϑ3(s)− ϑ′′3(s))ds+

+(û′1(+0)− û′1(2π − 0))ϑ̂1(2π − 0) + û′1(+0)(ϑ̂1(+0)− ϑ̂1(2π − 0))−

−(û1(+0)− û1(2π − 0))ϑ̂′1(2π − 0) + û1(+0)(ϑ̂′1(2π − 0)− ϑ̂′1(+0))+

+ (û′2(π + 0)− û′2(3π − 0))ϑ̂2(3π − 0) + û′2(π + 0)(ϑ̂2(π + 0)− ϑ̂2(3π − 0))− (11)

−(û2(π + 0)− û2(3π − 0))ϑ̂′2(3π − 0) + û2(π + 0)(ϑ̂′2(3π − 0)− ϑ̂′2(π + 0))−

−u′3(1− 0)ϑ3(1− 0) + u′3(+0)ϑ3(+0) + u3(1− 0)ϑ′3(1− 0)− u3(+0)ϑ′3(+0),

where û1(t) = u1(cos t− 1, sin t) for t ∈ (0, 2π), û2(τ) = u2(2 + cos τ, sin τ) for τ ∈ (π, 3π).
Let D denote the set of functions u1(x1), u2(x2), u3(s) such that

(I) u1(x1) ∈W 2
2 (C1), u2(x2) ∈W 2

2 (C2), u3(s) ∈W 2
2 (0, 1).

Let us also introduce the set D0, consisting of functions u1(x1), u2(x2), u3(s) ∈ D such that
(II) û′1(+0) = û′1(2π − 0), û′1(+0) = 0, û1(+0) = û1(2π − 0), û1(+0) = 0,

û′2(π + 0) = û′2(3π − 0), û′2(π + 0) = 0, û2(π + 0) = û2(3π − 0), û2(π + 0) = 0,
u3(+0) = 0, u′3(+0) = 0, u3(1− 0) = 0, u′3(1− 0) = 0.
Let us introduce the operator L on D using the formula

L = (u1(x1), u2(x2), u3(s)) = ((I −∆C1)u1(x1), (I −∆C2)u2(x2), (u3(s)− u′′s(s))).

Let us denote by L0 the restriction of the operator L on D0. The operator L0 is Hermitian and
following the scheme from § 17 of the monograph [20] we write all possible self-adjoint extensions of
the operator L0. To do this, we need some properties of the operator L0.

Lemma 2. Let (f1(x1), f2(x2), f3(s)) ∈ L2(Ω). Equation

L0 = (u1(x1), u2(x2), u3(s)) = (f1(x1), f2(x2), f3(s))

has a solution if and only if (f1(x1), f2(x2), f3(s)) orthogonal to all solutions of the homogeneous system

(I −∆C1)ω1(x1) = 0, (I −∆C2)ω2(x2) = 0, ω3(s)− ω′′3(s) = 0. (12)

Proof. Let us denote by (u1(x1), u2(x2), u3(s)) the solution of the system

(I −∆C1)u1(x1) = f1(x1), (I −∆C2)u2(x2) = f2(x2), u3(s)− u′′3(s) = f3(s),

satisfying the condition
û′1(+0) = û′1(2π − 0), û1(+0) = û1(2π − 0),

û′2(π + 0) = û′2(3π − 0), û2(π + 0) = û2(3π − 0), u3(+0) = 0, u3(1− 0) = 0.

From the results of the work [4] it follows that there is a unique solution (u1(x1), u2(x2), u3(s)) to the
indicated problem. In the work [4] the eigenvalues of the given problem are calculated and it is shown
that there is no zero among the eigenvalues. For the found solution (u1(x1), u2(x2), u3(s)) identity (11)
will take the form ∫

C1

f1(x1)ϑ1(x1)dl1 +

∫
C2

f2(x2)ϑ2(x2)dl2 +

1∫
0

f3(s)ϑ3(s)ds =
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=

∫
C1

u1(x1)(I −∆C1)ϑ1(x1)dl1 +

∫
C2

u2(x2)(I −∆C2)ϑ2(x2)dl2 +

1∫
0

u3(s)(ϑ3(s)− ϑ′′3(s))ds+

+ û′1(+0)ϑ̂1(+0)− ϑ̂1(2π − 0)) + û1(+0)(ϑ̂′1(2π − 0)− ϑ̂′1(+0))+ (13)

+û′2(π + 0)(ϑ̂2(π + 0)− ϑ̂2(3π − 0)) + +û2(π + 0)(ϑ̂′2(3π − 0)− ϑ̂′2(π − 0))−

−û′3(1− 0)ϑ3(1− 0) + û′3(+0)(ϑ3)(+0).

Now let’s choose V1 = (ϑ11(x1), ϑ12(x2), ϑ13(s)) so that the homogeneous equations (12) and addi-
tional conditions are satisfied

ϑ̂11(+0)− ϑ̂11(2π − 0) = 1, ϑ̂′11(2π − 0)− ϑ̂′11(+0) = 0,

ϑ̂12(π + 0)− ϑ̂12(3π − 0) = 0, ϑ̂′12(3π − 0)− ϑ̂′12(π + 0) = 0,

ϑ13(1− 0) = 0, ϑ13(+0) = 0.

In fact, ϑ13(s) ≡ 0, ϑ12(x2) ≡ 0, ϑ̂11(t) = e2π−t−et
2(e2π−1) . In this case, from relation (13) it follows∫

C1

f1(x1)ϑ11(x1)dl1 = û′1(+0). (14)

By choosing V2 = (V21(x1), V22(x2), V23(s)) in a reasonable way, we can obtain the relation∫
C1

f1(x1)ϑ21(x1)dl1 = û1(+0). (15)

Reasoning in the same way as in the monograph [20], we obtain the relations∫
C2

f2(x2)ϑ32(x2)dl2 = û′2(+0), (16)

∫
C2

f2(x2)ϑ42(x2)dl2 = û2(π + 0), (17)

1∫
0

f3(s)ϑ53(s)ds = −u′3(1− 0), (18)

1∫
0

f3(s)ϑ63(s)ds = u′3(+0). (19)

From relations (14)–(19) the assertion of Lemma 1 follows.

We will also need the following assertion.
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Lemma 3. Whatever the numbers

α1, α2, α3, α4, α5, α6, β1, β2, β3, β4, β5, β6

there exists a function (u1(x1), u2(x2), u3(s)) ∈ D, satisfying the conditions

û′1(+0)− û1(2π − 0) = α1, û
′
1(+0) = β1,

û′1(2π − 0)− û′1(+0) = α2, û1(+0) = β2,

û2(π + 0)− û2(3π − 0) = α3, û
′
2(π + 0) = β3,

û′2(3π − 0)− û′2(π + 0) = α4, û2(π + 0) = β4,

u3(1− 0) = α5, −u′3(1− 0) = β5

u3(+0) = α6, u
′
3(+0) = β6.

Proof. The proof of Lemma 2 repeats the reasoning that was used in the proof of Lemma 2 § 17 of
the monographs [20]. Now we can formulate the main result of this section, since the construction of
§ 17 of the monograph [20] in our case is carried out automatically.

Theorem 5. Every self-adjoint correctly solvable extension Lu of the operator L0 is determined by
boundary conditions of the form (10), and

(σ̂′j(2π − 0)− σ̂′j(+0))(σ̂k(2π − 0)− δk2) + (σ̂′j(+0) + δj1)(σ̂j(+0)− σ̂k(2π − 0))−

−(σ̂′j(+0)− σ̂′j(2π − 0))(σ̂k(2π − 0)− δk1) + (σ̂′j(+0) + δj2)(σ̂′j(2π − 0)− σ̂′k(+0))−

− (ρ̂′j(3π − 0)− ρ̂′j(π + 0))(ρ̂k(3π − 0)− δk4) + (ρ̂′j(+0) + δj3)(ρ̂j(π + 0)− ρ̂k(3π − 0))− (20)

−(ρ̂′j(π − 0)− ρ̂′j(3π + 0))(ρ̂k(3π − 0)− δk3) + (ρ̂′j(π + 0)− δj4)(ρ̂′j(3π − 0)− ρ̂′k(π − 0))−

−(ϕ′j(1− 0)− δj6)(ϕ1(1− 0)) + (ϕ′j(+0) + δj5)(ϕk(+0))+

+(ϕj(1− 0))(ϕ′j(1− 0)− δk6)− ϕj(+0)(ϕ′k(+0) + δk5) = 0.

Proof. Let us consider a well-posed problem defined by conditions (10). For convenience, we rewrite
conditions (10) as

−(σ̂′j(2π − 0) + δj1)(û1(+0)− û1(2π − 0)) + (σ̂j(2π − 0)− δj2)(û′1(+0)− û′1(2π − 0))−

−(ρ̂′j(3π − 0) + δj3)(û2(π + 0)− û2(3π − 0)) + (ρ̂j(3π − 0)− δj4)(û′2(π + 0)− û′2(3π − 0))−

−(ϕ̂′j(+0) + δj5)u3(+0) + (ϕ̂′j(1− 0)− δj6)u3(1− 0)+

+(σ̂j(+0)− σ̂j(2π − 0))û′1(+0) + (σ̂′j(2π − 0)− σ̂′j(+0))û1(+0)+

+(ρ̂j(π + 0)− ρ̂j(3π − 0))û′2(π + 0) + (ρ̂′j(3π − 0)− ρ̂′j(π + 0))û2(π + 0)+

+ϕj(+0)u′3(+0)− ϕj(1− 0)u′3(1− 0) = 0, j = 1, 2, 3, 4, 5, 6.

Let us introduce for j = 1, 2, 3, 4, 5, 6 a function ϑj1(x1), ϑj2(x2), ϑj3(s) such that

ϑ̂j1(2π − 0) = σ̂j(2π − 0)− δj2, ϑ̂j1(+0)− ϑ̂j1(2π − 0) = σ̂j(+0)− σ̂j(2π − 0),

ϑ̂′j1(2π − 0) = σ̂′j(2π − 0) + δj1, ϑ̂
′
j1(2π − 0)− ϑ̂′j1(+0) = σ̂′j(2π − 0)− σ̂′j(+0),

160 Bulletin of the Karaganda University



Well-posed problems for ...

ϑ̂j2(3π − 0) = ρ̂j(3π − 0)− δj4, ϑ̂j2(π + 0)− ϑ̂j2(3π − 0) = ρ̂j(π + 0)− ρ̂j(3π − 0),

ϑ̂′j2(3π − 0) = ρ̂′j(3π − 0) + δj3, ϑ̂
′
j2(3π − 0)− ϑ̂′j2(π + 0) = ρ̂′j(3π − 0)− ρ̂′j(π + 0),

ϑ̂′j3(+0) = ϕ′j(+0) + δj5, ϑj3(1− 0) = ϕj(1− 0),

ϑ̂′j3(1− 0) = ϕ′j(1− 0)− δj6, ϑj3(+0) = ϕj(+0).

According to Lemma 2, such functions exist. In order for conditions (10) to be self-adjoint, according
to theorem 4 from § 18 of the monographs [20], the following requirements must be met for any
j, k = 1, 2, 3, 4, 5, 6 :

∫
C1

(I −∆C1)ϑj1(x1)ϑk1(x1)dl1 +

∫
C2

(I −∆C2)ϑj2(x2)ϑk2(x2)dl2 +

1∫
0

(ϑj3(s)− ϑ′j3(s))ϑk3(s)ds =

=

1∫
0

ϑj3(s)(ϑk3(s)− ϑ′′k3(s))ds+

∫
C1

ϑj1(x1)(I −∆C1)ϑk1(x1)dl1 +

∫
C2

ϑj2(x2)(I −∆C2)ϑk2(x2)dx2.

The above requirements can be written down using the Lagrange identity (11) in the form of the
relation (20).

Conclusion

In this paper, the reasoning refers to a special stratified set Ω. The results presented can be
extended to more complex stratified sets composed of one-dimensional and zero-dimensional manifolds.
In this paper, an important tool is the transition from one-dimensional smooth manifolds defined by
a single chart to intervals. In intervals, the theory of the Sturm-Liouville operator is quite advanced.
Therefore, a reverse transition from the Sturm-Liouville operators on a system of intervals to the
Laplace-Beltrami operators on stratified sets composed of one-dimensional smooth manifolds and zero-
dimensional manifolds is possible.
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The paper investigates a Dirichlet-type boundary value problem for a three-dimensional elliptic equation
with three singular coefficients in the first octant. The uniqueness of the solution within the class of regular
solutions is established using the energy integral method. To prove the existence of a solution, the Hankel
integral transform method is employed. The use of the Hankel transform is particularly appropriate when
the variables in the equation range from zero to infinity. This transform is an effective method for obtaining
solutions to such problems. In three-dimensional space, to derive the image equation, the Hankel integral
transform is applied to the original equation with respect to the variables x and y. As a result, a boundary
value problem for an ordinary differential equation in the variable z arises. By solving this problem, a
solution to the original boundary value problem is constructed in the form of a double improper integral
involving Bessel functions of the first kind and Macdonald functions. To justify the uniform convergence
of the improper integrals, asymptotic estimates of the Bessel functions of the first kind and Macdonald
functions are utilized. Based on these estimates, bounds for the integrands are obtained, which ensure the
convergence of the resulting double improper integral, that is, the solution to the original boundary value
problem and its derivatives up to second order, inclusively, as well as the theorem of existence within the
class of regular solutions.

Keywords: Hankel’s integral transform, Bessel function, modified Bessel function, Macdonald function,
singular coefficient, equation of elliptic type, Bessel operator, first octant.

2020 Mathematics Subject Classification: 35J25.

Introduction. Formulation of the problem

In recent years, interest in degenerate and singular equations has grown significantly, including
equations containing the Bessel differential operator. These equations are often encountered in appli-
cations, for example, in problems with axial symmetry in continuum mechanics. Interest in problems
related to the Bessel operator is also known from fundamental physics. This is due to its numerous
applications in gas dynamics, shell theory, magnetohydrodynamics, and other fields of science and tech-
nology. A special place in the theory of degenerate and singular equations is occupied by equations
containing the Bessel differential operator

Bz
q ≡

d2

dz2
+

2q + 1

z

d

dz
, q > −1/2.

According to the terminology by the Voronezh mathematician Ivan Aleksandrovich Kipriyanov,
equations of three main classes containing the Bessel operator are called B-elliptic, B-hyperbolic, and
B-parabolic, respectively. The monograph [1] studies boundary value problems for B-elliptic equations,
in addition to this, the account of multi-dimension integral Fourier-Bessel-Hankel transformation theory
is given in the monograph. The theory of boundary value problems for the equations with peculiarity
∗Corresponding author. E-mail: mxalimova2112@mail.ru
Received: 14 December 2024; Accepted: 6 June 2025.
c© 2025 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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has been reflected there, while the study of B-hyperbolic equations is presented in the monograph by
A.K. Urinov, S.M. Sitnik and Sh.T. Karimov [2]. A wide range of questions for equations with Bessel
operators was studied by I.A. Kipriyanov [1] and his students [3–5] and others.

In this paper, we study a Dirichlet-type problem for an elliptic equation with Bessel operators. The
solution to the problem under consideration is solved by the Hankel transform method [6–8].

In the domain Ω = {(x, y, z) : x ∈ (0,+∞) , y ∈ (0,+∞) , z = (0,+∞)} , we consider the following
three-dimensional equation with Bessel operators

Lu ≡
(
Bx
α−1/2 +By

β−1/2 +Bz
γ−1/2

)
u (x, y, z) = 0, (1)

where u (x, y, z) is an unknown function, and 0 < α, β, γ < 1/2.
In the domain Ω, equation (1) is of elliptic type. The planes x = 0, y = 0 and z = 0 are the planes

of the singularity of the coefficients of the equation.
In the domain Ω, we consider the following problem for equation (1):
Problem D∞. Find a solution to the equation (1) in the domain Ω, satisfying the conditions

u (x, y, z) ∈ C
(
Ω̄
)
∩ C2,2,2

x,y,z (Ω) , x2αux, y
2βuy, z

2γuz ∈ C
(
Ω̄
)
, (2)

u (0, y, z) = 0, lim
x→+∞

u (x, y, z) = 0, y, z ∈ [0,+∞), (3)

u (x, 0, z) = 0, lim
y→+∞

u (x, y, z) = 0, x, z ∈ [0,+∞), (4)

u (x, y, 0) = f (x, y) , lim
z→+∞

u (x, y, z) = 0, x, y ∈ [0,+∞), (5)

where Ω̄ = {(x, y, z) : x ∈ [0,+∞), y ∈ [0,+∞), z = [0,+∞)} , f (x, y) is a given continuous function,
such that f (0, y) = 0, f (x, 0) = 0, lim

x→+∞
f (x, y) = 0, lim

y→+∞
f (x, y) = 0.

In recent years, there has been a steady increase in interest in studying boundary value problems
for elliptic equations that involve singularities. Examples of such studies can be found in works [9,10],
among others.

In this paper, we study the stated ProblemD∞ using the Hankel transform method. Many problems
in physics, applied mathematics, and mathematical modeling reduce to solving differential, integral,
and integro-differential equations. One of the effective methods for obtaining an analytical solution is
the method of integral transforms. Among all Bessel-type transforms, the Hankel integral transform
is the most thoroughly studied and widely used.

The integral Hankel transform of the order ν of a function is called the integral [6–8]

f̄ (p) =

+∞∫
0

f (t) tJν (pt) dt, ν ≥ −1/2, 0 < p < +∞,

where Jν (z) is the Bessel function of the first kind of order ν [6].
The Hankel transform of a function f (t) is true for any points on the interval (0,+∞) in which

the function f (t) is continuous or piecewise continuous with a finite number of discontinuity points of
the first kind, and

+∞∫
0

|f (t)| t1/2dt < +∞.

The inversion formula of the Hankel transform is determined by the integral

f (t) =

+∞∫
0

f̄ (p) pJν (pt) dp, 0 < t < +∞.
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The function f̄ (p) is often called the Fourier-Bessel-Hankel image [11], and the function f (t) is the
original.

The Hankel transform is advisable to apply, obviously, in the case when the variables in the equation
change from 0 to +∞ .

1 Uniqueness of the solution to the problem D∞

Theorem 1. If there exists solution to Problem D∞, then it is unique.

Proof. Let ProblemD∞ have two solutions u1 (x, y, z) and u2 (x, y, z). Then u (x, y, z) = u1 (x, y, z)−
− u2 (x, y, z) satisfies equation (1) and the homogeneous boundary conditions. We will prove that
u (x, y, z) ≡ 0 in Ω̄. In the domain Ω the identity is valid

x2αy2βz2γuLu =
(
x2αy2βz2γuux

)
x

+
(
x2αy2βz2γuuy

)
y

+
(
x2αy2βz2γuuz

)
z
−

−x2αy2βz2γ
(
u2
x + u2

y + u2
z

)
= 0.

Integrating this identity over the domain

Ωδ2δ4δ6
δ1δ3δ5

= {(x, y, z) : δ1 < x < δ2, δ3 < y < δ4, δ5 < z < δ6} ,

where δj , j = 1, 6 are positive numbers, we have∫∫∫
Ω

δ2δ4δ6
δ1δ3δ5

[(
x2αy2βz2γuux

)
x

+
(
x2αy2βz2γuuy

)
y

+
(
x2αy2βz2γuuz

)
z

]
dxdydz =

=

∫∫∫
Ω

δ2δ4δ6
δ1δ3δ5

[
x2αy2βz2γ

(
u2
x + u2

y + u2
z

)]
dxdydz. (6)

It is obvious that if δ1, δ3, δ5 → 0, δ2, δ4, δ6 → +∞, then Ωδ2δ4δ6
δ1δ3δ5

→ Ω.

Applying the Gauss-Ostrogradsky formula [12] to the left side of equality (6), we have

δ6∫
δ5

δ4∫
δ3

y2βz2γ
[
δ2α

2 u (δ2, y, z)ux (δ2, y, z)− δ2α
1 u (δ1, y, z)ux (δ1, y, z)

]
dydz+

+

δ6∫
δ5

δ2∫
δ1

x2αz2γ
[
δ2β

4 u (x, δ4, z)uy (x, δ4, z)− δ2β
3 u (x, δ3, z)uy (x, δ3, z)

]
dxdz+

+

δ4∫
δ3

δ2∫
δ1

x2αy2β
[
δ6

2γu (x, y, δ6)uz (x, y, δ6)− δ2γ
5 u (x, y, δ5)uz (x, y, δ5)

]
dxdy =

=

∫∫∫
Ω

δ2δ4δ6
δ1δ3δ5

[
x2αy2βz2γ

(
u2
x + u2

y + u2
z

)]
dxdydz.
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Hence, passing to the limit at δ1, δ3, δ5 → 0, δ2, δ4, δ6 → +∞ and taking into account conditions (2),
(3), (4) and (5) (for f (x, y) ≡ 0), from the last equality, we obtain∫∫∫

Ω

[
x2αy2βz2γ

(
u2
x + u2

y + u2
z

)]
dxdydz = 0.

From the last, we have

ux (x, y, z) ≡ uy (x, y, z) ≡ uz (x, y, z) ≡ 0, (x, y, z) ∈ Ω.

Then, u (x, y, z) ≡ const, (x, y, z) ∈ Ω. Since u ∈ C
(
Ω̄
)
and u (0, y, z) ≡ 0, then u (x, y, z) ≡ 0,

(x, y, z) ∈ Ω̄. From this follows the statement of Theorem 1.

2 Existence of the solution to the problem D∞

Let ũ (λ, µ, z) be the Hankel transformation of the unknown function u (x, y, z) with respect to the
variables x and y. Then, by the definition, we have

ũ (λ, µ, z) =

+∞∫
0

+∞∫
0

xy
[
xα−1/2yβ−1/2u (x, y, z)

]
J1/2−α (λx) J1/2−β (µy) dxdy. (7)

Considering inverse thansform, we also have

u (x, y, z) = x1/2−αy1/2−β
+∞∫
0

+∞∫
0

λµũ (λ, µ, z) J1/2−α (λx) J1/2−β (µy) dλdµ.

Based on (7), we introduce the functions

ũε2ε4ε1ε3 (λ, µ, z) =

ε4∫
ε3

ε2∫
ε1

x1/2+αy1/2+βu (x, y, z) J1/2−α (λx) J1/2−β (µy) dxdy, (8)

where εj , j = 1, 4 are positive numbers.
It’s obvious that lim

ε1,ε3→0
ε2,ε4→+∞

ũε2ε4ε1ε3 (λ, µ, z) = ũ (λ, µ, z) .

