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MATHEMATICS

https://doi.org/10.31489/2024M1/5-20 Research article

On the class of pointwise and integrally loaded differential equations

K.R. Aida-zade!?, V.M. Abdullayev!3*

! Institute of Control Systems of Ministry of Science and Education of Republic of Azerbaijan, Baku, Azerbaijan;
2 Institute of Mathematics and Mechanics of Ministry of Science and Education of Republic of Azerbaijan, Baku,
Azerbaijan;

3 Azerbaijan State Oil and Industry University, Baku, Azerbaijan
(E-mail: kamil_aydazade@rambler.ru, vaqif ab@rambler.ru)

We investigate a system of linear ordinary differential equations containing point and integral loadings
with nonlocal boundary conditions. Boundary conditions include integral and point values of the unknown
function. An essential feature of the problem is that the kernels of the integral terms in the differential
equations depend only on the integration variable. It is shown that similar problems arise during feedback
control of objects with both lumped and distributed parameters during point and integral measurements of
the current state for the controllable object. The problem statement considered in the paper generalizes a lot
of previously studied problems regarding loaded differential equations with nonlocal boundary conditions.
By introducing auxiliary parameters, we obtain necessary conditions for the existence and uniqueness
of a solution to the problem under consideration. To solve the problem numerically, we propose to use a
representation of the solution to the original problem, which includes four matrix functions that are solutions
to four auxiliary Cauchy problems. Using solutions to the auxiliary problems in boundary conditions, we
obtain the values of the unknown function at the loading points. This is enough to get the desired solution.
The paper describes the application of the method using the example of solving a test model problem.

Keywords: integro-differential equation, system of loaded equations, integral conditions, conditions of existence
and uniqueness.

2020 Mathematics Subject Classification: 34A12, 34B10, 45J05.

Introduction

The paper studies the existence and uniqueness of the solution of nonlocal problems with respect
to systems of linear ordinary differential equations, which are pointwise and integrally loaded, and the
kernels of integral terms depend on one variable of integration. The nonlocal conditions are linear and
contain point and integral values of the unknown function. Such problems are also called pointwise
and integrally loaded and they arise in many practical applications [1-4|. The specific feature of the
integral terms in the equations is important for the proposed approach to obtaining the existence
and uniqueness conditions for the solution of the problem and for its both analytical and numerical
solutions.

*Corresponding author. E-mail: vagif ab@rambler.ru
Received: 19 July 2023; Accepted: 06 December 2023.

(© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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The paper describes an example of an optimal feedback control problem for a heating process,
which leads to the class of nonlocal problems considered in the paper. Feedback is carried out due to
point and integral measurements of the rod’s temperature, the results of which are used to form the
current values of the control action [5,6].

In the paper, it is shown that the considered class of nonlocal problems, by introducing new
variables, can be reduced to well-studied pointwise loaded problems with separated boundary conditions
[7-9]. But taking into account the significant increase in the dimension of the problem, such an approach
to the study of the original problem is not recommended.

The approach to obtaining the existence and uniqueness conditions of a solution to the problem is
used to a certain extent for the proposed method for solving the problem both in an analytical form in
case of a constant matrix of a dynamical system, and for a numerical solution with a variable matrix
of the system. We present a study and an analytical method for solving one illustrative problem using
the proposed approach.

1 Problem statement and its analysis

We consider the following system of pointwise and integrally loaded differential equations:

I
du(x
) o)+ 3 Bl +
lo TLy+2j
+3 B [ CGOued+ D), v € lroay) o
j=1 TLq+2j—1
with non-local conditions
Is Iy TLg+2j
Sae,)+>. [ BOuOE = 2)
i=1 jzll‘L3+2j—1
Here u(-) € R™ is an unknown continuously differentiable function. There are: non-negative integers
l1,12,13,14; continuous n-dimensional square matrix functions A(x), B}(x), sz(ac), 1= 1,2,...,11,
J = 12,...)ls, at x € [a:o,xf], C](HJ) —at r € [xL1+2j_1,xL1+2j], 7 = 1,2,...,1o, Bj<1') - at

T € [XL342j—1,%Ly+2;5]; continuous n-dimensional vector function D(x); n-dimensional vector 7; points
xij, 0 =1,2,...,L4, L1 =1, Ly = L1 + 2ly, L3 = Ly + I3, Ly = L3 + 214 from segment [zg, x| (some
of the indicated points may coincide), and it is assumed that, without loss of generality, the following
conditions are satisfied:

Tri42f = TLi4+2j—1, J=1,2,...,00, Tr,49; > Xp,40i-1, J=1,2,...,14.

In the problem, it is required to find a continuously differentiable vector function u(-) € R™ for
x € [xo,xy], satisfying the system of pointwise and integrally loaded differential equations (1) and
nonlocal conditions (2), containing point and integral values of the unknown function.

An essential feature of problem (1) and (2) is the dependence of the integrands in equation (1) on
one variable of integration. For example, optimal feedback control problems lead to such a problem [5,6].
In particular, the control synthesis problem for the heating process of a rod with the length d in the
furnace, which can be described by the boundary value problem for the parabolic equation:

up(z,t) = a*uls (@, t) + p(@) [0 () — u(, )] (3)

6 Bulletin of the Karaganda University



On the class of pointwise ...

with some initial and boundary conditions

u(z,0) = p(x), z €10, d], n
ﬁugc)y, t) _ p [9(t) —u(0,t)], ¢t €10,T7, -
8uéi, t) = —up [9(t) —u(d,t)], t €[0,T]. ©

Here u(z,t) is the temperature of the rod at the point = at the moment ¢, x € [0,d], t € [0,T];
p(zx); o(x), a, p1 are the specified functions and process parameters; ¥(t) is a control function that
determines the temperature inside the furnace. There is a certain optimality criterion characterizing the
choice of control ¥(t). Assume that the given points z; and segments [Z2;_1, Z2;] of the rod, we take the
point u(z;,t), ¢ = 1,2,...,l; and integral u(z,t),x € [Toj—1,T2;],7 = 1,2,...,lo measurements of the
temperature. The measurement results are used to form the current temperature value in the furnace
(feedback control) in the form of the following relationship

Zklz «Tz; +Zk2j / ﬁ] 5 (7)

IQ] 1

Here the given functions f;(x),x € [x2j_1,x2;] are weighted, the constant coefficients ky;, ko ,
i=1,2,...,l;, are the optimizable feedback parameters [5, 6].
Substituting expression (7) into equation (3) and using the difference approximation of the derivatives

with respect to ¢

ou(z,ts)  u(z,ts) —u(z,ts—1)
a h Ohe),

we obtain the following system of loaded differential equations:

dPug(x
aOd;g) = alus + a2 Z klzus xz

+Z’% / BH(E)us(€)dE | + fulw), we[0:d] , s=1,2,... N, (8)

232] 1

Conditions (4)—(6) can be written in the form

dus Zklzus 377, + Zk2j / 6] us d& - us( ) ) (9)

x2g 1
I Iy Taj
dug(d
D | (o) + 3y [ Ol )] (10)
i=1 =L
In (8)—(10) the following notations are used: h; is the discretization step, uo(z) = wu(z,0)

o(x), x € [0,d] , us(z) = u(x, ts), ts = shy, s =1,2,..., Ny, hy = T/Ntv ag = a’hy, ar(x) = 1+ az(x),
a2(x) = ht,u(w)7 fs(x) = usfl(w)'

Mathematics series. No.1(113)/2024 7



K.R. Aida-zade, V.M. Abdullayev

To determine the feedback parameters ki;, koj, ¢ = 1,2,...,11, j = 1,2,..., 13 using any first-order
numerical iterative optimization methods, first, it is required to construct formulas for the components
of the gradient of the objective functional in terms of the optimizable parameters, and second, to
numerically solve problem (8)—(10) for given current values of these parameters. It is clear that system
(8) can be easily reduced to the considered system of first-order differential equations (1) and (2).

Note that some special cases of problem (1) and (2) were studied earlier. When BJQ({L‘) = 0,
j=1,2,...,ls, we have a point-loaded system of differential equations, investigated in many papers,
particularly, in [2-4,7]. When le () =0,7 =1,2,...,l;, we obtain an integro-differential system of
equations whose kernels Cj(x) depend only on the variable of integration [10-18]. Conditions (2) also
generalize many other local and nonlocal conditions. Their particular cases are Cauchy conditions,
two-point and multipoint conditions, conditions of an integral type [4,19].

Problem (1) and (2), by introducing new unknowns, can be reduced to a two-point boundary value
problem for a system of point-loaded differential equations. Let’s show how it is done. We introduce

new n-dimensional variables ¥/ (x),j = 1,2,...,ls, satisfying the system of differential equations:
dd (z) .
e =Cj(z)u(r), Tri42j-1 <T<Tpi425, §=1,2,...,1, (11)
19](33) :OTL; $S-/EL1+2]'717 j:1727"')l25

where 0,, is the n—dimensional zero vector. System (1) will have only point loading:

l1 l2
du(x ,
d(t )= Aula) + Z; B} (z)u(x;) + ; B () (21, 42;) + D(x),x € [wo, ). (12)
By introducing new n-dimensional vectors w’(x), j = 1,2,...,l4, satisfying the system of differential
equations
dw’ () .

dx =Bj(@)u(z), Trsqo5-1 <T < wpgy05, j=1,2,... 14, (13)
wj(x)zon’ :L‘SxL:H*ijlv j:1727"‘7l47

conditions (2) are reduced to the multipoint conditions

l3 l4
> u(rr, )+ Y w (@ry05) = 7. (14)
i=1 j=1

The order of the resulting linear system of loaded differential equations (11)—(13) is (lo 4+ 4 + 1)n.
Using the approach proposed in [8,9], multipoint conditions (14) can be reduced to separated boundary
conditions. To do this, each of the 2(l3+14+1) segments between all the points o, Tpppir &= 1,2,...,13,
Tpoiond = 1,2, ., lg, oy after their ordering, is divided into two parts. For each of the halves of
these segments between the points, systems of differential equations are introduced for new variables
corresponding to u(z), ¥(x), wi(z), i = 1,2,...,l1, j = 1,2,...,l3, but in different directions of
change of the argument x. As a result, we obtain a system of differential equations of the order
2(l3+ 14+ 1)(I2 + l4 + 1)n with two-point boundary conditions of the form (after individual scaling for
each segment and reducing them to segments of a unit length):

Alw(()) = AQ, Agw(l) = A4,
where Ay, As are the square matrices of size 2(l3 + l4 + 1)(l2 + l4 + 1)n; Ag, A4 are the vectors of the

corresponding dimension.

8 Bulletin of the Karaganda University



On the class of pointwise ...

Point-loaded equations with two-point and multipoint conditions have been studied well enough,
necessary and sufficient existence and uniqueness conditions of a solution were obtained for them in [11]
and [17], approaches to their numerical solution were proposed in [2,7,20]. Optimization and optimal
control problems, inverse problems in various formulations described by point-loaded equations we
investigated in [21-23|, numerical methods for their solution are described in [21,22].

Considering a significant increase in the dimension of the original problem (1) and (2), when it is
reduced to a problem with point-loaded differential equations with separated boundary conditions, the
use of the previously proposed methods both for study and their numerical solution is inappropriate.
This is especially true for optimization and optimal control problems that require multiple solutions
of problems of the kind (1) and (2).

Therefore, this paper studies the existence and uniqueness of solutions to problem (1), (2), and
also proposes an approach to solving that does not require an increase in the dimension of the original
problem.

