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MATHEMATICS

https://doi.org/10.31489/2024M2/4-21 Research article

On estimates of M-term approximations of the Sobolev class
in the Lorentz space

G. Akishev!, A.Kh. Myrzagaliyeva®*

! Kazakhstan Branch of Lomonosov Moscow State University, Astana, Kazakhstan;
2 Astana IT University, Astana, Kazakhstan
(E-mail: akishev_ g@mail.ru, aigul.myrzagalieva@astanait.edu.kz)

In the paper spaces of periodic functions of several variables were considered, namely the Lorentz space
Ly - (T™), the class of functions with bounded mixed fractional derivative W; - 1 <7 < 00, and the order
of the best M-term approximation of a function f € L, -(T™) by trigonometric polynomials was studied.
The article consists of an introduction, a main part, and a conclusion. In the introduction, basic concepts,
definitions and necessary statements for the proof of the main results were considered. One can be found
information about previous results on the mentioned topic. In the main part, exact-order estimates are
established for the best M-term approximations of functions of the Sobolev class WgF -, in the norm of the
space Lp -, (T™) for various relations between the parameters p, 11, 2.

Keywords: Lorentz space, Sobolev class, mixed derivative, trigonometric polynomial, M-term approximation.

2020 Mathematics Subject Classification: 41A10, 41A25, 42A05.

Introduction

Let N, Z, R be the sets of natural, integer, and real numbers, respectively, and Zy = NU {0}, R™
is m-dimensional Euclidean space of points z = (x1, ..., z,,) with real coordinates; T™ = [0, 27)™ and
["™ =1[0,1)™ are m-dimensional cubes.

We denote by L, -(T™) the Lorentz space of all real-valued Lebesgue measurable functions f that
have 2m-period in each variable and for which the quantity

=

1
I £] /(f*(t))Tt;Idt ,l<p<oo, 1<T<00
0

hSE

p,T T

is finite, where f*(t) is a non-increasing rearrangement of the function |f(277)|, T € I (see [1]).
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On estimates of M-term approximations ...

In case when 7 = p, the Lorentz space L, -(T™) coincides with the Lebesgue space L,(T™) with
the norm (see, for example, [2])

2w 2m P
fllp = [/ / |f(x1, .oy ) [Pday . dey, |, 1 <p < oo.
0 0

Let us begin by introducing some notation: a7( f) are Fourier coefficients of the function f € Ly (T™)

o m
by the system {e!™®) };czm and (7,7) = > yja;;
i=1

5s(f,m) = Y am(f) ™™,

nep(s)

where

p(3) = {k=(ki,....km) €Z™: 2571 < |kj| <2%,5=1,...,m},

and [a] is an integer part of a, 5 = (s1,...,5m),5; =0,1,2,...
For a given vector T = (r1,...,7n) > 0= (0,...,0) we set 7 = .- and

ngv) = U <§’7> <n p(g) )

57(7)( fT) = ZEGQW) az(f )ei®2) is a partial sum of the Fourier series of the function f (see [2]).
Let us consider an one-dimensional Bernoulli kernel (see, for example, [2])

F.(z)=1+ 221@4 cos(kx —rm/2), r > 0.

k=1
Next, for the vector 7 = (rq,...,7), 7 >0, j = 1,...,m, we set
m
Fr(@) = [[ F, (2)).
j=1

Let us consider a Sobolev functional class

W;T:{f: [ =pxFr, H(P

pr <1},
where 1 <p < o0, 1 <7 < 00,

)= 7 —u)Fy)(u)du
(¢ * F)@) = Gy | o =P @)

In case when 7 = p, the class W} has been considered in [3] and [4], so in this case, instead of
W}, we write W

The value
M —

fo Z bj€i<k(j>,j>

eM(f)p,T = inf

k(@) b, DT

is called the best M-term trigonometric approximation of the function f € L, -(T™), n € N.
If FF C Ly-(T™) is some functional class, then we set ens(F)p - = supsep enr(f)pr- In case when
T = p, instead of ey (F')p,» we wrire ey (F')p.

Mathematics Series. No.2(114),/2024 5



G. Akishev, A.Kh. Myrzagaliyeva

The best M-term approximation of a function f € L3[0,1] by polynomials in an orthonormal
system has been first determined by S.B. Stechkin [5] and he has established a criterion for the
absolute convergence of the Fourier series in this system. The advantage of the M-term approximation
with respect to the one-dimensional trigonometric system over the linear approximation by M-order
trigonometric polynomials has been shown by R.S. Ismagilov [6].

Exact order estimates of the best M-term approximation of the Bernoulli kernel have been established
by V.E. Maiorov [7] and Yu. Makovoz [8], E.S. Belinsky [9,10]. In the one-dimensional case, the value
e M(WqF )p has been estimated by S. Belinsky [9]. At present, many important results on estimates of M-
term approximations of functions from various Sobolev, Nikol’skii—Besov and Lizorkin—Triebel classes

11

are known [11,12]. In the multidimensional case, for 1 < ¢ < p < 2 and r; > %(a — ), order-exact

estimates of the best M-term approximation of functions of W; in the norm of L,(T™) have been
obtained by V.N. Temlyakov [3,4], and for 1 < ¢ < p <2 and r; < %(% - %), E.S. Belinsky [10] has
proved the following theorem:

Theorem. Let 1 <g<2<p<ooandry=...=7, <ryp1 <...ry. Then

1_1

ent (WD), = M55 (g Ay D0-D01 7 (=5

in case L — 1% <r < %, where ¢ = q%’l.

Note that a generalization of this theorem on the Lorentz space L, ,(T™) has been proved
in [13-15].

Throughout the paper, A, =< B, means that there are positive numbers C,Cs independent of
n € N such that C1 A, < B, < (C2A,, for n € N and log M, where log M is the logarithm with base 2
of the number M > 1.

By the constructive method, V.N. Temlyakov [16,17] has established estimates for M—term approxi-
mations of functions of the class I/VqF in the space L,(T™) for 1 < ¢ <2 < p < oo and (%—%)p/ <r < %,

p/ = p%l and has raised the question of finding constructive evaluation method for % — % <r <
1

(7 %)p'. Further application of the constructive method is given in [18,19].

In the first section, some auxiliary assertions are formulated that are necessary for proving main
results. The main results of the article are formulated as a theorem and proved in the second section.
In conclusion, we compare the proved Theorem 1 with previously known results.

1 Augiliary statements

Theorem A. [20] Let 1 < ¢ < A <o0,1< 7, § <oo.If afunction f € Ly -(T™), then

m /7_
£l = ¢( 3 T[22 5(l5,)

sezm =1

Theorem B. [20] Let 1 < p < ¢ < 00, 1 < 11,72 < oo. If a function f € Ly, (T™) satisfies the
condition

Z H 2Sj7—2(1/p_1/q)||5§(f)||;?7_1 < 09,

sezm j=1
then f € Ly ., (T™) and the inequality
1/7’2

1flam <€ 2 TT27 02 lox()I

sezm j=1

6 Bulletin of the Karaganda University



On estimates of M-term approximations ...

holds.
For a function f € Li(T™) we set

fr@ =Y. bs(f.2),1 €Ly,

1<(3,74)<l+1

Where’7:(717'-'17m)771:---:71/<71/+1 §§7m7 ’7]:%7 Tj >07j:17"'am~
Let us consider the following class defined in [5, 6]

Wit = {f € LuT™): |lfiglla < 270700,

where

Hflf”A— oD lan(f)

<(5,7)<l+17ep(s)

The following lemma is a consequence of Lemma 6.1 in [16] (see also Lemma 2.1 in [17]), which we
often use in proofs of main results.

Lemma 1. [15] Let 2 < p < oo and 1 < 7 < 0o, a > 0. Then for f € WZ’b’F there are constructive
approximation methods of the greedy algorithm type of G/(f) with the property:

I1f = Gar(H)llpr < C(m) M2 (log M)—Datd),

2  Main results

Theorem 1. Let 0 < ry = ... =1y, < ryp1 < ..., 2 < p < 00, 1 < max{r,2} < 1 < o0,
T2
To—1"

)If*—5<rl<(%—

/
7-2 —

M\H

(W s < CM™ 5572 (l0g, M2

Proof. Let us introduce some notation

Qn’y—U( ><n:0() SQn,"y(f7j): Z 6§(f’j)

(87)<n

A

For a natural number M, there exists a number n € N such that M = 2"n*~L.
Let v > 2. We set

1 1
ny = Qn—p(f - —2)(1/ —1)logn,

Also, let us introduce

Mathematics Series. No.2(114),/2024 7



G. Akishev, A.Kh. Myrzagaliyeva

and

/ ! /

my = [2"%5?2”%%(”—1)% 4,

m !
where (5,1) = >~ sj,p = 1% and [y] is an integer part of a number y.

By G(l) is denoted the set of indices 5, [ < (5,%) < [+1, with the largest ||d5(¢)||2, and m; = |G(1)]
is the number of elements of G(I).
Let us consider the functions

Z fl(f%

n<l<ni

Z Z 5§(fvf)a

n1<l<ns 5¢G()

Z Z 5§(f7 f)

n1<I<ng 5€G(l)

Let us estimate ||F1||a. Applying Holder’s inequality for the sum and Parseval’s equality, we have

ni—1 n1 1
_m 5.1 1
IRlla=>" > DlagDi<27 %y D 2802 =
l=n 1<(5,7)<l+1 kep(3) I=n I<(5,7)<l+1
ni—1

-

m STy (l_1 1
=277 Y S 28G5 )lp2™ e (1)

I=n I<(5,7)<i+1

It is known that the Fourier coefficients of the convolution f = ¢ x F5 are equal to az(y)az(F7),
k € Z™. Therefore, using Parseval’s equality, it is easy to verify that

165(f)ll2 << 2757I65() 12, 5 € 2 (2)
Hense, from (1) and (2) we get
ny—1 . ny—1 . -
IFlla<272 > > 28025(flla<C D > 20022750 55(0)l. (3)
I=n [<(37)<l+1 I=n 1<(5,7)<l+1

If 2 < 71 < o0, then according to the inequality of different metrics for trigonometric polynomials
in the Lorentz space [20] we have

m 1_ 1
65(Pll2 < C (D (55 + 1)) " 7 105(llom-
j=1

From Lemma 1.6 [21] for p =2 and 2 < 71 < 0o we get

1
(q**)ﬁ 71 =

Do D s+ 15s(2) 112" C{ D 18Iz,

gEZ+ j:1 S€Z+

(4)

8 Bulletin of the Karaganda University



On estimates of M-term approximations ...

By virtue of inequality (4) and Hélder’s inequality, we obtain

a1 S %)TI
S 2D a(f)s < 3 (Z (s;+1 ) 16s()ll2" |

1<, 1<(59)<l+1 j=1

&)
S/I
A
+
—

1
7

/
™

% Z 2~ 57 (r1— (Z 5 +1 ) % %)7—1 < (5)

3
=N

1

m 11y,
92— ,7)(7‘1— )7'1 (Z s+ 1 ) 2 71) 1
7=1

(v-1)%
<= T o,

IA

<l+1

where 7, = 1 <m < oo
(3) and (5) imply that

i O Y S L DS 1
IRlla<C 93] 2 moTin < ogmn=a)y i (6)
l=n

for a function f € W;Tl when r; < % and 2 < 7 < o0.
By Lemma 1 for the function Fj using a constructive method, one can find an M-term trigonometric
polynomial G/ (F}) such that

(v-1)% 1_1

1F) — Gar(F)[lpry < CM™227M01=3)n - T2 70, (7)

Therefore, according to inequality (6) and (7) and taking into account the definition of the number
n1 and the relation M = 2"n*~!, we obtain

1
7

! (8)

=

. “3n+i-D)
|Fy — G (F1)|lpr, < CM r~2'(log M)

in case when g =2 <p<o0,2<m < 00, 1<7'2<oo,7’1<%.
Let us estimate || F3|| 4. Applying Holder’s inequality for the sum and Parseval’s equality, we obtain

no—1 no—1

_m 5.1 1
IBslla=> > Do lapNi<2n® o Y0 28Nk <
l=n1 I<(8,7)<I+1,3€G(1) kep(3) I=n1 I1<(55)<l+1,5€G(1)
n2—1 11 " (-
oY Raent Y (S 0) T sl (9)
=1 I<(57)<l+1,5eG(l) j=1

Now, to the inner sum on the right side of inequality (9), applying Holder’s inequality for % + Tl, =1,
1

1 <71 < 00, we have

27l 11 i (-7 = o
IElase Y et i (Y (M) ) o).
I=nq I<(33)<l+1,5€G(l) j=1

Mathematics Series. No.2(114),/2024 9



G. Akishev, A.Kh. Myrzagaliyeva

Then, using (2) we get

n2—1 11
IFsla<C > 25(14+1)2 7 x

l=n,

x( > (isjﬂ)

I<(37)<l+1,5€G(l) j=1

1 1)7. 1

o) I3) T IGW)

o \\H

na—1 11
<cy ol(z=r1) (1 4 1)7 7 x (10)
l=n1
“ (-3 L =
(Y (B n) T ) Mool
1<(3,7)<l+1,5eG() j=1
We set
m 1 1
- T—f—)n 1/71
S=( X (Ce+n) " o)
I<(53)<l+1 j=1
and
mi= |G| = 27 5P E a0 E ] 41
Then (10) implies that
n2—1 1 11 . =
IFslla < C > 272 (@4 1)2 7 §m)t <
l=n1
na—1 11 . ™ . ™ i/
<C Z 9—l(ri— )(l+ 1)2~ qsl{zflgslﬁyzy (v— 1) 2+ 1} 1 (11)
l=n1
T;, na—1 —I(r —l-i-;;/) 11 ~1+L} n2—1 11 .
SC{(anu—l) 27 Z 9 1—3 p7y (l_‘_l)ﬁ*qsl 21 + Z 2—Z(T1—%)(l+1>§775}
l=ny l=n;
+5 / )
Since 5, " =S/ and -1+ 2 =7,(—3 + % - 1%1 + %) then by (4) we have
na-l o 1, T 1+ ne—l /
Yoo T i = Y )i <
l=n1 l=n1
el I 1141 1y 1
<0y TG 1y ) e, <
l=n1
n2—1 11,1 1 11
<oy 2GR e
l=n1

for a function f € W3, and 2 < 71 < oo. Since r; — 7‘5(% - % + p%l - i) < 0, then, taking into

10 Bulletin of the Karaganda University



On estimates of M-term approximations ...

account the definition of the number ns, from here we obtain

’

na—1 —l(ri—24+72) L T 1,1 1 1_1
Yo TG < or T RG T T <
l=n1
< O TG b )y DB G s ey (12)

for a function f e Wj_,2 <7 < oo.
Next, due to inequality (4), taking into account that a function f € W;l and r1 — % < 0, we have

no—1 L L1 no—1 L
Sl E G <oy el p )T <
l=ny l=n;
iy Lt 1 11 ! 11
<C Z 2= (r1—§)(l +1)27 7 < C2—n2(r1—§)(n2 +1)27 7 < (13)
l=n,

1

< 0277%(Tlfé)nf(”*l)g(h*%)n2_rl .

Now it follows from inequalities (11)—(13) that

!
-
11, 1

2
|Flla < Cf (2 1) 225 e L T L A

forafunctionfGWZTl,2<7’1<oo,1<7’2<oo 7“1—7'5(%—% p%_l—i)<0.

Since 2(r1 — 7o(3 — % pin - %)) 2:2 = B(ry — 1), then it follows that
11
IF3lla < C(2mnr 1) 5n=2)p2 7, (14)

Since 2 < p < oo, then by Lemma 1 for the function F3, by a constructive method, there is an M-term
trigonometric polynomial G (F3) such that

1 1

|1Fs — G (Fy)|[pry < OM ™3 (207175 2)p2 770

Hence, in accordance with (14), we have

1
7

i (15)

1 1
o T 2m)

=

Fs— Guy(F < OM 5573 (log M
|3 — Gar(F3)|lp,r < r—2/(log M)

forafunction]‘"EVVZT1 for 2 <p<oo,2<m < o0, 1<72<ooand7“1<7'é(%—
Let us estimate || F3||p.r. So,

+

S

no—1

51 (L -1)r To—T T 1/m
1Bl <C(> > 2SR s

I=n1 1<(5,3)<I+1,5¢G(1)

Taking into account that

L 1_1 .
65(f)ll2 <m; ™ 2~ lm2Tw G,

Mathematics Series. No.2(114),/2024 11



G. Akishev, A.Kh. Myrzagaliyeva

for 5 ¢ G(I) and substituting the values of the numbers m; for 75 — 71 > 0, we have

no—1

- _1 1_1 . \T2—T1\ 1/T
1Pl <C(Y X 29VE (g (m, T2 G) T ) <
I=n1 1<(5,3)<I+1,5¢G(])
na—1 - _1 1_ 1 . \Te—T1\ 1/72
< C(Z Z 21(57;)7—227”171||(5§(S0)H72—1 (ml el 271r1l§—;Sl> ) <
l=n1 I<(5,7)<I+1,5¢G(I)
n2—1 o - oy — L Y 1_1N\T2—T
< C(Z ((2—l7251712n72n(y—1)72) T1 2—l7‘15’ll5_§) 2 lx (16)
l=ny
W5—2)T20—lrim 71 Ve =
w2350 > 185 (2)115 =

< (’,’7><l+1 5¢G(1)

Ty T ~ 1/7
= (2"~ 1 £ 31721 (Z 2—!( 1_7 Y(T2— Tl)l( 711)(72—T1)l—(%—%)715;1> /2.

l=n1

Using inequality (4), it is easy to verify that

1 1/
m (;‘*)TI

Si = D DB CERY 15s(2) 112" =<

I<Ey)<I+1 \Jj=1

<c| X &), <Clelen (17)
I<(37)<l+1 ’

for a function f € W;TI, 2< 1 <19 < 00.
Now it follows from inequalities (16) and (17) that

/
T2 T2-T1

|Fallpr < O "% 5520 x

no—1 ’
X(Z 2 _p721) T2~ Tl)l(%_ﬁ)(ﬁ_ﬁ)21(%*%)721(%_%)71247"171)1/T2 _
l=n1
= C(zn v- 1 2 T"2'1‘r‘;1 (Z 2_l7—2 p7'17'2 (7—2_7—1)_(%_%)%(%_%)72)1/7—2.
l=n1
Since
Ty 11 1011 1
T — T —T1) —(—— —) =71 — T 7_,_|_7_7’
' pTlTZ( 2= ™) (2 p) ! 2(2 p PN 27‘2)

then taking into account the definition of the number ng, from here we get

/
7'27'2 T1 1_

11, 1 1 11
[Fallpr, < 21y ~% 5 g 2 a2 <

1

<o Ine T (18)

forfunct10nf6W2Tlvvhen2<p<oo 2<m <1 <00, r1<7'2(% —i—%—%).

’UM—‘
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Now it follows from inequalities (8), (15), and (18) that
1f = (S@us(f) + Gar(F1) + Gu(F3))|lp.rs <
< = Gu(F)llprs + (15 — Gar (F3)llpms + [ F2llp o+
| 3 || oM Et og a4 | ST b))
p,72

< 77 >TL2 <'§7’y>2n2

p,72

. 7 1_1 ! 1
forafunctlonfEI/VQTJ1 when 2 < p<o0,2< 71 <71 <00, §—§<7"1<72(7—7+pjl—%).
Further, taking into account that 2 < 7 < 7 < 0o and 71 + ]% — % > 0, and successively applying

Theorem B, Jensen’s inequality, Theorem A, then Lemma 1.3 [21] and Theorem 1.1 [21], we obtain

| = sl =X 5 ool

5,9)>n2 I=n2 I<(3,7)<l+1

<

p,72

1

T2

i 3 ﬁzsﬂ"%ﬁ”ﬂra()ugn <

I=n2 I<(5,5)<l+1j=1

2\ 73
e 11 1 2
<C Z ollg=3)m Z 10:(f )||2T1 -
I=ng 1<(3,7)<l+1
0o - N - R
<o(X 2 X s )T co( i) <
I=ny I<(57)<l+1 M P

< 02*n2(71+%*%) < CM*%(T'FF%*%)

that leads to

1
71

_P(p i 1 1_
et (Fprs < 1 = (S@us (f) + Gar(F) + Gag (F3))llpre < CM 2572 (log M)

ForafunctlonfGWQnWhen2<p<oo 2<7'1<7'2<oo 1—7<7’1<7'2(7—7+— o)

pT1 2m2/°
Assume that 7'2(7 —= + 171 — %) <7 < . Then, taking into account the definition of the number
ny, we get

for a function f € Wy _ when Té(% — % -y <<l

(11), (13) and (19) imply that
HF3HA < <2nnu—1)—g(r1—%)n%(yil)(TliTé(%7%+%7%))n%7%

for a function f € W when (3 —
Hence, by Lemma 1 we obtain

P (y— _(1_1 1 1
1Fs — G (F3)l[p,m SCM—g(Tﬁ%_%)(logM)fé(u D(n=rb i3+ 272>>(logM)%7% (20)
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for a function f € Wy when (3 -1 + p71 - %) < 7‘1 < 3.

Let us estimate || F3||p -, in case When 72(7 - + p—n - %) <r; <

. (16) and (17) imply that

N[

1

1B llp.r, < C2"n47Y) LR (Z o lr(n =5 <w—ﬁ>—<é—;>>l<%—%>f2)” ” <

l=n1

< CM_g(”J“%_%)(logM) AGDIGE Té(%_%Jrﬁ_%))(logM)%*% (21)
in case when 7,(1 — % + pl 35) < 7“1 < 1.
Since 7'2(5 % + 1% %) <1y < 3, (8) implies that
IFy = Gar(F)[lpr < CM 572 (10g M)2 771 <
< oM By %)(logM)%(V b(r- 72(1_%+ﬁ_212)>(10g M)%_% (22)

(20)—(22) (see (18)) imply that

1f = (SQu~(f) +Gr(F1) + Gu(F3))|lpr <
<N Fy = Gu(F1)llpry + 1F3 — G (F3)l|pry + |1 F2llpr +

< OM Bt %)(IOgM)Lé(V H(n- Tz(l_;ﬂ’lﬁ_?i?))(logM);_Tll+H Z 5§(f)‘

<87’7)Zn2 P2
Then, taking into account that Té(% % + 1%1 %) < ry < 5 and following the same steps as in [20]
we have
|5 o], <ourtont Dugunfeeilbasess gtk
2 P,T2
<57’Y>Zn2
Hence,

eM(fpry < I = (5@ () + G (F1) + G (F3))l[pry <

< CM_%(”*;_%)(Iog M)%(”fl)(”*é(%*%*ﬁﬁiz))(10g M)

1
71

=

for a function f € WzF,n when 2 < p < 00,2 <71 <19 < 00, Té(% —
Let 1 < 71 < 2. Then by Lemma 1.5 [21] the inequality

1 1
+ _Tm)<rl<§

1
pT1

S

1/2
(X IsB.) " <e| X s, (23)
1<(5.7)<l+1 1<(5.7)<l+1 o
Since 1 < 73 < 2, then (see [1; 217])
105(f)ll2 < Cl105(f)ll2,7- (24)

It follows from inequalities (1), (23), and (24) that

ni—1
IPEXD SETH IS SR 0] I
I=n 1<(5,7)<l+1 -
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Now, given that the function f € I/VQF -, and the choice of the number n;, we get

(=12 (1~ 1)
2

|Filla < CM~50172) (log M)

for 1 < 1/2. Further, arguing as in the proof of inequality (8), we obtain

_ L
T

< oM BTy (25)

|~

|F — Gar(Fy)lprs < OMETT572) (log M)

[

in case when ¢ =2 <p<oo,1<m <2, 1<7'2<OO,T1<%.
Let us estimate ||F3|| 4. For this we set

. /
S=(2m Y IsE)”

I<(s,3)<l+1

and

i o= |G(1)] = [ F 520n % 1) 2} ey
In inequality (9) it is proved that

no—1

1E5lla <277 ) S 2Dss(f) <

I=n1 I<(5,7)<l4+1,5€G(1)

na—1

<277 )y oD > 165(f)l2- (26)

l=n1 I<(5,7)<l+1,5€G(1)

Applying Holder’s inequality to the inner sum and substituting the value of the number m; := |G(1)]
from (26), we obtain

no—1

m 1/2
IBslla <278 3520020 3T &) IG0Mx
l=n1 I<(3,7)<l+1,5€G(1)
no—1 / no—1
2 (3 sty Byt 4 3 2 mg) o
l=ny l=n1
Using inequalities (23) and (24) and taking into account the value of the numbers S, we obtain
na—1 ng—1
9~ I(r1— 2+2 ) &2 < 7"1—§+2 < Ir - ‘ )
> PSP Yy 2T v (2 Z 5N, . (28)
l=n, l=n1 I<(5,7)<l+1
Since a function f € Wy and
1 11 1 1 11 1 1
——t+ ==+ = — Tz ——+——--—) <0,
Moyt TG T Ty ey S TR T T Ty,
then from inequality (28) we have
N =32 62— 1 e gl —rh (b= =) gmma(n—rh(h— -5 )
Yool <o N T RET e ) < opT T 2 m)), (29)
l=n, l=n1

Mathematics Series. No.2(114),/2024 15
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Since the function f € VVQF - and 1 — % < 0, we can prove similarly that

no—1
> 2l(z—m) G < Con2la—ry), (30)

l=n1

Now it follows from inequalities (27), (29), and (30) that

<
hS
N
—
—~
?
C
N—
HM -
[\]
|
3
©
—~
<
=
|
L
—~
Nl
|
3=
+
S
|
S
3=
[\v)
~—
N
_l’_
[\)
3
V)
~—
|
|
5
=
S~—
——
A

forafunction]‘“EW;T1 When2<p<oo,1<7‘1§2and1<7‘2<oo,r1<7‘£( ,+%_i)

Therefore, according to Lemma 1, for the function Fj, by a constructive method, there is an M-term
trigonometric polynomial G (F3) such that

Fy — Gup(F)llpr < CM—3 (20"~ 1)~801=3) < opp~5m+5-2) 31
p, 72

for a function f € Wy for2<p<oo, 1 <1 <2,1<7 <00, T1<7'2(%
Let us estimate || 5], . To do this, note that if 5 ¢ G(), then

_1 ~
165(F)ll2 < 1y 227715 (32)

and

no—1

pmso(X X 2 sgE) T =

I=n1 I<(5,7)<1+1,5¢G(l)

| £

no—1 /72

—o(X X AERR (IR ss()IB)

I=n1 I<(5.7) <I+1,5¢G(1)

Further, if 79 — 2 > 0, then using inequality (32) and repeating the arguments of the proof (18),
we obtain
P
2

|Ballprs < C2M00 1) 573) < oy ~E D) (33)

forE;qunctlonfEVVQT1 when g =2<p<oo,1 <7 <2< 1< 00, r1<7'2(
Now inequalities (25), (31), (33) imply that

M\»—A
“G\H
+
M‘H
|
J]
3 [=
S~—

_P(p il 1 1
err(Ppirs < IIf = (Squs (F) + Gy (F1) + GR 1 (F3))lp.ry < CM 20570 (log M)

forafunctlonfGVVQT1 when 2 <p<oo, 1 <71 <2< m <00, r1<72(%
is complete.

Remark 1. In case when 71 = 2, Theorem 1 complements Theorem 4 in [14].
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Jlopeni keHicriringeri CoboJjieB KJacbIHbIH, V/-MYIIeJaiK
2KYBIKTAyJJapbIH Oarajiay TypaJibl

I. Akumes', A.X. MbIp3arainesa’

YM.B. Jlomonocos amwimdazo, Mackey memaexemmir ynusepcumeminiy, Kazaxcman duavans, Acmana, Kasaxeman;

18

2 Astana IT University, Acmana, Kasaxcman

2Kywmpicra GipHere affHbIMAJIBI TIEPHOATHI (DYHKITUSIAD KEHICTIKTEPi 3ep/e/ieHren, aTamn aiTkanaa Jlopenrr
kenicriri Lo - (T™), mekreyni apanac GesmieKk TYbIHIABICH 6ap DyHKIUAIAD KIAChI W; + 1 <7 < 00 KoHe
f € Lp(T™) GyHKIUACHIHBIY TPUIOHOMETPHUSIILIK, KOIIMYIIETIKTEPMEH €H, KaKChl M-MyIIestik KybIKTay-
JIapBIHBIH peTi 3eprTenreH. Makasa KipicreieH, Heri3ri 6eIiMHEH *KoHe KOPBITHIHIbIIaH Typaasl. Kipicmeme
HETri3r HOTMXKeJIeP i /ApJIesIJiey YIIH YFBIM/IAP, aHBIKTAMAaJap KoHe KaKeTTi TY2KBIPhIMIAD KapacThIPbLI-
ran. COHBIMEH KATap, OCbl TAKBIPHIN OOMBIHINA aJIJLIHFBI 3€PTTEYJIED Kalibl aKnapaTTbl Tabyra 60j1a-
nwt. Heriari 6emimme W3, -, Cobomen kmacel GyHKIMATAPBIHEIH, L;, -, (T™) Kenicririniyg HopMace! Go#bHIIA
P, T1, T2 TIapaMeTpJiepi apachlHIarbl KATBIHACTAD YIIH €H KAaKChl M-MyIesik »KybIKTayTapbIHbIH HAKTHI
perTik Garajiayiapbl aHBIKTAJFAH.

Kiam cesdep: Jlopenn kenicriri, CobojieB KJachl, apajac TYbIHIbI, TPUTOHOMETPHUSIJIBIK KOIMYIIETIKTED,
M-my1restik 2KybIKTaY.
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O6 omnenkax M-4jaeHHBIX NpubAmKeHnii kjaacca CoboJjieBa B
npoctpancTBe JlopeHna

I. Akumes', A.X. MbIp3araiuesa’

! Kasazemanerut duavas Mockoscrkozo zocydapecmeenmozo yrusepcumema umeny M.B. Jlomonocosa,
Acmana, Kazaxcman;
2 Astana IT University, Acmana, Kasaxcman

B pabore m3ydeHBI MpOCTpaHCTBA MEPUOANYECKUX (PYHKIWI HECKOJIBKUX IMEPEMEHHBIX, a8 WMEHHO IIPO-
crpanctBo Jlopenna Lo - (T™), kinace dbyHKIU ¢ OrpaHNIeHHON CMEIAHHOM APOGHON TPOU3BOIHOM W; .
1 < 7 < 00, u HOpsOoK Hammy4dmero M-wiennoro npubsmkennst yakuun f € Ly - (T™) Tpuronomer-
pudeckumu moauHOMaMu. CTaTbsi COCTOUT W3 BBEIEHUsI, OCHOBHOW YaCTH U 3aKJjJO4YeHUsi. Bo BBeaeHUU
PacCMOTPEHBI OCHOBHBIE ITIOHSTHUSI, ONPEIEJICHUsT U HEOOXOAUMBIE YTBEPXKJIECHUsI JJIs JOKA3ATEIbCTBA OC-
HOBHBIX Pe3yJibTaToB. Takke MOXKHO HANTH MHMOPMAIMIO O IPEAbLIYIINX pe3yjbTaraX 10 3Toil Teme. B
OCHOBHOM YaCTU yCTAHOBJIEHBI TOYHBIE IO MOPSJKY OINEHKHU JJIsi HAWIydImuxX M -dIeHHBIX TPUOIHKEHUN
byukuit kaacca CobosreBa I/V2F -, TI0 HOpMe TIPOCTPaHCTBa Ly 7, (T™") 17151 pa3/IMIHBIX COOTHOIMIEHHH MEXK-
Jly TIapaMeTrpaMu p, T1, T2.

Kmouesvie crosa: npocrpancrso Jlopenna, kiacc CoboseBa, CMeIIaHHAs [IPOU3BOAHAS, TPUIOHOMETPHYE-
CKUii ITOJIMHOM, M -4jieHHOe NpUO/INKEeHNe.
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In the paper the second boundary value problem in a rectangular domain for an inhomogeneous third-
order partial differential equation with multiple characteristics with constant coefficients was considered.
The uniqueness of the solution to the problem posed is proven by the method of energy integrals. A
counterexample is constructed in case when the uniqueness theorem’s conditions are violated. Using the
method of separation of variables, the solution to the problem is sought in the form of a product of two
functions X (x) and Y (y). To determine Y (y), we obtain a second-order ordinary differential equation with
two boundary conditions at the boundaries of the segment [0, ¢]. For this problem, the eigenvalues and the
corresponding eigenfunctions are found for n = 0 and n € N. To determine X (z), we obtain a third-order
ordinary differential equation with three boundary conditions at the boundaries of the segment [0, p]. Using
the Green’s function method, we constructed solution of the specified problem. A separate Green’s function
for n = 0 and a separate Green’s function for the case when n is natural were constructed. The solution
for X (z) is written in terms of the constructed Green’s function. After some transformations, an integral
Fredholm equation of the second kind is obtained, the solution of which is written through the resolvent.
Estimates for the resolvent and Green’s function are obtained. The uniform convergence of the solution and
the possibility of its term-by-term differentiation under certain conditions on given functions are proven.
When justifying the uniform convergence of the solution, the absence of a “small denominator” is proven.

Keywords: differential equation, the third order, multiple characteristics, the second boundary value problem,
regular solution, uniqueness, existence, Green’s function.

2020 Mathematics Subject Classification: 35G15.

Introduction

Third-order partial differential equations are considered in solving problems in the theory of
nonlinear acoustics and in the hydrodynamic theory of space plasma, fluid filtration in porous media [1].

In the aggregate, all third-order equations occupy a special place in terms of their specific character,
equations with multiple characteristics.

The first results on a third-order equation with multiple characteristics were obtained by H. Block 2],
E. Del Vecchio [3].

L. Cattabriga in [4] for equation D271y — Df/u = 0 constructed a fundamental solution in the form
of a double improper integral.

In [5], a fundamental solution of a third-order equation with multiple characteristics containing the
second derivative with respect to time was constructed, their properties were studied, and estimates
were found for |t| — oo.

In works [6-9], boundary value problems for third-order equations with multiple characteristics are
considered using the construction of the Green’s function. Also, we note the works [10-21], in which
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the boundary value problems for third-order equations are considered. Boundary value problems close
to the topic of this work were studied in [22,23]. In [24,25], a solution to the problem posed for a
third-order equation was found with other boundary conditions.

1 Formulation of the problem

In the domain D = {(z,y) : 0 <z <p, 0 <y < q}, we consider the following third-order equation
of the form:
L(u) =Ugpe — Uyy + A Uy + AU, + AgUy + AU = g1 (:U, y), (1)

where A;, p, q € R, i = 1,4, are given sufficiently smooth functions.
By the replacement

Al

U(z,y) =u(z,y)e 3

equation (1) can be reduced to the form

A-
erTdy
)

Ugze — Uyy T A1Uz + G2U = g(:L‘, y)a (2)
2 A3 | A2 A4
where ap = —4 + Ay, az = 3+ 3 — W2 4+ Ay, gloy) = gi(a,y) eI

Problem As. Find function u (z,y) from class C};’j; (D) N C%j; (D), that satisfies equation (2) and
the following boundary conditions:

uy(ZC?O):()? uy (.’,U,q):o, nggpa (3)

u(p,y) =v2(y), us(Py) =v3(Y), ua(0,y) =11(y), 0<y<yq, (4)

where ¥; (y), i = 1,3, g (x,y) are given functions. Note that in works [9-12] the case a; = az = 0 was
considered.

2 The uniqueness of solution

Theorem 1. If problem As has a solution, then if conditions a; < 0, as > 0 are met, it is unique.

Proof. Let’s assume the opposite. Let problem As have two solutions u; (x,y) and usg (z,y). Then
function w(z,y) = wui (x,y) — ug (x,y) satisfies the homogeneous equation (2) with homogeneous
boundary conditions. Let’s prove that u (z,y) = 0 is in D.

In the domain D the identity

ul [u] = Utpgy — Wy + aruu, + asu? =0
or

1 1
8853 <uum - §ui + 2a1u2> - (’*)ay (uuy) + uz +au? =0 (5)

holds. Integrating identity (5) over the domain D and taking into account homogeneous boundary
conditions, we obtain

) q . q P g P q
—2a1/u2 (O,y)dy—i-Q/ui (0,y) dy+//uidazdy%—ag//qumdy:O.
0 0 0 0 0 0

If a1, as # 0, from the fourth term, we get u (x,y) =0, (x,y) € D. If ag = 0, then from the third
term u, (z,y) = 0. From the equation and taking into account the homogeneous boundary conditions
(4) we obtain u (x,y) = 0 is in D. The theorem has been proven.
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Remark 1. Note that if the conditions of Theorem 1 are violated, the homogeneous problem As for
the homogeneous equation (2) may have a nontrivial solution. For example, problem

Uzae (T,Y) + (W)zux (z,y) — <7an)2u (2,y) — uyy (z,y) =0,

uy (2,0) =0, wuy(xz,q)=0, 0<xz<p,
u(p,y) =0, uz(p,y) =0, uy(0,y)=0, 0<y<gq

has a nontrivial solution in the form:

u(z,y) = <1 + (=) sin (Mx>> cos <7any> . nkeZ

2p
3 Ezistence of a solution

Theorem 2. If the following conditions are met;:

1) ¢i(y) € C*[0,q], %' (0) =i (q) =0, i=1,3;

g (x,
2) g( 2:1/)
0xdy

1 A2
3) 0 < C < min , 1 ,
)0= {p2+§p3 Kp(A1+1)}

€ C0,q], gy(z,0)=gy(z,q) =0, 0<z<p;

then a solution to the problem exists.

Here C' = max {|ai], |az|}, \1 = {/ (5)2, K = %(1 — exp (72\?”>>71.

In works [9-12] C' = 0. The 3rd condition is satisfied at C' = 0.

Proof. Consider the following Sturm-Liouville problem taking into account the boundary conditions (3):

Y (y) + X% (y) = 0,
Y, (0) =Yy (q) =0,

(6)

eigenvalues and eigenfunctions of problem (6) have the form:

Let’s expand g (z,y) into a Fourier series of {Y,, (v)}:

9(,9) = gn(2)Ya (),
n=1

q

here g, (z) = \/gfg(x,n) CoS (%n) dn. We integrate function g, (x) by parts twice and taking
0

into account condition 2, Theorem 2, we obtain the estimate |g, ()| < % |Fy (z)]. Here F, () =

q
\/%fgm (2,m) cos Tt ndn.
0

24 Bulletin of the Karaganda University



Solution of a boundary ...

Further on we will denote all arbitrary positive constants by M.
We look for a solution to problem As in the form

=" X (@) Ya (v). (7)
n=0

Substituting (7) into equation (2) and taking into account condition (4) we have the following
problem:

X///+(L1X,+(L2X+)\§Z =g (z), (8)
X"(0) = ¥1n, X (p) =tan, X' (p) =3,
q
where ¢y, = \/%f¢in (n) cos (%”77) dn, i=1,3.
0
Using the function
Vir) =X (x) = p(2), (9)
boundary conditions (8) are transformed into homogeneous ones. Function p (x) looks like:
n V1n
pn (T) = Yon — Y3np + —— wl 2 + (Y30 — Y1ap) T + 711'2'
Substituting (9) into (8) we obtain the problem
V"4 X3V = X3 f (2) — a1V — asV, (10)
VI(0) =V (p)=V'(p) =0
here , , Y
A G
— (% + 1) Vo + (azp il AT 4 gy $) W3n + g(l‘)'
Then we have estimates
‘fn (ZL‘)’ < %(|qjln|+|‘y2n‘+‘qj3n’+ |F ( )|) (11)
£ (@) < 2 (W] + (W] + 1| F ()
Let’s consider cases n = 0 and n € N separately. Problem (10) for \g = 0 has the form:
V0" = fo(x) — a1V’ — a2V, (12)
V0" (0) = Vo (p) = Vo' (p) = 0,
here
R
Jo (@) =go (x) + <a1 (z —p) + a (px -5 2>> Y10 — agth20 + (a2 (p — @) — a1) P3o.

Problem (12) is equivalent to the integro-differential equation

P
/Gnmffn d§+a1/GofE§V0( df—aQ/Goxgvo@)ds, (13)
0

here Gy (z,€) is the Green’s function of problem (12), it has the following properties:

a?)GO (.fL', 5)

ox3 =0,
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G102z (0,§) = Gao (p,§) = Gaoz (p,§) =0,

G (§,€) — Gio(£,6) =0,
G0z (§,€) — Groz (£,€) = 0,
G2Oxa: (5’ 6) - Gl()a:z (gv 6) =1

Function Gy (x,€) has the form

Go (z,§)

1{(p—€)(p+£—2x),0§m<§§p, 1)

2| (z-p)?  0<E<z<p.

It is easy to verify that the function defined by formula (14) has all the properties formulated in
the definition of the Green’s function.
Integrating by parts the second integral in (13) and introducing the notation

00 (@) = | Go e.€) o (€)de.
Go (z,€) = a1Go¢ (x, &) — a2Go (2, €) ,

we get

p
VM@—aM@+/GM%O%@M§ (15)
0

Equation (15) is the Fredholm integral equation of the second kind. We solve (15) using the iteration
method.
Taking the zero approximation Vj (z) = ag (), we write (15) as follows:

Vin () = a0 (2) +/c‘;0 (2,6) Vi1 (€)dE, m=1,2,...
0

The first approximation is

by changing the order of integration in the iterated integral and making the replacement

G (2,€) = / Go (. 5) G (5, €) ds,
0
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then we get

V2 (I‘) = Qp (x) + / (GO (1‘,{) + Gl (a:,{)) (&) ({) d§
0

If we continue the process indefinitely, we get

Vo (z) = ap () +/ (@0 (x,€)+ Z Gm (x,§)> ap (§) d€.
0 m=1

Here

P
m (2, €) :/ —1(s,8)ds, m=1,2,3,...
0

If we denote

then we have a solution in the form
P
Vi (@) = ao(a) + [ Roe.€)an (€ de.
0

Then we get a solution for Ay = 0 in the form

o (z) = ;a (Vo () + po ()

Let’s evaluate this solution. First let’s find the estimate G (=, €):

|Go (z,€)] < 5p°,  |Gog (2,6)] < p.

1
2
For the resolvent |Rq (z,€)| < |Go (#,8)|+|G1 (,8)| +...+|Gm (z,€)| +. .. we find an estimate using
the majorant series:

1

» (Jop)

Gala6)| <€ (p+ 37 <

hS]

Gr(.6)| < [ 1o (2.5)][Go (5. ds < - (J)*

[e=]

‘éz (x,§)| S/}Go(x,s)uél ‘d5< (Jop)
0

p
g/\G (2, )] |G (5,€)| ds < (Jop)m+1
0
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Here C = max {|a1|, |az|}, Jo = C (p + 1p?). Hence the majorant series looks

> (Jop)™
m=1

1

3

Condition 3, Theorem 2 can be written as
2 1 1
<> =Clzp° < -
p? + 2p? '2p +p' p
hence
J()p <1,

then the majorizing series is the sum of the terms of an infinite decreasing geometric progression. In
this case, the resolvent converges uniformly, and its estimate has the form

R < < M.
For ag (x) the estimate is
P
o (@) < [ 160 . 8)] a0 (©)] d < M.
0

Then

lug (z)| < M, ‘uo”’ (x)‘ < M.
The solution to problem (10), at n € N, is sought as follows

p p
=Xy [ Gn(2,8)fn(§)dE — a1 | Gn(2,€) Vi (€)dE —az | Gn(2,6) Va(§)dE,  (16)
.t / /

where G, (z,&) is the Green’s function of problem (10), which has the following properties
PG (2,€) 31 _
——%ﬁf——~+k Gn (z,§) =0,
G1inaz (07 5) = Gap (p7 g) = Gonz (pu 5) =0,
Gan (576) -G (&5) =0,
Gong (5, g) = Ging (ga 5) =0, (18)
Gonza (57 5) = Ginze (57 5) =1L

(17)

Let’s construct the Green’s function. Since linearly independent solutions to Equation X"
A3 X, = 0 have the form:

X1 (l‘) = e*Anz’ X, (x) = sin Bz, Bn = \gg)\

(3]

A A
e cos Bz, Xz(x)=e3"

let us represent the required Green’s function in the form

A A
a1e % 4+ a9e 3% cos Bpx + age 2 T sin By,
Gn(2,8) =

0<z <,
Ao An g An g
b1e” """ + boe 2 ¥ cos Bpx + bge 2

(19)
sin fpe, £ <x<p,
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where a1, as, as, b1, ba, by are currently unknown functions from &.
From properties (18) of the Green’s function and setting ¢, (§) = by (§) —an (§), n = 1,2,3, we
obtain a system of linear equations for finding the functions ¢, (§):

01(3_)‘"5 + cze%gcosﬂnf + 636/\7”5 sin 8,€ =0,
—cre Mt 4 626%”5608 (ﬂn§ + %) + 636%16 sin (ﬂn£ + g) =0,
n 2 n 2 1
cre™ 4 cpe 3 €cos Bné + =)+ 636)\75 sin | 8,€ + ) = -
3 3 A2
The determinant of this system is equal to the value of the Wronski determinant W (X7, Xa, X3)

at point x = ¢, and therefore is nonzero and equal to W (Xi, Xo, X3) = % Having calculated
Ac;, 1=1,2,3, we get:

erné 2¢= € sin (B + %)

:3?; C2(§):_ > 03(€):

2¢= € cos (Bné+ %)
32 '

302

c1(§)

Next, we will use property (17) of the Green’s function; in our case, these relations take the form:

n

2 n
2b1 — by + V/3b3 = 2 (6)‘"5 + 26_%6 cos (?A,@)) ,

n 3 n 3
bie P 4+ bge%p cos \Qf/\np + bge%p sin \g)\np =0,

3 3

n 3 n 3
— bie P 4 bge%p cos <\2[)\np + W) + bge%p sin ({)\Hp + 7T> =0.

Due to the linear independence of X" (0), X5’ (p), X3’ (p), the determinant of this system is:

A — \/ge)\np <1 + 26_3;‘";)008 (ég)\np>> — \/§€>\an7

here A = 1 + 2¢ 2P cos (@)\np).

Consider the following function

V3

A=1+ 2e V31 cost, t= 5 Ant.
The critical points of this function are
2
t = ?ﬁthk:, k=0,1,2,3,...

A (t) takes minimum value only at k& = 0. Then

A > 1 —exp (—2?W> > 0.

This proves the absence of a “small denominator”, hence A # 0.
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Having calculated Ab;, i =1,2,3, we obtain:

eAnP An V3
b = M 4 2e7 3 cos | =\, ,
LT UBA2A g

An
2¢ 2P n 3 3
L (eA"f + 26_%£ cos <\2[)\7£>> sin ({x\np + g) ,

_ e_Tnp )\nf _ME \/g T
bg_\/g)\%A e™s +2e~ 2 % cos <2)\n§ f)\np—l—g

br (§) —cp (&), k=1,2,3 we have ag, k=1,2,3:

) in the form:

ay = \/§§2A e~ Mn(5-7) (1 1275 P cos (?)\ )) sin (@)\nﬁ + %) —
—e_)‘"(g_f) 14 2e 3 "€ cos (f/\ng)) n <73)\np+ %)) ,
as = \/gi%A e~ (5-€) (1+2e "€ cos ‘[/\ 5))c (@Anzﬂ-%)
_eMn(5-) <1 1 2e732™P cos (*2/)\ p)> cos <§/\n§ + %))
(

Putting the found values into (19), we obtain function G,, (z,&

(iL' 5)7 Gln($)5)70§$<§’
B ng($,§),§<x§p,

here 1 (e*)‘””” <2€/\"(p_§) cos (ﬁ)\nf) 2¢*(¢78) cos <% np)) a
9= B (p—2) ( M€ 4 93 cos (f)\nf)> sin (i +5
5-5) ( Anb 4 973%P cos (‘[/\np>> sin (i n(

1 n
Gon(2,§) = VIRA (6’\"5 +2e %€ cos (?&@)) (6)‘”(7’_“5) (=) gin <

The estimate for G,, (x, &) has the form

—I‘

BN
"+E))

+
O
)
>
3
—~

% =
a\ﬁ
N———
N———

K
oh

K
= (20)

G (2,8)] < |G (2, )] <

>

Integrating by parts the second integral in (16) and introducing the notation

p
‘/On = /\i Gn SC 5 In (5) dg,
=

Gn (5375) = alan (x,ﬁ) —aGp ($7£) )
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then (16) has the form

Vi &) = Vo () + [ G (0. €) Vo (©) (21)
0

Equation (21) is the Fredholm integral equation of the second kind. Let us write the solution (21) using
the resolvent in the form

Vi (2) = Vou (2) + / R, (2.€) Vi (€) d,
0

where

Ry (2,6) = Gn (2,8 + > G (22)

m=1

here

mn (T, f):/ Gn (2,8) Gune1yn (5,€)ds, m=1,2,..., Gop (2,&) = Gn (2,5).
0

The following relations are valid for functions Gy, (x,€), Gy, (z,€)

Graz (,2 —0) — Gpay (z, 2+ 0) =1,
Ghge (0,2 = 0) = Grge (z,2+0) = 1, (23)
Ghae (2,2 —0) — Gpge (v, 2 +0) = —1,

Gp(z,2 —0) — Gy (z,2+0) =0,
Gz (2,0 —0) — Gy (2,0 4+ 0) = —ay,

an:r: (55, T — O) - Gnazaz (SC’ T+ O) = —az, <24)
Let us evaluate solution (22). From
Rn (33,5) = Gln (.I,f) +G2n (l’,g) + ... +Gmn (:E»g) +'-'7
let’s find the estimate

using equality G, (z,€) = a1Gn¢ (z,£) — a2G,, (2, ) taking into account (20), we have an estimate for
G (z,€) in the form

1 1
|G| < la1]|Gre| + |az| |Gnl < ()\ /\2) M.

For the right side of inequality (25), we construct a majorizing series. By entering the designation
1 1
J=|—+ =) M,
<>\1 i X‘f)
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we have

_ 11 1
|Gin (2,€)] < |G (z, 5)]<MN(A A2) SI;Jp,

p
\G%mgng/ﬁ? (2,9)] |Cn (s, \m<pﬂ2,
0
p
Gan 2.8)] < [ |G (.5)] |G (5, )| s < 75"
0
f 1
‘Gm” (x,f)‘ S / ’Gln (x’s)‘ ‘é(m—l)n (87§)|d5 < ];Jm ",
0

Then the majorizing series has the form

1 o
p m=1
Condition 3, Theorem 2 can be written as
C< i = <1+1>KC<1
Kp ()\1 + 1) A A2 P
from here
Jp < 1,

then the majorizing series is the sum of the terms of an infinite decreasing geometric progression. In
this case, the resolvent converges uniformly, and its estimate has the form

J < M. (26)

R@.6)| < 1= <

Substituting G, (z,&) = Gheee (2, €) into Vo, (x) and integrating, we have

p
Von (z) = —fn (z) + fn (0) Ganee (z,0) — fn (p) Ginee (z,p) + /Gn§£ (z,6) o' (€) ds.
0

Taking into account estimates (11) and
|Gonge (2,0)] < K, [Gnge (,p)| < K,

we get
M M
Vou (2)] < —3 (14 [ Fo (2)] + [Fn (O) + [Fn (P)]) + 5 (1Wn] + [W2n] + [ W) - (27)

From (26) and (27) we obtain the estimate

Vi (@)] < [Von ()] +Ofp!R(x,£)l [Vw (€)] de <
< M (14 |Fy ()] + B (0)] + | Fy (9)]) + 24 (W10 + [Tan] + [Tsy]) -
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Due to (7) and (9), the solution to the problem has the form

u (@) = f} (Vo) + () eos (7).

Let’s check this solution for convergence. Considering the assessment

M
lon ()] < 3 ([U1n] + [Won| + [¥3,]),

we have
|u my|<MZ (1 + [Fn ()] + [Fn (0)] + [ Fn (p +MZ (|W1n] + [Yon| + [P3,]).

Let’s show the convergence uzz (7, y). Taking into account (23) and (24), we find the derivatives
of V,, () with respect to x of the third order.

VI (@) = N fo (2) — an (V'On (@) + | Roa (2,6 Vo () ds) _
—a2 <v0n (2) + | Ro (2,€) Vo (€) d€> a8 (VOn (#) + [ Ro (2,€) Von (€) d&) .
0 0

Using estimate (23) and the properties of the Green’s function, we get

M F, (0
’VIOn (:E)‘ > 7 <|\I/1n‘+‘\1/2n’+’\1/3n|+|()|+1> )
ns n
| Rz (2,€)] < n3M,
next we have
nn M2
V" () Zl‘l’ml + Fo ()| + [F (0)] + [Fn (p)| + 1) .

From here
o0 M o0
n= n=

Using the Cauchy-Bunyakovsky and Bessel inequalities, we obtain:

[Ugze (z,y)] < M ( > |\I’1n‘2 o2 ’\1’271’2 a4l 2 |\I’3n‘2) > n% + >0 (n_Q) <
n=1 n=1 n=1 n=1 n=1
< MAJZ ([ @)+ 19" @)+ 19" @)]]) + 210 (n7?) <o

Here
. 2 2 . 1 w2
Z Win|” < Hd}imHLz[O,q]’ i=1,3, Z n2 6
n=1 n=1

Given the inequality

gy (2, 9)] < Jtaen (2, )| + || [uaz (2, 9)| + |az| [u (2, y)],

we can conclude that u,, also converge.
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From the solution of problems (11) and (13) we obtain a solution to problem Aj in explicit form:

wlen) = & (0@ + [ Ro@ O ©de + m@) +
/22 con (72 ) (2,€) X3 i (€) dé+
+ ECOS(”" )<fR :Ufofp nms)\?’fn()dsd§>—|— 2n§1pn(x)cos(”£y).

Thus, Theorem 2 is proved.

Conclusion

In this paper, we consider a boundary value problem for a third-order inhomogeneous equation

with multiple characteristics, containing low-order terms with constant coefficients. The uniqueness
and existence of a solution to the problem posed are investigated. Sufficient conditions are found for
the coefficients under which the problem posed is uniquely solvable, and in the case of violating these
conditions, an example of a nontrivial solution to a homogeneous problem is constructed. The solution
to the problem is constructed in the form of a eigenfunctions’ series for a one-dimensional spectral
problem.
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I'pun yHKIUSICHIH Kypa OTBIPBIN, €ceJii cullaTTaMaJJapbl 6ap
YIIIHIIT peTTi 6ipTeKTi eMec TeH ey VIMiH MIeTTIK eCEeNTiH, MIeriMi

IO.I1. Anaxos!?, P.A. Ymapos?

1 .
3P FA B.A.Pomanckuti amwndazo. Mamemamuka uncmumymo, Tawkenm, Osbexcman;
2 Hamarean unscerepair-gypouaoc uncmumymaes, Hamanzan, O36excman

2Kywmpicra TypakThl Ko3dduimenTrepiMeH ecei cumarraMaaapbl 6ap gepbec TYBIHIBLIB YIIHIII peTTi 6ip-
TeKTi eMec MudGEPEHINATIBIK TEHAELY YIITiH TIKOYPBINITHL 0OJIBICTa EKIHIMI IMETTIK ecell KapaCThIPBLIFaH.
Koiiburan ecenTiy memnmiMiHig »KaJFbI3IbIFLl SHEPTUsST UHTErPAJIapbl dJiciMeH JaJesaeH . 2K aarbI3IbIK
TEOpEeMAaChIHBIH IIapTTAPbl OYy3bUIFaH KargaiiFa KapChl MbICAJI KYPACTBIPLUIILI. AHBIMAIbLIADIBI OOTIKTEY
ozicin Kommansm, ecenrin menrimi X (z) xkone Y (y) exi dynxnusaubH kebeiTingici peringe iznemeni. Y (y)
anplKTay yiuiH [0, ¢] cerMeHTIHIH meKapagapblHa €Ki meKapaJIblK IapTTapbl 6ap eKiHii peTTi KapamnaibiM
muddepeHmaNIbIK TeHAey Al agaMbi3. Byur ecen ymriH MeHIIKTI MoHIepi »koHe oraH coiikec n = 0 KoHe
n € N ymin menmikTi GyHknuanapel Tabbuiabl. X (z) ampikray yumina [0, p] cermMenTinig mekapasapbiHIa
VI IIEeKapaJIbIK, IIapThl 6ap YIIiHIN perTi KapamnaiibiM JuddepeHnuaiablk TeHaeya agambi3. Kepceri-
reH ecenriy mmermimi ['pua dyHKImsICH 9ici koMerimen 1mbrapburad. n = 0 yiin 6esek ['pus dyHKIMSICH
2KOHE 1 HATYPAJI CaH GosIFaH »Karmail yirid 6esek I'pun dyHKnmsace: Kypbuiabl. X () yIIiH mentiM KypbUIFan
I'pun dyHKIUICH apKBLIBI Ka3bLiraH. Keitbip TypJieHaipyIepaeH Keiin memnrimMi pe30/ibBeHTa apKbLIbI YKa-
3pUIFaH eKinmi TekTi naTerpasasl Ppearonsm TeHzeyi anapHabl. Pe3osbBenTa Men I'pun dyHKIuscel yiin
barastaynap Tabbuiel. [lernmiMuin 61pKATBIITE XKUHAKTHIIBIFEL 2KoHE OepliireH OyHKITUIIap1a Keibip map-
TTap YIIH mytmesern guddepenimaniany MyMKisairi gosaenaeni. [lemiMain 61 pKaJIbIITh XKUHAKTHLIBIFBIH
HerizJiey KesiHe «Kimmi Ge/TIMHIHY YKOKTBIFBI JI9JIEJIIEHTEH.

Kiam cesdep: nuddepeHnmaIbIK TEHILY, YIMHIIN PeT, ecejli CUTaTTaMaJjap, eKiHII MeTTIK eCell, TYPaKThI
IIeIiM, YKaJFBIBILIK, 6ap 6oy, ['pun dyHKIUSACH.
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Penienue kpaeBoii 3ajiaun Jijisi HEOAHOPOJHOIO ypaBHEHUS
TpeThero MmopsiJika ¢ KpaTHbIMU XapaKTepPUCTUKAMU
c nmoctpoeHnem dbynkiuu I'puHa

IO.I1. Anaxos!?, P.A. Ymapos?