Using the function (8) and the equation (1), we simplify the expression of Bz
γ−1/2ũ

ε2ε4
ε1ε3 (λ, µ, z) :

Bz
γ−1/2ũ

ε2ε4
ε1ε3 =

ε4∫
ε3

ε2∫
ε1

x1/2+αy1/2+βJ1/2−α (λx) J1/2−β (µy)Bz
γ−1/2u (x, y, z) dxdy =

= −
ε4∫
ε3

ε2∫
ε1

x1/2+αy1/2+βJ1/2−α (λx) J1/2−β (µy)
(
Bx
α−1/2 +By

β−1/2

)
u (x, y, z) dxdy =

= −
ε4∫
ε3

 ε2∫
ε1

x1/2+αJ1/2−α (λx)Bx
α−1/2u (x, y, z) dx

 y1/2+βJ1/2−β (µy) dy−

−
ε2∫
ε1

 ε4∫
ε3

y1/2+βJ1/2−β (µy)By
β−1/2u (x, y, z) dy

x1/2+αJ1/2−α (µx) dx. (9)
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Applying the rule of integration by parts, from (9), we obtain

Bz
γ−1/2ũ

ε2ε4
ε1ε3 (λ, µ, z) = −

ε4∫
ε3

{[
J1/2−α (λx)ux − λJ−1/2−α (λx)u

]
x1/2+α

∣∣∣x=ε2

x=ε1
−

−λ2

ε2∫
ε1

u(x, y, z)x1/2+αJ1/2−α (λx) dx

 y1/2+βJ1/2−β (µy) dy−

−
ε2∫
ε1

{[
J1/2−β (µy)uy − µJ−1/2−β (µy)u

]
y1/2+β

∣∣∣y=ε4

y=ε3
−

−µ2

ε4∫
ε3

u(x, y, z)y1/2+βJ1/2−β (µy) dy

x1/2+αJ1/2−α (λx) dx. (10)

By direct calculation, one can easily verify that the following limits for fixed λ ∈ (0,+∞) and
µ ∈ (0,+∞) , exist and are finite:

lim
x→0

x1/2+αJ−1/2−α (λx) = 21/2+αλ−1/2−α/Γ (1/2− α) , (11)

lim
y→0

y1/2+βJ−1/2−β (µy) = 21/2+βµ−1/2−β/Γ (1/2− β) . (12)

The behavior of the function Jv(x) for sufficiently small and large values of x is described by the
formulas given in [13], respectively:

Jν(x) ≈
x→0

xν

2νΓ(1 + ν)
, Jν(x) ≈

x→+∞

(
2

πx

)1/2

cos
(
x− νπ

2
− π

4

)
. (13)

From the equality (10), passing to the limit at ε1 → 0, ε3 → 0, ε2 → +∞, ε4 → +∞, and taking
the conditions (2), (3), (4) and equalities (11), (12), (13) into account, as well as the notation (7), we
obtain the following equation

ũzz (λ, µ, z) +
2γ

z
ũz (λ, µ, z)− χ2ũ (λ, µ, z) = 0, 0 < λ, µ, z < +∞, (14)

where χ2 = λ2 + µ2.
Moreover, due to the boundary conditions (5), from (7) it follows that the function ũ (λ, µ, z)

satisfies the following boundary conditions:

ũ (λ, µ, 0) = fλµ, lim
z→+∞

ũ (λ, µ, z) = 0, (15)

where

fλµ =

+∞∫
0

+∞∫
0

x1/2+αy1/2+βf (x, y) J1/2−α (λx) J1/2−β (µy) dxdy. (16)

We solve the problem (14), (15). It knows that the general solution of the equation (14) has the form [9]

ũ (λ, µ, z) = c1z
1/2−γI1/2−γ (χz) + c2z

1/2−γK1/2−γ (χz) , z ∈ [0, c], (17)

168 Bulletin of the Karaganda University



Dirichlet type boundary value problem ...

where c1 and c2 are arbitrary constants, Il (x) and Kl (x) are the Bessel function of the imaginary
argument and the Macdonald function of order l [6], respectively.

From the equality (17), based on the asymptotic behavior of the functions Iν (x) and Kν (x) for
sufficiently large x [13], we have

Iν (x) ≈ ex

(2πx)1/2
, Kν (x) ≈

( π
2x

)1/2
e−x,

from which follows that the solution of equation (14) satisfying the second condition (15) is determined
by the equality

ũ (λ, µ, z) = c2z
1/2−γK1/2−γ (χz) . (18)

By the first condition of (15) from (17), we obtain the equality

ũ (λ, µ, 0) = c22−1/2−γχ−1/2+γΓ (1/2− γ) = fλµ,

from which we uniquely find c2 as follows:

c2 = 21/2+γχ1/2−γfλµ/Γ (1/2− γ) .

Substituting the value of c2 into the equality (18), we uniquely find a solution to the problem
(14), (15) in the form

ũ (λ, µ, z) = K̄1/2−γ (χz) fλµ, (19)

where K̄ν(x) = 21−νxνKν(x)/Γ(ν), ν > 0.
The solution of the original problem will be obtained by using the inverse Hankel transform as

follows:

u (x, y, z) =

+∞∫
0

+∞∫
0

λµXλ (x)Qµ (y) ũ (λ, µ, z) dλdµ, (20)

where Xλ(x) = x1/2−αJ1/2−α(λx), Qµ(y) = y1/2−βJ1/2−β(µy), and ũ(λ, µ, z) is determined by the
formula (19) and they are respectively solutions of the following equations:

Bx
α−1/2Xλ (x) = −λ2Xλ (x) , 0 < x < +∞, (21)

By
β−1/2Qµ (y) = −µ2Qµ (y) , 0 < y < +∞, (22)

Bz
γ−1/2ũ (λ, µ, z) = χ2ũ (λ, µ, z) , χ2 = λ2 + µ2, 0 < λ, µ, z < +∞. (23)

If differentiation under the integral sign is possible in (20), then the function u(x, y, z) is a solution to
equation (1). Indeed,

Bx
α−1/2u(x, y, z) +By

β−1/2u(x, y, z) +Bz
γ−1/2u(x, y, z) =

=

+∞∫
0

+∞∫
0

λµ
[
Bx
α−1/2Xλ (x)

]
Qµ (y) ũ (λ, µ, z) dλdµ+

+

+∞∫
0

+∞∫
0

λµXλ (x)
[
By
β−1/2Qµ (y)

]
ũ (λ, µ, z) dλdµ+
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+

+∞∫
0

+∞∫
0

λµXλ (x)Qµ (y)
[
Bz
γ−1/2ũ (λ, µ, z)

]
dλdµ.

Hence, by virtue of (21), (22) and (23), we have

Bx
α−1/2u(x, y, z) +By

β−1/2u(x, y, z) +Bz
γ−1/2u(x, y, z) = 0.

Let us demonstrate that the function (20) satisfies conditions (3) and (4). Using formulas (13), the
functions Xλ (x) and Qµ (y) for small and large argument values, respectively, can be rewritten in the
form [12]

Xλ (x)≈ λ1/2−αx1−2α

21/2−αΓ (3/2− α)
, 0 < x, λ < 1; (24)

Xλ (x)≈x−α
(

2

πλ

)1/2

sin
(
λx+

απ

2

)
, 1 < x, λ < +∞; (25)

Qµ (y)≈ µ1/2−βy1−2β

21/2−βΓ (3/2− β)
, 0 < y, µ < 1;

Qµ (y)≈ y−β
(

2

πµ

)1/2

sin

(
µy +

βπ

2

)
, 0 < y, µ < +∞.

From these equalities, it follows that the function (20) satisfies the conditions (3) and (4).
Now, we prove several lemmas used in establishing the uniform convergence of the double inte-

gral (23).
Lemma 1. If α ∈ (0, 1/2), then, with respect to the functions at Xλ (x) = x1/2−αJ1/2−α (λx) , as

x ∈ [0,+∞), the following estimates hold:

|Xλ (x)| ≤
{
c3x

1−2αλ1/2−α, 0 < x, λ < 1,

c4x
−αλ−1/2, 1 < x, λ < +∞, (26)

∣∣x2αX ′n (x)
∣∣ ≤ { c5λ

1/2−α, 0 < x, λ < 1,

c6λ
1/2xα, 1 < x, λ < +∞, (27)

∣∣∣Bx
α−1/2Xλ (x)

∣∣∣ ≤ { c7x
1−2αλ5/2−α, 0 < x, λ < 1,

c8x
−αλ3/2, 1 < x, λ < +∞, (28)

where cj , j = 3, 8 are positive constants.
Proof. From the equalities (24) and (25), we obtain estimate (26). Next, consider the functions

x2αX ′λ (x) = λx1/2+αJ−1/2−α(λx) and (23). By virtue of the asymptotic formula (13), it is straight-
forward to show that these functions satisfy the estimates (27) and (28), respectively. Lemma 1 has
been proved.

Similarly, the following lemma can be proved.
Lemma 2. If β ∈ (0, 1/2), then with respect to the functions Qµ (y) = y1/2−βJ1/2−β (µy) , at

y ∈ [0,+∞) the following estimates hold:

|Qµ (y)| ≤
{
c9y

1−2βµ1/2−β, 0 < y, µ < 1,

c10y
−βµ−1/2, 1 < y, µ < +∞, (29)

∣∣∣y2βQ′µ (y)
∣∣∣ ≤ { c11µ

1/2−β, 0 < y, µ < 1,

c12µ
1/2yβ, 1 < y, µ < +∞,
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∣∣∣By
β−1/2Qµ (y)

∣∣∣ ≤ { c13y
1−2βµ5/2−β, 0 < y, µ < 1,

c14y
−βµ3/2, 1 < y, µ < +∞,

where cj , j = 9, 14 are positive constants.
Lemma 3. For any λ, µ, z ∈ (0,+∞), the functions ũ(λ, µ, z), defined by equality (19) satisfy the

estimates
|ũ(λ, µ, z)| ≤ |fλµ| ,

∣∣∣Bz
γ−1/2ũ(λ, µ, z)

∣∣∣ ≤ χ2 |fλµ| . (30)

Proof. It is known [9] that if ν = const > 0, then

K̄ν (t) ≤ 1, K̄ν (0) = 1. (31)

From equality (19), according to (31) the first estimate in (30) follows.
As demonstrated earlier, the function ũ (λ, µ, z) satisfies the equation (23). Therefore, by virtue of

the first estimate in (30), the validity of the second estimate in (30) immediately follows. Lemma 3
has been proved.

Lemma 4. Let α, β, γ ∈ (0, 1/2) and the function f (x, y) satisfy the following conditions:
I. f (x, y) ∈ C4,4

x,y

(
Π̄
)
, where Π = {(x, y) : 0 < x < +∞, 0 < y < +∞} ;

II. lim
x→0

(
∂j/∂xj

)
f (x, y) = 0, lim

x→+∞
xα
(
∂j/∂xj

)
f (x, y) = 0, lim

y→0

(
∂j/∂yj

)
f (x, y) = 0,

lim
y→+∞

yβ
(
∂j/∂yj

)
f (x, y) = 0, j = 0, 3.

Then, for the coefficients (16), the following estimate holds:

|fλµ| ≤ c15(λµ)−4, (32)

where c15 is some positive constant.
Proof. The coefficients fλµ, according to formula (16), can be rewritten as

fλµ =

+∞∫
0

y1/2+βJ1/2−β (µy)Fjλ (y) dy, (33)

where

Fλ (y) =

+∞∫
0

x1/2+αJ1/2−α (λx) f (x, y) dx.

First, consider the function Fλ (y) . Using the equalities

x1/2+αJ1/2−α (λx) = − 1

λ

d

dx

[
x1/2+αJ−1/2−α (λx)

]
,

the function Fλ (y) can be represented as

Fλ (y) = − 1

λ

+∞∫
0

d

dx

[
x1/2+αJ−1/2−α (λx)

]
f (x, y) dx.

Applying integration by parts four times to the above integral, we obtain

Fλ (y) = − 1

λ
x1/2+αJ−1/2−α (λx) f (x, y)

∣∣∣∣x=+∞

x=0

+
1

λ2
x1/2+αJ1/2−α (λx) fx (x, y)

∣∣∣∣x=+∞

x=0

+

+
1

λ3
x1/2+αJ−1/2−α (λx)Bx

α−1/2f (x, y)

∣∣∣∣x=+∞

x=0

− 1

λ4
x1/2+αJ1/2−α (λx)

∂

∂x
Bx
α−1/2f (x, y)

∣∣∣∣x=+∞

x=0

+
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+
1

λ4

+∞∫
0

Xλ (x)
∂

∂x
x2α ∂

∂x
Bx
α−1/2f (x, y) dx. (34)

By the conditions of Lemma 4, the boundary terms in (34) vanish. Consequently,

Fλ (y) =
1

λ4

+∞∫
0

Xλ (x)
∂

∂x
x2α ∂

∂x
Bx
α−1/2f (x, y) dx. (35)

Using the decomposition of the operator Bx
α−1/2, it is easy to verify that the functions

∂
∂xx

2α ∂
∂xB

x
α−1/2f (x, y), based on the conditions of Lemma 4, satisfy ∂

∂xx
2α ∂

∂xB
x
α−1/2f (x, y) ∈ C

(
Π̄
)
.

Taking this into account and the fact that Xn (x) ∈ C[0,+∞), we conclude that the integral in (35)
exists and that Fλ (y) ∈ C[0,+∞).

Now, consider the coefficient fλµ, defined by equality (33). Similarly to the previous case, applying
integration by parts four times to the integral in (33), we obtain

fλµ = − 1

µ
y1/2+βJ−1/2−β (µy)Fλ (y)

∣∣∣∣y=+∞

y=0

+
1

µ2
y1/2+βJ1/2−β (µy)F ′λ (y)

∣∣∣∣y=+∞

y=0

+

+
1

µ3
y1/2+βJ−1/2−β (µy)By

β−1/2Fλ (y)

∣∣∣∣y=+∞

y=0

− 1

µ4
y1/2+βJ1/2−β (µy)

∂

∂y
By
β−1/2Fλ (y)

∣∣∣∣y=+∞

y=0

+

+
1

µ4

+∞∫
0

Qµ (y)
∂

∂y
y2β ∂

∂y
By
β−1/2Fλ (y)dy. (36)

Since the integral in (36) converges uniformly with respect to y, all derivatives and operators with
respect to y acting on the functions Fλ (y) can be transferred to the functions f (x, y) . Then, by the
conditions of Lemma 4, the boundary terms in (36) vanish, and therefore

fλµ =
1

µ4

+∞∫
0

Qµ (y)
∂

∂y
y2β ∂

∂y
By
β−1/2Fλ (y) dy.

Hence, taking (36) into account, we have

fλµ =
1

λ4µ4

+∞∫
0

+∞∫
0

Xλ (x)Qµ (y)
∂

∂y
y2β ∂

∂y
By
β−1/2

[
∂

∂x
x2α ∂

∂x
Bx
α−1/2f (x, y)

]
dxdy. (37)

By virtue of the conditions of Lemma 4, the following hold:

∂

∂x
x2α ∂

∂x
Bx
α−1/2f (x, y) ∈ C

(
Π̄
)
,

∂

∂y
y2β ∂

∂y
By
β−1/2f (x, y) ∈ C

(
Π̄
)
,

therefore
∂

∂y
y2β ∂

∂y
By
β−1/2

[
∂

∂x
x2α ∂

∂x
Bx
α−1/2f (x, y)

]
∈ C

(
Π̄
)
.

Taking this into account, along with Xλ (x)Qµ (y) ∈ C
(
Π̄
)
, we conclude that the integrand is con-

tinuous on Π̄, and the multiple integral in (37) exists. These considerations complete the proof of
Lemma 4.
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Based on (32), estimate (30) can be rewritten as

|ũ (λ, µ, z)| ≤ c16(λµ)−4,
∣∣∣Bz

γ−1/2ũ (λ, µ, z)
∣∣∣ ≤ c17(λµ)−2, (38)

where c16 and c17 are positive constants.
Lemma 5. Let α, β, γ ∈ (0, 1/2), and let f(x, y) be a function such that for λ, µ ∈ (0, 1), the

following condition holds:
1∫

0

1∫
0

xyf(x, y)dxdy < +∞,

then the following estimate is valid:

|fλµ| ≤ c18λ
1/2−αµ1/2−β, c18 = const > 0. (39)

Proof. We estimate the coefficient fλµ defined by equality (16). Taking into account that
0 < x, y, λ, µ < 1, and using the asymptotic formulas for Bessel functions for small values of ar-
guments (13), as well as the condition of Lemma 5, we obtain inequality (39).

Taking into account (39) and (31), the function in (19) is estimated in the following form

|ũ(λ, µ, z)| ≤ c19λ
1/2−αµ1/2−β, c19 = const > 0. (40)

Now, let us analyze the function (20), i.e., we find an estimate for the function (20). By virtue of
the estimates (26), (29), (38) and (40), the integral (23) is bounded, respectively, for 0 < x, y, z < 1
and for 1 < x, y, z < +∞ by the following absolutely convergent improper double integrals:

|u (x, y, z)| ≤
+∞∫
0

+∞∫
0

|λµXλ (x)Qµ (y) ũ (λ, µ, z)| dλdµ ≤

≤ c20x
1−2βy1−2β

1∫
0

1∫
0

λ1,5−αµ1,5−βdλdµ, 0 < x, y < 1,

|u (x, y, z)| ≤
+∞∫
0

+∞∫
0

|λµXλ (x)Qµ (y) ũ (λ, µ, z)| dλdµ ≤

≤ c21x
−αy−β

+∞∫
1

+∞∫
1

λ−3,5µ−3,5dλdµ, 1 < x, y < +∞.

Similarly, it can be shown that the integrals x2αux, y
2βuy, z

2γuz, B
x
α−1/2u, B

y
β−1/2u and Bz

γ−1/2u
are bounded by absolutely convergent improper double integrals.

According to Theorem 4 from [14; 233], the double integral in (20) converges uniformly.
Due to the uniform convergence of the double series (20), it can be integrated term by term, and

for each term, the order of integration can be interchanged.
Consequently, the integrand in (20) is continuous, and the double integral in (20) converges uni-

formly for 0 < x, y, z < +∞. Therefore, by Theorem 1 from [14; 231], this integral represents a
continuous function of x, y and z. Hence, u(x, y, z) is a continuous function in its domain of definition.

Based on these statements, the following theorem holds:
Theorem 2. Let α, β, γ ∈ (0, 1/2) and the function f(x, y) satisfy the conditions of Lemma 4 and

Lemma 5. Then the solution of Problem D∞ exists and is given by formula (20).
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Conclusion

In this work, a Dirichlet type boundary value problem for a three-dimensional elliptic equation with
three singular coefficients is formulated and studied. The uniqueness of the solution to the problem
has been proved by the method of energy integrals. The Hankel transform method was used to prove
the existence of solutions. The solution of the original problem was obtained using the inverse Hankel
transform in the form of a two-fold improper integral. Asymptotic methods were used to substantiate
the uniform convergence of improper integrals. The obtained estimate made it possible to prove the
convergence of these improper integrals and its derivatives up to and including the second order.
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 Loś’s theorem states that a first-order formula holds in an ultraproduct of structures if and only if it holds in
“almost all” factors, where “almost all” is understood in terms of a given ultrafilter. This fundamental result
plays a key role in understanding the behavior of first-order properties under ultraproduct constructions.
Pseudofinite structures – those that are elementarily equivalent to ultraproducts of finite models–serve
as an important bridge between the finite and the infinite, allowing the transfer of finite combinatorial
intuition to the study of infinite models. In the context of unary algebras (unars), a classification of
unar theories provides a foundation for analyzing pseudofiniteness within this framework. Based on this
classification, a characterization of pseudofinite unar theories is obtained, along with several necessary and
sufficient conditions for a unar theory to be pseudofinite. Furthermore, various forms of approximation
to unar theories are investigated. These include approximations not only for arbitrary unar theories but
also for the strongly minimal unar theory. Different types of approximating sequences of finite structures
are examined, shedding light on the model-theoretic and algebraic properties of unars and enhancing our
understanding of their finite counterparts.

Keywords: pseudofinite theory, pseudofinite structure, strongly minimal unar, smoothly approximated
structure, unar, Collatz Hypotesis, connected unar, bounded unar, ω-categorical unar.

2020 Mathematics Subject Classification: 03C13, 03C45, 03C52, 03C60.

Introduction

We are dealing with a structure called mono-unary algebra, or unar. Unars have often been studied
in connection with various algebraic structures and branches of mathematics, such as universal algebra
and model theory. Model-theoretic properties of theories formulated in the language of a single unary
function have been studied in a number of works, including [1].

For additional properties, see [2–4]. Besides, unars can be applied in other fields such as computer
science and sometimes engineer, physics and life sciences etc. [5–7]

The paper [8] considers surjective quadratic Jordan algebras, which has connections with problems
of decomposition of algebraic structures, as in [9] which studies an algebraic approaches to binary for-
mulas and compositions of theories. In both cases, the issues of decomposition and model construction
are important.

Pseudofinite structures [10] are a fascinating area of mathematical logic that bridge the gap between
finite and infinite structures. They allow for the study of infinite structures in ways that resemble finite
structures, and they provide a connection to various other concepts in model theory. One of the most
important examples of a pseudofinite structure is the ultraproduct of a sequence of finite structures.
Given a sequence of finite structures (M1,M2,M3, ...), their ultraproduct is an infinite structure that
“approximates” each finite structure in the sequence. In fact, any first-order sentence that is true in
almost all of the finite structures in the sequence (meaning all but a finite number) is true in the
ultraproduct. This ultraproduct is a pseudofinite structure. Sergei Vladimirovich Sudoplatov raised
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a natural question [11, 12] about the types and powers of approximation of the theory. In paper [13],
approximations of acyclic graphs are studied. It is proved that any theory of an acyclic graph (tree)
of finite diameter is pseudofinite with respect to acyclic graphs (trees), that is, any such theory is
approximated by theories of finite structures (acyclic graphs, trees). The works [14,15] are devoted to
the study of ranks, topologies and closures of families of theories, as well as algebras associated with
definable families of theories.

The paper also investigates the smooth approximability of unars. Smoothly approximable struc-
tures were first studied in detail in the works [16, 17]. The model theory of smoothly approximable
structures was significantly advanced by G. Cherlin and E. Hrushovskii. Automorphisms and their
properties are an important aspect of the study of smoothly approximable unary algebras, as shown
in [18,19], which considers the features of automorphisms in more complex algebraic structures.

1 Definitions and Basic Concepts

As usual, we will use the standard terminology. A unar is a structure U = 〈U ; f (1)〉, whose language
consists of one single operation f . For any u ∈ U , let f0(u) = u, fn+1(u) = f(fn(u)) for all n ∈ ω,
f−1(u) = {w ∈ U |f(w) = u}. A unar U is called a cycle of length n ∈ N, if there exists u ∈ U such
as U = {f i(u)|0 ≤ i < n}, fn(u) = u, f i(u) 6= f j(u) for all different i, j ∈ {0, . . . , n − 1}. The set
{ui|i ∈ ω} ⊆ U is called a semichain, if f(ui) = ui+1 and ui 6= uj for all distinct i, j ∈ ω. The set
{ui|i ∈ ω} ⊆ U is called an infinite antichain, if f(ui+1) = ui and ui 6= uj for all distinct i, j ∈ ω. If
|f−1(u)| = k, we say that u is a k-branching point, or k-valence point.