2 Emistence and uniqueness conditions for the solution of problem (1) and (2)

Consider the following auxiliary system of differential equations:

ll . lg .
du(x = ~J
") A@u(@) + Y BH@X + 3 BA@)X +D(a), a € [xo, ] (15)
i=1 j=1
i
with conditions (2). Here, A\, A, i =1,2,...,1l1, j=1,2,...,ly are arbitrary n-dimensional vectors,

the functions and parameters are the same as in equation (1).
Under the accepted assumptions on the functions involved in the problem, the solution to system
(15) for an arbitrarily given initial condition

u(xo) = ug (16)

according to the Cauchy formula can be written as:

T

u(w) = Fla)ur + F(o) [ FUOREE, o€ fov.), (1)
o
I i lo _j
R(§) =) BION +)_Bj©X + D). (18)
i=1 j=1
Here, the n-dimensional square fundamental matrix F'(x) is a solution to the Cauchy problem
dF
da(:) = A(x)F(x), F(xo)=1In, € [zo,24], (19)

where I, is the n-dimensional identity matrix.
Let us introduce the notation:

F(2) = F(x) / FUOBNOE, i=1.2.... .1, (20)
F(z) = F() [FroB@d i=12 b (21)

Mathematics series. No.1(113)/2024 9



K.R. Aida-zade, V.M. Abdullayev

Fl(x) = F(x) / FY(€)D(€)de. (22)

Then solution (17)-(18) of the system of differential equations (15) with an arbitrary given initial

—i  —~J
condition ug and the vectors A, A, i =1,2,...,l;, j=1,2,...,ly can be written as:

u(z) UO+ZF' A#ZF' Wt Fl(a). (23)

i

Considering an arbitrariness of the n-dimensional vectors ug, A , A ,i=1,2,...,l1, j=1,2,...,1ls,
we require that they fulfill the following conditions:

Vv
A =u(zy), v=1,2...1, (24)
TLq+2u

~H

A= / Cu(©u(&)ds, p=1,2,...,1ls, (25)

TLy42u—1

and conditions (2). It is clear that the total number of conditions in (2), (24) and (25) is equal and
i
coincides with the total dimension of an arbitrary vector ug, A , A, i =1,2,...,l;, j=1,2,...,[.
- -1 2 1 —_ ~1 -2 ~la
Let us introduce the notation for vectors: A = (A , A ,.., A )T e Rim A= (X, A ,..,\ )T € R,
A= (A A) e Rtz
“T” is the transposition sign.
From (24), taking into account (23), we obtain:

A :F(x,,)qurZFi(x,,))\ +Zﬁj(:py)ij+F1(%). v=1,2,..1. (26)

From (25), taking into account (23), for = 1,2,...,ls, we obtain:

TLy+2p
N / Culn)

TLy42u—1

UO+ZFi X+ ZF' W+ FL )| di. (27)

From conditions (2), taking into account (23), we obtain:

3 l> i
Z (674 SL'L2+1 UuQ + Z F $L2+z )\ + Z F $L2+Z) )\ + F (l’L2+z) +
; s=1 =1
1y Fkat2 . 4
+) / B;(n) u0+ZF /\+ZF WA+ F ) | dy = . (28)
i= TLg+25—1

Relations (26)—(28) are systems of linear algebraic equations of an ly1n, lon and n-th order, respectively,
-t ~J
with respect to the unknown n-dimensional vectors wg, A\, A ;i = 1,2,...,01, j=1,2,...,l5. The

total number of equations in these systems corresponds to the total number of unknowns: (uq, 7\’ K) €

10 Bulletin of the Karaganda University



On the class of pointwise ...

R+t - After simple transformations and grouping, the resulting algebraic system can be reduced
to the form:

Glyuo + GlpA + GhA = Gy, j=1,2,...,1s, (29)
Garug + Ga A + Ga3A = Gag.

The matrix coefficients participating in (29) are determined from (26)—(28):

Giy = F(x;) € R™™,

i 1 —i—1 1 —i+1 oy
12 —

F (2), 0 F (@), F ()~ T, F (2),., F (m) € el

~2 s

. ~1
L= (F (z), F ()., F (a:i)> e Rxbn,

ty=—Fl(z;) eRi™, i=1,2,...1,

TLy+25
ch= [ CFmder,
TLq+2j—1
TLq+2j5 TLy+2j
. 1 A
Gh=| [ owFwm .. [ cmr mm|ern
LLy+2j—1 TLy+2j-1
TLy+2j5 . TLy+2j - TL1+2j .
. ~ ~j— ~j
Gh=| [ cwFwi.. [ cwF wa [ GwFme-.,
ETLq+2j—1 TLq+25—-1 TLy+2j—-1
TLq+2j TLy+2j
It ol nxlan
CimF  (n)dn, ..., Ci(mF (n)dn | € R"*=",
Trq+2j-1 TLy+25—1
TLy+2j—1
Gy = — Ci(m)F'(n)dn e R, j=1,2,...,1,,
TLy+2j—1
Iy I, ThsrE
G31 = ZaiF($L2+i) + Z / Bi(m)F(n)dn € R™™,
i=1 j= TLy+2j-1
I3 ho P b,
Gs2 = Zai ZF (TLyti) + Z / Bj(n) ZF (n)dn € R0,
i=1  s=1 =Ly Doy i=1
I3 o, P b,
Gz = Zai ZF (Troti) + Z / Bj(n) Z F (n)dn € R™"=",
=1 j=1 =Ly Yoy s—1

Mathematics series. No.1(113)/2024 11



K.R. Aida-zade, V.M. Abdullayev

Tlq9425
ls 3127

l3
Gso=7— Y aiF (xr,4i) — Y / Bi(n)F* (n)dn € R™.
i=1 =l e
From the solution of algebraic system (29), we determine the initial value of the unknown function
uog = u(xp), the point values

—1

A :u(xi),i:1,2,...,l1,

—~J Li+25
and the integral values A = [ C)u(€)ds, j = 1,2,...,15. This allows us to solve the
L1+2j—-1
Cauchy problem for the system of differential equations (15) instead of loaded system (1) with initial
conditions (16) without using nonlocal conditions (2).

Thus, the existence and uniqueness of a solution to problem (1) and (2) depends on the existence
i g

and uniqueness of the vectors ug, A , A ,1=1,2,...,11, 5 =1,2,...,ls, which are solutions of algebraic
system (29). This implies the following theorem.

Theorem 1. For the existence and uniqueness of a solution to problem (1) and (2), the rank of the
(I1 + l2 + 1)n -dimensional square matrix of algebraic system (29) must satisfy the condition:

1 b 1 Ly T
Gll .. Gll G21 “ee G21 G31

rank | Gy, .. Gy Gy .. G2 Gz | = +l+1)n (30)
G%’?) e Gg_13 G%g e Gl223 G33

It is clear that if the rank of the matrix in (30) is less than n, then algebraic system (29) may have
no solutions or have an infinite number of solutions depending on the rank of augmented matrix (29).
Consequently, original problem (1) and (2) may have an infinite number of solutions or not have them
at all, respectively.

The above approach to studying the existence and uniqueness of a solution to problem (1) and
(2) can also be used to solve the problem. But, as can be seen from the above formulas, to find the
coefficients of the system of algebraic equations (29), it is necessary to have a fundamental matrix of
solutions F'(x) and its inverse matrix F~1(z), € [xo, x]. If the condition A(z) # const, x € [z, z]
is met, the construction of these matrices in an analytical form is not possible in practice, and using
numerical methods requires a large amount of computation and memory.

In the next section, we present an approach to the numerical solution of problem (1) and (2) is
presented that does not require knowledge of the matrix F~!(z), z € [zo, zy].

3 Approach to the solution of the problem

Below, we propose an approach to solving problem (1) and (2) using auxiliary Cauchy problems for
linear systems of differential equations. For the numerical solution of the auxiliary Cauchy problems,
known methods and software packages can be used.

The proposed approach is based on the representation of solution (23) to auxiliary problem (15),
(16) and the Cauchy problems given in the following theorem.

Theorem 2. The solution of the system of differential equations (15) for arbitrarily given independent
—i
initial condition (16) and n-dimensional vectors A , A ;i =1,2,...,01,j =1,2,...,ls, can be uniquely

1 —~J
represented as (23), if n-dimensional square matrix functions F(z), F' (z), F' () and vector function
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Fl(z), at = € [z, 2], are solutions of the corresponding Cauchy problems (19) and

dl;j(;x) — A@)F (2)+ BMx), Fla)=0, i=1,2 .0 (31)
dﬁdq;(x) = A(m)ﬁj(aﬁ) + Bj(x), ?’j(ﬂco) =0, j=12,..,b, (32)
df;f”f) = A(z)F'(z) + D(z), F(z¢) = 0. (33)

Proof. According to Cauchy formula, the unique solutions to problems (31)—(33) are the functions

—1 —~]
F (z), F (x), F'(x), respectively, defined by formulas (20)—(22). These formulas involve the matrix
function F'(x), which is a fundamental solution to homogeneous systems with respect to (31)-(33)

1 ~J
and the unique solution to Cauchy problem (19). It is clear that the functions F(z), F' (z), F' (z),

i —~J
F1(z) are independent of the initial condition ug and parameters A , A\ . But the representation of the
solution to the system of differential equations (15) in the form (23), by virtue of Cauchy formula (18),

-t ~J

is unique for arbitrarily and independently given vectors ug, A , A ,i=1,2,...,01,7=1,2,...,1s.

From the above, we can formulate the following approach to solving original problem (1) and (2).
_i
First, we solve auxiliary Cauchy problems (19), (31)-(33). After finding the functions F'(x), F' (z),
~J
F (z), FY(z x), i =1,2,...,01, j = 1,2,...,lz, further, taking into account the arbitrariness of the

—1 ]

parameters \ | )\ yi=1,2,...,l1,7 =1,2,...,l2, up € R in problem (15) and (2), we require that
they fulfill condltlons (24), (25) and (2). Then, from representation (23), we have:

N = u(zy) = Flx,)uo + Zﬁi(%)f +Y F (@)X +F' (), v=1,2,.10, (34)
i=1 Jj=1
. TLy+2p TLy+2p TLy+2p L
A= Cpu(&)u(§)de = Cou(€) F(€) uodg + CuOS F(©N de+
TLq+2u—1 TLq+2u—1 TLq+2u—1 =1
TLy+2u I ‘ 4 TLy+2p
+ / Cu©) S F ()N de + / CUOFNE)E, j=1,2, .., I2, (35)

3 la ]

—~J
E Qg Lroti u0+§ :F L+z>\ +§ F( L+z))\ +F1( L2+i) +
— =

et h 7 —1 la 8 8
+Z / 5€) |[FOu + S F@X + Y F ©X + F1©)| dn=1 (36)

From (34)—(36) we get the system of (I; + Il + 1)n linear equations with respect to unknowns n-
—~

dimensional vectors uy, )\ S A Lv=1,2,...,01,u=1,2,..., 1. Having determined these vectors, from
representation (23), we ﬁnd the desired solution to problem (1) and (2).
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If among B} (z),i=1,2,...,11, or B?(x), j=1,2,...,1y, there are functions having the same or
different constant coefficients, then the number of auxiliary problems (31)—(33) can be reduced by the
number of coinciding functions. For example, if k1 B} (x) = k2Bl (z) = ... = kyB}. (x), then instead of

-1 —1s ~Tx S
vectors A 1, ..., A it suffices to introduce into (24) one vector A = > kqu(z;,).
~J ~Js
Similarly, if lel (x ) = k232 () =..= ksBJQ-S (x), then instead of vectors A 1, A in (25) we
-rL1+2jq
introduce one vector A = Z ke [ Cj(&u(§)dE. One of such cases will be demonstrated by
TLy+2jq—1
the example of an illustratlve problem given in the next section.

4 Illustrative problem

Consider the following problem:

3
d
l;(;) = 3u(z) + 2u(1) + 3u(2) + 6/u — 62% + 4z — 118, z € [0, 4], (37)
2
2
u(0) — 2u(3 )+3 / u (38)
1

In equation (37) A(z) = const = 3, x € [0,4]; the functions B}(z) = 2 and Bi(z) = 3 differ in
constant coefficients; xg =0, z1 =1, 20 =2, 23=2, 24 =3, 25 =0, 26 =3, 27 =4, z8 =1, 19 = 2,
ll :2, l2 :l4 = 1,[3 = 3, L1 :2, LQ :4,L3 = 7, L4 :9; D(l’) = —61‘2+4$—118; Cl(l') = 1;
011:1,052:*2,043:1, 51:3,’7:13.

It is easy to verify that the solution to problem (37) and (38) is the function: u(z) = 22% + 1.

Let us introduce the notation

1 IR
N = 2u(l) +3u(2), A = / w(€)de. (39)
2
Let us construct auxiliary problems (31)—(33):
dF(z) B B
T = 3F(), F(0)=1, (40)
_1
dF (z) 2! =1
S =3F () +1, F(0)=0, (41)
~1
dF (z) =1 =1
= 3F (xz)+6, F (0)=0. (42)
dF;f) =3F'(z) — 62 + 42 — 118, F'(0) =0. (43)

It is not difficult to determine solutions to Cauchy problems (40)—(43):

1 1631_1’
3 3

14 Bulletin of the Karaganda University



On the class of pointwise ...

~1 11 11
F (z)=2¢% -2, Fl(2)=22% - ?863:0 + ?8

Using representation (23) and notation (39), we obtain:

X = (2F(1) + 3FY(2)) uo + (2F'(1) + 3F'(2)) +

+ <2ﬁ1(1) + 3?1(2)> N+ (225’1(1) +31?1(2)> AL (44)

~1
A =

[F(&) o+ FUE) L F (X +F () ] . (45)

RO,

_1 ~1
Substituting the found functions F(z), F (z), F (z), F'(z) into (44), (45) and adding condition (38),
we obtain the algebraic system (29):

1 ~1
(3(3¢5+263) up+ ((3¢5+2¢%) —8) A + (6(3€5 +2¢%) — 30) A =
= 118(3e5 + 2¢3) — 674,
1 —
3(e? =€) up+ ((”—€%)—=3) X + (6(e?—€f)—27) X =
= 118(e” — ) — 468,

-1
3((e? =2 +€b —e®) +1) ug+ ((e'? —2e” +e —¢e’) —2) X +
~1
+(6(e'? —2e” + €0 —€3) —12) A =118(e!? — 2¢” + €0 — €%) — 227.