! Hnemumym mamemamusu umenu B.H. Pomanosckozo AH PY3, Towxewm, Yabexucman;
2 Hamareancrutd unocenepro-cmpoumenvHoui unemumym, Hamanean, Yabexucmar

B pabore paccmorpena Bropasi KpaeBasi 3ajiada B IPSIMOYTOJIBHOM 0OJIACTH JIJIsl HEOHOPOIHOTO Judde-
PEHINAJILHOIO YPABHEHHS B YaCTHBIX IPOM3BOIHBIX TPETHErO IOPSIIKA C IOCTOSTHHBIMU KO3 duimenramu
C KPaTHBIMU XaPAKTEPUCTUKAMH. EJIMHCTBEHHOCTD PEIIEHUs TIOCTABJIEHHON 3a]a9 JIOKA3aHa METOIOM WH-
TerpaJioB sHepruu. [locTpoeH KOHTpIpPUMED B CiIydae HAPYIIEHHs] YCIOBUl TeOpEeMbl eIMHCTBeHHOCTH. Vc-
[TOJIB3Ys METOJT Pa3/eJICHHUs IIE€PEMEHHBIX, PEIeHNe 3aady HINETCS B BHJE IIPOU3BEIEHUS ABYX (MOYHKIUN
X(z) n Y(y). Jua onpenenenns Y (y) mosydaem o6bikHOBeHHOE nudDEPEHIMATBHOE YPABHEHUE BTOPOTO
HOPsZIKA C IBYMsI TDAHMYHBIMA YCJIOBUSIMU Ha IpaHunax cermenta [0, ¢|. s sroil 3ama4um HailneHbl co6-
CTBEHHBIE 3HAYEHHS U COOTBETCTBYIOIME UM cobcTBeHHbIe hyHknuy npu n = 0 un € N. [aa onpenenenns
X (z) momyuaem obbikHOBeHHOE nuddepeHImanbHoe ypaBHEHNE TPETHETO MOPSIKA ¢ TPEMs MPAHUIHBIMA
ycsioBusiMu Ha rpaHunax cermenta [0, p|. Merogom ¢yHknum ['puHa 1101y 4eHO pelleHne yKa3aHHOM 3a/1a9u.
Brumm nocrpoens! ornenbuas dyukius 'puna gy n = 0 u oraesnbHas GyHkius I'puna s cirydasi, Korga
n — narypaJspnoe. Pemenne qys X (z) Beimucano gepes nocrpoennyio dyukmuio I'puna. [locie nekoTopbix
peobpa30BaHuil MOJIyUeHO MHTEerpajbHoe ypaBHenne PpenrosbmMa BTroporo poja, pelieHre KOTOPOil Bbl-
[IACAHO Yepe3 pe30sibBeHTy. [loyyuens! oneHKu pe3osabBeHThl n GyHKImE ['puna. JokaszaHel paBHOMepHas
CXOJIUMOCTD PEIIEeHNsT ¥ BO3MOXKHOCTD €r0 MOWJIEHHOro AuddepeHIMPOBaHIs IPU HEKOTOPBIX YCJIOBUIX HA
3asanable pyHKImu. [Ipn o60cHOBaHME PABHOMEPHOI CXOAMMOCTH PEIIeHUs JOKA3aHO OTCYTCTBHE «MaJIOro
3HAMEHATEJIST>.

Kmouesvie crosa: muddepeHnnaabHOe ypaBHEHUE, TPETUI TOPSIOK, KPATHBIE XapaKTEPUCTUKHU, BTOPAsI
KpaeBas 3aJava, PeryyIsipHOe pellleHne, eIMHCTBEHHOCTD, CyIecTBOBanue, pyuknusa ['puna.
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The Ginzburg-Landau equation with rapidly oscillating terms in the equation and boundary conditions in a
perforated domain was considered. Proof was given that the trajectory attractors of this equation converge
weakly to the trajectory attractors of the homogenized Ginzburg-Landau equation. To do this, we use the
approach from the articles and monographs of V.V. Chepyzhov and M.I. Vishik about trajectory attractors
of evolutionary equations, and we also use homogenization methods that appeared at the end of the 20th
century. First, we use asymptotic methods to construct asymptotics formally, and then we justify the form
of the main terms of the asymptotic series using functional analysis and integral estimates. By defining the
corresponding auxiliary function spaces with weak topology, we derive a limit (homogenized) equation and
prove the existence of a trajectory attractor for this equation. Then, we formulate the main theorems and
prove them by using auxiliary lemmas. We prove that the trajectory attractors of this equation tend in a
weak sense to the trajectory attractors of the homogenized Ginzburg-Landau equation in the subcritical
case, and they disappear in the supercritical case.

Keywords: attractors, homogenization, Ginzburg-Landau equations, nonlinear equations, weak convergence,
perforated domain, porous medium.

2020 Mathematics Subject Classification: 35B40; 35B41; 35Q80.

Introduction

This work is devoted to investigating boundary value initial problems in the perforated domain.
Assuming Robin (Fourier) type of boundary conditions to be set on the boundary of holes, we write
down the homogenized (limit) problem and prove the Hausdorff convergence of attractors (Fig.) as the
small parameter tends to zero. Thus, we define the homogenized attractor and prove the convergence
of the initial attractors to the attractor of the homogenized problem. The asymptotic behaviour of
attractors to an initial boundary value problem for complex Ginzburg-Landau equations in perforated
domains for the critical case (appearance of additional potential in the homogenized equation) is studied
in [1]. In this paper, we investigate subcritical and supercritical cases. For the asymptotic analysis of
problems in perforated domains, see, for instance, [2,3| and [4-7].
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Figure. Attractor of the Ginzburg-Landau equation

About attractors, see, for example, monographs [8-10] and the references therein. Homogenization
of attractors were studied in [9,11-16] (see also [17,18]).

In the paper, we prove that the trajectory attractor 2, of the Ginzburg-Landau equation in the
perforated domain converges in a weak sense as  — 0 to the trajectory attractor 2 of the homogenized
equation in an appropriate functional space. Here, u characterizes the diameter of cavities and the
distance between them in the perforated medium.

The results are announced in [19].

1 Statement of the problem

First, we define a perforated domain. Let @ C R d > 2 be a smooth bounded domain. Denote

1 1
Tu:{jeZd : dist(uj,aQ)zM\/&}, Dz{gz—2<§j<2, jzl,...,d}.

Given a 1-periodic in & smooth function F(x,&) such that F($,§)‘§ - > const > 0, F(z,0) = —1,
€
VeF # 0 as £ € O\{0}, we set

Dt ={een@+i) |F@ 2 <ol
and introduce the perforated domain as follows:

0, =9\ (J DY
JEYT

Denote by w the set {§ eR? | F(x,€) < O}, and by S the set {§ eR? | F(x, &) = 0}.
Afterwards, we will often interprete 1-periodic in £ functions as functions defined on d-dimensional
torus T¢ = {5 € e Rd/Zd} .

According to the above construction, the boundary 0f2,, consists of 92 and the boundary of the
cavities S, C Q, S, = (0Q,) N Q.
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We study the asymptotic behaviour of attractors to the problem

(O
% = (1+ od)Auy, + R(z, %) Uy — (1 + B(z, z)l> ]uHPu# +g(x), ze€Q,,
0
(1+ ai)% + 12q(x, %)“u =0, reS,,t>0, (1)
uy, =0, x € 09,
u, = Ulx), xeQ,t=0,

where 6 > 1 (subcritical case) and 0 < @ < 1 (supercritical case). Here « is a real constant, v is the
outward unit vector to the boundary, u = uy + iug € C, g(z) € CY(Q;C), q(x,&) € CHQ;RY) and
q(x,€) is a nonnegative 1-periodic in & function. We assume that

— Ri < R(x,§) < Ry, —f1 < B(x,€) < B2 (Ro, Ri, B, B2 > 0), (2)

for x € , ¢ € R? and the functions R (x, &) and 3 (x, &) have the averages R(z) and B(z) in Log wuw(£2)
respectively, i.e.,

/Q(wé)wl dw—>/ z)e1(x dw/ﬂwﬁwl dm—>/ﬁ )1 (z)dz

as it — 0+ for any function ¢;(x) € L1(€2), where { = z

We denote the spaces H := Lo(€;C), H,, := L2(Q,;C), V := H}(Q;C), V, = 1(QM;(C;aQ) -
set of functions from H'(,;C) with zero trace on 92, and Ly, := L,(%;C), Ly, , := L,(Q,; C). The
norms in these spaces are denoted, respectively, by

ol? = / fo(a)|2dz, [o]]2 = / fo(@)Pda, [o]]2 = / Vo) d,
Q Q Q

n

ol i= [ IVo@Pde, ol = [ lo@)Pdz, ol = [ o)
Q Q Q

Recall that V/ := H~1(2; C) and L, are the dual spaces of V and L, respectively, where ¢ = p/(p—1),
moreover, VL and L, , are the dual spaces for V, and Ly ,.
As in [9], we study weak solutions of the initial boundary value problem (1), that is, the functions

up(,8) € L (Ry; Hy) 0 LY(R 15 V,) N LY (Ry; Ly )

which satisfy the problem (1) in the distributional sense, i.e.

—/OOO/QHuH?;f dzdt + (1 + ai) /Ooo/m Vu, Vi dxdt—
[ L))o
+u /+Oo/s ( >uuwd0dt / / 2 dedt (3)

for any function ¥ € Cg°(R1;V, MLy ).
If uy(x,t) € Ly(0,M;Ly,,), then it follows that

R (x u) waz,t) - (1 3 <x Z’) i) (s 8) P (1) € Laja(0, M L)
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At the same time, if u,(2,t) € L2(0, M; V), then (1+ai)Aw,(z,t)+g (x) € L2(0, M; V},). Therefore,
for an arbitrary weak solution u,(z, s) of the problem (1) we have
Ouy(x,t)
ot
The Sobolev embedding theorem implies that

€ Ly3(0, M;Ly3,,) + La(0, M; V),).

Ly/3(0, M;Lyy3,,) + La(0, M;V),) C Lyys (0, M;H,T)

where the space H," := H~"(Q,;C) and r = max {1,d/4}. Hence, for any weak solution w,(z,t) of
(1) we have M“T(f’t) € Ly (0,M; H;’")

Remark 1.1. The existence of weak solution u(x, s) to the problem (1) for every U € H,, and fixed
w, such that u(x,0) = U(z) can be proved by standard approach (see for instance [8]).

The following key Lemma can be proved similar to Proposition 3 from [17].

Lemma 1.1. Let uy(z,t) € LY“(R4;V,) N LP¢(Ry; Ly ,) be a weak solution to the problem (1).
Then
(i) uwe C(R; Hy);

(i) the function [Ju,(-,t)||% is absolutely continuous on R, and, moreover,

1d 2 2 4 T 2
3 371 O + IV O + O, — [ R (M) (2, ) P+

n

+ ue/ q <x ””) |up(z,t)[*do = / Re (g(2)a,(z,t)) dz,
Iz H Qu
for almost every t € Ry.

Let us fix p. In further analysis, we shall omit the index p in the notation of the spaces, where it
is natural. We now apply the scheme described in [1; Section 2| to construct the trajectory attractor
for the problem (1), which has the form from the scheme, if we set £y =L, NV, Eg=H™", E=H
and A(u) = (1 4+ cd)Au+ R(-)u — (1 + B()i) |u?u + g(-).

To describe the trajectory space IC;r for the problem (1), we follow the general framework of [1;
Section 2| and define the Banach spaces for every [t1,%2] € R

ov _
Fir s = La(t1,t2;Ly) N Lo(t1,t2; V) N Lo (t1, t2; H) N {'U ‘ o € Lysz (t1,to; H T)}
with norm
ov
HUH}—tl,tQ = ”UHL4(t1,t2;L4) + HvHLQ(tl,tQ;V) + ||UHLOO(O,M;H) + E . (4)
Lysz(t1t;HT)

According to the scheme, we use the norm (4); in this case, the translation semigroup {S(h)} satisfies
the conditions from the scheme.

Setting Dy, 4, = Lo (t1,t2; V) we have that F, 1, C Dy, 1, and if u(s) € Fy, +,, then A(u(s)) € Dy, 4.
We can consider a weak solutions of the problem (1) as a solution of an equation in the general scheme
from [1; Section 2].

Define the spaces

15
Floc — LQ"C(R ;L) N LZQOC(R V)N l/l:":c(]R ;H)N {v } —1; € Lff/cg(R ; H_T)} ,
0
J Lo,+c = LZOC(RJH L47u) N Léoc(R+§ -Vu) N Lloooc(]RJr; Hu) N {U 9: € Lilo/cs(RJr; IIM_T)} .
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We denote by IC:[ the set of all weak solutions of the problem (1). Recall that for any U € H there
exist at least one trajectory u(-) € K} such that u(0) = U(x). Therefore, the trajectory space K of
the problem (1) is not empty and is sufficiently large.

It is clear that IC:[ C ]:_lfc and the trajectory space IC;r is translation invariant, that is, if u(s) € /C;f,
then u(h 4 s) € K} for all h > 0. Therefore,

S(WK) CKf, Vh>o.

We now define metrics py, 4, (-, ) on the spaces Fy, 4, using the norms of the spaces La(t1, to; H):

1/2

partu) = ( [ " uts) - vollfds) L VU)ol € Fou

These metrics generate the topology @l_ﬁc in ]-"_lfc (respectively @l"i in ]-"Loﬁ_) Recall that a sequence
{vr} C Fio¢ converges to v € F* as k — oo in O if [Jug(-) — v(:)ll £y 0,m:m) = 0 (k — o0) for each
M > 0. The topology @lfc is metrizable. We consider this topology in the trajectory space IC:[ of (1).
The translation semigroup {S(¢)} acting on IC:[ is continuous in the topology @l_fc.

Following the general scheme of [1; Section 2|, we define bounded sets in IC: using the Banach
space ]:j’_’ .- We clearly have

FU = Li(RyiLyy,) N LS(Ry; V) N Loo(Ry H { ‘ — € L3 R+;Hur)}.
In an analogous way, we have
ov _
Fb = LiRy;Ly) N L5 (R4 ; V) N Lo (R H) N { ‘ T € L4/3(R+;H r)} ;

]:j’_ and fi,u are subspaces of ]:j_oc and F _lfi, respectively.

Consider the translation semigroup {S(t)} on K, S(t) : K} — Kf, ¢ > 0.

Let K, be the kernel of the problem (1) that consists of all weak complete solutions u(s), € R, of
the system bounded in the space

a -Tr
}"ﬁ:LZ(R;LML)HLS(R;V“)OLOO(]R;HM)ﬂ{ ‘ e € LY 4(R: H,, )}.

In analogous way we define F?.
The definition of trajectory attractor was given in [1] (see also [9]).

Proposition 1.1. The problem (1) has the trajectory attractors 2, in the topological space @l_fc.
The set 2, is uniformly (w.r.t. 4 € (0,1)) bounded in F¢ and compact in ©'°¢. Moreover,

Q[N - H+]CM,

the kernel £, is non-empty and uniformly (w.r.t. u € (0,1)) bounded in Fb. Recall that the spaces ]-'S’_
and @lfc depend on .

The proof of this proposition almost coincides with the proof given in [9] for a particular case. The
existence of an absorbing set that is bounded in ]:3 and compact in @lfr’c is proved using Lemma 1.1
similar to [9].

We note that

A, C Bo(R), Ve (0,1),
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where By(R) is a ball in F¢ with a sufficiently large radius R. The Aubin-Lions-Simon Lemma from
[1; Section 2| implies that

By(R) € LY“(R;H'™), (5)
Bo(R) € C"“(R;H™®), 0<d<1. (6)

Using compact inclusions (5) and (6), we strengthen the attraction to the constructed trajectory
attractor.

Corollary 1.1. For any set B C IC;r bounded in .7-"3 we have

diStLQ(O,M;Hl—é) (H()’MS(t)B,H(),M]CM) —0 (t — OO)7
diStC([(),M];Hfé) (H07M5(t)B,H07MICM) —0 (t — OO),

where M is an arbitrary positive number.

2 Homogenized (limit) problem

Let M; be 1-periodic solution to a problem

oM,

Ag(Mi—Ffi):OinD\w,
Ve

=v; on S(x), (7)

having zero mean values over the cell of periodicity. Denote by (-) the integral over the set 0N w.
The case 6 > 1. The homogenized (limit) problem has the form

d

% . . i N 8MZ($,§) 8u0
- e 30 o (o 250
—R(z)ug + (1 + B(2)i) [uo* uo = [DNw|g(x), =€, (8)
ug = 0, e 0, t>0,
ug = U(z), xeQt=0.

We consider weak solution to the problem (8), i.e. the function uy = ug(z,t), z € Q, t > 0,
0
ug € LY(Ry;Ly) N LYS(R; V) N LR H) N {v ‘ 577; c LQ(;@(&;HT)} ,

satisfying the integral identity

/ /uodtda:+ 1+oa/ / Z<” OM;( x£)> auoaidtd_
R R

] 0¢; O0x; 0z

/R+/ z)ug — (14 B(2)i) [uol? u0>vdtdx—/R+/|me]g( ) v dtdz

for any function v € C§°(R4; V N Ly).

Remark 2.1. It should be noted that M;(z, ) are not defined in the whole Q. Applying the technique
of the symmetric extension allows to extend M;(z,&) into the interior of the “holes” retaining the
regularity of these functions. We keep the same notation for the extended functions.
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3 Auxiliaries
3.1 General reasoning

We investigate the asymptotic behavior of the solution w,(x) as u — 0 of the following boundary-
value problem in the domain €2, :

-1+ ag) Auy, = g(x) in Q,
(1+ od) 5‘uyZ +ulq (:p, ;j) u, =0 on S, 9)
uy, =0 on 0,

where n, is the internal normal to the boundary of "holes” ¢(x,&) is a sufficiently smooth 1-periodic
in & function.

Definition 3.1. Function u, € H'(,,09) is a solution of problem (9), if the following integral
identity

(1+ ai) o Vu,(x) Vo(x) de + ,ue/s

K <:c Z) up(2)v(x) ds = /Q g(z) v(z) dz

holds true for any function v € H(€2,,0Q).

Here, we use the standard notation H'(Q* Q) for the closure of the set of C°(Q")-functions
vanishing in a neighborhood of 92, by the H'(2*) norm.

In [1] we showed that § = 1 is a critical value for problem (9); in what follows we prove that the
dissipation dominates if # < 1 and is neglectable if 6 > 1.

3.2  Subcritical case 6 > 1

This section deals with problem (9) in the case # > 1. Substituting the expression

x

X
uy () = up(x) + MeflUL—l (957 u) + o+ puon (367 M> + pfu g (fﬂ, M) +

xT T
+ M2UO,2(CC, ;) + M9+1U171(J}, ;) +---+ Mk0+luk l(:l), ;) +... (10)

in equation (9) and taking into account an evident relation

0 x 0 10
7 (77) = (oo o) |
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we obtain, after simple transformations, the following formal equality

_ 194(:60)41 = Agupu(x) = Aguo(z) + 1~ (Apur, 1 (2, ) ‘gzjj + 2 (Vi Vet 1(@,) L:f—
n M973 (Agul,—l(x7€)) ng + (Axu()’l(l',f)) ng +2 (Va:; VEUO,I(«T,O) L:&

(B (@) 2 (Ve Veunof,6))|

W w

2 (Buop(@.8) |, + 12 (Ve Vewoa(e, )|, +

= _z
m M w

N + M6+1 (Ayug 1 (z, ) ‘g—ﬁ + 2,u0 (Va, Vgul,l(%f)) ‘5:£+

w © w
+ 17 (Agua i (2, €)) LJ + o P (A gy (2, 9)) s + 20PN (T, Ve (2, €)) ‘
T e w

+ W2 Dgura(,9) |+ (1)

_x

i (Do o(a€) |,

14

+ 1072 (Agur o(x, €)) ¢

— -z

+ (Aeuoa(,6)|,

_z

w

Similarly, on S,, we get

0= uy +,u0q <a:, %)

~ 0—1 0
v, 1+ ai uy = (Vauo,vy) + 7 (Vaur—1,v,) + Txal

1(e.3)
+ 2 (ng,—l |§:£; w) + T =—Lun 1+ (Vauon, v) +
m

1+ai
X
q<wvﬁ>

v s 0+1
* ( €to1e ””) T

xz
20 (x’ N)

up1 + pf (Vyuro,vy) + pf <V5U1,0\5:z71/u> +
m

z
9+2q (a:, “)

2
T ot (Vatioz,v) +p <V£“0,2\5=z,vu> T g et
0+1 0 29111 (‘T’ %)
+p7 (Vaur i, vy) + 1 (Vgum‘gi, 1/“> + u W““ NI

q (w ﬁ)
+uk9+l (qukﬁhyu) +Iuk0+171 (vguk,l‘gzzayu> +M(k+1)9+lﬁukﬁl +... (12
n + a1
Note that the normal vector v, depends on z and £ in €2,. Considering, as usually, x and { = % as
independent variables, we represent v, in {2, in the following form:

vz, %) = ﬂ(a:,{)‘fJ + /M/L(x,é)‘g:g,

w w

where 7 is a normal to S(z) = {¢| F(z,§) = 0},
v, =V +O0(n).

Collecting all the terms with like powers of p in (11) and (12), we arrive at the following auxiliary
problems:

Aguy,—1 ((:1:,5)) = 0 in w, 13)
Ouy —1(z,§) 13
— 5, = 0 on S(z),
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Agurg (7,€) = —2(Ve,Vour—1(2,8) in w,
Mlgw = —(Veur,1(2,8),7)  on S(z), (14)
v
and problem
Agup (7,§) =0 in w,
({W = — (Va(uo(x)),n) on S, (15)

to be solved in the space of 1-periodic in £ functions; here x is a parameter, w := {{ e T¢ | F(x,&) > O}.

The problem (15) is the standard “cell” problem appearing in the case of Neumann conditions on the
boundary of holes. The solvability condition

/ (Vatip(2), 7(€)) do =0
S(x)

for problem (15) is clearly satisfied, and its solution forms the first “internal” corrector in (10).

It follows from (13) that w; —; does not depend on &. In fact, for our purposes, it suffices to put
u1,—1 = 0. Then u; ¢ = 0 solves (14).

In the next step, we collect all the terms of order x° in (11) and of order x' in (12). This yields

Agugp (z,8) = —m — Aguo(z) — 2 (Ve, Vauo 1 (z, €)) n w, )
8110’2(5375) = —(Vauo(z,€),7) — (Veuo(x,§),v) — (Vauo(x), V') on S(z).

If we represent ug1(z,&) = (Vauo(z), M(x,§)), where M(z,§) = (Mi(x,§),..., My(z,§)) solves
problem (7), then (16) takes the form

ron & Pugle) M E)
Aguoz (@,6) = 1+ai Agtio(x) =2 jz:l Ox; 0z O
d
Oug(z) 9?M;(x,€) :
—2 in w,
i;l al'l agjal'j
Quop(z,§) d OQUO(:E) dug(z) OM;(xz,€) _
o Z ox; @m Z (9:21 o0x; it
1,]= J ,] 1 J
d
L§h ) M) s owte)
mz':1 O; 9¢; Z 390@ v on 5@

Writing down the compatibility condition in the last problem, we get the following equation:

g9(z) &ug(x) OM;(x, &) dug(z) 02M;(x,€) _
/me<1—i—a +A“()+22 om0z, 05 22 0z;  0F; 0z, >d§

ij=
d
82u0(x) Qup(z 8M (2,8) _
= )7; + 7+
/Q <”Z:1 o0x; 8:13] J le 67:13Z Ox;j Yi
e: aM (« 5) ;= dup(a)
zjzl axl I/j + ZZ_; 8551 Vi dU
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In the same way, as in [1| we find the homogenized problem:

(1 + ai) zd: aij (<6ij + 8Még’£)> ag(;(l )) +|0Nw|glz)=0 in Q,

ij—1
up(x) =0 on ON.

The integral identity for problem (17) reads

1+a1/ Z<m 8M6;j §)>8u0 /\Dﬂwlg v(z) de

i,7=1

for any function v €H! (Q).

Theorem 8.1. Suppose that g(x) € C1(R%) and that ¢(z, ¢) is smooth enough nonnegative function.
Then, for any sufficiently small x4 problem (9) has the unique solution and the following convergence

luo — wull () — 0
takes place, where ug is a solution of the problem (17).
3.2.1 Auziliary propositions
Lemma 3.1. Under the conditions of Theorem 3.1 the inequality

T
/m \Vv]de + ,ue/s q <$, M) vids > C’13HU||?{1(QM)

n

holds for any v € H'(,,,0Q).
Lemma 3.2. For any v € H'(£2,)

/S# ¢ (x i) wo(z) v(z) ds

Proof of the Theorem 3.1. The proof of this assertion is based on this lemma, and it can be found
in [20].

< Crap ol g [0l o) -

We omit their proof.

8.8  Supercritical case 6 < 1

This section deals with problem (9) in the case § < 1. The following assertion is valid.

Theorem 3.2. Suppose that g(x) € C'(R?) and that g(x, £) is smooth enough nonnegative function.
Then, for any sufficiently small x problem (9) has the unique solution and the following convergence

1wl 0,y — 0

takes place as pu — 0.

Proof. Keeping in mind Lemma 5 from [21], we get from the integral identity the estimate

1wl 10, < C.
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Acting in the same way as in [21], we deduce

€T
[ e < [a(e Yuas + i)

w Su

On the other hand,

< 1 g @)ooyl pag,) + O ).

',u/q(:z:, %)uids
S

Combining these estimates, bearing in mind the uniform boundedness of u, in H 1(Qu)v we complete
the proof.

4 The main assertion
4.1 The case 0 > 1

Theorem 4.1. The following limit holds in the topological space G){fc
A, > A asp—0+. (18)

Moreover,
K, —K aspu— 0+ in 0" (19)

Remark 4.1. Recall that the functions from the sets 2(,, and K, are defined in the perforated domains
1,,. However, all these functions can be prolonged insides the holes in such a way that their norms in the
spaces H, V, and L, (without perforation) remain almost the same (are equivalent with the constants
independent of the small parameter) as in the perforated spaces H,, V,, and Ly, (the prolongation
of functions defined in perforated domains, see, for instance, in [5; Ch.VIII|). So, in Theorem 4.1, we
measure all the distances in the spaces without perforation.

Proof. Tt is clear that (19) implies (18). Therefore it is sufficient to prove (19), that is, for every
neighbourhood O(K) in ©¢ there exists p1 = u1(O) > 0 such that

K, C O(K) for pn < piy. (20)

Suppose that (20) is not true. Then, there exists a neighbourhood O'(K) in ©!¢, a sequence pj, —
0+ (k— 00), and a sequence uy, (-) = uy, (s) € K, such that

uy, ¢ O'(K) for all k € N. (21)

The function u,, (s), s € R is the solutions to the problem

( Ou . x T\ .
W“k = (1+ai)Auy,, + R <m, Mk) Uy, — <1 + 8 (x, Mk) 1) |Uuk|2uuk +g(x), xe€Q,
(1+ i) ggk +uzq<x,£)uuk:0, x € 8Sy,,t>0,
Upy, = 0, S 8Q,

| uy, = U(x), x €8y, ,t=0.

(22)
on the entire time axis ¢ € R. To obtain the uniform in p estimate of the solution, we use the following
Lemmata (see [22; Ch. III, §5] and [23] respectively).
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We obtain the estimate using the integral identity (3), by means of Lemma 1.1. More precise the
sequence {uy, (z,s)} is bounded in F?, that is,

[ty || 7o = sup [, ()[4
teR
1/4

t+1 9 t+1 4
T sup < / ||uuk<s>|rlds> + sup ( / ’|Uuk(5)||L4d3) ;
teR t teR t

t+1 a 4/3 3/4
+ sup (/ | S (s)| ds) <C forallkeN. (23)
teR ot H-

1/2

The constant C' must not depend on .
Hence there exists a subsequence {u, (z,s)} C {uy, (x,s)} which we label the same such that

y, (2,8) — u(s) as k — oo in O

where u(z, s) € F? and u(s) satisfies (23) with the same constant C. Due to (23) we have u,, (z,s) —

u(z, 5) (k — 00) weakly in LI(R; V), weakly in LI (R; Ly), s-weakly in LI%¢(R y; H) and 245\%%)

w (k — o0) weakly in Lff/cg » (R;H™). We claim that u(z,s) € K. We have already proved that
|lul]| 7» < C. So we have to establish that u(z,s) is a weak solution of (8).

According to the auxiliary problem in the case 8 > 1, we have

1+ ai / / Vuy, Vipdrdt + uk/ / uukwdadt + / / x)pdxdt —

8M (, &)\ Jug(z,t) O M
(1+ ai) / / Z < i+ 7, > dui o, —dx dt+/_M/Q]Dﬂw|g(3:)wd:cdt

3,7=1

as k — oo.
Let us prove that

R <x ;) up, (z,5) = R(z)u(z, s) (24)

and

(1 +8 (x ;) i) sy (2, 8) Py (2, 8) = (14 B(@)i) |u(z, s)Pulz, s) (25)

as k — oo weakly in LIy | (RiLyys).

We fix an arbitrary number A > 0. The sequence {uy, (x,s)} is bounded in L4 (=M, M;Ly) (see
(23)). Then the sequence {|uy, (,s)|*uy, (z,s)} is bounded in L5 (=M, M;Ly3). Since {uy, (2, s)} is
bounded in Ly(—M, M; V) and %(;:,@
Uy, (x,s) = u(x,s) as k — oo strongly in Ly (—M, M;Ly) and therefore

is bounded in L3 (—M, M;H™") we can assume that

up, (2,8) = u(x,s) a.e. in (z,5) € Q x (=M, M).
It follows that

|y (7, 8) P, (2, 8) = |u(w, s)[*u(z, s) ae. in (z,8) € Q x (=M, M). (26)
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We have
(1 ny ( fk) i) [t (2, 8) Pt (2,8) — (1 + B@)i) [z, 5)[Puz, ) =
_ <1 8 <x Mk) i) (It (5) Pt (,5) — [y 5) Pu(a, ) +
" ((1 +3 (1: ‘””) i) ~(1+ 5(:,;)1)) lu(z, 8)|2u(z, s). (27)

HE

Let us show that both summand in the right-hand side of (27) converges to zero as k — oo weakly in
Ly (—M, M;Lyy3).
The sequence

1+ B (2, ) 1) (g (@, 8) P (2, 5) — [z, s)2u(, 5))
(e (=)

tends to zero as k — oo almost everywhere in (z,s) € Q x (=M, M) (see (26)) and is bounded in
Lys3 (—M, M;Lyy3) (see (2)). Therefore Lemma 1.3 from [24] implies that

<1 +8 (m ;) i) (. (2, )Pty (2, 5) — ue, 8)[2u(@, 5)) — 0 as k — oo

weakly in Ly/3 (—M, M; L4/3).

The sequence
((1 +8 <m ;) i) ~(1+ /5’@:)1)) u(z, s)|2u(z, s)

also approaches zero as k — 0o weakly in Ly/3 (—M, M; L4/3) because, by the assumption 3 <x, a;) —
7

B(r) as k — oo *-weakly in Lo (—M, M; L) and |u(z, s)|?u(z, s) € Lys3 (—M, M;Lyy3).

We have proved (25). The convergence (24) is proved similarly. Using (24) and (25), we pass to the
limit in the equation (22) as k — oo in the space D' (Ry; H™") and obtain that the function wu(z, s)
satisfies the equation (8).

Consequently, u € K. We have proved above that Uy, — u as k — oo B ©loc. Assumption
uy,, ¢ O'(K) (see (21)) implies u ¢ O'(K), and, hence, u ¢ K. We arrive at the contradiction that
completes the proof of the theorem.

4.2 The case 6 < 1

Considering the convergence in Theorem 3.2, we get the following assertion.

Theorem 4.2. The following limit holds in the topological space @lfc
A, =0 aspu—0+.

Moreover,
Ky—0 asp— 0+ in o',
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JlokaJib1bl mepuoaATHI KeyeKTepi 6ap oprajapaa 'uucoypr-Jlangay
TeHJIeyJIePiHIH aTTPaAKTOPJIAPbIHBIH OpTAIlIaJay: CyO- »K9He
CYNEePKPUTHKAJBIK, KaF/Jaijiapbl

K.A. Bekmaran6eros’?, I'A. Yeuknn?34, B.B. Yenbrxos?>%, A.D. Tememic?”

YM.B. Jlomonocos amwimdazo, Mackey memaexemmir ynusepcumeminiy, Kasaxcmandaev, dusuanv,, Acmana,
Kasaxcman;
2 Mamemamuka sicone mamemamuraivr modesvoey uncmumymot, Aivamo, Kazaxcman;
3 M.B. Jlomonocoe amwimdazs. Macxey memaexemmix ynusepcumemi, Mackey, Pecet;
1 Komnvromepaix opmaavies. 6ap mamemamura uHemumymo, — Peceti evtavim axademuscoino, Yha dedepanvovy
zepmmey opmaavievbihory, beaimwecis, Yga, Peceti;

5 . ) .
° Peceti evinvim axademuacomoiry A.A. Xapresuyw amwvimdazv. Axnapam bepy maceaenepi uncmumymul, Mackey, Pecei;
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5 «Dornomura srcozapo, mexmebis Yammo sepmmey ynusepcumemi, Mockey, Peceti;
"JI.H. T ymunes amundaev, Eypasus yammuk ynusepcumemi, Acmana, Kasaxcman

Tenneyne xkoHe MeKapaJbIK, MAapTTAPBbIHIa Te3 Tepbeameri mytresrepi 6ap ['uucbypr-Jlangay Teraeyi Tecik
00JIBICTA KAPACTBIPBLIFAH. Byl TeHIEYIiH TPAEKTOPUSIBIK aTTPAKTOPJIAPHI 9JICI3 MarblHA/Ia «OFAIl MYIIIe-
ci» (omeyeri) 6ap opramasnanran ['macOypr-Jlannay TeHmeyiHis TPaeKTOPHUAIBIK ATTPAKTOPIAPbIHA XKYBIK-
Taitreiabl mostenaeri. Og ymia B.B. Yensrkosreiy, kore M.V, BUIMUKTIH 9BOTIONUSIIBIK, TEHIEYTEPIIH
TPAEKTOPUSIJIBIK ATTPAKTOPJIapbl TypaJbl MaKajajJapbl MeH MOHOIPadUSIaPBIHBIH, 9JiCTeMeCi KOJIIaHbI-
sgran. Conpaii—ak, XX FachIpJIbIH COHBIHJIA Taiiga GOFaH opTalaiay dicTepi maiigaJaHbLIFal. AJIbIMEH
ACHUMITTOTHKAJIBIK, 9/IICTEPl AaCUMITOTHKAHBI (POPMAJIBIBI KYPY VIIMIH KOJIaHAMBI3, COJIaH KEeHiH aCUMITOTH-
KaJIbIK, KaTapJiap/IblH Heri3ri MyIresepin (OyHKIMOHAJIbI TaJIIay KOHEe HHTEerPaJIIbl barajay 9/iCTepiH KOoJI-
JIaHa, OTBIPBIN TaH alMbI3. CollKeciHIe, KOMEKII 9JICi3 TOTOJIOTHSIIBI (DYHKITMOHAJIBI KEHICTIKTI aHBIKTAM
OTBIPBIN, MEKTI (OPTAIIATAHFAH) TEHIECYIH AJIAMBI3 YKOHE OCHI TEHJECY YIIH TPACKTOPHUSJIBIK, ATTPAKTOPBI
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Gap ekenin masenmeitmis. ComaH KeiiiH Herisri TeopeMasapbl TY>KBIPBIMJIAIl, OHbI KOMEKIIN JIeMMaJIapIblH
KeMeriMeH JpJiesiieliMis. Bysl TeHey 1iH, TpaeKTOPUSIIBIK, ATTPAKTOPJIaphl CyOKPUTUKAJIBIK, XKaFaaiiia op-
TamaJsianran ['nacOypr-Jlanmay TeHmeyiHiH TPACKTOPHUSIBIK, ATTPAKTOPBIHA OJICI3 TYP/Ie KIUHAKTATIATHIHBIH
JK9HE CYyNEePKPUTHKAJIBIK, KaFIali/ia »KOFaJIbIll KeTETIHIH JIDJIeieiMis.

Kiam cesdep: arrpakropiap, opraraiay, I 'nucbypr-Jlannay Tenjeyiiepi, CbI3bIKTBIK, €MeC TeHIIEYIIEeD, dJICI3
JKUHAKTBLIBIK, TECIK 06JIBIC, KEYEKTI OPTa.

Ycpeanenne aTTpaKToOpoB ypaBHeHuii I'ma30ypra-J/lanmay B cpegax c
JIOKAJIBHO TI€PUOANYECKNMU IIPENATCTBUSIMU: CyO- 1
CyIepKPUTHUYECKNE CJIyvan

K.A. Bexmaran6eros'?, I'A. Yeuknn?3*, B.B. Yensnxos?>®, A A. Tomenmc?7

! Kasazemanexuti uauas Mockoscrkozo zocydapcmeenmozo ynusepcumema umenu M.B. Jlomonocosa,
Acmana, Kazaxcman;
2 Mnemumym Mamemamuky U Mamemamuieckozo modesuposanus, Aamamu, Kasazeman;
3 Mocxosckuti zocydapemeennuits yrusepcumem umenu M.B. Jlomonocosa, Mocksa, Poccus;
4 Mrnemumym MmMamemamury ¢ KoMNoomeprsm uenmpom — nodpazdeaenue Ydumcrkozo pedepanvrozo
uceaedosamenvckozo uenmpa Poccutickoti axademuu nayx, Yga, Poccus;
5 Unemumym npobaem nepedau ungopmavuy umeny A.A. Xapresuwa PAH, Mockea, Poccua;
8 Havyuonarvriti uccaedosamenverutl yrusepcumem «Buicuias wrora sxonomukuy, Mockea, Poccus;
" Espasutickuti nayuonaasruti yrusepcumem umenu JI.H. Dymunesa, Acmana, Kazazcman

Paccmorpeno ypasuenne ['muzbypra-Jlanmay ¢ OBICTPO OCHWJLIHPYIONIMMY YJI€eHAMHA B YPAaBHEHUUM U TPa-
HUYHBIX YCJIOBUSX B mepdopupoBannoit obmactu. [IpuBeseno n0ka3aTeIbCTBO TOTO, YTO TPACKTOPHBIE aT-
TPAKTOPBI 3TOI0 YPABHEHHS B CJ1IaOOM CMBICIIE CXOIATCA K TPAEKTOPHBIM aTTPAKTOPaM yCPEIHEHHOIO yPaB-
wenus ['mua3bypra-Jlanmay. st aTOr0 Mbl mcmosib3yeM moaxos u3 crareit u monorpadmuit B.B. Henwrkosa
u M.U. Bummka 0 TpaeKTOPHBIX aTTPAKTOPAX BOJIIOIMOHHBIX YPABHEHUl, a TaKKe MPUMEHSEM MeTOIbI
yCpeJiHeH s, osiBUBIIeCs B KoHlle XX Beka. CHadajia UCIOJIb3yeM aCHUMIITOTHYECKHE METOJbI JJist pop-
MaJIbHOTO TTOCTPOEHMSI ACUMIITOTUK, Jajieeé OOOCHOBBIBAEM BHUJ[ IVIABHBIX WIEHOB aCHUMIITOTHYIECKUX PsIIOB
C MOMOIIBI0 METOJ0B (DYHKIMOHAJIHHOIO aHAJU3a M WHTErPaJbHBIX OleHOK. Oupesesisis COOTBETCTBYIO-
I[e BCIIOMOTraTeIbHbIe (PYHKIMOHAIBHBIE IIPOCTPAHCTBA CO €Jj1aboil TOIOJIOrnel, MBI BBIBOJUM IIDE/IEIbHOE
(ycpemnenHoe) ypaBHEHUE U JOKA3BIBAEM CYIIECTBOBAHUE TPAEKTOPHOIO ATTPAKTOPA JJIsl 3TOTO YPABHEHUS.
BareMm dopMyIMpyeM OCHOBHBIE TEOPEMBI U JOKA3BIBAEM HMX C HOMOIIBIO BCIOMOTATEILHBIX JieMM. Kpome
TOr0, JOKA3bIBAEM, YTO TPAEKTOPHbBIE aTTPAKTOPHI TOI0 YPABHEHUS CXONATCS B CJIa0OM CMBICJIE K TPA€K-
TOPHBIM aTTPAKTOPAM yCpeTHEHHOTO ypaBHeHus: [ mu3bypra-Jlanmay B cyOKpUTHIECKOM CITyUae U UCIE3AI0T
— B CYyIEPKPUTUIECKOM.

Kmouesvie carosa: aTTpakTOpBI, yCpeaHeHne, ypaBHeHus | nn3dypra-Jlannay, Hennneiinble ypaBHeHUs, Cla-
Gasi CXOIMMOCTbD, epdOpUpPOBaHHas 06JIACTD, TIOPUCTAs] CPEA.
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On the time-optimal control problem for a fourth order parabolic
equation in a two-dimensional domain
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Previously, boundary control problems for the second order parabolic type equation in the bounded domain
were studied. In this paper, a boundary control problem associated with a fourth-order parabolic equation
in a bounded two-dimensional domain was considered. On the part of the considered domain’s boundary,
the value of the solution with control function is given. Restrictions on the control are given in such a
way that the average value of the solution in the considered domain gets a given value. By the method of
separation of variables the given problem is reduced to a Volterra integral equation of the first kind. The
existence of the control function was proved by the Laplace transform method and an estimate was found
for the minimal time at which the given average temperature in the domain is reached.

Keywords: initial-boundary problem, fourth-order parabolic equation, minimal time, admissible control,
Volterra integral equation, Laplace transform method.
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Introduction

In this paper, we consider the fourth order parabolic equation in the domain Q2 = {(z,y) : 0 < x <
T, 0<y<m}

Ut(%y,t) =+ AQ’U,(.%":%t) = 07 (x7y7t) € QT =0 x <O7OO)7 (1)

with boundary value conditions
U(O, Y, t) = w(y) V(t)a ux(w, Y, t) = 0, urr(ov Y, t) = 0, U:pmm(ﬂ—y Y, t) = 0, (2)

uw(z,0,t) = 0, wuy(z,m,t) = 0, uy(x,0,t) = 0, wuyyy(z,m,t) =0, (3)

and initial value condition
u(z,y,0) = 0, 0<uzy<m, (4)

where A%u(z,y,t) = Upzax(T, Y, ) + Uyyyy (7,9, 1), ¥(y) is a given function and v(t) is the control
function.

Suppose M > 0 is a given constant. If the control function v(t) € W4 (R, ) satisfies the conditions
v(0) = 0 and |v(t)] < M on the half-line ¢t > 0, we call it admissible control. We will prove later in
Section 2 that the function v belongs to the class W3 (R,).

Now we present the following minimum time problem.
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Time-Optimal Problem. Assume that # > 0 is given constant. Then, find the minimal value of
T > 0 such that for ¢ > 0 the solution u(x,y,t) of the problem (1)—(4) with a control function v(t)
exists and for some 77 > T satisfies the equation

[ [uwyvayaz=o. T<e<m (5)
0 0

It is known that fourth-order parabolic equations were introduced to describe the epitaxial growth
of nanoscale thin films [1]. Therefore, interest in materials science has been increasing in recent years.

Control problems related to second-order parabolic type equations were first studied by Fattorini
and Friedman [2,3]. Control problems for the infinite-dimensional case were studied by Egorov [4], who
generalized Pontryagin’s maximum principle to a class of equations in Banach space, and the proof of
a bang-bang principle was shown in the particular conditions.

The optimal time problem related to the second-order parabolic type equation in the bounded
n—dimensional domain was studied in a new method by Albeverio and Alimov [5] and the optimal
time’s estimate for achieving a given average temperature was found. In [6,7], mathematical models of
thermocontrol processes for the second order parabolic equation are considered. The control problem
for the second-order parabolic equation associated with the Neumann boundary condition in a bounded
three-dimensional domain is studied in [8]. In this work, an estimate of the optimal time was found
when the average temperature is close to the critical value.

In |9, 10], the control problems of the second-order parabolic type equation associated with the
Dirichlet boundary condition in the two-dimensional domain are studied. In these articles, an estimate
of the minimum time for achieving a given average temperature was found, and the existence of a
control function is proved by the Laplace transform method. The boundary control problem related to
the fast heating of the thin rod for the inhomogeneous heat conduction equation was studied in works
[11,12] and the existence of the admissible control function was proved.

The optimal time problem for the heat equation with the Neumann boundary condition in a one-
dimensional domain is studied in [13]. The difference of this work from the previous works is that the
required estimate for the minimum time is found with a non-negative definite weight function under
the integral condition. In [14], the control problem for a second-order parabolic type equation with
two control functions was studied and the existence of admissible control functions was proved by the
Laplace transform method.

A lot of information on the optimal control problems was given in detail in the monographs of Lions
and Fursikov [15,16]. Practical approaches to general numerical optimization and optimal control for
equations of the second order parabolic type are studied in works such as [17,18].

Boundary control problems related to the second-order pseudo-parabolic equation in a bounded
domain are studied in detail in works [19-21]. In these works, the existence of the control function is
proved using the method of Laplace transform.

In [22], Guo considered the null boundary control problem for a fourth order parabolic equation
in one-dimensional bounded domain by the method reducing the control problem to the well-posed
problems, proposed by Guo and Littman [23]. In [24], the null interior controllability for a fourth order
parabolic equation was studied. The method that they used is based on Lebeau-Rabbiano inequality.
The initial boundary value problem for equations from a class of fourth order semilinear parabolic
equations was studied by Xu, et al. [25], and the global existence and nonexistence of solutions with
initial data in the potential well are derived. Further research results on the global dynamic behavior
of solutions associated with fourth-order parabolic equations for the epitaxial thin film model were
studied by Chen [26].

In this work, the boundary control problem for the fourth-order parabolic equation is considered.
The difference between this work and the previous works is that in this problem, the control problem
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associated with the fourth order parabolic type equation is studied. In Section 1, the boundary control
problem studied is reduced to the Volterra integral equation of the first kind by the Fourier method.
In Section 2, the existence of a solution to the Volterra integral equation is proved using the Laplace
transform method. Section 3 gives an estimate of the minimum time required to reach a given average
temperature of the plate.

We now consider the eigenvalue problem

A’X(z,y) = A X(z,y), (z,9) €9,
with the boundary value conditions
X(07 y) = XIZE(Ov y) = 01 X$(7T7 y) = XﬁEfﬂiE(”? y) = Oa

and
X(2,0) = Xyy(2,0) =0, Xy(z,7)=Xyyy(z,7)=0, (x,y)€ 0.

Then we have the eigenvalue and eigenfunctions defined as follows

2om+1\*  [/2n+1\* 2m+1 2n+1
)\mn:< m2+ > +< n2+ >, Xy (z,y) = sin m2+ z sin n2+ y, m,n=0,1,...

Suppose that the function 1 € H*() satisfies the following conditions
¥(0) = W (m) = (0) =@ (n) =0, ¥ >0,

where 9, is the Fourier coefficient of the function 1 (y) and as follows

2 7 o+l
wn:ﬂ_/w(y) s 9 ydya n:(),l,... (6)
0
We set ( )2
1 (2m+ 1)% 4,
mn — — ,n=01,...,
p T 2n+1 m,n =0 (M)
where 1, is defined by (6).
Theorem 1. Let be M
O<9<B0 .
Ao
Set, ) o)
To = ——1In(1- 229 ).
0 Ao n< 50M>

Then a solution T,,;, of the time-optimal problem exists and the estimate T}, < Tp is valid.

1 Main integral equation

In this section, we consider how the given control problem can be reduced to a Volterra integral
equation of the first kind.

By the solution of the initial-boundary problem (1)—(4), we mean the function u(z,y,t), which is
expressed in the following form

u(:v,y,t) = ¢(y) V(t) - w(x,y, t)? (8)
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where the function w(x,y,t) with the regularity w(z,y,t) € 04 " 1(QT) NC(Qr) and Wy, wy, € C(Q)
is the solution to the initial-boundary problem

wi(@,y,t) + A%w(z,y,t) = d(y) V(1) + D (y) v(t),
with the boundary value conditions
w(0,y,t) = we(0,y,t) = 0, wy(my,t) = Wepe(m,y,t) = 0,

w(z,0,t) = wyy(x,0,t) = 0, wy(z,m,t) = wyyy(z,7,t) = 0,

and the initial condition
w(z,y,0) =0.

As a result, we get the following solution

t

2 1 2 1
w(z,y,t) = Z Z o + 1 </e>‘m"(t3) V(s) ds> sin m2+ x sin n2+ y+
0
¢
1 o= o (2n+1)* 2m+1 2n+1
T Ar Z Z W(/e)‘m”(ts) v(s) ds) sin m2+ x sin n2+ Y. 9)
m=0n=0 0

By (8) and (9), we have the solution of the initial-boundary problem (1)—(4) (see, [27]):

'LL((IZ, y7t) - 1/1(y) V(t)_

t
2 1 2 1
/_)‘m”t )/ (s)ds | sin m x sin nt y—
2 2
0

4 o0
WmZ 2m+1

o
On=

2n+1 A (t—5) . 2m+1 . 2n+1
ZZ Sy </e *Jv(s)ds | sin 5 L sin———y.
0

Using condition (5) and the solution to problem (1)—(4), we can write

= /TF]u(w,y,t)dxdyzy(t)]]¢(y)d$dy—
0 0 00

t

o0 oo
EDID [ s
m 2m+1 2n+1

mOnO 0

t

Cn+1%%n [ 3 -
§ § mn (¢=) : 1
(2m+1)2 /e v(s) ds (10)
0

From the definition of the function v(¢) and from (10), we may write

— yt)o/o/@/}(y)dwdy—V mznz o2m + 1 2n+ Dl
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t
1 2m —|— 1 —Amn(t—s)
+WZZ T /e v(s) ds. (11)
0

m=0n=0

Note that

16 oo oo
//w Jdvdy = ?ZZ 2m+1 2n+1)' (12)
0 m= 7’L

Then, from (11) and (12), we obtain

t

1 = (2m +1)? B B
23 B [
m=0n=0 0
We set
o o
= D ) Bume M >0, (13)
m=0n=0

where (5, is defined by (7).
Let there exist My > 0 constant. Denote by W (Mp) the set of function h € W3 (—o0, +00), which
satisfies the condition
Ihllwzr,) < Mo, h(t) =0 forall t<0.

Thus, we have the following Volterra integral equation
¢
/B (t—s)v(s)ds = h(t), t>0, (14)
0

where h(t) =0 for T <t < T7.

Theorem 2. Assume that My > 0 exists. Then, for any function h € W (M) the solution v(t) of
integral equation (14) exists and satisfies the condition

()] < M.

2 Proof of Theorem 2

Proposition 1. Suppose that o € (2,1). Then for the function B(t) defined by (13) the following
estimate

0<B(t) < Cut™™, 0<t<1, (15)
is valid.

Proof. Using the definition (13) and A, = (2"57“)4 + (2”2+1)4, we may write

1 s 2m+1 4 2n+1v4
bl (2 1)2e” )h e~ (F5)0
; met Z TS

:1

We set

5D 150
ZQn—i—l ’ ’
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Clearly, for any 0 < ¢t < T', this function satisfies the following inequality

0 < A(T) < A(t) < A(0).

Let § > 0 be constant. We know the maximum value of the function ¢(t,§) = t“e

the point ¢ = § and this value is equal to ?—ze

As a result, for any a € (3, 1), we have the following estimate

-

IN

oo oo
Z (2m +1) 2o-(H az (2m +1) 2 po o= (351
m=0 m=0

_ 16%a%e® > (2m +1)?
- te (2m + 1) —

m=0

< Cut™,

where
o o

(2m+1)? 1
Z (2m+ 1)4a - Z (2m+ 1)4@—2 < +00.
m=0 m=0

Then the required estimate (15) follows from (16) and (17).
Proposition 1 is proved.
As we know, the Laplace transform of the function v(t) is defined as follows

o0
= /epty(t)dt, where p=oc+i7, oc>0, T€R.
0
We rewrite integral equation (14) as follows

t
/Bt—s Vs = h(t), t>0.
0

Then we use Laplace transform and obtain the following equation

o0

t
Hm:/éﬂﬁ/MrwW@@:é@ﬂm
0 0

Thus, we have

~ \ h(p)
v(p) = =,
(p)
and
O'+ZOO~
p / U +1 T (O’-‘riT)t dr.
B (p) (oc+1iT)

Then we can write

= / B(t)e P dt =
0

/an
Z /an/ (oA )i Z p+)\mn

m,n=0

—6t

(16)

is reached at

(17)
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where B(t) is defined by (13) and

E . — mn mn o mn
(o +i7) mzn:00+)\mn+17 Z; (0 4 Amn)? + 72 ' Z;o (04 Amn)? + 72
=ReB(o +i7)+ilmB(o +iT1),
where
[o.¢] o
+ Amn) ~ 15}
RB Brman U mn ImB _ mn .
eB(o+1iT) mzn: (0 + Ao 2+ 727 mB(o +1iT) T Z (0 A 2 £ 72

Obviously, the following inequality holds
(0 4+ Amn)? + 72 < (04 An)? + 1] (1 + 72),

and we further have
1 1 1

> :
(C+Amn)2+72 7 1+72 (0+ Apn)? + 1

Thus, due to (19), we can obtain the following estimates

Nt ﬁmn (U + Amn)

IReB(o +i7)| = Z 55 =
m,n=0 (U+)\mn) T

> Bmn (G + )\mn) . Cl,g

1
> E =
1472 (0 4+ Amn)?+1 1477
m,n=0

and
_ o0 B
ImB(oc +i7)| = |7 mn >
mB(o +i7)| = | m§,n2:0<0+ JW
GRS Bun _ _ Caolrl

BERES m;:0(0+>‘mn)2+1 IR

where (' ,, Ca,; are defined as follows

Crp= 3 Donl0F ) gy o5 Do
P S M P DY

From (20) and (21), we have the following estimate
B 5 ~ min(C? , C2
|B(c+i7)]*>=|ReB(c +i7)|? + |[ImB(o +i7)]> > (1_1:’22"’)7
-

and
Co

B(o+iT >
ploiml=

Proceeding to the limit as o — 0 from (18), we have

where C, = min(C 4, Ca0).

“+o00 ~

_ 1 h(ZT) 17t
z/(t)—%/é(“_)e dr.
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Proposition 2. [20] Assume that h(t) € W(My). Then for the imaginary part of the Laplace
transform of function h(t) the inequality

+oo
/ RGNV + 2 dr < Cy hlhwaa,)

is valid, where C'; > 0 is a constant.

Proof of the Theorem 2. Now we prove that v € W4 (Ry). By (22) and (23), we obtain

—+o0
/|1/ 1+\T|)dT: /

Co = min(C1 o, Ca9) which is defined by (22). Further,

~ 2
(i)

+0o0
2 T 2 2\2 _ 2
mﬂuﬂmm<%ﬁwmwwwm—%www

t

t) - v = | [V©de| < W ]ialt—5)"

s

From (22), (23) and Proposition 2, we have the estimate

w(t)] < — UGl Il /hzr]md7<

- 27r \B( ) 27rC
Cl Cl MO
< < =M
— 2wCy 3(Ry) = 27CYy ’
where o
mCo
My = M.
0 ol

Theorem 2 is proved.

8 Estimate for the Minimal Time

Now we introduce the following integral equation
t
/B(t—s)y(s)ds =0, T<t<T,
0

where B(t) is defined by (13).
We set

Bo = Boo, Ao = Moo,
where B, defined by (7).

Proposition 3. The following estimate is valid:
B(t) 2 BO 6_>\0t7

where the function B(t) is defined by Eq. (13).
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The proof of this proposition follows from the fact that the functional series defined by (13) is
positive for all ¢ > 0.
We introduce the following function

—/tB(t—s)ds—/tB(s)ds
0 0

It is known that the physical meaning of this function is the average temperature in a bounded
domain  (see, [5]). It is known H(0) = 0 and H'(t) = B(t) > 0.
We set

oo
= lim H(¢ / B(s
t—o00

0

The average temperature in the bounded domain does not exceed H*. Clearly, H* is finite. Indeed,

/ B(s f:: < oo,

m,n=0

where B,y is defined by (7) and Ay, = (2m+1) n (2n2+1)4.

Proposition 4. Assume that 0 < § < M H*. Then there exist T > 0 and a control function v(¢) and
the following equality

T
/B(T —s)v(s)ds =6 (24)
0

is valid.

Proof. The proof of this follows directly from the properties of the function H. Indeed, if we set
v(t) = M then
t
/Bt—s M/ (t—s)ds =M H(t),
0

and because of (24) there exists T' > 0 so that M H(T) = 6.
Proposition 4 is proved.

Remark 1. 1t is clear that the value T', which was found in Proposition 4, gives a solution to the
problem. That is T" is the root of the following equation

0
H(T) = —. 2
(T) =+ (25)
Lemma 1. Let 5
0 0
0<O< )\0

Then there exists T' > 0 so that

and Eq. (25) is fulfilled.
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Proof. Using Proposition 3, we can write the following inequality

¢ t
H(t) = /B(s) ds > ﬁo/e_)‘osds =
0 0

Bo — ot
=—(1—e 70" ). 2
ol1-e (20)
To determine Ty, we consider the following equation:
Ho N0 T, 4
—([1—e 00 ) = —. 2
" e Y (27)
Then we get
1 0 Ao
To=——1In(1- .
DY n( fo M >

In accordance with (26) and (27) we have
0< —< H(T )
Z‘ ( J— 0 .

Then obviously there exists T, 0 < T' < T, which is a solution to equation (25).
Lemma 1 is proved.
The proof of Theorem 1 follows from Lemma 1.
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OHTAMJIBI YaKBbITTHI ODacKapy MoceJieci TypaJibl

@ .H. Jlexxkonon

Hamarearn memaexemmir ynusepcumems, Hamarean, ©3bexcman

Bypbin mekresren obsbicTarsl eKiHmi peTTi HapabosIaJIblK, TUITI TeHJEY YIIH IIeKapaJblk, OaKblIay ecer-
Tepi 3eprrenai. Bya KymbicTa mmekTesreH ekiesmmeMal 0bJIBICTaFbl TOPTIHIN PeTTi mapabosIaiblK TeHJIe-
yMeH OailJIaHBICTHI IIEKapPaJIbIK OaKbLIay ecebi KapacThIpbLIFaH. KapacThIpbLIaThIH OOJIBIC IIEKAPACHIHBIH
Geuiringe 6ackapy dyHKImsICH 6ap mremimMHig MoHi 6episirer. Bakpuiaysars! mekreyiep KapacTbIPbLIATHIH
0BJIBICTAFBI MIENTIMHIH OPTAIla MOHI HAKTHI MOHJII AJIaThIHAAMN eTin Gepiiai. AfHbIMaIbLIAPABI 6Ty diciMen
Oepisiren ecen G6ipinii TekTi BosbTreppa nHTErpasIbiK, TeHAeyiHe KeaTipiieni. Backapy dpyHKIUSACHIHBIH 6ap
6osysl Jlamrac Typaesaipy o/iciMen Jpiesier i »xKoHe 0bJibicTa GepilireH opralia TemMieparypara XKeTy 1iH
€H a3 yaKbITBIHBIH 0arachl TAOBLIIbI.