Definition 1. Let X ⊆ U and u, v ∈ U . We say that u, v are connected, if there is n,m ∈ N such
as fn(u) = fm(v). The set X ⊆ U is connected if any two elements of X are connected. A maximal
connected set is called a connected component of U .

Definition 2. A theory T is said to be bounded if there exists a natural number N such that the
following formula is true in T :

(∀u)[
N∨

n,m=1

(fn(u) = fn+m(u))].

Fact. [20] The T is ω-categorical iff
i) T is bounded;
ii) if U |= T , then there are only a finite number of non-isomorphic sets of the form

⋃
n<ω f

−n(u)
in U or equivalently, U realizes a finite number of 1-types.

The root of depth n of an element u is the set Kn(u) = {w ∈ U|∃i ≤ n such that f i(w) = u}. The
root of u is

K(u) =
⋃
i∈ω

Kn(u).

A connected subset of the root Kn(u) that contains u is called a subroot of depth n of the element u.
A set of N -neighborhood of V ⊆ U is the set

{u ∈ U : ∃v ∈ V such that
N∨
n,m

fn(v) = fm(u)}.

The concept of pseudofiniteness was first introduced by J. Ax. A structureM in a fixed language
L is called pseudofinite if it is infinite but satisfies the following property: for every sentence ϕ in L,
ifM satisfies ϕ, then there exists a finite structureM0 that also satisfies ϕ. The theory T = Th(M)
of a pseudofinite structureM is called a pseudofinite theory.
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Ultraproducts have been a powerful tool in model theory since the 1950s and 1960s. They are also
important in set theory because they are used to construct elementary embeddings, which are key to
studying large cardinals. J. Ax linked the idea of pseudofiniteness to ultraproducts, showing how these
constructions can help understand pseudofinite structures.

In classical logic, pseudofinite structures have an interesting property related to definable functions.

Proposition 1. LetM be a pseudofinite structure, and let f : Mk → Mk be a definable function.
Then: f is injective (one-to-one) if and only if f is surjective (onto).

This property is a direct consequence of pseudofiniteness and highlights the “finite-like” behavior
of pseudofinite structures, even though they are infinite.

Definition 3. [12] Let T be a family of theories and T be a theory such that T /∈ T . The theory T
is said to be T -approximated, or approximated by the family T , or a pseudo-T -theory, if for any formula
ϕ ∈ T there exists T ′ ∈ T for which ϕ ∈ T ′.

If the theory T is T -approximated, then T is said to be an approximating family for T , and theories
T ′ ∈ T are said to be approximations for T .

Definition 4. [21] A disjoint union
⊔

n∈ωMn of pairwise disjoint systemsMn of pairwise disjoint
predicate signatures Σn, n ∈ ω, is a system of signature

⋃
n∈ω Σn∪{P (1)

n |n ∈ ω} with support
⊔

n∈ωMn,
Pn = Mn, and interpretations of predicate symbols from Σn that coincide with their interpretations in
systemsMn, n ∈ ω.

A disjoint union of theories Tn, pairwise disjoint predicate signatures Σn, respectively, n ∈ ω, is
the theory ⊔

n∈ω
Tn 
 Th(

⊔
n∈ω
Mn),

whereMn |= Tn, n ∈ ω.
Obviously, the T1 t T2 theory does not depend on the choice of the disjunctive unionM1 tM2 of

the modelsM1 |= T1 andM2 |= T2.

2 Smoothly Approximability of Unars

The study of countably infinite and countably categorical smoothly approximable structures is
relevant in many areas of mathematics, including topology, analysis, and algebra.

A. Lachlan introduced the concept of smoothly approximable structures to shift the focus from
analyzing finite structures to analyzing infinite ones. The idea is to classify large finite structures that
behave as if they are “approximations” to an infinite limit structure. This approach provides a bridge
between finite and infinite model theory.

Definition 5. [16] Let L be a countable signature and let M be a countable and ω-categorical
L-structure. L-structureM (or Th(M)) is said to be smoothly approximable if there is an ascending
chain of finite substructuresM0 ⊆ M1 ⊆ . . . ⊆ M such that

⋃
i∈ωMi =M and for every i, and for

every ā, b̄ ∈ Mi if tpM(ā) = tpM(b̄), then there is an automorphism σ of M such that σ(ā) = b̄ and
σ(Mi) =Mi, or equivalently, if it is the union of an ω-chain of finite homogeneous substructures; or
equivalently, if any sentence in Th(M) is true of some finite homogeneous substructure ofM.

This means thatM can be “approximated” by a sequence of finite substructures that are homoge-
neous in a certain sense.

It is important to note that a finitely homogeneous substructure does not necessarily mean that
the substructure is homogeneous in the usual sense. Instead, it refers to a weaker property related to
the existence of automorphisms preserving the substructure.
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Theorem 1. Any infinite ω-categorical unar U = 〈U, f〉 is smoothly approximable.

Proof. Let U be a countably categorical unar that does not have a ∞-branching point. Since
by [20] in U the set of degrees of points is finite and U is bounded and realizes a finite number of
1-types, i.e., either all connected components are isomorphic, or U consists of a countable number
of copies of non-isomorphic connected components. Each connected component can be considered as
a finite homogeneous substructure. Thus, U can be represented as a union of finite homogeneous
substructures, U =

⋃
i∈ω Ui =

⊔
i∈ω Ui, where Ui are finite homogeneous connected components.

Now U have the connected components with ∞-branching points. Let U \ V is the connected
components with ∞-branching points and V is the union of finite connected components. Then there
are W0,W1, . . . , : |Wi| < ω, W0 ⊂W1 ⊂ . . . , and U \ V =

⊔
i∈ωWi.

3 Pseudofiniteness of Unars

Theorem 2. A theory T of an infinite unar is pseudofinite if and only if any sentence ϕ ∈ T is
consistent with a theory of bounded unar.

Proof. Let T be the theory of pseudofinite unar, and let T ′ be the theory of bounded unar. By the
definition of pseudofiniteness, any sentence ϕ ∈ T has a finite model. Since ϕ∪T ′ is finitely consistent
and, by the compactness theorem, T is consistent with T ′.

To the opposite side. Since any sentence ϕ of a theory T of infinite unar is consistent with a theory
T ′ of bounded unar, any sentence ϕ belongs to T ′. Take ϕ ∈ T ∩ T ′. Again, by compactness, ϕ has a
model that is either finite or infinite. Hence any sentence ϕ of the theory T has a finite model.

The following corollary is a direct consequence of Theorem 2 and summarizes Theorem 1.

Proposition 2. Any theory T of a bounded infinite unar is pseudofinite.

If in U = 〈U, f〉 the unary function f is injective (surjective) then U is an injective (surjective)
unar.

Proposition 3. Any surjective infinite unar is pseudofinite if and only if it is bijective.

Proof. Follows directly from Proposition 1.

Proposition 4. Any injective non-surjective infinite unar is not pseudofinite.

Proof. Let U be an infinite injective unar. The connected components in U can be classified to be
either a copy of 〈N, succ〉, 〈Z, succ〉, or a cycle of period p, where p ∈ N+. We exclude the last two cases
from consideration due to surjectivity. It remains to consider unary U components that isomorphic to
〈N, succ〉. By Proposition 1, U is not pseudofinite, since there exists an element that does not have a
preimage.

Remark 1. There are:
1) surjective pseudofinite and non-pseudofinite infinite unars, e.g., an infinite permutation or

〈Z, succ〉 and, respectively, a function with at least two preimages for every element, or a cycle with
its preimages out of this cycle;

2) injective non-surjective non-pseudofinite unars, e.g., a Peano successor function;
3) non-injective non-surjective pseudofinite and non-pseudofinite unars, e.g., a unar consisting of

an element and its infinitely many preimages, and, respectively, this unar united with a connected
component forming a Peano successor function.

These will be described in more detail in the following sections.
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Remark 2. Consider the unary function

f(x) =

{
x/2, if x is even,
3x+ 1, if x is odd.

Let’s call the structure 〈Z+, f〉 as 3x+ 1-unar or Collatz unar. It is easy to see that any point in
this model is 1-branching or 2-branching. Therefore, the 3x+ 1-unar is not strongly minimal and has
an infinite number of antichains. Moreover, the 3x+ 1-unar is a surjective unar. By Remark 1 is not
pseudofinite.

3.1 Types of Approximations for Families of Theories of Unars

Definition 6. T -approximated theory T is said to be CYCLE-approximated, if T is a family of
theories of finite unars with cycles. Also, the T -approximated theory T is said to be FOREST-
approximated, if T is a family of theories of finite unars without cycles. In particular, if T is a family
of the theory of connected unars, then T is said to be TREE-approximated.

Proposition 5. The theory T of unbounded unar is CYCLE-approximated if and only if each con-
nected component contains a semichain and only one antichain.

Proof. Let Un be a cycle of length n < ω. Increasing the length of the cycle in the limit we obtain
an acyclic unar U =

⊔
n≤i≤ω Ui, which is a copy of 〈Z, succ〉 with a semichain and an antichain. The

proof from right to left is similar to [13; Theorem 2].

Proposition 6. The theory T of unar is FOREST-approximated if and only if T is the theory of
a non-injective and non-surjective bounded unar, each component containing an infinitely branching
point.

Proof. By the definition of a FOREST-approximated theory T , the family T =FOREST consists of
finite acyclic unars. If all connected components are finite, then T is approximated by increasing the
number of connected components. And if there is an ∞-branching point in the components, then T is
approximated by increasing the valency of the root points. It is easy to see that T is a theory of neither
injective nor surjective bounded unar. The proof from right to left is similar to [13; Theorem 4].

3.2 Approximations of Strongly Minimal Unars

The study of uncountable categoricity and ω-stability in certain types of structures is of principal
importance.

Definition 7. A structure M is said to be minimal, if any subset definable in the structure using
parameters is either finite or co-finite (a complement to a finite set). M is said to be strongly minimal,
if any model of Th(M) is minimal.

The notion of strong minimality is important in model theory because it provides a way to classify
theories based on the complexity of their definable sets. Strongly minimal theories have many inter-
esting and useful properties, including simplicity and stability, which make them amenable to study
and applications in other areas of mathematics.

Proposition 7. The theory T = Th(A) of bounded strongly minimal unar A is pseudofinite.

Proof. A bounded strongly minimal unar A can have either one or no ∞-branching point. If
bounded and has ∞-branching point, then A is connected. By Proposition 2. A is pseudofinite and by
Proposition 6 the theory Th(A) is TREE-approximated.
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If bounded and has no ∞-branching point, Then every connected component of A is finite and
all but finitely many connected components are cycles of the same length m. By the classical re-
sults of Zilber and Cherlin, Harrington, Lachlan [22, 23] say that strongly minimal (in fact ω-stable)
ω-categorical theories are pseudofinite.

Proposition 8. There is a theory T of unbounded strongly minimal non-injective non-surjective
pseudofinite unar.

Proposition 9. The theory T = Th(U) of unbounded strongly minimal injective unar U is pseud-
ofinite if and only if U is bijective.

Model-theoretic properties such as definable minimality of unars were studied in [2].

Proposition 10. Let T be the theory of a strongly minimal unar such that each vertex has n
preimages for some natural n. Then the theory T is pseudofinite if and only if n = 1.

3.3 Connected Unars

Theorem 3. [24, 25] Let U be a connected unary without cycles, containing no infinite antichains,
and there exist m ∈ ω and a semichain S ⊆ U such that

1) |f−1(u)| ≤ m for all u ∈ U ;
2) for any n ∈ ω there are u, v, u0 ∈ S, v0 ∈ U , satisfying the following conditions:
a) a = fn(u0), b = fn(v0),

b) b = f2n+k(u) for some k ∈ ω,
c) fn−1(v0) /∈ S,
d) there is a finite partial isomorphism α : U → U such that domα = On(u), rangα ⊆ On(v) and

α(u0) = v0.

Then U is a pseudofinite unar.

In the work [26,27] a study of pseudofinite polygons was started.
The following statements are easily derived from the above results.

Proposition 11. The theory T of connected unar is CYCLE-approximated if and only if it contains
a semichain and only one antichain.

Proposition 12. The theory T of unar is TREE-approximated if and only if T is the theory of a
non-injective and non-surjective bounded unar, containing an infinitely branching point.

Proposition 13. There is an pseudofinite unar that is not CYCLE-approximated and TREE-
approximated.

4 Concluding remarks

On a base of classification of unar theories, a characterization of pseudofiniteness of unar theories
is found, as well as some necessary and sufficient conditions of pseudofiniteness. Approximations of
the theory of unars are shown, as well as for the strongly minimal theory of unars. Various types of
approximation of the unar theory are considered. Unars are special cases of polygons. In the future,
it is planned to study pseudofinite polygons and their approximations.
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This research lies within the domain of model theory, which investigates the properties of, broadly speaking,
incomplete theories. The article introduces novel methods for classifying classes of structures whose associ-
ated theories are Jonssonian, forming a distinct subclass within the broader category of inductive theories.
This subclass is characterized by satisfying the standard model-theoretic properties of joint embedding and
amalgamation. The focus is placed specifically on the second kind of hybrids, those involving theories with
different signatures. As a representative case of such hybrids among Jonsson theories, we examine the
classical examples of the theory of unars and the theory of undirected graphs. The study proposes and
formalizes several new notions, including the perfect Robinson hybrid, the center of a Robinson hybrid, the
Kaiser class of a theory, and the concept of triple factorization. Within the framework of these definitions,
we establish new results, among them a theorem confirming the existence of a unique countably categorical
theory of S-acts, which is syntactically equivalent to the Robinson hybrid formed by the aforementioned
classes.

Keywords: Jonsson theory, Robinson theory, hybrid, perfect Robinson hybrid, similarity, KT -equivalence,
ω-categorical, cosemanticness relation, S-act, triple factorization.
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Introduction

This work is part of the field of model theory, which examines the model-theoretic properties of,
more generally, incomplete theories. It is widely recognized that modern model theory is a fast-evolving
branch of mathematics with numerous significant topics. However, this framework is mainly developed
for and tailored to the analysis of complete theories. The domain of incomplete theories is extensive,
and within it, one can identify the subclass of inductive theories. This classification can be supported
by at least the following reasoning. Specifically, a theory is considered inductive if every increasing
chain of models remains a model of the theory itself. In other words, a theory is inductive when it is
closed under chains of its models. On the other hand, it is a well-known result that such theories can be
axiomatized by universal-existential sentences. It can also be observed that the main classical examples
from algebra correspond to inductive theories. The most characteristic example of an inductive theory
is group theory. Notably, this is also an example of an incomplete theory.

Within inductive theories, one can distinguish the well-studied subclass of Jonsson theories. For
an introduction to this subclass, the reader may refer to the following literature: [1–3].

Among Jonsson theories, perfect Jonsson theories hold a particularly significant position. The
study of this subclass has been the subject of several works, including [4–6].

The investigation of Jonsson theories is also valuable in the context of contemporary applications in
information technology. This is not coincidental, as Jonsson theories, due to their general incomplete-
ness, admit finite models. The identification and analysis of the relationship between infinite and finite
∗Corresponding author. E-mail: ulbrikht@mail.ru
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models of Jonsson theories generates particular interest in this topic. This is because, unlike complete
theories, which do not consider finite models, Jonsson theories examine the interplay of many classical
concepts associated with complete theories within the framework of finite models. In particular, works
such as [4, 7, 8] study such properties as categoricity, stability, various companions, axiomatizability,
model completeness, atomic and prime models.

This paper explores two well-known examples of theories: the theory of all unars and the theory
of undirected graphs. The study of elementary theories related to the structure of these signatures
is widely recognized in the work of many researchers. These works contain many classical results
describing various first-order properties related to the complete theories of these structures. Jonsson
theories corresponding to these examples were studied in [4,9,10]. In the present work, we investigate
hybrids of Jonsson theories, where the theories forming the hybrid are the theory of unars and the
theory of undirected graphs. It should be noted that studies related to hybrids of Jonsson theories
have been considered in [11,12].

A notable development in the study of both Jonsson theories and inductive theories in general
is the exploration of a distinguished subclass of models, referred to in this work as the Kaiser class.
This class represents a natural extension of the class of existentially closed models associated with
any inductive theory. Since it is well established that inductive theories possess a nonempty set of
existentially closed models, the investigation of the Kaiser class introduces a novel and significant
problem within the realms of classical model theory and universal algebra. When we refer to classical
model theory, we mean problems related not only to incomplete theories but also to complete theories.
Thus, in our view, the range of questions considered in this article is of particular interest in relation
to topics that arise in classical model theory concerning the concept of hybrid of Jonsson theories.

1 Essential concepts of Jonsson’s model theory

This section provides the foundational groundwork necessary for the further development of results
concerning Jonsson theories and the corresponding classes of their models. The notions discussed here
form the conceptual core of the model-theoretic framework within which the subsequent results are
formulated and proved.

Jonsson model theory provides a natural semantic setting for analyzing algebraic structures such
as unars and undirected graphs, which are known to satisfy the defining conditions of this class of
theories. In particular, key properties such as universality and homogeneity serve as central invariants
that characterize the semantic behavior of Jonsson theories and are tightly connected to the concept
of saturation in models.

The notion of saturation, especially within universally homogeneous models, leads to the identifica-
tion of a distinguished subclass of Jonsson theories, known as perfect Jonsson theories. These theories
are of particular interest due to their stable semantic properties and the behavior of their existentially
closed models.

An important feature of this subclass is that perfection is preserved under passage to the center of
the theory. That is, if a Jonsson theory is perfect, then its center retains this property as well. This
relationship reflects a deep structural symmetry within the semantic layers of Jonsson frameworks.

This section will focus primarily on universal Jonsson theories that describe two major classes of
structures: unars with a single unary function symbol and undirected graphs formulated in a signature
with one binary relation. To this end, the definition of universality is recalled, together with a formal
introduction of the notion of κ-categoricity, which plays a central role in the classification of models in
this context.

In what follows, we introduce the definitions and principal results required for the study of exis-
tentially closed models and the analysis of perfectness and categoricity within the Jonsson framework.
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These notions play a crucial role in the formulation and proof of the main theorems presented in this
paper.

Let’s outline the key concepts and statements of model-theoretical constructs essential for under-
standing and working within the framework of Jonsson theories and their associated classes of models.

It has been established that many classical algebraic structures, such as unars and graphs, satisfy
the conditions of Jonsson theories [4].

The notions of universality and homogeneity in a model emphasize the semantic invariant charac-
teristic of any Jonsson theory, that is, its semantic model. Moreover, it has been demonstrated that
whether this model is saturated or not has a profound impact on the structural features of both the
Jonsson theory itself and its corresponding class of models.

The saturation of universally homogeneous models, in the sense defined by Jonsson, leads to the
identification of a distinguished subclass of Jonsson theories, whose elements are termed perfect Jonsson
theories.

It can be observed that if a Jonsson theory T is perfect, then its center T ∗, i.e., the elementary
theory of its semantic model CT , is also a perfect Jonsson theory [4].

A characterization of perfect Jonsson theories was formulated in [4].
As the focus will be on universal Jonsson theories of all unars of the signature with one unary

functional symbol and the theory of undirected graphs in a signature with one binary relation symbol,
it is useful to recall the definition of universality. A theory T is called universal if it is equivalent to a
set of universal sentences [1].

In order to establish the main results of this paper, it is necessary to introduce the framework of
κ-categorical Jonsson theories, along with a characterization of existentially closed models within the
theory T .

Definition 1. [4] A Jonsson theory T is said to be κ-categorical for some cardinal κ ≥ ω if any two
models of T with cardinality κ are isomorphic.

The following result, originally proven in [4], establishes the equivalence of ω-categoricity for a
Jonsson theory and its center, provided that the theory is complete to ∀∃-sentences.

Theorem 1. [4] Let T be ∀∃-complete Jonsson theory. Then the following statements are equivalent:
1) T is ω-categorical.
2) The center T ∗ of T is ω-categorical.
The following theorem plays a central role in establishing one of the main results of this article. It

provides a sufficient condition for a Jonsson theory to be perfect.
Theorem 2. [4] If a Jonsson theory T is ω-categorical, then T is perfect.
Definition 2. [1] A model A of theory T is said to be an existentially closed model of T , if for any

extension B |= T with A ⊆ B, and for any existential formula ∃xϕ(x, ȳ), if B |= ∃xϕ(x, ā) for some
tuple ā ∈ A, then A |= ∃xϕ(x, ā).

The class ET , consisting of all existentially closed models of a Jonsson theory T , is guaranteed to
be non-empty, due to the inductiveness of T . Clearly, ET ⊆ Mod(T ), so ET forms a natural subclass
of the class of models of T .

Proposition 1. [1] Let T be an inductive theory. Then T has a model companion T ′ if and only if
the class ET of existentially closed models of T is elementary.

This criterion provides a useful tool for verifying the existence of model companions in the context
of inductive theories.

In particular, if a Jonsson theory is perfect, then the class of its existentially closed models is known
to be elementary.

The relationship between the two universal Jonsson theories, in terms of their centers and corre-
sponding semantic models, is captured by the following proposition:
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Proposition 2. [4] Let T1 and T2 be universal Jonsson theories. Then the following conditions are
equivalent:

1) The theories T1 and T2 are equal; that is, they consist of exactly the same set of first-order
sentences.

2) The semantic models CT1 and CT2 of the Jonsson theories T1 and T2, respectively, are isomorphic.
3) The centers of the theories, denoted T ∗1 and T ∗2 , are equal; that is, the elementary theories of

their corresponding semantic models coincide.

2 Exploring the Robinson Spectrum in the Context of Jonsson Theories

The study of model-theoretic spectra associated with classes of first-order structures offers a rich
framework for understanding the logical and semantic properties of these classes. Among such spectra,
the Jonsson spectrum and its special case, the Robinson spectrum, serve as key tools in analyzing how
certain theories interact with structural features of models.

Let L be a first-order language with signature σ, and let K denote a class of L-structures. In this
context, we are interested in the collection of all Jonsson theories whose models include all elements
of K. This leads naturally to the notion of the Jonsson spectrum of the class K, which captures the
diversity of Jonsson axiomatizations that are valid across all structures in K.

Particularly notable is the subclass of Jonsson theories axiomatizable purely by universal sentences;
these correspond precisely to the classical Robinson theories. Accordingly, the Robinson spectrum of
K can be seen as a refined instance of the broader Jonsson spectrum, restricted to theories of a specific
syntactic form. This interrelation allows for a layered approach: by first investigating the more general
Jonsson setting, one can then derive meaningful insights into Robinson spectra and their applications.

An essential component in the structural analysis of these spectra is the concept of cosemanticness,
which relates theories via their shared semantic core, or center. This equivalence relation partitions
spectra into classes of semantically indistinguishable (though potentially syntactically distinct) theories,
offering a deeper lens into the interplay between logic and model theory.

The present section introduces and develops the formal machinery underlying both Jonsson and
Robinson spectra. We examine how these constructs are defined, how they behave under equivalence
by cosemanticness, and how they manifest in concrete algebraic settings such as unars and undirected
graphs. Through this analysis, we highlight fundamental differences between the two spectra, partic-
ularly in terms of the uniqueness of theories within equivalence classes, and trace the implications for
broader concepts such as existential closure and categoricity.