Direct computation shows that the rank of the matrix of this system is equal to 3, and its only solution
is: ) T
w=1, X =33, N\ =—.
3
Then from representation (23) we obtain the required solution:

u(z) = F(z)ug —i-}v?l(a:) . Xl +}A71(:c) . Xl + Flz)=222+1, z€]0,4].

Conclusion

We have proposed an approach to the study and solving a class of nonlocal problems with respect
to linear ordinary pointwise and integrally loaded differential equations. The main specificity of integral
loadings is that the kernels of the integral terms depend on only one variable of integration. This made
it possible to reduce solving the original problem to solving auxiliary Cauchy problems with respect to
ordinary differential equations.

The considered problem is of independent interest. But as shown in the paper, the optimal control
problems for objects with feedback are reduced to it, in which the current state measurements of an
object can be of a point and interval nature.

We have obtained existence and uniqueness conditions of the solution for the considered class of
problems, and provided study and solution of one illustrative problem.
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Hykrestik »KoHe MHTerpaJiibIK KYKTeJareH anddepeHnna gbIk,
TeHJleyJiep KJachl 2KalbIHAA

K.P. Aitna-zaznel?, B.M. A6aynnaes!?

L Bsip6atiorcan Pecnybauraco, Fouvim orcone Ginim munucmpaizingy, Backapy owcytieaepi unemumymos, Bak
Y P H Kapy Yy s Y,

Ozipbativtcan;

2 Dzipbatiorcar Pecnybaukaco, Touavim orcone Giaim munucmpaizingy, Mamemamuka scorne METGHUKG WHCTMUMYMbL,

Baxy, Osipbatiorcan;
3 Dzipbatiorcan Mmemaekemmir My rall srcone onepracin yrnusepcumemi, Baxy, Osipbatiocan

Beitmokan mekapasbik maprrapbl 6ap HYKTEIIK »KoHE WHTEIPAJIBIK, }KYKTEMeJIEP/IeH TYPATHIH ChI3BIKTHIK,
KapamnaiibiM nuddepeHnmaabK, TeHaeyrep xyieci seprrenren. [llekapanbik maprrapra 6ericis gpyHK-
[USTHBIH, THTETPAJIIBIK, XKOHEe HYKTEJIK MOHJepi KaTtanabl. KcenTiH MaHBI3ABI mapThl 1uddepeHInaIbik,
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TeHJIeyIep/Ieri UHTErPAJIJIBbIK MYIIeJIepIiH sapoJiapbl TeK MHTErPAIMSIbIK alHbIMAJIBIFA TOYeJITriH/Ie.
Yxkcac ecenTepiH 6acKapbLIATBIH OOBEKTIHIH aFbIMIAFbl KYHIH HYKTENTK YKoHE WHTErpPaJIbIK OJIIIeyJep
Ke3iume GipikTipinren »kome GesiiHreH mapamerpJsiepi 6ap eki 00beKTiHIH e Kepi GallIaHBICHIH OaKbLIAY
Ke3iH/e TYBIHIANTHIHBI KopceTiaren. Makasaga KapacThIPbLIFAH €CENTiH KONbLIYhI OEeMI0Ka I MIeKapasIblK,
mapTTapMeH YKYKTeJreH auddepeHnnaablK TeHIeyaep OOUbIHIIA OYPBhIH 3€PTTE/NeH KOIITEreH eCenTep/Ii
Kanmbutaiiael. Kemekmn mapamerpiiep/ii eHrisy apkbLIbl KAPACTBHIPBLIATHIH €CENTIiH MIeTiMinig 6ap KoHe
2KaJIFbI3 OOJIYBIHBIH, KaKeTTi IMapTTapbl ajblHIbl. EcenTi caHJbIK Typ/e Iemry yIiinin TepT KkeMekir Korm
ecebiniy, mrenriMi 60JIbIT TaOBLTIATHIH TOPT MATPUIIAJIBIK, (DYHKITUSTHBI KAMTATBHIH GACTAIKBI €CEIITIH, IEeITMiH
nmaiinanany yceibLIaabl. [llekapasblk Kargaiiapia KOMEKIT eCenTep/IiH MIeniMAIepiH naigaiana OThi-
PBII, XKYKTEy HYKTesepiHgeri Oesrici3 dyHKIUSIHBIH MOH/EP] aJblHIAbI. Bysl KaXkeTTi memnriMal aay yImin
KeTKUTiKTI. Makasaja MOIEIbIIK €CeNTi MIENIy/IiH, MbICAIbI APKBLIbL O/IICTI KOJIJAHy KOPCETLJIreH.

Kiam cosdep: nnrerpaabik-auddepeHnnaablK TeHIeY, XKYKTeJNeH TeHIeyep Kyiecl, HHTerpaJiIbIK, ap-
TTap, 6efiyIoKa mapTTap, 6ap *KoHe YKAJIFbI3 60Ty MAapTTapH.

O KJ1acce TOYEYHO U MHTErpaibHO HArpyKeHHbBIX
anddepeHInaJIbHbIX YPaBHEHMIA

K.P. Aiina-zane'?, B.M. A6aymnaes!?

L Hnemumym, cucmem ynpasaenus Munucmepemea nayku u obpasosanusa Asepbatioocancroti Pecnybauxu, Baxy,
Asepbatiorncan;
2 Mnemumym mamemamusy u mexanuky Munucmepemesa nayku u obpazosanus Asepbationcanckoti Pecnybauru, Baky,
Asepbatioscan;
3 Asepbatioorcancruti zocydapemeennuitl yrusepcumem wedmu u npomwvuuaernocmu, Baxy, Asepbatioocan

Wccnenosana cucrema JTHHENHBIX OOBIKHOBEHHBIX MM dEPEHITNAIBHBIX YPABHEHUI, COIePKAIasd TOUYeIHbIe
¥ MHTETrPaJIbHble HATPY2KEHUS, C HEJIOKAJIbHBIMIA KPAeBBIMH YCJIOBUSAMU. KpaeBble YCJIOBUSI BKJIIOYAIOT WH-
TerpaJjibHble U TOYEYHBbIE 3HAUYECHUS Hem3BeCTHOH pyHKmmu. CyIlecTBEHHBIM YCIOBHEM B 3aJ1a9e SBJISIETCS
TO, 4TO SIAPa UHTEIPAJIBHBIX CJIaraeMbIX B IuddepeHnnaabHbIX YPABHEHUAX 3aBUCAT JIUIIb OT ITI€PEMEHHOMN
nHTerpupoBanus. [lokazaHo, 9To MOmOOHBIE 3a]a91 BO3HUKAIOT IIPU YIIPABJIECHUN ¢ OOPATHOM CBI3BIO KakK
00BEKTAMH C COCPEIOTOYCHHBIMHU, TAK U PACIPEIETIEHHBIMA TapaMeTPaAMU [IPA TOYEYHBIX U MHTETrPAIbHBIX
3aMepax TEKYIIEro COCTOSHUS yIPAaBJIseMOro oObeKTa. YKa3aHHas B CTATbe IIOCTAHOBKA 3aJa4u 00001~
eT MHOTHE WCCJIeIOBAaHHBIE PaHee 33J]aYd OTHOCUTEIBHO HATPYXKEHHBIX TuddepeHnaabHbIX yPaBHEHUN C
HEJIOKAJIbHBIMU KPAeBBIMHU yCJIOBUSMU. BBeIeHneM BCIIOMOTaTeIbHBIX TIAPAMETPOB MOy Y€HbI HEOOXOIUMbIE
YCJIOBHSI CYIIeCTBOBAHUS U €IMHCTBEHHOCTH PeEIIeHUs pacCMaTpuBaeMoil 3aja4u. s duciieHHOro perie-
HUS 3312490 IIPEJJIOZKEHO HCIIOJIBb30BaTh IIPEJICTABJIEHNUE PEIIeHns NCXOTHOH 3a/1a49n, BKJIIOYaoIlee deThIpe
MaTpUYHble DYHKITNHN, SBIISAIONINECS PENIEHUsIMHI YeThIPeX BCIIOMOTaTeabHbIX 3amad Kommu. Vcnonb3ys pe-
IIIEHNsI BCIIOMOTATENbHBIX 3329 B KPAEBbIX YCJIOBUAX, IIOJIyYeHbl 3HAYEHNUSI HEN3BECTHOM (DYHKIUU B TOY-
KaX HarpyKeHusl. DTO JOCTATOYHO, YTOOBI MOJYIUTh UCKOMOE pellleHne. B craTbe TPUBEIEHO M3JIOXKEHUE
IIPUMEHEHNs MEeTO/1a Ha IIPUMEpPE PeIleHHs MOJIEIbHON 3aadu.

Kmouesvie crosa: naTErpo-auddepeHnuaabHoe ypaBHEHNE, CACTEMa, HArPYKEHHBIX Y PABHEHUN, MHTET DA
HBIE YCJIOBUS, HEJIOKAJIbHbBIE YCJIOBUS, YCIOBUS CYIIECTBOBAHUS M €IMHCTBEHHOCTH.
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The numerical solution of a system of differential equations with constraints can be unstable due to
the accumulation of rounding errors during the implementation of the difference scheme of numerical
integration. To limit the amount of accumulation, the Baumgarte constraint stabilization method is used. In
order to estimate the deviation of real solution from the numerical one the method of constraint stabilization
can be used to derive required formulas. The well-known technique of expansion the deviation function to
Taylor series is being used. The paper considers the estimation of the error of the numerical solution
obtained by the first-order Euler method.

Keywords: constraint stabilization, numerical integration, stability, dynamics, system of differential levels,
numerical methods, numerical solution, difference scheme, rounding.
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Introduction

The description of the dynamics of the system using Hamilton or Lagrange formalisms assumes the
solution of differential equations or a qualitative study of their properties [1]. It is not always possible
to obtain analytically the solution of systems of differential equations. Therefore, it is necessary to
resort to numerical integration methods [2] or to methods of investigating the properties of solutions
using methods of the qualitative theory of differential equations [3].

The use of numerical methods for solving differential equations is associated with the inevitable
accumulation of numerical integration errors. Therefore, the result of the numerical solution reflects the
real picture only with some degree of accuracy. The fact is that the implementation of one or another
difference scheme of numerical integration is accompanied by the accumulation of numerous errors, in
particular rounding errors.

Baumgarte showed [4] that the classical method of determining the reactions of contact constraints
used in mechanics leads to an inevitable accumulation of numerical integration errors associated with an
increase in the values of deviations from the constraints equations caused by errors in setting the initial
conditions. To reduce these deviations, Baumgarte proposed using linear combinations of constraints
equations together with their derivatives. The equations that establish the relationship between linear
combinations of constraints and their derivatives are called the equations of perturbations of constraints.
In essence, the Baumgarte method boils down to replacing the constraints equations with servo
constraints equations. The method of bond stabilization proposed by Baumgarte proved popular and
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caused the emergence of various modifications. Thus, Yu. Ascher proposed a method for stabilizing
systems of higher-order differential algebraic equations with constraints [5].

The conditions imposed on the behavior of solving a system of dynamic equations with deviations
from the constraints equations leads to additional requirements for determining the constraints reactions.
For these purposes, the concept of program constraints was introduced.

The first-order Euler difference scheme is the simplest scheme for numerical integration of systems
of first-order differential equations. When integrating, the area under the curve is searched for as an
area collections of rectangles. Any set of rectangles of finite length will not be able to completely cover
the area of a curved trapezoid, so the numerical solution of the integrable equation does not coincide
with the real one. The estimate of the maximum value of this error can be calculated by considering
the deviation of the numerical solution from the real one.

In theoretical mechanics there is a specific set of problems that define their goal as constructing
a system of ordinary differential equations based on the given properties. Such problems are being
called inverse ones. In some cases we need to find the specific constraints equations that provide the
system with its requested properties. These constraints are defined as program constraints. Methods
for solving systems of differential algebraic equations were investigated in work [6]. If a system contains
some ambiguity by its internal random parameters than it can be considered as stochastic. Some inverse
dynamical problems for the system with stochastic parameters are considered in papers [7-9]. In some
cases the system of motion equations is required to be constructed with regard for Baumgarte constraint
stabilization method implemented in it. In papers [10,11] it was shown that perturbation parameters
are connected with dissipative function that pumps energy out of the system. New advanced numerical
methods were investigated for inverse-like problems in works [12,13].