Kiam cesdep: GacTanmkbI-IIeKapaJsblK, €Cell, TOPTIHII peTTi NapaboJasiblK, TEHJIEY, €H a3 YaKbIT, PYKcaT
erinren 6akpuiay, BosbTeppa MHTErpaablK, TeHeYi, JlammacTblH TypIeHaipy OIici.

O 3asade ObIcTpoOAeiicTBIA MAapabOJIMIEeCKOro yYpaBHEHMSI
4eTBEePTOro Iopsigka B AByMEpPHOI obJjacTu

®.H. exkoHon

Hamanzanckut 2ocydapecmeernnvill ynusepcumem, Hamanean, Ysbexucman

Panee 6bn ucciieioBanbl 33/ IPAHUYHOTO YIIPABJICHUs Jjid yPaBHEHUs NapaboJIMuecKOro THUIla BTO-
poro mopsijika B orpaHudeHHoil obsacru. B nannoii pabore paccMoTpeHa 3a/iada IPAHUYHOTO YIIPABIIEHUS,
CBsI3aHHAs C MAapabOIMIECKUM YpaBHEHIEM YeTBEPTOrO MOPsIKa B OIPAHUYEHHON AByMepHOit obmactu. Ha
YaCTH PAHUIBI pAacCMaTpPUBaeMoil obJacTu JaHo 3HadeHue pelnenus ¢ GpyHKued ymnpasienus. Orpanu-
YeHUsI Ha YIPaBJEHHe 33J1al0TCsS TaKUM 00pa30M, ITOOBI CpeJlHee 3HAUEHUE DEIIeHUs] B PacCMaTpUBaeMOn
obJracTy TOJIydasio 3aJlaHHOe 3HadYeHme. 3ajada, 3ajJaHHasi METOJOM pa3esieHus TepeMEeHHBIX, CBOIUTCS
K MHTerpaJibHOMY ypaBHeHHIO Bosbreppa mepBoro pozma. Meromom mpeobpasoBamnus Jlamraca mokazaHo
cylecTBoBaHue (DyHKIMH YIIPABJIEHUs ¥ HaliIeHa OIleHKAa MUHUMAJIHLHOIO BPEMEHU JIOCTHKEHUsI 33 IaHHON
CpeJiHell TeMIepaTypbl B 00JIaCTH.

Karouesvie croea: HagaIbHO-KPaeBas 33,1298, 1apaboJIndecKoe ypaBHEHNE Y€TBEPTOrO MOPSIIKA, MUHIMAJIb-
HOe BpeMsl, JOIIyCTUMOE YIIpaBJIeHne, HHTerpajabHoe ypaBaenue Bosbreppa, MeTos npeobpasoanus Jlamia-
ca.
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On some linear two-point inverse problem for a multidimensional
heat conduction equation with semi-nonlocal boundary conditions
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It is known that V.A. Ilyin and E.I. Moiseev studied generalized nonlocal boundary value problems for
the Sturm-Liouville equation, the nonlocal boundary conditions specified at the interior points of the
interval under consideration. For such problems, uniqueness and existence theorems for a solution to
the problem were proven. There are many difficulties in studying these generalized nonlocal boundary
value problems for partial differential equations, especially in obtaining a priori estimates. Therefore, it
is necessary to use new methods for solving generalized nonlocal problems (forward problems). As we
know, it is not difficult to establish a connection between forward and inverse problems. Therefore, when
solving generalized nonlocal boundary value problems for partial differential equations, reducing them to
multipoint inverse problems is necessary. The first results in the direction belong to S.Z. Dzhamalov. In
his works, he proposed and investigated multipoint inverse problems for some equations of mathematical
physics. In this article, the authors studied the correctness of one linear two-point inverse problem for the
multidimensional heat conduction equation. Using the methods of a priori estimates, Galerkin’s method, a
sequence of approximations and contracting mappings, the unique solvability of the generalized solution of
the linear two-point inverse problem for the multidimensional heat equation was proved.

Keywords: multidimensional heat conduction equation, linear two-point inverse problem, unique solvability
of a generalized solution, methods of a priori estimates, Galerkin’s method, sequences of approximations
and contracting mappings.

2020 Mathematics Subject Classification: 35K05, 35R30.

Introduction

Due to the significant increase in the capabilities of computer technology over the past decades,
complex mathematical models that take into account a more significant number of physical factors are
beginning to be used in applied mathematics. In [1-4|, mathematical models that arise in the study
of several applied problems and lead to the consideration of nonlocal boundary value problems were
first proposed. As is known, it is not difficult to establish a connection between nonlocal boundary
value problems and multipoint inverse problems [3—6]. In this regard, it should be especially noted that
heat propagation processes are closely related precisely to multipoint inverse problems for parabolic
equations [4]. For parabolic equations, particularly heat equations, the difference between inverse
problems was studied in [7-19].

To this end, in this work, using the results of [5, 6], we study the unique solvability of a particular
linear two-point inverse problem (LTIP) for a multidimensional heat equation.
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Let © be a simply connected domain in space R™ with sufficiently smooth boundary 9€). Consider
the multidimensional heat conduction equation in domain G = Q x (0,T) x (0,1) = Q x (0,1) C R"*2:

2

Lu = Ut — Amu — Uyy + c(:n,t)u = g($7t7y) + Zhi($7t)fi(x,t,y), (1)
=1

n
where Ayu = > wuy, ., is the Laplace operator with regard to variables z, here ¢(x,t), g(z,t,y) and
m=1
fi(x,t,y) i = 1,2 are given functions, and hy(x,t), he(x,t) are the unknown functions.

1 Linear two-point inverse problem

It is required to find functions {u(x,t,y), hi(x,t), ho(z,t)}, that satisfy equation (1) in domain G,
such that function u(zx,t,y) satisfies the following semi-nonlocal boundary conditions:

YU |¢=0 = U |=T, (2)
ulon =0, (3)
Uly=0 = uly=1 =0, (4)

where v is some constant nonzero number, the value of which will be specified below.
In addition, the solution to problem (1)—(4) satisfies the following auxiliary conditions:

u($7t7€j) = ¥j (x7t)> (5)

where £; € (0,£), j = 1,2 are such that 0 < ¢; < fp < ¢ < 400, and functions u(z,t,y) and
hi(z,t), i = 1,2 belong to the following class:

U = {(uhiy i =1,2); uw € WG, D, g, ) € La(G), hi € W@}
here W22 (@) is the Sobolev space with norm

2
[[ul w2l = / (u2, + uy + uly, ) dadtdy + / (u2 + uf + ul, + u®)dadtdy.
G G

Let us introduce the following notation.
Let gj(x,t) = g(z,t,¢;5),fi(x,t) = fi(z,t,4;), Vi,j =1,2.

2 2 2 2
§2 = max{||full}, , > 1f12ll; o - 211l o, 2201 ) 3
Then we define a square matrix of the second order by F = {fij}zzjzh ie, F = (;11 ‘}021>, and we
’ 12 Jo2
denote its determinant by H = detF = fufa .
Ji2 fa2

Definition 1. Function u(x,t,y) € U that satisfies equation (1) almost everywhere in domain G
with conditions (2)—(5), is called a generalized solution to problem (1)—(5).

Let all the coefficients of equation (1) be sufficiently smooth functions in domain @ and let the
following conditions be satisfied regarding the coefficients on the right-hand sides of equation (1) and
the given function ¢;(z,t), j =1,2.

Condition 1:

Periodicity: ¢(z,0) = c(x,T), for all x € Q.
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Nonlocal conditions: vg(z,0,vy) = g(x,T,y), vfj(z,0,y) = fi(z,T,y), j =1,2.
Smoothness: g;(z,t) = g(z,t,{;) € Cg:g(@), fij(x,t) = fi(z,t,4;) € Cg:g(@), 1,j =1,2;
= [detF| > n >0, (14 Di)g € WJ(G), (1+ D) fi € W3(G), i =1,2.
Condition 2:
0i(z,t) € W3 (Q): v05lig = Pili_ri @ilog =0, 4 =12
here W;’I(Q) is the Sobolev space with norm ||u||2W2 Loy = J (W2, +u +uf +u?)dadt.
Q

2 Unique solvability to problem (1)-(5)

Theorem 1. Let the above conditions 1 and 2 be satisfied for the coefficients of equation (1), in
addition, let Ac(z,t) — ¢i(x,t) > 61 > 0 for all (z,t) € Q, where A = ZIn|y| > 0, |y| > 1 and let
there exist a small positive number ¢ such that the following estimates hold: §g — 100~ > § > 0,

qg= M- Z H 1+D3 fZHW2 o < 1, (where 09 = min{2,)\,51 + (%)2}, M = 40172F?% cico; where

0 4
=5 T f ik e = E , C2 18 a constant number determined from the Sobolev embedding theorem).
k=

Then, there is a unique solution to problem (1)—(5) from the specified class U.

We first use the Fourier method to prove the solvability of problem (1)-(5). Namely, the solution
to problem (1)—(5) is sought in the following form:

u(z, t,y) = ZukxtYk

where functions Yy (y) = {\/%Sin ,uky}, Wi = ”Tf“, k =1,2,3,... are solutions of the Sturm- Liouville

spectral problem with Dirichlet conditions. It is known that the system of eigenfunctions {Yy(y)} is
complete in space Lo(0, /) and forms an orthonormal basis in it [7-10].

In order to determine unknown functions, some construction formalities must be performed.

Let us consider the traces of equation (1) for y =/¢;, j =1,2.

Lu(x,t,05) = u(x,t,45) — Agu(x,t,4;) — uyy(x,t, )+ (6)
+c(x, tyu(z, t, 4;) = g(x,t,4;) + hi(z, t)flj (ac t) + hao(z,t) fi(x, t).

Now, considering condition (5), H = |detF| > n > 0, and the corresponding notation, we define the
formally unknown functions h;(x,t), j = 1,2 from the equation (6) in the following form:

b (2, ) = %[¢l(x,t)f22(x,t) — Byl t) for (2, )],

L@, 1) fra (2, 1) — 1 (2, 1) faale )],

here

Qi(z,t) = pje(z,t) — Agpj(z,t) + c(z, t)pj(x, t) — gj(z,t) + kz ,u%uk(x,t) sin pupl; =
—1

00
= Logj(x,t) — gj(x,t) + Y piug(e,t) sin el
k=1
LOSOJ' = (Pjt(x>t) - Ax@j(xvt) + C(x?t)@j(xvt% J=12
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where functions ug(z,t) are defined in domain @ = 2 x (0,7") as a solution to the following infinite
system of loaded heat equations [3], [11]:

Luy, = ugy — Agug + (c(z,t) + i )u, = g+
o

oo
i FnLopr — g1+ X pnunsinpnty) = fa(Logz = g2+ 3 piumsinm@l+ o)
m=1 m=1
oo o0
L[ f11(Lows — go+ 32 p2umsin pumlz) — fro(Lowr — g1+ 3 112, Sin 1)

m=1 m=1

with semi-nonlocal boundary conditions

YUk lt=0 = U |¢=T, (8)
ug |oo = 0, (9)
where fl(x7t7 y) = Z flk(xvt) Sin,ukya fl(x7t7€1) = fll(xut) = Z flk(wvt) Sinuk£17
k=1 k=1
f2($7t,y) - Z fgk(.’L',t) Sin,ukya f2($7t7£1> = f21($7t) = E f?k(I'?t) Sin:u/kglv
k=1 k=1

V4 V4
fir = \/%ffi sin ppydy, for any i = 1,2; g, = \/%fgsinukydy, k=1,2,3,...
0 0

Proof. Let us prove the theorem 1 step by step. First, we show that function wu(z,t,y) for any
j = 1,2 satisfies condition (5) i.e. u]y:ej =u(z,t,0;) = pj(z,t).

Let us prove the fulfilment of these conditions using inverse assumptions. Let there be function
¥(x,t) satisfying condition (5): ¥(x,t), such that U‘y:ej =vj(x,t) # @j(x,t), ie.,

o0

uly=g; = D up(z,t)sinpuply = 9;(x,t) # i, t).

Then for functions z;(z,t) = v¥;(x,t) — ¢;(x,t) in domain @, considering conditions (8)-(9),
multiplying equation (7) by sin y;¢; and summing over k from 1 to oo, we obtain the following loaded
equations:

o0 o0 o0 o0
> ugesinpuply — Y Agugsin puply + Y7 (¢ + pp)up sin uply = Y g sin ppli+
k=1 k=1 k=1 k=1

§ f1k sin pugl; § fok sin ppl; oo
+E g [®1fo2 — Pafon] + g [P2f11 — P1f12] = kZ Gk sin g+
-1
§ Jik sin pgl; 00 00
+5 g ——[fa2(Low1 — g1 + X pumsin pimbr) — far(Lowz — g2 + 35 pimtm Sin i la )]+
- m=1 m=1 (10)
> fok sin gl 00 00
+ =t [fu1(Low2 — 92 + Zl [12 U SI0 i la) — f12(Log1r — g1 + 21 [42, Uy SIN i 1)) =
m= m=

y m . m .
=g;+ %[fm(Losm — g1+ Y p2um sin i ly) — for(Lows — g2 + > w2, um Sin pmfa)]+
m=1 m=1

3 m . m .
+%][f11(L()902 — g2+ > pEumsinpmls) — fia(Lopr — g1+ > 2 Um Sin pm 1))
m=1 m=1

We consider each case separately to make it easier to understand the formula (10). First, we consider
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the case for j = 1. Then, from formula (10), we obtain:

o
V1t — Ag01 + c(z, )01 + Y pRugsinuly = g1+
=1

o0 o0
+ 1 foa(Lowr — g1 + 3 pdugsin pgly) — for (Lops — g2 + > pdug sin puglo)|+
k_l k=1
oo
+L2Lf11(Lowa — g2 + Z pug sin pugla) — fra(Lopr — g1+ Y. piugsin pgl)] =
=1 m=1

Z pZug sin pgly

=01+ LWl = [f11f22—f12f21} P [fi1fo2 — fiafar] +

Z pEuk sin plo

PO [ for fio — f21f11] ey fafu - fafu] =

oo
=g1+ Lopr — g1 + Z piug sin by = Lo + Y piug sin gty .
h=1 =1

Then from formulas (7)—(11) for function z;(x,t) = ¥1(z,t) — ¢1(x,t) = 91 = 21 + ¢1 in domain Q,
we obtain the following identity

00 00
L()(Z1 + (p1) + Z uzuk sin pupfly = Lopy + Z uiuk sin ugfy.
k=1 k=1

Hence, we obtain the following problem:

Loz = 214 — Z1ga + ¢(x,t)21 = 0, (12)
721‘,5:0 = Zl‘t:T, (13)
21 lag = 0. (14)

Now we will prove the uniqueness of the solution to problem (12)—(14) using the method of energy
integrals [3], [4], [8]. To do this, consider identity 2(Loz1,e *z21;) = 0 and, integrating identity (12) by
parts, considering conditions of Theorem 1 and boundary conditions (13), (14) for |y| > 1, we obtain
the inequality sz|]W21(Q) < 0, which implies that z;(z,t) = 0.

So, problem (12)—(14) has a unique solution, i.e. ¥1(x,t) = @1(x,t). From this, we obtain that
problem (1)—(4) satisfies condition (5) for j = 1, i.e. u(x,t,41) = @i(z,t). u(z,t,l2) = pa(x,t) is
proved similarly for j = 2.

Now we will prove the solvability of problem (7)—(9) using the methods of a priori estimates,
Galerkin’s, and successive approximations [3], [8], namely, in domain @), we consider a family of infinite
loaded heat conduction equations:

Lug) = u(l) A u,(g) + (c(x,t) + ,uz)ug) = gx+

L “Lfa(Logr — g1 + Z pE D sin pn 1) — for(Loga — g2 + Y pguls V sin pun b))+ (15)

m=1 m=1

f2k [fll(LOQD2 —g2+ Z /,Lm £7ll 1) sin ,umﬁz) f12(LO(’01 —g1+ Z M?%’Lugrll_l)um sin ,Umﬁl)] — F(U](Cl_l))

m=1 m=1

with semi-nonlocal boundary conditions

"}’ug) |t:0 = ulgl) |t:T7 (16)
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ul oo =0, (17)

where | € N U {0}, N is the set of natural numbers. In the future, to prove the unique solvability of
problem (15)—(17), we need the following notation and lemmas.
Let us define the space of vector functions

Wp,q(Q) = {ﬁk“gk € ngt(@)a k; € Na b, q= Oa 152}
with norm

2 o
\/;; 14 p7) HﬁkHWWt(Q) (18)

where W37 (Q) may be one of the following Sobolev spaces

W2, (Q) = W32(Q) = WE(Q); Waa ,(Q) = W3 (Q); Wy (Q) = W3 (Q); War ,(Q) = WS = La(Q).

The norm in space W 1(Q) is defined as follows

2
(Ik)3q =

&

00
2

Z 1+:uk: HﬁkHW;al(Q)a

k=1

and the norm in space Wy o(Q) is defined as follows

2 & 3
<19k>?),0 - \/;Z (1+ M%) Hﬁk”%Q(Q)
k=1

It is obvious that the space W) ,(Q) with a certain norm (18) is a Banach space [3], [8]. From the
definition of spaces W), 4(Q) it follows that W 2(Q) C Wa1(Q) C Wi 1(Q) C Wy o(Q).

Now let us denote the class of vector functions {Ux(z,t)}7°, such that {J(z, )}, € Wa1(Q),
satisfying the corresponding conditions (16), (17) by W(Q).

Definition 2. The solution to problem (15)-(17) is called vector function {¥y(z,t)}32, € W(Q)
that satisfies equation (15) almost everywhere in domain Q).

Lemma 1. Let all the conditions of the theorem be satisfied. Then, to solve problem (15)—(17), the
following estimates are valid:

2 - -
I) <u,(€l)>1 ) < const(k, 1) < 4o0;

)

2 <
1) <u§€l)>2 ) < const(k, 1) < 4o0.

)

Here and below, we will use the symbol const(l;:, ) to denote the constant independent on parameters
kL.

Proof. Consider the following identity
n — I-1)y _—xt (
2(Luy e M)y = 2(F(w ), e M), (19)

where constant A > 0 will be chosen later.
Considering the conditions of the theorem, integrating identity (19) by parts and applying Cauchy’s
inequality with o [8], it is easy to obtain the lower bound of the following inequality

2 [ Lu,(cl) cemM u,glgdxdt > f e 2. uigl) +A- uig)—i-()\c — o+ g - ui(l)}dxdt—
¢ (20)

_ (1 2(1 2(1
8f e )\t{Qukt “kiex - 2uk(m)€t —(c+ Mi)uk( )et}d&
Q
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where €@ = ((es, e1); (ex = (€,2); e = (€, 1)) is the unit vector of the internal normal to boundary
0Q). The conditions of Theorem 1 ensure that the integral over domain @) is not negative. Considering
the semi-nonlocal boundary conditions (16), (17) and conditions of Theorem 1, with the choice of
7?2 = T, we obtain the conversion of the boundary integrals to zero. Thus, from inequality (20), we
obtain the lower bound of the following inequality

2 [ Lug) ce At ugt)d:vdt >
Q

2 (21)
S (oAt Lo, 20 L2 20 x\2Y ., 20 > H (l)H
_Qf)e {2 Uy +X-up, + <51+)\(£) > uy }dxdt_éo () Wh@)’
where dg = min {2, A0+ (%)2}, Ae—c¢ > 601 > 0.
Applying Cauchy’s inequality with o to identity (19), we obtain the upper bound
‘2(17(“1(5_1)% e_)\tul(clt))o) = ‘2 <gk + B foa(Lopr — g1 + Y p2uly ) sinpuly)—
m=1
—fa1(Lopa — ga+ > p2oulh ™ sin )] + L f11(Lops — g2+ 3 p2ull sin i, 09)—
m=1 m=1
o (-1 “at, (D —1 ], @]
_le(LOSol — g1+ mZ:I anum U, SIN Mmgl)]a e /\tukzt)o < 90 1 Huk HWzl(Q) + (22)
2
+o{lowlf +177% 2 (Tollsligag) + losll) Wil | +
2 00 2
et 0080
+2c1m 4“0 § z; kaHC(Q) mzz:l ( + :um) Um Wzl’l(Q) )
where T} .:_ma?({l, ”CH_C_(Q)}’ 3= max{”f11||20(Q).a ||f12|\2‘(@) ; ||f21||%’(Q) ; Hf22||20(Q)}'
Combining inequalities (21) and (22), we obtain
-9 Wl . <o a3 425 S (Tl + sl Ifli2igy | +
0 o Uy, W21’1(Q) S0 || Gkllg TN = 0 P35 W22’1(Q) 9illg ikllc(Q) (23)

Ve 208 Y [ fulldg 5 (0 +u2)* [uli )|
1 ] .
= c@) m=1 " " Wy (Q)

Applying the Sobolev embedding theorem ”kaHé(Q) <c ||fzkH12/V22(Q) [8,9] to inequality (23), we obtain

2
> (Tolleilyzs g + losll2) I finlzo) | +

2
5o — 90! Hu(l) H <o 2 4 92con232
( 0 ) k Wzl’l(Q) Hgk/‘HO 21 521

(24)
+2¢1c9n %0 2 i ||fikHI2/V2(Q) i (1 + ”gﬂ)g Hug;l)Hz L)
i=1 2 m=1 W2 (@

Taking into account the condition of Theorem 1 &y — 90! > 8§ — 100~! > § > 0, dividing
inequalities (24) by ¢, multiplying inequalities (24) by (1 + ,ufn)g and summing over k from 1 to oo,
we obtain the first recurrent formula

—+

H\? _ _ 2
()  <oo! [<gk>3 tem™8 35 (Tolleiliz g + i) w3
) 1,7]:

2 ; (25)
2169 206 1F2 S (far) <u%_1)>1 1’

=1 5
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0 4
where ¢ = ) ﬁ, ¢ is the Sobolev embedding coefficient.
k=
2
Introduce notation od~! [(gk>3 +eanTF Y (To ”SOjHI%VZl o T ||93||8) <le<:>§ = A and, consi-
ij=1

dering the conditions of Theorem 1 2cicon 206 1F2 Z (fi)s<q=M E (fir)3 < 1, from recurrent

formula (25), we obtain the validity of estimate I), i.e. we get the first estlmate Indeed, for this purpose
we take function {ulg_l)} = {0} as an initial approximation.
Then, for the zero approximation, we obtain

2
0\ 2 _ _
() <067 [{ge)f +2em75 Y (Tolleslyas g + loslly) (fan)3 | = 4.

’ ij=1

Continuing this process, by induction, we obtain the first a priori estimate for any function u( ) ,Vi>1

l
(z>>2 < A. 5"
<uk’ 1,1~ A Z €=
n=0
Now, let us prove the validity of the second estimate II). To do this, consider the following identity

- 2/6_)‘tLu,(§l) . Axu,il)dxdt = —2/ _MF( (= 1)) : Axu,(gl)dazdt. (26)
Q Q

Reasoning similarly to the proof of estimate I), based on integration by parts (26), considering the
conditions of the theorem and semi-nonlocal boundary conditions (16), (17), we arrive at the following
lower bound

|—2fe_)‘tLu](€l) . Axu,(!)dxdt > f (QAxui() A+ uk) 2(1)) dxdt — o1 foui(l)dxdt—
Q
o el ] +2 J o wfufes + () — uf)e, +u§?uéiex1ds > o
2
= (2280 + (A4 (3) ) ) dedt — 07! J A dadt = 7 el [l 2

> o[

w2 (@) —o HAx“'(fl)HZ = llelley H“'(fl)‘ z

where dp = min {2, 01, A+ (%)2} The conditions of Theorem 1 ensure that the integral over domain

@ is not negative. Considering the semi-nonlocal boundary conditions (16), (17) and the conditions of
Theorem 1, with the choice of ¥2 = e’ we obtain the conversion of the boundary integrals to zero.
Thus, from inequalities (21) and (27), we obtain the lower bound of the following inequality

2 [l sl 26 40, - oot [T e
Q

Now, applying the Cauchy inequality with o to identity (27), we obtain the upper bound of the following
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inequality
2
2 e M) Aaldaat] <90 [l 4o [Pl <
<9 _1HAxu1c)H + 0 llgrll§ + on 2§ > (TOII%Ha/Qvl +”gj||3) I filer* >

Z]_l

+2077_201§Ql§1||fik”%( mz;l(l_‘_um H ) H 22’1(Q)'

Combining inequalities (28) and (29), we obtain

(30— 100 [’y < 7 el [, + ol +
2

fon 2R (TOHSOJ‘HWJ s+ 9512 11 el (30)
7]7
2o 2a¥ - Il 5 (040 [l
- w3 (@)

Applying the Sobolev embedding theorem Hfing‘(Q) < e Hfik”IQ/VQQ(Q) to inequality (30), we obtain

(6 — 100~ 1) H >H <od !

21 Q) CHC Huk sz 1(Q)+

+o [lgkllg + o200 ‘Zl (To ||80j”W22»1(Q) +g5115) HfikHWZQ(Q)_'_ (31)
1,]=

_9 9 & 2 o 23], -1
+20m %c1c8° > HfikHWQ(Q) > (L p) Hum H 2,1
i=1 2 m=1 W2 (@)

Considering the conditions of the theorem and &y — 100~ > 6 > 0, dividing inequalities (31) by 4,
multiplying by (1 + M?n)?) and summing over k from 1 to oo, we obtain the second recurrent formula

2
(95 + e 28 X ((Tollealiyzn g + l9512) (fin)3)

t,j=1

D\ 2 _
<ul(“)>2 1 <2007 HCHZC(@)

)

2
+oo! [<gk>3 077§ 3 (To llesliyzaq) + 9al) (32)
,)=
2
+20’(5_177_2616232 Z <fZ > < (- 1)>21 .
From estimate (32), considering (24), we obtain the following recurrent formulas
0\? —1 (| plI2 2 2e2 v 2 2 2
(), , <300 lellogy |(on)d +em 282 3 ((Tollealiyzn g + lasl) 3
) ,J (33)

2
+205 I 2c1c0F? Z (fik > < (1= 1)>

= 21"
Introducing the following notation
2
3957 ello | (000 + con™*8 22 allellg + lasl) Ul = 4
i,j=
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and, considering the conditions of Theorem 1 and

2

2
205 ' Pe1eaF Y (fu)s <a=M Y (fu); <1
=

1,j=1

from recurrent formula (33), we obtain the validity of estimate II), taking {uk } = {0} as an initial
approximation. As a result, for the zero approximation, we obtain

2

0)\ 2 _ _
(uY <3057 el g [ (613 + 287 3 (T sl gy + asl) (]| = .
’ =1

W vi>1

Continuing this process, by induction, we obtain the second a priori estimate for any function u,.”,

l
(), s Lo < 525

Similar to the proof of estimate I), estimate II) is easily obtained. Lemma 1 is proven.

Let us now introduce a new function from W(Q) according to formula 19(1) = u,(cl) - u,(ﬁlfl)

Vi=NU{0}, k=12,.. {uk } = {0}. Then the following Lemma holds for it.
Lemma 2. Let all the conditions of Theorem 1 and Lemma 1 be satisfied. Then the following a

priori estimates are valid for functions {191(5)} e W(Q):
2
) (90) < 4. 40
) < k >11 =40

)

B

0\ 0!
v) (v >271 < Ay g

Here and below we will use symbol const(l%, Z) to denote the constant independent on parameters k, [.
Proof. From (15)—(17) for function {79(1)} € W(Q), we obtain the following problem
!
L%ﬁwng¢><@w+Mw?—
- flﬁk[fﬂ Z i, mi )Smﬂmgl — fa Z i, mi )Sm“m&]"‘ (34)

+8 Z p2 0% Y sin g by — fia Z fim I l Y sin pmta] = T )
with semi-nonlocal boundary conditions

|t -0 —?9 =T, (35)

U loo =0, (36)
where [ =0,1,2,...

Therefore, as in the proof of Lemma 1, for the function {19,(;)} = {ug)} — {u,(j_l)} € W(Q) from
(34)-(36), as a proof of Lemma 1, consider the following identity

2(Loy, e—ngg)o —2(Twi ™), fW,@)O. (37)

Integrating by parts (37), taking into account the conditions of Theorem 1, we obtain the third recurrent

formula 5
<19’(€l)>11 <19(l 1)>1 1 (38)

)
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Repeating the reasoning, similar to the proof of Lemma 1, from (38), we obtain a priori estimate I1I)
for the function {19,(;)}, k=1,2,3,... Estimate IV) is proven similarly. Lemma 2 is proven.

Theorem 2. Let all the conditions of Theorem 1 be satisfied. Then problem (15)—(17) is uniquely
solvable in W (Q).

Proof. Let us define the following mapping in space W (Q)
u,(cl) = L*IF(u,(cl_l)) = Fu,(cl_l).

1. Let us show that operator F maps space W(Q) into itself. Let {u,(clfl) } € W(Q), then to solve

problem (15)—(17) the statement of Lemma 1 is true, i.e. estimate II) is valid for the function {ul(j)},
k=1,2,3,... It follows that for any [ = 1,2,3... we obtain {ug)} € W(Q). Thus, F : W(Q) —

W(Q).
2. Let us show that F is a contraction operator. Let {u,(!) } ) {u,(i,lfl) } € W(Q). Consider new

function {19,(61) } = {u,(!) } — {u,(ﬁlfl) }, the statement of Lemma 2 is valid for it, i.e. estimate IV) is
true for the function {19,(5)}, k=1,2,3,..., and

o], = (o), < 41-a® (39)

)

is true.
Now let us establish the fundamentality of sequence { u,(f) } € W(Q). From (34)—(36), the triangle

inequality and a priori estimates (39), we obtain

oty O (H+p+1) . (+p)|||? (+p) . (+p-D)|||? SO
[ = ][, < N =+ ™ =V e e =] <

< Ay (gD g 4t g0) = AP (L4 g+ g < AL

0

This implies the fundamental nature of sequence { uy, } . Thus, F is a contraction operator according
to the well-known principle of contracting mappings [3], [9], problem (15)—(17) has a unique solution

belonging to space W(Q). Here u,&l) — uy as | — oo, and ug(x,t) is a unique solution to problem

(7)—(9) for fixed k.
From the principle of contraction mappings, we conclude that problem (7)—(9) has a unique solution
from W(Q). Theorem 2 is proven.

Now we prove Theorem 1. Applying the Parseval-Steklov equality to functions {u;} € W(Q), we
obtain the assertion of the theorem, that is, u(z,t,y) € U [8,9]. Theorem 1 is proven.

Remark 1. If we take function ¢;(x,t) as a solution to the following problem ¢;(x,t) € W22’1(Q),
9; € W2(Q)
Lop = @jt — Datpj + c(x, 1) = gj,

V¢ilimo = Pili=r
@jlaa =0,
o o0
then function ®;(z,t) is defined as follows: ®;(x,t) = Lop; —gj+ > prugsinpugl; = > piug sin pugl;,
k=1 k=1
7 = 1,2, and the proof of the theorem is greatly simplified.

Remark 2. For equation (1), LTPIPs with the Cauchy condition are studied similarly; in this case,
instead of condition (2), the Cauchy condition u |;=¢ = uo(z) is proposed.
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Conclusion

In this article, the authors studied the correctness of one linear two-point inverse problem for
the multidimensional heat conduction equation. Using the methods of a priori estimates, Galerkin’s
method, and successive approximations and contraction mappings, the theorem of unique solvability
of the generalized solution in the specified class of integrable functions is proved.
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2ZKapTbLiail JJoKoJIbabIEMEC IIEKTIK IMapTTapbl 0ap KeneJiIneMai
KBLITYOTKI3TIIITIK TeHAeyiHe KOWbIIFaH ChI3BIKThI €KIHYKTEeJI1
Kepi ecenrep TypaJibl

C.3. Izxamamos'?, II1.II. Xynaiikymos?

Y@3PIr'A B.HU. Pomanoscruii amwindaen, Mamemamura urncmumyma, Tawxenm, Oabexcman;
2 Tawkenm Koadanbavs evavmoap yrusepcumems, Tawkenm, Osbexcman;
3 Tawkenm uppuzauus HCone aybli WAPYAUDLABIEbIH MELGHUKAAGHOVDPY UHHCEHEPAEPT UHCUMymo, — YAmimos
zepmmey yrnusepcumems, Tawxenm, ©36excman

B.A. Nnbun xone E.M1. Mounceesrep IlTypm-JInyBuiur Tenzeynepi yImiH »KajnbliaMa JIOKAJIbIbIEMEC IIeK-
TIiK ecenTepiy, mentiMinig 6ap OOJIybIH KOHE YKAJIFBI3LIFBIH fqosesiered. Jlepbec Tybiaabuibt quddepenim-
aJIbIBIK, TEHJIEYJIep YIIiH >KaJblLIaMa JIOKAJIbIbIEMEC MEeKTIK ecenTepii KapacThIpFaHIa allpUOPJIbIK Oara-
JIapbl aJTy/ia KOl KUbIHIBIKTapFa Tarn 6omaMb3. COHIBIKTAH, Hepbec TYBIHABLIBI AuddepeHITnaIbIbIK, TEH-
JeyJiepre KOMbLIFaH JIOKAJIbJIbIeMeC MIEeKTIK eCenTep i IIelry YIITiH KO HYKTeJI Kepi ecenrepre KeaTipy Ka-
xeT. Byi 6arbiTTars anramkbl HoTmzkenep C.3. Ixamanoska tueciai. O 63 XKyMBICBIHIA MATEMATUKAJIBIK,
(U3MKAHBIH KO HYKTEJII KUCHIKTAP CUSKTHI KOIITETeH MapaMeTpJIepiH jie 3epTTeai. Makasia a K eJImemM/Ii
JKBUIYOTKI3TIIITIK TeHAEyiHe KONbLIFaH ChI3bIKTBI €KiHYKTEJI Kepl eCeNTiH KUCHIHIBLIBIFBI KAPACTHIPBIJIFAH.
Anpuopsbik Garasay, [anepkus, GipTiHAen »KYyBIKTay »K9HE KBICYIIbI OeifHesey 9iCTepiH KOJIIAHBII, K-
MOJIIIEM/II YKBUIYOTKI3TIIITIK TeH/IeyiHe KOMBLIFaH CHI3BIKTBI €KIHYKTE I Kepi eCenTiH »KaJIFbI3 IIEeNiMiHiH
Gap 6OJTyBI IO/ IeHTEH.

Kiam cesdep: xen esmeMIl KbUIYOTKI3TIMITIK TEHIEY1, CHI3BIKTBI €KIHYKTE Kepi ecem, KaJmbljaMa Ie-
MIIMHIH YKaJIFbI3 60JIybI, allpHOPJILIK Oarajay, ['ajiepkun osici, 6ipTiH/ien KybIKTay »KoHe KBICYIIbI Oeiinesey
aaicTepi.

Mathematics Series. No.2(114),/2024 83



S.Z. Dzhamalov, Sh.Sh. Khudoykulov

84

O HekOTOpPO# JUHENHOI AByXTOYEYHOIl oOpaTHOI 3agade AJIs
MHOI'OMEPHOI'0 ypaBHEHUS TEILJIOIPOBOIHOCTH
C II0JIYHEJIOKAJIbHBIMI KPA€BbIMU YCJIOBUAMMU

C.3. Izxamamos'?, II1.II. Xymoiikymos?

! Hnemumym mamemamusu umenu B.H. Pomanosckozo AH PY3, Tawxewm, Y3bexucman;
2 Tawwenmeruti yrusepcumem npuxaadnuns nayk, Towxenm, Yabexucman;
3 Hayuonarvroiti uccaedosamenveruts yrusepcumem— Tawkenmerut uHCTUmym UHAHCEHEPOs UPPU2aUUL U
METAHU3AUUY CEALCKO20 To3Aatcmea, Tawkenm, Yabexucman

Mssectno, uro B.A. Unbun u E.J. Moucees usyuann o606IIEHHBIE HEJIOKAJIbLHBIE KPAEBBIE 3aJa9U /ISt
ypasreHud llItypma-JlumyBuiiisa, HeJlOKaJIbHBIE KPAEBbIe YCIOBUS KOTOPOrO 33JaI0TCS BO BHYTPEHHUX TOY-
KaX paccMaTpuBaeMoro marepsaja. Jjs Takux 3a71a9 JOKa3aHBI TEOPEMBI €IMHCTBEHHOCTH U CYIIECTBOBA-
Husl pemnenus 3aga4du. CyliecTByeT MHOrO IpobJieM IIPYU UCCJIEIOBAHUU ITHX OOODIIEHHBIX HEJIOKAJIBHBIX
KPaeBbIX 33J1a9 I nuddepeHInaJIbHbIX YPABHEHUH C YaCTHBIME IIPOU3BOIHBIMU, OCOOEHHO IIPU IIOJIyde-
HUM AIPUOPHBIX OIEHOK. [1l0aToMy HEOOXOIMMO WCIIOIB30BATH HOBBIE METOJIBI JIJIsI PeleHus 0OODIEHHBIX
HEJIOKAJIbHBIX 33124 (IpAMBIX 3a/1a4). Kak HaM M3BECTHO, HETPYIHO YCTAHOBUTDH CBSA3b MEXKJY IPSMbBIMA
u obpaTHbIMU 3ajadaMu. [losToMmy mpu pernreHun 000OIIEHHBIX HEJTOKAJJIBHBIX KPAEBBIX 3aJa4 Jjis audde-
pEHIMATBHBIX YPABHEHUN B YACTHBIX MPOU3BOJHBIX HEOOXOINMO CBECTH MX K MHOTOTOYEYHBIM OOPATHBIM
3ajiadaM. B aroMm Hampassienunn nepsble pesysbrarhl npunajexar C.3. TxxamanoBy. O B cBoux paborax
IIPEJJIOXKUIT ¥ UCCIIE0BAJI MHOTOTOYEYHbIe OOpATHBIE 33/Ia41 JJIs1 HEKOTOPBIX YPaBHEHUI MaTeMaTHIECKON
dbusuku. B Hacrosimeit pabore nccireroBaHa KOPPEKTHOCTH OTHON JIMHEWHON JBYXTOYEYHON OOpaTHON 3a-
JAa9u JIJIsI MHOTOMEPHOI'O YPaBHEHMsI TeIIONPOBOAHOCTUA. MeTomaMu ampuopHBIX OIEHOK, lajepkuHa, mo-
CJIEJIOBATEILHOCTH TIPUOJINKEHUN U CXKUMAOIIMXCS OTOOParKeHUi JIOKa3aHa OJHO3HAYHASI Pa3PelInMOCTh
0GOBIIEHHOTO PEIeHUsT OMHON JIMHEHHOM JBYXTOYECIHON OOPATHOM 3a1a9H JJIsi MHOTOMEPHOTO yPABHEHUST
TEIJIONPOBOIHOCTH.

Kmouesvie cr06a: MHOTOMEPHOE YpaBHEHNE TEIJIONMPOBOHOCTH, JIMHEWHAST JBYXTOYeIHAs OOpaTHAs 3aa4a,
OIHO3HAYHAS Pa3PEIINMOCTb OOOOIIEHHOTO PEIeH s, METO/IbI AllPUOPHBIX OIEHOK, l'ajlepKuHa, mocaea0Ba-
TEJILHOCTU TIPUOJINKEHUN M CXKUMAIOIIUXCST OTOOPAYKEHUH.
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On the spectral problem for three-dimesional
bi-Laplacian in the unit sphere
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In this work, we introduce a new concept of the stream function and derive the equation for the stream
function in the three-dimensional case. To construct a basis in the space of solutions of the Navier-
Stokes system, we solve an auxiliary spectral problem for the bi-Laplacian with Dirichlet conditions on
the boundary. Then, using the formulas employed for introducing the stream function, we find a system
of functions forming a basis in the space of solutions of the Navier-Stokes system. It is worth noting that
this basis can be utilized for the approximate solution of direct and inverse problems for the Navier-Stokes
system, both in its linearized and nonlinear forms. The main idea of this work can be summarized as
follows: instead of changing the boundary conditions (which remain unchanged), we change the differential
equations for the stream function with a spectral parameter. As a result, we obtain a spectral problem for
the bi-Laplacian in the domain represented by a three-dimensional unit sphere, with Dirichlet conditions on
the boundary of the domain. By solving this problem, we find a system of eigenfunctions forming a basis in
the space of solutions to the Navier-Stokes equations. Importantly, the boundary conditions are preserved,
and the continuity equation for the fluid is satisfied. It is also noteworthy that, for the three-dimensional
case of the Navier-Stokes system, an analogue of the stream function was previously unknown.

Keywords: Navier-Stokes system, bi-Laplacian, spectral problem, stream function.

2020 Mathematics Subject Classification: 35K40, 35K51, 58J50.

Introduction

Previously, we solved the spectral problem for the bi-Laplacian in the unit circle with Dirichlet
conditions on the boundary. As is known, in the two-dimensional case the linear Navier-Stokes system
can be transformed into a single equation for the stream function [1-3]. Note that the spectral problem
for the two-dimensional bi-Laplacian in the unit circle was solved in [4-6], and its results were applied
to an approximate solution of the inverse problem with final redefinition conditions for the two-
dimensional system of Navier-Stokes equations. For the bi-Laplacian, the solvability of two-dimensional
spectral problems for square domains was considered in [7-12|, and for the 2m—Laplacian, spectral
problems for multidimensional domains with smooth and non-smooth boundaries — in [13-16|. In
[8,10,11], lower bounds for eigenvalues were obtained by introducing intermediate spectral problems
(the main thing was the fact that one of the boundary conditions was replaced by a family of
approximate conditions on the boundary, which in the limit tended to original). In [13-16], estimates
were given for the number of eigenvalues not exceeding a given number. However, the calculation
of eigenvalues and eigenfunctions in the above spectral problems has remained open. This issue is
dedicated to submitted work.
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The question of constructing a basis applicable to domains with time-varying boundaries also
remains open. For example, problems of this kind in degenerate domains or in domains with time-
varying boundaries were considered in papers [17-29]. Note that the results of this work can be used
in the construction of this basis.

1 Stream function for a three-dimensional linearized Navier-Stokes system. Statement of the spectral
problem

Let y = (y1,92,¥3), Qu = {y,t : |y < 1,0 <t < T} be a cylindrical domain, and Q be a
section (sphere with unit radius) of the cylinder @, for any fixed time ¢ € [0,T] with boundary 0€,
Yyt = 02 x (0,T). In the cylindrical domain @, we consider the following initial boundary value
problem for the linear three-dimensional Navier-Stokes equation of determining the vector function
w(y,t) = {w1(y,t),ws(y,t), ws(y,t)} and scalar function P(y,t):

Ow—Aw=f—-VP, (y,t) € Qu, (1.1)

divw =0, (y,t) € Qut, (1.2)

w=0, (y,t) € ¥y is a lateral surface of the cylinder, (1.3)
w =0, y € is a unit sphere, base of cylinder. (1.4)

Let’s introduce the notations of spaces V, H, L%(Q), H}(Q) and H?(Q2), used in studying the
solvability of the initial boundary value problem (1.1)—(1.4), and which we will use in the future:

V= {v: veH)Q) = (H}(Q)’, div v =0},
H={v:veL*Q),divov=0},
L2(Q) = (L3(Q)°, HX(Q) = (H2())°.
The following dense embeddings take place
VCH=H cV/, H)Q) cL}Q) = (L2(Q)) c H(Q),

and (-,-), ((+,)) are scalar products in spaces H, L2(Q) and V, H}(€), respectively. The Helmholtz
decomposition of space L2(Q): L2(Q) = H® H', where

H' is an orthogonal complement to H in the space L2(9),
H = {v: vel?Q),v=Vu uecH(Q)],
/
(H @ HL) = (L2(Q)) = L}(Q) = He HL,

and the "prime" symbol denotes a topologically dual space.

So, we will look for a solution of the initial boundary value problem (1.1)—(1.4) in the spaces of the
vector functions of liquid velocities w(y,t) = {w1(y,t),w2(y,t),ws(y,t)} € L*(0,T;V N H3()) N
HY(0,T;H(Q)), and scalar liquid pressure function P(y,t) € L%*(0,T;H'()) for a given vector
functions of the acting forces f(y,t) = {fi1(y, 1), f2(y, 1), f3(y,t)} € L*(0,T; H(Q)).

Let us transform boundary value problem (1.1)-(1.4). For this purpose, in the domain @ we
introduce the scalar stream function U(y,t), defined up to an additive constant, by the equations:

w1 = 8y2U—8y3U, w2 = 8y3U—8y1U, w3 = 8y1U—8y2U. (1.5)
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We will act with the operators 0y, — Oy,, Oy; — Oyy, Oy, — Oy, to equations (1.1) respectively and
add the obtained results. Then for U(y,t) we obtain the equation

0= A)(A=05,, =0, — 00, )U=GCG(yt), {yt}eQy, (1.6)

viya ~ “yays — “ysy
where
2G(y,t) = (8?12 - 8?;3) fi+ (ays - ay1) f2+ (ayl - ayz) S
From relations (1.3) and (1.5) we have the identities:

(81/1 - ayz) U= (8y2 - ays) U= (8y3 - 61/1) U=0, (ya t) € Eyt (1-7)

or

0y, U = 0y, U = 0,,U, (y,t) € By (1.8)

Note that relations (1.7)—(1.8) do not completely determine the boundary conditions on the lateral
surface of the cylinder Q. In addition to (1.7)—(1.8) we will require that d,, U = 0 on X, which do
not contradict relations (1.7)—(1.8). So, instead of (1.8) we will have:

0y, U =0,U =0,U =0, (y,t) € Ey. (1.9)
Thus, equalities (1.9) allow us to set the following boundary conditions for equation (1.6)

0:U =0, (y,t) € Syr, (1.10)

U=0, (y,t) € Sy, (1.11)

where 7 is the outer unit normal to the sphere |y| = 1, and from (1.4) (doing the same thing as when
establishing conditions (1.10)—(1.11)) we obtain the initial condition

U=0,yeQ={ly| <1}, t=0. (1.12)

To numerically solve the initial boundary value problem (1.1)—(1.4) we will need to be able to solve
approximately the initial boundary value problem (1.6), (1.10)—(1.12). We will look for a solution to
this problem using the method of separation of variables. We have

Uly,t) = > cr(t)ur(y).
k=1

Then from equation (1.6) we obtain
cx(t) [Dur(y) — 05w (y) — Opye e (y) — Oy i (y)] =

= ci() A [Dug(y) — 05,y ur(y) — Opyys i (y) — Ory ui(y)] -

Further, we have

ci(t) _ DD =05y, = gy = Oyys) ur(y)

Y1y2 Y2Y3

cp(t) (A—E?? —02 ~— 02 )uk(y)

Yy1y2 Y2Y3 Y3y1

= —Ag, A\ >0 foreach k€N,

i.e., we finally come to the need to solve the following spectral problem:

A(D=02, =02, —02, ) uly)=-X(A=0,, — 0%, — 02, ) uy), (1.13)

Y1y2 Y293 Yy3y1 Y1y2 Y2Y3 Y3y1
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wWY)|pq = O7u(Y)|ye = 0 (1.14)

Solving the spectral problem (1.13)-(1.14) poses certain difficulties (details in Appendix A). We
actually need to construct a basis in the space solutions of the Navier-Stokes system V N H?2(1Q),
the elements of which would ensure the fulfillment of equation (1.2) and boundary conditions (1.3).
Therefore, it will be enough for us to use the solution to the following spectral problem, also posed
on a unit sphere (but with a simplification of the equation in which there are no terms with mixed
derivatives of the desired function):

(—A)*Z(y) = 1> (-2 Z(y), y € Q= {ly| < 1},
07Z(y) =0, at |y| =1, (1.15)
Z(y) =0, at |y| =1. (1.16)
Let us rewrite the equation in the form of a system for unknown functions {Z(y),Y (y)} :
—AZ@y)=Y(y), —AY(y) =p’Y(y) ye. (1.17)

So, we got spectral problem (1.17), (1.15) and (1.16).

2 Transition to spherical coordinates in the spectral problem

Let us write spectral problem (1.17), (1.15) and (1.16) in a spherical coordinate system {r,0,(} €
Q={0<r<1, 0€(0,7], ¢e€(0,2r]} using transformation formulas

y1 =rsinfcos(, ys =rsinfsin(, y3 =rcosb,

regarding the functions Z(r, 6, (), Y (r,0,() (in this case, for the sake of simplicity, we leave the function
designations unchanged):

1 1
- 50 (r?0,2) — S8z =Y, {r,0,¢} € 9, (2.1)

1

1
NpcZ =———0p (sin0pZ 2z 0 Q 2.2
0,¢ Sin989 (SlIl 80 ) + SiIl2 eag ) {7’, 7C} SV ( )
1 2 1 2

— ﬁar (r?9,Y) — ﬁAQCY =u?Y, {r0,(} e, (2.3)
Aol = — 9y (sin63pY) + —=—2Y, {r.0,C} €0 (2.4)

008 = G Y sin?g ¢ Y ’ .
Z is bounded in the neighborhood of the point r = 0, (2.5)
oZ =0 at r=1, (2.6)
Z=0 at r=1 (2.7)
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3 Solution of the spectral problem in spherical coordinates

We will solve problem (2.1)—(2.7) using the method of separation of variables:

Z(r,0,¢) = ZRZ )027,(0,¢), Y(r,0,¢) = ZRY )y (8, ¢), (3.1)
2p/ ! 2,.2 2/ ! 2
(r RY]) + pjrRy; _ _AO,CGYJ- 2 (7" RZj> + r“Ry; _ Rz e (52)
Ry, By, Yy Ry, 0z, % ‘

where the "prime" symbol here and below denotes the derivative with respect to the variable r.

The second relation from (3.2) follows from the fact that the boundary value problems (3.3)—(3.4)
and (3.5)—(3.6) for the functions ©z,(0,¢) and Oy, (0,() coincide, then their solutions can be taken
equal to each other, i.e. ©z,(0,() = Oy;(0,() and ,uQZ], = /@/j.

Substituting (3.1) into (2.1)-(2.7) and taking (3.2) into account, we obtain

- AO,C@ZJ- - MQZ]-@ZJ" AS (Oa 7T), e <07 27T), ®Zj (07 C) = @Zj (Ha ¢+ 27T)a (33)
conditions of boundedness ©z,(0,() at 6 =0, 0=, (3.4)

— Ae’geyj = M%@yj, 0 c (0,7T)7 (€ (0, 271'), @yj (9, @Yj (9, ¢+ 271'), (3.5)
conditions of boundedness ©z,(6,() at =0, 6 =, (3.6)

T’Qjo (r) + 27’R’Zj (r)— MQZjRZj (r)= —rQRyj (r), (3.7)

PRy, () + 2Ry, (1) + (u3r® = i, ) Ry, () =0, (3.8)

Rz;(r) are bounded in the neighborhood of zero, Rz, (1) =0, R’Zj(l) =0. (3.9)

Let us deal with the solution of boundary value problems (3.3)—(3.4) and (3.5)—(3.6). Let us use
the variable separation method:

070,0) => Pz, (0)Qz, (), 0v,,(6,0)=>_ Py, (0)Qy,, (). (3.10)

m m

Then (3.3)—(3.4) and (3.5)—(3.6) are reduced to the following systems:

7, (Q) +m*Qz,,(¢) =0, ¢€[0,21), m*€{0,1,2,...}, Qz,,(C) =Qz, ((+27), (3.11)

Sull . (smepz (9))' + {;ﬁ‘zj - S::;@] Py, (0) =0, (3.12)

conditions of boundedness Pz, (0) at points 6 =0, 0 =, (3.13)

Qy,, () +m*Qy;, (¢) =0, ¢€[0,2n), m*€{0,1,2,...}, Qv;,, () =Qy;,, (C+27),  (3.14)
Sirll 7 (smeP;jm (9))' + [,ﬂyj - S::jg] Py, (6) =0, (3.15)

conditions of boundedness Py, (f) at points 6 =0, 0=, (3.16)

where the "prime" symbol denotes the derivative with respect to the variables ¢ and 6.
The solutions of boundary value problems (3.11) and (3.14) coincide and are equal:

QZ]'m(C) = QY]m(C) = {COST)’LC, SinmC}a Ce [07277)7 me {07 L2,.. } (317)
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In addition, it is easy to see that relations (3.12)-(3.13) and (3.15)—(3.16) also coincide, and their
solutions were found, for example, in ([30], p. 374-376) with using Legendre polynomials Pz, (¢) and
Py, (0).

If in the equation (3.12) we make the substitution ¢t = cos# and denote X (t)|,_ .o = X(cosf) =
Pz,(0), so we get the equation

(1) x'(1) + (pﬂzj — 1”_112) X(t)=0, |t|<1. (3.18)

Relation (3.12)—(3.13) admits bounded solutions only if and only if u2zj =j(+1) (3.20):

X(t) = Pj(m) t),_...= pm (cos0) = Pz,(0), where m =0,1,2,...,]. (3.19)

It:cos 0

Thus, according to (3.10) and (3.17)—(3.19) we obtain the eigenvalues

ng; =ty =j(i + 1), (320)

each of which corresponds to 2j + 1 spherical functions
0
09)(0.¢) = P;(0),
(9 Q) =P, (COS 0) cos ¢, 9(1)(9 () = ~1)(cos 0) sin ¢,

@(Z;2 0,¢) = PJ( )(cos 6) cos 2¢, G(ZQJ_)(G,Q = pj(Z) (cos @) sin 2¢,

(0 ()= (COSQ) cosl(, @(l (0,¢) = ”(cos@) sin (¢,
1=1,2,....7, (3.21)

where Pj(il)(cos ) are Legendre polynomials.

It should be noted that the system of spherical functions {@ 7;(0,¢), j=0,1,2,.. } is orthogonal
with weight sin § and forms an orthogonal basis in Ly (%), where {1,0,(} € ¥ is the surface of the unit
sphere. We can normalize this system of functions using the condition

T 27

2
//]@(Zf”(a,g)‘ sin6dod¢ = 1.
0 0

Functions @ (0 ¢) = Pj(cos®) do not depend on ¢ and called zonal. Since P;(t) has exactly j
zeros inside the 1nterval (—1,1), the unit sphere is divided into (j + 1) latitude zones, inside which the
zonal function retains its sign.

Let us consider the behavior of the function on the sphere

1
050(6,¢) = sin' 0 [j l (t)] sin IC.

t=cos 6

cosl¢, © +l)(t9 ¢) = sin'0 [;ll (t)}

t=cos 8

Since sin @ becomes zero at the poles and sin I¢ or cosI¢ becomes zero at 2] meridians, and <% dtl P;(t)

at (j — 1) latitudes, the entire sphere is divided into cells in which @(Zfl (0, ¢) maintains a constant

sign. Functions @(Zfl)(Q, ¢) at I > 0 are called tesseral.
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Similar constructions are valid for boundary value problem (3.15)—(3.16).
Now we transform equations (3.7)—(3.8), by making the following substitutions

¢>yj (r) _ <I>Zj (r)
v Raln ==

Then, taking into account (3.20), instead of (3.7)—(3.9), we obtain the following equations with
boundary conditions:

Ry,(r) = (3.22)

r2oy (r)+ 1oy (r) — v5, 87, (r) = —r Oy, (r), v3 = (j+1/2), (3.23)
7"2(1)5’% (r) + r@{/j (r) + <u]r — yy) Py, (r) =0, y%/j = (j+1/2)%, (3.24)

T’_%CI)ZJ. (r) are bounded in the neighborhood of zero,
®z,(1) =0, @7 (1)=0.
If in (3.24) we make the replacement p = p;r, then by definition the cylindrical function @y, (r) =
Jyyj (nyr) will satisfy the equation (3.24), here vy, = vz, = j + %, j=0,1,2,...
So, according to the definition of cylindrical functions ([31], chapter VII, § 3) for the equation (3.24)

the following statement is true.

Lemma 1. Equation (3.24) has a general solution in the form of a cylindrical function ®y,(r) =
Jj+%(ujr), j=0,1,2,...

Substituting this solution into equation (3.23), we will have a boundary value problem for a second-
order nonhomogeneous ordinary differential equation:

7°2<I>g], (r) + T(I>'Zj (r) — V%]_(I)Zj (r) = —r2Jj+% (pgr),r € (0,1),

1

77 2@y (r) are bounded in the neighborhood of zero, (3.25)
D2,(1) =0, @4 (1) =0,

where j =0,1,2,...
For boundary value problem (3.25) we establish the following lemma.

Lemma 2. For each j € {0,1,2,...} the boundary value problem (3.25) has a countable family of
solutions

/G r0) 1 (1 p) dp, Wi o k=12,

where (15411 are the roots of the equations Jj+;(,u) =0, and Gj, j =0,1,2,... is the corresponding
2
Green’s function.

Proof. We look for fundamental solutions for (3.25) in the form ®j¢q (r) = r?, where o is whole
unknown number. Substituting r? into the homogeneous case of equation (3.25), we find: for 7 # 0
oc=j+ %, o=—j— %; forj=0 o= %, o= —%, i.e. fundamental solutions are equal
z15(r) = rj+%, 205(r) = r~7% for each J#0, zi0(r) = % zo0(r) =1~ 2.

D=

(3.26)

Thus, the general solution of homogeneous equation (3.25) according to (3.26) is written in the
form

[un

q)Zj f,s,(?") = Cljrj—i_% + ng?"_j_%, j e {1,2, .. .}, (I)Zo f.s'(r) = 0107“% + Coor™ 2. (3.27)

92 Bulletin of the Karaganda University



On the spectral problem for three-dimensional ...