This discussion culminates in a generalization of classical quasivarieties to what we term semantic
Jonsson quasivarieties, which serve as a natural setting for interpreting Robinson spectra. These
semantic structures, grounded in model-theoretic extensions of elementary theories, provide a fertile
ground for exploring categorical properties and model completeness in enriched logical frameworks.

Let L be a first-order language with a signature σ, and let K be a class of L-structures. We consider
a particular set of theories associated with K, known as the Jonsson spectrum of the class K. This
concept is formally defined as follows:

Definition 3. [4] The Jonsson spectrum of the class K, denoted by JSp(K), is the set of all Jonsson
theories with signature σ such that every structure in K is a model of the theory. Formally,

JSp(K) = {T | T is a Jonsson theory and ∀A ∈ K, A |= T}.

A detailed treatment of the structure and characteristics of Jonsson spectra can be found in [4].
In the special case where a Jonsson theory is axiomatized solely by universal sentences, one recovers

the classical notion of a Robinson theory. Thus, the Jonsson spectrum framework naturally extends
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to encompass the Robinson spectrum as a specific instance, providing a natural generalization of this
concept.

Definition 4. The Robinson spectrum of the class K, denoted RSp(K), consists of all Robinson
theories with signature σ that are satisfied by every structure in K. Formally,

RSp(K) = {T | T is a Robinson theory and ∀A ∈ K, A |= T}.

Within the framework of Jonsson theories, the notion of the cosemanticness relation plays a central
role. Let T1 and T2 be Jonsson theories with centers T ∗1 and T ∗2 , respectively.

The following concept was originally formulated by Professor T.G. Mustafin:

Definition 5. [4] Two Jonsson theories T1 and T2 are said to be cosemantic (denoted T1 ./ T2) if
their centers coincide, i.e., T ∗1 = T ∗2 .

It was established in [4] that this cosemanticness relation defines an equivalence relation on the class
of Jonsson theories. Consequently, when this relation is applied to the Jonsson spectrum JSp(K), the
set is naturally partitioned into equivalence classes, referred to as cosemantic classes. The corresponding
quotient set is denoted by JSp(K)/./. This quotient set provides a useful framework for extending
classical results and formulating broader generalizations within the theory. In an analogous manner,
the quotient set RSp(K)/./ can be introduced for the Robinson spectrum.

An essential result in the context of Robinsonian theories and the Robinson spectrum is the following
proposition:

Proposition 3. [13] Let K be an arbitrary class of L-structures (possibly consisting of a single
structure), and let RSp(K)/./ be the quotient set of the Robinson spectrum of K with respect to
cosemanticness. Then every cosemanticness class [∆] contains exactly one theory. In other words, for
any two Robinsonian L-theories T and T ′, the relation of cosemanticness is equivalent to the equality
(logical equivalence) of theories; that is, T ./ T ′ ⇔ T = T ′.

In the Robinson spectrum, when factorized by cosemanticness, each cosemanticness class is a sin-
gleton.

This proposition highlights a fundamental distinction between the Jonsson and Robinson spectra
under the cosemanticness relation. In the case of the Robinson spectrum RSp(K), factorization by
cosemanticness yields a discrete partition: each equivalence class contains exactly one theory. This
reflects the fact that for Robinsonian theories, semantic identity is equivalent to syntactic identity.

By contrast, for the Jonsson spectrum JSp(K), the situation is more intricate. The equivalence
relation of cosemanticness does not, in general, reduce to syntactic equality. That is, distinct Jonsson
theories can share the same center and thus belong to the same cosemanticness class. Consequently,
the quotient set JSp(K)/./ may contain nontrivial equivalence classes, each consisting of multiple
syntactically distinct yet semantically related theories.

This structural divergence between the two spectra is crucial for understanding the role of centers
in classification problems and reflects deeper differences in the expressiveness and axiomatizability of
Robinson versus Jonsson theories.

We now proceed to the formulation of the concept known as a semantic Jonsson quasivariety.
Let K be a class of quasivarieties of the first-order language L, as defined in [14], and let L0 ⊂ L,

where L0 is the set of sentences of language L. Consider the elementary theory Th(K) of this class K.
By adding ∀∃-sentences of language L, denoted by ∀∃(L0), which are not contained in Th(K), we can
define the set of Jonsson theories J(Th(K)) as follows.

Denotation 1. J(Th(K)) = {∆ | ∆ = Th(K) ∪ {ϕi}}, where ∆ is a Jonsson theory, ϕi denotes
either a formula from ∀∃(L0) or its negation, i ∈ {0, 1}, and Th(K) is the elementary theory of the
class of quasivarieties K.
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Every theory ∆ ∈ J(Th(K)) is associated with a semantic model, denoted C∆. We now define the
set of all such models:

Denotation 2. JC = {C∆ | ∆ ∈ J(Th(K)), C∆ is a semantic model of ∆}.
The set JC is referred to as a semantic Jonsson quasivariety associated with the class K, provided

that its elementary theory Th(JC) itself forms a Jonsson theory.
This construction generalizes the traditional notion of a quasivariety by integrating semantic prop-

erties tied specifically to Jonsson type extensions. Unlike standard quasivarieties, which are defined
purely syntactically (e.g., by quasi-identities or Horn sentences), a semantic Jonsson quasivariety is
formed by considering model-theoretic extensions of a given elementary theory Th(K) via additional
∀∃-sentences. These extensions do not necessarily follow from Th(K) and may vary across different
Jonsson theories ∆ ∈ J(Th(K)).

This concept differs substantially from the notion of a classical quasivariety. It is well known that
if a quasivariety is countably categorical, then it is also uncountably categorical. However, this does
not hold for a semantic Jonsson quasivariety. A counterexample is given by the theory of the semantic
Jonsson quasivariety of abelian groups.

The Robinson spectra associated with universal unars and undirected graphs have been investigated
within the framework of semantic Jonsson quasivarieties.

Let us consider an unar structure U, which is a model over the signature σU = 〈f〉, where f is
a unary functional symbol. Define the sequence of iterated applications of f recursively as follows:
f0(x) = x, fn+1(x) = f(fn(x)), n ∈ ω. Given elements a, b ∈ U are called U -connected in X if there
exist natural numbers m and n such that fm(a) = fn(b) and f0(a) = fm(a), f0(b), . . . , fn(b) ∈ X.

A subset X ⊆ U is said to be U -connected if every pair of elements from X is U -connected. A sub-
system B ⊆ U whose universe forms is the maximal U -connected subset of carrier U is referred to as a
component in the structure U. Furthermore, if B is a component, then the set
{a ∈ B : ∃n ∈ ω such that U |= fn(a) = a} is called a cycle of the component.

Now consider a graph structure G, which is modeled as an algebraic system with signature
σG = 〈R〉, where R is a binary symmetric relation. In this setting, elements of the universe are referred
to as vertices, and a pair 〈x, y〉 forms an edge if R(x, y) holds. A graph in which the relation R is
empty, that is, contains no edges, is called a totally disconnected graph.

Based on the foundational results established in [4], it follows that the universal parts of the el-
ementary theories of these structures denoted Th∀(U) and Th∀(G) for unars and undirected graphs,
respectively, constitute their corresponding Robinson theories. Hence, these theories provide canonical
examples of Robinson spectra for algebraic systems within the domain of semantic Jonsson quasivari-
eties.

Thus, we define the set

JCU = {C∆U
| ∆U ∈ J(Th(KU)), C∆U

|= ∆U} ,

where the signature σU = 〈f〉, and f is unary functional symbol. Here ∆U denotes a Robinson theory
of unars. The set JCU is referred to as the semantic Jonsson quasivariety of Robinson unars, as
introduced in [4].

Following [4], we define the Robinson spectrum of the set JCU as follows:

Definition 6. Let RSp(JCU) denote the set of all Robinson theories ∆U in the signature σU such
that every model C∆U

∈ JCU satisfies the theory ∆U. That is,

RSp(JCU) = {∆U | ∆U is a Robinson theory of unars, and ∀C∆U
∈ JCU, C∆U

|= ∆U}.

This set is called the Robinson spectrum of the semantic Jonsson quasivariety JCU.
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The quotient set of this spectrum is denoted by RSp(JCU)/./, which consists of equivalence classes
[∆U] determined by the cosemanticness relation (that is, theories that share the same center).

Similarly, we can define a corresponding structure for undirected graphs. Consider the set

JCG = {C∆G
| ∆G ∈ J(Th(KG)), C∆G

|= ∆G},

where ∆G is a Robinson theory formulated over the signature 〈R〉 of undirected graphs, R is a binary
symmetric relation, i.e., the standard signature of undirected graphs. The set JCG is thus interpreted
as the semantic Jonsson quasivariety of Robinson undirected graphs.

Definition 7. Let σG be the signature 〈R〉, where R is a binary symmetric relation. The set of all
Robinson theories ∆G such that every semantic model C∆G

∈ JCG satisfies ∆G, that is,

RSp(JCG) = {∆G | ∆G is a Robinson theory of undirected graphs, and ∀C∆G
∈ JCG, C∆G

|= ∆G} ,

is called the Robinson spectrum of the semantic Jonsson quasivariety JCG of Robinson undirected
graphs.

As in previous constructions, one can define the corresponding cosemantic quotient set, denoted by
RSp(JCG)/./, which consists of equivalence classes [∆G] under the cosemanticness relation, that is,
theories whose centers coincide.

In the ω-categorical setting, a model-theoretic characterization of existentially closed models has
been established for both unars and undirected graphs. The corresponding results are presented in the
following theorems.

Theorem 3. Let [∆U] be a class of ω-categorical Robinson theories of unars. Then the following
statements are equivalent:

1) A ∈ E[∆U]; that is, A is an existentially closed model of the class [∆U];
2) A is a disjoint union of components, each of which contains a cycle of the same length.

Theorem 4. Let [∆G] be a class of ω-categorical Robinson theories of undirected graphs, and let
E[∆G] denote the class of existentially closed models for this class. Then the following are equivalent:

1) B ∈ E[∆G], i.e., B is an existentially closed model of [∆G];
2) B is an infinite totally disconnected graph.

Here, E[∆U] and E[∆G] denote the sets of existentially closed models corresponding to the cosemantic
classes [∆U] and [∆G], respectively.

3 Jonsson theories similarity

The concept of similarity between first-order theories plays a central role in modern model theory,
particularly in the classification and comparison of theories with respect to both syntactic and semantic
characteristics. In this section, we focus on a specific class of theories – namely, Jonsson theories – and
explore various notions of similarity that arise within this framework.

Our exposition begins with a foundation in generalized Jonsson theories, also known as α-Jonsson
theories, which extend the classical definition by parameterizing inductiveness, amalgamation, and
joint embedding properties via an ordinal index α. These properties ensure that models of the theory
behave coherently when considered in chains, embeddings, or pushouts, and are crucial in establishing
a robust structural framework for such theories.

To deepen the analysis of similarity, this section introduces two primary dimensions of comparison:
syntactic similarity, based on mappings between formula algebras or existential lattices, and semantic
similarity, defined via isomorphisms between so-called pure triples associated with models or semantic
universes. These notions were initially developed for complete theories in the foundational work of
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Professor T.G. Mustafin [15] and subsequently generalized to the Jonsson context by Professor A.R.
Yeshkeyev.

The treatment of similarity culminates in precise criteria — such as bijective correspondences be-
tween existential lattices or structural isomorphism of model-theoretic automorphism groups — that
allow us to relate two theories at a deep logical and algebraic level. Furthermore, the section highlights
the critical insight that syntactic similarity always implies semantic similarity, whereas the converse
does not necessarily hold.

The theoretical apparatus is complemented by illustrative examples and algebraic constructions,
including S-acts (algebraic systems over a monoid), which serve as canonical models used to construct
envelopes of arbitrary theories. These models provide a concrete setting for understanding how one
theory can simulate or encapsulate the expressive power of another through inessential extensions.

Finally, this section culminates in the formalization of similarity at the level of Jonsson spectrum
classes, offering an even broader perspective on how entire families of theories can be compared via
their syntactic and semantic cores. The results obtained herein lay the groundwork for the subsequent
sections, where the equivalence of centers, perfectness, and existential completeness play a decisive role
in characterizing such similarities.

The following examples illustrate key concepts related to Γ-embeddings, Γ-chains, and model-
theoretic properties of theories such as α-inductiveness, the α-joint embedding property (α-JEP),
and the α-amalgamation property (α-AP). They help clarify how formulas from a given set Γ are
preserved under various model-theoretic constructions and how theories behave with respect to chains
and embeddings of varying levels of complexity [4].

Example 1 (On Γ-embeddings). Let Γ be the set of all quantifier-free formulas in the language
L = {<}, and consider two structures A = (N, <) and B = (Z, <). Let f : N → Z be the inclusion
map defined by f(n) = n. Since the order < on N is preserved in Z, and all quantifier-free formulas
true in A remain true under f in B, the map f is a Γ-embedding.

Example 2 (On Γ-chains). Consider a sequence of structures Ai = (Qi, <), where Qi denotes the
set of rational numbers with denominators at most 2i. Then for each i < j, the inclusion Ai ⊆Γ Aj
holds with respect to Γ = {<}, since the order is preserved and extended. The sequence {Ai}i<ω thus
forms a Γ-chain.

Example 3 (On α-inductiveness). Let T be the theory of linear orders. Consider a chain of countable
models A0 ⊆ A1 ⊆ . . ., where each Ai is a copy of (N, <) extended by adding isolated elements. The
union of this Π1-chain is again a model of T ; hence, T is 1-inductive.

Example 4 (On α-joint embedding property). Let T be the theory of undirected graphs without
additional properties. Any two graphs A and B can be jointly embedded into their disjoint union
M = A t B. The natural inclusion maps are Π0-embeddings; thus, T satisfies 0-JEP.

Example 5 (On α-amalgamation property). Let T be the theory of vector spaces over a fixed field.
Given three vector spaces A,B1,B2 and linear embeddings f1 : A → B1, f2 : A → B2, the pushout
(amalgam) exists and is also a vector space. Therefore, T satisfies 0-AP.

The concept of generalized Jonsson theories, also referred to as α-Jonsson theories, extends the clas-
sical notion of Jonsson theories by incorporating ordinal-indexed structural conditions. The following
definition is based on the formulation presented in [2].

Consider the following definition, which introduces the notion of an α-Jonsson theory — a type of
first-order theory characterized by specific model-theoretic properties.

Definition 8. [2] A theory T is called α-Jonsson (for ordinals 0 ≤ α ≤ ω) if it has an infinite
model and satisfies three key structural properties: closure under unions of Πα chains (that is, α-
inductiveness); the ability to jointly embed any two of its models into a common extension (α-JEP);
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and the possibility of amalgamating models over a common substructure (α-AP). These conditions
ensure that the theory possesses a well-behaved and robust class of models, suitable for advanced
structural analysis.

By comparing this definition with that of a Jonsson theory, we observe a key difference: the latter
is specialized to the case α = 0, which yields the classical Jonsson theories. When α = ω are referred to
as complete Jonsson theories. In practice, the index α = 0 is often omitted when referring to ordinary
Jonsson theories. It is worth noting that, under this generalized framework, Jonsson theories are not
necessarily complete.

As demonstrated in [2], Professor T.G. Mustafin established syntactic counterparts of the α-JEP
and α-AP properties. These criteria provide an equivalent, formula-based perspective on the corre-
sponding semantic conditions.

Proposition 4. [2] The following statements are equivalent:
1) The theory T satisfies the α-joint embedding property.
2) The α-JEP holds for all countable models of T .
3) For any disjoint tuples of variables x and y, and any consistent sets of formulas p(x) and q(y)

from Σα+1, the union T ∪ p(x)∪ q(y) is consistent, provided that both T ∪ p(x) and T ∪ q(y) are
consistent separately.

Proposition 5. [2] The following conditions are equivalent:
1) The theory T satisfies the α-amalgamation property.
2) T satisfies the α-AP for countable structures.
3) For any two consistent sets of formulas p(x) and q(x) from Σα+1 such that the following three

sets are all consistent:

T ∪ p(x), T ∪ q(x), and T ∪ {¬ϕ(x) | ϕ(x) ∈ Σα+1, ϕ(x) /∈ p(x) ∩ q(x)} ,

the union T ∪ p(x) ∪ q(x) is also consistent.
4) For every model A |= T and tuple a ∈ A, the set ThΣα+1(A, a) can be extended to a unique

maximal Σα+1-type over T in the expanded language L(a).

In the study of model theory, an important distinction is drawn between semantic and syntac-
tic properties of theories. Semantic properties concern the behavior and structure of models, while
syntactic properties are tied to the formal deductive system. The following propositions illustrate
this distinction by clarifying the relationship between completeness and semantic similarity, and by
enumerating key semantic notions that play a central role in classification theory.

Proposition 6. [15] If two theories T1 and T2 are complete, then they are necessarily semantically
similar. However, the converse does not hold: semantically similar theories need not be syntactically
similar.

Proposition 7. [15] The following concepts are classified as semantic in nature: type, forking,
λ-stability, Lascar rank, strong type, Morley sequence, orthogonality, regularity of types, and I(ℵα, T )
— the spectrum function.

We now turn our attention to a particular class of algebraic structures that will serve as the context
for applying the main results established earlier. In the English-language model-theoretic literature,
structures known as polygons over a monoid S are commonly referred to as S-acts [16]. Below, we
provide a formal definition of this class.

Definition 9. [16] An S-act is a structure of the form 〈A; fα : α ∈ S〉, where each fα is a unary
function on A, and the following axioms hold:

1) Identity preservation: fe(a) = a for all a ∈ A, where e ∈ S is the identity element of the monoid.
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2) Compatibility with monoid operation: fαβ(a) = fα(fβ(a)) for all α, β ∈ S and for all a ∈ A.

The results that follow will demonstrate that for every complete theory, there exists another theory
that is syntactically similar to it.

Theorem 5. [15] For every theory T2 in a finite signature, there exists a theory T1 of S-acts such
that some inessential extension of T1 is an almost envelope of T2.

Theorem 6. [15] For every theory T2 in an infinite signature, there exists a theory T1 of S-acts such
that some inessential extension of T1 is an envelope of T2.

This section presents a series of known results concerning syntactic and semantic similarities be-
tween Jonsson theories, as well as their extensions to classes of such theories. These notions generalize
analogous concepts from the theory of complete first-order theories, as previously studied in works
such as [13,15], and have been systematically developed in [4].

In particular, the definitions of Jonsson syntactic similarity and Jonsson semantic similarity aim
to capture structural equivalences between the existential fragments and semantic models of Jonsson
theories. The formalization of these similarities relies on isomorphisms between lattices of existential
formulas and between so-called semantic triples associated with the theories. The notion of the center
of a Jonsson theory, denoted T ∗, also plays a key role in transferring results from Jonsson theories to
their complete analogues. Illustrative examples of Jonsson syntactic similarity between theories can
be found in [4].

Analogously to the case of complete theories, Professor A.R. Yeshkeyev introduced the notion of
Jonsson semantic similarity between two Jonsson theories [4]. The following result, which is similar to
Proposition 6 but formulated in the context of Jonsson theories, was also established in [4].

Theorem 7. [4] Suppose that T1 and T2 are Jonsson theories that are syntactically similar in the
Jonsson framework. Then they are also semantically similar within the same context.

By extending certain definitions from [15] and applying methods for working with Jonsson theo-
ries, it has been shown that, within the class of perfect existentially complete Jonsson theories, the
introduced notions of syntactic and semantic similarity coincide with their counterparts in the class of
complete theories, as defined in [13].

Theorem 8. [4] Let T1 and T2 be two existentially complete perfect Jonsson theories. Then the
following statements are logically equivalent — that is, each holds if and only if the other does:

1) T1 and T2 are syntactically similar in the sense of Jonsson theories; that is, there exists a
structure-preserving correspondence between their existential formulas that respects logical operations
such as conjunction and existential quantification.

2) Their centers, T ∗1 and T ∗2 , are syntactically similar as complete theories; that is, the corresponding
complete theories (obtained as the elementary theories of their respective semantic models) are related
by a syntactic similarity that aligns their lattices of formulas.

To ensure precision in the subsequent exposition, we adopt the following designation. The syntactic
and semantic similarities between two complete theories T1 and T2 will be denoted by T1

S
./ T2 and

T1 ./
S
T2, respectively. When dealing specifically with Jonsson theories, we will write T1

S
oT2 to indicate

syntactic similarity in the Jonsson context, and T1 o
S
T2 to denote their semantic similarity.

The following corollary for two Jonsson theories T1 and T2 in the language L was obtained in [4].

Corollary 1. [4] If the theories T1 and T2 are Jonsson syntactically similar (T1

S
o T2), then they

are also Jonsson semantically similar (T1 o
S
T2). Moreover, this is equivalent to the theories T1 and T2

being cosemantic, expressed as T1 ./ T2.
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The notions of Jonsson semantic and syntactic similarity were further generalized to classes of
Jonsson theories in [4]. As a result, a generalization of Theorem 7 was obtained for two classes from
the Jonsson spectrum. This generalized result plays a crucial role in the proof of Theorem 11.

Lemma 1. [4] Let A ∈ Mod(σ1), B ∈ Mod(σ2), [T1] ∈ JSp(A)/./, [T2] ∈ JSp(B)/./ be perfect
∃-complete classes, then

[T1]
S
o [T2]⇔ [T ∗1 ]

S
./ [T ∗2 ].

4 Countable categoricity of Robinson hybrid and its similarity

In model theory, the notion of hybrid offers a constructive means of generating new theories by
combining existing ones. Within the framework of Jonsson and Robinson theories, this operation
enables the formation of syntactically or semantically enriched theories that retain key properties of
their components. This section is devoted to the study of such hybrids, particularly their structure,
categoricity, and the relations that govern their similarities.

The central object of analysis is the hybrid of Jonsson theories — a concept that allows two theories
(with either identical or distinct signatures) to be combined via algebraic operations such as the
Cartesian product, sum, or direct sum. These hybrid constructions fall into two main types, depending
on whether the signatures of the input theories coincide. When extended to Robinson theories, those
axiomatized by universal sentences, the same hybrid framework leads to the definition of Robinson
hybrids, which inherit the logical rigor and syntactic simplicity characteristic of this subclass.

To support the analysis of such hybrids, we further examine the notions of perfectness, semantic
models, and theoretical centers, particularly in the context of countable languages. A hybrid theory is
said to be perfect if it coincides with the elementary theory of its saturated model; in such cases, its
model-theoretic center plays a crucial role in determining categoricity and logical equivalence.

A key part of this section is the development of Kaiser equivalence, a newly introduced equiva-
lence relation between Jonsson theories. This relation compares theories by their associated Kaiser
classes, which capture the semantic behavior of existential fragments of models. Alongside this, we
examine additional equivalence relations syntactic similarity and cosemanticness, that further refine
the classification of theories within Robinson spectra.