1 Problem Statement

Let the state of a mechanical system be given by the set of generalized coordinates ¢ = (ql, ey q”).
The change in the position of the mechanical system in time implies the dependence of the vector ¢ on
time t: ¢ = q(t). The rate of change in the position of the system is determined by the velocity vector:
v(t) = dq(t)/dt = ¢(t) = (¢*,...,¢"). Let’s consider that the system of motion equations is presented
in form: _

q=v;

v =alq,t), (1)
where a(g,t) is a given function. Let’s introduce a vector state x = (g, v) and rewrite (1) in a matrix
form:

i = F(z,t). (2)

Suppose that the motion is restricted and the kinematic state vector x(t) is limited by a set of
mechanical constraints described by the equations:

hi(g,t) =0, i=1,...m, m <n. (3)

Here and in the future, corresponding to Einstein’s notation, repeating indices imply summation
by the same indices.

In order to solve system (2) with constraints (3) the method of Lagrange multipliers is used.
But during the numerical integration with Euler first order scheme we will inevitably face with
solution’s instability. To solve this problem J. Baumgarte [1] suggested to consider an arbitrary linear
of constraints and its full time derivatives while solving the system of differential algebraic equations
with constraints. According to this stabilization method our system will take form:

i = F(x,t),
h+ Ah+ Bh =0,
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where A and B are matrices with arbitrary components that are called perturbation parameters. By
manipulating the values of these components, we can achieve a stable numerical solution. We can
algebraically solve obtained system and derive &:

&= X(z+N,1). (4)

Symbol X here stands for the terms with perturbation parameters and provides numerical stability.

2 Numerical Integration

In numerical integration, it is assumed that the differentials of the function and the independent
argument are represented in finite differences dx(t) ~ Ax(t), dt ~ At. Thus, the functions become
functions of a discrete argument.

Let equation (4) be determined on a set [t1,¢2]. In the simplest difference schemes, this set can be
divided by points t1 = #(1),t(), .-, t(2) = () and (N — 1) equal length segments 7 = tat1) — ta)
corresponding to the integration step. Finite increment of a state vector x(t) can be represented as a
difference:

Ax (t(a)) =z (t(a+1)) - (t(a)) , a=1,...,N—1.

We use Euler first order difference scheme to solve equation (4) numerically:
T(a+1) :x(a)+TX(a), a=1,...,.N—1. (5)

To estimate the deviation error, the real solution will be denoted Z(t). It satisfies the system (2)
with constraints (3). It does not include stabilization terms. Consider the deviation of a real solution
from a numerical one (5) at the moment (o) : Z(f(q)) — (). Let’s expend Z(t(,)) at t(q) to Taylor

series:
2

~ ~ X T
(b)) = T(ta-1)) + T2(t(a-1)) + 52(C),
where ( : ¢ € [t(a,l), t(a)] . Taking into account (2) deviation T(t()) — T(a) Will be written in the form:

2

#(t(w) — (@) = #lta1) = 2o + 7 (X (Ha1) = Kian) + F2(0): (6)

If we apply mean value theorem to the term X (t(a,l)) — X(a—1) we will obtain the following
relation:

o 0X )
X (x(t(a—l))at(a—l)) - X (x(a—l) + N7t(a—1)) = % (mgvt(a—l)) (x(t(a—l)) — L(a—1) — N) ’

where z, € [:i"(t(a_l)),x(a_l)] or x¢ € [x(a_l),a?(t(a_l))] depending on which value is greater.
%—)x( (z¢, t(a—1)) — matrix [2n x 2n].

Let’s denote the deviation Z((4)) — ¥(a) = A(a), then the ratio (6) can be rewritten as:

0X 0X T
A(oc) = <12n + T% (th(a—l))) A(a—l) - TN% (:EC’t(oc—l)) + ?x(C), (7)

where Is,, is a unit matrix.
~ 0X

Denote & = n[lax} (%EU(C) - NG (mc,t(a,l))) . Taking into account the triangle inequality, the
te|to,lk

ratio (7) will take form:

0X
Iop + 7 vat(a—l)) + 78

[Aw] < [Aw@- 52
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The norm of a vector or matrix by components is understood as the maximum value of the modulus
of its components: |A(a)’ = max }Ak(a)‘. Solving this recursive inequality with respect to the first
=1,....2n

element, we obtain:
!

0X
Iy + 7—87 (l‘(, t(a—l)) :

a—1

0X
Iyn + 75— (¢, ta-1))

[Aw] <]An) 5

a—2
+ 75 Z
=1

Let’s assume that the integration step is small enough, so the expression 1 + T%% ($<,t(a_1)) is

positive Vt € [tg, tg] even, if the derivative %—f is negative. Also apply to the second term the formula

of the sum of a finite number of elements of geometric series, we get:

a—1 )‘a—l

[ Fon + 7%, (we:ton)|” — 1

Al < |Am)| |2n + T%f (2¢,t@-n)|  +3 X (2.t )
As
Ion + r% (2¢s tia—1)) < exp (Ta;; (xc»t(a—n)) )
then:
Lo + Ta—X (z¢,ta—1)) " < |exp <T(0< - 1)% (%’%a—l))) ’

Ox
and ty =to+ (N —1)7, a < N, 7(ax — 1) < t, — tp. Then the ratio (8) will be written in the form:

S‘exp(tk — o) % (xcatc)’ - 1_
% (2, te)]

The right side of this ratio does not include the node number, so you can also enter the norm for

nodes: ||Al| = max |A(,)|. Then the relation (9) allows you to set the ratio for the maximum
a=1,...,.N—1 (@)

possible error in numerical integration using the Euler difference scheme:

A < [Aw) 9)

0X
exXp (tk — to) % (ajc, tc)‘ +

0X lexp (t; — to) 5 (zc, )| — 1
HAHsml»exp(tk—te)<x<,t<>]+% :
. O |55 (¢, to)]
Conclusion

It follows from this relation that the maximum possible error exponentially depends on the length
of the segment on which the integration takes place. Also, the second term of this relation contains
the stabilization term X associated with the equations of perturbed constraints. Therefore, a change
in the values of the perturbation parameters affects the maximum deviation error during numerical
integration. However, due to the arbitrariness of the type of functions X (z,t), it is extremely difficult to
draw a conclusion about the direct relationship between the perturbation parameters and the maximum
deviation value. Only in some cases, discussed below, the estimates of the perturbation parameters can
be determined by the formula, while ensuring the stability of the numerical solution.
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BaymrapT GaiisilaHBICBIHBIH TYPAKTAHYbIH €CKEpP€e OTBIPBIII,
ANHAMUKAJIBIK TeHAeyJ/IepAiH HAKTbI >KOHe CAHJbIK, IMeImiMi
apacbhIHJAFbI aybITKYJIapAblH Keiidip Oarasayaapbl TypPaJabl

M.U. Axpuibaes!, 11.E. Kacnuposuy?

1 .
Axademur O. Kyambexos amuvindazv, Xaavkmap docmuievs yrusepcumemsi, [llomxenm, Kazaxcman;
21, Jlymymba amowmdaes: Peceti zaavsmap docmuies: yrusepcumemi, Mackey, Pecet

CaHJIBIK, MHTErpasIayia albIPBIMJIBIK, CXEMAaChIH JKY3€re achlpy Ke3iHJle JOHIe/IeKTey KaTeJIepiHiH >KUHa-
JIyblHA OalyTaHBICTBI GailIaHbICH! Gap auddepeHInaIbIK TeHIeyIep KYHEeCiHiH CAaHIBIK, MIelTiMi TYPaKCh3
6oustybl MyMmKiH. 2KuHasy meusmrepin mekTey yimia Baymrapr GailylaHBICBIH TYpPaKTAHILIPY OiCi KOIIa-
HBLIaAbl. HakThI mIeniiMHiH caHIBIK IIENIiMHEH aybITKYbIH Oarajayga KaxkeTTi dpopMyiaap/ibl aay YIIiH
TYPaKTaHIBIPY O/IiCiH maiiananyra 6oaabl. AybITKy GyHKIUSCHH Teiljiop KaTapblHa KIiKTEyIiH Gesrisi
aaici kosnmanbLIran. Makanama 6ipinmi perti Ditnep smiciMeH ajblHFaH CAHIBIK IIENIMHIH KaTeJirin 6ara-
J1ay KapacCThIPBLIII.

Kiam cesdep: GaitranbicTap/ibl TYPaKTAHIBIPY, CAHIBIK HHTEIPAJIIAY, TYPAKTHIIBIK, JUHAMUKA, TuddepeH-
OWAJIIbIK TeHJeyJep Kyiteci, CAHIbIK 9JicTep, CAHABIK, IIEMNTiM, albIPBIMIBIK, CXeMAacChl, JOHTeJIEKTEY.

O HEKOTOpPBIX OIEeHKAX OTKJIOHEHWI MeXKJy peajibHbIM W YNCJIEHHBIM
pelieHnsaMn ANHAMAYEeCKX yPaBHEHU C y9eTOM CTabMIM3alium CBA3MU
Baywmrapra

M.U. Axbiibaes!, .E. Kacrmposua?

L Viueepcumem opyorc6o. napodos umenu axademura A. Kyambexosa, [vimxenm, Kazaxcman;
2 Poceutickuti yrusepcumem opyoichue napodos umenu I1. Jymymbu, Mocksa, Poccus

YHucnenHoe perrenne cucteM audepeHInaaIbHbIX YPABHEHUN CO CBSI3SIMU MOYKET ObITh HECTAOMILHBIM U3-32
HAKOILJIEHUsI ONIMOOK OKPYIJIEHUS IIPU PEAJU3AIUU PAZHOCTHOM CXEeMbI YUCJIAEHHOIO WHTErpupoBanusd. s
OrpaHMYEHUs] BEJNYINHBI HAKOIUJICHWs] MCIIOJIb30BaH MeToj, crabuims3anuu cBsaseit Baymrapra. s onenkn
OTKJIOHEHUsI PEAJTbHOTO PEIeHUsI OT YUCJIEHHOIO MOYKET OBITh MPUMEHEH METOJ, CTAOMIU3AINN sl TOJIY-
qenns TpedyeMbrx dpopmyst. Vcmoab30BaH XOPOITO U3BECTHBIN METO/ PA3JIOKeHNs (DYHKIIMH OTKJIOHEHUS B
psax Teistopa. B craTbe paccMoTpeHa OlleHKa HOIDEIIHOCTH YHCJIEHHOIO PEIeHMUs, [T0JIyY€HHOI'O0 METOIO0M
Diijiepa MepBOro MmopsijKa.

Kmouesvie crosa: crabuinsaius CBs3eil, YNCIEHHOE HHTETPUPOBAHUE, YCTOWINBOCTD, IUHAMUKA, CHCTEMA,
nuddepeHInaNIbHbIX YPOBHEN, YNC/I€HHbIE METOIbI, YNCJIEHHOE DellleHre, PA3HOCTHAS CXeMa, OKPYIJIEHNE.
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We study the global solvability and unsolvability of a nonlinear diffusion system with nonlinear boundary
conditions in the case of slow diffusion. We obtain the critical exponent of the Fujita type and the critical
global existence exponent, which plays a significant part in analyzing the qualitative characteristics of
nonlinear models of reaction-diffusion, heat transfer, filtration, and other physical, chemical, and biological
processes. In the global solvability case, the key components of the asymptotic solutions are obtained.
Iterative methods, which quickly converge to the exact solution while maintaining the qualitative characteris-
tics of the nonlinear processes under study, are known to require the presence of an appropriate initial
approximation. This presents a significant challenge for the numerical solution of nonlinear problems. A
successful selection of initial approximations allows for the resolution of this challenge, which depends on the
value of the numerical parameters of the equation, which are primarily in the computations recommended
using an asymptotic formula. Using the asymptotics of self-similar solutions as the initial approximation
for the iterative process, numerical calculations and analysis of the results are carried out. The outcomes of
numerical experiments demonstrate that the results are in excellent accord with the physics of the process
under consideration of the nonlinear diffusion system.

Keywords: blow-up, nonlinear boundary condition, critical global existence curve, degenerate parabolic
systems, critical exponents of Fujita type.
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Introduction

The source for this article’s discussion of the doubly degenerate parabolic equations is as follows:

ou; 0 [|ouf|" " oul . ,
%~ o7\ Tz 7 +u;', rERL, t>0, i=1,2, (1)
coupled through nonlinear boundary conditions:
oul |1 ok ,
-5 A w0, t>0 =12, (2)
=0

where m > 1, k > 1, and ¢;, p; > 0 are numerical parameters. The following preliminary information
should be considered:

uil;—g = uio(r), i =1, 2. (3)

It is expected that the function and its corresponding first- and second-order derivatives conform to a
set of criteria. Specifically, these derivatives should exhibit a degree of continuity, non-negativity, and
compactness within the domain of R..
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Population dynamics, heat transfer, chemical processes, and other phenomena all use parabolic
equations with nonlinearity (1).