Thus, general solutions for the equation from (3.25), obtained on the basis of fundamental solutions
(3.26)—(3.27) ([30], chapter 1, §5, Cauchy method), have the form:

1
6113'7"]—"_5 + (I)j part.s. (T), J 7& 0, 1
(pjvgen-s-(r) = 1 . :/ G r p)J %(/’Ljp) dp? j = 071727' )
ClOTE + @ part.s.(r)y J= 0
(3.28)
where

23+17ﬁ]+1 [P_jJr% —ﬂj+%} , 0<r<p<l,
Gj(r,p) = . . . 7=123,..., (3.29)

—g e [T_J_i - 7~9+5} , 0<p<r<l,

1 1 3

—r2[p2—p2}, O<r<p<l,
Go(r,p) = T, i=0 (3.30)

—p_ﬁ[r_ﬁ—ri}, 0<p<r<l,

L [ith it ;

_mf [p 2=p 2:| JJ+1/2(NP)dP7 J= 172737"'7

Chj = 0 (3.31)

1 3 .

= [|pz — 2} Ji2(up) d p, j=0,
0

ng:(], 7=0,1,2,3,..., (3,32)

the equality of the coefficients Cy; to zero follow from the conditions of boundedness in the neighborhood
of the point = 0 from (3.25).

We have included the details of the calculations contained in (3.27)—(3.32) in Appendix B.

Next, taking into account the solution formulas (3.28)—(3.31) and satisfying their second boundary
conditions at r = 1 from (3.25), we obtain

J; 43 (tj41) = 0, for each j € {0,1,2,...}. (3.33)
Really, we have
Oy (1)=0= / prag 1 (pp) dp, j=0,1,2,.

According to formula (20) from ([31], chapter VII, §3) the last relations are equivalent to the equalities
(3.33).

Finally, as a solution of spectral problem (3.7)-(3.9) and taking into account formula (3.22) as
eigenfunctions Rz, (r) from (3.28)-(3.30), we obtain:

1
Rzjk(r) = 2/ Gj(r;p) i1 (jriep) dps Jjp1 (jpie) =0, 5,k =1,2,3,. (3.34)
1
Rzok(r) 2/ Go(r, p)Jl (/Jl kp) dp, J1 (,U,l £)=0, k=1,23,. (3.35)
As the roots of the equations Jj+% (j+1) =0, 5 =0,1,2,..., (into (3.34)—(3.35)) we find the
eigenvalues
[ 5=01,2,..., k=123, ... (3.36)
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Thus, from solutions (3.7)-(3.9), problems (3.11)-(3.21), (3.25) and (3.34)—(3.36) we obtain the
following system of eigenfunctions and the corresponding its eigenvalues:

+ +m
{Zj(lﬂzl(rae?g) :RZ]k(’r)@(Z] )(97C)7 Mj2+1,k}
je{0,1,2,...}, me{0,1,2,...,5}, ke{1,2,3,...}.

(3.37)

Note that the system of eigenfunctions (3.37) satisfies the orthogonality conditions with weight
2 .
r°sinf.

4 Construction of eigenfunctions in Cartesian coordinates. Main result

Now in (3.37) let us move on to the Cartesian coordinate system.
The system of eigenfunctions and eigenvalues has the form

2 2
m vity Y
{Ugﬁz(y) = Rz (ly)og;™ (arctgmﬁmtg ;) ) ﬂ?k}v

Y3
je{l,2,...}, me{0,1,2,3,...,5}, ke{l,2,3,...}, |y| <1,

(4.1)
72
0 Yty Y2
{UOkO(?/) = RZOk(‘yD@(Z; (arctg ~=L—=2 arctg ) ; M%k} ;
Y3 Y1
j=0, m=0, ke{1,2,3,...}, |yl <1, (4.2)
([Oa 3)7 Y1 > 07 Y2 > O;
(3F.2m), 41 >0, y2 <O;
arctg 92 _ arctg(, where (€4 (5,20), y <O0; (4.3)
n
5 y1 =0, y2 > 0;
37%7 Y1 = 07 Y2 < 0.

Note that under the conditions of orthogonality of the system of eigenfunctions (4.1)—(4.2) there

Vi3

will be missing weight |y|? sin (arctg -

), since the Jacobian of the transformation when passing

from the Cartesian system to the spherical coordinate system is equal to 72 sin 6.
Thus, we have established the validity of the following theorem.

Theorem 1. From the solution formulas (3.17), (3.20), (3.21), (3.34)—(3.37) for boundary value
problems (3.3)-(3.4), (3.5)—(3.6) and (3.7)—(3.9) respectively, we obtain the following system of eigenfunctions
and the corresponding eigenvalues:

+ + +m
{uon(v) = 250 (,0,0) = Rzjn(r)05(0.Q), 41}
j€{0,1,2,...}, me{0,1,2,...,5}, ke {1,2,3,...}.

In the Cartesian system, accordingly, we obtain the relations (4.1)—(4.3).

Now, according to the formulas (1.5), (4.1)-(4.2) we define the system of eigenfunctions w(y) =
{w1(y), wa(y), ws(y)} for the spectral problem (1)—(1.16).
Using the statement of Theorem 1, we establish the following result.
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Theorem 2 (Main result). For all j € {0,1,2,...}, m € {0,1,2,...,5}, k€ {1,2,3,...}, |y| <1,

we have that each triple of eigenfunctions {w%k)m(y), wéj.ck)m(y), w:(,)jck)m(y)}

W = @ = 0,) W) (), W) = O — 0y Ui (), W) = By — Oy) uln(v), (44)

wit) = (8, — ) ult) (), wit) = (0, = 0,) 0l (), W) = (0, —d,,)ul)) 4.5

Ljkm y2 — Oys) Wikm\Y)» Wojkm ys — 9y1) Wigm\Y)y W3jkm (Oy, o) U ]knl(y) (4.5)
where for j # 0:

(Oys — Oys) g?f,;(y) (Oyy — Oys) Rzji(ly))© arctg ~——= arctg y1>, (4.6)

7 (e
(O = O) B[O <arcth y) (a7
A

(8 — By) ul) ()

jkm

(O0: = By2) Wjgon () = (Oun = 0y2) Rsn(ly)OF;™ { awetg 5—22 y) SNCRY
and for j = 0:
(00 = D) uokoy) = (Do = Oys) Raron(141)O7) (arctg VIR ey y1> SR

(Bys — Oy) woro(y) = (Bys — 0y,) Rzon(y)OF) (arctg VY y) , (4.10)

(Dy — Dys) oo (y) = (9, — By,) Rezon(|y)OY) (arctg VIEE VS g yl) (4.11)

form an orthogonal basis in the space V N H?2(Q).
nd (

Remark 1. From (3.34)—(3.35), (4.1)-(4.2) and (3.25) it follows that the boundary conditions from
(3.9) are valid for r = |y| = 1, and from (1.5), (4.4)—(4.11) we obtain the satisfiability of the equation
(1.2), i.e. divw = 0.

It is obvious that each triple of functions from (4.4)—(4.11) satisfies the homogeneous Dirichlet
condition on the boundary of the unit sphere, with the possible exception of the following six points
on the sphere {y1,y2,y3}: {1,0,0}, {—1,0,0}, {0,1,0}, {0,—1,0}, {0,0,1} and {0,0,—1}.

5 Towards an approximate solution of the initial boundary value problem (1.1)—(1.4)

We have constructed the orthogonal basis w](:khgl(y), j=0,1,2,....m=0,1,2,...,5,k=1,2,3,...
in the space VN H?(Q). And based on this basis, we will introduce an approximate solution and given
functions for the initial boundary value problem (1.1)—(1.4), formulated in weak form (in terms of the

integral identity):

+ +

w (y,t) = Z chkzm Yl (y), (5.1)
j=—N,k=1m=0

+ al j:

o= Y ZdﬁkmN yu'lt) (y), (5.2)
j=—N,k=1m=0
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Pt = > ZejkmN Wi (4), (5.3)

—N,k=1m=0

<8tw§$),wl(:p))+((w]($),wl(:;)) :<f](\,i),wl(:p)>, 0<I<N, n=1,...,N, p=0,...,1, (54)

w$E (y,0) =0, (5.5)

where the expansion coefficients cgzlfgn ~(t) (5.1) are to be determined at given coefficients dgzlfr)n ~N(t) (5.2)

from the Cauchy problem for ordinary differential equations (5.4)—(5.5). And the expansion coefficients
eg.:,;)n ~(t) (5.3) are determined from equations (1.1). Thus, it is possible to find an approximate solution

to the initial boundary value problem for the linearized system of Navier-Stokes equations (1.1)—(1.4).

Conclusion

In this work, a basis is constructed in the space solutions of the system of Navier-Stokes equations
V N H?(Q), composed of eigenfunctions of the generalized spectral problem for a three-dimensional
bi-Laplacian with Dirichlet boundary conditions in the unit sphere Q = {y = (y1,92,y3) : |y| < 1}.
It is shown that these eigenfunctions satisfy the boundary conditions for the liquid velocity vector
w(y) = {w1(y), wa2(y), ws(y)} and the continuity equation divw(y) =0, y € Q.

Appendiz A. Spectral problem (1.13)—(1.14) in spherical coordinates

Let us recall the well-known formulas for gradient and divergence in spherical coordinates (r, 8, ():

o1 , 1 :
vu(y) = a?"u(rv 97 C) <11 + ;69”(7”, 07 C) S22 + maCu(ra 07 C) 13, (Al)
I 1 1 . 1
divD(y) = r—28r (r*Di(r,0,¢)) + neag (sin@Ds(r,6,()) + - eacDg(r,G,C), (A.2)

where the vector D = {0,u(r,0,0), %Bgu(r, 0,¢), Tsmeagu 7,0,()} defined by the gradient vector. In
addition, it is known that if u(r,8,() = R(r)©(0, (), then

Auly) = div Vuly) = 5 (PR/(r) ©(6,0) + T%R(rme,c@ 0.0).

r

where

1 .
AQA'Z = mag (SlH@@gZ) ac

9

Now, instead of gradient (A.1), we introduce a new vector (modlﬁed gradient vector):

~ 1 , 1 . ,
vu(y) - ;aﬂu(r’ 97 C) -1+ maCU(T, 9a C) “12 + aru(ra 07 C) 13, (A3)
where %(%u = Dy, Tsmgag =Dy, Oyu= Ds.

Then, using (A.2) and (A.3), we have:

div Vau(y) = (82, + 2

2
Y1Y2 Y2Y3 + aysy1) (y) =

1 1
— T—QE)T (T2T89u(r,0,(:)> +

rsinﬁag <sm0 8Cu(r 0 C)) rsin@ac (Oru(r,0,0)).
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And finally, we have for the required operator (1.13):

(D=2, — 2, — 0% Yu= 20, (Pou(r.6.0) +

Y1y2 Y2ys3 Y3y1 ’f‘2

1 .
5 1nc989 (sin 00pu(r, 0,¢)) +

8<u(7‘ 0,¢) — 1 Oy (rogu(r,0,¢)) — ;392 u— #Ogru(r,ﬁ,().

r2sinf ¢ rsinf

Having separated the variables u(r, 9, ¢) = R(r)©(, (), we obtain

r2sin2 6

1 ’ 1
(& =8y, = Ty = Ty wy) = 5 (PR()) ©(6,0) + 5R(r)L0cO (6,) —

r

1 1
Sm@&@(@,o) -

1 .
AQ,C@ (9, C) = m(‘?@ (Slneag@ (9, C)) +

Lr (w00.0 + Rir) (000 0.0+ 030 (0.0)):

Thus, we have obtained the spectral problem (A.4) and (1.14), which (in our opinion) is

20 (6,¢). (A.

)

an

unsolvable problem to solve. Naturally, the boundary conditions (1.14) must be written on the surface

of the unit sphere and at the center of the sphere (in spherical coordinates):
U(T7 97 g)\r:l = 07 8ru(7“, 97 g)\r:l = 07
u(r, 0, ) is bounded in the neighborhood of the center of sphere.

Appendiz B. Cauchy Method

According to |23, chapter 1,§5] a particular solution to the equation (3.25) has the form

T

Benor) == [ 13(r0) 0y (s)d, (.

0

where for the Cauchy function n;(r, p) we have

1)

2)

3)

4

97

-1 .1
ni(r, p) = Cij(p)r? ™z + Coj(p)r—=. (B.
Using (B.2), we obtain a system of equations for determining the unknown coefficients Cij(p) and
Ca;(p):
1 1
ni(p.p) = Cu(p)p’t2 4+ Coj(p)p™ 72 _— (
B.
omi(p:p) = (i+3) [Clj(p)p] 2 — Ca(p)p™ 2] ~- 1
From (B.3) we have:
Culp) = g th Coylp) = g (&
1JP—2j+1P ) 2j(pP) = 211 . .
Thus, from (B.2)—(B.4) for the Cauchy function we obtain
__1 —j+30+s +3 —i—3
77]-(7",,0)—2j+1 [,0 apite — ptapTita |
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respectively for the particular solution ®; ., s () (B.1):

T

/ [pfﬂ%w% _ pj%w‘f%} J,

0

1

q)jch.s.(T) = _2] T1

(1jp)dp. (B.5)

+1
+3

Now, using (B.5) and (3.22), we write the formulas for general solutions of the nonhomogeneous
equations (3.25) and (3.7), respectively. We have

T

D gen.s.(1) = Clj?“j+% + CQjT_j_% — 2j:—1 / [,0_”21"#7 - pj+27“ i- 2} J; %(u]p)dp, (B.6)
0
,

Rjgen.s.(r) = Cryr? + Cojr ™71 — 2].1 i / {p’”%ﬂ - ,0”%7”"1] i1 (pip)dp, (B.7)
0

where in (B.6)-(B.7) C1; and Cy; are the unknown constants that need to be found. To do this, we
will use the boundary conditions from (3.25). Due to the boundedness of the solution (B.7) in the
neighborhood of zero, it is necessary that the coefficients C5; be equal to zero, i.e., Cy; = 0. According
to the boundary condition R;(1) = 0 from (3.25) from (B.7) we get

1
1
- —]+* _ g+
Cij=5 +1/ 2 —p } 1(up)dp,
0

il 5417 iy
Rjgen.s.(r) = 2]11/[7' 172 _T]+2] p]+2Jj+%(Mjp)dp+
0

—j4 1 it 1l
T [ 3 _ it }r]-‘rzjj_i_%('ujp)dp.

r
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Bipaik miapaarsl yinesmieMal ou-Jlamnnacuan
YIIiH KOWBLIFAH CIEKTPJIIK ecell TypaJibl

M.T. Kuenonues!', A.M. Cepix!?

! Mamemamura osicone mamemamurasvir, modesvoey unemumymaot, Aamamot, Kazaxcman;
20n-Dapabu amvindaes. Kasax yamo yrnusepcumemi, Aamamon, Kasaxcman

Makasaga ToK (YHKIMSICHIHBIH >KaHa TYCIHITIH eHrizeMi3 >KoHe YIIeJIeMIl »Karaaia TOK (OyHKIUICHI-
HBIH, TeHJieyiH mbirapambl3. Hapbe-CToOKC KyiieciHiy, menrimaepinia KeHicTirinae 6a3uc Kypy VIIiH IIeKa-
pana Jlupuxie maprrapsl 6bap 6u-Jlammacuan yimH KOMEKIN CIIEKTPJIK eCeNTi IemeMis. Opi Kapaii, TOK
bYHKIUSCHIH €HIi3y YIIIiH KOJIJIaHbLIFaH (popMysaiap/sl naiganana oreipsin, HaBbe-Croke xyiieciniy mie-
mimepiniy Kericriringe 6asuc 6osmaTbiH GyHKImsIAp XKyiiecin Tabambi3. Bys 6asucti HaBbe-Crokce xyiteci
VITiH CBHI3BIKTHI KOHE CBI3BLIKTBI €MeC Typa YKoHe Kepi ecemTepsl *KybIKTall IIelry VIMH KOJIaHyFa OoJa-
TBHIHBIH aTall OTKEeH »KOH. Y CHIHBIJIFAH KYMBICTBIH HETi3ri ueschl Kejecifei: mekapablk MapTTapibl eMec
(osmapapl e3repicci3 KajaabpaMbl3) CIEKTPJIK mapaMeTpi 6ap TOK HOyHKIUSCHIHBIH JuddepeHIuaIIbIK TeH-
neynepin esrepry. Hormxkecinge 6i3 06sbIc mekapachiaaa Jupuxite mapTrapbIMeH VIO meM/ i OipJIik map-
MeH beiiHesieHreH obJibicTarbl 6u-Jlamiacnanga CrieKTpIIiK ecen ajaMbl3, OHbI mienry Kesdinge Hasbe-Crokc
TeHJey/Iep KYHeCiHiH MemiMIepiHiH KeHiCTiriHae 6a3uc KypaiTblH MEHIIKTI (pyHKIUsIap XKyieciH Taba-
MBI3. Byt xkarmaiina mekapaJsblk, MapTTap CAKTAJBIN, CYHBIKTHIH Y3LIicci3 iri mapTeiMeH Oepirer Tenaey
JiH OpBIHJAJFaHBl MaHBI3ABI. Hapbe-CTOKC »KyieciHiH yiIeamemal »Karmaiibl yIIH TOK (PYHKIMSCHIHBIH,
aHaJIorbl OeJirici3 GOIFaHBIH Ja eCKepeMis.

Kiam cesdep: HaBbe-Crokc xkyiteci, 6u-Jlanmacnan, cieKTpJiik ecen, TOK OYHKIUSICHI.

O cnexkTpaJibHOI 3a7a4de A1 TpexMepHoro om-Jlamiacuana
B €AMHUYHOM IIape

M.T. T:xenamues', A.M. Cepux’?

L Hnemumym mamemamuky U Mamemamuieckozo modeauposanus, Aamamol, Kasaxcman;
2 Kasazcrutl Hayuonaibmod yrusepcumem ument avb-Papabu, Aimamo, Kasaxcman

B crarbe Mbl BBOMM HOBOe noHsTHE (DYHKIMU TOKA M BBIBOJIUM ypaBHEHHE JJis (DYHKIMM TOKA B TPEX-
MepHOM cirydae. st mocrpoenns: 6a3uca B npocrpaHcTBe perrennit cucrembl HaBbe-CToKca MBI peraemM
BCIIOMOTATEIHHYIO CIEKTPAIbHYIO 3amady s bu-Jlamracnana ¢ yeaoBusimu upuxie Ha rpanune. [lasee,
C IOMOIIIBIO (POPMYJI, KOTOPBIE HCIIOIH30BANCH JJIs BBeJeHNs (DYHKIIUN TOKA, Mbl HAXOJIUM CUCTEMY (DYHK-
i, obpasyrorryio 6a3uc B npocrpancrse pernennii cucrembl Hasbe-Crokca. Crieyer OTMeTHTD, ITO 9TOT
6a3nc MOXKEeT OBITH HCIOJb30BAaH JJIsi TPUOJIMKEHHOTO PEITIEHUsT TPSMBIX 1 OOPATHBIX 33719 JIJI CHCTE-
mbl HaBbe-CroKca, Kak JIMHEApU30BAHHOM, Tak M HejauHeiHoil. OCHOBHAsI Mjes NPEJICTABIEHHON PabOThI
3aKJIIOUAETCS B CJIEJYIOIIEM: U3MEHsITh He IDAHUYHbIE YCIIOBUsI (MX OCTaBisieM 0e3 M3MEHEHMIl), a MEHsTh
nuddepeHmaIbHble ypaBHEHUs 11 (PYHKIIME TOKA CO CIEKTPAJIbHBIM apaMeTpoM. B pe3ysnbrare MBI m10-
JlydaeM CIIEKTPAJIbHYIO 3ajiady s 6u-Jlammacuana B 061acTu, IpeICTaBIEHHON TPEXMEPHBIM €IMHUTHBIM
mapow, ¢ ycsioBusimu Jlupuxiie Ha rpanuie obacTy, pemast KOTOPYIO, MbI HAXOAMM CHCTEMY COOCTBEHHBIX
byukImit, obpasyomux 6a3uc B IPOCTPAaHCTBe pereHuit cucrembr ypasuennit Hasbe-Crokca. IIpu sTom
SIBJISIETCSI BarKHBIM, YTO COXPAHSIOTCS I'DAHUYHBIE YCJIOBHs, ¥ BBIIIOJIHAETCS yPDABHEHUE, [IPEJCTABIIEHHOE
YCJIOBHEM HEPa3PBIBHOCTU KUIKOCTH. 3aMETHM TaK:Ke, UTO I TPEXMEPHOTO ciiydasi cucreMbl Hambe-
Croxkca anaJyior pyHKIUN TOKa OB HEU3BECTEH.

Karoweswie caosa: cucrema Hasbe-Crokca, 6u-Jlansiacuan, cniekrpajibHas 3aja4a, (QyHKIM TOKA.
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On a method for constructing the Green function of the Dirichlet
problem for the Laplace equation
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The study of boundary value problems for elliptic equations is of both theoretical and applied interest. A
thorough study of model physical and spectral problems requires an explicit and effective representation of
the problem solution. Integral representations of solutions of problems of differential equations are one of the
main tools of mathematical physics. Currently, the integral representation of the Green function of classical
problems for the Laplace equation for an arbitrary domain is obtained only in a two-dimensional domain
by the Riemann conformal mapping method. Starting from the three-dimensional case, these classical
problems are solved only for spherical sectors and for the regions lying between the faces of the hyperplane.
The problem of constructing integral representations of general boundary value problems and studying their
spectral problems remains relevant. In this work, using the boundary condition of the Newtonian (volume)
potential and the spectral property of the potential of a simple layer, the Green function of the Dirichlet
problem for the Laplace equation was constructed.

Keywords: Laplace equation, Green function, Dirichlet problem, simple layer potential.
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Introduction

Let 2 C R™ is a bounded domain with a smooth boundary 0.
The Dirichlet problem. Find in € the solution u(z) of the Laplace equation

—Ayu= f(z), x€q,

satisfying the boundary condition
u‘zEBQ =0.

The function G(x,y),z,y € Q is called the Green function of the Dirichlet problem if
_ALEG(x,y) = 0> T € Q7 G(ZL‘, y)|xeaﬂ,yEQ = 0.

The solution of the Dirichlet problem using the Green’s function G(z, y) is representable in the following
integral form

u(x) = / G ) f(y)dy.
[9]

In the two-dimensional case, the method of conformal mapping of the analytical function is used
to construct the Green’s function. Starting from the three-dimensional case, the construction of the
Green function is carried out by the method of Fredholm integral equations of the second kind, or by
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the method of maps, which are ineffective. Therefore, in multidimensional cases, G(x,y) is constructed
only for spherical sectors and for half-spaces.

In this paper, we present a method for constructing the Green function, which essentially uses the
boundary properties of the Newtonian potential (volume potential) and the spectral properties of the
trace of the potential of a simple layer.

By u = L;,l f we shall call the Newtonian potential (volumetric potential)

u(w) = L3\ = [ el s )y, (1)
Q
where e(z,y) is the fundamental solution of the Laplace equation
- Atcg(xa y) - (5(.’E, y)v (2)
the function e(z,y) in (2) has the following form
—njz—y|, n=2,
ca,y) = { G ; )
wn (n=2)[z—y["=2° n>z

Next, we will use the following statement from the work of T.Sh. Kal’'menov, D. Suragan [1].
Theorem 1. The Newtonian potential u(x) € W(Q) at = € (2 satisfies the Laplace equation

—Ayu = f(x) (4)

and the boundary condition

- “(;) +/ (;;(x —y)uly) —e(z —y) 8;725)) dSy =0, =€ (5)
o0

Inversely, if u € W3 () satisfies equation (3) and boundary condition (4), then u(z) coincides with
the Newtonian potential (1).

Note that in the work of the Saito [2] it is also established that u(z) = Ly'f(z) satisfies the
boundary condition (4). In contrast to the work of the Saito, in our work it was found that if the
solution satisfies equation (3) and boundary condition (4), it coincides with the Newton potential
u(w) = Ly f(x).

It follows from Theorem 1 that the Green function of problem (3)-(4) in an arbitrary domain is the
fundamental solution &(z,y).

Similarly, the lateral boundary conditions of the wave and heat potentials are found in [3-6].

Let —A be the closure in L () of the differential operator —A on subset of functions u € C?T(Q),
ulon = g—mag =0, and —Aj is its adjoint operator in Ly(€2).

The operator L is called a correct restriction if

L C —(Ag)*, L™ is invertible on all Ly ().
Correct restriction L of the operator —(Ap)* we call a regular boundary extension if
—Ap C L, ||L_1||L2(Q)—>L2(Q) < 00.

The description of correct boundary value problems for general elliptic operators by the method
of regular extensions of operators in Hilbert space is given by M.M. Vishik [7], and the description of
correct restrictions for maximal operators is given by M.O. Otelbaev [8].

106 Bulletin of the Karaganda University



On a method for constructing...

Next, we look for regular solutions of equation (3) in the form

u(z) = / £z, y) f(y)dy + / V(€)e(x, €)dSe, (6)
Q o0
where
() = / v(€)e(z, €)dSe (7)
o0

is the potential of a simple layer, and v(&) is the density of the potential of the simple layer (6).
Suppose first that v(z) € C(012) and for each z € 09, and v(z) is a linear continuous functional
of f(z) € La(), i.e. v(x) = v(x, f).
According to Riesz’s theorem, v(, f) is representable as

V(€)= v(E. ) = / 4(€.9) f(w)dy, (s)

Q

where § is continuous over £ € 9Q and (&, y) € La(f2) over variable y € €, i.e.,

12(& | Lo@)ncon) = V(€ leoa)-
Substituting the right part (7) into the formula (6), we get

w(z) = / () / 46, 9) f(y)dydSe =

o0 Q
_ / ) / (2, €)(E, y)dSedy = / i@, y) f(y)dy,
Q

o Q

dfavy) = [ (w6 v)dSe 9)
o0
Thus, the operator

w=LVf = / a(@9)fW)dy, =€
Q

converts an arbitrary function f € Ly (Q) to kerA}, i.e. —A, L7 f =0.
Now we will rewrite the integral operator (5) in the form

u(x) = L' f = / ez, ) + 9. 9)) F(v)dy.
Q

By construction —Awu = f(x). Therefore, the operator u = L;zlf is a correct restriction of the
maximal operator —A(, i.e. a invertible generalized solution of equation (3).

Remark. Tt is not difficult to establish that in the representation (8) we can consider g € Lo(992) N
Ly (Q).

According to the theory of correct restrictions generated by integral operators (T.Sh. Kal’'menov,
M. Otelbaev [9]), a correct restriction of LI,_%1 generates regular boundary operators if and only if adjoint
to (L}_%l) operator (L;%l)* is a correct restriction, i.e. the operator

(LRI)*QZ/5(y,$)9($)d$+/q(x,y)g(m)dw

Q Q
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is a correct restriction.
According to [8], this can only be the case when

—Ayq(z,y) =0,
i.e.

-4, | [ @ mlense| = - [ e, 006 pise =0 (10)
Q o0

The following statement takes place
Lemma 1. The trace of the potential operator of a simple layer on 92, given by the integral

(Dg'v)(z) = /e(as,ﬁ)y(f)ng, x € 082

o0

is a completely continuous self-adjoint operator in L2(€2) and its kernel e(x, £), z, £ € 0f is represented

as
00

em(x)e
5(3375) — Z m( ) m(g)’
|m|=1 m
where e,,(z) is a complete orthonormal system of eigenfunctions of the operator Dgl corresponding
to the eigenvalues of )%

Indeed, from e(z,§) = (&, x) and its weak divergence on 92 follows the validity of Lemma 1.
It is easy to check that

Dgtem(r) = , Dgem(x) = Amem(x), (11)

where Dg is inverse operator to D;l.
Using Fourier series expansions

e(z,€) = i em(”;)em(g) zed, €econ

|m|=1 m
and
> _A g m m
_Ay§(€7y) = - Z ( yg))\ (y)e (5)’ Y € aQa f € aQa
Im|=1 m

(-89 = [ (~B49(6 w)em(©)dSe
oN

From the equality (9) at € 9 it follows that (—A,G(y))m = 0, which is equivalent to —A, (&, y) = 0.
In particular,

[ewona€ s =0, zeq
00

Now we are looking for the Green function G(z,y) in the form

Gl y) = e(a,y) - / £(2,€) Dsi(€, y)dSe. (12)
o0
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Since G(z,y) = G(y, ), it follows from (11) that

G(x,y) =e(z,y) — /6($7§)Dsfi(fay)d‘5’§ =
o0

()~ [ d(€.0)Dsey.€)ase =

o0

—e(z, y) — /q(g,m)Dse(y,ﬁ)dss-

o0

It follows that
q(& x) = e(z,€).
Therefore,
Gla.y) = sla,y) ~ [ elz,&)Dse(y.€)dse. (13)
[2)9]

From (12) it is easy to verify that

—AG=0(x—y),
- A, / e(w,€)Dse(y, )dSe = —A, / e(x,6)Dse(y, )dSe = 0, z € Q, y € Q. (14)
o0 o0
It takes place
Lemma 2. The following equality is true
— [ e ODser. s = (3. 9) = ~<(.p) (15)

€N, YeN

Proof. Let us set
o) = [ e Qen(@)dse, e,
o0

it is obvious that
_Ayé;;(y) = 07 (TS Q’

[e.9]

e, ) =D emyem(s). (16)

Im[=1

By construction
= em(y)em(§)
5(y7 £)|y€8§2 = Z .

Im|=1 "

Taking into account the formula (10), from (15) we obtain

Dse(y,6) = Y Amem@em(§), ye€Q

m|=1
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Based on (16) and the ratio

e(z,6) =Y em@eml) g,
Im|=1 m
from (14) at y € 2 we have
- [ <. Dsety s =

oN €N, yeN

_ Z Gm(w)em(€)7 Z )\mgm(y)em(g) _
|m|=1 m |m|=1 L2(69)

== ) em@en(y) = —c(y,x) = —c(z,y), ye, zco.

|m|=1

Using this, from (11) we will make sure that

Gz, 9),con =¢(7,y) - / (e, y) Dse(y, €)de, =
o0
=e(z,y) — 6($7y)’yeﬂ,x€89 =0.

Lemma 2 is proved.
Equality (13) and Lemma 2 follow
Theorem 2. The Green function G(zx,y) of the Dirichlet problem is given by the formula

Gl y) = e(z,y) - / £(2,€) Dse(y, €)dSk.
o0

where e(z,y) is the fundamental solution of the Laplace equation, and Dg is the operator defined by
the formula (10).
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Jlannac tengeyi ymiin lupuxiie ecebinif 'puH hyHKINSACHIHBIH,
MHTErPAJIIbIK KOPCETLIIIMiI TypaJibl

T.III. Kaigbmenos
Mamemamu%’(mbng HCOHE MATMEMATMUKAADLK MO()E/L’baey uHCcMmumymal, AﬂM(lm’bL, Kaamgcman

DJUINNITUKAJIBIK TEHIEyJIepre apHaJIFaH IIEeTKI eCeNTep/Ii 3epTTey TEOPUSLITBIK, 3KOHE KOIIAHOAIbI KBI3BIFYIIIbI-
JIBIK, TyAbIpaabl. Momenbiik (pu3uKaIbIK KOHE CIIEKTPJIK eCenTepal MyKHUST 3epTTey YIIiH eCeIITiH MentiMin
HaKThI JKOHE THIMII ycbIiHy KaxkeT. /luddepeHmanapik TeHaeyiep ecenTepiniy menriMaepiHiy nHTerpasi-
JIBIK, KOPCETLITIMI MaTeMaTUKAJIBIK-(PU3UKAHBIH HEri3ri KypaJsaapbiHbiy 6ipi. Kazipri yakpiTTa epKiH aiMax,
yuria Jlamrac TeHaeyi yImiH KIacCUKAJIBIK, ecenTepiis, ['puH OyHKIMSICHIHBIH, HHTErPAJI ALl KopceTiaimi Pu-
MAaHHBIH KOHMOPMIbI OeiiHesey oficiMeH TeK €Ki ormeMIl aifMakTa aJblHbl. YIII OJIMEM/l YKardaiTaH
bacrar, OyJI KJIACCHUKAJIBIK €CEIITEpP TEeK Iap CEeKTOpJaphl VIIH K9HE T'HMIEpP>Ka3bIKTBIKTBIH OeTTepi apa-
CBIHJIa OPHAJIACKAH aiiMakTap YIIiH memnrijieai. 2KaJmbl MeTKi ecenTepail NHTerpaJsiibl KOPCEeTTIMIH Kypy
2KOHE OJIADIBIH CIIEKTPJIK MOCeJeJIepiH 3epTTey Moceseci e3ekTi 6obin Kata 6epemni. 2KyMbIicTa HBIOTOH-
JBbIK (KOJIEeMIK) MOTeHIUAIbIH [IeKapaJIbIK [IaPTHIH XKOHe KapalaibiM KabaT IOTeHINAIBIHBIH CIEKTPJIK
KaCHeTTepiH maitajaana OTeIpHIN, Jlammac Teraeyi yirin Jlupuxie ecebinin ['puH OyHKIUSICH KYpacTHIPBLI-
FaH.

Kiam cesdep: Jlannac renzeyi, I'pun dyukuusicer, Tupuxiie ecebi, KapanaiibiM KabaT MOTEHIIUAJIBI.
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O6 uHTerpasibHOM npeacraBiienun pyukiuu 'puna 3amayan dupuxiie

112

3

Aas ypaBHeHus Jlamiaca

T.III. KaiabMmeHoB
HHcmumym MaAMEMaAMmUrKU U MAMTMEMAMUYLECKO20 Moﬁeﬂupoeamm, A./LM(lm’bL, Kasaxcman

W3yduenne kpaeBbIX 331849 Il JUIMITUIECKAX YPABHEHUA TPEICTABIISIET M TEOPETUIECKUA, U MPUKJIATHON
naTEepec. /I TIaTebHOr0 M3ydYeHusT MOMIETBHBIX (DU3NIECKUX U CIEKTPAIbHBIX 33/1ad TPeOyeTcs: siBHOE
u 3hdeKTUBHOE TIpe/ICTABIICHNE PellleHus 3aJadu. VIHTerpaabHble MpeJCTaBIeHNs PelleHui 3aaad aud-
(depeHInaTbHBIX YPABHEHUN SIBJISTFOTCS OJHUMU M3 OCHOBHBIX MHCTPYMEHTOB MaTeMaTHIeCcKoi dusuku. B
HACTOAIIEe BPEMsI HHTErPAIbHOE IpeACcTaBIeHne PYHKINY [ prHa KIIACCHYIECKUX 3314 /i ypaBHeHus Jla-
1aca Jijisi IPOU3BOJILHON 00JIACTH IOJIYyYEHO TOJIBKO B JIBYMEPHO# 06J1aCTH MEeTOI0M KOH(OPMHOro orobpa-
xenusi Pumana. Haunnast ¢ TpexMepHOro ciiydast, 9TU KJIACCUIECKUE 331a9K PEIIeHbl TOJBKO JJTsT IAPOBBIX
CEKTOPOB U JIJTs1 00JIaCTEH, JIeXKAIUX MEXKTy TPAHSIME TMIIEPILIIOCKOCTH. BOIIPOC MOCTpOEHNsT HHTErpaIbHBIX
[IpEeJICTABJIEHUI OOIINX KPAEBLIX 3aJad M M3yUeHUs] WX CIEKTPAJbHBIX IIPODJIEM OCTAeTCsl aKTYaJbHBIM. B
paboTe, IOJIb3ysiCh TPAHUIHBIM YCJIOBHEM HBIOTOHOBOIO (0OBEMHOI0) IOTEHIMANA U CIEKTPAJIBLHBIM CBOi-
CTBOM IIOTEHIIMAJIA TTPOCTOTO CJI0s1, TOCcTpoeHa (byukius ['puna 3agaun upuxie nisa ypasuenus Jlammaca.

Karoueswie caosa: ypasaenue Jlamraca, dyuknus I'puna, 3agada lupuxiie, moTeHIpaa IpocToro Cosl.
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The class K of algebraic systems of signature o is called a formula-definable class if there exists an algebraic
system A of signature o such that for any algebraic system B of signature o it is B € K if and only
if Th(B) - Th(A) = Th(A). The paper shows that the formula-definable class of algebraic systems is
idempotently formula-definable and is an axiomatizable class of algebraic systems. Any variety of algebraic
systems is an idempotently formula-definite class. If the class K of all existentially closed algebraic systems
of a theory T is formula-definable, then a theory of the class K is a model companion of the theory T'. Also,
in the paper the examples of some theories on the properties of formula-definability, pseudofiniteness and
smoothly approximability of their model companion were discussed.

Keywords: model companion, pseudofinite theory, formula-definable class, smoothly approximated structure.

2020 Mathematics Subject Classification: 03C30, 03C15, 03C50, 54A05.

Introduction

In the literature on model theory and universal algebra, after the theorem of Feferman S.,
Vaught R.L. [1], the product of complete theories is considered in various articles. In particular, in [2],
it is shown that the product of two stable (superstable, w-stable) theories will be a stable (superstable,
w-stable) theory, that is, the set of all stable (superstable, w-stable) theories with the operation of the
product of theories is a commutative semigroup.

A. Robinson introduced the definition of a model companion for a theory [3]. In articles by various
authors, results are obtained regarding the existence of a model companion for a theory. In particular,
in |4], there is the following criterion for the existence of a model companion for inductive theories.

Theorem 1. (P. Eklof, G. Sabbagh [4]) Let T be an inductive theory. Then T" has a model companion
T’ if and only if the class of existentially closed models of a theory T is elementary.

Various properties of model companions from different points of view have been studied in the
works of [5-7]. Pseudofinite models and w-categorical smoothly approximated models were considered
in [8-12].

1 Background information

Let us give the necessary definitions and known results on the theory of models and universal
algebra. For brevity, by the word model, we mean an algebraic system.

Let L be a countable language of first-order signature o. For any model A of language L, we denote
by Th(A) the set of all sentences (bounded formulas) of language L that are true in model A, that is,

*Corresponding author. E-mail: kassatova@kmu.kz
The work was partially supported by the Science Committee of the Ministry of Science and Higher Education of the
Republic of Kazakhstan under Grants AP19677451.
Received: 25 January 2024; Accepted: 04 March 2024.
(© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Th(A) the complete theory of model A. For models B, A of language L, the notation B = A means
Th(B) = Th(A).

For a class IC (we assume that all classes are abstract, that is, closed with respect to isomorphism),
Th(K) is the set of complete theories of all models of class K. Th(L) is the set of all complete theories of
the language L. Since the language L is countable, the power is |Th(L)| < 2¢. If K is an axiomatizable
class of models of a language L, then Th(K) is the theory of class K.

Definition 1. [13] A class K of models of signature o is called a formula-definable class if there exists
a model A of signature o such that for any model B of signature o, B € K if and only if Th(B)-Th(A) =
Th(A). The model A is then called the determinant of the class K, and if Th(A) - Th(A) = Th(A),
then the class K is called idempotently formula-definable.

Preliminary results in this direction were obtained in works [14-16].

Definition 2. If S C Th(L), then M(S) is the class of all models of all theories from S. We call
the set S of theories axiomatizable if M (S) is an axiomatizable class. A class K of models is called
inductive if Th(K) is an inductive theory, that is, Th(K) is a V3-theory. Not every set of theories is
axiomatizable.

Theorem 2. (S. Feferman, R. Vaught [1]) Filtered products and direct products of models of a
language L preserve elementary equivalence.

This theorem allows us to introduce the product operation Th(A)-Th(B) < Th(Ax B), (the symbol
4 means by definition), the direct product [[,.; 7; of complete theories T}, i € I < Th([[;c; T3), the
ultraproduct [[,c;T;/D of complete theories T;, i € I by ultrafilter D over set I < Th([[;c;Ti/D),
the ultradegree T? /D of complete theory T by ultrafilter D over set I < Th(]],.; T;/D), where T; = T
forall ¢ € 1.

We assume that the direct product of models is the direct product of a non-empty set of models.
The direct product of an empty set of models is a trivial model.

It is clear that S C Th(L) is axiomatizable if and only if S is closed with respect to ultraproducts
of theories.

i€l

A theory T is called an idempotent theory if T'-T = T. A model A is called an idempotent model
if Th(A x A) =Th(A).

The set Th(L) with the operation - product of theories is a commutative semigroup with identity
(we will not take much into account the theory of the trivial model, although, of course, it is a neutral
element for the operation -).

Subsemigroups of semigroups < Th(L);- > we call them semigroups of complete theories.

Definition 3. [17] A set S C Th(L) is called a formula-definable set of theories if there is a theory
T € Th(L) such that for any theory 77 € Th(L) it holds, 71 € S if and only if T} - T'= T'. The theory
T, in this case, is called the determinant of the set S. If the determinant of the set S is an idempotent
theory T', then S is called an idempotent formula-definable set of theories, and T in this case is called
the idempotent determinant of the set S.

It is clear that the class of models K is formula-definable if and only if Th(K) is formula-definable.
Furthermore, the class of models K is idempotent formula-definable if and only if Th(K) is idempotent
formula-definable.

In proving the results of the article, we will use the following theorems:

Theorem 3. (J. Keisler [18]) For any model A and any ultrafilter D over I, A = A/D.

Theorem 4. (J. Keisler [18]) By any sentence ¢ there is a number n such that for any index set
I and any models A;,7 € I, there is a subset J in I that contains at most n elements, and for any
V,JcV ClI, [liey Ai E ¢ if and only if [[,o; Ai = ¢.
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Theorem 5. (S. Feferman — R. Vaught [1]) For any two sets of models {4;|i € I}, {B;|i € I} and
for any ultrafilter D on I, [[;c;(A; x B;)/D = [[;c; Ai/D x [[;c; Bi/D.

Theorem 6. (F. Galvin, J. Weinstein [19]) Let A, B, C' be models of the language L. If Ax BxC = A,
then A x B = A.

2 Formula-definable semigroups of complete theories

This section presents the results obtained on formula-definable semigroups of complete theories [14]
and formula-definable classes of models.

Let 7" mean [[,.; T3, where |I| =n, T; =T, for all i € I, and T! mean [Lic; Ti, where T; = T for
all i € I.

Lemma 2.1. For any theory € Th(L) it holds

1) TT/D =T for any ultrafilter D over the set I.

2) If T is an idempotent theory, then 7! = T for any set I.

Proof. 1) T'/D = T. To prove it, you should use the fact that T7/D < Th(]]
T; =T for all i € I and apply Theorem 4, relying on Theorem 3.

2) Let T be an idempotent theory. It is clear that for any finite n, 7" =T

Let I be an infinite set. And for some sentence ¢ € T, sentence ¢ ¢ T, then by Theorem 5, this
contradicts the fact that for all finite m greater than a sufficiently large n, ¢ € T™ = T holds. This
means T/ =T.

ier 11/ D), where

Lemma 2.2. For any two sets of complete theories {T;|i € I} and {T}|i € I} and for any ultrafilter
D oon I, [lic/(Ti - T7)/D = 1lie; Ti/D - 1Lie; T3/ D-

Proof. Follows directly from Theorem 6, relying on Theorem 3.

Lemma 2.8. Let T1,T5, T3 be complete theories. If T - 15 - T3 = T3, then T - T3 = T3.

Proof. Follows from Theorem 7, based on Theorem 3.

Theorem 7. The formula-definable set of complete theories S is closed under finite, arbitrary direct
products of theories.

Proof. Let the theory T be the determinant of the set S. The finite closedness of S with respect
to the product is beyond doubt due to the associativity and commutativity of the direct product of
theories.

Let {T;|i € I} C S be an infinite set. If T is an idempotent theory, which means 7' € S, then to
prove the infinite closedness of S with respect to the product, one should use the same reasoning as in
the proof of Lemma 2.1.

If the determinant of T' ¢ {T;|i € I}, then consider the set {T;|i € I} U{T'}. Let for some sentence
¢ € T, sentence ¢ ¢ [[,c;Ti - T, then by Theorem 5, there exists a finite J C I such that for any
V,J CV CI, ¢ ¢ [lie;Ti-T. However, this contradicts the fact that for all finite V,J €V C I and
the power V' is greater than a sufficiently large n, ¢ € [[;c;T; - T holds.

Corollary 2.1. The formula-definable class of models K is closed under finite, arbitrary direct
products of models. Its set of complete theories Th(K) is also closed with respect to finite, arbitrary
direct products of theories.

Lemma 2.4. The set of complete theories, closed under arbitrary direct products of theories, contains
an idempotent theory 77 € S such that for each theory T' € S, the following holds: T'- T = T".
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Proof. Let us take the direct product of all theories from S, that is [[p.gT. Since S is closed
with respect to arbitrary direct products of theories, then [[;cg7 € S. (In general, |S| < 2¢). Due
to the closedness of S, the product [[pcgT - [[regT € S. This means there is a theory 7" € S and
[IresT - IlpegT = T, which is present in both products. Now applying Lemma 2.3, we obtain that
for any theory T' € S, the following holds: T - T = T, including 7" - T" = T".

Corollary 2.2. The class of models K, which is closed with respect to arbitrary direct products of
models, contains an idempotent model A € K such that for each model B € K, Th(B x A) = Th(A)
holds.

Theorem 8. A formula-definable set of complete theories S is an idempotent formula-definable set
of theories. And the idempotent determinant of the set S is unique.

Proof. Let T* be the determinant of the set S. By Theorem 7, S is closed under arbitrary direct
products of theories. By Lemma 2.4, there is an idempotent theory 77 € S such that for any theory
T € S, the following holds: T - T" = T". Now, if for some complete theory T} ¢ S, T} - T = T’, then
since Ty -T"-T* = T*, then by Lemma 2.3, T} -T* = T™* holds. That is, 77 € S. We have a contradiction.
This means that the theory 7" is an idempotent determinant of the set S.

There is only one idempotent determinant for S. Indeed, if there are two idempotent determinants
T7 and 15 for S, then since 77 € S and Tb € S we have T7 =17 - T = Ts.

Corollary 2.3. A formula-definable class of models of complete theories S is an idempotent formula-
definable class of models.

Theorem 9. A formula-definable set of complete theories S is an axiomatizable set of complete
theories.

Proof. Let {T;|i € I} C S and [],c; Ti/D be the ultraproduct of theories over the ultrafilter D over
I. Using Lemmas 2.1 and 2.2, we obtain [[,.; T;/D - T = [[,c; Ti/D - T'/D = [Lic;(Ti-T)/D =T.
This means that .S is closed under the ultraproduct of theories, that is, S is an axiomatizable set of
theories.

Corollary 2.4. A formula-definable class of models is an axiomatizable class.
Theorem 10. Each variety V is an idempotent formula-definable class of models.

Proof. The variety V is closed under arbitrary direct products. This means that Th(V) is closed
under the product of complete theories. Then, by Lemma 2.4, there is an idempotent theory T € Th(V')
such that for any model B € V,Th(B)-T = T. Let A be a model of a theory T', then A is an idempotent
model, and for any model B € V| it is true Th(Bx A) = Th(A). Since T' € Th(V'), then in model A, the
truths are all the identities that define the variety V. Therefore, if B ¢ V, then Th(B x A) # Th(A).
This means that the variety V is an idempotent formula-definable class of models.

3  Some examples of theories with a model companion

Here, we study examples of some theories and their model companions for fulfilling formula-
definable, pseudofinite and smoothly approximable properties. In what follows, 71" is not necessarily
a complete theory.

Definition 4. (model companion of theory [3]) Theory T3 is called a model companion of theory T
if 77 and T' are mutually model consistent (i.e. models of theory T} are embedded in models of theory
T, and models of theory T} are embedded in models of theory). The theory T} is model complete.

A model companion to a theory does not always exist, but if it does, it is unique.
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Theorem 11. If the class K of existentially closed models of a theory T is a formula-definable class,
then K is a model companion of the theory T

Proof. Follows from Corollary 2.4 and Theorem 2. (P. Eklof, G. Sabbagh [4]).

Some important types of companions of incomplete theories and their model-theoretic properties
have been studied in the works [5-7].

In the work of J. Ax [8], the concept of pseudofiniteness was first defined. The groundworks obtained
to date for pseudofinite structures directly depend on the results of J. Ax. The basic definitions of
pseudofiniteness are as follows.

Definition 5. [8] An infinite structure M of a fixed language L is pseudofinite if for all L-sentences
v, M [= ¢ implies that there is a finite L-structure My such that Mg = ¢. The theory T' = Th(M)
of the pseudofinite structure M is called pseudofinite.

Many beautiful theorems in model theory of the 1950s-60s were proved using ultraproducts. Set
theorists love ultraproducts because they give rise to elementary embeddings, a staple of large cardinal
theory. J. Ax in [8] connect the notion of pseudofiniteness and the construction of ultraproducts.

Proposition 3.1. |[8] Fix a language L and an L-structure M. Then the following are equivalent:

1) an L-structure M is pseudofinite;

2) M |= Ty, where Ty is the common theory of all finite L-structures;

3) M is elementarily equivalent to an ultraproduct of finite L-structures.

In classical logic, the following property is a straightforward consequence of pseudofiniteness.

Proposition 3.2. Let M be a pseudofinite structure and f : M* — MP* be a definable function.
Then f is injective if and only if f is surjective.

The study of countably infinite and countably categorical smoothly approximable structures is
relevant in many areas of mathematics, including topology, analysis, and algebra.

Definition 6. [10] Let ¥ be a countable signature and let M be a countable and w-categorical
Y-structure. X-structure M (or Th(M)) is said to be smoothly approzimable if there is an ascending
chain of finite substructures Mg C M; C ... C M such that Uiew M; = M and for every i, and for
every a,b € M; if tpp(a) = tpa(b), then there is an automorphism o of M such that o(a) = b and
o(M;) = M,, or equivalently, if it is the union of an w-chain of finite homogeneous substructures; or
equivalently, if any sentence in Th(M) is true of some finite homogeneous substructure of M.

It is noted that the concept of a “finitely homogeneous substructure” does not mean that the
substructure is homogeneous.

Smoothly approximated structures were first examined in generality in [10], subsequently in [11].
The model theory of smoothly approximable structures has been developed much further by G. Cherlin
and E. Hrushovski [12].

A. Lachlan introduced the concept of smoothly approrimable structures to change the direction
of analysis from finite to infinite, that is, to classify large finite structures that appear to be smooth
approximations to an infinite limit.

When proving the above properties for examples, in order to avoid textual routine, the following
known results are used.

Corollary 3.1. [10] Every w-categorical, w-stable structure over a language with just finitely many
function symbols is smoothly approximated.

Corollary 3.2. [10] If M is smoothly approximated, then Th(M) is not finitely axiomatisable.

Remark. Any smoothly approximable structures are pseudofinite, but the converse is not always
true.

Ezxample 1. Theory T of the class of all Boolean algebras, T} theory of atomless Boolean algebras.
It is known that T3 is a model companion for T'. It is clear that T7 - T will be the theory of atomless
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Boolean algebra, and all countable atomless Boolean algebras are isomorphic. If some Boolean algebra
A has an atom, then its theory Th(A) will satisfy Th(A)-Ty # Tjy. This means that the class of models
T is a formula-definable class. Since the class of models of a theory T is a variety, then by Theorem
11, this class is a formula-definable class. Thus, we have obtained an example of a formula-definable
class of models of theory T in which theory T3 is a model companion and the class of all models of
theory T is a formula-definable class. A Boolean algebra is known to be pseudofinite if and only if each
element has an atom [20]. It is clear that the theory of this model companion is not pseudofinite. Since
the T theory is finitely axiomatizable, the countable model of the model companion is not smoothly
approximable by Corollary 3.2.

Ezxample 2. Theory of T abelian groups of exponent of a prime number p. The complete theory T of
the infinite model of a theory T is a model companion of a theory T since the infinite model of a theory
T is an existentially closed model and categorical. It is clear that the class of models of the theory
T is formula-definable, the determinant of this class is the infinite model of the theory T7. However,
the model companion of 77 is not a formula-definable class. The theory of this model companion is, of
course, pseudofinite. The infinite countable model of the model companion is w-categorical, w-stable,
and by Corollary 3.1. is smoothly approximable.

Ezxample 3. Theory T of one equivalence relation. The class of models of theory T is a formula-
definable class; its determinant is a model with an infinite number of classes, and each class contains an
infinite number of elements. The theory of the 77 model, in which the infinite countable model contains
for each 1 < n < w an infinite number of n - element classes, is a model companion of the theory of T'.
The class of models of the theory of 77 is not formula-definable since for some non-existentially closed
models B in the theory of T, Th(B) - T1 = T holds. In the work [21], it is proved that any theory
with one equivalence relation is pseudofinite. It is clear that theory T} is pseudofinite. Also, this work
proves that any countably categorical model of this theory is smoothly approximable. Therefore, an
infinite countable model of T} theory is smoothly approximable by [21].

Ezxample 4. Theory T of linear order. The model companion of theory T is the theory 77 of dense
linear order without endpoints. The classes of models of theory T and the class of models of theory T}
are not formula-definable classes of models. If it is a formula-definable class of models, it must be closed
under the product of models, but this is not the case. Theory T is not pseudofinite (see [22]). The
infinite countable model of theory T is not smoothly approximable since no automorphism permutes
elements.

Conclusion

The paper shows that the formula-definable class of algebraic systems is idempotently formula-
definable and is an axiomatizable class of algebraic systems. Any variety of algebraic systems is an
idempotently formula-definite class. If the class I of all existentially closed algebraic systems of a
theory T is formula-definable, then a theory of the class K is a model companion of the theory T'. Also,
the paper discusses examples of some theories on the properties of formula-definability, pseudofiniteness
and smoothly approximability of their model companion.
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Keiibip TeopusjiapJblH MOJIEJIbAIK KOMIAHbOH/IAPbIHBIH KacueTTepi

A. Kabunenos', A. Kacarosa?, M.I. Bekenos', H./I. Mapxa6aTos'?>

1 .
JI.H. Tymunes amundaev, Eypasus yammuwk ynueepcumemi, Acmana, Kasaxeman;
2 Kapaeandw meduyuna yrusepcumemi, Kapaeanow, Kasaxemar;
3 Kasax-Bpuman mexnukasvk yrusepcumemi, Aamamos, Kazaxcman

0 CUTHATYPAaCBIHBIH aJrebpaJiblk Kyiesnepinin K kiacsl hoOpMyIaMeH aHBIKTAJIATHIH KJIACC eI aTaJIaJIbl,
erep 0 CHUTHATYDACBIHBIH Ke3 Kejren B ajrebpaJblk »Kyiieci 6ap 6osica, onma tek B € K ymin, srHn
Th(B) - Th(A) = Th(A) opblHIanarbHIail o curHarypacbHblE A anreGpanbik »kyieci Tabbuica. Maka-
Jajia arebpadiblk, XKyiiesaepid, (hopMyJIaMeH aHbIKTAJATBIH KJIACHI UIEMIOTEHTTI Typie dhopMyIaMeH afi-
KBIHJIQJIATHIH KJIACC YKOHE aJIreOpaJIbIK XKYieJep/IiH aKCHOMATA3AINIAHATHIH KJIAaChl €KEH I KOPCEeTIIreH.
AurebpastbIK, XKYHeIepain Ke3 KeJIreH Typl HIeMIOTeHTTI Typae popMyIaMeH aHbIKTAJATHIH KJ1acC OOJIbII
canastazbl. 1 TEOPUSACHIHBIH OAPJIBIK SK3UCTEHINAJIBI TYWBIK aareOpasIblK, xKyitesrepiniy K kmacer hopmy-
JIaMeH aHBIKTaJATBIH 6oJica, oHta K KIIaChIHBIH, TeOPUsICHI 1 TEOPUSICBIHBIH, MO/JIEJIb/IIK KOMIIAHBOHBI GOJIBIIT
tabbrnanpl. Conpaii-ak, Makasaga GOpMyIaMeH AaHBIKTAJIATHIH, ICEBIOAKLIPJIbI KOHE OJIAPIbIH MOJEJIb-
JIK KOMIIAHBOHBIHBIH, TEriC ANMPOKCUMAIUSIAHY KaCHeTTepl TypaJjibl Keibip TeopusijIapblH, MbICAJIaPbI
TaJIKbLIAHFAH.

Kiam cesdep: MONENBbIIK KOMIIAHBOH, IICEBIOAKBIPJILI TEOPUs, (popMy/ia OOMBIHINA AHBIKTAJIATHIH KJIACC,
Teric ammpOKCUMAITHSIIAHATHIH KYPBLIBIM.
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CBoiicTBa MOIeJIbHOIO KOMIIAHBOHA HEKOTOPBIX TEOPHii

A. Ka6unenos!, A. Kacarosa?, M.I1. Bekenos!, H.JI. Mapxa6aTos'?

! Bepasutickuti nayuonasonsid yrusepcumem umenu JIH. Dymusesa, Acmana, Kasaxeman;
2 Meduyuncxut yrusepcumem Kapaeanow, Kapaeanda, Kasaxcman;
8 Kasaxcmancko-Bpumancrut meznuveckuti yrusepcumem, Asmamo, Kazazcman

Knacc K anrebpamdecknx cucreM CHUTHATYPBI 0 HA3BIBAETCsT (POPMYJIBHO-OMPEIETUMbBIM, €CJTU CYIECTBY-
er ajirebpandeckasi CUCT€Ma CUTHATYPBI 0, TakKas 4TO il Jiro0oii arebparmvecKoil CHCTeMbl CHTHATY-
pel o BboaHsiercst B € K Torga u tosbko torga, korma Th(B) - Th(A) = Th(A). B craree nokasa-
HO, 9TO (DOPMYJIBHO-OMPEACTUMBIN KIACC AJIredpandecKuxX CUCTEM SIBISETCS WAEMIIOTEHTHO (POpMYJIBHO-
OIPEJIETTUMBIM U aKCHOMaTU3UPYEMbBIM KJIACCOM aJjredpandeckux cucrem. JIroboe mHOroobpasue ajredbpa-
WYECKUX CHCTEM SIBJISIETCSI MIEMIIOTEHTHO (hOPMYIBHO-OIIPEIEINMBIM KiaccoM. Ecau kiacc K Bcex 3K3u-
CTEHITHAJIBHO 3aMKHYTBHIX AJIre0pamdecKuX CHUCTEM TEeOPHHU (POPMYJIBHO-OIPEIe UM, TO Teopus Kiacca
SIBJISIETCSI MOJIEJIBHBIM KOMITAaHBLOHOM Teopuu 1. Takzke B craTbe pacCMOTPEHbI IPUMEPBI HEKOTOPBIX TEOPUA
Ha CBOMCTBa POPMYIBLHO-OMPEIETUMOCTH, TICEBJOKOHEYHOCTH U TJIAIKOM AlllTPOKCUMUPYEMOCTH MOJIEJTeH UX
MOJEIBHOTO KOMITAHBOHA.