The main results presented in this section show that, under certain conditions, the hybrid of two
ω-categorical Robinson theories remains ω-categorical. Moreover, by applying triple factorization over
Robinson spectra of semantic Jonsson quasivarieties (such as unars and undirected graphs), we con-
struct a unique countably categorical theory of S-acts that is syntactically similar to a Robinson hybrid.
This demonstrates not only the internal coherence of hybrid constructions but also the robustness of
syntactic similarity in preserving key model-theoretic properties.

We begin by introducing the necessary definitions and preliminary results required to formulate
the main theorems of this paper.

The concept of a hybrid of Jonsson theories was considered in [12]. By analogy, in the context of
studying the Robinson spectra of semantic Jonsson quasivarieties for Robinson unars and undirected
graphs, we introduce the notion of a Robinson hybrid corresponding to two Robinson theories.

Definition 10. 1) Let T1 and T2 be Robinson theories in a countable language L with the same
signature σ, and let CT1 and CT2 be their semantic models, respectively. In the case where the Robinson
theories T1 and T2 have a common signature, we define a hybrid of the first type of these Robinson
theories as the theory Th∀(C1�C2), provided that this theory is Robinson in the language of signature σ.
We denote this hybrid as HR(T1, T2), where the operation � ∈ {×,+,⊕} and C1 � C2 ∈Modσ. Here,
× represents the Cartesian product, + denotes the sum, and ⊕ indicates the direct sum. Thus, the
algebraic construction C1 � C2 is referred to as the semantic hybrid of the theories T1 and T2.
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2) If T1 and T2 are Robinson theories with different signatures σ1 and σ2, respectively, then the
theory HR(T1, T2) = Th∀(C1 � C2) is called a hybrid of the second type, provided that this theory is
Robinson in the language with the signature σ = σ1 ∪ σ2 where C1 � C2 ∈Modσ.

Clearly, 1) is a special case of 2).
Since Robinson theories are special cases of Jonsson theories, we can further use the notion of a

perfect Robinson hybrid and also consider the concept of the center of a Robinson hybrid, which we
denote by HR∗(T1, T2), where HR∗(T1, T2) is the center of the Robinson theory Th∀(C1 � C2).

Based on the definition of hybrids of Robinson theories, it is also possible to define hybrids corre-
sponding to two classes of Robinson theories.

Definition 11. 1) Let K be an axiomatizable class of models in a countable language L with
signature σ, and let [T1], [T2] ∈ RSp(K)/./. The hybrid of the first type HR([T1], [T2]) of the classes
[T1] and [T2] is the theory Th∀(C1 � C2) provided that this theory is Robinson in the language with
signature σ, where Ci are semantic models of the classes [Ti] for i = 1, 2, and � ∈ {×,+,⊕}, where ×
denotes the Cartesian product, + denotes the sum, and ⊕ denotes the direct sum of models.

2) Let K1 and K2 be axiomatizable classes of models of a countable language with different sig-
natures σ1 and σ2, respectively, and let [T1] ∈ RSp(K1)/./ and [T2] ∈ RSp(K2)/./. Then the theory
HR([T1], [T2]) = Th∀(C1 � C2) is called the hybrid of the second type of the classes [T ]1 and [T2], pro-
vided that this theory is Robinson in the language with signature σ = σ1 ∪ σ2, where C1 �C2 ∈Modσ.

To prove our result, we need a classical theorem on the characterization of countably categorical
theories.

Theorem 9. [1] Let T be a complete theory. Then the following are equivalent:
a) T is ω-categorical;
b) for each n < ω, T has only finitely many types in the variables x1, . . . , xn.
In this article, we introduce a new concept, called Kaiser equivalence, between two Jonsson theories.

As a starting point, we consider the definition of the Kaiser class of a theory.
Definition 12. A class KT={A ∈ Mod(T ) : T 0(A) is a Jonsson theory} is called a Kaiser class of

the theory T , where T 0(A) = Th∀∃(A).
Next, we consider a binary relation between the Kaiser classes of two Jonsson theories, T1 and T2.
Definition 13. Let T1 and T2 be Jonsson theories. We say that T1 and T2 are KT -equivalent if

KT1 = KT2 .
It is clear that the defined relation between two Jonsson theories is an equivalence relation.
Let JCU and JCG be the semantic Jonsson quasivarieties of Robinson unars and undirected graphs,

respectively. Let RSp(JCU) and RSp(JCG) denote their corresponding Robinson spectra.
In addition, we define the following types of relations on these spectra:
1) syntactic similarity in the sense of Jonsson;
2) equivalence with respect to the class KT ;
3) the relation of cosemantic equivalence.
It is important to emphasize that, according to Proposition 3, each of these equivalence classes

contains exactly one element.
It is straightforward to verify that each of the defined relations constitutes an equivalence relation.

As a result, we can consider the corresponding quotient sets of the Robinson spectra of the classes JCU

and JCG under these relations. This construction, which we refer to as triple factorization, is denoted
by RSp(JCU)/S

./
K

and RSp(JCG)/S
./
K

. Here, [
...
∆U] denotes the equivalence class containing the theory ∆U

from RSp(JCU)/S
./
K

, and similarly, [
...
∆G] corresponds to the class of the theory ∆G from RSp(JCG)/S

./
K

.

Each such equivalence class consists of a single theory of unars or undirected graphs.
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We now proceed to the key findings of this article. It is important to note that in the results that
follow, we consider only the Cartesian product as the operation �.

Theorem 10. Let [
...
∆U] and [

...
∆G] denote the equivalence classes of ω-categorical Robinson theories

corresponding to unars and undirected graphs, respectively. Then their Robinson hybridHR([
...
∆U], [

...
∆G])

is also an ω-categorical Robinson theory.

Proof. Since, as stated in Proposition 3, these classes consist of a single element, we can further
work only with theories. Also, by the definition of a Kaiser class of the theory, these theories are
complete for universal (existential) sentences. Then, by Theorem 1, we obtain that the centers of
these theories, denoted by

...
∆
∗
U and

...
∆
∗
G, are also complete, countably categorical Robinson theories.

Therefore, by Theorem 9, we have that for each n < ω,
...
∆
∗
U and

...
∆
∗
G have only finitely many types in

the variables x1, . . . , xn.
As we know

...
∆
∗
U and

...
∆
∗
G are Robinson theories, then they have existentially closed semantic models

C...
∆

∗
U
and C...

∆
∗
G
, respectively, each of which realizes a finite number of types. Let us now consider a

Cartesian product of their semantic models, C...
∆

∗
U
× C...

∆
∗
G
∈ E

HR(
...
∆

∗
U,
...
∆

∗
G)
. By definition of the Cartesian

product, this model also realizes a finite number of types. Therefore, the Robinson hybrid of second
type of

...
∆
∗
U and

...
∆
∗
G, denoted by HR(

...
∆
∗
U,

...
∆
∗
G)=Th∀(C...∆

∗
U
× C...

∆
∗
G

) is ω-categorical Robinson theory.

Note that, according to Theorem 2,
...
∆U and

...
∆G are perfect Robinson theories. Consequently, the

classes of existentially closed models of
...
∆U and

...
∆G coincide with the classes of models of their centers.

Since the Robinson hybrid of these theories is a universally (existentially) complete theory, it follows
that this Robinson hybrid is countably categorical.

We can also extend one of the results from [12] by applying triple factorization to the Robinson
spectra of the semantic Jonsson quasivarieties of unars and undirected graphs. As a result, we obtain
a countably categorical theory of S-acts that is syntactically similar to the Robinson hybrid of these
classes.

Theorem 11. Let [
...
∆U] and [

...
∆G] be the equivalence classes of ω-categorical Robinson theories of

unars of the signature with one unary functional symbol and the theory of undirected graphs that is
considered in the signature containing one binary relation symbol, respectively. Then there exists a
ω-categorical class of Robinson theories of S-acts, that is Jonsson syntactically similar to the Robinson
hybrid HR([

...
∆U], [

...
∆G]) of these classes, where each class is a single-element class.

Proof. Since, by Proposition 3, these classes are singletons, we can further work directly with the
corresponding theories. By Theorem 2, the countably categorical hybrid HR(

...
∆U,

...
∆G) is a perfect

Robinson theory. Since its center, denoted by HR∗(
...
∆U,

...
∆G), is complete, it follows from Theorem 5

that there exists a complete theory of the S-acts, denoted by TSact , such that H∗(
...
∆U,

...
∆G)

S
./ TSact .

Then, by Proposition 6, we also have HR∗(
...
∆U,

...
∆G) ./

S
TSact .

Since the notion of a type is semantic according to Proposition 7, the notion of a formula is also
semantic. Furthermore, since both JEP and AP are semantic concepts, the properties JEP and AP
are equivalent to the consistency of certain formulas, which follows from Propositions 4 and 5.

As all axioms hold in the semantic model, ∀-axiomatizability is a semantic property. This, in turn,
implies that the property of being a Robinson theory is also a semantic concept. Therefore, the theory
TSact qualifies as a Robinson theory as well.

Given that HR∗(
...
∆U,

...
∆G) is a perfect hybrid, the semantic model C

HR(
...
∆U,

...
∆G)

of the hybrid

HR(
...
∆U,

...
∆G) is saturated. Moreover, since HR∗(

...
∆U,

...
∆G) ./

S
TSact it follows from Definition 18 that
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the semantic triples of these theories are isomorphic. Hence, C
HR(

...
∆U,

...
∆G)
∼= CTSact . Therefore CTSact is

also saturated, and thus TSact is a perfect Robinson theory.
Consider RSp(CTSact ). Since the theory TSact is perfect, we have that |RSp(CTSact )/S./

K

| = 1. Let

∆ ∈ RSp(CTSact ), meaning ∆ is Robinson theory and ∆∗ = TSact . We will show that ∆ is a perfect
∃-complete Robinson theory.

Given that HR∗(
...
∆U,

...
∆G) ./

S
∆∗, it follows from the definition of semantic similarity for complete

theories that ∆ is a perfect Robinson theory. If, in addition, ∆ is ∃-complete, then we may replace

T ′Sact with ∆. By Lemma 1, we then conclude that HR(
...
∆U,

...
∆G)

S
o ∆ = T ′Sact . If ∆ is not ∃-complete,

we apply the following procedure to complete the theory. Since ∆ ⊂ TSact , for any existential sentence
ϕ in the signature language of ∆ such that ∆ 6` ϕ and ∆ 6` ¬ϕ, but ϕ ∈ TSact , we define the theory
∆′ = ∆ ∪ {ϕ}.

Since ∆ ⊂ ∆′ ⊂ TSact , and both ∆ and TSact are Robinson theories, it follows from Proposition
7 that ∆′ is also a Robinson theory. If ∆′ is not ∃-complete, we continue the process by successively
adding existential sentences ϕ ∈ TSact until ∆′ becomes ∃-complete.

Let ∆ = ∆ ∪ {ϕ | ϕ ∈ Σ1, ϕ ∈ TSact} denote the result of the existential completion procedure
applied to the theory ∆. In other words, ∆ is ∃-complete and is also a Robinson theory. We now show
that ∆ ∈ RSp(CTSact), which implies that the theory ∆ is perfect.

Let us assume the opposite, that is, suppose ∆ /∈ RSp(CTSact ). This implies that CTSact /∈ Mod(∆).
However, this cannot be the case because CTSact |= ∆, and for any sentence ϕ ∈ ∆ \ ∆, we have
ϕ ∈ TSact . Therefore, CTSact |= ϕ, which means that CTSact ∈ Mod(∆). This leads to a contradiction,
so we conclude that ∆ ∈ RSp(CTSact ).

Since CTSact is saturated, it follows that ∆ is a perfect Robinson theory. Hence, by Lemma 1, we

obtain the equivalence: HR∗(
...
∆U,

...
∆G)

S
./ ∆

∗ ⇔ HR(
...
∆U,

...
∆G)

S
o ∆, where ∆ = T ′Sact .

Conclusion

This study has explored the fundamental aspects of Jonsson theories and the associated Jonsson
spectra of their model classes, with a particular focus on the Robinson spectrum and the relation-
ship between syntactic and semantic similarity. By analyzing how these concepts interact within the
framework of model-theoretic structures, we highlighted the relevance of definability, compactness, and
saturation in understanding the classification and behavior of models determined by Jonsson theories.

A promising and relatively unexplored direction for future research involves extending these ideas
to the setting of positive Jonsson theories. This includes formulating a precise definition of the positive
Jonsson spectrum and investigating how the syntactic-semantic correspondence and model-theoretic
equivalences, such asKT -equivalence, manifest in this more restrictive yet expressive framework. Foun-
dational concepts and definitions for developing positive model theory in the context of Jonssonness
are already outlined in [4, 17], offering a solid starting point for such an investigation.

Altogether, the theoretical insights presented in this paper offer a clearer understanding of classical
Jonsson structures and establish a meaningful foundation for advancing future research on their positive
counterparts.
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This article explores the theory of Riemann double integration for functions whose values are intervals
in the framework of time scale calculus. We define the Riemann double ∆-integral and Riemann double
∇-integral for interval valued functions, namely interval Riemann ∆∆-integral and interval Riemann ∇∇-
integral. Some key theorems in the article discuss the uniqueness of the integral, the equality of the
interval Riemann double integral to the Riemann double integral when function is degenerate, necessary and
sufficient conditions for integrability, proving integrability of a function without knowing the actual value
of the integral. Additionally the relationship between the interval Riemann double integral and Riemann
double integral for two interval-valued functions is estableshed via Hausdorff-Pompeiu distance. Elementary
properties of the integral such as linearity property, subset property and others are established. Using the
concept of generalized Hukuhara difference, alternate definitions of the interval Riemann ∆∆-integral and
interval Riemann ∇∇-integral are formulated and theorems proving the equivalence of the integrals defined
in both approaches are established. Theorems proving the equivalence of interval Riemann ∆- and ∇-
integrals previously defined in both approaches are also shown.

Keywords: interval valued functions, Hausdorff-Pompeiu distance, Riemann ∆∆-integral, Riemann
∇∇-integral, generalized Hukuhara difference, interval Riemann∆∆-integral, interval Riemann∇∇-integral,
time scales.
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Introduction and Motivation

S. Hilger in 1988, as part of his Würzburg doctoral degree [1], introduced the theory of measure
chain calculus (which came to be known as the time scale calculus); transcripts later published in
1990, [2]. Time scale calculus unifies and extends discrete and continuous calculus; the theory proves
immensely useful when dealing with hybrid models [3]. As theoretical framework, Hilger formulated
three axioms [2] (also view [4; 1997]); any set, say T, that satisfied these axioms were called time
scales. By nature any closed subset T of R is a time scale, an excerpt “. . .any closed subset of R bears
the structure of a measure chain in a natural manner.” [2] concludes this.

Hilger introduced two operators [2]. The forward jump operator denoted by σ and the backward
jump operator denoted by ρ. Mapping σ : T → T such that σ(t) = inf

{
u ∈ T : u > t

}
. Similarly,

mapping ρ : T→ T such that ρ(t) = sup
{
u ∈ T : u < t

}
.

Using the notion of forward jump operator, Hilger in [2] formulated the delta derivative
(∆-derivative). A decade later in 2000, C.D. Ahlbrandt et al. [5] introduced a notion of deriva-
tive, which they called the alpha derivative, consisting both the ∆-derivative and another derivative
called the nabla derivative (∇-derivative) as special cases. This ∇-derivative was formulated using the
notion of backward jump operator, officially named so in 2002 by F.M. Atici et al. [6].

Integrations of the ∆-derivative and ∇-derivative are extensively discussed in literature, including
for the Riemann integration. The Riemann integral for real valued functions on time scales was
formulated by S. Sailer [7], using the concept of Darboux sum definition of the integral; and by
∗Corresponding author. E-mail: hemen.bharali@gmail.com
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G.S. Guseinov et al., using the concept of Riemann sum definition of the integral [8, 9]. The Riemann
double ∆-integral for real valued functions was defined by M. Bohner et al. [10, 11].

Below we give the definition of Riemann double ∆-integral (Riemann ∆∆-integral) and Riemann
double ∇-integral (Riemann ∇∇-integral) for real valued functions as defined in [10].

Let T 1 and T 2 be two given time scales and put T 1 ×T 2 = {(t̂, t̆) : t̂ ∈ T 1, t̆ ∈ T 2}.
The intervals on which integrals are defined, i.e., intervals on time scale T are defined as assuming

v ≤ w [11]:
[v, w]T =

{
t ∈ T : v ≤ t ≤ w

}
; (v, w)T =

{
t ∈ T : v < t < w

}
;

[v, w)T =
{
t ∈ T : v ≤ t < w

}
; (v, w]T =

{
t ∈ T : v < t ≤ w

}
.

For clarity E,F will represent partitions for the ∆-integral and G,H will represent partitions for
the ∇-integral.

Let [v, w]T and [r, s]T be closed intervals on T such that [v, w]T × [r, s]T = {(t̂, t̆) : t̂ ∈ [v, w]T ,
t̆ ∈ [r, s]T}. We partition the intervals as [v = t̂0 < t̂1 < . . . < t̂p = w], p ∈ N and [r = t̆0 < t̆1 < . . . <
t̆q = s], q ∈ N; P([v, w]T ) will denote the collection of all possible partitions of [v, w]T and P([r, s]T )
will denote the collection of all possible partitions of [r, s]T .

Let E =
{
v = t̂0 < . . . < t̂p = w

}
∈ P([v, w]T ) and F =

{
r = t̆0 < . . . < t̆q = s

}
∈

P([r, s]T ). Subintervals are taken to be of the form [t̂e−1, t̂e)T for 1 ≤ e ≤ p and [t̆f−1, t̆f )T for
1 ≤ f ≤ q, which we will call the ∆∆-subintervals. From each of these ∆∆-subintervals we choose
ϑ̂e ∈ [t̂e−1, t̂e)T and ϑ̆f ∈ [t̆f−1, t̆f )T arbitrarily and call it the ∆∆-tags. We define the mesh of E as,
mesh-(E) = max1≤e≤p(t̂e − t̂e−1) > 0. For some δ > 0, Eδ will represent a ∆-partition of [v, w]T
with mesh δ satisfying the property: for each e = 1, 2, . . . , p we have either- (t̂e − t̂e−1) ≤ δ or
(t̂e − t̂e−1) > δ ∧ ρ(t̂e) = t̂e−1 (here ∧ stands for “and”). Again, mesh-(F) = max1≤f≤q(t̆f − t̆f−1) > 0.
For some δ > 0, Fδ will represent a ∆-partition of [r, s]T with mesh δ satisfying the property: for each
f = 1, 2, . . . , q we have either (t̆f − t̆f−1) ≤ δ or (t̆f − t̆f−1) > δ ∧ ρ(t̆f ) = t̆f−1.

Riemann ∆∆-sum, R∆∆(g;Eδ;Fδ), of real valued function “g” evaluated at the ∆∆-tags as follows,

R∆∆(g;Eδ;Fδ) :=

p∑
e=1

q∑
f=1

g
(
ϑ̂e, ϑ̆f

)
(t̂e − t̂e−1)(t̆f − t̆f−1).

Definition 1. [10] (Riemann ∆∆-integral) Let function g : [v, w]T × [r, s]T → R be a real val-
ued function. Function g is said to be Riemann ∆∆-integrable if there exists an I∆∆ ∈ R on
[v, w]T × [r, s]T such that for any ε > 0 there exists δ > 0 hence for any ∆-partitions Eδ and Fδ, we
have

∣∣R∆∆(g;Eδ;Fδ)− I∆∆

∣∣ < ε. Here I∆∆ = R∆∆

∫ w
v

∫ s
r g(t̂, t̆)∆t̂∆t̆, where R∆∆

∫ w
v

∫ s
r g(t̂, t̆)∆t̂∆t̆ is

called the Riemann ∆∆-integral.

Let G =
{
v = t̂0 < . . . < t̂p = w

}
∈ P([v, w]T ) and H =

{
r = t̆0 < . . . < t̆q = s

}
∈

P([r, s]T ). Subintervals are taken to be of the form (t̂e−1, t̂e]T for 1 ≤ e ≤ p and (t̆f−1, t̆f ]T for
1 ≤ f ≤ q, which we will call the ∇∇-subintervals. From each of these ∇∇-subintervals we choose
ξ̂e ∈ (t̂e−1, t̂e]T and ξ̆f ∈ (t̆f−1, t̆f ]T arbitrarily and call it the ∇∇-tags. We define the mesh of G as,
mesh-(G) = max1≤e≤p(t̂e − t̂e−1) > 0. For some δ > 0, Gδ will represent a partition of [v, w]T
with mesh δ satisfying the property: for each e = 1, 2, . . . , p we have either (t̂e − t̂e−1) ≤ δ or
(t̂e − t̂e−1) > δ ∧ σ(t̂e−1) = t̂e. Again, mesh-(H) = max1≤f≤q(t̆f − t̆f−1) > 0. For some δ > 0,
Hδ will represent a partition of [r, s]T with mesh δ satisfying the property: for each f = 1, 2, . . . , q we
have either (t̆f − t̆f−1) ≤ δ or (t̆f − t̆f−1) > δ ∧ σ(t̆f−1) = t̆f .

Riemann ∇∇-sum, R∇∇(g;Gδ;Hδ), of real valued function “g” evaluated at the ∇∇-tags as follows,

R∇∇(g;Gδ;Hδ) :=

p∑
e=1

q∑
f=1

g
(
ξ̂e, ξ̆f

)
(t̂e − t̂e−1)(t̆f − t̆f−1).
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Definition 2. (Riemann ∇∇-integral) Let function g : [v, w]T × [r, s]T → R be a real valued
function. Function g is said to be Riemann ∇∇-integrable if there exists an I∇∇ ∈ R on [v, w]T ×
[r, s]T such that for any ε > 0 there exists δ > 0 hence for any ∇-partitions Gδ and Hδ, we have∣∣R∇∇(g;Gδ;Hδ)− I∇∇

∣∣ < ε. Here I∇∇ = R∇∇
∫ w
v

∫ s
r g(t̂, t̆)∇t̂∇t̆, where R∇∇

∫ w
v

∫ s
r g(t̂, t̆)∇t̂∇t̆ is

called the Riemann ∇∇-integral.
We take a quick look at the theory of interval analysis. R.E. Moore’s monograph [12] and [13] played

a vital role as a catalyst to the modern era of extensive research on interval analysis. This monograph
was the outgrowth of his Stanford PhD thesis titled “Interval arithmetic and automatic error analysis
in digital computing” [14]. Intuitively, interval analysis uses closed intervals of real numbers instead of
just numbers for calculations. Following we present basic concepts on classical interval analysis, view
[13] for more insight.

Let RI denote the class of all non-empty compact intervals of real numbers. [P] = [P−,P+] ∈ RI;
P− represents the left end point and P+ represents the right end point of interval [P]. If P− = P+

then [P] is said to be degenerate.
Given [P], [Q] ∈ RI, some rules of ordinary interval arithmetic are

Minkowski addition : [P]⊕ [Q] =
[
P− + Q−,P+ + Q+

]
.

Scalar Product : for r ∈ R, r[P] =
{

[rP−, rP+] if r > 0; [0] if r = 0;

[rP+, rP−] if r < 0
}
.