The functions u; (¢, x), ua(t, ) represent the biological two populations’ densities during migration,
the thickness of two types of chemical reagents during a chemical reaction, and the temperatures of
two various sorts of materials during propagation. By incorporating the dependent on the power-law
of shear stress and displacement velocity, equation (1) becomes an invaluable tool for analyzing a
liquid medium with inconsistent fluxes. This allows for a comprehensive understanding of the complex
dynamics and behavior exhibited under polytropic conditions, providing specialized professionals and
enthusiasts with the means to look into the details of these systems.

Parabolic equations (1) with nonlinearity have a significant role in several scientific fields, such as
population dynamics, heat transfer, chemical reactions, and many others. They are widely employed to
investigate a variety of phenomena, such as the biological densities of two populations during migration
and the thickness of two different kinds of chemical reagents during a chemical reaction. These equations
are also used to determine the temperature of two different types of materials during propagation. In
population dynamics, the functions u; (¢, x), ua(t, z) describe the growth or decline of animal or plant
populations. Similarly, in heat transfer, they help to determine the heat flux in a material with varying
temperatures. Furthermore, they are used to describe unsteady flows in a liquid media, especially when
shear stress and displacement velocity exhibit a power-law relationship.

The local presence of ineffective solutions to problem (1)—(3) in the problem-solving domain has
been a topic of much discussion and analysis. The strict testing and experimentation conducted in this
field have consistently shown that the usual integration method is a reliable approach for determining
this specific phenomenon. This widely acknowledged fact within the community of experts demonstrates
the thorough knowledge and expertise that underpins our understanding of complex systems. Moreover,
it is worth mentioning that such a local existence can be easily established and understood by applying
the comparison principle, which has been extensively reviewed in several studies (|1; 316], [2; 26],
[3-11]). Therefore, it is safe to say that the determination of the local existence in this particular
problem can be achieved with a high level of accuracy and precision, using the appropriate tools and
methods at hand.

The study of nonlinear parabolic systems has piqued the interest of researchers all around the
world. With the aim of understanding the global existence and blow-up conditions of such systems,
researchers have employed diverse techniques and strategies to investigate this phenomenon. The
existing literature in this area is extensive, with several noteworthy contributions from experts in
the field (see [1; 176], [2,3,7-9,12] and references therein). The essential for several nonlinear parabolic
equations in mathematical physics, the Fujita exponent is one of the major topics of research, which has
drawn significant attention from mathematicians. Researchers have delved deep into this area, studying
various aspects of critical Fujita exponents in great detail (see [2,10,11,13-16] and references therein).
Overall, the understanding of nonlinear parabolic systems’ global existence and blow-up circumstances,
as well as the critical Fujita exponent, continues to be an area of active research. With further study
and investigation, researchers hope to gain deeper insights into these systems, leading to a better
understanding of the complex phenomena that underlie them.

Let us now consider and revisit some well-known results. In the research conducted by V.A. Galak-
tionov, and H.A. Levine mentioned in reference [4], they extensively investigated the situation using a
single equation

UtZ(Uk)m, x>0, 0<t<T,
—(uF)(0,¢) =ud(0,t), 0<t<T, (4)
u(ac,()) = UO(x); xT > 0,
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and the gradient diffusion heat conduction equation

U = (]um\k_lux) , x>0, 0<t<T,

T
— |ua[F ug (0,8) = w?(0,8),  0<t<T, (5)
u(z,0) = up(z), x>0,

with £ > 1, ¢ > 0, and up has compact support. It has been established that for the problem (4),

1
Qo = §(k +1) is the critical global exponent, where ¢. = k+1 is the crucial Fujita exponent, as opposed

2k
to (5), the critical Fujita exponent is g. = 2k as well as the critical global exponent being gy = T
In [5] authors analyzed the following issue with single equation and gradient diffusion:
p@yur = (Jual*uz) +p(a)u®,  (2,t) € Ry x (0, +0),
xX
- ‘U:Jc|k_2 uz(0,t) = u™(0,1), t>0, (6)
u(z,0) = ugp(x) >0, r € Ry,

with k > 2, 8, m >0, p(x) = 27", n € R, up(z) is a bounded, continuous, nonnegative, and nontrivial
initial value. They determined that the problem (6):

. 2-n)k-1)
—incaseof 0 < < 1,and 0 <m < R — the issue can be resolved globally;
-n
. C-n)k-1) .
—in case of § < 1, and m > R e— the issue has a blow-up solution.
n

Consideration of the following problem is the focus of the research conducted by Zhaoyin Xiang,
Chunlai Mu, and Yulan Wang in their study published in [12]. The problem under scrutiny has been
given thorough attention and analysis by the researchers.

(

ou 9 (|oum " gum
oo o | G (@.8) € Ry x (0.7) )
_ 5 Z, S X ) )
dv 0 (|oum]” guma ’
\ ot ox oz Ox
¢ ‘Buml P12 o1 . (0 t)
_ — 11
0 0 _ ’
avrfzz p2—2 avfzg z=0 ) te (O,T), (8)
- = u?(0,t)
‘ Ox or |,
) X b
v(x,0) = vo(x "

where m; > 1, p; > 2, ¢; >0, i = 1,2. They determined that:

(i) in case of qig2 < ((p1 — 1)(p2 — 1)(m1 + 1)(me + 1))/p1p2 the problem’s every nonnegative
solutions (7)—(9) are all global in time;

(ii) in case of q1g2 > ((p1—1)(p2—1)(m1+1)(ma2+1))/p1p2, then the problem (7)—(9) has solutions
that blow-up in a limited length of time.

If qrg2 > ((pr — 1)(p2 — 1)(ma1 + 1)(m2 + 1)) /p1p2:

(i) in case of min{a; + f1, @2 + B2} > 0, then solution of the problem (7)-(9) is global in time;

(ii) in case of max{a; + 1,22 + B2} < 0, then the solution of problem (7)—(9) is blow-up.
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Many mathematical models of nonlinear cross-diffusion in [17,18] are described using nonlinearly
linked partial differential equation systems. Finding explicit analytical solutions for these systems is
difficult, though. To tackle the complexities of these systems, researchers have delved into the realm
of numerical methods, employing them to derive approximations. In their pursuit, they have turned to
the use of nonlinear parabolic equations, coupled with nonlinear boundary conditions, as a means to
accurately describe and analyze these intricate systems. By harnessing the power of these mathematical
tools, deeper investigation of the intricacies is possible for researchers and intricacies of these complex
phenomena, providing valuable insights that pave the way for advancements in their respective fields.
To investigate the qualitative properties of a cross-diffusion system with nonlocal boundary conditions
and nonlinearity, self-similar analysis and the standard equation approach have been employed. The
results of these studies have helped researchers understand the behavior of these systems under different
conditions. Despite the challenges posed by the nonlinearly coupled systems of partial differential
equations, and improvements in numerical techniques have paved the way for obtaining accurate
approximations, thus making significant contributions to the field of nonlinear cross-diffusion. The
quest for further exploration and understanding of these systems continues to fuel research in this
area. The situation of slow diffusion, researchers have devised several self-similar solutions to tackle
the cross-diffusion problem. The intricate nature of a nonlinear cross-diffusion system, comprised of
interconnected parabolic equations, poses a significant challenge in the realm of mathematical analysis.
These complex systems often exhibit behavior that defies traditional methods of solution due to the
presence of nonlinear boundary conditions. As a result, finding global solutions becomes an arduous
task requiring advanced computational techniques and deep understanding of the underlying dynamics
at play. Self-similar analysis and the comparison principle were used to identify the critical exponents,
namely the global solvability and Fujita type critical exponents. The comparison theorem has further
enabled researchers to establish upper and lower limits for global solutions and blow-up solutions,
respectively. These findings underscore the importance of carefully considering numerical parameters
when dealing with slow-diffusion scenarios.

This article, influenced by the works we have mentioned earlier, serves a twofold purpose. First,
it aims to identify the (1)—(3) system’s essential global existence curve, and in order to achieve that,
the article emphasizes the importance of constructing self-similar super-solution and sub-solution.
Second, the essay presents a theory regarding the critical curve of the Fujita type supported by certain
recent findings. As opposed to dealing with a single equation, we are dealing with a system, we need
to devise some innovative strategies to tackle the challenges that come with it. In conclusion, this
article is a valuable addition to the literature on critical global existence curves, self-similar super- and
subsolutions, and the critical curve of the Fujita type.

It is widely accepted in the field of mathematics that degenerate equations often lack classical
solutions. When confronted with such equations, mathematicians have to find other solutions that are
more general in nature. In conclusion, while degenerate equations may present unique challenges, there
are still various ways to approach them and derive meaningful solutions.

Definition. The function wu(z,t) is viewed as an insufficient solution to problems (1)—(3) in
Ouk| ™1 Quk
ox ox
(1)-(3) with regard to distribution in 2, where the longest time period that can be allowed is 7' > 0,
see [5].

Q={(0,400) x (0,7)}, if 0 < u;(x,t) € C(Q),

€ C(Q), 1 =1,2,if it complies with

1  Main results

Solutions to the global existence and nonexistence theorems play a crucial role in understanding
complex systems. To further explore this topic, it is necessary to discuss the creation of self-similar sub-
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and super-solutions to equations (1)—(3). These solutions provide valuable insights into the behavior of
these equations under various conditions. By examining the properties of sub-solutions, we can gain a
deeper understanding of how certain factors contribute to the existence of global solutions. As opposed
to that, studying super-solutions allows us to analyze situations where nonexistence solutions arise.
This comprehensive approach enables researchers and professionals to make informed decisions when
dealing with complex systems in their respective fields.

We will use the comparison principle to prove our first theorem, which focuses on determining
the conditions necessary for the global solution of problem (1)—(3). By establishing a framework for
analyzing self-similar sub-solutions and super-solutions, we gain valuable insights into the intricacies
of global existence and nonexistence solutions. This theorem represents a significant advancement in
our understanding of complex systems, as it showcases the interplay between comparison principles
and the concept of self-similarity. The comprehensive examination of these factors allows us to delve
deeper into the realm of global solutions, providing a solid foundation for further research and analysis
in this field. Our findings highlight the importance of considering self-similar sub- and super-solutions
when studying problems with global implications.

2

m
Theorem 1. If riry < —— (k+1—s1)(k+1—s2), then every nonnegative solution of the
m

problem (1)—(3) is global in time.

Proof. By emphasizing the construction of a self-similar super-solution, one can gain an additional
understanding of the theorem and its intricate nuances. This particular super-solution serves as a
powerful demonstration of the theorem’s validity and its ability to address complex problems. Through
meticulous analysis, it becomes evident that this super-solution possesses certain limitations for any
given t > 0. As researchers strive towards achieving their objective, their attention has been directed
towards the identification and analysis of strict super-solutions that conform to the self-similar form.
These endeavors pave the way for a more comprehensive understanding of the intricacies involved in
this intricate realm of study,

1
’[Li(t,l‘) = ehzi_l (N + e_Kiace*hZit> k ’ (10)

where K; > 0, hgi_lygz‘ >0, N = maX{HfLZH];O + 1} i1 =1,2.

Using comparison principles and the substitution of (10) into (1)-(2), it has been determined:

ou; . hot\ E . RV o —hgst\ EL
o _ h2i—1 . €h2l71t . (N + e—Klane 2i ) + e(hgz,l—hgl)t . % . Kz - h2i (N + e—chce 2i ) >
1
. _K:re—h2it\ & . 1

> hoj_jelzi-tt (N + g~ Kime™ ) > ho; 121N K,
a [|ouk|mtouk e,

3 2 m+1 [ho;—1km—(m+1)ho;]t —mK;ze hait m+1 [hoi—1km—(m+1)ho;|t
oz \| ox gz ) =M Toxe < mAGTT e i

ey o _ I pe—hoit f o Sq
ufz — 651h2171t (N +e Kize "2 > S 651h2171t (N + 1) k ,
—kym—1 9~k
ou; ou;
Ox ox

The solution #; is regarded as global, if inequalities:

— Kme(h%flk'*h%)mt ’ITL”
(]

.
; 3—1‘30:0 = et (N 4 1)%

=0

+u

7

i=1,2, (11)

ou; 0 <‘ ouk
>

m=1ouk
ot = dx\| ox )

ox
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hold for any z € Ry, t > 0. Eventually, the following expressions have been achieved using the
computations above in (11):

1 s
h2i—16h2i71tNE > mKZm-i-le[h2i71kmf(m+1)h2¢}t + eSihzi-1t (N+1)%,
Kime(hm‘flk—hzi)mt — elihs—2it (N + 1)% 7

Ki= (N + 1), rihs o = (hgi 1k — ha)m, i =1,2,

hoit > hai_1km — (m + Dho; + sihai_1, hik — hy = —hs,
m

T2
hak — hy = _2hy,
m
(k‘m +s; — 1) hoi—1

ha; > ,
m+1
km+s1—1)h
bk — Ty > s Db
m m—+1
T km+so—1)h
hgk——lhlz( 2= Uhs
m m—+1

Thus, it is evident that for the solution of the problem (1)—(3) to be global in time, the last inequality
should always hold for any m > 1, k > 1, as the theorem proves.