Kmouesvie cr06a: MOIETBHBIN KOMITAHBOH, IICEBIOKOHETHAS TEOPUs, POPMYIHHO-OIPEAETUMBIN KJIACC, TIIal-
KO alllIPOKCUMUPYyeMasl CTPYKTypa.
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In the article, the boundary value problem for the wave equation with a fractional time derivative and with
initial conditions specified in the form of a fractional derivative in the Riemann-Liouville sense is solved. The
definition domain of the desired function is the upper half-plane (x,t). To solve the problem, the Fourier
transform with respect to the spatial variable was applied, then the Laplace transform with respect to
the time variable was used. After applying the inverse Laplace transform, the solution to the transformed
problem contains a two-parameter Mittag-Leffler function. Using the inverse Fourier transform, a solution
to the problem was obtained in explicit form, which contains the Wright function. Next, we consider limiting
cases of the fractional derivative’s order which is included in the equation of the problem.

Keywords: fractional derivative, Laplace transform, Fourier transform, Mittag-Leffler function, Wright
function.

2020 Mathematics Subject Classification: 45D05, 35K20, 26A33.

Introduction

The mathematical apparatus of fractional order integrodifferentiation plays a significant role in
various fields of science and engineering, including physics, biology, economics, etc [1]. Its application
makes it possible to more accurately model and analyze phenomena that cannot be described by
classical differential equations or integrals. Applications include: modeling the dynamics of complex
systems with long-term dependence and memory, such as financial markets, environmental systems,
communication networks, etc., analysis of nonlinear processes and phenomena, including diffusion,
thermal conductivity, wave propagation, etc., solving optimization and control problems under condi-
tions of uncertainty and changing conditions.

Fractional derivatives can be interpreted as a way to account for memory effects and temporal
nonlocality in systems. In the classical differential model, all changes in the system instantly affect
its state. However, in reality, many systems have memories and histories that influence their future
behavior. Fractional order derivatives take this memory into account, allowing the modeling of systems
with long-term dependencies and time delays in response to external influences. In addition, they can
also take into account spatial correlations and coordinate nonlocality in systems where the influence
on the state at a given point in space depends not only on neighboring points, but also on more distant
ones [2].

Fractional derivative equations are a way to describe the evolution of physical systems with losses.
They can model systems in which energy, mass, or other physical quantities are lost over time or
space. The fractional derivative usually characterizes the degree of loss or dissipation in the system.
For example, in diffusion processes, fractional derivatives can describe an anomalous distribution of
particles due to long-term correlations or heterogeneity of the medium. Wave processes with losses
can also be described using fractional derivatives, which makes it possible to take into account energy
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dissipation in the system [3]. In mathematical modeling of continuous media with memory, equations
arise describing a new type of wave motion that occupies an intermediate position between ordinary
diffusion and classical waves [4, 5].

A loaded differential equation is an equation with a loaded term, which can contain differential
or integrodifferential operators. This loaded term can be expressed as a function containing both the
variables themselves and their derivatives.

Loaded equations allow you to model more complex physical or mathematical systems that cannot
always be described by simple equations. For example, in problems of mathematical physics or control
theory, loaded differential equations can be used to take into account the influence of external factors
or additional conditions on the dynamics of the system.

Such equations play an important role in research related to the theory of boundary value problems,
stability and control of dynamic systems, as well as in other areas of science and engineering where
adequate consideration of the load on the system under study is required. In [6], the class of flat
problems on the effect of moving loads on the surface of an aminated plate is studied. However, the
presence of a loaded operator is accompanied by some difficulties during research, since it is not always
possible to use direct research methods. For problems with loads, adaptation and development of
specialized numerical methods are required [7|. All this emphasizes both the theoretical and practical
significance of studying various boundary value problems for loaded differential equations. It is obvious
that the presence of a loaded term gives rise to new, still unexplored problems in the theory of boundary
value problems, therefore there is a need to develop new methods for solving the evolving theory of
loaded differential equations [8|.

Loaded differential equations can be considered as weak or strong perturbations of differential
equations. In some cases, boundary value problems remain correct in natural classes of functions,
where the loaded term is interpreted as a weak perturbation [9]. If the uniqueness of the solution to
the boundary value problem is violated, then the load can be considered as a strong perturbation [10].
It turns out that the nature of the load (weak or strong perturbation) depends both on the order of
the derivatives included in the loaded (perturbed) part of the operator, and on the manifold on which
the trace of the desired function is specified.

The study of boundary value problems with loaded terms, presented in the form of integrals or
fractional derivatives, can lead to different results depending on the specifics of the equation and the
conditions of the problem. There may also be difficulties associated with the analysis and evaluation of
integral operators in the resulting integral equations, since their kernels contain special functions. In
[11,12], the intervals for changing the order of the fractional derivative, that is contained in the loaded
term, are determined, for which the theorems of existence and uniqueness of solutions to boundary
value problems and arising integral equations are valid. We also note that the boundary value problems
of heat conduction and the Volterra integral equations arising in their study with singularities in the
kernel, similar to the singularities in this paper, were considered in |13, 14].

Also, integral equations with singularities in the kernel arise when studying boundary value problems
in non-cylindrical domains that degenerate into a point at the initial moment of time [15-20].

Fractional derivatives in equations add new aspects and difficulties in the study of boundary value
problems, since they take into account not only the previous state of the system, but also its history. The
fractional order differentiation operation is a combination of differentiation and integration operations.
Recently, work has appeared on the study of inverse boundary value problems with a load of fractional
order. In [21], the inverse problem with a nonlinear gluing condition for a loaded equation of parabolic-
hyperbolic type is studied for solvability. The problem is reduced to the study of the nonlinear Fredholm
integral equation of the second kind. In [22], as an application of the analyticity of the solution, the
uniqueness of an inverse problem in determining the fractional orders in the multi-term time-fractional
diffusion equations from one interior point observation is established.
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In this article, the boundary value problem for the fractional wave equation was solved, and
two limiting cases were considered. The article is structured as follows. In Section 1, we introduce
some necessary definitions and mathematical preliminaries of fractional calculus, special functions and
boundary value problems which will be needed in the forthcoming Sections. The problem statement
for the Riemann-Liouville fractional derivative wave equation in the upper half-plane (x,t) is given
in Section 2. The initial conditions are given as a fractional derivative. Solving the problem is the
content of Section 3: the Fourier transform for a spatial variable was consistently applied, followed by
the Laplace transform for a temporal variable, the inverse Laplace transform and the inverse Fourier
transform. Next, the limiting cases of the order of the fractional derivative are considered in Section 4.
In the last Section the main result is formulated.

1 Preliminaries

Definition 1. |23] Let f(t) € Ly[a,b]. Then, the Riemann-Liouville integral of the order g is defined
as follows

By L L) - a
D0 =gy [ Gt BacR 80 1)

Definition 2. Let f(t) € Li[a,b]. Then, the Riemann-Liouville derivative of the order f is defined
as follows

8o LAt f() ~
Padd ) = 16— 5) dt"/a (t—T)B—anTv BaeR, n-l<f<n (2)

From formula (2) it follows that

WD f() = f(t), D f(t)=f"(t), neN.

Taking into account formula (1), formula (2) can be rewritten as

ar _
D f (1) = %er,t" (t), BaeR, n—-1<pf<n.

The entire function of the form

o0 zn
EA,M(Z):Zma A>0, ped, (3)
n=0

is called the Mittag-LefHler function.
The entire function of the form

oo Zn
¢(/\7M§Z):Zm, A>-1, ped, (4)

n=0

is called the Wright function.
The formula for the integral Laplace transform of the Mittag-Leffler function is valid [24]
597

Y
LT By M) = ——. DI<lsls a>0, y>-L (5)

Also the formula for the integral Laplace transform of the Wright function is valid [25]

L [t671¢(p,ﬁ, —At’o)} =sPexp(-As™?), —1<p<0, A>0. (6)
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2 Statement of the problem

In the domain Q = {(z,t) | —co < & < +00; t > 0} find a solution to the problem:

Dgt’d(l‘,t) —um(a:,y) :f(xvt)a (7)
D§ M uli—o = @(x);  Df; uli—o = ¥(x), Jlim (2, t) =0, (8)

where D, f(t) is the Riemann-Liouville derivative of an order o € (1;2).

We call a function u(z,t) a regular solution to equation (7) in the domain G if t'~Fu(z,t) € C (G)
for some p > 0; in G, u(x,t) has continuous derivatives with respect to x of the first and second order;
the functions DS tu(x,t) and D§; 2u(x,t) are continuously differentiable as functions of ¢ for a fixed
x at interior points of G; and u(z,t) satisfies equation (7) at all points of G.

3 Solving the problem
We apply Fourier transform to problem (7)-(8) with respect to the variable x:
D&U(p,t) +p2U(pvt) - F(pat)7 (9)

D37 Um0 = 3(p), D 2Uli—o = (p), (10)

where F(p,t); o(p); ¥(p) are the Fourier images of input data in problem (7)-(8).
Let’s apply Laplace transform to equation (9) with respect to the variable ¢ taking into account
conditions (10). Then we obtain

s“u(p, s) — @(p) — sv(p) + p*ulp, s) = f(p,s),

where f(p, s) is the image of the function F(p,t), or

f(p,s) | @(p) 5 7
s _|_p2 + e _|_p2 +So¢ _|_p21/}(p)’ (11)

u(p, s) =

Applying the inverse Laplace transform to (11) with respect to the variable s and taking into
account formula (5), we get

U(p.t) = (1 Baa(—p"t%)) * F(p,1)) (t)+

+ 127 By o (—pH)3(p) + 12 2By 01 (—p*) 0 (p), (12)

where E) ,,(z) is the Mittag-Leffler function (3) and * is the convolution operation.
Applying the inverse Fourier transform to (12) with respect to the variable p, we obtain

t +o00 400
ue t) = /0 Gi(x— &) f(Et—m)dedr + [ Cule — €7)p(E)de+

—00 —00

—+00

+ Gax — & 7)Y (£)ds, (13)

—00

where

1 [t
Gi(z,t) = / taflEa,a(—p%o‘) cos (pz)dp;
0
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1 [tee
Go(z,t) = 7r/ ta_Qtha_l(—pZta) cos (pz)dp.
0

While derivation of formula (13) the well-known formula for the inverse Fourier transform with
respect to the function f(p) was used

+oo +oo
e = [ ) cos (),

oo s

The function Gi(z,t) was found in [24; 141]

1 a_ a o |z
G t)=—t2"1 -, == |,
1(1‘,) 2 2 ¢< 2727 t2>

where ¢(A, p; z) is the Wright function (4), according to the following scheme.
Let’s apply Laplace transform to the second term in (13) with respect to the variable ¢ and use
formula:

LI By, (AMY)] =

witha=a, y=a—1, A= —p°.
Subtracting the last integral and taking into account formula 3.723 from [26], we get

1 _a a
91(2,8) = 55~ exp(~Jels). (14)

Applying the inverse Laplace transform to (14) with respect to the variable s taking into account
formula (6) with A=z, 3=, p=—5, A € (1;2), we get

Gy (. 1) = %t%_lgb (-2 —palr3) (15)

Similarly, applying Laplace transform to the third term in (13) with respect to the variable ¢ taking
into account formula (6) with k =0, a =, b=a — 1, A = p?, we obtain

1 [% scospx 1 i _a a
s = — d = — ) — 2 .
92(x, s) 7T/0 2P =5 exp(—|z|s2)

Applying the inverse Laplace transform and taking into account the formula (6) with A = =z,
— o —_ o
p= PR /8_ o we get

524 (——- S —\xyt—%> . (16)

Substituting (15) and (16) into (13), we obtain a solution to the original problem (7)-(8):

L (e e
we =g [ [ o5 (<55 -8 e - nagars

—00

o g P S et
S e@de s [ (5.5 - u-E v

t2 —o0

+
N | —
I
] +
8

S

L

<
N
|
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4 Limiting cases

Let’s consider the limiting cases of the fractional derivative’s order a.
I. @ = 1. Then problem (7)-(8) will take the form:

Ut — Ugy = f(.%',t), (17)
dleeo = (), (18)
/O w(a, 7)o = (). (19)

In the domain € the solution of problem (17)-(18) has the form [27]:

u(w.t) = | T AOC (€ t)de + /0 / " f(e )G 6.t — 7)dedr, (20)

where

G(z,§,1)

1 (z—¢ )2>
= exp | — . 21
e (- 1)
We show that condition (19) is the overdetermination condition for a = 1 in problem (17)-(18).
The solution of problem (17)-(18) has the form (20).
By virtue of Fubini’s theorem, we have:

/Otu(x,T)dTZ/_C:@(@ /OtG(x,E,t) de§+/_2 /Otf(g,e) /OtG(a:,g,T—e) drdode,

where function G(z,¢,t) is defined by formula (21).
We calculate it using formula 3.471(2) [26; 354]

/OtG(z,E,T)dT = /Ot 2\/17? exp (— (= ;T£)2> dr = \/zti erp (— (= gf)2> W,%& (Efgt_—i)j) ;

and
oo (o (525).

t t—0 9
/ G(z, &, 7 —0)dr = G(z,&,\)d\ = | ——(t — 0)
6 0 =&

where W, 5(z) is the Whittaker function [26; 1073].
Since for large values of z [26; 1075]

Woset (”fi (3~ (o= )" - <a—3>2>...<52-<a_k+;>2>>
k=1

[

klzo

and with given lim; ,q (fo)Q and 0 < 0 < t, then

}i_I)I(l) OtG(:U,E,T)dT: Hz: (m;t{)Z =t= @;755)2

o V2 e —¢ AP
_ZIEEO\/W 2 exp( )Z -
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Similarly
t

lim [ G(z,&,7—0)dr =0.

Then the condition DS, ?uli—¢ = v(x) in problem (17)-(18) is excess when a = 1.
On the other hand, for & = 1 out of (15)-(16) we have [28; 9|

G (e.) 1 < 11 |xy> L ( x2>
= — ——, =] = X - .
W =i’ T2 ) Tavm o P

Then, for o = 1, the solution of (20) coincides with (21).
II. @ = 2. The problems (7)-(8) become as follows:

Ut — Ugy = f(CC,t), U‘t:O = @(x)’ Ut‘tzo = (p(ﬂ?)

The solution has the form [27; 258|

1 1 x4+t 1 t I+(t—‘r)
)= g0 G0l [ e@eng [ e nagi

—t

On the other hand, for & = 2 out of (15) we consider, that the function

Gt = 5o (-1.17)

doesn’t exist.
Let’s apply a = 2 to (8).

U(p,t) = ((tE22(—p*t?)) * F(p,1))(t) + tEao(—p*t*)B(p) + tEa 1 (—p*t*)Y(p).

Known that sin 2 = 2Fy2(—22), cosz = F21(—2%). And we consider z = pt. Then

Ulp.t) = (; sin(pt) * F(p, t>) ()-+ 1 sin(p0)p(0) + cos(p) ).

Apply the inverse Laplace transform.

Since X 1
sin(pt) = f(eipt — e~ cos(pt) = §(eipt e,
7
then
1 [T 1 it ipt ipa
et =5 | gl = s Fip )0 dp
—Oo
1 400 1 it int . 1 “+oo 1 - e .
- wpt Pl prd o - 1D —1ip zpmd .
27T oo 2Zp((€ e )90(p)€ p + 27‘(‘ - 2 ((6 + (& )’l/}(p)e p
Note that
Lo ipatt) —ip(a—t) AL
—((e” —e P ) = e,
p r—t

Then, given the convolution formula with respect to the variable t, we get

1 t +oo  pr+(t—T7) ;
u(x,t) = 4/ / / ePldnF (p, T)dp p dr+
T Jo —oo Ja—(t—7)
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1

+oo x+t +oo
w [ e+ [ @ )y
7y

Changing the order of integration in the first and second integrals and considering that

1 [t
% elpnF(p7t)dp = f(nvt)a
1 [t
5 | "Rl = p(n).
2i ePTENY(p)dp = 1) (x 1)
™ —Oo

are the originals of the function, we finally get
t T) 1 T+t 1
5[ / Pdndr 5 [+ Gt 1)+ vl 1)
r—t

Same as formula (22).

5  The main result

So, the following theorem has been proven.

Theorem 1. Let the function u(x,t) be a regular solution to equation (7), and satisfies the conditions (8).
Then for any point (z,t) € 2 and « € [1; 2] the relation holds

t +o0
:;/0/ T3 1¢< ;“; |72§|> f(&t —T1)dédT+

1 [t g2-1 a o |z—¢ 1o g2-2 o a =€
+2/ 13 ¢< 9797 .3 )‘P(f)df+2/ t ¢<_272_1a_ = >¢(§)dfa (23)

—00 —0o0

where ¢(\, p; z) is the Wright function (4).

Conclusion

It can be shown that the function
1 451 a o |r—¢
t,€) =2 —s 5=
Go.t6) = 51870 (-5 5 -1

is a fundamental solution to the equation

Dgu(z,t) — uge(x,y) =0, «a € (1;2).

In the future, we plan to solve a BVP in which the equation contains a loaded term in the form of a
fractional derivative. When solving the problem, we will use the representation of the solution in the
form (23). We assume that for certain values of the fractional derivative’s order and of the type of
manifold on that the load is specified, the uniqueness of the BVP’s solution will be violated.
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In the paper a novel boundary value problem for a third-order partial differential equation (PDE) of a
parabolic-hyperbolic type, within a pentagonal domain consisting of both parabolic and hyperbolic regions
was investigated. Such equations are pivotal in modeling complex physical phenomena across diverse fields
such as physics, engineering, and finance due to their ability to encapsulate a wide range of dynamics through
their mixed-type nature. By employing a constructive solution approach, we demonstrate the unique
solvability of the posed problem. The significance of this study lies in its extension of the mathematical
framework for understanding and solving higher-order mixed PDEs in complex geometrical domains, thus
offering new avenues for theoretical and applied research in mathematical physics and related disciplines.

Keywords: differential equations, parabolic-hyperbolic type, a third-order parabolic-hyperbolic type.
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Introduction

The study of non-classical equations of mathematical physics refers to the investigation of partial
differential equations (PDEs) that exhibit behaviors beyond the standard classifications of parabolic,
hyperbolic, and elliptic equations. These equations are often referred to as non-classical or degenerate
equations. At present, the study of non-classical equations of mathematical physics is being intensively
developed — equations of mixed, composite and mixed-composite types. One of the main reasons is
the emergence of applied applications of boundary value problems posed for equations of these types.
Many problems in physics, technology, mechanics and other areas require the study of such equations.

First, they began to study second-order mixed equations of the elliptic-hyperbolic type. The Italian
mathematician Tricomi began to study fundamental studies of equations of such types in the 1920s.

After that, we began to study many different problems for equations of these types. A review of
theoretical and applied research is given in the works and books of A.V. Bitsadze, L.. Bers, M.M. Smirnov,
as well as, in Uzbekistan, in the books of M.S. Salokhitdinov, T.D. Juraev.

Research into equations of elliptic-parabolic, parabolic-hyperbolic types began in the 1950s and
1960s. In 1959, I.M. Gelfand [1] pointed out the need for joint consideration of equations in one part
of the domain of parabolic, and the other part of hyperbolic types. He gives an example related to the
movement of gas in a channel surrounded by a porous medium: in the channel, the movement of gas
is described by the wave equation, and outside it — by the diffusion equation.

Then, in the 1970s and 1980s, they began to study various problems for equations of the third and
higher orders of the parabolic-hyperbolic type. Such problems were studied mainly by T.D. Dzhuraev
and his students (for example, see |2, 3]).

At present, the study of various boundary value problems for equations of the third and higher
orders of the parabolic-hyperbolic type has been developed on a broad scale (for example, see [4-15]).

*Corresponding author. E-mail: quvvatali.rahimov@gmail.com
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1 Formulation of the problem

In this article, we consider one boundary value problem for a third-order parabolic-hyperbolic type

equation of the form
2_£+C (Lu) =0 (1)
or Oy N

in the pentagonal region G of the plane Oy, where G = G1 U G2 U G3 U J1 U Ja,

T — { Ugy — Uy, (2,y) € Dy,
u= .

Upe — Uyy, (2,y) € Dy, i=2,3,
¢ € R, and G is a rectangle with vertices at points A(0;0), B(1;0), By(1,1), Ap(0,1); Ga — triangle
with vertices at points B, C'(0,—1), D(—1,0); G3 — rectangle with vertices at points A, D, Dy(—1,1),
Ap; J1 — open segment with vertices at points B, D; Jo — an open segment with vertices at points A,
Ag.

The equation (1) is a special case of the equation ( az. + bay + c) (Lu) = 0 when v = g = -1,
that is, the angular coefficient of the characteristic of the operator a% + ba% is equal to v = —1.

For the equation (1), the following problem is posed:

Problem 1. Tt is required to find the function u(x,y) which is 1) continuous in G and in the domain
of G\ J1\J2 has continuous derivatives involved in the equation (1), and u, and u, are continuous in
G up to part of the boundary of the domain G specified in the boundary conditions; 2) satisfies the
equation (1) in the domain G\J;\Jo; 3) satisfies the following boundary conditions:

u(lvy) = 801(3/), 0<y<1, (2)

u(—=1,y) = p2(y), 0<y<1,
uft(lvy) = 903(3/)7 0< ) < 17

ulpe =i(z), 0<z <1, (3)
1
u|lpp = Pa(7), *1§$§*§’ (4)
ou
an BC:¢3($), -1 <z <0; (5)

4) satisfies the following gluing conditions on the lines of type changing:

u(z,+0) = u(z,—0) =T(z), —1<zx<1, (6)
uy(x, +0) = uy(z, —0) = N(z), —1<z <1, (7)
uyZI(x +O) - uyy(x _0) = M($)7 —1 S < 17 (8)
ux(+0,y) =uz(—0,y) = v3(y), 0<y<1, (10)
Uxx(+07y) = ua::c(_ovy) = MS(y)7 0<y<1, (11)
where ( £ 0 .
T1(x), <z <1,
T(a { T , —1<xz<0;

)= { i)
2(x), if
), if 0<z<1, [ m), if 0<z<l,
N@) = { (), if —1<z<0 M=V @), if —1<z<0,
sufficiently smooth functions, 7;, v, p; (i = 1, 2, 3) are unknown yet sufficiently smooth functions, n
is an internal normal to the line z — y = 1, and the point F has coordinates F' (—1/2,—1/2).

i, ¥i (1,2,3) are given
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2 Studying of the Problem

Theorem 2.1. If 1, g € C?[0,1], @3 € C?[0,1], ¢1 € C?[0,1], ¢y € C*[-1,-1/2], 3 € C?[0,1],
and the matching conditions ¢1(0) = (1) fulfilled, 12(—1) = ¢2(0), then Problem 1 is uniquely
solvable.

Proof. We will prove the theorem by constructing the solution. To do this, we will rewrite the
equation (1) as

Uige — Uy = wi(z+y)exp(cy), (z,y) € G, (12)

Uizz — Uiyy = wi(z +y)exp (cy), (z,y) € Gi, 1=2,3, (13)

where the notation u(z, y) = u; (z,y), (z,y) € G; (z = 1,73), functions w; (x +y), i = 1,3 are
unknown sufficiently smooth functions to be determined.

The study will be carried out first in the domain G. The solution of the equation (13) (i = 2)
satisfying the conditions (6), (7) can be represented as

wey) = 3T+ + Ty
4 [N [Cexptenan [ (e mie a4

-y —y+n

Substituting (14) into the condition (5), after some calculations, we find

+y+1
wa(w +y) = —V2H( ) exp [~Sl@+y—1)], -1<z+y<L

Further, substituting (14) into the condition (3), after some simplifications, we obtain the first
relation between the unknown functions T'(z) and N(x) on the line J; of type changing:

T'(z) + N(z) = a1(z), -1 <z <1, (15)

where aq(z) = ] (Z5L) + wa(x) fo(xfl)/Z e“dn.
If we take into account the representation of the function 7'(x), then for —1 <z < 0 the equation
(15) has the form
m5(z) + va(z) = a1(z), —1 <z <O0. (16)

Now, substituting (14) into (4), after some transformations, we have
T5(x) — vo(z) = 61(z), —1 <z <0, (17)

where 01(z) = ¢ (Tl )+ Jo (+1)/2 e“wa(z + 2n)dn.
From (16) and (17) we obtain

n@) =5 [ (a0 +00)d+ val-1), vala) = 3 fan (@) ().

-1

For 0 <z <1 from (15), we have the first relation between the unknown functions 7 (z) and vy (z)
on the line J; of type changing in the following form:

mi(z) +vi(e) = ar(z), 0<a <1, (18)

Passing to the limit at y — 0 in the equation (13) (i = 2), we will find the second relation between
the unknown functions 7j(x) and pi(x) on Ji:

1 (2) = pi(z) = wa(x), 0<z <1 (19)
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The equation (1) in the domain G can be rewritten as
Ulgzr — Ulpy — Ulgzy T Ulyy + CUIzy — CULy = 0.

Passing to the limit at y — 0 in the last equation, we obtain the third relation between the unknown
functions 71 (x), vi(x) and py(x) on the line of type changing Ji:

(x) — vi(x) — v (2) + p1(x) + ) () — cn(z) =0, 0<z<1. (20)

Eliminating the functions v;(x) and pq(z) from the equations (18), (19) and (20) and integrating
the resulting equation from 0 to x, we arrive at the equation

)+ (1 + g)T{(x) + gﬁ(x) = as(z) + ki, 0<z<1, (21)

where as(z) = §al(z) + 3a1(z) + 5 [ [wa(t) + cor(t)] dt, and ky is still unknown constant.
When solving the equation (21), we consider the following cases:

1°.¢#2, c#£0;
2°. c=2;
3°. ¢c=0.

In the case 1° it is easy to see that the solution of the equation (21) satisflying the conditions

71(0) = 1 % [on () + 81.(1)] dt + (1),
71(0) = 5 [a1(0) + 6:(0)], (22)
71(1) = ¢1(0)

has the form

71 () 2 / [e%(t_m) - et_x} as(t)dt+
0

:2—0

+22flc [i(l — ) — (1— e_x)} + koe ™ + kze 27,
1 0
where k3 = T {/ ) [ (t) + 61(t)] dt + 29p2(—1) + a1 (0) + 51(0)},

0
ko = 1 {;/_1[al(t)+51(t)]dt+c¢2(—1)+041(0)+51(0)}v

=== 25 n0-

}_/01 [e%(H) - eH} Ozz(t)dt}.

Also, in the case 2°, one can show that the solution of solving the equation (21) satisfying the
conditions (22), has the following form

¢
2

- |

[

—]{?2671 + kze™

(z) = /Ox(a: —t)e' Tag(t)dt + k1 [1 — (z + 1)e "] + (ko + kzz)e 7,

where ky = 3 fEl [ar (t) + 61(1)]) dt + a(—1), k3 = ko + & [a1(0) + 61(0)],

1
e—2

1
ki = [@1(0)6 — ko — ks — /0 (1 —t)etag(t)dt| .
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Moreover, for the case 3°, the solution of (21) satisflying (22) defined by
T
T1(x) = / e Tag(t)dt + ki(z — 1+ e %) + ko(1 —e™®) + kze %,
0

where az(z) = [ aa(t)dt, ks = %ffl [ar (t) + 61(1)] dt + 1ba(—1), ko = ks + & [a1(0) + 61(0)],

1
kn—¢ﬂ®€—b@—1%4m—/‘d%ﬁwt
0
Now, we consider the GG3. Let us introduce the notation:

wsi(x+y), -1<z+y<0,

wg(ery)_{ w(r+y), 0<z+y<1.

Then, passing to the limit at y — 0, in the equations (13) (i = 2) and (13) (¢ = 3) due to (6)—(8),
we get
w31 (z) = wa(z), —1<z<0.

Now, we consider the following problem:

U3gy — U3yy = WS(x + y)ecy’
ug(z, 0) = mo(x), usy(z, 0) =wa(x), —1<z<0,
Ug(—l, y):SOQ(y)a U3(0, 7y):7_3(y)7 0<y<L

The solution to this problem will be sought in the form
US(xa y) = ’LL31(.’E, y) + U32([E, y) + U33(IE, y)v (23)

where ug;(x, y) is the solution of the problem

U31gx — U3lyy = 0,
uzi(z, 0) = m(x), usiy(zr,0)=0, —-1<z<0, (24)
U31(—1, y) = w2(y)7 U31(0, y) = 7_3(y)7 0 S Yy S 1)

us2(x, y) is the solution of the problem

U32xx — U32yy = 0,
us2(z, 0) = 0, uszy(w, 0) = 1a(2), —1 <2 <0, (25)
uz2(—1, y) =0, u32(0,y) =0, 0<y<1;

uss(x, y) is the solution of the problem

U33zx — U33yy = w3(x + y)ecy7
ugz(z, 0) =0, uszy(z, 0) =0, —1 <z <0, (26)
uzz(—1,y) =0, uz3(0,y) =0, 0<y<1.

Using the continuation method, we find solutions to the problems (24)—(26). The solutions can be
represented as follows

usi (@, 4) = 5 [Ta(e +9) + Ta(e — y)] 27)
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2p2(—1—2) —m(-2—-2), —2<z< -1,
where To(z) =< m(z), —1 <z <0,
2m3(x) — mo(—x), 0 < <1,

1 [*tY
us2(z, y) = 5 Na(t)dt, (28)
z—y
—(-2—x), —2<z<-1,
where Na(z) =< 1a(z), -1 <z <0,
—w(—x), 0<z<1;
z+y— 17
i) == ["enin [ e+ myas (29)
T—y+1
Using the condition ugz(—1, y) = 0, after some transformations, from (29), we obtain
1 ry—1 . Y
2/ e2 W00 (2)dz = —wsi (y — 1)/ e“dn. (30)
—1-y 0

Hence, by differentiating (30), we find

Q31(—1—y) = cws1(y — 1) [ e“dn—
—2why (y — 1) [ e1dn — Bwai(y — 1)e

Now, using condition ug3(0, y) = 0, after some transformations, from (30), we have

y v o,
w32(Y) / e“ldn = — / e2W) Q05 (2)dz.
0 -y
Substituting (27), (28) and (29) into (23), we get

ug(z, y) = 3 [Do(z+y)+ To(z —y
z+y :L"er n
[ No(eyae - / C"dn/ Q€ + 17)de.

=y y+n

Differentiating this solution with respect to x and tending = to zero, and also taking into account
the condition (10), after some transformations, we have the following relation:

valy) = 75(0) + () —valu) + 5 [ 0N (31)

-y

Passing to the limit at z — 0 in the equations (12) and (13) (¢ = 2) and taking into account (9)
and (11), we obtain

pa(y) — 75(y) = wii(y) exp(—cy), ps(y) — 75 (y) = waz(y)e®.
Eliminating the function pg(y) from these equations, we find
ws2(y) = wii(y) — [3(y) — m5(y)] e (32)

Now, passing to the limit at y — 0 in the equation (13) and taking (6) and (7) into account after
replacing = with = + y, we obtain

wi(z+y) =m(r+y) —n(z+y), 0<z+y<1, (33)
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wit(z+y), 0<z+y <1,
wip(r+y), 1<z+y<2
Finally, by substituting (33) into (32), we arrive at the relation

where wy (z +y) = {

waa(y) = 11 (y) — vi(y) — [73 (y) — 13(y)] e, (34)

and substituting (34) into (31), after some calculations, we get

1 c—2 Y C(y—z
i) = 57300 = = [0+ m1),
where )
Bi(y) = m3(=y) = va(=y) + 51 (0)e3"+
1 0 S(y+=) 1 v £(y+=2) "
+2/ e2WTws (z)dz + 2/ e2 W) [1](2) — 11(2)] d=.
—y 0

Now, we consider the domain G;. The solution of the equation (12) satisfying the conditions (2),
(6), (9) has the form

Yy
w(z, y) = [ | mete, vi 0. min-
0
Y 1
—/ 01(n)Ge(z, y; 1, n)dn+/ 71(&)G(x, y; &, 0)dE—
0 0
Y 1-n
- / My / o1 (é + n)Gla, yi &, m)de—
0 0

y 1
—/ ecndn/ wi2(§+n)G(x, y; &, n)dE.
0 1-n

Differentiating this solution by x and passing x to zero and to one, we obtain the following relations
V3

)= - /0 )N (0, y: 0, m)dn +

1
(N0, y: 1,m)dn + / H(EN(0,: €, 0)de+

<

_l’_

+ [ e%dn T(E+n) — €+ 77)] Ne(0,y;€,m)dé+

Y 1

AN
/

+

Nc\@c\ <

Cnd’r] w12 §+n N{(O Y; 57 )d&,

1-n

<

S}
<

3(y) = / 3(n)N (1, y;0,n)dn+
0
y 1
+ [T ANyt mdn+ [ AON g, 0det
0 0
Y 1-n " (35)
w [Ceman [ e m) = ()] Ne(Lsgndes
Y 1
+ [Ceman [ (e VL
-1
Here and at the top of the functions G(z, y; £, n) and N(z, y; &, n) have the form:

L VI Sy W (1 5. B T
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They are Green’s functions of the first and second boundary value problems for the heat equation.
Substituting (32) into (33), after some transformations, we have the equation

o /0 Y ) K ()i + /0 " Koy, myona (1 + n)dn = g1(v). (36)

And differentiating the equation (35) after some calculations, we obtain the Volterra integral
equation of the second kind with respect to wi2(1 + ¥):

wia(1+y) + /0 ! Ka(ys mwna(1 + n)dy + /0 " Ky n)dn = ga(v), (37)

where Ki(y,n), K2(y,n), Ks(y,n), Ka(y,n), 91(y), g2(y) are known functions, and Ki(y,n), Ks(y,n)
have a weak singularity (%), and Ks(y,n), Ka(y,n), 91(y), g2(y) are continuous functions.

Solving the system of equations (36), (37), we find the functions 75(y), wi2(1 + y) and thus, the
functions VB(y)? UJ32(y), Ul(fL', y)v ug(l‘, y)

Remark 1. The case when —1 < « < 0, the problem is investigated by dividing the domain G into
n parts whose heights of the first n — 1 domains are equal to fg, and the last — no more than fg. The
problem is solved in each domain sequentially, similar to the case of v = —1.

Remark 2. In [4, 11], a number of boundary value problems for more general equations of the third
and fourth orders of parabolic-hyperbolic type in a domain with a single line of type change were
considered.

Conclusion

This work presents the formulation and comprehensive analysis of a boundary value problem for
a third-order parabolic-hyperbolic PDE within a geometrically intricate pentagonal domain. Through
the development of a constructive method for the equation’s solution, we have established its unique
solvability. Our findings enrich the theoretical underpinnings of mixed-type equations and extend the
toolkit for addressing boundary value problems in domains with complex geometries. This research not
only advances our understanding of parabolic-hyperbolic equations of third order but also has potential
implications for their application in modeling multifaceted physical systems and phenomena. Future
studies may explore the application of these findings in practical scenarios and the investigation of
similar problems in higher-dimensional spaces or with more complex boundary conditions.
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IeKapaJIbIK IMaMa ecebiH TYKbIPhIM/Iay »KOHE 3epTTey TYPaJibl

M. Mamazkonos!, K. Paxumos?, X. IIlepmarosa?

L Koxan memaexemmir nedazozuransis, uncmumymae, Kokan, ©3bexcman;
2 Pepeana memaexemmix yrusepcumemi, Pepeana, O3bexcman

Maxkasaga mapabosiablK, KoHe TUIEPOOIANBIK, aliMaKTapJaH TYPaTbIH 6eCOYPHINIThHI aiiMaKTaFbl mapabo-
JIAJIBIK-TUIePOOIAIBIK, TUIITEr] YIIiHII PETTI imiHapa TyBIHIBLIAPIAFEl TEHACYIIH KaHa MeKTi ecebi 3epT-
Tenred. Mynnait teraeynep dbusmka, HHKEHEPHs KOHE KAPXKbI CHUSAKTBHI OPTYDJIl cajajiapiarbl Kyp/esi
(UBNKAIBIK KYOBLIBICTAPIBI MOJEIbIEY/ e MIEMIYIN POJI aTKAPaIbl, OJap/IblH apaJiac TUIITErl TaOUFaThIHA
opail JUHAMUKAHBIH KEeH ayKbIMBIH HHKAICYJIAnusiay Kabinerine GaitmanbicTel. [llernymin KOHCTPYKTHBTI
TOCIJIIH KOJIJaHa OTBIPHII, 0i3 KOHbLIFaH ecenTiH Oip:KakKThI IIeNIiIyin KepcereMis. By 3eprreyaiH MaHbI-
3/IBLJIBIFBI MATEMATUKAJIBIK, (PU3UKA MeH cabaKTac MOHIEPETT TEOPUIIBIK XKoHe KOJIIaHOA bl 3epTTeyIepre
2KaHA MYMKIHJIKTEp aIllaThlH KYP/Iei TeOMETPHUSIIBIK, CAJTaIapIarbl XKOFaphbl PETTi KapThuiail guddepen-
IUAJIIBIK TEeHJIeYJIeP/i TYCIiHY »KoHe IIeNTy YIIiH MaTeMaTHUKAJIBIK Heri3/i KeHeHTy OOJIbIT TabbLIa bl

Kiam cesdep: mapabosialibIK-rUnepooIaIbiK, TUIITEN I depeHInaIIbIK, TeHIeyiep, YIIHII peTTi mapa-
0OIAJTBIK-TUIIEPOOIAIBIK, THII.

O mocTaHOBKEe M HCCJIeJIOBAaHUU KPaeBoil 3aJlaun JJd ypaBHEHUs
TPeThero nopsaKa mapadoIo-runepooIm4ecKoro TuIa

M. Mamaxkanos!, K. Paxumos?, X. ITIlepmartoBa?
) M

! Kokandexut 2ocydapemeenmod nedazozuveckuts unemumym, Koxand, Ysbexucmar;
2 . .
Depeancruti 2ocydapcmseennuti ynusepcumem, Pepeana, Y3bexucman

B crarne ucciiemoBana HOBast KpaeBasi 3a/1a49a I yPABHEHUsI B YaCTHBIX ITPOU3BOIHBIX TPETHETO MOPSIKA
mapaboJIo-TUuIepOOJINIECKOro TUITA, B ISATUYTOJIbHON 00JIACTH, COCTOMAIIEH KakK U3 HapabOIUIeCKUX, TaK U
u3 runepbosimdeckux obsacreit. Takue ypaBHEHUsS UTPAIOT PEIIAOIILYI0 POJIb B MOJIEIUPOBAHUU CJIOXKHBIX
bu3nIecKnx SBJICHUN B PA3JIUIHBIX OOJIACTSAX, TAKUX KaK (DU3NKA, WHXKEHEpUs W (DUHAHCHI, Ojrarofapst
UX CIIOCODHOCTU WHKAIICYJIMPOBATDH IMUPOKUIN JUANA30H JUHAMUKHU U3-32 CBOEH IPUPOJIBI CMEIIaHHOIO TH-
na. Vcrmomb3ysi KOHCTPYKTHBHBIN TOJIXOJ K PEIIeHUI0, Mbl JIEMOHCTPUPYEM OJIHOZHAYHYIO Pa3pelInMOCThb
TIOCTABJIEHHOM 3a/1a4r. S3HAYNMOCTD TOTO UCCAEIOBAHNS 3aKII0IAETCS B PACITUPEHNN MaTEMATHIECKON 0C-
HOBBI JIJIsl TIOHUMAHHsI U PEIIeHUs CMEIIAHHBIX YPaBHEHUI B YaCTHBIX IMPOM3BOHBIX BBICIIErO HOPSIKA B
CJIOXKHBIX P€OMETPUIECKHUX 0DJIACTSIX, YTO OTKPBIBAET HOBbIE BO3MOXKHOCTH JIJIsl TEOPETUYECKUX U IIPUKJIA]I-
HBIX UCCJIEOBAHUI B MATEMATHIECKON (DU3MKE M CMEXKHBIX JUACIUATLINHAX.

Karouesvie crosa: muddepeHuaababie ypaBHEHNs T1apaboI0-THIEPOOJIMIECKOTO TUIIA, TTapaboIo-ruinepobo-
JINYECKUI THII TPETHErO MTOPSIIKA.

References

Gelfand, .M. (1959). Nekotorye voprosy analiza i differentsialnykh uravnenii [Some issues of
analysis and differential equations|. Uspekhi matematicheskikh nauk, 14, 3(87), 3-19 [in Russian]|.
Dzhuraev, T.D., Sopuev, A., & Mamazhanov, M. (1986). Kraevye zadachi dlia uravnenii parabolo-
giperbolicheskogo tipa [Boundary value problems for parabolic-hyperbolic equations/. Tashkent: Fan
[in Russian].

Dzhuraev, T.D. & Mamazhanov, M. (1986). Kraevye zadachi dlia odnogo klassa uravnenii chetver-
togo poriadka smeshannogo tipa [Boundary value problems for a class of fourth-order mixed-type
equations|. Differentsialnye uravneniia — Differential Equations, 22(1), 25-31 [in Russian|.

Bulletin of the Karaganda University



On the formulation and ...

4 Mamazhanov, M., Shermatova, Kh., & Mukaddasov, Kh. (2014). Postanovka i metod resheniia
nekotorykh kraevykh zadach dlia odnogo klassa uravnenii tretego poriadka parabolo-giperboli-
cheskogo tipa [Formulation and method of solving some boundary value problems for a class of
third-order equations of parabolic-hyperbolic type|. Vestnik KRAUNTs. Fiziko-matematicheskie
nauki — Bulletin of Kraesc. Physical and Mathematical Sciences, 1(8), 7-13 |in Russian].

5 Mamajonov, M., & Mamajonov, S.M. (2014). Postanovka i metod issledovaniia nekotorykh
kraevykh zadach dlia odnogo klassa uravnenii chetvertogo poriadka parabolo-giperbolicheskogo
tipa [Formulation and method of investigation of some boundary value problems for a class of
fourth-order equations of parabolic-hyperbolic type|. Vestnik KRAUNTs. Fiziko-matematicheskie
nauki — Bulletin of Kraesc. Physical and Mathematical Sciences, 1(8), 14-19 [in Russian]|.

6 Apakov, Yu.P., & Mamazhonov, S.M. (2023). Kraevaia zadacha dlia neodnorodnogo uravneniia
chetvertogo poriadka s mladshimi chlenami [A boundary value problem for an inhomogeneous
fourth-order equation with minor terms|. Differentsialnye uravneniia — Differential equations,
59(2), 183-192 [in Russian|. https://doi.org/10.31857/S037406412302005X

7 Apakov, Y.P., & Mamajonov, S.M. (2022). Boundary Value Problem for a Fourth-Order Equation
of the Parabolic-Hyperbolic Type with Multiple Characteristics with Slopes Greater Than One.
Russ Math., 66, 1-11. https://doi.org/10.3103/S1066369X22040016

8 Apakov, Y.P., & Mamajonov, S.M. (2021). Solvability of one boundary value problem for a
fourth-order equation of parabolic-hyperbolic type in a pentagonal domain. Journal of Applied
and Industrial Mathematics, 24 (4), 25-38. https://doi.org/10.1134,/S1990478921040025

9 Mamazhonov, M., & Shermatova, Kh.M. (2017). Ob odnoi kraevoi zadache dlia uravneniia tretego
poriadka parabolo-giperbolicheskogo tipa v vognutoi shestiugolnoi oblasti [On a boundary value
problem for a third-order equation of parabolic-hyperbolic type in a concave hexagonal domain|
Vestnik KRAUNTs. Fiziko-matematicheskie nauki — Bulletin of Kraesc. Physical and Mathe-
matical Sciences, 1(17), 14-21 [in Russian|. https://doi.org/10.18454/2079-6641-2017-17-1-14-21

10 Shermatova, K.M. (2020). Investigation of a boundary-value problem for a third order parabolic
hyperbolic equation in the form (ba% + ¢)(Lu) = 0. Theoretical Applied Science, 87(7), 160-165.

11 Mamajonov, M., Shermatova, Kh.M., & Mukhtorova, T.N. (2021). Ob odnoi kraevoi zadache dlia
uravneniia parabolo-giperbolicheskogo tipa tretego poriadka v vognutoi shestiugolnoi oblasti [On
a boundary value problem for a third-order parabolic-hyperbolic equation in a concave hexagonal
domain|. XIIT Belorusskaia matematicheskaia konferentsiia: materialy Mezhdunarodnoi nauchnoi
konferentsii — XIII Belarusian Mathematical Conference: Proceedings of the International Scientific
Conference (22-25 noiabria 2021 goda). Minsk, 67-68 [in Russian].

12 Mamajonov, M., Shermatova, Kh.M., & Makhkamova, O. (2022). On a boundary value problem
for a third-order parabolic-hyperbolic equation in a pentagonal domain with three lines of
type change, whose hyperbolic parts are triangles. International Journal of social science &
Interdisciplinary Research, 11, 111-116.

13 Mamajonov, M., & Shermatova, Kh.M. (2022). On a Boundary Value Problem for a Third-Order
Equation of the Parabolic-Hyperbolic Type in a Triangular Domain with Three Type Change
Lines. Journal of Applied and Industrial Mathematics, 16, 481-489.

14 Mamajonov, M., Shermatova, Kh. (2022). Statement and study of a boundary value problem
for a third-order equation of parabolic-hyperbolic type in a mixed pentagonal domain, when the
slope of the characteristic of the operator the first order is greater than one. International journal
of research in commerce, IT, engineering and social sciences, 16(5), 117-130.

15 Shermatova, Kh.M. (2020). Investigation of a boundary value problem for a third order parabolic
hyperbolic equation in the form (ba% + ¢)(Lu) = 0. Scientific Bulletin of Namangan State
University, 2(4), 44-53.

Mathematics Series. No.2(114),/2024 145



M. Mamajonov, Q. Rakhimov

Author Information™

Mirza Mamajonov — Candidate of physical and mathematical sciences, docent, Associate Professor
of the Department of Mathematics, Kokand State Pedagogical Institute, 23, Turon street, Kokand,
Uzbekistan; e-mail: mirzamamajonov@gmail.com; https://orcid.org/0009-0003-8413-0549

Quyvvatali Ortikovich Rakhimov (corresponding author) — Doctor of philosophy in technical
sciences, docent, Head of the Department of Information Technology, Fergana State University, 19,
Murabbiylar street, Fergana, Uzbekistan; e-mail: quvvatali.rahimov@gmail.com; https:/ /orcid.org/0000-
0002-1863-3645

Khilolaxon Mirzayevna Shermatova — Senior Lecturer at the Department of Information
Technology, Fergana State University, 19, Murabbiylar street, Fergana, Uzbekistan;
e-mail: shermatovahilola1978@gmail.com; https://orcid.org/0000-0001-5014-9549

*The author’s name is presented in the order: First, Middle and Last Names.

146 Bulletin of the Karaganda University



Bulletin of the Karaganda University. Mathematics Series, No.2(114), 2024, pp. 147-16/

https://doi.org/10.31489/2024M2/147-164 Research article

The problem with the missing Goursat condition at the boundary of
the domain for a degenerate hyperbolic equation with a singular
coefficient
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The work is devoted to the formulation and study of the solvability for a problem with missing conditions
on the characteristic boundary of the domain and an analogue of the Frankl condition on the segment
of the degeneracy for a hyperbolic equation. The difference between this problem and known local and
nonlocal problems is that, firstly, a hyperbolic equation is taken with arbitrary positive power degeneracy
and singular coefficients on the part of the boundary, and secondly, the characteristic boundary of the
domain is arbitrarily divided into two pieces and the value of the desired function is set on the first piece,
and the second piece is freed from the boundary condition and this missing Goursat condition is replaced
by an analogue of the Frankl condition on the degeneracy segment, and the value of an unknown function
on another characteristic boundary of the domain is also considered to be known. The conditions for the
coefficients of the equation and the data of the formulated problem, ensuring the validity of the uniqueness
theorem are found. The theorem of the existence of a solution to the problem is proved by reducing to
the problem of solving a non-standard singular integral equation with a non-Fredholm integral operator
in the non-characteristic part of the equation, the kernel of which has an isolated first-order singularity.
Applying the Carleman regularization method to the received equation, the Wiener-Hopf integral equation
is obtained. It is proved that the index of the Wiener-Hopf equation is zero, therefore it is uniquely reduced
to the Fredholm integral equation of the second kind, the solvability of which follows from the uniqueness
of the problem’s solution.

Keywords: Hyperbolic equation degenerating at the boundary of the domain, missing Goursat condition,
Frankl condition, singular coefficient, complete orthogonal system of functions, singular integral equation,
Wiener-Hopf equation, index.

2020 Mathematics Subject Classification: 35L80, 35181, 35L53.

Introduction

Many scientific and practical studies conducted in various fields of mathematics in most cases lead
to the study of models of gas dynamics problems, the theory of infinitesimal bends of rotation surfaces,
the instantaneous theory of shells and mathematical biology. The study of the fundamental laws of
gas dynamics by solving boundary value problems for partial differential equations with singularities
in coefficients is an urgent problem.

The development of the theory of degenerate hyperbolic and elliptic equations and mixed type
equations originates from the well-known fundamental works of G. Darboux (1894), F. Tricomi (1923),
E. Holmgren (1927) and S. Gellerstedt (1938).

After these works, the theory of boundary value problems for degenerate hyperbolic and mixed-type
equations began to develop rapidly. E. Holmgren, S. Gellerstedt, F.I. Frankl, M. Keldysh, S.G. Mikhlin,

*Corresponding author. E-mail: berdyshev@mail.ru
The work was carried out with the support of the Fund of the Innovative Development Ministry of the Republic of
Uzbekistan (grant No. ©3-202009211).
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A.V. Bitsadze, K.I. Babenko, M.S. Salakhiddinov, A.M. Nakhushev, E.I. Moiseev, and many other
scientists made significant contributions to the development of this theory. Degenerate hyperbolic
equations with singular coefficients have the peculiarity that the well-posedness of the Cauchy problem
does not always take place. The initial problem in the usual formulation may turn out to be unsolvable
if the equation degenerates along a line that is both a characteristic or, the coefficients of the hyperbolic
equation for the lower terms are singular [1]. Therefore, it is natural to consider a modified Cauchy
problem when the initial conditions on the line of parabolic degeneracy are given with weight functions
2,3].

It is relevant to study the well-posedness of non-standard problems for degenerate hyperbolic
equations with singular coefficients. Especially if, in the formulated problems, local and non-local
conditions are given in a non-standard form, in particular, the Goursat condition is set on some part
of the characteristic; the Bitsadze-Samarsky condition is set on the boundary and parallel internal
characteristic, a Frankl type condition is set on the line of degeneracy of the equation, then problems
with such non-classical conditions are reduced to previously unexplored new non-standard singular
equations, the singular and non-singular parts of the kernel of which are not reduced to each other by
means of a fractional linear transformation.

Nowadays, there are many articles and books devoted to the theoretical and applied aspects of
degenerate hyperbolic and mixed-type equations [1-14]. It should be noted that the bibliography does
not pretend to be complete and mainly concerns issues close to this work.

The work is devoted to the study of the uniqueness and existence of a non-standard problem for a
degenerate hyperbolic equation with singular coefficients in a domain bounded by two characteristics
of a different family and a segment of the line of degeneration of the equation (characteristic triangle).
The peculiarity of this problem is that part of the characteristic boundary of the domain is freed from
the Goursat conditions, and Frankl-type conditions are set on the line of the equation’s degeneracy.

The purpose of this work is to find conditions for the equation coefficients and the data of the
problem, which ensure the validity of the theorems on the existence and uniqueness of the non-standard
problem posed.

The work consists of an introduction, three sections and a conclusion.

The first section provides a description of the domain and a restriction on the equation coefficients
for a degenerate hyperbolic equation. The statement of the main and auxiliary problems is given.

In the second section, the conditions for the equation coefficients and the data of the problem are
found, ensuring the validity of the uniqueness theorem of the problem solution.

In the third section, the existence of a solution to the problem is proved by reducing a non-standard
singular integral equation to a solution. Using the Carleman regularization method and the theory of
the Wiener-Hopf integral equation, this equation is uniquely reduced to the Fredholm integral equation
of the second kind, the solvability of which follows from the uniqueness theorem of the problem solution.

1 Problem formulation A

Let Q™ be the characteristic triangle of the half-plane y < 0 bounded by characteristics ACy and
BC of the equation

— (=) ™z + tyy + ao(—y) "D 2, + (Bo/y)uy =0, y <0, (1)

and segment AB, where A(—1,0), B(1,0), C; (O, —((m+ 2)/2)2/(m+2)>, m, g, By are some constants
satisfying conditions m > 0,—m/2 < fp < 1, —(m+2)/2 < ap < (m + 2)/2 [4-7].

Correctness of setting boundary value problems for equation (1) significantly depends on its numerical
parameters ag and g coefficients for the lower terms of the equation, on the parameter plane agO S5y
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consider a triangle AjB;C bounded by straight lines
AGCG = Bo 4+ ap = —m/2; ByCy : fo —ag = —m/2; ASBG : fo = 1.

Let P(a, Bo) € AAFB;CG, ie. 0 < a,f <1, a+ <1, where a = (m + 2(8y + o)) /2(m + 2),
B = (m+2(Bo—ap)) /2(m+ 2).

Denote by Ag and By intersection points of the characteristics AC| and BCy respectively with a
characteristic coming from a point F(c,0), where ¢ € Jy = (—1,1) is an interval of the axis y = 0.

Let the linear function p(x) = 6 — kx, where k = (1 —¢)/(1 4+ ¢), d = 2¢/(1 + ¢) display the set of
points of the segment [—1, ] on the set of points of the segment [c, 1] and p(—1) =1, p(c) = c.

In the Goursat problem, the carriers of boundary conditions are boundary characteristics ACt and
BC,.

This work is devoted to the study of the correctness of the problem in the domain €27, for hyperbolic
equation (1) degenerating at the boundary of the domain, when the boundary characteristic ACy of
the domain Q7 is arbitrarily divided into two pieces AAg and AgC7 and on the first piece AAy C ACY
the value of the desired function is set, and the second piece AgCy; C ACY it is freed from the boundary
condition and this missing Goursat condition is replaced by an analogue of the Frankl condition [8-12]
on the degeneration segment AB.

Problem A. In the domain Q~ it is required to find the function u(x,y) € C(27) satisfying the
following conditions:

1) u(z,y) is generalized solution to the equation (1) from the class Ry [13].

2)

w(z,y) |poy=t1(z), 0 <z <1, (2)

3)
w(@,y) |aa,= a(z), =1 <z < (c—-1)/2, (3)

4)
u(z,0) = pu(p(),0) = f(z), -1 <z <¢ (4)

where 1 = const, 1(x) € C[0,1]NC2%(0,1), o(z) € C[-1,(c—1)/2]NC?*(—1,(c—1)/2), f(z) €
C[-1,c]NC?%(—1,¢), and 1 (1) = 0, 9a(—1) =0, f(c) = 0.

Condition (3) is an incomplete condition of the Course, since it is set only on AAy part of
characteristic ACh.

Condition (4) is an analogue of Frankl condition [14] on the degeneracy segment AB.

By virtue of the designation u(z,0) = 7(x) condition (4) we write in the form

7(2) = pr(p(x)) = f(2), = € [-1,d. (4%)

Let Q1 be a symmetrical domain to the Q= with respect to the axis y = 0, lying in a half-plane

y > 0andlet Q = Q- UQT UAB. The domain QF is bounded with characteristics ACy and BCy of
the equation

— Y " Uy + Uyy + aoy(m—Q)/qu + (BO/y)uy =0, y >0, (5)

where Cy (0, (m + 2) /2)%/(m+2)).

Note that if u(x,y) is a solution to equation (1) in a half-plane y < 0, then u(x, —y) is a solution
to equation (5) in a half-plane y > 0. Due to this property of solutions to equations (1) and (5) in a
symmetrical domain 2 we consider an auxiliary problem A*.

Problem formulation A*. It is required to find in the domain €2 the function u(z, y) € C(Q) satisfying
conditions:

1) u(x,y) is a generalized solution from the class R; in domains 2~ and Q7F;
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2) u(x,y) satisfies the condition

u(z,y) |Be,= Y1(x), 0 < <1, (6)

and conditions (3) and (4) of Problem A.
3) on the degeneracy segment y = 0, —1 < z < 1, a conjugation condition takes place

lim (—y)% Ou _ _ lim % Ou

iy aiy Py Fy = l/(m), x € JO, (7)

moreover, these limits at £ — +1 may have features of the order less than 1 — o — 3, where a + 8 =
(m+280)/(m +2) € (0,1).

Let u(x,y) is a solution to the problem A*, we show that u(x,y) |pc,= ¥ (x). It is obvious from the
form equations (1) and (5) that if u(x,y) is a solution to equation (1) in the half-plane y < 0 (y > 0)
then u(x, —y) is a solution to equation (5) in the half-plane y > 0 (y < 0). Hence from the design of
solutions (see below (9)) of equations (1) and (5) it can be seen that for symmetric with respect to
the axis y = 0 points (x,y) € O~ and (z,—y) € QT the equality u(z,y) = u(x, —y) takes place and by
virtue of continuity of solutions, this equality is also preserved for points of characteristics BC7 and
B(C5 then by virtue of (2) u(z,y) |pc,= u(z, —y) |Bc,= ¥(x), where y < 0, that is what needed to be
shown.

Hence the solution to the problem A* in domain 2~ will also be a solution to the A problem in
the same domain 7. Thus, the study of the problem A is reduced to solving the problem A*.

2 Uniqueness of the problem solution A*

The solution to equation (1) in domains Q~, Q7 satisfying modified Cauchy conditions:

y—0

- ou
3 . — . 1 507 =
lim u(z;y) = 7(x), z € J; lim |y 9y Fv(z), = € Jo, (8)

has the form [14]

1
x/ v [w—i—it_Q\y]W] (1+t)"%1 —t)~Pdt,
where T(a + 8) P2 —a-p)
_a+P)j1—a-p _ —a- at+p-1
NETQrE)” O T U Brd-ard-p>

By virtue of (9) from boundary condition (6) (taking place in domain Q) we have

X /1 Mds =U(x), ze(-1,1),

(s —x)~
v(w) = —yDi 1" P7(x) + Ti(z), = € (~1,1), (10)
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where D! | is a fractional differentiation operator.