Order : [P] < [Q] implies P+ < Q−.

Subset : [P] ⊆ [Q] if and only if Q− < P− and P+ < Q+.

Absolute value :
∣∣[P]
∣∣ = max

{∣∣P−∣∣, ∣∣P+
∣∣}.

Reader is referred to [13] and [15] for theory on ordinary interval analysis.
The Hausdorff-Pompeiu distance between intervals [P] and [Q] is defined as

s
(
[P], [Q]

)
= max

{∣∣P− −Q−
∣∣, ∣∣P+ −Q+

∣∣}.
It is known that

(
RI, s

)
is a complete metric space. Properties of “s” are

1. s
(
[P], [Q]

)
= 0⇔ [P] = [Q];

2. s
(
γ[P], γ[Q]

)
= |γ|s

(
[P], [Q]

)
for all γ ∈ R;

3. s
(
[P]⊕ [R], [Q]⊕ [R]

)
= s
(
[P], [Q]

)
;

4. s
(
[P]⊕ [R], [Q]⊕ [S]

)
≤ s
(
[P], [Q]

)
+ s
(
[R], [S]

)
,

For details on “s” refer [16].
L. Stefanini in [16, 17] details the general limitation of substraction of sets. To partially overcome

this situation, M. Hukuhara [18] introduced the H-difference (Hukuhara difference) which was further
generalized by L. Stefanini [17], referring to it as the generalized Hukuhara difference. We will denote
generalized Hukuhara difference by “	gH” defined as

[P−,P+]	gH [Q−,Q+] = [R−,R+]⇔


P− = Q− + R−,P+ = Q+ + R+,

or

Q− = P− − R−,Q+ = P+ − R+,

so that [P−,P+]	gH [Q−,Q+] = [R−,R+] is always defined by

R− = min{P− −Q−,P+ −Q+}, R+ = max{P− −Q−,P+ −Q+},

i.e., [P]	gH [Q] =
[

min{P− −Q−,P+ −Q+},max{P− −Q−,P+ −Q+}
]
.

Properties of “	gH” are
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1. [P]	gH [P] = {0};
2.
(
[P]⊕ [Q]

)
	gH [Q] = [P]; [P]	gH

(
[P]⊕ [Q]

)
= −[Q];

3. s
(
[P], [Q]

)
= s
(
[P]	gH [Q], [0]

)
; here [0] = [0, 0];

4. s
(
[P], [Q]

)
= 0⇔ [P]	gH [Q] = {0}.

For more details on properties of “	gH” one may refer [16] and [17].
Let [v, w]T be a closed interval on T . Function h is said to be an interval valued function if it

assigns a nonempty interval

[h(t)] =
[
h(t)−, h(t)+

]
=
{
h : h(t)− ≤ h ≤ h(t)+

}
,

for each t ∈ [v, w]T , where h−, h+ : [v, w]T → R are real valued functions.
h : [v, w]T → RI and t ∈ [v, w]T , l ∈ RI is said to be an interval limit of h as t tends to u, denoted

by limt→u h(t) = l if for every ε > 0 there exists δ > 0 such that s(h(t), l) < ε for all |t− u| < δ. Here,

lim
t→u

h(t) = l⇔ lim
t→u

(
h(t)	gH l

)
= {0},

where the interval limits are in the metric “s”. For h(t) = [h−(t), h+(t)], limt→u h(t) exists if and only
if limt→u h

−(t) and limt→u h
+(t) exists as finite numbers. Here,

lim
t→u

h(t) =
[

lim
t→u

h−(t), lim
t→u

h+(t)
]
.

h : [v, w]T → RI is said to be interval continuous at u ∈ [v, w]T if for each ε > 0, there exists δ > 0
such that s([h(t)], [h(u)]) < ε whenever |t− u| < δ. Also, h is interval continuous at u ∈ [v, w]T if and
only if its end points h− and h+ are continuous functions at u ∈ [v, w]T . If h is interval continuous
at every t ∈ [v, w]T , then we say that h is interval continuous. h is said to be interval bounded, if for
B > 0, |[h(t)]| < B for all t ∈ [v, w]T .

Reader is referred to [19] and [20].
Integration of functions whose values are intervals (interval valued functions) have garnered much

attention in recent years for both continuous calculus and time scale calculus.
For interval valued functions in continuous calculus, the interval Riemann integral was defined by

O. Caprani et al. in [15] (also view [13]); the interval Henstock integral was defined by C. Wu et al. in
[21]; the interval Henstock-Stieltjes integral was defined by M. E. Hamid [22]; the interval AP-Henstock
integral was defined by M. E. Hamid et al. [23]; the interval AP-Henstock-Stieltjes integral was defined
by G. S. Eun et al. [24]; and the interval McShane and interval McShane-Stieltjes integrals are defined
by C.K. Park [25].

In 2013, V. Lupulescu [19] introduced the notion of interval analysis to the concept of time scale cal-
culus pioneering extensive research that followed soon. He formulated differentiability and integrability
for interval valued functions on time scales using generalized Hukuhara difference.

For interval valued function in time scale calculus the interval Riemann integral was defined by
D. Zhao et al. [26] (∆-integral) and by M. Bohner et al. [20] (∇-integral and ♦α-integral), the
interval Riemann integral defined using the notion of generalized Hukuhara difference was given by
V. Lupulescu [19]; the interval Riemann-Stieltjes integral was defined in [27] (∆-integral and∇-integral)
and interval Riemann-Stieltjes integral using the notion of generalized Hukuhara difference was also
defined in the same [27] (∆-integral and ∇-integral); the interval Henstock integral was defined by
W.T. Oh et al. [28] (∆-integral); the interval Henstock-Stieltjes integral was defined by J.H. Yoon [29]
(∆-integral); the interval McShane integral was defined by M.E. Hamid et al. [30] (∆-integral); the
interval McShane-Stieltjes integral was defined by M.E. Hamid [31] (∆-integral); and the interval
Henstock-Kurzweil-Stieltjes-♦-double integral was defined by D.A. Afariogun et al. [32, 33].
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Given T 1 × T 2 = {(t̂, t̆) : t̂ ∈ T 1, t̆ ∈ T 2}, and [P ] = [(P1, P2)], [Q] = [(Q1, Q2)], “s” forms a
complete metric space defined as [32,33]

s
(
[P ], [Q]

)
= s
(
[(P1, P2)], [(Q1, Q2)]

)
= max

{√
(Q−1 − P

−
1 )2 + (Q−2 − P

−
2 )2,

√
(Q+

1 − P
+
1 )2 + (Q+

2 − P
+
2 )2

}
.

Below we give the definition of interval Riemann ∆-integral and interval Riemann ∇-integral ac-
cording to D. Zhao et al. [26] and M. Bohner et al. [20], respectively.

We partition [v, w]T as E =
{
v = t0 < . . . < tp = w

}
∈ P([v, w]T ). ∆-subintervals are of the

form [te−1, te)T ; ∆-tags are ϑe ∈ [te−1, te)T taken arbitrarily. For some δ > 0, Eδ will represent a
∆-partition of [v, w]T with mesh δ.

Definition 3. [26](Interval Riemann ∆-integral) Let function h : [v, w]T → RI be an interval valued
function; h is said to be interval Riemann ∆-integrable if there exists an interval [I∆] ∈ RI on [v, w]T
such that for any ε > 0 there exists δ > 0 hence for any ∆-partition Eδ, we have s

(
IR∆(h;Eδ), [I∆]

)
< ε.

Here [I∆] = IR∆

∫ w
v h(t)∆t; IR∆(h;Eδ) :=

∑p
e=1[h(ϑe)](te − te−1).

The set of all interval Riemann ∆-integrable functions on [v, w]T will be denoted by
{

IR∆[v, w]T
}
.

The interval Riemann ∆-integral defined using the notion of generalized Hukuhara difference was
given by V. Lupulescu [19] as

Definition 4. [19] Let function h : [v, w]T → RI be an interval valued function; h is said to be
interval Riemann ∆-integrable if there exists an interval [I∆] ∈ RI on [v, w]T such that for any ε > 0
there exists δ > 0 hence for any ∆-partition Eδ, we have s

(
IR∆(h;Eδ) 	gH [I∆], [0]

)
< ε. Here

[I∆] = IR∆

∫ w
v h(t)∆t; IR∆(h;Eδ) :=

∑p
e=1[h(ϑe)](te − te−1).

We formulate a theorem (Theorem 1) which proves the equivalence of Definition 3 (as defined in
[26]) and Definition 4 (as defined in [19]) below

Theorem 1. If h ∈
{

IR∆[v, w]T
}
then, h is interval Riemann ∆-integrable defined using the gener-

alized Hukuhara difference and vice versa.

Proof. Suppose h ∈
{

IR∆[v, w]T
}
(Definition 3), then s

(
IR∆(h;Eδ), [I∆]

)
< ε. Hence,

s
([

min
{

IR∆(h−;Eδ)− I−∆, IR∆(h+;Eδ)− I+∆
}
,max

{
IR∆(h−;Eδ)− I−∆, IR∆(h+;Eδ)− I+∆

}]
, [0]
)

= max
{∣∣∣min

{
IR∆(h−;Eδ)− I−∆, IR∆(h+;Eδ)− I+∆

}
− 0−

∣∣∣, ∣∣∣max
{

IR∆(h−;Eδ)− I−∆,

IR∆(h+;Eδ)− I+∆
}
− 0+

∣∣∣} = max
{∣∣∣min

{
IR∆(h−;Eδ)− I−∆, IR∆(h+;Eδ)− I+∆

}∣∣∣,∣∣∣max
{

IR∆(h−;Eδ)− I−∆, IR∆(h+;Eδ)− I+∆
}∣∣∣} =

∣∣∣max
{

IR∆(h−;Eδ)− I−∆, IR∆(h+;Eδ)− I+∆
}∣∣∣ < ε.

Thus, if h ∈
{

IR∆[v, w]T
}

implies h is interval Riemann ∆-integral defined using the generalized
Hukuhara difference. The converse is proved similarly.

For the ∇-integral, we partition [v, w]T as G =
{
v = t0 < . . . < tp = w

}
∈ P([v, w]T ).

∇-subintervals are of the form (te−1, te]T ; ∇-tags are ξe ∈ (te−1, te]T taken arbitrarily. For some
δ > 0, Gδ will represent a ∇-partition of [v, w]T with mesh δ.

Definition 5. [20](Interval Riemann ∇-integral) Let function h : [v, w]T → RI be an interval val-
ued function; h is said to be interval Riemann ∇-integrable if there exists an interval [I∇] ∈ RI
on [v, w]T such that for any ε > 0 there exists δ > 0 hence for any ∇-partition Gδ, we have
s
(
IR∇(h;Gδ), I∇]

)
< ε. Here [I∇] = IR∇

∫ w
v h(t)∇t; IR∇(h;Gδ) :=

∑p
e=1[h(ξe)](te − te−1).

204 Bulletin of the Karaganda University



On interval Riemann double integration ...

The set of all interval Riemann ∇-integrable functions on [v, w]T will be denoted by
{

IR∇[v, w]T
}
.

The interval Riemann ∇-integral defined using the notion of generalized Hukuhara difference is
given below

Definition 6. Let function h : [v, w]T → RI be an interval valued function; h is said to be in-
terval Riemann ∇-integrable if there exists an interval [I∇] ∈ RI on [v, w]T such that for any ε > 0
there exists δ > 0 hence for any ∇-partition Gδ, we have s

(
IR∇(h;Gδ) 	gH [I∇], [0]

)
< ε. Here

[I∇] = IR∇
∫ w
v h(t)∇t; IR∇(h;Gδ) :=

∑p
e=1[h(ξe)](te − te−1).

Theorem 2 states the equivalence of Definition 5 (as defined in [20]) and Definition 6; proof of the
statement is omitted due to similarity with Theorem 1.

Theorem 2. If h ∈
{

IR∇[v, w]T
}
, then h is interval Riemann ∇-integrable defined using the gener-

alized Hukuhara difference and vice versa.

To the best of our knowledge, Riemann double integral for interval valued functions on time scales
has not been discussed in literature. Hence, the primary objective of this paper is to define the interval
Riemann ∆∆- and ∇∇-integrals and establish some fascinating results.

1 Interval Riemann double integration

Partitioning [v, w]T as E =
{
v = t̂0 < . . . < t̂p = w

}
∈ P([v, w]T ) and [r, s]T as

F =
{
r = t̆0 < . . . < t̆q = s

}
∈ P([r, s]T ). ∆∆-subintervals for [v, w]T and [r, s]T are of the

form [t̂e−1, t̂e)T and [t̆f−1, t̆f )T respectively. ∆∆-tags are ϑ̂e ∈ [t̂e−1, t̂e)T and ϑ̆f ∈ [t̆f−1, t̆f )T taken
arbitrarily. For some δ > 0, Eδ and Fδ will represent ∆-partitions of [v, w]T and [r, s]T respectively
with mesh δ.

Interval Riemann ∆∆-sum, IR∆∆(h;Eδ;Fδ), of interval valued function “h” evaluated at the
∆∆-tags as follows,

IR∆∆(h;Eδ;Fδ) :=

p∑
e=1

q∑
f=1

[
h(ϑ̂e, ϑ̆f )

]
(t̂e − t̂e−1)(t̆f − t̆f−1),

i.e., IR∆∆(h;Eδ;Fδ) =
[
h(ϑ̂1, ϑ̆1)−

(
t̂1 − t̂0

)(
t̆1 − t̆0

)
, h(ϑ̂1, ϑ̆1)+

(
t̂1 − t̂0

)(
t̆1 − t̆0

)]
⊕ . . .⊕[

h(ϑ̂p, ϑ̆q)
−(t̂p − t̂p−1

)(
t̆q − t̆q−1

)
, h(ϑ̂p, ϑ̆q)

+
(
t̂p − t̂p−1

)(
t̆q − t̆q−1

)]
.

Here,

IR∆∆(h−;Eδ;Fδ) :=

p∑
e=1

q∑
f=1

h(ϑ̂e, ϑ̆f )−(t̂e − t̂e−1)(t̆f − t̆f−1),

IR∆∆(h+;Eδ;Fδ) :=

p∑
e=1

q∑
f=1

h(ϑ̂e, ϑ̆f )+(t̂e − t̂e−1)(t̆f − t̆f−1).

Definition 7. (Interval Riemann ∆∆-integral) Let function h : [v, w]T × [r, s]T → RI be an interval
valued function; h is said to be interval Riemann ∆∆-integrable if there exists an interval [I∆∆] ∈ RI
on [v, w]T × [r, s]T such that for any ε > 0 there exists δ > 0 hence for any ∆-partitions Eδ and Fδ,
we have

s
(
IR∆∆(h;Eδ;Fδ), [I∆∆]

)
< ε.

Here [I∆∆] = IR∆∆

∫ w
v

∫ s
r h(t̂, t̆)∆t̂∆t̆, where IR∆∆

∫ w
v

∫ s
r h(t̂, t̆)∆t̂∆t̆ is called the interval Riemann

∆∆-integral.
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The set of all interval Riemann ∆∆-integrable functions on [v, w]T × [r, s]T will be denoted by{
IR∆∆[v, w]T × [r, s]T

}
.

Example 1. 1. When T = R, the interval Riemann ∆∆-integral coincides with the usual interval
Riemann double integral in R.

2. When T = aZ, here a ∈ R and v, w, r, s ∈ aZ, if h ∈
{

IR∆∆[v, w]T × [r, s]T
}
, then

IR∆∆

∫ w

v

∫ s

r
h(t̂, t̆)∆t̂∆t̆ = a2 ·

w
a
−1∑

i= v
a

s
a
−1∑

j= r
a

[
h(ai, aj)

]

= a2 ·

w
a
−1∑

i= v
a

s
a
−1∑

j= r
a

[
h(ai, aj)−, h(ai, aj)+

]
.

If a = 1, T = Z and

IR∆∆

∫ w

v

∫ s

r
h(t̂, t̆)∆t̂∆t̆ =

w−1∑
i=v

s−1∑
j=r

[
h(i, j)

]
.

For the ∇∇-integral, we partition [v, w]T as G =
{
v = t̂0 < . . . < t̂p = w

}
∈ P([v, w]T ) and

[r, s]T as H =
{
r = t̆0 < . . . < t̆q = s

}
∈ P([r, s]T ). ∇∇-subintervals for [v, w]T and [r, s]T are of the

form (t̂e−1, t̂e]T and (t̆f−1, t̆f ]T , respectively. ∇∇-tags are ξ̂e ∈ (t̂e−1, t̂e]T and ξ̆f ∈ (t̆f−1, t̆f ]T taken
arbitrarily. For some δ > 0, Gδ and Hδ will represent ∇-partitions of [v, w]T and [r, s]T respectively
with mesh δ.

Interval Riemann∇∇-sum, IR∇∇(h;Gδ;Hδ), of interval valued function h evaluated at the∇∇-tags
as follows,

IR∇∇(h;Gδ;Hδ) :=

p∑
e=1

q∑
f=1

[
h(ξ̂e, ξ̆f )

]
(t̂e − t̂e−1)(t̆f − t̆f−1),

i.e., IR∇∇(h;Gδ;Hδ) =
[
h(ξ̂1, ξ̆1)−

(
t̂1 − t̂0

)(
t̆1 − t̆0

)
, h(ξ̂1, ξ̆1)+

(
t̂1 − t̂0

)(
t̆1 − t̆0

)]
⊕ . . .⊕[

h(ξ̂p, ξ̆q)
−(t̂p − t̂p−1

)(
t̆q − t̆q−1

)
, h(ξ̂p, ξ̆q)

+
(
t̂p − t̂p−1

)(
t̆q − t̆q−1

)]
.

Here,

IR∇∇(h−;Gδ;Hδ) :=

p∑
e=1

q∑
f=1

h(ξ̂e, ξ̆f )−(t̂e − t̂e−1)(t̆f − t̆f−1),

IR∇∇(h+;Gδ;Hδ) :=

p∑
e=1

q∑
f=1

h(ξ̂e, ξ̆f )+(t̂e − t̂e−1)(t̆f − t̆f−1).

Definition 8. (Interval Riemann ∇∇-integral) Let function h : [v, w]T × [r, s]T → RI be an interval
valued function; h is said to be interval Riemann ∇∇-integrable if there exists an interval [I∇∇] ∈ RI
on [v, w]T × [r, s]T such that for any ε > 0 there exists δ > 0 hence for any ∇-partitions Gδ and Hδ,
we have

s
(
IR∇∇(h;Gδ;Hδ), [I∇∇]

)
< ε.

Here [I∇∇] = IR∇∇
∫ w
v

∫ s
r h(t̂, t̆)∇t̂∇t̆, where IR∇∇

∫ w
v

∫ s
r h(t̂, t̆)∇t̂∇t̆ is called the interval Riemann

∇∇-integral.
The set of all interval Riemann ∇∇-integrable functions on [v, w]T × [r, s]T will be denoted by{

IR∇∇[v, w]T × [r, s]T
}
.
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Example 2. 1. When T = R, the interval Riemann ∇∇-integral coincides with the usual interval
Riemann double integral in R.

2. When T = aZ, here a ∈ R and v, w, r, s ∈ aZ, if h ∈
{

IR∇∇[v, w]T × [r, s]T
}
, then

IR∇∇

∫ w

v

∫ s

r
h(t̂, t̆)∇t̂∇t̆ = a2 ·

w
a∑

i= v
a

+1

s
a∑

j= r
a

+1

[
h(ai, aj)

]

= a2 ·

w
a∑

i= v
a

+1

s
a∑

j= r
a

+1

[
h(ai, aj)−, h(ai, aj)+

]
.

If a = 1, T = Z and

IR∇∇

∫ w

v

∫ s

r
h(t̂, t̆)∇t̂∇t̆ =

w∑
i=v+1

s∑
j=r+1

[
h(i, j)

]
.

Following statements and theorems will be given in regard to the ∆∆-integral, ∇∇-integral versions
are omitted due to their similarity.

Remark 1. If h ∈
{

IR∆∆[v, w]T × [r, s]T
}
, then the value of integral [I∆∆] is unique and well-

defined.
If h ∈

{
IR∆∆[v, w]T × [r, s]T

}
and h is degenerate, then interval Riemann ∆∆-integral (Definition

7) equals Riemann ∆∆-integral (Definition 1).
Theorem 3. Let h : [t̂0, σ(t̂0)]T × [t̆0, σ(t̆0)]T → RI, then h ∈

{
IR∆∆[t̂0, σ(t̂0)]T × [t̆0, σ(t̆0)]T

}
and

IR∆∆

∫ σ(t̂0)

t̂0

∫ σ(t̆0)

t̆0

h(t̂, t̆)∆t̂∆t̆ =
[
h(t̂0, t̆0)−

(
σ(t̂0)− t̂0

)(
σ(t̆0)− t̆0

)
, h(t̂0, t̆0)+

(
σ(t̂0)− t̂0

)(
σ(t̆0)− t̆0

)]
.

Theorem 4. Let h : [ρ(t̂0), t̂0]T × [ρ(t̆0), t̆0]T → RI, then h ∈
{

IR∆∆[ρ(t̂0), t̂0] T × [ρ(t̆0), t̆0]T
}
and

IR∆∆

∫ t̂0

ρ(t̂0)

∫ t̆0

ρ(t̆0)
h(t̂, t̆)∆t̂∆t̆ =

[
h
(
ρ(t̂0), ρ(t̆0)

)−(
t̂0 − ρ(t̂0)

)(
t̆0 − ρ(t̆0)

)
, h
(
ρ(t̂0), ρ(t̆0)

)+
(
t̂0 − ρ(t̂0)

)(
t̆0 − ρ(t̆0)

)]
.

Theorem 5. An interval valued function h : [v, w]T×[r, s]T → RI is interval Riemann ∆∆-integrable
on [v, w]T × [r, s]T if and only if h− and h+ are Riemann ∆∆-integrable on [v, w]T × [r, s]T and

IR∆∆

∫ w

v

∫ s

r
h(t̂, t̆)∆t̂∆t̆ =

[
R∆∆

∫ w

v

∫ s

r
h(t̂, t̆)−∆t̂∆t̆,R∆∆

∫ w

v

∫ s

r
h(t̂, t̆)+∆t̂∆t̆

]
.