2
m
Remark. Theorem 1 demonstrates that riry = <+1> (k+1—s1)(k+1— s2) is critical global
m

existence of the problem (1)—(3).
m(p3—; — 1)(pi + k) m(p3—; — 1)(pi + k)

= (m £ 1) or p; > 1, and r; < (i~ D)(m+1)
then, each of the solutions to (1)—(3) blows up.

Theorem 2. If 0 < p; <1, and ¢; >

Proof. To prove the theorem, it was necessary to search for sub-solutions of the problem (1)—(3),
and this was achieved by looking for them in the next form:

wi(t,w) =t fi(&),  &=at™, (12)
n 1 5 pi — km 19
where o = ——, 3; = , 1=1,2.
C—p A - Dmt )

By analyzing the super-solutions obtained from equation (12), we can observe the emergence of
a self-similar form in the resulting equations (1)—(3). These self-similar inequalities and boundary
conditions play a pivotal role in determining whether a solution is deemed as a blow-up solution
or not. It is imperative to adhere to these self-similar inequalities and boundary conditions in order
to accurately classify and understand the behavior of the system under study. The presence of such
intricate relationships highlights the complexity of the problem at hand, requiring a comprehensive
and meticulous approach for its exploration. To fully comprehend the underlying dynamics, further
research and analysis are warranted to delve deeper into these self-similar forms and their implications
on the overall system:

d (|dr o ,
_ SR Pi
d&(‘ dé; d&) + Bzgzd& a; fi + fz >0, (13)
Oul |1 guf
|9 Y < o0 ‘
or or o0 — QS—@(Ovt) (14)
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Let

_m
m+1 m+1 ) mk—1

ﬁ@n=&<%m—fwl (15)

By substituting equation (15) into inequalities (13) and (14), we can derive the necessary conditions
that unequivocally illustrate the occurrence of equation (14) under all circumstances. This crucial step
not only solidifies our understanding of the underlying principles, but also provides a robust framework
for further analysis and exploration within this complex system:

km+1\" [ m+1 m+1
AR > gi———A4;
(mk—l) (mk—l) ! _Bmk—l ’

mk—1\" T

—_m L( ._1)
Di D; m+1l m+1\ mk—1 m+1 m+1\ mk—1 \Pi
1 1 m m m m
fit=4" ;™ ¢ a;™ —¢ <

A >

+ +
by DD L ma\ T
; mk—1 m m
< Aj'a; (ai & > ’
+
(m41) (5 1) k(m+1)\"
pi k-1 A. mk
Afa; ™ Z%&+Ai<nm_1 '

By taking
(me+1)(p; —1) . .
a, ™1 > AP AR

)

mk — 1

E(m + 1)) "

m(ps—; — 1)(pi + k)
(pi —1)(m +1)
be taken sufficient to prevent inequalities (13) and (14) are valid. Because of this, if the initial data
ui(x,0), uz(x,0) are large enough that wuip(z) > wy(x,0), uge(x) > usy(x,0), then u,(t,x), ¢ = 1,2
is a subsolution to (1)—(3). In accordance with the comparison principle, it is established that when
dealing with a substantial amount of initial data, the solutions provided in (1)—(3) will eventually blow
up within a finite time frame. The comprehensive proof has been successfully concluded, cementing

this understanding.

0 <p; <1,and ¢ > can be easily checked and ensure that A;, and As can

m+1 k k
(1)—(3) blows up in finite time.

m(k+ 1)\ 1 1 ,
Theorem 8. If qiqgo < | —————| , and p; > | 1+ — | m 4+ —, then every solution of problem

Proof. 1t is vital to comprehend that the delineated by (1)—(3) can be convincingly shown for
equations that lack a source. The necessary conditions for this to occur can be satisfied entirely through
internal mechanisms. As such, we proceed to build our targeted solution in a subsequent manner.

wp(t,x) =t"gi(&), & =at, (16)
where g; are two compactly supported functions,
m[m(k + 1) + (m + 1)qg;]
(m(k +1))? — (m + 1)2qiq3—;’
m[mk(k+ 1)+ (mk — 1)g;] — (m + 1)q1g2
(mlk+ 1)) — (m+ 1Pqgs:

i =

Yi =
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We now insert (16) into (1)—(3) and derive the following result:

d (|dgk|" " dgf

e : : 118 191 > Oa 17

d&(‘d& d@-)”gdg it > an
dgk|™ 1 dg¥ .

- 7 1 S gqil 0). 18

Finding self-similar solutions to the issue (17), (18) is now necessary.
Let

Gi(&) = Bi(b; — &) k-1, (19)

then by inserting (19) into (17), and (18), we obtain

dg_h;_ B;m _m g
@ mk—l(b - &)
dgi = Bim b e k=1 —
%@d& Higi = —m&( i—gi)m - — M z( ﬁz)m
Bim
= i = &) By (b - &) (b - ) 2

b;B;im mo_ ]
> — — wibiB; | (bi = &),
- (mk -1 pab >(b & )+

Lk m+1
gZ mk m m an—l_l
= B; k™ (b — & >
dé; i (mk - 1) (b = &)

d
dg;

m 1]
> . i i . ¢ \mk—1
jel szz <M7, + mk — 1) (b’L §1)+ )

Bmk71>bi mk — 1 m n m
i — km m bt k=1

dgk|m=1dgk _
_ | Il < g8 (o).
dé; d&i|¢,— !

dgf "
dg;

The following benefits result from applying comparison principles to the aforementioned expressions:

dgf m_ldgzk k 1 m—1 _m___q
_ Bf (b, — £)mF-1 -(Bk b — &) mRT ) _
‘dfi d&ile,— P (b = &) P(bi—&)7 6o
m_ q;m
= By (b — g)PETTIM — ppET < pg
&i=
. . 1 1 ,
And this illustrates unequivocally that when p; > | 1+ z|m + = equations (17) and (18) hold true.

The concept of comparison leads us to conclude that (1)—(3) have solutions that invariably end in
blow-up in a finite amount of time.

Theorem 4. If 12 < (m (k + 1))2, and p; > 1, then every solution of the problem (1)—(3) is blow-up
in finite time.
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Proof. The same approach used in [11,18] can be used to establish Theorem 4.
Let us demonstrate how self-similar solutions asymptotically behave.

m(k+1)

The case >
q192 ]

2
1
) , and — < p; < 1. Take into account the following self-similar solution
m

of (1)—(3).

Auxiliary systems of equations are a fundamental aspect of mathematical problem-solving in
various fields. The intricacy of these systems can often be overwhelming, but with the right methods
and techniques, they can be simplified. Through the application of specific transformations, such
as substitution or elimination, the complex nature of these systems can be broken down into more
manageable components. These methods have been extensively studied and proven effective in numerous
academic research papers. By implementing these strategies, professionals and enthusiasts alike can
confidently approach and solve even the most intricate auxiliary systems of equations:

ui(z,t) = (T + ) (&), & = o(T + )7,

where «; and (3; parameters defined above.

d dgof mﬂd«pf dy; .

wlde] ) raete e atizo 2
dpk|m =t dpk .

— ! G = a2’ (0). 21

Let us consider the function

m

1
N 87 (mk — 1)
pi(&) = (di — D;§; ™ , d; R —
7i(€) ( 3 ) >0 s

Theorem 5. The compactly supported solution of problem (20)-(21) has the asymptotic

vi(&i) = @i(&)(1 +o(1)),

d. m”il
hen & — | — = &o.
when & — D, &io

Proof. The function ¢; is looked for in the following form
vi(&) = @i(&)wi(ni)-

It is enough to show that w; ~ 1. Let

m+1 . :
7 =—1In (di - D > , and 7 S50 Joo, (22)
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Upon substituting (22) into (20)-(21) we get the next expressions:

_m

oi(&) =¢€" mzn—lm, vi(&) =€ m;cn—lniwi, & = (di _ 6,,“) P | D‘_miJrl7

i (mt1) prt (di — e*m)m%l
dn; m : ’

m+1 m

dp; . _
L aipi + ;' = P () el ~mk=1)m (di — 677’1) X

d&;

Bi&i

m

/ m __m ni __mpg i, Di

X | wy — ———w; | —aye mb—1Tw;, e mh=17"
k
dep;

mk —1
d
Cl§z< dg;

m—1 k m+1
dS"z‘) _ (m“> preli= e
x (di — ™) | (Liw)™) + <t m (Liw)™
! ! di—e™m mk—1 ! ’

' k
where L;w = (wf) — m—wf
mk —1

Now (20) takes a next look:

m 1

((Liw)™) + <a1(77i) - ;n_ ) (Liw)™ + az(mi)w; " Liw — az(ni)wi + as(ni)wl’ = 0,

B mo\
d; — i’ a2(77z‘)—zm ’

where a1(n;) =

_ m(p;—1)

m—+1
m - ,
alm) = <m+1> D™ ay(n;)e” mE=T " m; € [no; 400).

In a specific region around +oc0, the solutions to the last system fulfill the following inequalities:

k) mk_
wi> 0, (o) = el A0
Assuming that v;(n;) = (L;w)™, then
! m 1-k Di
vi(ni) = = ar(ni) — —— | vi = a2(ni)w; " Liw + as(i) — wiaa(mi)w;" (23)
Furthermore, we consider the functions:
m 1-k Di
Oi(mi, i) = — | ar(ms) = —— | pi = az(mi)w; " Liw + a3 (i) — wiaa(mi)wy", (24)

where p; € R.

The functions 6;(n;, p;) keep the sign for interval [n;;+00) C [m0;+0o0) regarding each fixed
value p;. Therefore, the functions 6;(n;, u;) satisfies one of the following inequalities, for all n; €
(1135 +00),

v; >0, or v; <0, (25)
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from what one can conclude that when n; € [n1;; +00):

ml_lgrloom(m) = ml—1>r£ooa3(m) =0,

m
& —  lim as( )_@ _m
27 R = vilm—+1)) ~’
0, if p>1—-k+1,
0 ) m le—m . )
a4_77i£1-ir-looa4(nl)_ (W) dl s if pzzl*k+ﬁ’
+o00, if pi<1—k—i—%.

Suppose now that for the functions v; (n;), a limit 7; — 400 does not exist. It should be taken into
account the situation where one of the inequalities (25) holds. As v; (n;) are oscillating functions around
7; = 4, and in [n;; +00), the intersection of this straight line’s graph with itself is infinite.

But given that in the interval [1;;; +00), this is not possible. Since there is only one real inequality (25),
it follows from (24) that the graph of the function v; (n;) only crosses the straight line 7; = p;, once
over the interval [11;; +00). The function v; (;) therefore has a limit at n — 4o0.

The functions v; (1;) are assumed they have a limit at 7 — +o0o. Then, w; (1;) has a limit at
1N — 400, and this limit is zero. Then

mk " 0 km
vi () = (mk = 1> (@) " +o.
at n — +oo.

Furthermore, by (23) functions v; (n;) derivatives have limits at 7 — 400, which are plainly equal
to zero.
As a result, it is required

m )
n}i—r>noo[<a1(m) — i — 1> v; + ag(m)w}_kLiw — ag(m-) + wia4(m)wfl = 0.

And the following algebraic equations can be obtained

mk mk mkm o™k o mk o 0
mk—1\mk—1 (w) _a2mk—1 v

o (B mk-1 \"\7
(ki) ) !

1. From the last equation (26), it has been achieved that c?)i ~ 1, and thus

or

The best case: c?)i =

@i(&i) = pi(&)wi(m)-

m2(k+1—p1)(k+1—p2)
(m+1)°

ui(t, ) = ci(t +T1)*g:i(&)(1 + o(1)),

1
mk — 1 et Pk —1
where ¢; = b;ivi .
m B;m

Proof. Theorem 6 is demonstrated in a manner similar to that of Theorem 5.

1
Theorem 6. If p; >1 —k+ —, and qiq2 < , then
m
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2 Numerical solution of the problem

Drawing upon the extensive knowledge in the field of numerical analysis, experts have established
that the process of selecting an initial approximation is of utmost importance in maintaining the
nonlinear characteristics of a system of equations. Through rigorous research and analysis, it has been
determined that an ill-suited initial approximation can lead to significant distortions in the accuracy
and efficiency of the numerical solution. As such, professionals in this domain are constantly exploring
innovative techniques and methodologies to ensure optimal selection of initial approximations for
complex systems. Recognizing this significance, a computer experiment was recently undertaken to
investigate the qualitative properties of solutions in relation to the global solvability of the system.
To ensure utmost accuracy in our calculations, we employed equation (1) as our primary tool. This
equation, which takes into account the second order with respect to x and the first order with respect
to t, allows us to accurately model complex systems. By leveraging this approximation method, we
can gain a deeper understanding of intricate phenomena and make informed decisions based on highly
accurate data. The construction of the iterative process for numerical modeling involved employing
the Thomas algorithm to calculate the node values during each step of the iteration. This meticulous
approach guarantees the precision and reliability of the numerical analysis for the given system of
nonlinear equations.