_2P(1—B)l(a+f) <m + 2>"+5
IFa)'(1—a-p) 4 ’

m 1—a—p x
() = - AR pln (1),

Relation (10) is the first functional relationship between unknown functions 7(x) and v(x) brought
to the interval (—1,1) from the domain Q. Note, that relation (10) is valid for the entire interval
(—1,1).

Now by virtue of (9) from boundary condition (3)(taking place in the domain 7) we obtain

v() = YD () + Vo), @ € (~1,c), (11)

—l,x

where

C(2/(mA2)teF S z—1
L) =" ra-p Y Dil%( 2 )

Relation (11) is the second functional relationship between unknown functions 7(x) and v(z)
brought to the interval (—1,¢) from the domain Q.

Theorem 1. The problem A* when the condition
kotP < (12)
is met, can have no more than one solution.

Proof. 1°. Using (10) (¢ ¥q(x) = 0), we prove that

We calculate )

J=—~ /11 7(z) (Dals’_lo‘_ 7'(1‘)) dr = F(Oér:‘ﬁ)/lT(x) X

: d (Y r(t)dt J : (14)
bet Lor(s)ds
7(z) :/ (5= z)ot?’ x € (—1,1), (15)

where 7 (z) € C(J) N C?(J), 7 (1) = 7,(1) = 0.
By virtue of (15) equality (14) has the form

T et B / (4 / ==y | e ) (16)

It is not difficult to prove that

d [1 dt /1 71(s)ds
e (

dz ), t—z)o b [, (s—t)otB

—T(a+ /I —a—pg)m(z). (17)
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Therefore, taking into account (17) we write equality (16) in the form

1
J= AT —a-3) / (@) (2)dz. (18)
-1
Now by virtue (15) we transform (18) to the form
1 1
T1(8)ds
Here, changing the order of integration, we have
1 s
B 71(z)dx
J——’)/F(l—a—ﬁ)/;lTl(S)dS/_l m (20)
In (19) swapping integration variables s and x, we have
1 1
71(x)dx

Now summing up (20) and (21), we obtain

1—a—
J = — dd 22
// |S_xw (22)

Let us now use the following well-known formula for the function I'(z)

o r
/ t*Leos(kt)dt = (2) cos <ﬁ) , k>0, 0<z<1. (23)
. e 2

Let in (23) k = |s — z|, z = a + [ then from (23) we have

I 1
|s —z|ot8  T(a+ B)cos ((a + B)m/2)

| e eos (s = i e (24)

By virtue (24) we write equality (22) in the form

_ (1 —a— at+B-1
J__ZF(oH-ﬁ)cos a+57r/2/ & dé//T1

-T1(x)cos ((s — x rds = — T -a-p) atp-1.
(a)eos (s = a)¢) dods = — et D [T (25)

. { [/11 71 (t) cos(té)dt] : + [/11 1 (t) sin(tg)dt] 2} de.

Thus, by virtue (25) we obtain inequality (13).
20, Now using (11) ( Wa(z) = 0) and condition (4*) we show that integral (13) is not negative, i.e.

1
J :/ T(z)v(z)dz > 0. (26)

—1
Indeed . . .
J= / (@) (2)dz = / (@) (@)dz + / (@)(2)da, (27)
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here we transform the second integral of the right-hand part (27) i.e.

1
Jl—/ T(z)v(z)dz. (28)

In (28) by replacing the variable integration z = p(t) = § — kt, we get

5=k / Cl r (p(t)) v (p(1)) dt. (20)

Now we will find v (p(x)), for this purpose, we use relation (10) which is the case for the entire
interval Jy = (—1,1) in particular for z € (—1,1):

_ caB_ oy d [t T(t)dt
v(z) = _VDi,l T(z) = de/x (o z € (c,1).

Here, firstly, performing the integration operation in parts, then, performing the differentiation
operation, we have

1 7!
/) = T / (t_gidtaﬁ, v (e1). (30)

In (30) by replacing the variable x € (¢, 1) to p(z) (where p(z) € (¢, 1), and an argument z € (—1,¢))
we obtain

B ~ 1 7'(t)dt re(—le
) = 55y [y T = €L oy

Now, in (31) by replacing the variable integration ¢t = p(s), taking into account the condition (4*)
(f(@) = 0): 7(z) = 7 (p(2)) , 7*(x) = —pur’ (p(z)) , we calculate

L L R o (71 B ykotB-1 e dr(t) B
Vel =~ T By / @B~  pl(atB) o / TR

I L T(t) e e r(tydt ]
g e L e R M == |

__vww*lmd/*g 7(t)dt
 ul(a+B)e=0|dx )4 (z—t)lmaB|"

In (32) moving to the limit at ¢ — 0, we will have

’yk‘oH—B—l

v(p(z)) = —TDl_lojc A 7(z), z € (—1,¢),

due to this equality, relation (29) is written as
ka—i—ﬁ

1
Now, taking into account (4*) (¢ f(x) =0): 7 (p(z)) = 7(x)/p and relations (33) equality (27) has

the form . i .
J:/_1¢<><>dx—( Cr) [ (P @) o

B ’}/F(l —a— —(a+p3) LotB ath-1,,
20 (a + B)cos ( a—l—ﬁ 77/2 (1 )/ &t (34)

x{[/_ll (t—b)costgdt} [/1172 t—bsm(tg)dtr}dg,
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where

[T m(s)ds

T(z) = /_1 (@ — s)a+B’ z € (—1,¢),

m(z) € C[-1,¢] N C?(—1,¢), To(—1) = 75(—1) = 0, taking into account (12) from (34) it follows (26).
Therefore by virtue of inequalities (13) and (26) we have

Thus, the right-hand side of (25) is equal to zero, but both terms of the integral expression in (25) are
non-negative, therefore they are also equal to zero:

1 1
/ 71(t)cos(t&)dt = 0, / 71(t)sin(t&)dt = 0, (35)

-1 -1

for all £ € [0, +00] and in particular for £ = km, k = 0,1, 2, ..., for such values £ trigonometric systems of
functions cos(t€) and sin(t€) form a complete orthogonal system of functions in Ly[—1, 1]. Therefore, in
(35) 71(t) = 0 almost everywhere on [—1, 1], but by virtue of continuity of the function 7y (x) on [—1, 1]
it follows, that 71 (z) = 0 everywhere Va € [—1, 1], hence by virtue of (15) we conclude that 7(x) =0,
Vx € [—1,1]. Hence by virtue of (10) (¢ ¥1(z) =0) and also it follows, that v(z) = 0,Vx € (—1,1).
Now by virtue of (7), restoring the solution of the problem A* as solutions of modified Cauchy problem
with zero modified initial Cauchy data (8) (¢ 7(z) = 0,v(xz) = 0) according to the Darboux formula
(9) we obtain u(x,y) =0 B Q. Theorem 1 is proved.

8 The existence of a solution to the problem A*
Theorem 2. Let for the numerical parameters of problem A* inequality (12) be valid

k(1=20)/2 gin(6r) |In k|
o

<1, (36)

where 20 = 1 — a — (3, then the problem A* is unambiguously solvable.

Note that the set of numerical parameters of the problem A*, satisfying inequalities (12) and (36)
is non-empty. Indeed, if we suppose ¢ > 0, i.e. K > 1 and p > 1 then inequality (12) holds.
By virtue of (12) (k**# < u?) taking into account 260 = 1 — a — 8 from (36), we have

KO-20/25in(0m) [In k| _ KO=20/2 cos(((a+ B)m)/2) k| _
W ©

< peos(((a + B)m)/2) [In k|
I

1-c
1 < 1,
nl c‘

< |lnk| =

from here it is obvious that if ¢ € (0, (e — 1)/(1 4 €), then inequality (36) holds.

Thus,the set of numerical parameters of the problem A* is nonempty, since inequalities (12) and
(36) holds for the values of numerical parameters ¢ € (0,(e —1)/(1+e€) and p > 1.

Proof of Theorem 2.
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3.1 Derivation of the singular integral equation

From functional relations (10) and (11) excluding v(z), we obtain

DL r(2) + D" r () = i(‘l’l(x)—%(x)), z e (1,0 (37)

1,z

Applying the fractional integration operator Dgi@fl to equality (37) taking into account 7(—1) = 0
and identities
1—a— ~1
DL D (@) = 7(a),

DY BDO‘+6 L (@) = cos (1 — a — B)7) 7(z) — . — T

—1,x

T
y /1 1+ a2\ 77 r(t)dt
—1 1+1¢ t—x ’
equation (37) is written in the form
Va7 () dt
T(ﬂ?)—)\/1<1+t> t_x—F(:c),xE(—l,c), (38)
where ) .
= Sllat B g (W) () — Us(a))

(1 —cos(a+ B)m)’ v (1 = cos(a+ B))
Note that in (38) =z € (—1,c¢), therefore equation (38) has a singular feature only when the

integration variable is ¢t € (—1,¢). In order to highlight the singular part of equation (38) integration
interval (—1, 1) divide it into two intervals (—1,¢) and (¢, 1) and write (38) in the form

Ry (1 . x) T A/cl <Ht>1_w TR _ pa), ve (1. (39)

14+t t—x 14z t—x

In the second integral of the left-hand side of (39), by replacing the integration variable ¢t = p(s),
dt = —kds, p(—1) =1, p(c) = ¢, we obtain

¢ (1+a\' P r(t)at ©(14ps)) 7
T(ﬂ?)_>‘/ <1+t> tx_Ak/1< L+ > ” (40)
(( () s))ds = F(z), z € (—1,¢).
By virtue of condition (4*) equation (40) is written in the form
4\ r)dt  Me ¢ T4z \'70F
T(w)—A/ <1+t) t—x_u/1<1+p(s)> (41)
p(i)) + Fi(z), z € (—1,0),
g M (e ) s
Fy(z) = F(x) 1 /1<1+p(5)> p(s) —x

The singular integral equation (41) is typical that the kernel of the right-hand side of the equation
has an isolated first-order singularity for s = ¢,z = ¢, hence the integral operator of the right-hand
side of (41) is not a Fredholm operator.
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Temporarily considering the right-hand side of the equation (41) as a known function, we write it

" ¢ M4+z\"7P rt)dt
-3 [ (FE) Y ), e Lo, (12)
where
Ak [ 142 1=a=B 7(s)ds
w0 =3 [ () et R .

Theorem 3. If go(x) satisfies the Helder condition for z € (—1,¢) and go(z) € Ly(—1,¢),p > 1, then
the solution to equation (42) in the class of Helder functions H, in which the function (14 z)*+#=1r(z)
can be unlimited at the left end of the interval (—1,¢) and bounded at the right end of the interval
(=1, ¢) expressed by the formula

_ 9o(@) A ¢ ((c—2)(1+2)\’ go(t)at
T(x)_1+)\27r2+1+)\27r?/_1<(c—t)(1+t)> t—x (44)

The proof of Theorem 3 is identical to the proof of a similar theorem in work [13].

8.2  Deriation and investigation of the Wiener-Hopf integral equation

Substituting the expression for go(z) from (43) into (44), we have

o [ () R o ()

45
X/C< 1+t )29 7(s)ds + Fy(a) )
\LFp(s)) (p(s) =) T
where
N
T a1+ A2r2)
Fi(z) A ¢ e—z)1+2)\’ Fi(t)dt
Fy(z) = .
T+Xp2 14272 ), \(e—=t) (1 +1) t—ux
In the double integral of equation (45) changing the order of integration, we have
C 1 20
7(z) = Al/ < - ) QLIPS
1 \1+p(s)) ps)—= (46)
¢ (c—2)?(1+z)07(s)ds / <1+t>‘9 dt
X + Fy(z), z € (—1,0).
L e L 65) amem e + e e 10

Calculate the internal integral in (46)

A= [ (ijy Qe e} o

to do this, we decompose the rational multiplier of the integrand into simple fractions

1 1 1 1
C—2) () —1) <t—x 0 —t) () -

156 Bulletin of the Karaganda University



The problem with the missing Goursat ...

then (47) has the form

oot [ () e [ ]

1
= p(s) s [Al(x) =+ A2( )] .
We calculate Aj(z) by the formula
/b (x —a)* b — :U)B_ldx _ mwetg(pm) B
o T -y (y—a)=(b—y)'=F

—@—aWH%%%mB—DF<L2—a—&2—ﬁ€ii).

Herea=-1,b=ca—1=0,a=1+6;80—-1=-60,3=1-0.
Thus,

c 0 c— —0
Ai(z) = /_1 (1+ t])f E - ) dt = (1+2)%(c — x)Prctg(1 — 0)r—

—a+mWBu+a—mF<La1+&c;x>: (49)

1+2\° U
= —mctg(Om) | —— —_— .
metg(0m) <c— a:> + sin(0m)

'M“):/i<ifgem§it

Here we will replace the variable integration t = —14 (1 +c¢)o and using the integral representation
of the hypergeometric function, we have

_ 1+4+c TA+60)I(1-0) 14
A2(8) = 150 r'(2) FQAH0. 1253750 )

Now we calculate

Here, applying the autotransformation formula
F(a,b,c;z) = (1 — ) PF(c—a,¢— b, c;z),

we have

(1+TA+0OT(1—0) (6—ks—c\° 1+ec
A = F(1-0,1,2; ——— .
2(5) 1406 —ks 140 —ks 11— — ks

Next, using the formula

I'(e)l'(c—a—Db)
I'(c—a)l'(c—b)

1
F(a,b,c;z) = ZaF<a,a—c—|—1,a+b—c+1;Z+>+
z

D(OM(a+b— o)
T'(a)T(b)

1
2971 — z)e bR <c—a,1—a,c—a—b—|—1;z+ ),
z

we have

0
An(s) = (14+T(1+6)I(1—-0) (1—1—5—]4:5) "

1+6—ks 6 —ks—c
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0—1
r'(2)r(6) ( 1+¢ > F<1_97_071_9;c 6+k3>+

H1+6)ra) \14+46—ks 1+c
r'2)r-o0) 1+c¢ s —ks—c\? c—0+ks
Tra—erm \T1s s 150 —ks) TATOOIFG )

Here, taking into account the equality

F(a,c,c;x) = (1 —x)™ ¢,

we have 0
™ 1+0—ks v
A = — . 50
2(5) sin(0m) <5 — ks — c) sin(0r) (50)
Now substituting the expressions for A;(z) and As(s) from (49) and (50) into (48) respectively, we
obtain ] 1
A = A A - -
(@05) = o [Ar(o) + a(s)] =
—netg(9m) (2 (Lo ksy o
g c—x sin(0m) \ 6 — ks —c '
By virtue (51) the equation (46) is transformed to the form
c /1 % r(s)d
T(z) = M\ (1 —)mctg(@w))/ < rr > 7(s)ds
1 \1+p(s)/) pls) —= (52)
T /C( 1+ >9< c—x )9 7(s)ds + Fy(a)
sin@m) S \1+p(s)) \p(s)—c) p(s)—a 2
By virtue of the identity 1 — Awctg(fm) = 0, the equation (52) has the form
Mar (€ 14+2 \ /[ c—z \’ 7(s)ds
= F —1,¢). 23
0= [ (o) Goee) sopos * e seco @
Thus, by virtue of the identities
p(s) —c=k(c—3), p(s)—x=k(c—s)+c—u,
equation (53) is written in the form
AT ¢ re—z\’ 7(s)ds
== F: —1 4
7(@) sin(0r) - kY /1 <cs> k(cfs)+c—x+Rl[T(x)}+ 2(w), w € (=1c), (54)
where Ry[7(z)] = s”i‘()(;fke I [(Hl_;x ) — 1} % is a regular operator.

In equation (54) we make substitutions s = c— (14 c)e™, x =c— (1+c)e” ¥, where t € [0, +00),
y € [0,400) and introducing notations

ply) = 7le = (14 ) ]2,
we write equation (54) in the form

1

+o00
o) = = [ Klu= 00t + Rols + Filo). (55)
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where

V2m3AM

F3(y) = Fale — (1 Y](0-3)y
sin(0m)k? (ker/2 + e~/2)’ 3(y) hle— (1 +e)e ¥]el’ "2

K(x) =

Rolp) = Ry [T}e(afé)y is a regular operator. Note that, since 20 = 1 — o — 8 then the following
inequality holds: 6—1/2 < 0. Equation (55) is the Wiener-Hopf integral equation [15]. Using the Fourier
transform, like the well-known characteristic special integral equation with the Cauchy kernel, This
equation is reduced to the Riemann boundary value problem and thereby it is solved in quadratures.
Fredholm’s theorems for integral equations of the convolution type will be valid only in one case, when
the index of these equations is equal to zero.

The index x of equation (55) will be the index of the expression 1 — K”\(z) with the reverse sign,
ie. x = —Ind(1 — K"(x)), here [15]

+o0 .
KMNz) = \/12? / K(t)eitdt —

A /+°° et A e T nk B
 KVsin(n0) J_o ket/2 +e-t/2  KYsin(0m) k- ch(nzx) N

1T

B M\ mlng e~
- kY/2H0sin(Or) ch(rx)

— A(2) = iB*(a),

where
A\ m2lnk cosT A mink sinx

= k1240 5in(07) ch(nz)’ (z) = kY240 sin(0m) ch(rz)
From (56) it can be seen that

A*(x)

(56)

(A @) _  Ar’(ink| 1
|B*(z)| | — kY/2t0sin(0r) ch(rzx)’

and A*(z) = O (1/ch(nx)),B*(x) = O(1/ch(wx)) for large enough ones |z|. Hence, by virtue of
condition (36) of Theorem 2 it follows that

1.

A" (@) | _  Aur?|ink] _k1/2*93in(97r)]lnk\<
|B*(z)| [ ~ kV/2H0sin|0r| i

Hence
Re(1 — K"(x)) > 0. (57)

Changing the argument of a complex-valued function 1 — K”*(x) on the real axis, expressed in full
revolutions and taken with the reverse sign [15] taking into account the inequality (57) the index x of
equation (55) is equal to

v = ~Ind(1 — K"(2)) = —[arg(1 — K"())]235 =

1 Im(1 = KM2)]*™ _ 1 [  B'(x) ]+
| = e o)

= o | Re(1 — KM a) 1= A% (2)

—00

1 tgD 12| =0
= —— |arctg— — arctg—| =
o 97 97 ’

since A*(f+o0) = 0, B*(£o0) = 0. Consequently, equation (55) is uniquely reduced to the Fredholm
integral equation of the second kind, the unambiguous solvability of which follows from the uniqueness
of the solution of the problem A*. Theorem 2 is proved.
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Conclusion

The paper investigates the issues of unique solvability for one class of problems in a non-standard
formulation for a degenerate hyperbolic equation with singular coefficients (1) in a bounded domain.

For equation (1), when the conditions 0 < «, 8 < 1, a+ 8 < 1 are hold, a non-classical problem
is formulated with missing Goursat conditions (3) on the characteristic boundary of the domain and
an analog of Frankl condition (4) on the boundary of degeneracy.

It is shown that the validity of the theorem on the uniqueness of the solution to problem A (1)-
(4) significantly depends on the ratio between the coefficient p in Frankl conditions (4), the location
of point ¢ lying on the line of degeneracy and on the coefficients a and Sy in equation (1).

The theorem on the existence of a solution to problem A (1)—(4) is proved by reducing it to the
problem of solving a non-standard singular integral equation with a non-Fredholm integral operator in
the non-characteristic part of the equation, the kernel of which has an isolated first-order singularity.
Further, using the Carleman regularization method, the theory of Wiener-Hopf equations, the problem
is equivalently (in the sense of solvability) reduced to an integral equation of the second kind, the
solvability of which follows from the uniqueness of the solution to the problem A.

In conclusion, we note that the constructive properties of solutions to equation (1) significantly
depend on the values of the parameters m, «, .

Issues of setting and studying the solvability of similar non-standard problems for other parameter
values when P (g, Bo) ¢ AAFB;Cj have not been investigated.
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AiiMaKTBIH HIeKapachIH/a ©3Telle/IeHEeTIH CUHTYJIdap KO3 DUIIMeHTTi
rurepOooJIaJIbIK TeHJley VIIiH »KericneiiTin I'ypca miapTer 6ap ecen

M. Mupcabypos!, A.C. Bepapimues?, C.B. Qpramesal, O.B. Maky16aii?

1 . .
Tepmes memaexemmir ynusepcumemsi, Tepme3d, Osbexcman;
2 A6at amomdaen: Kazax yammes nedazozurarss ynusepcumems, Aamamuo, Kasaxcman

2KymMbIc runepboJIalibIK, TEHIEY YIMH aiMaKThIH XapaKTePUCTUKAJIBIK, IMTEKAPACHIHIA YKETICIIeHTIH IapTTa-
PpBI MeH e3relesieHeTiH cermenTiHaeri @paHKIIb MIapTHIHBIH AHAJIOTBI Oap ecenTi KOIoFa, K9He OHBIH, eIy
MOcCeJIeJIepiH 3epTTeyTe apHaJiFan. by ecenTiy Gerisii JTOKAJIIbI KOHE JIOKAJIBIEMEC €CEIITEP/IEH aifbIpMa-
MIBLIBIFBL: OipiHIIieH, rumepboJIaIbIK, TUIITErT TEHJEY epiKTi OH JPperKesi e3TelleIeHeTIH »KoHe IeKapa
GeJslikTepiHeri CUHTYIISIPILIK KO3(DMUIMEHTTEpMEH aJIbIHAbI, eKIHINIIeH, aiiMaKThIH XapaKTePUCTUKAJIBIK
meKapachl €pikTi Type eki besikke GostiHesi 2KoHe GipiHIi GestikTe 13/1emiHml DYHKIUSHBIH MoHI Oepimed,
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aJ1 eKiHIi GeJriK MeTTIK MapTTaH 0ocaTblIFaH KoHe OyJ1 kericneiirin ['ypca maprsl e3remniesieHy cermMeH-
TiHgeri @paHKIb MIAPTHIHBIH AHAJOTBIMEH aJIMACTBIPBLIAJIBI, COHIAM-aK, 6erici3 (pyHKIUSTHBIH aifMaKThIH
0acKa XapaKTEePUCTUKAJIBIK, IIeKAPAChIHAAFBI MOHI 6eJirisi 60T canasa ibl. KoWbIIFaH ecenTit KaJIFbI3IbIK,
JKOHIHEr] TeopeMaHbIH, SN H KaMTaMachl3 eTeTiH TeHIeyAiH KoadduimeHTrepi MeH ecentiy 6epijirex-
aepi ymiiH 2KeTKUTiKTi maprrap Tabouiran. Ecen memmiminiy 6ap 6osty Teopemachl siapochl GipiHrmm perri
OKIIIayJTAHFAH €PEeKINeJIiri 6ap TEeHIey/IiH XapaKTePUCTUKAJIBIK eMec Oeiriage dpearoJbMIiK eMec WHTe-
rpaJIJIBIK, OIIePaTOPbl 6ap CTAHIAPTTHI €MeC CHHIYJSPJIbIK, HHTEIPAJbIK TEHJIEYl eIy TYypaJibl eCerKe
KeJITipy apKbLIbI JoJesaene . Abiaral TeHaeyre KapaeMaHHBIH pery/Isipu3aliisijiay 9/IiCIH KOIIaHa OThI-
poin, Bunep-Xond maTErpansabik TeHaeyin kocambis. Bunep-Xond TenmeyiHiH HHIEKC] HOTe TeH eKeHIiri
JIRJIeJIJIEHTeH, COHIBIKTAH OJ1 eKiHmii Turnreri @pearoibMHIH HHTEIPAJJIBIK TeH/IeyiHe KeTipiie/i, aja OHbIH,
IS M/ITIT] ecen MIeNTiMIHIH YKAJIFbI3IbIFbIHAH TYbIH 1AM IbI.

Kiam cesdep: afiMaKTBIH IEKAPaCHIH/Ia ©3TeIIeIeHTeH TUIepOoIaIbK TeH ey, XkeTicreiitin ['ypca maprsr,
PpaHKIb MAPThI, CUHTYISIPIbI KO3hDUIINEeHT, dYyHKIUAIAPBIH TOJBIK OPTOIOHADb KYieci, CHHIYIISPJIIbI
nHTErpasiblK, TeHey, Bunep-Xond rexzeyi, mHIEKC.

3amada ¢ HegoCTAOMMM ycjioBrueM ['ypca Jijis BBIpOXK/IafoIerocs Ha
rpanuiie obJiacTu TunepoboInIecKOro ypaBHEeH!s C CUHTYJISIPHBIM
K03 duiimeHTOM

M. Mupcabypos!, A.C. Bepapimes?, C.B. Qpramesa!, A.B. Maky6aii?

L Tepmescruti zocydapemeenmuiti yrusepcumem, Tepmes, Yabexucman;
2 Kasazcrutl nayuonaivrod nedazozuveckutl yrusepcumem umeny Abas, Aamamo, Kazaxcman

Pabora mocssimena mocTaHoBKe M U3YYEHUIO BOIIPOCOB Pa3PEIIMMOCTU 3aJ[a9d C HEJOCTAIOIINMU YCIOBH-
sIMU Ha, XapaKTEePUCTUYECKOI rpaHuiie obsactu M aHajaoroM yciaobust OpaHKisl Ha OTpe3Ke BBIPOXKICHUS
JIsi TunepOoImIecKoro ypapaerus. OTiinane JTaHHONW 3a7a9N OT W3BECTHBIX JIOKAJIBHBIX M HEJIOKAJBHBIX
3a/1a4 COCTOUT B TOM, YTO, BO-IIEPBBIX, yPABHEHUE I'MIIEPOOIUIECKOrO THUIIA OEPETCS C MPOU3BOJILHBIM I10-
JIOKUATEJIbHBIM CTEIEHHBIM BBIPOXKJECHUEM M CUHTYJISPHBIME KO3(MdUIMEeHTaMN HA YacTU PAHUILI, ¥, BO-
BTOPBIX, XapaKTEPUCTUIECKAsT TPAHUIIA 00/IaCTH TPOU3BOIBLHBIM 00pa30M pa3bmBaeTcCst Ha JBa KyCKa, U HA
[IEPBOM KYCKe 3aJIaeTCsl 3HaUYeHUEe MCKOMOM (DYHKIMU, & BTOPOIl KYCOK OCBOOOXKIEH OT KPAEBOI'O YCJIOBHUS,
u 9TO HejocTraoulee ycsoBue 'ypca 3ameneno anasiorom ycioBust OpaHKisl Ha OTPE3Ke BBIPOXKICHUS, &
TaKyKe CUYNTAETCs] M3BECTHBIM 3HAUEHWE HEM3BECTHON (DYHKIMM HA JPYTroil XapaKTEPUCTUIECKON TpaHUIe
obnactu. Haliennl yciioBust Ha KO3 PUIMEHTHI YpaBHEHUSI U JaHHbIE C(hOPMYTUPOBAHHON 3aja9u, obec-
MEYNBAIOIINE CIIPABEJIMBOCTh TEOPEMBI €IMHCTBEHHOCTH. TeopemMa CyIecTBOBaHUsI PEIIeHUsT 3aa49u J0-
Ka3bIBAETCsT CBEJIEHUEM K 3aJa4e O PENIeHNN HECTAHIAPTHOTO CHHTYJISPHOIO MHTErPAJIHLHOTO YPABHEHUS C
HedPEeIroJIbMOBBIM UHTEIPAJILHBIM OIIEPATOPOM B HEXAPAKTEPUCTUYECKON YaCTU yPABHEHHUSI, si[PO KOTOPO-
ro UMeeT M30JIMPOBAHHYIO OCOOEHHOCTH MEPBOro MOpsijika. K MoJiyYeHHOMY ypaBHEHUIO, IIPUMEHsIsI METO,T
perynsipusarun Kapisiemana, mosrydaercss nHTerpajabHoe ypaBHernue Bunepa-Xomda. /lokazano, 9ro nHmekc
ypasaenusi Bunepa-Xortda paBeH HYIIIO, CIeI0BATEILHO, OHO OJIHO3HAYHO PELyIUPYETC K MHTETPAJTHLHOMY
ypasaennio ®PpeirosbMa BTOPOro Pofa, Pa3pelrnMocTb KOTOPOro CJeayeT W3 €JUHCTBEHHOCTH PEeIIeHUsT
3a/1a40.

Kmouesvie cro6a: BRIPOKIAIOIIEECsS HA TPaHUIEe 00JIaCTH TUIIEPOOINIECKOe YPABHEHNE, HEIOCTAIOIIEE YCI0-
Bue I'ypca, ycinosue PpaHKIIsA, CUHTYIAPHBIH KOIMDMUIMEHT, [TOJHAST OPTOTOHAJIbHAS cucTeMa (DYHKIHUI,
CHUHTYJIIPHOE WHTErpajbHOE YpaBHeHUe, ypaBHeHne Bunepa-Xormnda, WHIEKC.
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Modeling of dynamics processes and dynamics control
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Equations and methods of classical mechanics are used to describe the dynamics of technical systems
containing elements of various physical nature, planning and management tasks of production and economic
objects. The direct use of known dynamics equations with indefinite multipliers leads to an increase
in deviations from the constraint equations in the numerical solution. Common methods of constraint
stabilization, known from publications, are not always effective. In the general formulation, the problem of
constraint stabilization was considered as an inverse problem of dynamics and it requires the determination
of Lagrange multipliers or control actions, in which holonomic and differential constraints are partial
integrals of the equations of the dynamics of a closed system. The conditions of stability of the integral
manifold determined by the constraint equations and stabilization of the constraint in the numerical solution
of the dynamic equations were formulated.

Keywords: constraint stabilization, numerical methods, nonholonomic constraints, Helmholtz conditions.

2020 Mathematics Subject Classification: 65D30.

Introduction

The main task of modeling the dynamics is the construction of differential equations of a closed
system, the solutions of which have the required properties. The kinematic properties of the motion of a
mechanical system and the required properties of the state change of the controlled system are usually
given by the constraint equations. The problem of determining the right-hand sides of the equations of
dynamics of controlled systems due to the formation of control functions, in essence, refers to the inverse
problems of dynamics [1-9]. Methods of classical mechanics are successfully applied to construct the
equations of dynamics of a system consisting of elements of various physical nature [10]. The description
of analytical dynamics and systems of differential-algebraic equations is proposed in [11]. The analogy
between the dynamics of a point of variable mass and the process of change of the simplest economic
object allows us to use the equations of classical mechanics to solve problems of control of economic
objects and securities portfolios [12-14]. The works [15-17] are devoted to the study of direct and inverse
problems of stochastic differential equations describing the dynamics of mechanical systems subject to
random influences. In classical mechanics, contact constraints are used, meaning that the initial state
and subsequent motion of the system correspond to the constraint equations [18]. In control systems,
the equations of servoconstraints [19] are usually introduced, supported by additional control forces.
Additional conditions imposed on the solutions of the dynamics equations corresponding to the motion
of the image point along the manifold described by the constraint equations and in its vicinity lead to
the need to introduce the concepts of program constraint and equations of perturbations of constraints
in control systems |20]. The expressions of the controlling influences that ensure the fulfillment of the
constraint equations are determined by the relations between the phase coordinates of the system.
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1 Problem Statement

The dynamics of a controlled system with mechanical constraints, the phase state of which is

determined by the vectors ¢ = (¢', ..., ¢"), v = (v!,...,v™), is usually described by a system of differential

equations

da® . dvt . .

diqt =a'(q,v,t), dlt =0"(q,v,t) + " (q,v,1t) u, (1)
with initial conditions

¢ (to) = gh,v' (to) =0}, i=1,....,n, k=1,...,s. (2)

In equations (and further) summation is assumed for the repeated indices. Control forces are chosen
so they satisfy the consraint equations

ff(q,t) =0, ¢"(qv,t)=0, u=1,....m, v=m+1,...,r, r<s, (3)

along with a given accuracy in the numerical solution of a system of equations (1), (2).
In particular, the dynamics of the mechanical system on which the constraints are imposed is
described by the equations

dq’ . d 0L oL
=V, === i(q,v,t
a0 diovi aqﬁQ(q” )+

Op®y w9t i o
aui YT Tag ot

Here L =T — P(q) is the Lagrangian, the doubled kinetic energy 27 = m;;(q)v'v?, i, j = 1,...,n,
P = P(q) is the potential energy, Q; = Qi(q,v,t) are non-potential generalized forces. Lagrange
multipliers \; are considered as control functions, which must be selected so that the coordinates ¢’
and the velocities v® of the system satisfy the constraint equations (3). The system of equations (4)
resolved with respect to derivatives is reduced to the form (1) with notation

1 /0m; om; omii\ ,
l _ ik _ = ik Jjk 1 i,]
b (Qavat) m <Qk (Qavvt) 2 ( 6(]j + aqi aqk ) vv > ’

K
199 Ik, _ <l
S0k mmy; = 0;

S=1,1=4j, 65=0, 144 i4kl=1,..n

W (g,0,t) =m

2 Formulas and theorems

In the case of contact constraints, the initial conditions are
q" (to) = ¢b, v (to) = v} (5)

satisfy the constraint equations: f*(qo,to) = 0, ©*(qo,v0,t0) = 0, and the Lagrange multipliers are
determined from the conditions

=0, p=1,..,7. (6)

From the equalities (6), taking into account the equations (1), a system of linear algebraic equations
follows to determine the expression:
opP

F (V' (q,v,t) + b (q,v,t) us) +

AP . OpP
LR )

oq’ ot

166 Bulletin of the Karaganda University



Modeling of dynamics processes ...

If the initial conditions (5) are not consistent with the coupling equations (3):

(g0, to) = 8, ¢” (qo,v0.t0) =¥, p=1,...,r (7)

it follows from the equalities (6), (7) that with the numerical solution of the system (1), deviations
from the coupling equations increase over time:

P =r+ebt,  © (q0,v0,t0) = ¥h.

The problem of constraint stabilization arises, for the solution of which it was proposed [21] to use

a linear combination of constraint equations with their derivatives:
2rp M P
%+k1%+kof“=0, dd%zv(q,v,t)w’]- (8)

In essence, equalities (8) are equations of perturbations of constraints. Obviously, when the constraints
are satisfied k1 — const, kg — const, k1 > 0, ko > 0, v(q,v,t) > 0 trivial solutions of f* =0, p” =0
of equations (8) are asymptotically stable. So in the simplest case, the equations with respect to
perturbations of holonomic constraints of equation (8) can be represented by a linear system with
constant coefficients [22]
I 12
% = ", ddi; =kiff' +RLPY, p=1,....m, pr=1...,m

To limit deviations from the coupling equations in the numerical solution of the dynamics equations,
additional conditions should be imposed on the coefficients of the equations (8). Various modifications
of the J. Baumgarte method were proposed, for example, |22, 23|, which were reduced to the selection of
numerical methods for solving dynamic equations and recommendations for the selection of coefficients
of the equations of the system (8). In [22], a hybrid scheme of integration of a controlled system
consisting of a non-rigid mechanical subsystem and a rigid controlled subsystem is described. J. Baum-
garte is also used to stabilize constraints in higher-order control systems [23]. To determine the
expression of the multiplier A in the right side of the equation of the system

qu dq dm—lq

dtm:Q(q7cﬁa--~vcwn1’t)+B(Q,t))‘a f(gt)=0

a linear combination of the constraint equation with derivatives up to the order of m > 2 is used,
which leads to a differential equation of the constraint perturbations:

w — ¢y

dtm’

The coefficients o, of the differential equation should be chosen so that the roots of the characteristic

equation o, k* = 0 have negative real parts, for which it is proposed to use a polynomial of the form

aukt = (k+ k)™, k — const. In this case, the solution of the equation of constraints perturbations is
represented by the expression

ay =0, y=f(zt), y p=0,...,m

y:(AMt“)e*kt, w=0,....,m—1.

The integration constants are determined by the choice of the initial conditions y*) (to) = yb,
p=0,...,m—1, and for small values of t, the value of y may be significant. So, for m = 2 and initial
conditions (5) corresponding to the equalities

0 < 0
fwr-a (39,4 (%),
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change deviation from the constraint equation f (¢,t) = 0 defined by the expression y = vote ** and
it can reach a significant value when numerically solving the dynamical equations (Fig. 1).

V=V{U)’E9XD{-GJ4’E) y=v(0}texp{—t]
4 2 1,2
1
1,5
0,8
2 1 0,6
0,4 |\

. 05 [ \
0 \‘— 0 \——— Dfi T

0 10 20 30 0 5 10 15 0 2 4 6

Figure 1. Graphs of the change in the value y = f (¢,t) at vo = 1;2;3;4 and k = 0,4,k =1,k =2
correspondingly

8 Construction of systems of differential equations

The concept of program constraints is associated with the construction of systems of differential
equations with given partial integrals [24, 25| and to stabilize the constraints it is necessary that the
constraints equations constitute partial integrals of the dynamics equations. The behavior of solutions
in the vicinity of a set of points determined by the constraint equations must correspond to the
operating conditions of a real system.

If the values of control actions uy are defined as functions uy = ug(q,v,t) of variables ¢, v, then by
introducing the phase state vector x = (g, v), the system of equations (1) and constraint equations (3)
can be represented equalities

W =X (), (9)
o (z,t) =0, z = (xl,...,xQ”), p=1,....,r<2n,i=1,...,2n. (10)

Since functions (10) are partial integrals of the system of differential equations (9), the right-hand
sides of X* must satisfy the conditions
OpP i | 9¢° 1
- X'+ — = F"* t = v 11
X T (fromt), o=(¢,...,¢"), (11)
where FP(f, ¢, x,t) are arbitrary functions that satisfy the equalities F?(0,0,z,t) = 0. From equality
(11) it follows that the right-hand sides of the equations of system (9) should have the following
structure

where ¢ is an arbitrary value, X is the corresponding component of the vector product

61‘1"'.’8332'”

X, = [V«pl . Vpre Tt ..02”_1] , VP = (M OpP ) ,

— (AP P p _ Opf
v@p_(solw'"@Zn)? Vi = Bro
1 ..., ¢! are arbitrary vectors ¢ = (c§,...,¢c5 ), 0 =r+1,...,2n—1,

X}, = 89 0fwapF?, §9=0, i#j,

5ZZ = 17 (wap) = (wp’y)_l Y wp’y = SD’LP(SZ]SD;/7 i = 17 R 2n? a’ W?;O = 17 R 7/r'
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The system of equations represented by equalities (1), (3) constitutes a system of differential
algebraic equations. The functions uy in equations (1) are control actions that ensure the fulfillment
of constraint equations (3). To stabilize the constraints (3), we determine possible deviations from the
constraint equations (3) by the quantities

yt = fH(q,t), 2 =¢"(qu,t), p=1,....m, p=1,...;r, r<s. (12)
We define new variables y#, z* as solutions to the system of constraint perturbation equations
d _ 4

=z _
dt dt
satisfying the equalities Z”(0,0,q,v,t) = 0 and the initial conditions

= Z°(y,z,q,v,t), (13)

yg:fu(qmtO)a Zg:@p(q071}07t0)7 :U’:]-a"'uma P:L--'ﬂ"- (14)

Equalities (13) define a system of equations for constraint perturbations, which, when

ZM = — WPyt — 202", Z¥ = —y(q,v,1) 2", a,w — const,

corresponds to the method of J. Baumgarte [21]. Constraint equations (12), supplemented with conditions
(13), (14), constitute the program coupling equations.
From equalities (1), (12), (13) follows a system of equations for determining the control actions wuy:

plmun:hpa
dpP dpP dpP . P
PR = b, b = Z° t) — b’ t) — —a" — =
p 8’[}1 ) (f’ @7(1)’07 ) a’UZ (q)v7 ) aqla at ) (15)
f:(flv"'vfm)v @Z(Wla"wsop)a
p=1....r, k=1,...,8, r<s.

If the rows of the matrix (pg) are linearly independent, then the expressions of the control actions
uy, are determined by solving the system of linear equations (15):

U = €0 [pl cpidTh L cs_l] + (5/3,{p°‘5waphp,

co is an arbitrary value, ¢® = (c’1,...,cPs) is an arbitrary vector, 6, = (6}, ...,6%),

pp: (pplj'”,pps)7 556:17 55R207 5#’%
WP = p6,p"7,
WapwW =65, 65 =1, 67 =0, a#v, a,p,y=1,...,1, Br=1,...,s.

As a result of substituting the resulting expressions into the right-hand sides of the equations, the
closed system of equations (1) is written in the following form:

da’ ) dvt . )
dit =a'(q,v,t), d—i =0 (q,v,t) + b (q,v,t) ux (q,v,1),
Uy (q,0,t) = uko (q,v,t) + w1 (v, 2,q,0, 1),

a + -

oq’ ot

opP i 0pF (16)
ovt ’

B HoP .
ko (¢, v, t) = codx [pl ptdtlo e 1] — (5,{5pa6wap (gobl (q,v,t) +

U (Y5 2, ¢, 0, 1) = 8rpp®PwapZ? (y, 2, q,0, 1),
Y= f(Qat)v z = QO(vivt)'

The system of equations (16) has partial integrals determined by the constraint equations (3).
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4 Stability of the integral manifold

Using notation
i _ i

m:(wl,...,x%),xi:qi, " v
n= (0 .n™) gt =yt g =2, an
9’ (x,t)=0, c=1,...,m+r,
gr=f =", p=1....m, p=1,...,m
let us rewrite the system of equations (12), (13), (16) in a compact form:
n” =g (x,t), (18)
& = XS (), s=1,...,2n, (19)
%:Tg(n,x,t), c=1,....,m+r, (20)

X' (y,a,t) = 2", X" (n,2,t) = X§V (2, 8) + X7 (n,2,1)
XSLH (x,t) = b (x,t) + b (x,t) uwo (z,t), X{‘H (n,z,t) = b (z,t) w1 (0, z,t),
TH (n,x,t) =y™ T, X" (n,x,t) = Z° (n,,t).

Setting z°(tg) = z{,n° (to) = n§ = ¢ (xo,to), we determine the stability conditions 24| of the
integral manifold of system (18), given by equalities (17).

Definition 1. The integral manifold of the system of equations (19), defined by the equality n(z,t) = 0,
is stable if for any e there exists a § such that for all initial conditions x(ty) = x¢ corresponding to the
inequalities |no| < d, the value n = n(t) will satisfy the condition |n(t)| < e for all ¢ > t.

The stability of a trivial solution to the system of equations (20) depends on the choice of functions
Y (mtp) (n, z,t). Stability conditions can be obtained using Lyapunov functions. If the functions Y (m+p)
are represented by a linear combination of constraint perturbations, then the system of equations (20)
turns out to be linear:

dn’
dt

To study the stability of the trivial solution of system (20), we take as the Lyapunov function a
positive definite quadratic form with constant coefficients V' = 0.5¢,,n°n®. Then there are constants
c1, co corresponding to the constraints 01|77]2 <V< 02\77|2. If the derivative of function V', calculated
by virtue of the equations of system (21),

:hg(ﬂj,t)na’ O',O[:]_,...7m+’r. (21)

dV
W = Poa (x7t)77077a7 Poa (Jf,t) = Cochg (:U7t)7 0-7047C = ]-7‘ . '7m+r7
will be limited:
dv < 4| ‘2
— < —a
at ="

then the inequality will be satisfied |n|? < g—f|77%|et_t0, A= %Z, and the integral manifold (17) of the
system of equations (19) will be stably exponential. If the coefficients hZ of the equations of system (21)
are constant, then the stability of the trivial solution is determined by the roots of the characteristic

equation.

5 Constraint stabilization of in the numerical solution of dynamic equations

The asymptotic stability of the trivial solution of system (20) is not enough to limit deviations
from the constraint equations when numerically solving the dynamic equations
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dx®

dt

The requirement to stabilize the constraints imposes additional conditions [26] on the right-hand
sides of the constraint perturbation equations (19), which are determined by the value of the limitation

of deviations from the constraint equations and the choice of the numerical method for solving
system (22) [25-28|. Let |ng| < € and let the difference scheme be used to solve system (22)

= X*(g(x,1),2,t), 2°(to) = g (22)

xi =] + (Ax®),, (Az®), =7X% (2, ), T=tp1 —t, L=1,...,N. (23)

Let us represent the functions nf, | = 9% (w141, t101) by series expansions in powers of 7:

” " aga ago 72 ~‘7(2)
o i) =57 () + (55 ) Ga)er () + 53, (21)
or taking into account equalities (23), (24):
2 o(2)
T’lo——i—l = 7710 + TT;T (y7 z, t) + ?gl

After expanding the function Y7 = Y{(n, z,t) into a series in powers of magnitude 7;*, the last equality
will be rewritten in the following form:

)
q
~
®
>
)
q
~
©
>

T2 - T2
1 =n] +7kg (wz,tz)nf“+§Tl +§9l . (25)

From equalities (25) the following estimates follow:

2 o) 2 (2

o o T ~ o o
|77l+1|§|5g+7—ka($l7tl)nla|+?’rl +?gl 3 5a:O7 a;éa, 6021’

and statement.

Theorem. If the inequality |no| < € is satisfied and the functions Y™*°(n, z,t), n* = fH(z,t),
n"tP(t) = pP(x,t) for all values of x,t corresponding to the solution of system (22), satisfy the
conditions 1 + 7rx, t < 0 < 1, §T2 + g% <1— B¢, then for all [ = 1,..., N the inequalities || < €
will be satisfied.

Ezample. Determine the control function u = u(q', ¢%) for the system

dq! dq?

H— 4 (g D) u, =g —4g% (¢ ),

dt dt (26)
b (qlv q2) = 2 ql (0> =2, q2 (0) =0,

(4")* + (¢?)
ensuring the existence of the partial integral y = 0.5(¢")? + 2(¢?)? — 2 = 0 and its stabilization when
g gral y

solving system (26) numerically using the Euler method with a step 7 = 0.001. Constraint perturbation

equation

dy
= =k k
7 Y, > 0,

has an asymptotically stable trivial solution y = 0. Control u = k((¢")? + 4(¢?)? — 4) ensures the
fulfillment of the constraint equation 0.5(¢")? 4 2(¢?)? — 2 = 0 with an accuracy of € = 0.001 at values
of k that satisfy the restrictions: 200 < k < 1800. Figure 2 shows graphs of changes in calculation error
values corresponding to the values £ = 50; 300; 2050.
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Figure 2. Deviations values on time

6 Conclusion

Methods of constraint stabilization, based on the construction of systems of differential equations
with asymptotically stable partial integrals, represent effective ways to model solutions to problems of
determining the reactions of constraints and controlling the dynamics of systems for various purposes.
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JIlmHaMuKa IIPOIeCTEPiH MOJe/abAey >K9He DailjlaHbICTAPAbI
TYPaKTaHALIPYAbI €CKEPe OTBIPHIN, XKYVIiieHi backapy cuHTe3i

P.I. Myxapasmos!, K. K. Kuprus6aes?

MYM { ' i ( (2Bl ; i;
! Tampuc JI 6a amuwirdaev, Pecetll xaavwkmap docmuiev, yrusepcumemi, Mocxkey, Pecet;

M. Oyesos amvmdaev. Onmycmir Kasaxcman memaexemmis nedazozuxarvis; yHusepcumems, Iomxenm, Kazaxcman

174

Op TYyp/i DU3UKAIBIK CHMIATTAFBI JIEMEHTTEP/IEH TYPATHIH TEXHUKAJBIK OacKapy KyHesaepiHin JTuHaMu-
KaCbIH, OHJIpIC IIeH SKOHOMHUKAJIBIK, 00bEKTIiJIepi »KocmapJiay »KoHe OacKapy MiHIETTEepiH chlaTTay YIIiH
KJIACCUKAJIBIK MEXaHUKAHBIH TEHJEYJIepI MEeH OJicTepl KOMIaHBbLIaAbl. AHBIKTaIMaraH (pakTopJapbl b6ap
Oesril [MHAMUKAJIBIK, TEHIEYIEPIl TiKeIel maia any CaHIbIK, IIEITMIeri OailylaHbIC TeHIEYIEPIiHEH aybl-
TKYJIap/bIH apTybIHa 9KeJseni. BacbuibiMaapaan Oesrisi 6afianbicTapabl TYPAKTAHIBIPYIBIH KEH TapasIraH
amicrepi opaaiibiM TriMal 60ma 6epmeiii. 2Kaanbl ecenTiH, KOWBLIYBIHIA OalIAHBICTAPIBI TYPAKTAHIBIPY
ecebl MUHAMWKAHBIH Kepi ecebl peTiHe KapaCTBIPBIIFAH YKOHE T'OJIOHOMHUKAJBIK OallyraHbICTAp MeH aud-
depeHIuaIIbIK OaillanbIcTap TYHBIK »KYyiie TMHAMUKACHI TeHJIEYJIePiHiH j1epbec MHTerpaaapbl O0JIBIT Ta~
ObLIaThHIH JlarpaH:k (aKkTop/apblH HEMece HacKapy ocepJsiepiH aHBIKTayIbl TaJall eTe/i. baitaHbic TeHIe-
yJIepiMeH aHBIKTAJFAH WHTETPAJIIBIK, KOMOCHHETIKTEP/IiH TYPAKTHIIBIFEI YKOHE JTUHAMUKAJIBIK, TEHIEYIePI
CaHJBIK, 1Ielry/ie 6aillaHbICTapAbl TYPAKTAHIBIPY IIAPTTAPBI TYZKBIPBIMIAJIFAH.

Kiam ce3dep: GaitnanbicTapabl TYPaKTaHIBIPY, CAHJIBIK 9JiCTep, OJOHOMHUSIILIK eMec Oaitinanbic, [eabM-
TOJIBIL IIIAPTTAPHI.
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MopaeaupoBaHue MPOIECCOB JMHAMUKN U CUHTE3 yIIPaBJICHUS
CHUCTEMOIi C y4eTOM CTaOUJIN3AINN CBA3eii

P.I. Myxapasamos!, 2K K. Kuprustaes?

L Poccutickuti yrusepcumem Opyorcbvs napodos umerny Hampuca Jymymbo, Mocksa, Poccus;
2 . . .
IOoicho-Kazaxcmanckutl 2ocydapemeentniti nedazoeuveckut ynusepcumem umenu M. Ayasosa, Hlvimrenm,
Kasaxcman

st onrcaHust IUHAMUKY TEXHUYECKUX CUCTEM YIIPABJIEHUsI, COAEPKAIIUX IJEMEHTHI PA3JINIHON (hbu3mde-
CKOI TIPUPOBI, 3371249 [JIAHUPOBAHUS W YIPABJICHUS MPOU3BOJICTBOM U SKOHOMHYECKUMU OODBEKTAME WC-
MMOJIb3YIOTCSI YPABHEHUSI U METOMbI KJIACCUYIECKON MeXaHWKH. HemocpelcTBEHHOE NMPUMEHEHUE M3BECTHBIX
YPpaBHEHU JUHAMUKHU C HEOIPEJIETEHHBIMIA MHOKUATEISIMA MPUBOIUT K BO3PACTAHUIO OTKJIOHEHUI OT ypaB-
HEHUi CBsA3e#l MPU YUCJIEHHOM pelleHnn. PacrpocrpaneHHble METOAbI CTaDUIN3AIMU CBA3€ei, N3BECTHBIE TI0
Iy OJIMKAIMSIM, OKa3bIBAIOTCS He Beerja 3MdeKTUBHbIMU. B 00111eil mocTaHOBKe 3a/1a4a CTAOUJIN3AIUN CBSI-
3eif paccMOTpeHa Kak obpaTHas 3aJa4a JUHAMHUKHU, U OHA TpedyeT ompenesieHnss MHOXKUTENEl Jlarpamxka
WJIN YTIPABJISIIONINX BO3/EHCTBUI, DU KOTOPBIX T'OJIOHOMHbBIE CBsI3U U udDepeHIinaIbHble CBI3HU ABJIAIOTCS
YaCTHBIMY UHTErpajaMu ypPaBHEHUN JUHAMUKY 3aMKHYTON cucteMbl. ChOpMyIMpOBaHbl YCJIOBHUST YCTORYIN-
BOCTH HMHTETrPaJbHOINO MHOTOOOPA3Wsl, ONPEIe/ISIEMOr0 YPABHEHUSIMU CBsI3€ii, M CTaOM/IM3aIun CBsI3eil mpu
YUCJICHHOM DENICHUY yPABHEHUN JUHAMUKH.

KJLTO"LGS?)LG cnoea.r CT36I/I.HI/I38,LLI/I5I CB}?{?)@IL/'I7 YUCJICHHbIC MeTO,/:[I)I7 HEeroJIOHOMHAaA (3}3}?{3})7 yCJ'IOBI/ISI FeﬂbMFOJIbHa,.
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On the existence and coercive estimates of solutions to the Dirichlet
problem for a class of third-order differential equations
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As you know, the third order partial differential equation is one of the basic equations of wave theory.
For example, in particular, a linearized Korteweg-de Vries type equation with variable coefficients models
ion-acoustic waves into plasma and acoustic waves on a crystal lattice. In this paper, the properties of
solutions of a class of the third order degenerate partial differential equations with variable coefficients
given in a rectangle were studied. Sufficient conditions for the existence and uniqueness of a strong solution
have been established. Note that the solution of the degenerate equation does not retain its smoothness,
therefore, these difficulties in turn affect the coercive estimates.

Keywords: resolvent, third order differential equation, Dirichlet problem, coercive estimates.

2020 Mathematics Subject Classification: 39A14.

Introduction

In the rectangle Q = {(x,y) : —7 <z < m;0 < y < 1}, the problem

o? ou? 0
Lt pou = —k(y) 55 = 5o + 0ly) g+ elyu+ pu = f(2y) € La(9), (1)
ul® (—7,y) = ul(7,y), a=0,1,2, 2)
u(z,0) = u(z, 1), (3)

is considered.

Suppose that the coefficients k(y), a(y), c(y) of equation (1) satisfy the conditions:

1) k(y) > 0 is a piecewise continuous function on the segment [0, 1] and k(0) = 0;

2) a(y) > dg, c(y) > 0 > 0 are continuous functions on the segment [0, 1].

Equation (1) degenerates along the line y = 0, i.e. at these points equation (1) changes order. This
means that solutions do not retain their smoothness, hence these difficulties in turn affect the coercive
estimates of solutions.

Many papers [1-13] and the works cited there are devoted to the study of partial differential
equations of the third order. From these works and from a review of literary sources, it follows that
previously differential equations without degeneracy were mainly studied.

To present the results obtained regarding this work, we will need the following designations and
definitions. By W3 (2) we denote the S.L. Sobolev space with norm ullyr 0= [Huyﬂg + Juz3 4 Hqu]%

5% (92) is a set consisting of infinitely differentiable functions and satisfying conditions (2)-(3).

*Corresponding author. E-mail: suleimbekovaa@mail.ru
This paper was supported by the grant AP19676466 of the Ministry of Science and Higher Education of Republic of
Kazakhstan.
Received: 25 July 2023; Accepted: 29 February 2024.
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Definition 1. A function u(z,y) € L2(€2) is called a strong solution to problem (1)—(3) if there

exists a sequence of functions {u,} C C5% (), such that
lun = ull ) = 0 [[Lun = fll1, ) — Oasn — 0.

Theorem 1. Let the conditions 1)-2) be fulfilled. Then for u > 0, for any f(z,y) € L2(Q2) there is
a unique strong solution to the problem (1)—(3).

Theorem 2. Let conditions 1)-2) be fulfilled. Then for p > 0, for any f(z,y) € L2(2) there is a
unique strong solution to the problem(1)—(3) such that the coercive estimate

[ully 2.0 < CI(L A+ pl)ul,

is valid for it, where C' > 0 is a constant, || - ||2 is the norm of Ly(Q).

1 Proof of Theorems 1-2

In what follows, we denote by (L + pl) the operator corresponding to problem (1)-(3).
Lemma 1. Let the conditions 1)-2) be fulfilled. Then the following inequality

(L + pL)ully = (60 + A) [lully (4)

holds for all uw € D(L), where 69 > 0, 4 > 0. D(L) is the domain of definition of the operator L.

Proof. Consider the functionality < (L + pl)u,u >, u € D(L), where < -,- > is scalar product in
Ly(9). Integrating in parts, we get an estimate (4). Lemma 1 is proved.

Using the Fourier method, we reduce the problem (1)—(3) to the study of the following differential
operator with the parameter n (n = £0, £1,+2,...):

(ln + uD)z(y) = =2'(y) + (—ik(y)n® + ina(y) + c(y) + p)z(y),
where z(y) € D(l,,), D(l,,) is the domain of definition of the operator [,.
Lemma 2. Let the conditions 1)-2) be fulfilled. Then the following inequality
1l + pD)zlly = (80 + 1) 121l

holds for all 2(y) € D(l,, + pI), where || - ||2 is the norm of the Hilbert space L2(0,1). D(l,) is the
domain of definition of the operator [,,.

Proof. Let us denote by 002 [0, 1] the set consisting of doubly differentiable functions and satisfying
condition (3). Let 2(y) € C3[0,1] and consider the functional

1
<(n+pl)z,z >= /O (1217 + (c(y) + w) |=” + (in’k(y) + ina(y)) =]’ dy. ()

Hence, using the properties of complex numbers, we find that

1 1
| < (n+pl)z,2>| > /0 12" + (c(y) + w)|2|"]dy > /O (121> + (6 + p)|2I*)dy. (6)

From the last inequality, using the Cauchy-Bunyakovsky inequality, we have

| (Tn + p1I)z]ly = (80 + ) [2]]5 -

Hence, and by virtue of the continuity of the norm in Ls(0,1), we will be convinced of the validity
of the last estimate for all z(y) € D(l,,). Lemma 2 is proved.
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Lemma 3. Let the conditions 1)-2) be fulfilled and g > 0. Then for the operator (I, + pf) there is
a bounded inverse operator (I, + uI)~! defined on the whole Ly(0,1).

Proof. Lemma 3 is also proved as Lemma 2.3 of [14,15].

Lemma 4. Let the conditions 1)-2) be fulfilled and g > 0. Then the following estimates are valid
for operators (I, + uI)~! and d%(ln +ul)~L:

_ 1
H<ln+#D 1H2~>2 < (5_1_#; (7)

_ 1
[l + D)7,y < Tl 3 n #0; (8)

P (9)

2sa (64 p)2

d
— (L, + D)™t
de( + )

where ||-[[5_,5 is the norm of the operator from Ly(€2) to La(£2).