Proof. If h ∈
{

IR∆∆[v, w]T × [r, s]T
}
, then integral [I∆∆] = [I−∆∆, I

+
∆∆] such that for each ε > 0

there exists δ such that

s
(
IR∆∆(h;Eδ;Fδ), [I∆∆]

)
= max

{∣∣∣IR∆∆(h−;Eδ;Fδ)− I−∆∆

∣∣∣, ∣∣∣IR∆∆(h+;Eδ;Fδ)− I+
∆∆

∣∣∣}
= max

{∣∣∣∣ p∑
e=1

q∑
f=1

h(ϑ̂e, ϑ̆f )−(t̂e − t̂e−1)(t̆f − t̆f−1)− I−∆∆

∣∣∣∣,∣∣∣∣ p∑
e=1

q∑
f=1

h(ϑ̂e, ϑ̆f )+(t̂e − t̂e−1)(t̆f − t̆f−1)− I+
∆∆

∣∣∣∣} < ε,

thus,
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∣∣∣∑p
e=1

∑q
f=1 h(ϑ̂e, ϑ̆f )−(t̂e − t̂e−1)(t̆f − t̆f−1)− I−∆∆

∣∣∣ < ε and∣∣∣∑p
e=1

∑q
f=1 h(ϑ̂e, ϑ̆f )+(t̂e − t̂e−1)(t̆f − t̆f−1)− I+

∆∆

∣∣∣ < ε,

hence we conclude.
Conversely, let h−, h+ be Riemann ∆∆-integrable on [v, w]T × [r, s]T , then there exists I1, I2 ∈ R

such that for each ε > 0, there exists δ such that∣∣∣R∆∆(h−;Eδ;Fδ)− I1

∣∣∣ < ε and
∣∣∣R∆∆(h+;Eδ;Fδ)− I2

∣∣∣ < ε.

Letting [I∆∆] = [I1, I2], we have

max
{∣∣∣R∆∆(h−;Eδ;Fδ)− I1

∣∣∣, ∣∣∣R∆∆(h+;Eδ;Fδ)− I2

∣∣∣} = max

{∣∣∣∣ p∑
e=1

q∑
f=1

h(ϑ̂e, ϑ̆f )−(t̂e − t̂e−1)

(t̆f − t̆f−1)− I−∆∆

∣∣∣∣, ∣∣∣∣ p∑
e=1

q∑
f=1

h(ϑ̂e, ϑ̆f )+(t̂e − t̂e−1)(t̆f − t̆f−1)− I+
∆∆

∣∣∣∣} < ε,

implies s
(
IR∆∆(h;Eδ;Fδ), [I∆∆]

)
< ε hence we conclude.

Without actually knowing the value of the integral, we can prove the integrability of a function via
the criterion of integrability. It is stated as

Theorem 6. An interval valued function h : [v, w]T×[r, s]T → RI is interval Riemann ∆∆-integrable
on [v, w]T × [r, s]T if and only if for each ε > 0 there exists δ such that any ∆-partitions E1δ ,F1δ and
E2δ ,F2δ with mesh< δ implies

s
(
IR∆∆(h;E1δ ;F1δ), IR∆∆(h;E2δ ;F2δ)

)
< ε.

A function h : [v, w]T × [r, s]T → RI is said to be interval continuous at (t̂0, t̆0) ∈ [v, w]T × [r, s]T if

for each ε > 0 there exists δ > 0 such that s
([
h(t̂, t̆)

]
,
[
h(t̂0, t̆0)

])
< ε, whenever

√
(t̂0 − t̂)2 + (t̆0 − t̆)2 < δ.

Interval boundedness and interval continuity of a function are sufficient conditions for the existence
of interval Riemann double integrability.

Theorem 7. Every bounded continuous interval valued function is interval Riemann ∆∆-integrable,
and

IR∆∆

∫ w

v

∫ s

r
h(t̂, t̆)∆t̂∆t̆ =

[
R∆∆

∫ w

v

∫ s

r
h(t̂, t̆)−∆t̂∆t̆,R∆∆

∫ w

v

∫ s

r
h(t̂, t̆)+∆t̂∆t̆

]
.

Below we establish a relation between interval Riemann ∆∆-integral and Riemann ∆∆-integral for
two interval valued functions via Hausdorff-Pompeiu distance.

Theorem 8. Let h1, h2 ∈
{

IR∆∆[v, w]T × [r, s]T
}
, if given s

(
[h1(t̂, t̆)], [h2(t̂, t̆)]

)
is Riemann

∆∆-integral then,

s
(

IR∆∆

∫ w
v

∫ s
r h1(t̂, t̆)∆t̂∆t̆, IR∆∆

∫ w
v

∫ s
r h2(t̂, t̆)∆t̂∆t̆

)
≤ R∆∆

∫ w
v

∫ s
r s
(
[h1(t̂, t̆)], [h2(t̂, t̆)]

)
∆t̂∆t̆.
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Proof. By definition of distance we have,

s
(

IR∆∆

∫ w

v

∫ s

r
h1(t̂, t̆)∆t̂∆t̆, IR∆∆

∫ w

v

∫ s

r
h2(t̂, t̆)∆t̂∆t̆

)
= max

{∣∣∣IR∆∆

∫ w

v

∫ s

r
h1(t̂, t̆)−∆t̂∆t̆− IR∆∆

∫ w

v

∫ s

r
h2(t̂, t̆)−∆t̂∆t̆

∣∣∣,∣∣∣IR∆∆

∫ w

v

∫ s

r
h1(t̂, t̆)+∆t̂∆t̆− IR∆∆

∫ w

v

∫ s

r
h2(t̂, t̆)+∆t̂∆t̆

∣∣∣}
≤ max

{
IR∆∆

∫ w

v

∫ s

r

∣∣h1(t̂, t̆)− − h2(t̂, t̆)−
∣∣∆t̂∆t̆, IR∆∆

∫ w

v

∫ s

r

∣∣h1(t̂, t̆)+ − h2(t̂, t̆)+
∣∣∆t̂∆t̆}

≤ IR∆∆

∫ w

v

∫ s

r
max

{∣∣h1(t̂, t̆)− − h2(t̂, t̆)−
∣∣, ∣∣h1(t̂, t̆)+ − h2(t̂, t̆)+

∣∣}∆t̂∆t̆

= R∆∆

∫ w

v

∫ s

r
s
(
[h1(t̂, t̆)], [h2(t̂, t̆)]

)
∆t̂∆t̆.

Theorem 9. Let h1, h2 ∈
{

IR∆∆[v, w]T × [r, s]T
}
and γ ∈ R, then

1. γh1 ∈
{

IR∆∆[v, w]T × [r, s]T
}
and

IR∆∆

∫ w

v

∫ s

r
γh1(t̂, t̆)∆t̂∆t̆ = γ IR∆∆

∫ w

v

∫ s

r
h1(t̂, t̆)∆t̂∆t̆,

2. h1 + h2 ∈
{

IR∆∆[v, w]T × [r, s]T
}
and

IR∆∆

∫ w

v

∫ s

r
(h1 + h2)(t̂, t̆)∆t̂∆t̆ = IR∆∆

∫ w

v

∫ s

r
h1(t̂, t̆)∆t̂∆t̆+

IR∆∆

∫ w

v

∫ s

r
h2(t̂, t̆)∆t̂∆t̆,

3. h1(t̂, t̆) ⊆ h2(t̂, t̆)

IR∆∆

∫ w

v

∫ s

r
h1(t̂, t̆)∆t̂∆t̆ ⊆ IR∆∆

∫ w

v

∫ s

r
h2(t̂, t̆)∆t̂∆t̆.

Definition 7 and Definition 8 can also be alternatively defined using the generalized Hukuhara
difference as

Definition 9. Let function h : [v, w]T × [r, s]T → RI be an interval valued function; h is said to be
interval Riemann ∆∆-integrable if there exists an interval [I∆∆] ∈ RI on [v, w]T × [r, s]T such that for
any ε > 0 there exists δ > 0 hence for any ∆-partitions Eδ and Fδ, we have

s
(
IR∆∆(h;Eδ;Fδ)	gH [I∆∆], [0]

)
< ε.

Here [I∆∆] = IR∆∆

∫ w
v

∫ s
r h(t̂, t̆)∆t̂∆t̆, where IR∆∆

∫ w
v

∫ s
r h(t̂, t̆)∆t̂∆t̆ is called the interval Riemann

∆∆-integral.

We establish a theorem which proves the equivalence of Definition 7 and Definition 9.

Theorem 10. If h ∈
{

IR∆∆[v, w]T × [r, s]T
}

then, h is interval Riemann ∆∆-integrable defined
using the generalized Hukuhara difference and vice versa.
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Proof. Suppose h ∈
{

IR∆∆[v, w]T × [r, s]T
}
(Definition 7), then s

(
IR∆∆(h;Eδ;Fδ),

[
I∆∆

])
< ε.

Hence,

s
([

min
{

IR∆∆(h−;Eδ;Fδ)− I−∆∆, IR∆∆(h+;Eδ;Fδ)− I+
∆∆

}
,

max
{

IR∆∆(h−;Eδ;Fδ)− I−∆∆, IR∆∆(h+;Eδ;Fδ)− I+
∆∆

}]
, [0]
)

= max
{∣∣∣min

{
IR∆∆(h−;Eδ;Fδ)− I−∆∆, IR∆∆(h+;Eδ;Fδ)− I+

∆∆

}
− 0−

∣∣∣,∣∣∣max
{

IR∆∆(h−;Eδ;Fδ)− I−∆∆, IR∆∆(h+;Eδ;Fδ)− I+
∆∆

}
− 0+

∣∣∣}
= max

{∣∣∣min
{

IR∆∆(h−;Eδ;Fδ)− I−∆∆, IR∆∆(h+;Eδ;Fδ)− I+
∆∆

}∣∣∣,∣∣∣max
{

IR∆∆(h−;Eδ;Fδ)− I−∆∆, IR∆∆(h+;Eδ;Fδ)− I+
∆∆

}∣∣∣}
=
∣∣∣max

{
IR∆∆(h−;Eδ;Fδ)− I−∆∆, IR∆∆(h+;Eδ;Fδ)− I+

∆∆

}∣∣∣ < ε.

Thus, if h ∈
{

IR∆∆[v, w]T × [r, s]T
}
implies h is interval Riemann ∆∆-integrable defined using

the generalized Hukuhara difference. The converse is proved similarly.

Definition 8 is alternatively defined using the notion of generalized Hukuhara difference as

Definition 10. Let function h : [v, w]T × [r, s]T → RI be an interval valued function; h is said to
be interval Riemann ∇∇-integrable if there exists an interval [I∇∇] ∈ RI on [v, w]T × [r, s]T such that
for any ε > 0 there exists δ > 0 hence for any ∇-partitions Gδ and Hδ, we have

s
(
IR∇∇(h;Gδ;Hδ)	gH [I∇∇], [0]

)
< ε.

Here [I∇∇] = IR∇∇
∫ w
v

∫ s
r h(t̂, t̆)∇t̂∇t̆, where IR∇∇

∫ w
v

∫ s
r h(t̂, t̆)∇t̂∇t̆ is called the interval Riemann

∇∇-integral.
We establish a theorem which proves the equivalence of Definition 8 and Definition 10; prove is

omitted due to its similarity with Theorem 10.

Theorem 11. If h ∈
{

IR∇∇[v, w]T × [r, s]T
}
, then h is interval Riemann ∇∇-integrable defined

using the generalized Hukuhara difference and vice versa.

Conclusion

This paper explores the theory of Riemann double integration for interval valued functions on time
scales and discuss a few fascinating results.
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In this article, new q-analogues of Lyapunov-type inequalities are presented for two-point fractional bound-
ary value problems involving the Riemann–Liouville fractional q-derivative with well-posed q-boundary
conditions. The study relies on the properties of the q-Green’s function, which is constructed to solve such
problems and allows for the analytical derivation of the inequalities. These inequalities find application in
two directions: establishing precise lower bounds for the eigenvalues of corresponding q-fractional spectral
problems and formulating criteria for the absence of real zeros in q-analogues of Mittag-Leffler functions.
The obtained results generalize classical and fractional Lyapunov inequalities, offering new perspectives
for the analysis of stability and spectral properties of q-fractional differential systems. The relevance of
the work is driven by the growing interest in q-calculus in discrete models, such as viscoelastic systems
or quantum circuits, where discrete dynamics play a key role. The convenience of closed-form analytical
expressions makes the results practically applicable. The research lays the foundation for further general-
izations, including Caputo derivatives or multidimensional q-systems, which may stimulate new discoveries
in discrete fractional analysis.

Keywords: q-calculus, fractional q-derivative, Lyapunov-type inequality, Riemann–Liouville fractional deriva-
tive, Green’s function, Mittag-Leffler function, eigenvalue problems, fractional integral.
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Introduction

Fractional calculus investigates integrals and derivatives of arbitrary (non-integer) order, has be-
come an indispensable framework for modelling complex phenomena in physics, biology, engineering,
and economics [1,2]. Fractional differential equations (FDEs) naturally describe memory effects, non-
local interactions, and anomalous diffusion; a representative example is C.F. Li et al.’s proof of positive
solutions for nonlinear FDEs with boundary constraints [3].

A central analytical tool for boundary-value problems (BVPs) in the fractional setting is the
Lyapunov-type inequality. R.A.C. Ferreira obtained the first variant for a Riemann–Liouville deriva-
tive with Dirichlet conditions [4]; M. Jleli and B. Samet extended the result to mixed boundary condi-
tions [5]; and D. Basu et al. treated fractional boundary conditions, applying the inequality to spectral
questions [6]. Subsequent refinements yielded sharper eigenvalue bounds and zero-free intervals for
Mittag-Leffler functions [7].

Parallel to the continuous theory, q-fractional calculus blends quantum calculus with fractional
analysis. Its origins trace back to Jackson’s introduction of q-difference operators and integrals
[8, 9] and R.D. Carmichael’s work on q-difference equations [10]. Modern expositions by V. Kac and
P. Cheung [11], T. Ernst [12,13], and M.H. Annaby, Z.S. Mansour [14] have systematised the subject.
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Foundational notions of q-fractional integrals and derivatives, proposed by W.A. Al-Salam [15] and
R.P. Agarwal [16], were rigorously formalised by P.M. Rajkovic et al. [17, 18].

Applications of q-fractional differential equations range from quantum mechanics to discrete dy-
namical systems. R.A.C. Ferreira analysed non-trivial and positive solutions for several classes of
q-fractional BVPs [19, 20]; S. Shaimardan and collaborators established existence and uniqueness re-
sults for Cauchy-type problems with Riemann–Liouville derivatives [21]. The q-fractional framework
has been connected with time–scale calculus through the work of F.M. Atici and P.W. Eloe [22];
with three-point and other non-local boundary conditions in the papers of S. Liang, J. Zhang, C. Yu,
J. Wang, S. Wang et al. [23–25]; and further refined for related non-local problems by C. Zhai,
J. Ren [26] and Y. Zhao, H. Chen, Q. Zhang [27]. Lyapunov-type inequalities for q-fractional equa-
tions were first obtained by M. Jleli and B. Samet [28].

In this work we derive two new Lyapunov-type inequalities for the q-fractional boundary-value
problem {

Dα
q,au(t) + q(t)u(t) = 0, a ≤ t ≤ b, 1 < α ≤ 2, 0 ≤ β ≤ 1,

u(a) = 0, Dβ
q,au(b) = 0, 0 < q < 1,

by exploiting properties of the associated q-Green function. The analysis combines topological fixed-
point techniques [29], and existence principles in the Caratheodory framework [30]. Our results sharpen
eigenvalue estimates, offer criteria for the real zeros of q-Mittag-Leffler functions, and advance the
spectral theory of discrete fractional models.

1 Preliminaries

In this section, we introduce essential definitions and foundational concepts, including key aspects
of q-calculus, which underpin the present study. For a comprehensive exploration of these topics,
readers are referred to the monographs [11,14].

For α ∈ R, the q-real number [α]q is given by

[α]q =
1− qα

1− q
, q 6= 1,

where lim
q→1

1−qα
1−q = α.

We introduce for k ∈ N:

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(
1− qka

)
, (a; q)∞ = lim

n→∞
(a, q)n, (a; q)α =

(a; q)∞
(qαa; q)∞

.

The q-factorial [n]q!, serving as the q-analogue of the binomial coefficient factorial, is defined as

[n]q! =

{
1, if n = 0,
[1]q × [2]q × · · · × [n]q, if n ∈ N.

The q-gamma function Γq(x) is given by

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, x ∈ R\{0,−1,−2, . . .}

and satisfies the functional relation Γq(x+ 1) = [x]qΓq(x).
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Definition 1. [11] The q-analogue differential operator Dqf(x) is

Dqf(x) =
f(x)− f(qx)

x(1− q)
,

and the q-derivatives Dn
q (f(x)) of higher order are defined inductively as follows:

D0
q(f(x)) = f(x), Dn

q (f(x)) = Dq

(
Dn−1
q f(x)

)
(n = 1, 2, 3, . . . ),

where 0 < q < 1. Be aware that lim
q→1

Dqf(x) = f ′(x).

Dq,x(x− s)q(γ) = [γ]q(x− s)q(γ−1), (1)

Dq,s(x− s)q(γ) = −[γ]q(x− qs)q(γ−1).

The q-integral (or Jackson integral)
b∫
a
f(x)dqx is defined by

a∫
0

f(x)dqx := (1− q)a
∞∑
m=0

qmf (aqm) ,

for a = 0 and

b∫
a

f(x)dqx =

b∫
0

f(x)dqx−
a∫

0

f(x)dqx,

for 0 < a < b. For further details, see [8, 9].

Definition 2. [21] For α > 0, and a function f defined on [a, b], the fractional q-integral of Riemann–
Liouville type is characterized by

(
I0
q,af

)
(x) = f(x) and

(
Iαq,af

)
(x) =

1

Γq(α)

x∫
a

(x− qt)(α−1)
q f(t)dqt, x ∈ [a, b].

Definition 3. [16]. Given α, β > 0, the Riemann–Liouville fractional q-derivative is defined by
setting

(
D0
q,af

)
(x) = f(x) and (

Dα
q,af

)
(x) =

(
D[α]
q,aI

[α]−α
q,a f

)
(x),

where [α] is the smallest integer greater than or equal to α.
For λ ∈ (−1,∞), the following is valid [9]:

(
Dα
q,a(x− a)λ

)
(x) =

Γq(λ+ 1)

Γq(λ− α+ 1)
(x− a)λ−α. (2)

The space Lpq = Lpq [a, b] corresponding to 1 ≤ p <∞ is defined by

Lpq [a, b] :=

f :

 b∫
a

|f(x)|pdqx


1
p

<∞

 .
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Let 0 < a < b <∞ and 0 ≤ λ ≤ 1. Then we introduce the space Cq,λ[a, b] of functions f given on
[a, b], such that the functions with the norm

‖f‖Cq,λ[a,b] := max
x∈[a,b]

∣∣∣(x− qa)(λ)
q f(x)

∣∣∣ <∞.
The collection of all q-absolutely continuous functions on [a, b] is denoted ACq[a, b]. For
n ∈ N := 1, 2, 3, . . . we denote by ACnq [a, b] the space of real-valued functions f(x) which have
q-derivatives up to order n− 1 on [a, b] such that Dn−1

q f(x) ∈ ACq[a, b] :

ACnq [a, b] :=
{
f : [a, b]→ R;Dn−1

q f(x) ∈ ACq[a, b]
}
.

Lemma 1. [18] Assume α > 0, β > 0, and 1 ≤ p <∞. The semigroup property for the q-fractional
integral holds as follows:

1. (Iβq,aIαq,af)(x) = (Iα+β
q,a f)(x),

2. (Dα
q,aI

α
q,af)(x) = f(x),

3.
(
Dβ
q,aIαq,af

)
(x) =

(
Iα−βq,a f

)
(x),

where f(x) ∈ Lpq [a, b] for all x ∈ [a, b].

Lemma 2. Suppose α > 0, p ∈ N, q ∈ (0, 1), and let f ∈ ACpq [a, b] be a function with q-derivatives
Dk
q,af defined at x = a for k = 0, 1, . . . , p − 1. Following [19], the Riemann–Liouville q-fractional

integral Iαq,a and derivative Dα
q,a satisfy

(
Iαq,aD

α
q,af

)
(x) =

(
Dα
q,aI

α
q,af

)
(x)−

p−1∑
k=0

(x− a)α−p+k

Γq(α+ k − p+ 1)

(
Dk
q,af

)
(a), x ∈ [a, b].

Lemma 3. For γ > −1, q ∈ (0, 1), a < b, and x ≥ b, the q-integral of the q-power function is given
by ∫ b

a
(x− qs)(γ)

q dqs =
(x− a)γ+1

[γ + 1]q
, (3)

where (x− qs)(γ)
q = (x− qs)γ and [γ + 1]q = 1−qγ+1

1−q . See [9] for details.

2 Main Results

Theorem 1. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 < α− β < 1, q ∈ (0, 1), and h ∈ L1
q [a, b]. The q-fractional

boundary value problem
Dα
q,au(t) + h(t) = 0, t ∈ [a, b], (4)

with boundary conditions
u(a) = 0, Dβ

q,au(b) = 0, (5)

has a unique solution given by

u(t) =

b∫
a

Gq(t, s)h(s) dqs,

where the q-Green’s function Gq(t, s) is defined as

Gq(t, s) =
1

Γq(α)


(t−a)α−1

(b−a)α−β−1 (b− qs)(α−β−1)
q , a ≤ t ≤ s ≤ b,

(t−a)α−1

(b−a)α−β−1 (b− qs)(α−β−1)
q − (t− qs)(α−1)

q , a ≤ s ≤ t ≤ b.
(6)
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Proof. By applying the operator Iαq,a from definition 2 to both sides of (4) and employing Lemma 2
with p = 2, we obtain

u(t) = −Iαq,ah(t) + C1(t− a)α−1 + C2(t− a)α−2, (7)

for some C1, C2 ∈ R. Applying the operator Dβ
q,a in condition (5) to both parts of the equation (7)

and using the Lemma 1, we obtain

Dβ
q,au(t) = −Dβ

q,aI
α
q,ah(t) + C1D

β
q,a(t− a)α−1

+ C2D
β
q,a(t− a)α−2,

proceeding further, and using formula (2), we arrive at

Dβ
q,au(t) = −Iα−βq,a h(t) + C1

Γq(α)

Γq(α− β)
(t− a)α−β−1

+ C2
Γq(α− 1)

Γq(α− β − 1)
(t− a)α−β−2.

(8)

Using the boundary condition u(a) = 0 in equation (7) gives C2 = 0. Applying the condition
Dβ
q,au(b) = 0 to equation (8) then leads to

C1 =
1

Γq(α)(b− a)α−β−1

b∫
a

(b− qs)(α−β−1)
q h(s) dqs.

Substituting the explicit expressions for C1 and C2 into equation (7), we obtain the unique solution
of (4) as

u(t) = − 1

Γq(α)

t∫
a

(t− qs)(α−1)
q h(s)dqs

+
1

Γq(α)

b∫
a

(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q h(s)dqs

=
1

Γq(α)

t∫
a

[
(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q − (t− qs)(α−1)
q

]
h(s)dqs

+
1

Γq(α)

b∫
t

(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q h(s)dqs

=

b∫
a

Gq(t, s)h(s)dqs.

Hence, the result follows.