To shed some light on the effectiveness of different approaches, we conducted a series of numerical
experiments. Through these numerical experiments, we were able to gain valuable insights into the
influence of different initial approximations on both the convergence of the solution and the preservation
of the qualitative properties of the intricate nonlinear processes under study. Our findings revealed that
even slight variations in the initial approximations could have a significant impact on the final outcome,
highlighting the importance of careful consideration and precise initialization in computational simula-
tions. These results underscore the necessity for thorough numerical analysis and further emphasize the
intricate nature of these nonlinear systems. Through our experiments, we were able to gather valuable
insights into the behavior of the system of nonlinear equations under different numerical parameters
and boundary conditions.
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Figure 1. k=10, m =23, p1 =2.1, po =2.0, a1 =1, ae =1
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Figure 7. k=14, m=17, p1 =16, po =14, a1 =1, ae =1
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Figure 8. k=14, m=17, p1 =16, po =14, a1 =1, as =1

Conclusion

It has been established upper and lower estimates for global and unbounded generalized solutions
and also Fujita-type critical exponents are obtained for a nonlinear mathematical model of the system
of parabolic equations with sources and nonlinear boundary conditions. In the study of a mathematical
model of a nonlinear diffusion equation with a double nonlinearity and a source, it has been confirmed
that perturbations propagate with finite velocity. This finding sheds light on the behavior of solutions
within this complex system, revealing the intricacies of spatial localization. By understanding these
properties, researchers can delve deeper into the dynamics of nonlinear diffusion equations, advancing
our knowledge in this specialized field of study.

An asymptotic behavior of compactly supported generalized solutions of the nonlinear diffusion
problem with a source and with nonlinear damping is proved.

In Figures 1-8, we are presented with a visual representation of the numerical solution to the
boundary value problem (1)—(3). These graphs not only provide a comprehensive view of the solution,
but also showcase the intricate nature of the problem at hand. By examining these figures, one can
discern the complex patterns and behaviors that emerge from this system, further reaffirming the need
for rigorous analysis and research in this field. In this case, the process has the property of a finite
perturbation propagation velocity. The size of the perturbation propagation region increases with time.
The results of numerical experiments provide compelling evidence of the rapid convergence observed
in the iterative process. This phenomenon can be attributed to the meticulous selection of the initial
approximation, a crucial step that sets the foundation for subsequent computations. Through careful
analysis and validation, it becomes evident that this method yields accurate and efficient solutions,
making it a valuable tool for tackling complex problems in various domains. All the figures show that
the increase in the propagation of a disturbance depends on the numerical parameters of the medium.
The numerical experiments conducted in this study have demonstrated the remarkable convergence
rate of the iterative process towards the precise solution. This notable result can be attributed to
the careful selection of an appropriate initial approximation. Notably, regardless of the variation in
numerical parameters, the number of iterations required does not surpass a mere five. Such findings
emphasize the efficiency and reliability of our computational methods in solving complex problems.
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BeiichI3bIKTHI ITeKapaJibIK, MIaPTTAaphl YKOHE JepPeKKo3i bap

0elichI3bIKThI AN PY3UIIbIK, 2KYiie IelnmiMIepiHiH e3repyi TypaJbl

M.M. Apunos!, 3.P. Paxmonos!, A.A. Ammios!?

1 .
Mupsa ¥Yawkberx amundazo. O36excman yammuok yrusepcumemsi, Tawxenm, Osbexcman;

2B.I". Iaexanos amvindaes. Peceti sxonomuranvy yrnusepcumeminin, Tawkenm duivano, Tawxenwm, O36excmar

Makasana basy auddy3us KaraaiblHIarbl OEMCHI3BIKTHIK, IIIeKAPAJIBIK, ITaPpTTAPbI 6ap O€HCHI3BIKTHI M-
Dy3UAIBIK, XKYHeHiH T100aabl MIENIIeTiHAir KoHe menijaMedTiHgiri 3eprresired. BefichI3bIKTBI MOIEIb-
JHepiniy peakius-auddy3us, XKbUTYy aaMacy, CY3y KoHe 6acka ga (PU3UKAIBIK, XUMUSIIIBIK, YKOHE OUOJIOTHSI-
JIBIK, ITPOIIECTEP/IIH, CATIAJIBIK CHIIATTAMAJIAPBIH TAJIIAY/ 18 MAHBI3IbI POJI ATKAPATHIH KPUTUKAJIBIK, PyiKuTa
TUINTI KOPCETKIII aJbIH/Ibl. [VI00a/ bl MEeNniMIIK KarIafblHIa aCUMIITOTHKAJIBIK, IIeITiMIep/IiH Herisri
KOMITOHEHTTEPI aJIbIHA/IBl. 3ePTTEETIH OEMCHI3BIKTRI TPOIECTEP/IIH CATAIbIK, CUIIATTAMAJIAPHIH CAKTall OThI-
PbIl, HAKTHI IIENIIMIe Te3 >KAKbIHIAWTBHIH UTEPAIUsJIBIK, 9JIiCTep COWKeC OaCTaIKbl »KYBIKTAYIBIH OOJIybIH
Tastan ereTiHi Genrisi. Bys GeliChI3BIKTBIK ecenTep i CaHIBIK, IMIENLy YINiH Kyp/esi mocese GOJbIT Tabbl-
Jazbl. BacTankpl KybIKTayIapabl COTTI TAHIAY €CENTi IIeNryre MyMKIHIIK Oepe/ii, o1 TeHIEYIiH CaHIbIK
nmapaMeTpJiepiHii, MoHiHE OalIaHBICTBI, OJ1ap OIPIHINI Ke3eKTe aCUMITOTHUKAJIBLIK, (DOPMYJIaHbI KOJIIAHATHIH
ecenreysepie YChIHBLIAAbI. VTepalnsIblK IPOIecTiH 6acTalnKbl XKYbIKTaybl PETiH/e O3iH/IIK YKCAC IIEeITiM-
JEep/iiH, ACUMIITTOTUKACKHIH Mail/Ta/IaHbII, CAH/IBIK, €CEITEYJIED KYPTi3iIreH KoHe HOTHKEJIED TAJIIayhbl Oepis-
red. CaHabIK ToxKipubenepaeH aJbIHFAH HOTHXKEJED OEHCHhI3BIK AudYy3UsIbIK, Kyieae KapacThIPhLIAThHIH
MPOIECTIH, (PU3UKACKIMEH TaMallla CONKEC KEJIETIHIH KOpCeTe .

Kiam ce3dep: KypaeieHy pexkuMi, 6eHCBI3BIKTHI IEKAPAJIBIK, IIAPT, MIENMIHIH 6ap 60Ty bIHBIH, KDUTUKAJIBIK,
r7106aJ11bl KUCBIFDI, ©3rellesIeHreH napaboaiblK, Kyitesep, OymKkura THITI KPUTUKAJIBIK, KOPCETKIIIL.

O nmoBegeHuu pereHunii HeJanHeTHON M PYy3MOHHOI CUCTEMBI C
WCTOYHUKOM M HEJINMHEWHBIMU I'PAHUYHBIMU yCJIOBUSMU

M.M. Apunos!, 3.P. Paxmonos!, A.A. Ammos!?

1 .
Havyuonaavruud yrusepcumem Yabexucmana umenu Mupso Yayebexa, Tawxenm, Ysbexucman;

2 Tawmenmexuti uavan Poccutickozo axornomuueckozo yrnusepcumema umery B.T. Iaexanosa, Tawxenm, Yabexucman

44

Nzydenn! riiobaJsibHasi pa3peruMoCTb ¥ HEPA3PEIIUMOCTh HeJUHEHHON auddy3uOHHON CHUCTEMBI C HEJIH-
HEHHBIMH IPAHUYHBIMU YCJIOBUSIMU B Ciiyvae MeayieHHoi quddysun. [losmydyensl Kpurnieckne moka3arein
Tuna OyIKUTHL U CYIECTBOBAHUS, KOTOPhIE UT'PAIOT CYIIECTBEHHYIO POJIb IIPU aHAIN3e KATeCTBEHHBIX Xa-
PAaKTEPUCTUK HEJIMHEHHBIX MOJIeJIei peakiui—uddy3un, TeraonepeHoca, (puabTpalud U Apyrux pusnde-
CKUX, XUMUYECKUX U OUOJIOTMYECKHX TIPOIeccoB. B cirydae riiob6aIbHON pa3permMOCTH MOy YeHbI KITFOYEBBIE
KOMITOHEHTBI aCUMIITOTHYIECKUX peleHnit. V3BecTHO, UTO MTEpAIMOHHBIE METOMBI, OBICTPO CXOSIIINECT K

Bulletin of the Karaganda University



On the behaviors of solutions ...

TOYHOMY DENIEHUIO IPU COXPAHEHNU KAa4YeCTBEHHBIX XaPAKTEPHUCTUK U3Y4YaeMbIX HEJMHEHHBIX IIPOIECCOB,
TPeOYIOT HaJIMUnsi COOTBETCTBYIOIIErO HAYAJIBHOIO IPHOJMKEHUs. DTO IIPEICTABISET CODOM CEephe3HYIO
MpobJIEMY [IJIsT 9UCIEHHOTO PENIEeHUsT HEJTMHEWHBIX 3a/1a9. YCIEITHBI BEIOOD HAYAIbHBIX TPUOINKEHU 103~
BOJISIET PEIIUTD 3Ty 3aJady, KOTOPasi 3aBUCUT OT 3HAYEHUSI YUCJIOBBIX [1ADAMETPOB yPaBHEHUsI, KOTOPLIE, B
MEPBYIO OYEPE]b, B PAaCIeTaX PEKOMEHJYIOTCS C UCIOIH30BAHMEM aCUMITOTUYIECKON dpopMysbl. [Ipumensist
ACHMIITOTHKY aBTOMOJIEBHBIX PEIIEHNN B KAaYeCTBE HAYAJILHOTO MPHUOJIMKEHNS UTEPAIMOHHOTO MTPOIECCa,
[IPOBEJICHBI YKCJIEHHBbIE PACYEThl U IIPUBEJCH AHAJN3 PE3yJbTaToB. Pe3ysIbTarbl YMCJIEHHBIX JKCIEPUMEH-
TOB TIOKa3BIBAIOT, UTO TOJIyUEHHBIE PE3YJIbTaThl MPEKPACHO COIVIACYIOTCSI C (DU3UKON pacCMATPUBAEMOTO
mporecca B HeJIMHERHON nuddy3noHHOM cucTeme.

Karouesvie crosa: pexkuM ¢ 000CTPEHIEM, HEJIMHEHHOE TPAHUYIHOE YCJIOBUE, KDUTUIECKAs IVI00aTIbHAS KPH-
Basl CyIECTBOBAHUS, BEIPOXKJIEHHbBIE [Tapabo/IMIecKue CUCTEMbI, KpUTHYIECKHUE MoKa3aTen Thuia OyrKuThl.
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In this article, the problem for a differential-algebraic equation with a significant loads is studied. Unlike
previously studied problems for differential equations with a significant loads, in the considered equation,
there is a matrix in the left part with a derivative that is not invertible. Therefore, the system of equations
includes both differential and algebraic equations. To solve the problem, we propose a modification of the
Dzhumabaev’s parametrization method. The considered problem is reduced to a parametric problem for
the differential-algebraic equation with significant loads. We apply the Weierstrass canonical form to this
problem. We obtain parametric initial value problem for a differential equations and an algebraic equations
with a significant loads. The solvability conditions for the considered problem are established.

Keywords: differential-algebraic equations, equations with significant loads, parameter, parametric initial
value problem, solution.

2020 Mathematics Subject Classification: 34A09; 34A36; 34B08; 34K10.

Introduction

Differential equations with significant loads are equations that describe how a system changes over
time, taking into account significant external influences or forces, known as “loads”. These external
influences could represent various factors such as external forces, environmental conditions, or other
external factors that affect the behavior of the system.

In the context of scientific and engineering applications, these equations are often used to model
dynamic systems where the behavior is influenced by external factors. For example, in the study of
diffusion processes, soil moisture dynamics, or the spread of infections, the differential equations with
significant loads would mathematically represent how the system evolves over time, considering the
impact of external loads on the system’s dynamics.

The solutions to these differential equations provide insights into the behavior of the system under
the influence of these significant loads, helping researchers and scientists understand and predict the
system’s evolution over time. The study of such equations is essential in various fields, including physics,
biology, engineering, and environmental science [1-17].