Proof. From Lemma 2 we have

1

I+ 1) Mpp < 57

Inequality (7) is proved.
Using inequality (5) and properties of complex numbers, we find that

1
< (ln+pl)z,z>>| /0 (in’k(y) + ina(y))|z|*dy|. (10)

Note that by virtue of condition 1)-2) the functions k(y) and a(y) do not change signs, therefore, from
the inequality (10) we find that

1
| < (4 pul)z,z>|> / lin’k(y) + ina(y)| - |z|*dy. (11)
0
From (11) and given a(y) > dp > 0 we have

[ + pd)zlly > [nldo |2, -
Hence, using the definition of the operator norm, we obtain the following estimate:
[+ 8Dy S s 00,
In| - 0o
Inequality (8) is proved.
Using inequalities (4) and (6) we find that

1 _
sl 2 [

Hence, according to the definition of the operator norm, we find

1
<

d
H(zn T S I
252 (64 p)2

dy

Inequality (9) is proved. Lemma 4 is proved.
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Proof of Theorem 1. Using Lemma 3, we obtain that

n=k

up(z,y) = Y (b +pD) " fuly) - €™
n=—=k
is the solution of the following problem:
(L‘f'/d)uk(ﬂ?ay) :fk(x7y)7 (12)
u(=my) = u(my), a=0,1,2, (13)
Uk’(x70) = uk(x7 1) =0, (14)

k .
where fi(z,y) = f(z,9), fu(z,y) = X faly) - ™, % = -1,

n=—~k

From inequality (4) and using the fundamentality of the sequence {fx(z,y)}, we have

lur(z, y) + um(z,y) | fe(x,y) = f(@,y)|ly = 0, as k,m — .

H2 — 6 +
From the last inequality and by virtue of the completeness of the Hilbert space La(€2) we have

ug(z,y) LQ—(>Q)u(a:,y). (15)

Further, using the equalities (12)—(15) for any f(z,y) € L2(2), we obtain that

n=oo

u(@,y) = (LA pD)7' =Y (ot u) fuly) - €™ (16)

n=—oo

is a strong solution to the problem (1)—(3). The theorem is proved.
Proof of Theorem 2. From (16) by virtue of the orthonormality of the system {ei"*}

00 2

D (n+pl) faly) - €™

n=—oo

=2 Z | (tn + 1) fa(y) - eiﬂxHig(O,l) =

L2(0,1) nETee

2
lullz =

<or N Hanwm—lu;,||fn<y>||%2(o,1>§§u1;\\<zn+m>—1u;2 Z @), 01) <

n=-—o00 n n=-—o00

_ 2
< s{ul;uanwn "o 1 @ )17 0 - (17)

Here we note that we used by virtue of the orthonormality of the system {e*}, i.e.

Z fuly Z 1 fn(y HL201)

2
”f z,y Hz—

From estimates (17), (4) and (7) we obtain that

2 L 2
[ull7y @) < (m) 1 @ 7,0
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From here we finally have

lully < £ )l (18)
where Cq = ﬁ
Next, we calculate the norm |lu,||, :
lual 7y = || D inlln +pl)~ ™ <sup [lin(ly +pl) "oy 27 D 1fa@)llT,0.0) <
n=-—00 Lo () n n=-—00

. —1112
< S{UI}) |n|2 ’ ||Zn(ln + IUI) 1”2_)2 ’ ||f(x7y)||%2(9) :

Hence and from inequality (8) we have

2 2 -1y2 2 2 1 2
el z5 0y < sup [nf [[in(l + 1) [y, - 1 @9l ) < sup Il —— 1@yl )
{n} {n} n|* - &

Hence
luall ) < C2llf (@), (19)

where Cy =

T
(0+p)2
Then, repeating the above calculations, we get the following estimate

eyl < Cs 1@ 9) ey (20)

where Cy = %.
Using the equalities (18)—(20), we find that

[l 2,1,0 <C ”f(x7y)||L2(Q) )

where C' = max{C1, Co, C3}. The theorem is proved.
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Yimiami perti muddepeHnnaJIIbIK, TeHAeyaepaiH 6ip KJjachl YITiH
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Jupuxie ecebi merniMaepidiy 6ap 60Jybl >KOHE KOIPIUTUBTI
OaraJsiayJiapbl TypaJibl

A.O. Cyneitmberosa, B.M. Mycummos
M. X. Jysramu amomdazwve Tapas eHipaix ynusepcumemi, Tapas, Kazaxcman

Bimerinimizmeit yrmiammi perti mepbec TYBIHABLIB AudMOEPEHITHATIBIK, TEHIEYIep TOJIKLIHIAD TEOPUSChI-
HBIH, Heri3ri Tenjeysepinin 6ipi. Mbicasbl, affHbIMaJIbI KO3hdUIueHTTi chi3bikTaaran Kopreser—mae @pus
THUITI TeHJleyi NOHIBIK aKYCTHKAJIBIK TOJKBIHIAPIbl KPUCTAJIIBIK, TOPIAAFHI INIA3MAaJIBIK, }KOHE aKyCTHUKAJIBIK,
TOJIKBIHIAPFa MOIeb el . 2KyMbIcTa TIKTOpTOYPHITITa OepiireH affHBIMATBI KOIMMUITUEHTT] YITIHIT PeT-
Ti IepOec TYBIHBLIBI €CeJIEHIeH TeHIeyIep il Oip KJIaChIHBIH IIeITiMIepiHiH, KacueTTepi 3eprresred. Kymrri
mrenriMHig, 6ap OOJIybl MEH YKAJIFBI3AbIFbIHA KETKIIIKTI mapTTap aJblHFaH. KcejeHreH TeHIeyIiH MIenrimi
©31HIH TericTiriH cakTaMalTBIHBIH €CKEPCEK, OYJI KUBIHIBIKTAD ©3 Ke3eriHje KOIPIUTUBTI Oarajayra ocep
eresi.

Kiam cesdep: pesosibBeHTa, yrmHII perti auddepennuanabik TeHaeyiaep, Jdupuxie ecebi, KOIpruTuBTi
baraJiayJiap.

O cyimecTBOBaHMM M KO3PIIMTUBHBIX OIEHKAX PelleHuil 3a1a9u
dupuxije ajas ogHoro KJjaacca auddepeHnnaibHbIX ypaBHEHUIA
TpeThero MopsiJIKa

A.O. CyneitmbekoBa, b.M. Mycummon
Tapasckuti pecuornasvhnti yrusepcumem umenwu M. X. Jlysamu, Tapas, Kazaxcman

Kak u3BecTHO, ypaBHEHU: B YaCTHBIX IIPOM3BOIHBIX TPETHETO IOPSIKA SBJSAIOTCA OJHUM H3 OCHOBHBIX
ypaBHeHU# Teopuu BOJH. B wacTHOCTH, JMHeapu3oBaHHOe ypaBHeHue tuna Kopresera—me ®Ppuza c me-
peMeHHBIMU KoM DUIMEHTAMI MOJIETUPYET MOHHO-AKYCTUIECKHE BOJIHBI B IIA3MEHHBIE M AKYCTUYECKUe
BOJIHBI Ha KPUCTAJIJINYECKO peleTke. B maHHO# paboTe MCCIe0BAaHBI CBOWCTBA PEIEHHIl OJIHOTO KJIacca
BBIPOXKTAIONIUXCS YPABHEHU B YaCTHBIX MPOU3BOJIHBIX TPETHETO MOPSIKA C TIEPEMEHHBIMU KOI(MDPUITHEHTA~
MW, 33/IAHHBIX B IPAMOYTOJBHUKE. YCTAHOBJIEHBI JOCTATOYHbBIE YCIOBHS CYIIECTBOBAHUS U €IMHCTBEHHOCTH
CHUJIBHOT'O DEeIlleHUsI. 3aMETHM, UTO PeIlleHre BBIPOXKIAIOIIEr0oCsl yPABHEHUsI HE COXPAHSIET CBOIO IUIAIKOCTh,
CJIeJI0BaTeIbHO, 3T TPYAHOCTH, B CBOIO OYepPElb, BIUSAIOT Ha KOIPIUTHUBHBIE OIIEHKU.

Kmouesvie caosa: pe3obBenTa, qudepeHnnaabable ypaBHEHUsI TPETHETO MOPsiaKa, 3amada Jupuxite, Ko-
SPIIUTUBHbBIE OICHKH.
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The embedding theory of spaces of differentiable functions of many variables studies important connections
and relationships between differential (smoothness) and metric properties of functions and has wide applica-
tion in various branches of pure mathematics and its applications. Earlier, we obtained the embedding
theorems of different metrics for Nikol’skii-Besov spaces with a dominant mixed smoothness and mixed
metric, and anisotropic Lorentz spaces. In this work, we showed that the conditions for the parameters of
spaces in the above theorems are unimprovable. To do this, we built the extreme functions included in the
spaces from the left sides of the embeddings and not included in the “slightly narrowed” spaces from the
spaces in the right parts of the embeddings.

Keywords: anisotropic Lorentz spaces, anisotropic Nikol’skii-Besov spaces, generalized mixed smoothness,
mixed metric, embedding theorems.

2020 Mathematics Subject Classification: 46E35.

Introduction

One of the first results related to the theory of embedding of spaces of differentiable functions was a
result of S.L. Sobolev [1]. This theory studies important relations of differential (smoothness) properties
of functions in various metrics. Further development of this theory is associated with new classes of
function spaces defined and studied in the works of S.M. Nikol’skii [2]|, O.V. Besov [3], P.I. Lizorkin [4],
H. Triebel [5], J. Bergh and J. Lofstrom [6], and many others. The development of this research was
determined both by its internal problems and by its applications in the theory of boundary value
problems of mathematical physics and approximation theory (see, for example, [7—11]).

In the 1960s, in the works of S.M. Nikol’skii [1], A.D. Dzhabrailov [12] and T.I. Amanov [13]
begins the study of spaces with a dominant mixed derivative. Further study of spaces with a dominant
mixed derivative which is related with the theory of embedding and interpolation and the theory of
approximations is associated with the works of A.P. Uninskij, V.N. Temlyakov, E.D. Nursultanov,
D.B. Bazarkhanov, A.S. Romanyuk, G.A. Akishev, K.A. Bekmaganbetov, Ye. Toleugazy and others
(see, for example, [14-20]).

In a serie of articles [21-23] we studied various properties of Nikol’skii-Besov spaces with a dominant
mixed derivative and with a mixed metric. In these articles, we investigated the interpolation properties
of these spaces, obtained limit embedding theorems for these spaces and anisotropic Lorentz spaces,
and proved theorems on traces and continuations of functions.

*Corresponding author. E-mail: kervenev@bk.ru
This research of Y. Toleugazy was supported in part by the Committee of Science of the Ministry of Science and
Higher Education of the Republic of Kazakhstan (project AP14869553).
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About unimprovability the embedding...

In the work of K.A. Bekmaganbetov, K.E. Kervenev, Ye. Toleugazy [22], embeddings for Nikol’skii-
Besov spaces with a dominant mixed derivative and a mixed metric and anisotropic Lorentz spaces
were studied. In this article we are showing that the conditions in the embedding theorems from the
work [22] are unimprovable. We build the extreme functions included in the spaces from the left sides
of the embeddings and not included in the “slightly narrowed” spaces from spaces in the right parts of
the embeddings.

Preliniminaries and auxiliary results

Let f(x) = f(x1,...,2,) be a measurable function defined on T". Let multiindexes 1 <p =
(p1,...,pn) < 00. A Lebesgue space Lp(T") with mixed metric is the set of functions for which the
following quantity is finite

pn/pnfl 1/pn

p2/p1
1z, = /T ( (/11‘ ]f(a:l,...,a:n)\pldm) ) dxy,

1/p
Here, the expression </ ]f(t)\pdt> for p=oc is understood as esssup,cp|f(t)|.
T

For multiple trigonometric series f(x) ~ > .z axe'® ) we denote by

As(fix) = Y aw(f)et,

kep(s)

n
where p(s) = {k = (ki,...,k,) € Z" : 2571 < |ky| < 2% i = 1,...,n}, (k,x) = ij:vj is the inner
j=1
product of vectors k and x.
Let « = (aq,...,ap) € R" and 1 <7 = (71,...,7,) < oo. The anisotropic Nikol’skii-Besov space
with generalized mixed derivates and mixed metric Bg™(T") is a set of the series f ~ Z aye' )

kezZn
such that

£ lmgecry = [ {22 186D lpien ], < o0,

where |[|-[|; is the norm of a discrete Lebesgue space with mixed metric [;.

We will also need the anisotropic Lorentz spaces which introduced by E.D. Nursultanov in [24].

Let f(x) = f(x1,...,2,) be a measurable function defined on T™. We denote by  f*(t) =
= f*te*n(ty ..., t,) the function obtained from f(x) = f(z1,...,x,) by applying the non-increasing
rearrangement successively with respect to each of the variables z1,...,z, (the other variables are
assumed to be fixed).

Let multiindexes 9 = (q1,...,qn), 0 = (61,...,0,) satisfy the conditions: if 0 < ¢; < oo, then
0 < 0; < o0, if g = oo, then 0; = oo for every j = 1,...,n. An anisotropic Lorentz space Lqg(T") is
the set of functions for which the following quantity is finite

[ £l oo (Tny =

1/0n
o dt \ /0 gt

(o (] 0t ) )™
T T 1 n

The following theorems were obtained in the work [22]:
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Theorem A. Let —0co < ag = (a¥,...,a%) < a1 = (ad,...,al) < oo, 1 <7 = (11,.
,PL) < co. Then the embedding

and 1 < po = (p,...,p%),p1 = (pi,...
BS‘;T(T") s BSST(T”)
..y Tn) < 00. Then

holds for ag — 1/po = a1 — 1/p1.
Jqn) <ocand 1 <7 = (7,

Theorem B. Let 1 < p = (p1, ..
the embedding

'7pn)<q:(q17”'
BT (T") — Lqr(T™)
holds for « = 1/p — 1/q.
,pn) <ooand 1 <7 =(7,...,7,) < o0o. Then

Theorem C. Let 1 < q = (qi, ..
the embedding

5y qn) <P = (p1,---

Ly (T™) = Bp™(T")

holds for « = 1/p — 1/q.
Main results

In this work, we show that the conditions for the parameters providing attachments are unimprovable.

The proof of these facts in Theorems A—C we carry out by constructing extreme functions.
The following theorem shows that the condition under which the embedding from Theorem A is

yal) < oo, 1 <7 = (1, Tn) < 00,
a1 — 1/p1, then for arbitrary

valid is unimprovable.
N <ag = (al,...

Theorem 1. Let —oco < ap = (0, ...,
1 <po=(p,---.pn), P = (PI,---,pp) < 00 and ap — 1/po =
en) > 0 and § = (01,...,0,) > 0 there is a function fél) € Bpl7(T") such that fél) ¢

e=(e1,...,
BIT(Ty U B,_O0 7(T™)

po (Po+9) '

Proof. Taking into account the estimate for the norm of a one-dimensional Dirichlet kernel, we

obtain the relation .
Z pRICD) ~ 20/ 1 <« p < +oo.

k=2t Lp(T)

From this relation in the multiple case we have
251
e ,
losOlpemy = || 32 € ~ 2LH/P), (1)
ke=2e7t Lp(T™)

Consider the function fél)(x) = Z 2~ (0%) 54 (x), where
s=0

1 1
agt+et+ —, 00+ ——25 ) -
( P (P0+5)’>

1 .
a1 + — < < min
p 0

1

According to estimate (1) we have

A 17
159 50, )
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() 1/7
(Z (2<a1, ~(85) ”USHLpl(T[‘")> ) =
s=0

SN N A
:<Z<2 ! Py’ ) ) < +00,
=0

S

a,sa1+pfl/1—6<0.

This means that fél) € BpoT(T™).
Similarly, we obtain that

(1) - ag+e,
Hfg HB(a0+5)7— () (Z (2( o+e,s)

- 1/7
)) =
pars Lpo (T7)

e (5 sl )
s=0
(S ()Y e

a8

s=0
as ag +&+ 5~ — > 0. Therefore fﬁ ¢ B O‘OJFE)T(’}I‘”)
Further, we Wlll show that fﬂ ¢ B 0 T (T™). We have

po+5)
T 1/7—
sl ) e

Hfﬁ H 20,7 = (SZ:(:) (Q(ao,s)
o (55 () )
0
= (Y (i <2 (a1+(p01+6), B,s)>T> 1/7 o
s=0

1 « T n
ﬁ — > 0. Therefore fg ) ¢ Bpets) (T™).

Thus, we have shown that fﬁ ¢ B a0+€) (T U B( o )T(Tn)

considering that ag +

The proof is complete.
The following theorem shows that the condition under which the embedding of Theorem B is valid,
is not improved.

Theorem 2. Let 1 < p = (p1,---,Pn) < a4 = (q1,-..,qn) < o0 and a« = 1/p — 1/q. Then for an
arbitrary € = (e1,...,&,) > 0 there is a function féz) € By (T") such that féz) ¢ Lgie(TT).

Proof. First, let’s show that féz) € Bp7(T"). Consider the function f 22 (Bs)

where o + ,<ﬁ q+€
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By analogy with Theorem 1, we have

oo /7
i~ (D7) e

S=

147

as a+ 5 — < 0. It means that f[(f) € ByT(T").
In order to show that féz) ¢ Lgte(T™) we use Theorem C.

We have ) o
H%1%ﬁﬂmzﬂh\bagﬁ@ﬂ=
(> <2<; ) a2, > "
s=0 Lp(T™)
e 11 1 ™\ YT
_¢, (Z <2<pws>2<ms>) ) _
s=0
> 1,1 N\ YT
= (Z (2(p+pl—q+€—ﬂ S)) ) _
s=0
00 1/7 00 A\ U7
— 03 <Z (2(1_‘11‘F‘5_ﬁ’s)>7> = 03 (Z <2((<1+15)"8’S>> > = 400,
s=0 s=0
as (q+ — > 0. It means that fﬁ ¢ Lyte-(TT).

The proof is complete.

The following theorem shows that the condition, under which the embedding of Theorem C is valid,
is not improved.

Theorem 3. Let 1 < q = (q1,.--,qn) <P = (P1,.--,pn) < o0 and o« = 1/p — 1/q. Then for an
arbitrary € = (1,...,&,) > 0 and 6 = (d1,...,0,) > 0 there is a function fé3) € Lq,-(T™) such that

3 a-+€,T (i, aT m
150 ¢ BTy U BT 5 (T7).

Proof. Let’s choose a function fé‘g) (x) the same as in Theorem 1 with [, satisfying the condition
1<B<min<a+8+1a+ ! >
q - P (p+o)

In order to show that fé3) € Ly, (T") let’s use Theorem B. We have

B, <0l -
> A U7
- <S=Zo <2<p ) ‘As(fé?’))H (Tn)) ) -
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o 1 T 1/T e 1 T 1/T
—Cs (Z (2(1‘6‘/375)) ) = Cs <Z (2(?‘5’5‘)) ) < +o0,
s=0 s=0

as % - <0, ie. fég) € Lqg-(T").
Let’s show that fz ¢ Bpa(T™).
Let us estimate the norm of this function from below

HféS)HB‘“f)T(T") = (i (2(a+s,s)

s=0

NGB

- 1/7
)) =
Lp(T™)
1/7

(55 (remnleo) )
— Cy (i <2(“+5+$"575)>T> T +00,

s=0
asa+e— [+ & >0, ie. fgg) ¢ B(atf)T(']I‘”).
Further, we will show that fﬁ(g) ¢ B 0 T(T™).

Po+9d)

Considering that ag + — >0, we have

1
(po+9)’

A (i €=

N Ut
A I
Bipg+e) s=0 ’ ’ HL(P0+5>(W)

0o T\ 1/7
>y <Z (2(040,5)2((;,015)’ ﬁ’s)> ) =

s=0

0o T 1/7
=Cy (Z (2 (al—i_(Poié)l _ﬁﬁ)) ) = 400,

s=0

as f§) ¢ B,00,T(T").

Thus, we have shown that fé?’) ¢ B(O‘OI;;E)T () U B(p:£ 6)7 (T™).
The proof is complete.
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Ycrem apaJjiac TybIHABICHI 2K9HE apaJjiac MeTpUKachl 0ap aHM30TPOIITHI
Hukosbcknii-BecoB KeHicTiKTepi »KoHe aHM30TponThI JIopeHiy
KEHICTIKTEpPi YIIIiH eHy TeopeMaJIapbIHbIH, >KeTiJIAipiJIMenTiHIiri
TYpPAaJIbl

E. Teseyraser', K.E. Kepsenes?

1 . .o
M.B. Jlomonocos amwimdaes, Mackey memaexemmix yrusepcumeminiy, Kasaxeman guavaav,, Acmana, Kazaxeman;
2 Axademur E.A. Boxemoe amuwindaes. Kapazandv. yrusepcumemi, Kapaeandw, Kazaxcman
(E-mail: toleugazy.yerzhan@gmail.com, kervenev@bk.ru)

Huddepennmnanmanarsie QYHKIUIIAP KEHICTIKTEPIHIH €HTi3y TEOPHUsICHI 9PTYPJIi METPUKAIADIAFEl (DYHK-
usnapaply, quddepeHnuaiabk, (TericTimKTiK) KacueTrepiniy MaHbI3/(bl GaliIaHbICTapbl MEH KATBIHACTA-
pBbIH 3epTrTeiiai. MaTeMaTUKaIbIK (PUBMKAHBIH IIEKTIK €CENTED TEOPUSICHIHIA, XKYBIKTay TEOPUSICHIH/IA KOHE
MaTeMaTUKAHBIH Oacka Jda cajajapblHia KEeHiHeH KoJJaHbIicka me. MakaJsaga ycrem apaJjiac TericTijiri
2K9He apaJiac MeTpukacel 6ap Hukonbckunit-BecoBTsin kenicTikTepi yirin kxone JIopeHIITiH aHU30TPONTHI
KeHICTIKTepl YIIH eHrizy Teopemasiapbl 6epiireH. ¥ ChIHBIIFAH XKYMBICTa »KOFapbIJa KOPCETLJINeH TeopeMa-
JIapJarbl TapaMeTPJIeP/IiH KeTiiaiplameiTiagiri kepcerinai. OcbIHBI KOpCceTyTe 613 COJT JKAKTAFBI €HYJIeP/IeT]
KEHIiCTIKTep YIIiH MmeKTi hyHKIUsIap/Ibl KypaMbl3 >K9He OJiap OH, >KaKTarbl eHyJiep/ie “coJl FaHa »KiHilKep-
TiJreH” KeHICTIKTEP/Ie KATIANTHIHIBIFBI KOPCETLINEH.

Kiam cosdep: JlopeHnTis aHu30TponTh KeHicTikTepi, Hukoibcknit-becos Tunrec KeHicTikrep, ycreM apaJiac
TYBIHIBI, apaJIaC METPUKA, €Hy TeOPEeMaJIaphl.
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npoctpancTB Hukosbckoro-becoBa ¢ JOMUHUPYIOIIEl CMeNTaHHOM’

l'IpOI/I3BO,Z[HOI71 1 CMeNIaHHOI MeTpI/IKOﬁ n aHU3O0TPOIIHBIX IIPOCTPaHCTB
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JlopeHia
E. Toneyrasot!, K.E. Kepsenes?

! Kazaxcmancruti guruan Mockosckozo zocydapemsennozo yrusepcumema umeny M.B. Jlomonocosa,
Acmana, Kazaxcman;
2 Kapaeanduncrut yrusepcumem umenu axademura E.A. Byxemosa, Kapaeanda, Kasaxcman
(E-mail: toleugazy.yerzhan@gmail.com, kervenev@bk.ru)

Teopust BozKeHUsT TPOCTPAHCTB AU PEePEHIINPYEMBIX (DYHKIINY MHOTUX TIEPEMEHHBIX N3yYaeT BaXKHBIE CBSI-
3 U COOTHOIIEHUsS MKy AuddepeHnnanbHbIMu (IVIAIKOCTHBIMA) 1 METPUYECKUMHU CBOMCTBAME DyHKIHH
¥ MMeeT MINPOKOe IIPUMEHEHNE B PA3JIMYHBIX pa3/esiax YUCTO MaTEMAaTUKNU U ee IPUIIOKeHuAX. Panee Hamu
OBLTN TIOJTyYEeHBI TTPE/IeTbHBIE TEOPEMBI BIIOYKEHHUsT pa3HbIX METPUK Jist TpocTpancTB Hukomsckoro—becosa
C JOMUHUDYIOMEH CMEIIaHHON IVIAIKOCTBIO U CO CMEITaHHOW METPHUKON U JJIs aHU30TPOIHBIX IIPOCTPAHCTB
Jlopenna. B nannoit paboTe MBI ITOKA3aJId, UYTO YCJIOBUS HA IAPAMETPHI IIPOCTPAHCTB B OTMEYEHHBIX BbIIIE
TeopeMax SIBJISIFOTCST HEyJIydinaeMbIiMu. Jljist 9TOro Mbl mocTpomin KpaiiHne (pyHKIMH, BXOISIIE B IPO-
CTPaHCTBa U3 JIEBBIX CTOPOH BJIOKEHUN U He BXOJLAIINE B «HEMHOI'O 3ay’KeHHBbIe» IIPOCTPAHCTBa, YeM IIPO-
CTPaHCTBA, CTOAIINAE B NPABBIX YaCTAX BJIOXKECHUN.

Karouesvie caosa: annsorponHsle npocrpancTsa Jloperna, npocrpancrBa Hukonsckoro—becosa, moMunm-
pyIoIas CMeIIaHHas TPOU3BOHAs, CMEIIaHHAasl METPUKA, TEOPEMBI BJIOYKEHUSI.
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In this paper, we studied the issues of integrability with the weight of the sum of series with respect
to multiplicative systems, provided that the coefficients of the series are monotonic. The conditions for
the weight function and the series’ coefficients are found; the sum of the series belongs to the weighted
Lebesgue space L, (1 < p < o). In addition, the case of p = 1 was considered. In this case, other
conditions for the weighted integrability of the sum of the series under consideration are found. In the
case of the generating sequence’s boundedness, the proved theorems imply an analogue of the well-known
Hardy-Littlewood theorem on trigonometric series with monotone coefficients.

Keywords: the multiplicative systems, the weighted integrability of the sum of series, generator sequence,
monotone coefficients, Hardy-Littlewood theorem.

2020 Mathematics Subject Classification: 42A32, 42C10.

Introduction

The Hardy-Littlewood theorem concerning series with monotone coefficients in the theory of trigo-
nometric series states the following [1,2|: for the series ) . a, cosnz, where the coefficients a,
decrease to zero as n approaches infinity, to represent the Fourier series of a function f(z) € L,[0, 27],
where 1 < p < 00, it is both necessary and sufficient that » 7, ahnP=2 < oo.

An analogue of this theorem for the Walsh system was proved by Moritz F. [3]. For multiplicative
systems with bounded generating sequences p (1 < sup, p, < c¢) it was proved by Timan M.F.
Tukhliev K. [4].

The weighted integrability of the sum of trigonometric series with generalized monotone coefficients
was studied in the works of Tikhonov S.Yu., Dyachenko M.I. [5,6] and others. Weighted integrability
for the sum of series for multiplicative systems is considered in the works of Volosivets S.S., Fadeev R.N.
[7,8], Bokayev N.A., Mukanov Zh.B. [9].

In this paper, we consider weight functions with other conditions. This article is a continuation of
the article [10].

1 Notation and Preliminaries

This paper examines a series characterized by monotonic coefficients concerning the multiplicative
systems. We delve into the inquiry: what criteria regarding the weight function and series coefficients
ensure that the sum of the series falls within the L, space with weighting? Before delving into the
main discussion, we define multiplicative systems.

*Corresponding author. E-mail: mentur60@mail.ru
Received: 28 December 2023; Accepted: 04 March 2024.
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Definition 1. Let {pr}32; be asequence of natural numbers p, > 2, k € N, supp, = N < co. By
definition, let us put ;
mog=1, my =p1p2---pn, n € N.
Then every point x € [0,1) has decomposition
)

Lk
xzzm—k, x € ZN|0, pk), (1)
k=1

where Z is the set of integers. Decomposition (1) is uniquely defined if z = n/my, takes a decomposition
with a finite number of nonzero zy. If n € Z, :={0,1,2,...} is represented as

oo
n = Zajmjfl, aj € LN [0,pj),
j=1

then for the numbers z € [0,1) we put by definition

o0
QT
p(x) = exp 2m’2 I neZy.
— pj
]7
It is known that the system {,}52,, called the Price system, is an orthonormalized system

complete in L'(0,1) (see [10] or [11]). Ifall py =2, then {t,}°°, coincides with Walsh system
in the Paley numbering.
Let LP(G), G:=10,1), 1 <p < oo, denote Lebesgue space with norm

1l = ( /| If(w)\”dx>p, Il = ess sup )]

Definition 2. Let ¢(x) be a non-negative measurable function on (0, c0). We say that () satisfies
condition By, if for all z > 1

T
where C' is a positive number independent of .

For example, the function ¢(t) = t* (a < 1) satisfies condition Bj.
To prove the main results, we need the following auxiliary assertions.
By

n—1
Du(2) =3 wnl(z), n=12,..,
k=0

denote the Dirichlet kernel of the system {v,,(z)}.
Lemma A. (see [11] or [12]) For any k € N and x € [0,1) the Dirichlet kernels have the following
properties:
mg, ecaux € |0 L ,

Dy, = T 2)

0, ecmmz¢ |0, mik
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2  Main Results

In this section, under certain conditions imposed on the weight function, a necessary and sufficient
condition is given for the function to belong to a Lebesgue space with the weight of the sum of series
for the multiplicative systems. The following theorem about integrability with the weight of the sum
of series with monotone coefficients is valid.

Theorem 1. [10] Let 1 < p < oo, %+%:1andsuppn:N<oo

f(z) :Zakwk(x), ar 4 0 at k — oo
k=0

and let ¢ () be a non-negative measurable function on [1, co). Then
19, If the function ¢P (z) satisfies condition By and

0 n+l  p
Zaﬁ'np/ 7 (x)dx<oo,
n=1 n

22

then ¢ (%) f(z)e Ly (0, 1).
20, If o (x) it satisfies the condition B; and ¢ (1) f (x) € L,y (0, 1), then it takes place (6).

Remark. If the weight function ¢ () has the form ¢(z) = 2, then in this case ¢P(z) and ¢~ (z)
satisfy condition B; at —I% <a< % and condition (7) has the form

oo
E af - POl < oo,
n=1

[—

; = 1 and ¢ (z) > 0 is some locally integrable on function on [0, 1].
| function f (x), belongs to space Ly, if

3 =

Let 1 < p < oo, +
Lebesgue measurable on [0,

—3

T ( / W@ e @ da:);’ < co.

t 1 f 7
A= sw ([ ([ @oten™as)”,
0<t<1 \Jo t
1
B, = sup </ (
0<t<1 \Jt T

The following theorem is true.

Let us put

3=

bS]
&
U
8
S~

AS)
—~
&
~_
S|
I
S
N———
N\
ﬁ
© |
E\
—~
2
QU
&
N———
hd\

Theorem 2. Let 1 < p < oo,% + 1% =1, supp, = N < oo, and ¢ (x) be some locally integrable
n

function on [0, 1] and
F@)=>ar(f) W (x),
k=0

where a (f) } 0 at & — oo. Then
19, If A, < oo and

o 1
Dp—Zafl-np/? P (x) dzx < oo, (3)
n=1 n+l
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that f (x) € Ly, (0,1) and
I1f

20 1f B, < oo u f(x) € Ly, then the series (3) converges and

p
pe = CoDp-

1£15.0 = CpDyp.

Combining points 1 and 2° of this theorem, we can formulate the following statement:
Theorem 3. Let 1 < p < o0, % + 1% =1, supp, = N < oo and ¢ () be a non-negative, locally
n
integrable function such that

max (Ap, Bp) < .

Then, in order for the function f(x) = 72 ax (f) Ui (x), where a (f) } 0 at & — oo to belong
to the class Ly, (0, 1) it is necessary and sufficient to satisfy the condition

00 1

D :Zag'np/? P () dx < oo.

n=1 n+1
In this case, there exists a relation
1
~ p
1, ~Dj.

To prove the theorem, we need the following auxiliary statements.
Lemma 1. Let a, | 0 at n — oo, supp, = N < oo and
n

n—1
S (2) = arty (@)

Then for any integer n > 1 and for any number z € (0, 1)

(5]
S @) <0 ay. (4)
k=0
Proof. At n < [1] inequality (4) is obvious, since |y (z)] =1, k=0, 1, 2...
Let n > [%], Then

[%] n—1
1S ()] < Zak + Z apy ()] .
=0 il
Using inequality
n—1 C
= < =
| Dy (2)] kzzoawk (z)| < @€ (0, 1),

and applying the Abel transform to the last sum, due to the monotonicity of the sequence {a,}, we
get,
5] B

5]
S (z)] < Zak + %GHH < ap +C (B] + 1) (1] 41 < Clzak-
k=0 k=0 k=0

8=

Lemma 1 is proved.
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Lu={uptrr, v={vp}roq, u, >0, v, >0 and

o0
”aHp,v = (Z ‘anvn|p>
n=1

Then to satisfy the inequality ||> ") _; akl,, < Cllall,, it is necessary and sufficient that

00 % -1 i
A = sup ( Z uﬁ) (Z vr_np,) < 0. (5)
m=1

! n=Il+1

=
+
<

I

Lemma B. [13] Let 1 < p < 0o

3=

LemmaC’.[14]Let1<p<oo%+;—l u(z) >0, v(z) >0, Pf(x)= [ f(t)dt. Then, to

satisfy the inequality [|Pf|,, < C'| fl],, it s necessary and sufficient that

B- {/tl (u (m))de}; {/Ot v ()] dm}pll < 0.

Proof of Theorem 2. 1°. According to Lemma 1 and by monotony of sequence a,, (f) we have

/ f (z pdm—Z/ |1f’da;—Z/n+1 (nfak) ) dx < (6)

It is clear that

(') 1 1
> [l pwas [ @@
n=Il+1" n+1 0

Now, we will show that condition (5) of Lemma B is satisfied. To do this, we will show that
A < CAp where Ap is from the condition of Theorem 2. Let us transform the second sum in (7).

1y P

gnp’ ( /7}1 ¢ () daz) . = lzjnﬂ < /’} o () dw) : : ( /’} 0" (2) dx) g X (8)

n+ n+1 n+1
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By Holder’s inequality, we have

Mz/fdxz/’fwxm(mldxs (/fw(z)dx)é( N

n+1 n+1

Hence,

RSA

——
/N
P
- 3|~
S
&

Q
S
N——

D=
N
\

AN
i
O
ISH
S
N———

Then from (8) we have

Zn ’ ( [ % <x>dx>p SRR / G T R )

Therefore, by (7), (9) we get

1
o

A=sup (/0’¢p<x>dm>; (/ <w<m>>—p’dm>" <
< s ([ @) ’

3=

</t1 (v (2)) 7 da:) Y4 <o

Therefore, according to Lemma A and conditions A, < oo it follows that

/ |f (z \pdm<02ap / P () dx < oo,

n+1

that is f (z) ¢ (x) € L,y [0,1].
20, Due to the monotonicity of the sequence a,, (f)

00 1/n 00 n p 1/n
ay, (f) n? ¢" (z) dx < ( a (f)) ¢ (z) dx =
nZ::l /1/(n+ 1) T; kZ:O ' /1/(n+ 1)
oo |Mmp41—17T j p 1/.
=D { [Z a (f)] /1 el dx] <
n=0 j=my k=0 /] + 1
0o Mpg1—1 1
<> (AP [ o (@) da (10)
n=0 k=0 My 41
By equality (2)
m"—l
/ f(z) Dy, (x)dx = mn/ i x)dx < m,F [Tin] , (11)

where F (x fo |f )| dt.
Now from (10) and (11) follows that
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S (1) I ke o) dr <3 a ()P [m+F[ ! H
n=1 1/(n + 1) n=1 Mp41
/mn 0 1/mn 1 p
P(z)dr < ~F(x P(x)dr =
x/l/m+1w<> Z_%/l/m(x @) @

- ([ wom (2

According to Lemma C from the condition B), < oo it follows that

/</ 17 () dt) vl 3«"<C/\f )P dz.

Then from the inequality (12) we have
00 1

n
Za{;(f)np/l dx<C/ If () ¢ (2)|P dz < oo.
n=1 /n + 1

Theorem 2 is proved.
1

Remark. By direct calculation, it can be shown that the function ¢ (z) = (W); , >0
satisfies the condition from 1° of Theorem 2 (i.e. A, < 00) , but does not satisfy the condition from 1°
of Theorem 1 (i.e. ¢ (x) does not satisfy condition By).

1
In addition, the function ¢ (z) = (W) " a > 0 satisfies the condition from 2° of Theorem 1

(i.e. B, < 00), but does not satisfy the condition from 2° of Theorem 2 (i.e. ¢ (z) () does not satisfy
condition By).
Therefore, the conditions of Theorem 1 and Theorem 2 are, generally speaking, different.

3 About belonging to space Ly (0, 1) with the weight of the sum of series with monotonic coefficients

In the previous paragraphs, we considered the conditions for functions to belong to the class
Ly, (0,1) at 1 <p < 0.

In this section, we will consider the case p=1, i.e. questions of belonging of functions to space
L, (0,1).

Let ¢ () be a non-negative measurable on (1, co) function. They say the function ¢ (x) satisfies
the condition Bo, if for everyone xz > 1 the following inequality holds

/mgp(t)dthgo(a:),
1t

where C is a positive number independent of z.
We need the following auxiliary statement.
Lemma D. [15] If R, 1 0, 0 < B, 1 at n — oo, then the series

> Ry (Bpi1— Bn) andZB Rn_1— Ry)
n=1

converge or diverge at the same time.
The main goal of this section is to prove the following statement.
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Theorem 4. Let a | 0 at k — oo, supp, =N < oo and
n

w) = axty ()
k=0

and let ¢ () > 0 is measurable on [1, co) function such that

® (i) € L0, 1], écp <i) EL(0, 1).

S

@ (;) f(x) e L1(0,1).

20 If ¢ (z) satisfies the condition By and ¢ (2) f (z) € L1 (0, 1), that is the case (13) .
30. If ¢ (x) | at & > 1, positive function and

Then
10, If

d:c < 00, (13)

then

[,
llrn:,c_ﬂ)o(p(w)/1 dt , (14)

t

then there is a sequence ay | 0 at £ — oo, such that the function

= apy (x)
k=1

integrates on (0,1), ¢ (2) f (z) € L1 (0,1), however the theries (13) diverges.

T

Point 3 of this theorem shows that the condition Bs is essential for fulfilling point 2 of this theorem.

, i} we have
my+1 my

Proof. 1°. By lemma 1 for any = € [

my+1

z)| <C Z ag.
k=0

Therefore

IRIOTETES

SCl—i-ZamkH/k v () dw<Cl+Z /

k=1

<>|f d:c<§:mz: //m’“ <)d:p§

mk+1 /mk+1

dx<oo

20, From the conditions of Theorem 4 follows that follows that f (x) € L0, 1], hence, a,, = ay, (f)
and

1
Im,
Z ar = | f(x) Dy, (z)dx = mn/o f(z)dz.

k=0 0

Therefore, due to the monotonicity of the sequence a,,
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1/m mp—1 mpt1—1
n
1) f(z)dz = | (pnt1— 1) E ap + 5 ag | my1, > 0.

Let us evaluate

o0 Mnp41— 1

2/ Wasy S o thtSZ/ a | =

n=0 k=mn,

where R, = [° %dt, B, = ;”"0_1 ay.

Mn

(16)

By lemma D for the convergence of the series (16) it is sufficient for the convergence of the series:

=1
ZB nl_ n)gz
n:lmni

where

k=0 k=0

1

t
Applying Lemma D again, taking into account the conditions Bz and (15), we have

M1 — 1
IS 1 nt1—1 /mn
S > wlen-n X [T E [ (7)<
— k=0 /mnH

Vi - )
<> " 1) (/ dt><cz b F@le(3) do<oe,

3%. Let ¢ (2) | at > 1. From the condition 1¢ (1) EL follows that

Z/n ('Dt(;)dt:oo

n=1
Hence,
e 00
t
S [ E = .
n=0 Mn
Let’sput aqg =1 and if m, <k <myp1—1, n=0, 1, 2,..., then

-1
- > (t)
j=0 m;

mMn © (t) mp—1 00 1 My41—1
—2dt ap | < ay | D —D,l,
1 /mnl ¢ ( Z ) o "n+t1 Z s n)

It means , a, | 0 at n — oo. From the sequence definition {a,} using the Abel transform, we have

Zanwn Zmn 1Dy, () .

n=1
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Then at x € { L 1 ) , k=0, 1, 2,... based on the property of the Dirichlet kernel by Lemma

Mpt1’ Mp
1 we have

k
F@)=>" AXp1my,
n=1

where f(z) >0, f(x){0in (0, 1).
Further, taking into account the condition ¢ (z) | 0, = > 1 we get that

[e(Drewsen [ rmwsemd (immmn> Y

k=0 \n=1 k
< Co(1)D AN =2p(1) Ao < o0,
n=1

ie. feLi,(0, 1)
Let us show that relation (13) does not hold, i.e.

Zan/ L(t)dt: 0.
t2
n=1 n

Based on property a, | 0 where this n — oo condition is equivalent to the divergence of the series

o0 fe'e) o0 00
_ e(t) ¢ ()
S = 321 My G, /mn 2 dt = n§:1 AnMy, /mn 2 dt.

According to the famous Kronecker theorem [1; 905] and (14), (17) we have

e%] n -1
Z o (t Z v (t
S - mn/ @t(z)dt [-_0 " /T;% SOt(Q)dt] -

n=1 Mn

l.e.

Point 3° of Theorem 4 proven.

Conclusion

In this paper, we have considered series with respect to the multiplicative systems with monotonic
coefficients. Conditions have been obtained for the weight function and for coefficients under which the
sum of the series under consideration is L, (1 < p < oo) integrable on the interval [0,1]. In addition,
the obtained conditions are compared with the previously known conditions for the weight integrability
of the sum of such series.
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Kosddburmenrrepi MOHOTOHIbI MYJIbTUIJINKATUBTIK >Kyiiejiep
OOIBIHIIIA KaTapJiap/IblH, KOCHIH/IbICHIHBIH CAJIMAaKThl MHTErPaJIdaHy
IIAPTTAPhI TYyPaJibl

M.2K. Typrembaes!, 3.P. Cyneitmenosa?, M.A. Myxamberzkan?

! Axademur E.A. Boxemos amwndaezo, Kapazandv yrusepcumems, Kapazandw, Kaszakeman;
2 .
JI.H. Tymunes amundaev, Eypasus yammuwk ynueepcumemi, Acmana, Kazaxeman

MakaJtazia 6i3 kKaTapaapAabiH Kodd UIeHTTePI MOHOTOHIBI OOJIFAH YKaFIal1a MYyJIbTUILIUKATABTI XKyiieaep
OOMBIHIITA KaTapjap KOCBIHIBICHIHBIH, CAJIMAaFbIMEH MHTETPAJIIBIIBIK, Moceaeaepin KapacTboipambr3. CanmMak
byHKIMACH YIIIH 2K9HE KATAPIBIH KOCBIHZABICH canMakied L, (1 < p < oo) Jleber kewnicririne xara-
THIH KO3 DUuImeHTTepi yImin maprrap Tadblaasl. COHBIMEH KaTap, p = 1 »Kafmailbl KapacTBIPBLIFaH. Byt
JKaFmaiiia KapacThIPBUIBIT OTBIPFAH KATap/bIH KOCBHIHIBICHIHBIH, CAJIMAFbIMEH WHTErPAJIBLIBIKTHIH 0acKa
maprrapbl TabbuIraH. ['eHepaTuBTi TIZ0EKTIH, MIEKTE/yl >KarJaibIHIa JOJIe/IJIeHIeH TeopeMaJsiap Xap/iu-
JInTTABYATHIH, MOHOTOHIBI KO3(MUIMEHTTepl 6ap TPUIOHOMETPUSIBIK KaTapjap TypaJibl Oesriii Teope-
MACBIHBIH, AHAJIOTBIH OLIIIipe/Ii.

Kiam cesdep: MyJIbTUILUIMKATUBTI XKYiiesep, KaTapjap KOCHIHIBICHIHBIH CAJIMAKThl HHTErPDAJIIaHYbl, YKaca-
) )
yIIbI Ti30eK, MOHOTOHIBI KO3(MUImeHTrep, Xapau-J[uTTiBys TeopeMacsI.

O06 mHTErpuUpyeMoCTH C BECOM CYMMBbI PsiJioB C MOHOTOHHBIMU
KO3 PuimeHTaMu mo MyJIbTUILIMKATUBHBIM CHCTEMaM

M.ZK. Typrymbaes!, 3.P. Cyneitmenosa?, M.A. Myxamberzkan?

! Kapaeanduncrkut yrusepcumem umeru axademura E.A. Byxemosa, Kapaearnda, Kazaxcman;
2 Bepasutickutl nayuorasvrul ynusepcumem umerny JI.H. Tymunesa, Acmana, Kazazcman

B crarbe Mbl M3yuniin BOIPOCHI HHTEMPUPYEMOCTH € BECOM CYMMbI PSIZIOB [0 MYJIBTHUIIJIMKATABHBIM CHCTE-
MaM IpU yCJIOBHM, 4TO KOI(MDPUIMEHTHI PsAJIOB MOHOTOHHBI. HaliieHbl yCJIOBUS JIJIsi BECOBO (DYyHKIUU U
k09 OUIMEHTOB pAMA, JJIsi KOTOPBIX CyMMa Psjia TPUHAJJIEXKHAT TpocTpancTBy Jlebera L, (1 < p < o0) ¢
Becom. Kpowme Toro, paccmorpen ciy4ait p = 1. B aToM ciiydae HaliJIeHbI Ipyrie yCJIOBUsI HHTEIPUPYEMOCTH
C BECOM CYMMBI PACCMAaTPUBAEMOro psijia. B cilydae orpaHnYeHHOCTH HOPOXK/IAIOIIEH 110CIIe/I0BATEILHOCTH
JOKa3aHHBIE TEOPEMBI TTO/IPA3yMEBAIOT AHAJIOT U3BECTHOM TeopeMbl Xapau-JIuTTiBy1a 0 TPUroHOMEeTpIYe-
CKHMX PAJIaX ¢ MOHOTOHHBIMU KO3 HUIeHTaMu.

Kmouesvie cao6a: MyJTbTUIIINKATABHBIE CUCTEMBI, BECOBasi MHTETPUPYEMOCTb CYMMBI PSIZIOB, 00pa3yolast
[I0CJIe/I0BATEIbHOCTD, MOHOTOHHBIE KO3 dUIMeHTHI, TeopeMa Xapau-Jlurtiasyna.
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The work is related to the study of the model-theoretic properties of Jonsson theories, which, generally
speaking, are not complete. In the article, on the Boolean of Jonsson subsets of the semantic model of
some fixed Jonsson theory, the concept of the Jonsson closure operator Jcl was introduced, defining the
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Introduction

This work is related to the study of definable subsets of the semantic model of a fairly wide class
of fixed Jonsson theories. The following reasons cause the appeal to definable subsets of the semantic
model. The problem of describing the heredity of Jonsson theories is well known. To date, a complete
description of this important model-theoretic property is unknown.

The Jonsson theory is called hereditary if the property of being a Jonsson theory is preserved for
admissible enrichments of the signature under consideration. Moreover, with admissible enrichment,
only those hereditary Jonsson theories are of interest that, in these enrichments, preserve the definability
of the type for the stability obtained with such enrichment. If we take into account the fact that the
classical version of stability is associated with enrichments only of constants, then the problem of
describing heredity is naturally present for complete theories. In particular, if we consider the center
of Jonsson theory of fields of a fixed characteristic, then in the case of characteristic 0, the enrichment
of this center does not preserve Jonssoness when the enrichment is a one-place predicate interpreted in
an algebraically closed field of characteristic 0 as an elementary subfield, i.e. an elementary submodel
of an algebraically closed field of characteristic 0 is of sufficiently large power. At the same time, the
center of Jonsson theory is always a complete theory by definition. Besides the fact that this is an
example of the importance of this problem not only for Jonsson theories but also for complete theories,
we also note that in this example, the dimension of the model of the center differs from the dimension
of the model of any of the Abelian groups that define a given field over the field itself. This fact is
due to the fact that the concept of dimension, which determines the maximum number of independent
elements of the model of a given center, is differently connected in these examples with the relation of
non-forking of the corresponding types of algebras considered: fields and Abelian groups. The main tool
that distinguished these dimensions was once identified by S. Shelah when studying the classification of
complete theories, and it was called forking. In the work [1], the basics of forking for Jonsson theories
were defined when studying the model-theoretic properties of the semantic model of a fixed class of
the Jonsson spectrum of a fixed class of models of the consideration language.

The next interesting and important issue discussed in this article is describing definable subsets
of a semantic model using a closure operator that defines some pregeometry on the Boolean of the
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semantic model under consideration. Note that the idea of describing the classification of theories
regarding various types of geometries specified by pregeometry was once proposed by B. Zilber [2].
Mustafin T.G. in work [3|, within the framework of the study of complete theories, the concept of a
pure pair and a semantic triple was proposed using a specific closure operator defined on subsets of a
sufficiently large model of a stable complete theory. Theorems were obtained describing the properties
of the closure operator defined on special subsets of the monster model of the considered complete
stable theory. In contrast, the description of the properties of this operator was closely related to one
of the elements of the semantic triple, namely, of the group of automorphisms of this monster model.
Note that this approach to describing closure operators differs from the description in the works of
B. Zilber.

Yeshkeyev A.R. obtained results on implementing the approach of Mustafin T.G. already within the
framework of studying, generally speaking, the incomplete Jonsson stable fixed Jonsson theory [4]. It
should also be noted that when determining the syntactic and semantic similarities of Jonsson theories,
Yeshkeyev A.R. redefined the concepts of a pure pair and a semantic triple for Jonsson theories and
their semantic models [4].

In the work [5], the Jonsson spectrum of a fixed class of models of an arbitrary signature was
defined. Note that within the framework of the study of the corresponding invariants of Abelian
groups and special types of rings [6, 7], a description of such an important model-theoretic concept
as cosemanticness of models of Jonsson theories was obtained. It turned out that the concept of
cosemanticness generalizes and clarifies such an important concept as the elementary equivalence of
two models. In addition, the concept of cosemanticness of models is related to the syntactic concept of
Jonsson theory in that two models are cosemantic with each other if their Jonsson spectra are equal.

Thus, we note the importance of this article in connection with the following circumstance that
connects the relevance and novelty of this problem, regarding the fact that any Jonsson theory is a
special case of such an important and fruitful concept as the Jonsson spectrum of a fixed class of
models of a given signature.

When studying definable subsets of a complete theory, as a rule, one specifies some axioms satisfied
by these formulaic subsets of fixed models of this complete theory. In our case, we will do the
same for the special case of definable subsets of the semantic model of a fixed Jonsson theory.
Namely, these axioms will predetermine the possibility of determining the Morley rank function
in its “Jonsson” interpretation, i.e. in conditions where only existentially closed extensions under
corresponding monomorphisms, which are not necessarily elementary, are considered.

At the same time, we note that all these arguments will have a positive development for the
corresponding types of homomorphisms, i.e. we can transfer the results of this article to positive
Jonsson theories. The concept of a positive Jonsson theory and the properties of morphisms of such
theories were considered in [8,9].

Those facts that are not indicated in this article but may be helpful for a deeper understanding of
the results of this article can be obtained from the following sources [10-18].

1 Basic concepts and results concerning Jonsson theories

Let us present the necessary definitions and results concerning Jonsson theories.

Definition 1. [19] A theory T is called Jonsson if it has an infinite model, is inductive, and satisfies
the joint embedding property (JEP) and amalgamation property (AP).

Note that Jonsson theory, by its definition, is, generally speaking, not complete, i.e. the class of
its models can contain both infinite and finite models and, in addition, the definition of JEP and AP
considers isomorphic embeddings rather than elementary monomorphisms. There are many examples
from classical algebra that satisfy Jonsson theories. These include groups, Abelian groups, rings, fields
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of fixed characteristic, Boolean algebras, linear orders, vector spaces, modules over a fixed ring and
others.

Definition 2. [20] Let £ > w. A model M of a theory T is called k-universal for the theory T if for
each model A € Mod(T') such that |A| < k, there is an isomorphism f: A — M.

Definition 3. [20] Let k > w. A model M of a theory T is called k-homogeneous for T if for
any two models A, Ay € Mod(T'), which are submodels of M such that |A| < &, |Ai| < &, and the
isomorphism f : A — Aj, for every extension B of model A that is a submodel of M and model T" of
cardinality strictly less than k, there is an extension By of model A, which is a submodel of M and
an isomorphism ¢ : B — B; extending f.

A homogeneous-universal model for T is a k-homogeneous-universal model for T of cardinality
K> Ww.

Definition 4. [20] The semantic model C7 of Jonsson theory T is called the w'-homogeneous-
universal model of the theory T

Definition 5. [4] The semantic completion (center) of Jonsson theory 7' is the elementary theory
T* of the semantic model Cr of the theory T, i.e. T = Th(Cr).

In the case when universally homogeneous models in the Jonsson sense are saturated, a special
class of Jonson theories is distinguished, the elements of which are called perfect Jonsson theories.

Definition 6. [4] A Johnson theory T is said to be perfect if every semantic model of the theory T°
is a saturated model of T*.

The remarkable property of the existence of a model companion for such theories determines the
feature of perfect Jonsson theories.

Theorem 1. |4] Jonsson theory T is perfect if and only if 7% is a model companion of theory T

An important characteristic of any theory is stability. For complete theories, the concept of stability
was introduced by S. Shelah in 1969. In the work [4] Yeshkeyev A.R., the concept of stability in the
Jonsson sense was defined. Let us recall the definition of this concept.

Let T be a Jonsson theory. Let S7(X) denote the set of all existential complete n-types over X
that are consistent with T" for every finite n.

Definition 7. [4] We say that a Jonsson theory T is a J-A-stable if for any T-existentially closed
model A, for any subset X of the set A since |X| < A it follows that |S”/(X)| < A. The Jonsson
theory T is called a J-stable if it is a J-A-stable for some A.

In the article |6], a result was obtained showing that stability in the above sense is in good agreement
with the classical concept of stability.

Theorem 2. |6] Let T be a perfect Jonsson theory complete for 3-sentences, A\ > w. Then the
following conditions are equivalent:

1 T is a J-A-stable;

2 T* is a A-stable, where T™ is the center of Jonsson theory T

In the work [1], within the framework of the study of Jonsson theories, the concept of J-pregeometry
was introduced.

Let T be some fixed Jonsson theory, X C Cp, P(X) be the Boolean of the set X and the map
cl: P(X) — P(X) is some closure operator on the set P(X). The pair (X, cl) is a J-pregeometry if the
following conditions are satisfied:

1) if AC X, then A C cl(A) and cl(cl(A)) = cl(A);

2)if AC B C X, then cl(A) C cl(B);

3) (exchange) AC X, a,b€ X and a € cl(AU{b}) \ cl(A), then b € cl(AU {a});
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4) (finite character) If A C X and a € cl(A), then there is a finite Ag C A, such that a € cl(Ay).

Further, we will assume that the operator cl, which defines the J-pregeometry on a subset of the
semantic model of some fixed Jonsson theory, will be the algebraic closure operator, which is equal to
the definable closure operator, i.e. ¢l = acl = dcl.

Definition 8. [21] A set X is called Jonsson in the theory T if it satisfies the following properties:
1) X is a definable subset of Cr;
2) cl(X) is the carrier of some existentially closed submodel Cr.

Next, we write down additional axioms to preserve the Morley rank of the above formulaic Jonsson
subsets and denote this system of axioms by (*). Due to the result on the equivalence of the Jonsson
stability of the Jonsson theory and the corresponding stability of its center for a perfect 3-complete
theory (Theorem 2), these axioms not only clarify the boundaries of conservation of the model-theoretic
properties of the Morley rank of the considered formulas of a fixed Jonsson theory in a given context
but are also correctly related to the closure operator, which specifies the pregeometry on the Boolean
of Jonsson subsets of the semantic model of the theory under consideration. Moreover, we note that
the semantic model itself is an element of this Boolean due to the fact that the formula x = x is an
existential formula. The main results of this article also use the correctness of this axiomatics and the
closedness with respect to such subsets.

Let T be some Jonsson theory, let J denote the set of all Jonsson subsets of the semantic model
Cr and let |J| = |I], where I is index set. It’s clear that J C P(Cr). Let us introduce the concept
of a family of Jonsson subsets of the semantic model Cr. Let us denote by J" the set of all definable
Jonsson subsets of the semantic model Cr, the length of whose defining formulas is equal to n.

Let us present a system of axioms, which we denote by (*).

Let Jset(Cr) be the smallest family of Jonsson subsets in |J CF with the following properties:
n>1

1) For each ¢ € I, from the fact that A; € J it follows that A; € Jset(Cr).

2) The set Jset(Cr) is closed under finite Boolean combinations, i.e. from the fact that A, B € J"
it follows that A, B € Jset(Cr), AU B € Jset(Cr), A(\B € Jset(Cr) and C\ A € Jset(Cr).

3) The set Jset(Cr) is closed under the Cartesian product, i.e. from the fact that A, B € Jset(Cr)
it follows that A x B € Jset(Cr).

4) The set Jset(Cr) is closed under the projection, i.e. if A C CT™, A € Jset(Cr), mp(A) is the
projection of the Jonsson set A onto C7, then m,(A) € Jset(Cr).

5) The set Jset(Cr) is closed under specialization, i.e. if A € Jset(Cr), A C C%'H“ and m € CF,
then A(m) = {b € Ck: (m,b) € A} € Jset(Cr).

6) The set Jset(Cr) is closed under permutation of coordinates, i.e. if A € Jset(Cr), A C CF, and
o is a permutation of the set {1,...,n}, then 0(A) = {(a(1), s Go(n)): (a1,-..,an) € A} € Jset(Cr).

In work [4], within the framework of the study of Jonsson subsets of the semantic model of given
Jonsson theory, the concept of forking was axiomatically introduced, and the equivalence of forking
according to Shelah and the axiomatically given forking for existential types over subsets of the semantic
model of some Jonsson theory was proven.