Corollary 1. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 1 ≤ α−β < 2, q ∈ (0, 1), and h ∈ L1
q [a, b]. The q-fractional

boundary value problem
Dα
q,au(t) + h(t) = 0, t ∈ [a, b],

with boundary conditions
u(a) = 0, Dβ

q,au(b) = 0,
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has a unique solution u ∈ ACαq [a, b] given by

u(t) =

b∫
a

Gq(t, s)h(s) dqs,

where the q-Green’s function Gq(t, s) is defined as

Gq(t, s) =
1

Γq(α)


(t−a)α−1

(b−a)α−β−1 (b− qs)(α−β−1)
q , a ≤ t ≤ s ≤ b,

(t−a)α−1

(b−a)α−β−1 (b− qs)(α−β−1)
q − (t− qs)(α−1)

q , a ≤ s ≤ t ≤ b.
(9)

Proof. The result follows from Theorem 1 by identical arguments for the case 1 ≤ α − β < 2; the
details are omitted.

We proceed to demonstrate the nonnegativity of the q-Green’s functions and establish upper bounds
for both the functions and their q-integrals.

Theorem 2. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 < α − β < 1, q ∈ (0, 1), and let the q-Green’s function
Gq(t, s) be defined as in Theorem 1. Then,

Gq(t, s) ≥ 0 for all (t, s) ∈ [a, b]× [a, b].

Proof. We analyze the q-Green’s function Gq(t, s) defined in Theorem 1, considering its piecewise
structure.

Case 1: a ≤ t ≤ s ≤ b. Here,

Gq(t, s) =
1

Γq(α)
· (t− a)α−1

(b− a)α−β−1
· (b− qs)(α−β−1)

q .

Since Γq(α) > 0, (b − a)α−β−1 > 0, (t − a)α−1 ≥ 0 for t ≥ a, and (b − qs)(α−β−1)
q ≥ 0 for s ≤ b (as

qs ≤ s, q ∈ (0, 1), and 0 < α− β < 1), it follows that Gq(t, s) ≥ 0.
Case 2: a ≤ s ≤ t ≤ b. In this case,

Gq(t, s) =
1

Γq(α)

[
(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q − (t− qs)(α−1)
q

]
.

Since s ≤ t, the q-power function is monotonic, so t− qs ≥ t− a, and thus (t− qs)(α−1)
q ≤ (t− a)α−1.

Additionally, as qs ≤ s ≤ t ≤ b, we have b − qs ≥ b − a, implying (b − qs)(α−β−1)
q ≥ (b − a)α−β−1.

Therefore,
(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q ≥ (t− a)α−1 ≥ (t− qs)(α−1)
q .

Hence,

Gq(t, s) ≥
1

Γq(α)

[
(t− a)α−1 − (t− qs)(α−1)

q

]
≥ 0.

Combining both cases, we conclude that Gq(t, s) ≥ 0 for all (t, s) ∈ [a, b]× [a, b].

Remark 1. The nonnegativity of the q-Green’s function Gq(t, s), established in Theorem 2, is crucial
for the qualitative analysis of the q-fractional boundary value problem in Theorem 1. Specifically, it
ensures that the solution

u(t) =

b∫
a

Gq(t, s)h(s) dqs, h ∈ L1
q [a, b],

preserves the sign of the source term h(s). For instance, if h(s) ≥ 0 on [a, b], then u(t) ≥ 0; similarly,
if h(s) ≤ 0, then u(t) ≤ 0, for all t ∈ [a, b].
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Corollary 2. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 1 ≤ α − β < 2, q ∈ (0, 1), and let the q-Green’s function
Gq(t, s) be defined as in Corollary 1 for a < b. Then,

Gq(t, s) ≥ 0 for all (t, s) ∈ [a, b]× [a, b].

Proof. We analyze the piecewise definition of Gq(t, s) from Corollary 1.
Case 1: a ≤ t ≤ s ≤ b. Here,

Gq(t, s) =
1

Γq(α)
· (t− a)α−1

(b− a)α−β−1
· (b− qs)(α−β−1)

q .

Since Γq(α) > 0, (t − a)α−1 ≥ 0, (b − a)α−β−1 ≥ 0 (as α − β − 1 ≥ 0), and (b − qs)(α−β−1)
q ≥ 0 (as

qs ≤ s ≤ b, q ∈ (0, 1)), it follows that Gq(t, s) ≥ 0.
Case 2: a ≤ s ≤ t ≤ b. In this case,

Gq(t, s) =
1

Γq(α)

[
(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q − (t− qs)(α−1)
q

]
.

Since a ≤ qs ≤ s ≤ t ≤ b, we have b− qs ≥ b− a, so (b− qs)(α−β−1)
q ≥ (b− a)α−β−1. Also, qs ≥ a, so

t − qs ≤ t − a, and the monotonicity of the q-power function [14] implies (t − qs)(α−1)
q ≤ (t − a)α−1.

Thus,
(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q ≥ (t− a)α−1 ≥ (t− qs)(α−1)
q .

Hence,

Gq(t, s) ≥
1

Γq(α)

[
(t− a)α−1 − (t− qs)(α−1)

q

]
≥ 0.

Thus, Gq(t, s) ≥ 0 for all (t, s) ∈ [a, b]× [a, b].

Theorem 3. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 < α − β < 1, q ∈ (0, 1), a < b, and let the q-Green’s
function Gq(t, s) be defined as in (6). Then, for s ∈ [a, b],

max
t∈[a,b]

Gq(t, s)

(b− qs)(α−β−1)
q

=
Gq(s, s)

(b− qs)(α−β−1)
q

,

and

max
s∈[a,b]

Gq(s, s)

(b− qs)(α−β−1)
q

=
(b− a)β

Γq(α)
.

Proof. We analyze the ratio Gq(t,s)

(b−qs)(α−β−1)
q

for fixed s ∈ [a, b]. Since qs ≤ s ≤ b, q ∈ (0, 1), and

0 < α− β < 1, we have α− β − 1 ∈ (−1, 0), but (b− qs)(α−β−1)
q ≥ 0 as per [14].

Case 1: a ≤ t ≤ s ≤ b. From (6),

Gq(t, s)

(b− qs)(α−β−1)
q

=
1

Γq(α)
· (t− a)α−1

(b− a)α−β−1
.

Using the q-derivative (1),
Dq,t[(t− a)α−1] = [α− 1]q(t− a)α−2,

we obtain

Dq,t

[
Gq(t, s)

(b− qs)(α−β−1)
q

]
=

(t− a)α−2

(b− a)α−β−1Γq(α− 1)
≥ 0,
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since α−2 > −1. At t = a, (t−a)α−2 may be singular (α−2 ∈ (−1, 0]), but the q-derivative is defined
for t ∈ (a, s]. Thus, the ratio is non-decreasing on [a, s].

Case 2: a ≤ s ≤ t ≤ b. Here,

Gq(t, s)

(b− qs)(α−β−1)
q

=
1

Γq(α)

[
(t− a)α−1

(b− a)α−β−1
− (t− qs)(α−1)

q

(b− qs)(α−β−1)
q

]
.

Computing the q-derivative,

Dq,t

[
Gq(t, s)

(b− qs)(α−β−1)
q

]
=

1

Γq(α− 1)

[
(t− a)α−2

(b− a)α−β−1
− (t− qs)(α−2)

q

(b− qs)(α−β−1)
q

]
.

Since qs ≤ s ≤ b, we have b − qs ≥ b − a, so (b − qs)
(α−β−1)
q ≥ (b − a)α−β−1. Also, qs ≥ a, so

t − qs ≤ t − a, and the monotonicity of the q-power function [14] implies (t − qs)(α−2)
q ≤ (t − a)α−2.

Thus,
(t− a)α−2

(b− a)α−β−1
≥ (t− qs)(α−2)

q

(b− qs)(α−β−1)
q

,

so

Dq,t

[
Gq(t, s)

(b− qs)(α−β−1)
q

]
≤ 0.

Hence, the ratio is non-increasing on [s, b]. Combining both cases, the maximum occurs at t = s, where

Gq(s, s)

(b− qs)(α−β−1)
q

=
1

Γq(α)
· (s− a)α−1

(b− a)α−β−1
.

For the second part, consider

Gq(s, s)

(b− qs)(α−β−1)
q

=
(s− a)α−1

(b− a)α−β−1Γq(α)
.

Since (s− a)α−1 is increasing on [a, b] (α− 1 > 0), the maximum occurs at s = b, yielding

(b− a)α−1

(b− a)α−β−1Γq(α)
=

(b− a)β

Γq(α)
.

This completes the proof.

Corollary 3. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 1 ≤ α − β < 2, q ∈ (0, 1), a < b, and let the q-Green’s
function Gq(t, s) be defined as in (9). Then, for s ∈ [a, b],

max
t∈[a,b]

Gq(t, s) = Gq(s, s),

and

max
s∈[a,b]

Gq(s, s) =
(b− a)βbα−β−1(1− q)α−β−1

Γq(α)
.

Proof. The statement follows from Theorem 3 by identical arguments applied to the range
1 ≤ α− β < 2; the details are omitted.
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Corollary 4. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 1 ≤ α − β < 2, q ∈ (0, 1), a < b, and let the q-Green’s
function Gq(t, s) be defined as in (6) and (9). Then:

max
t∈[a,b]

b∫
a

Gq(t, s) dqs =
[α− 1]α−1

q

Γq(α+ 1)

(
b− a

[α− β]q

)α
.

Proof. Consider the integral I(t) =
b∫
a
Gq(t, s) dqs, where Gq(t, s) is defined in (6) and (9). Split

the integral based on the definition of Gq(t, s):
Case 1: a ≤ t ≤ s ≤ b.

Gq(t, s) =
1

Γq(α)
· (t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q .

Case 2: a ≤ s ≤ t ≤ b.

Gq(t, s) =
1

Γq(α)

[
(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q − (t− qs)(α−1)
q

]
.

Thus,

I(t) =

t∫
a

Gq(t, s) dqs+

∫ b

t
Gq(t, s) dqs.

Substitute the expression for Gq(t, s):

I(t) =

t∫
a

1

Γq(α)

[
(t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q − (t− qs)(α−1)
q

]
dqs

+

b∫
t

1

Γq(α)
· (t− a)α−1

(b− a)α−β−1
(b− qs)(α−β−1)

q dqs

=
(t− a)α−1

Γq(α)(b− a)α−β−1

b∫
a

(b− qs)(α−β−1)
q dqs−

1

Γq(α)

t∫
a

(t− qs)(α−1)
q dqs.

Using equation (3), under the conditions x = b or x = t ≥ s, we have

b∫
a

(b− qs)(α−β−1)
q dqs =

(b− a)α−β

[α− β]q
,

t∫
a

(t− qs)(α−1)
q dqs =

(t− a)α

[α]q
,

we get

I(t) =
(t− a)α−1(b− a)α−β

Γq(α)(b− a)α−β−1[α− β]q
− (t− a)α

Γq(α)[α]q

=
(t− a)α−1(b− a)

Γq(α)[α− β]q
− (t− a)α

Γq(α)[α]q

=
(t− a)α−1

Γq(α)

(
b− a

[α− β]q
− t− a

[α]q

)
.
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To find the maximum, compute the q-derivative:

Dq,tI(t) =
1

Γq(α)

[
[α− 1]q(t− a)α−2

(
b− a

[α− β]q
− t− a

[α]q

)
− (t− a)α−1 · 1

[α]q

]
=

1

Γq(α)

[
[α− 1]q(t− a)α−2(b− a)

[α− β]q
− (t− a)α−1([α− 1]q + 1)

[α]q

]
=

1

Γq(α)

[
[α− 1]q(t− a)α−2(b− a)

[α− β]q
− (t− a)α−1

]
,

where [α− 1]q + 1 = 1−qα−1

1−q + 1 = 1−qα
1−q = [α]q.

Set Dq,tI(t) = 0:

t∗ = a+
[α− 1]q(b− a)

[α− β]q
.

Substitute t∗ into the expression for I(t):

I(t∗) =

(
[α−1]q(b−a)

[α−β]q

)α−1

Γq(α)

 b− a
[α− β]q

−
[α−1]q(b−a)

[α−β]q

[α]q


=

(
[α−1]q(b−a)

[α−β]q

)α−1

Γq(α)

(
b− a

[α− β]q

(
1− [α− 1]q

[α]q

))
=

[α− 1]α−1
q (b− a)α−1

Γq(α)[α− β]α−1
q

· b− a
[α− β]q

· q
α−1

[α]q

=
[α− 1]α−1

q (b− a)αqα−1

Γq(α)[α− β]αq [α]q
.

The function I(t) is increasing for t < t∗ (Dq,tI(t) > 0) and decreasing for t > t∗ (Dq,tI(t) < 0),
confirming the maximum at t∗.

Theorem 4. Let Bq = Cq,λ[a, b] denote the Banach space of functions continuous in the q-sense on
the interval [a, b], with norm

‖u‖Cq,λ = max
t∈[a,b]

|u(t)|,

where [a, b] = {a, aq, aq2, . . . , aqn = b}. Given 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 < α − β < 1, if the fractional
q-difference boundary value problem{

Dα
q,au(t) + q(t)u(t) = 0, t ∈ [a, b],

u(a) = 0, Dβ
q,au(b) = 0,

(10)

admits a nontrivial solution u ∈ Bq, then the following Lyapunov-type inequality holds:

b∫
a

(b− qs)(α−β−1)
q |q(s)|dqs >

Γq(α)

(b− a)β
. (11)

Proof. Any solution u ∈ Bq of the boundary value problem (10) satisfies

u(t) =

b∫
a

Gq(t, s)q(s)u(s)dqs,
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where Gq(t, s) is the q-Green’s function given by (6).
By applying the Cq,λ-norm, we obtain

‖u‖Cq,λ = max
t∈[a,b]

∣∣∣∣∣∣
b∫
a

Gq(t, s)q(s)u(s)dqs

∣∣∣∣∣∣
≤ max

t∈[a,b]

b∫
a

|Gq(t, s)||q(s)||u(s)|dqs

≤ ‖u‖Cq,λ · max
t∈[a,b]

b∫
a

|Gq(t, s)||q(s)|dqs.

For a nontrivial solution (‖u‖Cq,λ 6= 0), this implies

1 ≤ max
t∈[a,b]

b∫
a

|Gq(t, s)||q(s)|dqs.

By Theorem 3, the q-Green’s function satisfies the bound

|Gq(t, s)| ≤
(b− a)β(b− qs)(α−β−1)

q

Γq(α)
.

Substituting this bound, we get

1 < max
t∈[a,b]

b∫
a

|Gq(t, s)||q(s)|dqs ≤
(b− a)β

Γq(α)

b∫
a

(b− qs)(α−β−1)
q |q(s)|dqs.

Therefore, dividing both sides by (b−a)β

Γq(α) , we obtain (11).
This completes the proof.

Corollary 5. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, and 1 ≤ α − β < 2. Suppose the fractional q-difference
boundary-value problem {

Dα
q,au(t) + q(t)u(t) = 0, t ∈ [a, b],

u(a) = 0, Dβ
q,au(b) = 0,

admits a nontrivial solution u ∈ Bq = Cq,λ[a, b], where Cq,λ[a, b] is the space of q-continuous functions
on the q-interval [a, b] with 0 < q < 1. Then the following Lyapunov-type inequality holds:

b∫
a

|q(s)| dqs >
Γq(α)

(b− a)βbα−β−1(1− q)α−β−1
.

Proof. By Corollary 1, any solution u ∈ Cq,λ[a, b] to the boundary-value problem satisfies:

u(t) =

b∫
a

Gq(t, s)q(s)u(s) dqs,
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where Gq(t, s) is the q-Green’s function defined in (9).
Define the norm ‖u‖Cq,λ = sup

t∈[a,b]
|u(t)|. From the solution representation:

|u(t)| ≤
b∫
a

|Gq(t, s)||q(s)||u(s)| dqs ≤ ‖u‖Cq,λ

b∫
a

|Gq(t, s)||q(s)| dqs.

Taking the supremum over t ∈ [a, b], we obtain

‖u‖Cq,λ ≤ ‖u‖Cq,λ max
t∈[a,b]

b∫
a

|Gq(t, s)||q(s)| dqs.

For a nontrivial solution (‖u‖Cq,λ > 0), it follows that

1 ≤ max
t∈[a,b]

b∫
a

|Gq(t, s)||q(s)| dqs.

By Corollary 2, Gq(t, s) is non-negative, so |Gq(t, s)| = Gq(t, s). By Corollary 3, the maximum of
the Green’s function is

max
t,s∈[a,b]

Gq(t, s) = max
s∈[a,b]

Gq(s, s) =
(b− a)βbα−β−1(1− q)α−β−1

Γq(α)
.

Thus, Gq(t, s) ≤ max
s∈[a,b]

Gq(s, s), and

b∫
a

Gq(t, s)|q(s)| dqs ≤
(b− a)βbα−β−1(1− q)α−β−1

Γq(α)

b∫
a

|q(s)| dqs.

Combining with the previous inequality, we get

1 ≤ (b− a)βbα−β−1(1− q)α−β−1

Γq(α)

b∫
a

|q(s)| dqs.

Rearranging yields
b∫
a

|q(s)| dqs ≥
Γq(α)

(b− a)βbα−β−1(1− q)α−β−1
.

To establish the strict inequality, suppose equality holds
b∫
a

|q(s)| dqs =
Γq(α)

(b− a)βbα−β−1(1− q)α−β−1
.

This implies Gq(t, s) = max
s∈[a,b]

Gq(s, s) for all t, s ∈ [a, b] where q(s)u(s) 6= 0. By Corollary 3,

Gq(t, s) = Gq(s, s) only when t = s, which has measure zero in the q-integral unless u ≡ 0. Since
u is nontrivial, equality is impossible, so

b∫
a

|q(s)| dqs >
Γq(α)

(b− a)βbα−β−1(1− q)α−β−1
.
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3 Applications

In this section, we investigate two applications of Theorem 4 and Corollary 5. First, we establish
lower bounds for the eigenvalues of the Riemann–Liouville type fractional q-eigenvalue problems as-
sociated with (10). Second, we utilize these findings to identify intervals where the q-analogue of the
two-parameter Mittag-Leffler function has no real zeros.

Theorem 5. Let 1 < α ≤ 2, 0 ≤ β ≤ 1 such that 0 < α − β < 1. Assume that y is a nontrivial
solution of the Riemann–Liouville type fractional q-eigenvalue problem{

Dα
q,au(t) + λu(t) = 0, t ∈ [a, b],

u(a) = 0, Dβ
q,au(b) = 0,

(12)

where u(t) 6= 0 for each t ∈ (a, b). Then,

|λ| > [α− β]qΓq(α)

(b− a)α
.

Corollary 6. Let 1 < α ≤ 2, 0 ≤ β ≤ 1 such that 1 ≤ α − β < 2. Assume that u is a nontrivial
solution of the Riemann–Liouville type fractional q-eigenvalue problem (12), where u(t) 6= 0 for each
t ∈ (a, b). Then,

|λ| > Γq(α)

(b− a)βbα−β−1(1− q)α−β−1
.

Consider the q-analogue of the two-parameter Mittag-Leffler function, defined as ([14]):

Eq,α,β(z) =

∞∑
k=0

zk

Γq(kα+ β)
, z, β ∈ C, <(α) > 0, 0 < q < 1. (13)

We use Theorem 5 and Corollary 6 to determine intervals where the function (13) has no real zeros.

Theorem 6. Let 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 < α− β < 1, q ∈ (0, 1). The q-Mittag-Leffler function

Eq,α,α−β(z) =

∞∑
k=0

zk

Γq(kα+ α− β)
,

has no real zeros for
|z| ≤ [α− β]qΓq(α)

(b− a)α
, (14)

where [α− β]q = 1−qα−β
1−q .

Proof. Consider the q-fractional eigenvalue problem{
Dα
q,au(t) + λu(t) = 0, t ∈ [a, b],

u(a) = 0, Dβ
q,au(b) = 0,

where Dα
q,a is the Riemann–Liouville q-fractional derivative. The general solution is

u(t) = c1(t− a)α−1Eq,α,α(−λ(t− a)α) + c2(t− a)α−2Eq,α,α−1(−λ(t− a)α).

Let g(t) = (t− a)α−1Eq,α,α(−λ(t− a)α). Compute

Dα
q,ag(t) = Dα

q,a

( ∞∑
n=0

(−λ)n(t− a)αn+α−1

Γq(αn+ α)

)
=
∞∑
n=0

(−λ)n

Γq(αn+ α)
Dα
q,a(t− a)αn+α−1.
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Since Dα
q,a(t− a)αn+α−1 =

Γq(αn+α)
Γq(αn) (t− a)αn−1, we get

Dα
q,ag(t) =

∞∑
n=0

(−λ)n

Γq(αn)
(t− a)αn−1 = −λg(t).

The condition u(a) = 0 implies c2 = 0, since (t− a)α−2 →∞ as t→ a. Thus,

u(t) = c1(t− a)α−1Eq,α,α(−λ(t− a)α).

Compute

Dβ
q,au(t) = c1

∞∑
n=0

(−λ)n

Γq(αn+ α)
Dβ
q,a(t− a)αn+α−1.

Since Dβ
q,a(t− a)αn+α−1 =

Γq(αn+α)
Γq(αn+α−β)(t− a)αn+α−β−1, we obtain

Dβ
q,au(t) = c1(t− a)α−β−1Eq,α,α−β(−λ(t− a)α).

The condition Dβ
q,au(b) = 0 gives

c1(b− a)α−β−1Eq,α,α−β(−λ(b− a)α) = 0 =⇒ Eq,α,α−β(−λ(b− a)α) = 0.

By Theorem 5, for a nontrivial solution u ∈ Bq = Cq,λ[a, b],

|λ| > [α− β]qΓq(α)

(b− a)α
.

For z = −λ(b− a)α, we have
|z| = |λ|(b− a)α > [α− β]qΓq(α).

Thus, Eq,α,α−β(z) 6= 0 for (14).

Corollary 7. Let 1 < α ≤ 2, 0 ≤ β ≤ 1 such that 1 ≤ α − β < 2. The q-Mittag-Leffler function
Eq,α,β(z) has no real zeros for

|z| ≤ Γq(α)

(b− a)α
.

Proof. Following the same reasoning as in Theorem 6, suppose Eq,α,β(λ) = 0 for some real λ.
The function u(t) = Eq,α,β(−λ(t − a)α) satisfies the q-eigenvalue problem (12). By Corollary 6, any
eigenvalue λ must satisfy:

|λ| > Γq(α)

(b− a)α
.

Hence, Eq,α,β(z) 6= 0.

Conclusion

In this study, we derived two novel Lyapunov-type inequalities for boundary value problems involv-
ing the Riemann–Liouville fractional q-derivative within the regimes 0 < α−β < 1 and 1 ≤ α−β < 2,
thereby establishing precise estimates for eigenvalues and intervals free of zeros for q-Mittag-Leffler
functions. By employing an analysis of the q-Green’s function, we determined lower bounds for the
eigenvalues of the problem Dα

q,au + λu = 0 and identified regions devoid of real zeros for q-analogues
of Mittag-Leffler functions, which holds significant importance for discrete systems with memory, such
as viscoelastic lattices and quantum circuits. This work extends classical inequalities to the realm of
q-calculus, thereby bridging continuous and discrete fractional analysis, and paves the way for further
research on Caputo q-fractional derivatives and multidimensional q-lattices.
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