Let X be the class of all Jonsson subsets of the J-saturated semantic model Cr of some Jonsson
theory T, R be the class of all existential types (not necessarily complete). Let JNF C R x X be some
binary relation. Let us write down in the form of axioms some conditions imposed on JNF (Jonsson
nonforking).

Aziom 1. 1f (p,A) € JNF and f: A — B are isomorphic embeddings, then (f(p), f(A)) € JNF.

Aziom 2. 1f (p,A) € JNF and q C p, then (¢, A) € JNF.

Aziom 8. 1f A C B C C and p € S/(C), then (p,A) € JNF if and only if (p, B) € JNF and
(p|B,A) € JNF.
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Aziom 4. If A C B, dom(p) C B and (p, A) € JNF, then there exists ¢ € S7(B) such that p C ¢
and (¢, A) € JNF.

Aziom 5. There is a cardinal p such that if A C B € C, p € S/(B) and (p,A) € JNF, then
{g€57(C):pCq(q,4) € INF} <

Aziom 6. There is a cardinal s such that for any p € R and for each A € X, if (p, A) € JNF, then
there exists A1 C A, such that |A;| < s and (p, A1) € JNF.

Aziom 7. If p € S/(A), then (p,A) € JNF.

Theorem 3. [4] Let T be a perfect Jonsson theory, complete for 3-sentences. Then the following
conditions are equivalent:

1) the relation JNF satisfies axioms 1-7 with respect to the theory T

2) the theory T™ is stable and for any p € R, A € X the pair (p, A) € JNF < p is not forks over
A (in the classical sense of S. Shelah [22]).

Next entry pJ/JA will mean that (p, A) € JNF. If tp(a, AU E)LJA, then we will write aj/‘]B :
A

2 Jonsson theories with closure operator

In the work [3] Mustafin T.G., some properties of complete theories admitting a closure operator
were considered. In this article, we will consider some properties of the closure operator within the
framework of the study of Jonsson theories concerning those additional considerations as the above
Aziomatics (*) concerning the model-theoretic properties of preserving the Morley rank and the
correctness of the definition of Jonsson subsets satisfying given axiomatics and satisfying the properties
closure operator defining the pregeometry on the Boolean of the semantic model under consideration.

Recall that a complete theory T admits a closure operator J if on the monster model C of the
theory T" one can define a closure operator J so that J(g(X)) = ¢g(J (X)) for all X € P(C) and
g € Aut(C) [3].

We need the following technical lemma from [3] to prove Theorem 4.

Lemma 1. |3] Let J be some closure operator admitted by the full theory of T, then the following
conditions are equivalent:

1) if M <C, then M =U{J(m): m € M};

2) |J(a)| < |C| for any a € C;

3) J(a) C acl(a) for any a € C.

The following definition belongs to A.R. Yeshkeyev. It defines the closure operator for a generally
speaking incomplete theory, and it can be used in a broad sense for application in specific algebras,
the theory of which is Jonsson.

Let T be a Jonsson theory whose semantic model Cr satisfies Axiomatics (*).

Definition 9. We will say that a Jonsson theory 7" with a closure operator Jcl if Jel (g (X)) =
g(Jcl (X)) for all X € P(Cr) and g € Aut(Cr).

Let T be some Jonsson theory with the closure operator Jcl, X be a Jonsson set, and Jel(X) =
M € Ep, where E7 is the class of all existentially closed models of the theory 7. If a,b € Cp\M then
b € C) (a) means that there exist n < w and the sequence (b, ..., b,) elements from Cp\M such that
bo = @, by, = b, b; € cl(bi+1) or bi+1 € cl(b;) for all i < n. In this case, the sequence (bo, ..., by) will be
called a Jcl-path outside M between a and b of length n.

Let us consider some conditions imposed on the Jcl operator.

Aziom 1. 1f M € Er, then M = M, where M = U{Jcl(m) | m € M}.

Aziom 2. 1f M € Er and M = M, a,b are tuples of elements from Cr \ M, Cy(a) N Cy(b) = &,
then E\LJB.

M
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Further, instead of the closure operator Jcl, we mean the algebraic closure operator acl, which is
also the definable closure operator dcl.

It is well-known that w-stable complete theories are characterized by the fact that any type
(respectively, any formula) of a given theory has some Morley rank, i.e., ranked according to Morley.
First, J-w-stability does not coincide with w-stability in the general case, and in the context of the
following Theorems 4 and 5, the condition w-stability is not assumed even on the center of the
Jonson theory under consideration. However, at the same time, earlier in this article, we defined the
Axiomatics (*), which is consistent with the Morley rank of definable Jonsson subsets. Therefore, in
Theorems 4 and 5, Axiomatics (*) is assumed under the assumption that the closure operator under
consideration is related to Morley-ranked subsets of the semantic model under consideration. We also
note that due to the perfectness of the theory, the semantic model is saturated in power w™, which is
enough for the rank of formulaic subsets relative to the center of the perfect Jonsson theory to exist.

In connection with the above definitions, we have the following results:

Theorem 4. Let T be a perfect Jonsson J-A-stable theory, complete for 3-sentences with the closure
operator Jcl, whose semantic model Cr satisfies Axiomatics (*). If Jel satisfies Axioms 1, 2 and

M € Erp, then for all a € Cr\M Cp (a) = Jel(Cur (a)).

Proof. Since by condition the Jonsson theory T is 3-complete, then all 3-types are complete types,
i.e., they are all true in C7. However, Cr is an existentially closed model, so all 3-types are true in M.
Due to the fact that acl = dcl = Jcl, then Lemma 1 is true for 7%, and therefore for any existentially
closed model of the theory T', since T' is a perfect Jonsson theory. The inclusion of Cs(a) C cl(Car(a))
follows from Lemma 1.

We prove the reverse inclusion by induction on the length of Jel-paths. Let (b,a) be a Jcl-path
outside M (of length I), i.e. either b € Jcl(a) or a € Jel(b). In any case, a | b in T* theory. By

M

Theorem 2, the theory T™ is A-stable in the classical sense. Then, by Theorem 3 we have aJ/Jb in the

M
Jonsonian sense of J-forking. Hence, by virtue of the definition of the theory with the closure operator
Jel and Axiom 2, we obtain b € Cys(a). Let now (bo, ..., bn) Jcl-path outside M between b and a of
length n. By induction b; € Car(byn) and by € Car(b1). This means by € Car(bn), i.e. b € Car(a).

Theorem 5. If T is a perfect Jonsson J-A-stable theory, complete for 3-sentences with the closure
operator Jcl whose semantic model Cp satisfies axiomatics (*), the operator Jcl satisfies the Axioms
1,2, M,N € Ep, M <3, N, a € N\M, then:

1) M <3 MU(NQCM (a)) jgl N;

2) M =<3, N\(NOC'M(CL)) <3, V.

Proof. 1) Let K = M U (N N Ca (a)). Let us assume that K is not an elementary submodel of N
with respect to 3-formulas, i.e. K is not an existentially closed submodel of N. Then there must exist
an element b € N, an existential formula 0 (z, 7, Z) and tuples a € N N Cys (a) and m € M such that
N | 0 (b,m,a), but N = 70 (c,m,a) for all ¢ € K. Hence b ¢ Cps(a) and b | a in T* theory. By

M

Theorem 2, the theory T™ is A-stable in the classical sense. Then, by Theorem 3 we have aj/Jb in the
M

Jonsson sense of J-forking. Since @ C Cys(a), then Cys(a) = Cas(a).

Therefore Cys(b) N Ciy(a) = @. By Axiom 1 M = M, and by Axiom 2 bLJa in the Jonsson sense
M
of J-forking. We have a contradiction.
2) Let a; € N\M,i < A such that N\ (NN Cuy (a)) = MU |J (NNCuy(a;)). Applying point 1)
<A
by induction we obtain that M <3, N\ (N N Cu (a)) <3, N.
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JIOHCOHABIK »KUBIHAAPIbIH, TYIBIKTALY OHepaTopsiapbl TyPAJIbL
O.U. Yas6puxr, ['A. Ypken

Konadarnbanv, mamemamura uncmumymao, Axademur E.A. Boxemos amuwindazv, Kapazandv, yHusepcumemi,
Kapaeando, Kasaxcman

2K yMpbIc 2KaJIbl Al TKAH 1A TOJIBIK, eMeC GOJIBII TaObLIATHIH HOHCOHIBIK, TEOPUIIAP/IBIH, MOJIEJIb Ii-Te0PEeTHKA~
JIBIK, KACHETTEPIH 3epTTeyMeH bailstaHbIcThl. Makasia aBTopsaphl Keibip GeKiTiireH HOHCOHIBIK, TEOPUSTHBIH
CEMaHTHUKAJBIK, MOJEIHIH HOHCOHIBIK, IMKi YKUBIHIAPBIHBIH OyI€aHBbIH/IA OCHI YKUBIHIAPDIAAFLI J-aJraliKbl
reOMEeTPUSIHBI AHBIKTAWTHIH Jcl HOHCOHIBIK TYHBIKTAJLY OIIePATOPbI YFBIMBIH €HII3/11 YKOHE TYMBIKTAJLY OIle-
PaTOPBIH CUIATTAWTHIH HETi3ri HOTHXKEeJEp AJIbIH/IH.

Kiam coesdep: HOHCOHIBIK TEOpUsI, CEMAHTUKAJBIK, MOJETh, HOHCOHIBIK, KUBIH, TYWBIKTAJIY OIEPATOPHI,
J-asFanKksl TeoMeTpus.
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O06 omeparopax 3aMBIKaHNS HTOHCOHOBCKIX MHOXKECTB

O.N. Vmebpuxrt, ['A. Ypken

HUnemumym npuraadnot mamemamuru, Kapazanduncrkut ynusepcumem umenu axademura FE.A. Bykemosa,
Kapaeanda, Kaszaxcman

Hannast paboTa CBsI3aHa C U3YyUEHUEM TEOPETUKO-MO/IEJIbHBIX CBORCTB HOHCOHOBCKUX TE€OPHUii, KOTOPbIE, BO-
00I111e TOBOPSL, HE SIBJISIIOTCS MOJHBIMUA. ABTOpaMU CTaThbU Ha OysieaHe HOHCOHOBCKUX ITOJMHOXKECTB CEMAHTH-
9EeCKON MOJIEJTM HEKOTOPO# (PUKCUPOBAHHONW MOHCOHOBCKOW TEOPUU OBLIO BBEJIEHO MOHATHE HOHCOHOBCKOI'O
omeparopa 3amblKanus Jcl, 3ajatomero J-mpeareoOMeTpruio Ha 9TUX IIOAMHOXKECTBAaX, U I0JIyYeHbl HEKOTO-
pbl€ Pe3yJbTaThbl, ONUCHIBAIOIINE YKA3AHHBII BBIIIE OIIEPATOD 3aMBIKAHUS.

Karouesvie crosa: TOHCOHOBCKAS TEOPHsi, CEMAHTHYIECKAs MOJE/Ib, HOHCOHOBCKOE MHOXKECTBO, OIIEPaTOp 3a-
MBIKaHUs, J-IIpeareoMeTpus.
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ANNIVERSARIES

Dulat Syzdykbekovich Dzhumabaev
Life and scientific activity (dedicated to the 70th birthday anniversary)

Professor Dulat Syzdykbekovich Dzhumabaev, Doctor of Physical and
Mathematical Sciences, was a prominent scientist, a well-known specialist
in the field of the qualitative theory of differential and integro-differential
equations, the theory of nonlinear operator equations, numerical and
approximate methods for solving boundary value problems.

Dzhumabaev D.S. was born in Kantagi, Turkistan district, South
Kazakhstan region, on April 11, 1954. From 1961 to 1971, he attended
secondary school in Turkistan. In 1971, he entered Faculty of Mechanics and
Mathematics of Kazakh State University named after S.M. Kirov (now Al-
Farabi Kazakh National University). After graduating with honors from the
Department of Mathematics in 1976, he continued to pursue postgraduate
studies at the Institute of Mathematics and Mechanics of the Academy
of Sciences of the Kazakh SSR. His scientific activity began under the guidance of Academician
Orymbek Akhmetbekovich Zhautykov, an outstanding scientist and mathematician, who made a
huge contribution to the creation and development of the mathematical science in Kazakhstan. After
successful completion of postgraduate studies in 1979, Dzhumabaev D.S. joined the Laboratory of
Ordinary Differential Equations headed by Academician Zhautykov O.A. He went from being a junior
researcher to becoming the head of the Laboratory of Differential Equations, one of the leading divisions
of the Institute of Mathematics. He chaired the laboratory from 1996 to 2012.

Dzhumabaev D.S. was a successful scientist and versatile specialist in the field of mathematics and
its applications. He devoted his talent and hard work to the study of nonlinear operator equations,
to the creation and development of qualitative methods in the theory of boundary value problems for
differential equations.

The main research areas and the results obtained by Professor Dzhumabaev can be divided into
several groups. The most significant and important scientific results are presented below in chronological
order.

1 Boundary value problems for ordinary differential equations with a parameter in a Banach space

During postgraduate studies, his research was focused on nonlinear boundary value problems with
parameter for ordinary differential equations of the following form:

% Cfm N, 2(0) =2, (1)

z(T) =z, (2)
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where f : [0,7] x Bx B — B is a continuous function satisfying the existence conditions for the Cauchy
problem (1) on [0, 7] for all values of a parameter A from some set G C B; here B is a Banach space.
The problem is to find a pair (A\*,z*(¢)), where A\* € G and z*(¢) is a solution to Cauchy problem
(1) with A = \*, satisfying the boundary condition (2).
Let the right-hand part of the differential equation be defined on the set

DY ={(t.x,\): 0 <t < T[le = 2O (0)]| < R(t)p, [|A = \°|| < p}.

Here A0 € G, 2(O(#) is a solution to Cauchy problem (1) with A = X\, R(t) is a positive function
continuously differentiable on [0, 7], and p is a nonnegative number.
Let M(f) denote a set of triples (A\° € G, R(t) > 0, p > 0) for which the Lipschitz condition

‘|f(t7$7)‘) - f(t,f,S\)H < a(t) : (Hx _57|’ + H)‘_ S‘H)

is satisfied on the set D, and the inequality

t
(a) exp{/a(T)dT} 1< R()
0

holds (a(t) € C([0,T1])).
The set M(f) is non-empty if so is the set G.
For a triple (A%, R(t), p), a solution of problem (1), (2) is sought in the set a® = af x ag( 1> Where

of = {X: []A= 2| < p} and of ) = {a(t) « ||l2(t) — 2D (B)]| < R(t)p}.

Theorem. 1. Problem (1), (2) is solvable if and only if, given some (A\°, R(t),p) € M(f), for any
two pairs (\,z(t)) and (A, z(t)) from the set o, there exist an invertible operator A € L(B, B) and a
number 6 > 0 satisfying the inequality

(a)  |]A- X—A[/f{f(t,x(t),A) ~ flta), D}t || < (1= 0lA - AL,

and the following inequality is true

@ glla[f ), 20t — (51 29| < o1 - ),

T T
where ¢ = %- [exp{f a(t)dt} -1- a(t)dt} < 1. Here L(B, B) is a space of linear bounded operators
0 0

mapping B into B.

Under the conditions of Theorem 1, problem (1), (2) is uniquely solvable on the domain a®.

For the linear boundary value problem
dx 0 1
== Qi1(t)x + Q)N + f(2), z(0) = 2", x(T) ==z,
T
the conditions of Theorem 1 are reduced to the bounded invertibility of the operator @ = [ Q2(t)dt.
0

The inequality (ag) guarantees the existence and uniqueness of a solution to problem (1), (2) on
the domain o,
The proposed approach was applied to semi-explicit differential equations with nonlinear boundary

conditions:

dx dz 0
%_f(t7x7%7A>a x(O)—x ) (3)
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®[z(T),#(T), \] = 0. (4)

Here f:[0,7] x B x B x B — B is a continuous function satisfying the conditions for the existence of
a solution to the Cauchy problem (3) on [0,T] forall A\ € G; G C B, ®: Bx Bx B — B.

Analogously, the right-hand side of the differential equation is considered on the set D =
[(tayd) : 0 <t < Tllo— 290 < R, lly — i@ < R(b)p, I — N|| < p}, where
A0 e @, 2(O(t) is a solution to the Cauchy problem (3) with A = A0, R(t) is a positive function
continuously differentiable on [0, 7], and p is a nonnegative number. Let M (f) denote the set of triples
(A\° € G, R(t) > 0, p > 0) for which the following inequalities are satisfied:

1/t 2y, 0) = f(t.2,8, )] < ar(t) - (llz = 2|+ [[A = X)) + a2 (t) - [ly — 71,
t

aa(t) <1 (ailt) € C(0, 7)), i = 1,2); C<t>exp{/ c(r)dr} < f(t) <C(t):%)‘
0

For a triple (\°, R(t), p), the following sets are introduced:
g = {z(t) : [lz(t) = 2O @) < R@®)p, ||2(t) — 2O (1)]] < R(D)p},

DYUT) = {(u, v, 0) : [Jlu = 2ON(T)|| < R(T)p, [[v = & O(T)|| < R(T)p, ||]A = A°|| < p}.
Let the boundary function in (4) satisfy the Lipschitz condition |[®(u,v, ) — ®(4, 7, M| < ®yllu —
|| + @y ||v — 3|] + @A||X — Al| on the set DO(T).

Theorem 2. Problem (3), (4) is solvable if and only if, given some (A, R(t), p) € M(f), for any two
pairs (A, z(t)) and (A, z(t)) from the set a° = af x dg(t), there exist an invertible operator A € L(B, B)
and a number # > 0 satisfying the inequality [|A — A — A{K1[\, z(t)] — K1 [\, z(0)]}]| < (1= 60)||A =\,
and the following inequality is true:

1 -
gllAK: A% 2O < p(1 - g),

where ¢ = % : [fl)u . {exp{ofc(t)dt -1- Ofozl(t)dt} + o, - {C(T) exp{fc(t)dt - ozl(T)H < 1,

~ T
Ki[\, () = @[« + L I((0,40),2), ST (1), 4(T), 2,4

Conditions for the continuous dependence of a solution on the initial data and a criterion for the
existence of an isolated solution to problem (3), (4) were established.

Dzhumabaev D.S. justified a new version of the shooting method for nonlinear two-point boundary
value problems of the following form

dz
E = f(tv Z)v (5)
9[2(0), 2(T)] = 0, (6)

where f:]0,7] x B — B is continuous in t and z, g: B x B — B.
Let A denote the value of z(¢) at the point ¢ = 0. By the substitution z(t) = z(t) — A, problem (5),
(6) is reduced to the following boundary value problem with parameter

dr
= ftatN),  x(0)=0, (7)

g\ A+ 2(T)] = 0. (8)
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Assume that in the closed regions DO = {(t,2,)) : 0 <t < T, ||z — 2O (#)|| < R(t)p, ||A—\°|| < p} and
DY = {(\u): []A =X < p,|lu— A0 —2O0(T)|| < [14 R(T)]p} (here 2O (t) is a solution to Cauchy

problem (7) for A = A%, R(t) > 0 for ¢t € [0, 7], and p > 0), the following inequalities hold:
1f(tz+X) = f(t, &+ M| < a(t)(llx — 2| + A= All),

lg(r, 1) — g )| < gallA = Al + gullu — all,

t

and exp{ofa(T)dT} — 1< R(1).

0

Theorem 3. If for any two pairs (A, z(t)) and (A, z(t)) from the domain o = o x ag(t) and for some

N > 0, there exist an invertible operator A € L(B, B) and a number # > 0 satisfying the inequality
A=A = A{KP N 2()] = KN 2(6)]}] < (1 - 0)]|A — A||, and the following inequality holds

1
G IR NN < o1 - gy,

. A T T T

where qj(\,) = gy - % : {exp{f a(t)dt} —1- [a(t)dt—..— ﬁ(fa t)dt
0 0 0

value problem (7), (8) has a unique solution in a®.

N
) } < 1, then the boundary

TN-3

Here K§;>[A,m(t)]—g[A /\+ff (A + et [ Fno2, A a(rv-2))dry-s) )dt],N:o,Lz,....

For different values of N, various sufficient condltlons for the unique solvability to problem (7),
(8) can be derived from Theorem 3. The problem of choosing an initial approximation and other
replacement versions in problems with parameter were also considered.

Dzhumabaev D.S. also studied nonlinear infinite systems of equations

Qj()\la )\2, ...,)\i, ) = bj, j =1,2,.. (9)

where A = (A1, Ag,...) and b = (b1, b2, ...) are elements of [, (1 < p < o00). It is supposed that in the
domain D' = {\: [|A = \%|| < p} C I, for all i (i = 1,2,...), functions Q;(A1, Ag,...) have continuous
partial derivatives with respect to all arguments and
oo oo
I)Zsup%/\(j‘)‘gk1<oo; Q)Zsup%)\g)‘)
j=1XeD’ k=1XeD!
Then there exist numbers 6, and 6 satibfying the inequalities
3)‘ >28Q ‘+0 4)‘862( > 3 sup 8%’;\(_)‘)‘+92,forall)\ED’andizl,Q,...
J#i k#i AeD’ !
The following deﬁnltlon extends the concept of complete regularity to the case of nonlinear infinite

systems in [,,.

< ko < 0.

Definition 1. An operator Q = (Q1,Q2,...) is called completely regular in the domain D', if it
satisfies conditions 1)-4) wherein the numbers 6; and 3 are such that 5) pp%lel + %92 =60>0.

Lemma 1. If Q is a completely regular operator in the domain D’ and §||Q(A°) — b|| < p, then the
infinite system of nonlinear equations (9) has a unique solution in D’.

Using Lemma 1, the results obtained for problems (1)-(2), (3)-(4), and (5)-(6) were concretized for
infinite systems of differential equations. Effective conditions were established for the unique solvability
of nonlinear boundary value problems for infinite systems of differential equations in the space I,,.

The findings described in this Section were published in [1-5] and formed the basis of his candidate
thesis. In 1980, Dzhumabaev D.S. defended his dissertation “Boundary value problems with a parameter
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for ordinary differential equations in a Banach space” and earned a degree of Candidate of Physical
and Mathematical Sciences in the specialty 01.01.02 — Differential Equations.

The methods and results of [1-5] were applied to nonlinear differential equations of various classes
[6-12]. Dzhumabaev’s research was then focused on various problems for nonlinear operator equations
[13-17].

2 A linearizer and iterative processes for unbounded non-smooth operators

Consider the nonlinear operator equation
A(z) =0, (10)

where z € By, A(x) € B, and each B; is a Banach space with norm || - ||;, i = 1,2. Let D(A) and
R(A) denote the domain and range of A, respectively.

For a point #° € D(A), the following sets are constructed: S(z°,7) = {x € By : ||z — 2°||; < r},
U = {x € D(A) : ||A(2)|]2 < [|A(2°)|]2 = u°}, and Q = S(z°,7) N UY. Assume that the operator A
is closed on €. As is known, iterative methods, that allow one to find a solution under some sufficient
conditions for its existence, rely on certain linearizations of the nonlinear operator. Linearization of
an unbounded operator naturally leads to unbounded linear operators. This motivated Dzhumabaev
D.S. to introduce the concept of a linearizer of an operator A at a point & € D(A) that generalizes the
Frechet derivative for unbounded non-smooth operators.

Definition 2. A linear operator C' : By — Bs is called a linearizer of an operator A at a point
z € D(A), if D(A) C D(C) and there exist numbers € > 0 and § > 0 such that

1A(z) = A(Z) = Clz = 2)[|2 < ellx — 2]y

for all z € D(A) satisfying ||z — 2|1 < 4.

If C € L(By, Bsy) is the Frechet derivative of A at a point & € D(A), then it is also a linearizer.
However, the definition of a linearizer, unlike that of the Frechet derivative, does not require: a) the
boundedness of the operator C' and 2) the dependence of € on ¢ (e(6) — 0 as 6 — 0 for the Frechet
derivative).

While the Frechet derivative of an operator A is uniquely determined, there can be infinitely many
linearizers of this operator.

Distinctive advantages of linearizers make it possible to extend the domain of application of iterative
methods to solving nonlinear operator equations. Dzhumabaev D.S. proposed a method for proving
the convergence of iterative processes that takes into account the specificities of unbounded operator
equations.

Theorem 4. Suppose that at each point z € {2 the operator A has a linearizer C; with constants
e, and 6, such that: 1) C, is a one-to-one mapping of D(C) onto R(C), and ||C;1|| < 7. < ¥;
2) €6, <© < 1jand 3) 3= - [[A(z)|]2 < K. If I - [[A(2)|]2 < r, then (10) has a solution z* € , to

which the iteration process

20D = g _ Lot ey pmyy

a Jj(n)
converges, here « = max{1, K}, n=0,1,2,...

In the case when for a given § > 0 there exists €(d) independent of x, the following assertion is
true.

Theorem 5. Suppose that at each point x € € and for each § € (0,h) the operator A has a
linearizer C, with constants 6 and €(d) > 0 satisfying the following conditions: 1) C ! exists on R(C),
and [|C; Y| <, 2) %irr[l)e(cs) =0.

ﬁ

Then (10) has a solution z* € Q, if the following inequality holds: 3) v - ||A(z)||]2 < 7.
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Theorem 5 generalizes the local theorem of Hadamard to unbounded operator equations. This made
it possible to extend the well-known Newton-Kantorovich method to unbounded nonsmooth operator
equations and apply it to nonlinear boundary value problems for differential equations.

Consider the closed operator equation

A(z) =Czx+ F(z) =0, (11)

where C' : X — Y is a closed linear operator, F' : X — Y is a continuous operator, and X and Y are
Banach spaces with respective norms || - [|; and || - [|o. )

Assume that F has a Frechet derivative in some domain containing the ball S(2°,7) = {zeX:
|z — 20|y <7}, 2° € D(C), and R(C + F'(x)) =Y for x € S(z°,7). Then in D(A) = D(C)N S(2°,r)
the operator A has the linearizer C(x) = C' + F'(x), and D(Cy) = D(C)N X = D(C).

Theorem 6. Assume that the following conditions hold:

(1) For all z € D(A), the linearizer C1(x) has a bounded inverse, and HC1_1(33)HL(Y,X) <;

2) IF'(z) = F'Wllpxyy < L lle = ylh, @,y € S0, r);

0 g
) 2 + 7R lAG e 3 (6?1 < 1 where by = %0, w0 = [AE)]a, B = 1 - i

b = Br - br_1, k =1,2,...,m, where m is a nonnegative number such that b,, < 1 and b,,_1 > 1.
Then the damped Newton-Kantorovich method

1
2 =20 — (04 POt + P, k=012,

where ay = 2by, for k =0,...,m — 1 and o = 1 for k = m,m + 1, ..., converges to a solution of (11).

Theorem 7. Assume that the following conditions hold:

(1) For all 2 € D(A), the linearizer C;(x) has a bounded inverse, and HCfl(UU)HL(Y,X) <
(2) The Frechet derivative F'(x) is uniformly continuous in S(z°,r);

(3) 7 [lA@O)[]2 < 7.

Then there exist numbers o, > 1, n = 0,1, ..., such that the iteration process
gt — g (mFs) _ (O 4 (2™ HC2™ Y 4+ F(2™®)], s=0,1,2, ...,
converges to an isolated solution z* € D(A) of (11). Furthermore, starting with some k°, we can take

an (n > k%) equal to 1, and the convergence rate becomes superlinear.

These results were published in “News of the Academy of Sciences of Kazakh SSR. Series Physical
and Mathematical”, 1984 [13,14], and, at the request of the American Mathematical Society, were
translated and published in “American Mathematical Society Translations”, 1989 [16,17], as well as in
“Mathematical Notes” [15]. Various aspects of applications of these results were considered in [18-20].

8 The parametrization method for solving boundary value problems

Dzhumabaev D.S. developed the parametrization method for investigation and solving boundary
value problems. The method was originally offered in [21,22] for solving two-point boundary value
problems for a linear differential equation of the following form

dx

Z =AMz +f(t),  weR (12)

Bz(0) + Cx(T) = d, (13)

where A(t) and f(t) are continuous in (0,7], B and C are n X n matrices, d € R".
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Consider a partition dividing the interval [0,7") into N equal parts with step size h > 0: [0,T) =
N
U [(r —1)h,rh). Let x,(t) denote the restriction of the function z(t) to the r-th subinterval, i.e. z,(t),
r=1
r =1, N, is a vector function of dimension n defined on [(r — 1)h,rh) and coinciding there with x(t).

Problem (12), (13) is thus transformed into an equivalent multipoint boundary-value problem

cZTZAﬁh»+f@% te[(r—1h,rh), r=1,2,..,N, (14)
Bz1(0) + C lim zpn(t) =d, (15)
t—T—-0
lim xs(t) = x5+1(sh), s=1,2,..,N—1. (16)
t—sh—0

Here (16) are the matching conditions for the solution at the interior points of the partition.

Obviously, if x(t) is a solution of problem (12), (13), then the set of restrictions (x,(t)), r =
1,2,..., N, is a solution of the multi-point problem (14)—(16). Conversely, if a set of vector functions
(xr(t)), r =1,2,....N, is a solution of problem (14)-(16), then the function z(¢) obtained by piecing
together z,.(t) is a solution of the original boundary value problem.

On each subinterval [(r — 1)h,rh), the substitution w,(t) = x,(t) — A\, is made, where A, denotes
the value of z,(t) at the point ¢ = (r — 1)h. Problem (14)—(16) is then reduced to the boundary value
problem with parameter

du,
CZ = Alt)ur + AW + f(1), te[(r—Dhrh), wl(r—1)h =0, r=1,2.,N, (17
B\ +CAy+C lim un(t) =d, (18)
t—T—-0
As + lim us(t) = Ast1, s=1,2,..,N—1 (19)
t—sh—0

An advantage of problem (17)—(19) is that it involves the initial conditions u,[(r — {)h] = 0, so that
one can determine u,(t) from the integral equations

up(t) = / [A(T)u, + A(T)N\]dT + / f(r)dr. (20)
(r=1)h r=1)h

In (20), replacing u,(7) by the right-hand side of (20) and repeating the process v (v = 1,2,...)
times, one obtains a representation of u,(t) by a sum of iterated integrals. Letting ¢ — rh — 0 and
substituting liI}ILl Our(t), r = 1,2,...,N, into (18) and (19) results in a system of nN algebraic

t—rh—

equations in the parameters A\.;, r =1,2,.... N, t:=1,2,...n:
Q.(WA = —F,(h) — Gy(u,h), AR (21)

The basic idea behind the method is to reduce the problem in question to an equivalent problem with
a parameter (17)-(19) whose solution is determined as the limit of a sequence of systems of pairs
consisting of the parameter \ and the function u. The parameter is found from the system of linear
equations (21) determined by the matrices of the differential equation (12) and boundary conditions
(13). The functions u, are solutions of Cauchy problems (17) on the partition subintervals [(r—1)h, rh),
r=1,2,...,N, for the found values of the parameter. The introduction of parameters made it possible
to obtain conditions for the convergence of proposed algorithms and, at the same time, for the existence
of a solution, in terms of the input data. This makes the parametrization method different from the
shooting method and its modifications, where shooting parameters are found from some equations
constructed via general solutions of differential equations, and convergence conditions are also given in
terms of general solutions.
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Theorem 8. Suppose that for some h > 0 (Nh =7T) and v (v = 1,2,...) the matrix Q,(h) :
RN™ — RN is invertible and the following inequalities hold:
(@) Qv I < o (h);

(b) g (h) = v.(h) max(l,h||C’||)[eah —1—ah—...— (a:l) | <1, where a = tre%l}:; [|A()]|.

Then the boundary-value problem (12), (13) has a unique solution z*(t), and the estimate

(ah) n g (R)]”

[[2*(8) = 2™ (0)]] < 3 (h) max(1, h|C]|)

M(h), t € 10,7,

holds true, where

M(R) = 3 () [eh (ah) = (ah)
= w(h)e 1]max{1+h\|c\|z Dy fmax((ldl], ma 11761
7=0

gt tel01]

ah
e a1,

and z() (t) is a piecewise-continuously differentiable function on [0, 7], for which )\gk)

restriction to [(r — )h,rh), r =1,2,...,N.

(k

+ uy )( t) is the

It was shown that the conditions of Theorem 8 are also necessary and sufficient for the unique
solvability of problem (12), (13).

The parametrization method was then applied to the study of singular problems for which the
problem of approximation by regular two-point boundary value problems was solved [23-27]. Necessary
and sufficient conditions were obtained for the well-posed solvability of the problem of finding a solution
to the system of differential equations (12), that is bounded on the whole axis R. For systems whose
matrices and right-hand sides are constant in the limit, approximating regular two-point boundary
value problems were constructed. The connection between the well-posed solvability of the original
singular problem and that of an approximating problem was established. In the general case, Lyapunov
transformations possessing certain properties were used to construct regular two-point boundary value
problems as approximations to the problem of determining a solution bounded on the entire real line.
The concept of a solution “in the limit as t — o0” was introduced and the behavior of solutions of linear
ordinary differential equations as t — oo was investigated. Necessary and sufficient conditions were
derived under which a singular boundary value problem with conditions assigned at infinity is uniquely
solvable, and an appropriate approximating problem was constructed. These results were developed to
the system of differential equations on the real axis:

dz

—=flta), zeR" (22)

In [28,29] the results of Section 2 were also extended to system (22) with the nonlinear boundary
condition

9[x(0), z(T)] = 0.

Results of Sections 2 and 3 were included in the doctoral dissertation.

The doctoral dissertation by Dzhumabaev D.S. titled “Singular boundary value problems for
ordinary differential equations and their approximation” is a fundamental scientific work that
underwent comprehensive approbation in leading scientific centers, such as the Computing Center of the
Russian Academy of Sciences (A.A. Abramov, N.B. Konyukhova), the Institute of Applied Mathematics
of the Russian Academy of Sciences (K.I. Babenko), Lomonosov Moscow State University (V.M.
Millionshchikov, V.A. Kondratiev, N.Kh. Rozov), Institute of Mathematics NAS of Ukraine (Y.A.
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Mitropol’skii, A.M. Samoilenko, V.L. Makarov, V.L. Kulik), Voronezh State University (V.I. Perov),
I. Vekua Institute of Applied Mathematics of Thilisi State University (I.T. Kiguradze), Kiev State
University named after T. Shevchenko (N.I. Perestyuk). Doctoral dissertation was defended at the
Specialized Council of the Institute of Mathematics of the NAS of Ukraine in 1994.

The parametrization method was extended to various linear and nonlinear boundary value problems
for ordinary differential equations on a finite interval and on the whole real line; necessary and sufficient
solvability conditions for those problems were obtained in [28-49].

4 Nomnlocal problems for systems of second-order hyperbolic equations

The results obtained in Sections 2 and 3 provided a basis for solving nonlocal boundary value
problems for systems of second-order hyperbolic equations [50-70].

In the domain = [0,7] x [0,w], consider the following nonlocal boundary value problem for the
system of hyperbolic equations with two independent variables:

0%u ou ou
519 = A(t,x )%—FB( )E—FC(t,x)u—i—f(t,a:), (23)
Py(a) aué’;"’“’) P a“gt’ ?) | FPo@)ult,2)li—ot
+ Sa(x) aug; 2) ‘t:T—i-Sl (w)augt’ 2) ’t:T—FSO(x)u(t, x)|=r = p(z), = €0,w], (24)
u(t,0) = (), te[0,T], (25)

where u(t,z) = col(uy(t,x),...,un(t,2)) is an unknown function, the n x n matrices A(t,z), B(t,x),
C(t,x), Pi(x), Si(z), i = 0,2, and the n-vector functions f(t,z), ¢(x) are continuous on Q and [0,w],
respectively; the n-vector function (t) is continuously differentiable on [0, 7.

Sufficient coefficient conditions for the existence and uniqueness of a classical solution of problem
(23)-(25) were established by a modification of the parametrization method [50, 53, 55, 60, 61|. A
relationship with the following family of boundary value problems for ordinary differential equations
was established:

ov
B = A(t,x)v+ F(t,x), x € [0,w], (26)
Py(x2)v(0,2) + Sa(x)v(T, x) = ®(x), (27)

here n-vector functions F'(¢,z) and ®(x) are continuous on € and [0, w], respectively.

For fixed x € [0,w] problem (26), (27) is a linear boundary value problem for the system of ordinary
differential equations. Suppose the variable z is changed on [0, w]; then we obtain a family of boundary
value problems for ordinary differential equations.

Sufficient and necessary conditions for the well-posedness of nonlocal boundary value problem for
the system of hyperbolic equations (25)—(27) were obtained in [59, 64, 66,67].

Let C([0,w], R™) be a space of continuous on [0, w] vector functions ¢(z) with the norm

1= max, o (2)]];

)

C*([0,T], R™) be a space of continuously differentiable on [0, 7] vector functions 1 (¢) with the norm
11,0 = max ( masx [lo(®)]], max [l(0)]]);

t€[0,T t€[0,T

C1H(Q, R") be a space of functions u(t, ) € C(£2, R") with continuous on (2 partial derivatives Bugv,x),

du(t,x) 9%u(tx) 8u Hu 2%y )
0

§2, T with the norm Jlullyy = max(|[ullo, |3 oull | 0o
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Lemma 2. If problem (26), (27) has a solution for arbitrary F(t,z) € C(Q,R") and ®(z) €
C([0,w], R™), then this solution is unique.

Definition 3. Problem (26), (27) is called well-posed if for arbitrary F(¢,x) € C(2, R") and ®(z) €
C([0,w], R™) it has a unique solution v(t,z) € C(2, R") and for it the estimate holds

<K F d 2
ma (ot )| < K max(mas [P0, 2)]][2(2)]). (28)

where the constant K is independent of F'(t,z) and ®(z), and =z € [0,w].
Lemma 3. If v(t,x) is a solution to problem (26), (27), and the estimate holds

lollo < K max(|IFlo, 1 8llo,1 ),

where K is a constant independent of the functions F(t,x) and ®(z), then for every z € [0,w] the
inequality (28) is valid.
Denote by Q, = [0,T] x [0,n] and ||u||o,, = max [|u(t,z)]|.
(t,z)ey,
Definition 4. Boundary value problem (23)—(25) is called well-posed if for arbitrary f(¢,z) €
C(Q,R") and (t) € C*([0,T], R") and ¢(z) € C([0,w], R™) it has a unique classical solution u(t,z)
and this solution satisfies the following estimate

gZHo,n’ ‘ ?;;Ho,n) < f(max(”f”o,na ||¢H1’O’zr£[%,};} ||<p(m)]|)7

max( |[ul o,y

where constant K is independent of f(t,z) and ¥ (t) and ¢(x) and 7 € [0,w].

Theorem 9. The boundary value problem (23)—(25) is well-posed if and only if so is problem
(26), (27).

From Theorem 9 it follows that the well-posedness of problem (23)-(25) are equivalent to the
well-posedness of problem (26), (27).

These results were extended to a nonlocal problem with an integral condition for system (25)
(see [71]).

The problem of finding bounded solutions of system (23) and the families of systems (26) was
solved in [54,56-58,61-63, 65, 72].

The parametrization method was further developed to nonlinear nonlocal problems for a system of
hyperbolic equations [68-70,73].

5 Boundary value problems for loaded and integro-differential equations

On the basis of the parametrization method, constructive algorithms were developed for finding
solutions to various boundary value problems for integro-differential and loaded equations |72, 74-82].

In the interval [0, T'], consider the following linear two-point boundary value problem for an integro-
differential equation:

T
‘;ilf _ A+ / K(t,s)z(s)ds + f(t), xR, (29)
0
Bz(0) + Cx(T) =d, deR", (30)

where A(t) and K(t¢,s) are continuous matrices on [0,7] and [0,T] x [0,T], respectively; f(¢) is
continuous on [0, 7.
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It is well known that the basic techniques for analysis and solving boundary value problems for
integro-differential equations are the Nekrasov method and the Green’s function method. Nekrasov’s
method applies to problem (29), (30), if we assume the unique solvability of the second-kind Fredholm
integral equation

T
/M (s)ds+ F(t),  te][0,T],
0

t
with the kernel M(t,s) = [X T)K (7,s)dT, where X(t) is the fundamental matrix of the
0

differential part of equation (29) and F(t ( ) € C([0,T],R™). The Green’s function method applies to
problem (29), (30) under assumption that the boundary value problem for the differential part of
(29) is uniquely solvable; i.e., this method assumes the unique solvability of problem (29), (30) with
K(t,s) = 0.

However, the assumptions of neither Nekrasov’s method nor Green’s function method are necessary
conditions for the solvability of problem (29), (30).

In [83], a coefficient criterion for the well-posedness of problem (29), (30) was established in terms
of approximating boundary value problems for the loaded differential equation

d
x_ x—i—ZK + f(t), z e R",

subject to condition (30), by the parametrization method.
In [84], Dulat Dzhumabaev proposed a method for solving the problem (29), (30) that is based on
the parametrization method and properties of a fundamental matrix of the differential part of (29).
N
The interval [0,7] is divided into N equal parts with step size h > 0: [0,7) = U [(r — 1)h,rh).

Let x,(t) be the restriction of x(¢) to the rth subinterval [(r — 1)h,rh). The values of the solution
at the left-endpoints of the subintervals are assumed as additional parameters A\, = x,[(r — 1)h]. By
the substitution u,(t) = z,(t) — A\, at every rth subinterval, the problem (29), (30) is reduced to the
multi-point boundary value problem for a system of integro-differential equations with parameters

jh
d;tr = A(t)u, + A(t)\, + iv: / K(t, s)[uj(s) + Ajlds + f(t), t € [(r—1)h,rh), (31)
7=l G-
ur[(r — 1)h] =0, r=12,..,N, (32)
B>\1+C)\N+Ct_l>i¥iou1\z(t) =d, (33)
)\p+t_1;1}£10up(t) — A1 =0, p=1,2...,N—1. (34)

The introduction of additional parameters resulted in the emergence of the initial data (32) for the
unknown functions wu,(t), » = 1,2, ..., N. For fixed parameter values A € R™V, the system of functions
ult] = (ui(t), ua(t),...,un(t)) is determined from problem (31), (32), which is a special Cauchy problem
for the system of integro-differential equations. Problem (31), (32) is equivalent to the system of integral
equations

N Jh
/X T)dr ), +X()/ Z::[ K (7, 8)[uj(s) + \j]dsdr+

(r—1)h (r=1)h
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+ X(t) / XY f(rydr,  te|(r—1)h,rh), r=1,2,..,N. (35)

By solving (35), one can find the representations of u,(t) in terms of A € R™ and f(t). Substituting
them into (33) and (34) yields a system of equations for finding the unknown parameters. Thus, when
applying the parametrization method to problem (29), (30), one has to solve an auxiliary problem,
namely, the special Cauchy problem (31), (32), or the equivalent system of integral equations (35).
However, unlike the auxiliary problem of Nekrasov’s method, the special Cauchy problem is uniquely
solvable for any sufficiently small partition step size h > 0. Let a number hg > 0 satisfy the inequality

o(hg) = BThoe®™ < 1,

max ||K(t,s)|] and o = max [|A(¢)||. It was shown that, for any h € (0, ho] :
(t,s)€[0,T]x[0,T7] t€[0,T

Nh =T, system (35) is uniquely solvable. This property of the auxiliary problem of the parametrization
method made it possible to establish solvability criteria for the boundary value problem considered.

where § =

Necessary and sufficient conditions for the solvability, including the unique solvability, of problem
(29), (30) were obtained in terms of a matrix Q. .(h) constructed via the fundamental matrix of the
differential part of system (29), the matrices of boundary conditions (30), and the resolvent of an
auxiliary Fredholm integral equation of the second kind.

In [85], a family of algorithms was proposed for solving problem (29), (30). The numerical
parameters of the family are the partition step h > 0 : Nh = T, the number v € R" of iterated integrals
used in the algorithm, and a nonnegative integer m specifying how many terms of the resolvent of the
corresponding Fredholm integral equation of the second kind are used in the algorithm. The basic
condition for the feasibility and convergence of the algorithm is that the matrix @Q}'(h) is invertible
for chosen numerical parameters. The unknown parameters are found at the first stage of each step
in the algorithm by using the invertibility of this matrix. The special Cauchy problem (31), (32) with
the found parameter values is solved at the second stage of the algorithm. Necessary and sufficient
conditions for the well-posedness of problem (29), (30) were established in terms of the input data
without using the fundamental matrix or the resolvent.

In [86], the method and results of [84] were generalized to the case of an arbitrary partition.
Let Ap denote a partition of [0,7] into N parts: tg = 0 < t; < ... < ty = T; the case of no
partitioning is denoted by A;. Each partition Ay is associated with a homogeneous Fredholm integral
equation of the second kind. The partition Ay is called regular if the corresponding equation has
only the trivial solution. The regularity of Ay leads to a unique solvability of the special Cauchy
problem mentioned above. The solvability criteria for linear two-point boundary value problem for
Equation (29) obtained in [86] are applicable for arbitrary regular partition Ay. The algorithms of the
parameterization method for solving linear boundary value problems for Fredholm integro-differential
equations were offered in [70].

These results were extended to boundary value problems for impulsive integro-differential equations
in [87].

6 New general solutions to linear Fredholm integro-differential equations and their applications in
solving boundary value problems

It is known that Volterra integro-differential equations are solvable for any right-hand side and
have classical general solutions. However, there exist linear loaded differential equations and Fredholm
integro-differential equations that do not admit classical general solutions. The question arises as to
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whether it is possible to construct such general solutions that exist for all differential and integro-
differential equations and would allow solving boundary value problems for these equations.

Dzhumabaev D.S. proposed a novel approach to the concept of the general solution for a linear
ordinary Fredholm integro-differential equation based on the parametrization method in [88|. The
domain interval is partitioned and the values of the solution at the left endpoints of the subintervals
are considered as additional parameters. By introducing new unknown functions on the partition
subintervals, a special Cauchy problem for a system of integro-differential equations with parameters
is obtained. Using the solution of this problem, a new general solution of the linear Fredholm integro-
differential equation was constructed.

Suppose Ay is a partition tg = 0 < t; < ... <ty = T. Let z(¢) be a function, piecewise continuous
on [0, 7] with the possible points of discontinuity: ¢t = ¢, p = 1,2, ..., N — 1. Let z,(¢) be the restriction
of z(t) to the rth subinterval [t,_1,t,), i.e. ,(t) = x(t), t € [tr—1,tr), 7 = 1,2,..., N. For definiteness,

assume that z,(t,—1) = . %ierO x(t), r = 1,2,...,N. If x(t) is piecewise continuously differentiable
—lr—1

on (0,7) and satisfies the Fredholm integro-differential equation (29) for each t € (0,7)\{tp,p =
1,2,..., N — 1}, then the system of its restrictions z[t] = (x1(t), ..., xn(t)) satisfies the following system
of integro-differential equations:

t;

dz, Ny
S A+ / K(t,7)ey(r)dr + (), teltnt), r=1,2..N. (36

jzltj71

Let C([0,T], Ay,R™) denote the space of function systems x[t] = (z1(t),z2(t), ..., zn(t)), where

Ty : [tr—1,t;) — R™ is continuous and has the finite left-sided limit , litm OxT(t) for any r = 1,2, ..., N,
—tr—

with the norm z[A]s = max sup ||z (8)]].
7”:1,27...7N te[tr—l,tr)

A function system z[t] = (x1(t), x2(t),...,xn(t)) € C([0,T], Ay,R™) is called a solution to the
system of integro-differential equations (35) if the functions z,(t), r = 1,2,..., N, are continuously
differentiable on (¢,_1,t,) and satisfy equations (36).

Suppose that the function system x*[t] = (27(t),z5(t),...,x3(t)) is a solution to (36). Then the
function z*(t), defined as x*(t) = z}(t) for t € [ty—_1,t,), r = 1,2,..., N, and z*(T) = tiijgrlo (1), is

piecewise continuously differentiable and consistent with Eq. (29) for ¢ € (0, T)\{tp,p =1,2,..., N—1}.
The introduction of the parameters A\, = x,(t,—1), r = 1,2,..., N, and substituting new unknown
functions u,(t) = z,(t) — A, on each subinterval [t,_1,t,), yields the system of integro-differential
equations with parameters

tj

N
du,
= Alt)ur+ AN+ / K(t )y (7) + Aldr + (1), teltr1t), r=1,.,N, (37)
j:1tj_1
subject to the initial conditions
up(tr—1) =0, r=12,..,N. (38)

Problem (37), (38) is called a special Cauchy problem for the system of integro-differential equations
with parameters. Without the interval’s partition, problem (37), (38) is the Cauchy problem with the
initial condition at ¢ = 0 for the Fredholm integro-differential equation with parameter.

A solution to the special Cauchy problem (37), (38) with fixed values of parameters \X € R",
r = 1,.., N, is a function system u[t, \*] = (u1(t, \*),ua(t,\*), ...,un(t,\*)) € C([0,T], Ax,R™Y),
which satisfies the system of integro-differential equations (37) with A\ = A* and initial conditions (38).
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Let X, (t) be a fundamental matrix of the differential equation % = A(t)z on the interval [t,_1, ).
Then problem (37), (38) is equivalent to the system of integral equations

t t N b
(1) = X, (1) / XL(r) A(r)dr, + Xo(t) / X ) Y / K (r1, 7y (7) + Aj]drdr +
tr_1 tr_1 7=

) / X;I(Tl)f(Tl)dTl, te [tr—latr), r=1,2,...,N.

Take an arbitrary partition Apy and consider the corresponding homogeneous Fredholm integral
equation of the second kind

T
/M At )y(r)dr,  te[0.T), (39)
0

t1
where M(An,t,7) = [ K(t,71)X1(r)dn X, (1), t €0, T), 7 € [0, 4],

T

M(An,t, )= fK (t, 71)X;(m)dn X5 Y1), t€[0,T], T € (tj_1,t;], 5 =2,..., N.

Definition 5. A partition Ay is called regular for Equation (29) if the integral equation (39) has
only the trivial solution.

Let ([0, T]) denote the set of regular partitions of the interval [0, 7). The set o([0,77]) is not empty.

Definition 6. The special Cauchy problem (37), (38) is called uniquely solvable if it has a unique
solution for any pair (f(t),\) with f(¢) € C([0,T],R") and A € R™V.

Definition 7. Suppose that Ay € o([0,7]), A = (A1, A2, ..., Ay) € R™ and the function system
ult, \] = (ui(t,N),ua2(t, A),...,un(t,\)) is a solution to the special Cauchy problem for the system
of integro-differential equations with parameters (37), (38). Then the function z(Apn,t, A) defined by
the equalities z(An,t,A) = A + up(t,N), t € [tr—1,t), 7 = 1,2,..., N, and z(An,T,\) = Ay +
tiiigl ol ~n(t,A) is called the Ay general solution to the integro-differential equation (29).

Theorem 10. For any Ax € o(]0,7]), there exists a unique Ay general solution to the linear
Fredholm integro-differential equation (29).

In contrast to the classical general solution, the Ap general solution exists for all linear
nonhomogeneous Fredholm integro-differential equations and contains N arbitrary parameters A\, € R™.

The concept of new general solution, introduced by Dzhumabaev, made it possible to derive the
solvability criteria for the linear Fredholm integro-differential equations and boundary value problems
for this equation. The proposed method consists of the construction of A general solutions and solving
linear algebraic equations with respect to parameters of those solutions. The Cauchy problems for
ordinary differential equations and problems of evaluation of the definite integrals on the subintervals
are used as auxiliary problems. Depending on the choice of methods for solving auxiliary problems,
either numerical or approximate methods were obtained in order to solve the linear boundary value
problems for Fredholm integro-differential equations [89-92|.

The new general solution made it possible to propose new numerical and approximate methods
for solving boundary value problems with and without parameter for nonlinear ordinary differential
equations [93-98]. These methods are based on the construction and solving a system of algebraic
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equations for arbitrary vectors of the new general solution. The coefficients and the right-hand sides of
this system are determined using solutions of the Cauchy problems for ordinary differential equations
on the subintervals. Using the new general solution, solvability criteria were established for boundary
value problems for nonlinear ordinary differential equations.

The results and methods were extended to linear nonlocal boundary value problems for systems of
loaded hyperbolic equations and Fredholm hyperbolic integro-differential equations [99,100].

The new approach to the general solution became the basis of methods for research and solving
nonlinear boundary value problems for loaded differential and integro-differential equations [101-111].
The methods are based on the construction and solving systems of nonlinear algebraic equations for
arbitrary vectors of new general solutions. To solve nonlocal boundary value problems for nonlinear
partial differential and integro-differential equations, a modification of Euler’s broken lines method was
developed.

These results were further extended to multi-point problems, periodic problems with impulse effects,
and control problems for various classes of differential, loaded differential, integro-differential, and
partial differential equations [112-114].

Conclusion

Dzhumabaev D.S. was a highly qualified expert in the theory of differential, integral and
nonlinear operator equations, computer and mathematical modeling of applied problems. He has
published over 300 papers in scientific journals, including authoritative periodicals like Journal
of Mathematical Analysis and Applications, Journal of Computational and Applied Mathematics,
Mathematical Methods in Applied Sciences, Mathematical Notes, Computational Mathematics and
Mathematical Physics, Differential Equations, Ukrainian Mathematical Journal, Journal of Integral
Equations and Applications, Journal of Mathematical Sciences, Furasian Mathematical Journal, etc.
The list of his major publications is given below.

The research findings were presented and discussed at many international symposia and conferences.
His scientific results were widely recognized in Kazakhstan and at the international level by experts in
the field of differential equations and computational mathematics. The scientific direction formed by
Dzhumabaev D.S. has been further developed by his students, who successfully work at the Institute
of Mathematics and Mathematical Modeling and leading universities in Kazakhstan.

In 1998, Dzhumabaev D.S. was awarded the title of professor (specialty 01.01.00 — Mathematics).
Under his supervision, two doctoral, twenty candidate dissertations, and one PhD thesis were defended.
He supervised five PhD students. In 2004-2005, Dzhumabaev D.S. was the chair of the Expert
Commission on Mathematics and Computer Science of the Committee on Supervision and Certification
in Education and Science of the Ministry Education and science of the Republic of Kazakhstan.

Professor Dzhumabaev made a great contribution to academic community. He led a scientific
seminar on the qualitative theory of differential equations at the Institute of Mathematics and
Mathematical Modeling. He was a scientific expert of the State Expertise of the Ministry of Education
and Science of the Republic of Kazakhstan. For many years, Dzhumabaev D.S. was a member of
Dissertation Councils at the Institute of Mathematics, Al-Farabi Kazakh National University, Abai
Kazakh National Pedagogical University, K. Zhubanov Aktobe Regional State University.

In 2014, at the invitation of the university authorities, Professor Dzhumabaev began to
deliver lectures at the International University of Information Technology. He taught such courses
as “Mathematical Analysis”, “Methods of solving linear and nonlinear boundary value problems
for ordinary differential equations”, “Problems for integro-differential equations of processes with
consequences”, “Boundary value problems, their applications and methods for solving”. It should be
noted that his scientific results of recent years were obtained under the influence of teaching at the
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International University of Information Technology. While giving lectures and conducting practical
classes, he realized with great clarity the importance of developing numerical methods for solving
applied problems. Having set himself the goal of bringing to the final numerical implementation the
theoretical results and algorithms of the parameterization method, he made a breakthrough in the
field of mathematical and computer modeling. Under scientific supervision of Professor Dzhumabaev,
master students and undergraduates of the International University of Information Technology carried
out research in the area of numerical methods for solving boundary value problems for differential and
integro-differential equations.

Professor Dzhumabaev chaired the Mathematics Section of Academic Council of the Institute of
Mathematics and Mathematical Modeling. He was a member of the editorial board of the scientific
journals News of NAS RK. Series: Physics and Mathematics, Kazakh Mathematical Journal, Bulletin
of Karaganda State University. Series: Mathematics.

Dzhumabaev D.S. was awarded the lapel badge “For Contribution to the Development of Science
and Technology” and the Certificate of Merit of the Ministry of Education and Science of the Republic
of Kazakhstan (2014).

Since 2018, Dzhumabaev D.S. headed the Department of Mathematical Physics and Mathematical
Modeling at the Institute of Mathematics and Mathematical Modeling. In 2019, his research
team, together with mathematicians from Ukraine, Uzbekistan, Azerbaijan, Germany, and the
Czech Republic, received funding from the European Union’s Horizon 2020 research and innovation
programme under EU grant agreement 873071-H2020-MSCA-PISE-2019 (Marie Sklodowska-Curie
Research and Innovation Staff Exchange), project titled “Spectral Optimization: From Mathematics to
Physics and Advanced Technology” (SOMPATY).

The first publication in the framework of this project is devoted to the application of the
parameterization method to multipoint problems for Fredholm integro-differential equations and was
published in Kazakh Mathematical Journal (2020, Vol. 20, No. 1).

At the end of 2019, having applied for the competition from the International University of
Information Technology, Professor Dzhumabaev became the owner of the grant “The Best University
Teacher 2019” of the Ministry of Education and Science of the Republic of Kazakhstan.

A prominent scientist, an outstanding teacher, and a talented organizer, Dulat Syzdykbekovich
Dzhumabaev passed away on February 20, 2020. He will be lovingly remembered by his wife Klara
Kabdygalymovna, daughters Dana and Damira, son Anuar, and fours grandchildren. His memory will
live in the hearts of his friends, colleagues, as well as generations of grateful and adoring students. His
research, scientific ideas and plans will be continued and implemented by his students.

THE MAJOR PUBLICATIONS BY DZHUMABAEV D.S.

1 Almukhambetov, K.K., & Dzhumabaev, D.S. (1977). Inverse boundary value problem for a
countable system of differential equations not resolved with respect to the derivative in the
space lp. Izv. AN KazSSR. Ser. fiz.-matem., (5), 7-11 [in Russian]|.

2 Dzhumabaev, D.S. (1978). Multi-iteration method for solving two-point boundary value problems
for semi-explicit differential equations in Banach spaces. Izv. AN KazSSR. Ser. fiz.-matem., (3),
9-15 [in Russian]|.

3 Dzhumabaev, D.S. (1978). Reduction of boundary value problems to problems with a parameter
and justification of the shooting method. Izv. AN KazSSR. Ser. fiz.-matem., (5), 34-40 [in
Russian]|.

4 Dzhumabaev, D.S. (1979). Necessary and sufficient conditions for the existence of solutions to
boundary value problems with a parameter. Izv. AN KazSSR. Ser. fiz.-matem., (3), 5-12 [in
Russian]|.
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