Solving differential equations with significant loads can be challenging, and the specific methods you
choose depend on the characteristics of the problem. Here are some general approaches: 1) Analytical
methods — they include Separation of variables, Integrating factors, Exact equations; 2) Numerical
methods — they include Euler’s method, Runge-Kutta methods, Finite difference methods; 3) Series
solutions — they include Power series. This method is useful for solving linear differential equations with
variable coefficients; 4) Transform methods — they include Laplace transform. The Laplace transform
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can simplify the differential equation into an algebraic equation, making it easier to solve; 5) Numerical
simulation — they are Finite element method, Boundary element method; 6) Special functions — they
include Bessel Functions, Legendre Polynomials, etc.; 7) Computer algebra systems and software — they
include Mathematica, MATLAB, or Python with libraries like SciPy to numerically solve differential
equations or perform symbolic computations.

When dealing with significant loads, it’s crucial to consider the nature of the load (constant,
time-dependent, etc.) and the type of differential equation (ordinary or partial). In many real-world
situations, a combination of analytical and numerical methods, possibly with the aid of computational
tools, is necessary for obtaining solutions.

Differential-algebraic equations with significant loads refer to a class of mathematical equations that
involve a combination of differential equations and algebraic equations, where the system is subjected
to significant external forces or loads. These equations are common in various scientific and engineering
applications, especially when modeling complex dynamic systems [18-33].

The presence of significant loads implies that external forces or influences play a substantial
role in the behavior of the system. These loads can be time-dependent, leading to a more intricate
mathematical formulation.

Solving differential-algebraic equations with significant loads may require specialized numerical
methods or a combination of analytical and numerical techniques. The choice of method depends
on the specific characteristics of the problem, such as the nature of the loads and the structure of
the equations. Some common methods for solving differential-algebraic equations include implicit and
explicit numerical methods, index reduction techniques, and advanced numerical solvers.

Researchers often study and develop methods tailored to the specific challenges posed by differential-
algebraic equations with significant loads to accurately model and simulate the behavior of dynamic
systems in various fields, including physics, engineering, and biology.

The present article considers a problem for the differential-algebraic equation with significant loads,
where the left-hand side of the equation involves a non-invertible matrix. To study and solve this
problem, a modification of the Dzhumabaev’s parametrization method [34| is proposed. Considered
problem is reduced to a parametric initial-boundary value problem for the differential-algebraic equations
with significant loads.

1 Statement of problem and reduction to a parametric problem

On [0, T'] the following problem for differential-algebraic equations with significant loads is considered:
Ei(t) = Az(t) + Eoz(0) + Aox(0) + f(1), t €0,T], (1)

Bz(0) + Cx(T) = d, (2)

where the matrices E, A € C™", Ey, Ag € C™", and the function f(t) € C([0,7],C"), 0 < 8 < T, the
matrices B, C € C™", the vector d € C".

We suppose that the matrix pair (E, A) is regular.

A solution to problem (1), (2) is called a function z(t) € C(]0,7],C") having derivative #(t) €
C(]0,T],C™), satisfies to differential-algebraic equations with significant loads (1) and two-point
condition (2).

The aim of the paper is to propose a constructive method for solving problem (1), (2).

For solving the problem for differential-algebraic equations with significant loads (1), (2) Dzhumabaev’s
parametrization method is applied [34].

We introduce a parameter £ in the following form: E{ = FExz(0), a.e. as a value of the unknown
function at the left endpoint. Then, in the problem (1), (2) we replace z(t) by a new function in the
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form z(t) = y(t) + £. The two-point problem for differential-algebraic equations with significant loads
(1), (2) transfers to the parametric problem

Ey(t) = Ay(t) + Eoy(0) + Aoy(0) + [A+ Aol + f(), ¢ €[0,T], (3)
Ey(0) =0, (4)
[B+ Cl¢ + Cy(T) = d. (5)

We obtain the parametric for differential-algebraic equations with significant loads and initial condition
(3)—(5). Relation (5) can be interpreted as an algebraic equation, containing unknown parameter £ and
value of the unknown function y(¢) at the point ¢t = T.

A solution to the parametric problem for differential-algebraic equations with significant loads and
initial condition (3)—(5) is called a pair (y(t),£) with elements y(t) € C([0,T],C") and £ € C™, satisfies
to system (3), initial condition (4) and system of algebraic equations (5).

Subsequently, based on the properties of the obtained parametric problem (3)—(5), we give the
solvability conditions to the considered problem (1), (2). For this purpose, in next Section the Weierstrass
canonical form is applied to the parametric problem (3)-(5).

2 Weierstrass canonical form and solution to parametric problem

Further, we apply Weierstrass canonical form [18], it is a specific representation of differential-
algebraic equations. The Weierstrass canonical form simplifies the analysis and numerical solution of
differential-algebraic equations by separating the differential and algebraic components of the system.
It provides a structured representation that is easier to work with when applying numerical integration
techniques or performing stability analysis.

Let P and @ be nonsingular matrices on dimension n which transform (3) to the Weierstrass
canonical form

rra=lo, ) raeslo, Tl rreg) o

where I, and I, is a identity matrices on dimension nj, ng, respectively, O,, and O,, is a null
matrices on dimension ni, no, respectively, NV is a nilpotent matrix on dimension neo, J is a matrix in
Jordan canonical form on dimension ny, ny +ny = n. Following [18], we call the index of nilpotency of
N in (6) the index of the matrix pair (F, A), denoted by v = ind(E, A).

We suppose that the matrices Fy and Ay have the forms

_ | Lny Ony _ | Mp, On,
PEOQ - |:On1 Ln2:| ) PAOQ - |:O'n,1 an )

where Ly, , M, and L,,, M,, are a constant matrices on dimension ni, ng, respectively.
Using (6), (7) we reduce parametric problem (3)—(5) to the next form:

i (t) = J((t) + &) + L, §1(0) + M, 51(0) + My, &1 + f1(2), (8)
71(0) =0, (9)

Nija(t) = §a(t) + & + Lnyija(0) + My 2(0) + My, & + fa(t), (10)
Ny2(0) =0, (11)

B+ CIE =d— Cy(T), (12)
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where § = (§1,32)" = Q7 'y, fu(t) € C([0,T],C™), §a(t) € C([0,T],C™), & = (&,6)" = Q7'E,
fl € (Cnlv 52 € Cnga B = Bch = CQ

Problems (8), (9) and (10), (11) are initial value problems with parameter for differential equations
with significant loads.

A pair (§(t),€) with § = (41, 92)7 and € = (€£1,&)7 is called a solution to problem (8)-(12), if it
satisfies the initial value problems (8), (9) and (10), (11), and the relation (12).

From equations (8) and (10) we determine the values 71 (#) and ij2(#). We have

J1(0) = J(1(0) + &1) + Ly §1.(0) + M, 51 (0) + My, &1 + 1(6), (13)
Ng2(0) = §2(0) + &2 + Ly §2(0) + My, §2(0) + Moy + fo(0). (14)
From (13) and (14) we obtain
[Iny = Ly J§1(0) = [J + M, 151(0) + [J + My, )61 + f1(6), (15)
[N = Ly ]92(0) = [Iny + M ]52(0) + [Iny + My, )2 + fo(6). (16)

Assuming that the matrices I,,, — Ly, and N — L,,, are non-singular in (15), (16), we have the following
presentations for g1 (6) and g2(6):

gl (9) = [Im - Lm]il[J + Mm]gl(e) + [Im - Lm]il[J + Mnl]gl + [[m - Lm] 9), (17)
152(9) = [N - an]il[lnz + an]g2(9) + [N - an]il[Inz + an]& + [N - an] 0)‘ (18)
Substituting (17), (18) into the equations (8), (10) instead of the values ¢;(8) and §j2(6), we obtain
J1(t) = JGi(t) + & + Loy §1(0) + Ly &1 + fi(8) + Ly [y — L] 7' f1(6), (19)

)
Nija(t) = §a(t) + &2 + Ly §2(0) + Lny&a + fo(t) + Ly [N — Ln,] " fa(6), (20)
where Ly, = Ly, [In, = Ln,] 7' [J + My, ] + My,, Lny = Ly [N = Ly Iy + Myy] + My,
For fixed &; solution to initial value problem (19), (9) has the next representation:

L
ol

t t t
7 (t) = /e(t_s)stJél —I—/e(t_s)‘]dsJI:mg]l(H) +/e(t_5)stJl~}m§~1+
0 0 0
t t
+ / =97 fi(s)ds + / e ds Ly [In, — Lo, )" f1(0),  te[0,T). (21)
0 0

By Lemma 2.8 [18] and property of matrix N, for fixed & equation (20) has the unique solution in
the form:

v—1 .

R T~ .. 1 ()

Jot) == NI {52 + Loy §2(0) + Lo + fo(t) + Ly [N — Ly ] 7' fo(0)| T =
=0
v—1 o _ ~ L ~

== 3 N 0) = Luia(6) — & — Lnso — Lus[N = L, |7 2(6). (22)
j=0
From expressions (21) and (22) we determine values of functions g (t) and 72(t) at the point ¢ = 6:
0 0 0
71(0) = / = ds e, + / e~ s T Ly i1 (0) + [ O ds T L, &1+

0 0 0
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0 0
+ [ 9 fi(s)ds + [ O dsT Ly, [In, — Ln,| " f1(0), (23)
[ [
v—1
g2(0) = — ZNjféj (0) = Lny§2(0) — & — Liny&a — Lny[N — Lny] ™' f2(6). (24)
=0

From equations (23) and (24) we have

0 0 0
[[nl _ /e(e_S)stJim]ﬂl(H) _ /e(G—S)JdSJEI + /e(G_S)stJz/mél—l-
0 0 0

0
+ /e(e_s)Jfl(S)ds + e(G_S)JdSJLm [Im - Lm]_lfl (9)7 (25)
0

o — 5

[Inz + ZNJf n2£2 Ly, [N - an]_lfQ(a)- (26)

We suppose that the matrices Dy, = I, — f e®=9dsJL,, and D,, = I, + Ly, are invertible, a.c.
0

non-singular. Then, from algebraic equations (25), (26), we obtain the expressions for g1(0) and g2(6):
0
B(6) =Dyl [ Ol + Lulét
0
0 0
+D,} / =) f1(s)ds + Dy, ! / e~ ds.J L, [T, — Lny] ' f1(6), (27)
0 0
Z N 90 — Dy Ly [N = L, 7' f(0). (28)

Substituting (27) and (28) into the expressions (21), (22) instead of the values y;(6) and §2(0), we
obtain

t t 0
g1(t) = / e s I L, + Ln, &1 + / =97 qsJL,, Dy} / =45 (I, + Ln,)é1+
0 0 0

t 0 0
+/e(t S)stJLm{ /e 0=5)7 F (s )ds+D;11/ew—sﬂdsJLm[Im —Lnl]_lfl(e)}—i-
0 0 0
t t
- / =) f (s)ds + / e dsJ Ly, [In, — L, ] 7 f1(0),  t€[0,7T7, (29)
0 0

:-@-ZNJ t) + L, Dy, ZNJ 90
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=+ ‘EHZ‘D;;LTLQ [N - Ln2]71f2(0) - an [N - an]ilfhi?(e)' (30)

Hence, taking into account initial condition (11), we obtain that the second component of the parameter é
is uniquely determined and the vector £ has the next form

v—1 v—1
&= NIFD(0) + LoDyt ST NI (0)+
j=0 7=0

+ f’nzDrtglLTu [N - Ln2]_1f2(€) - Ln2 [N - LHQ]_le(Q)' (31)

As can be seen from (30) and (31) the second components of § and & became known.

Now, we are interested in finding only the first components 3; and §~1 which are interrelated by (29).
Therefore, the appropriate number of imposed boundary conditions must match the number of n;
differential equations in (1).

A natural question arises: what should be the structure of boundary matrices B and C?

3 The solvability of problem (1), (2)

We assume that the n x n matrices and the right-hand side n-vector of the relation (2) are of the

form B -
5 _ | Bt Op, A | C1 Oy, s
BQ =B= |:On1 Onz], c=C= [Om Om], d= [O , (32)

where Bl, C’l e C"™ gnd d € C™. )
Now, by substituting (29) into (2), we get the following algebraic equation with respect to &;:

e = d, (33)
where
T T (%
=B +C+Cy / e T ds ][I, + Ln,] + C1 / e "= dsJL,, Dy} / e~ dsJ(I,, + Ln,]
0 0 0
and
t 0 0
d=dy —Cy / elt=s)7 dsJEmD;f{ / W= f1(s)ds + / e~ ds T Ly, [In, — Ln,| ™" fl(e)}—
0 0 0

-y

t
=7 f1(s)ds — C, / e dsT Ly, [In, — Ln,| " f1(6).
0

o _

If the matrix ® is nonsingular, a.e. is invertible, then system of algebraic equations (33) has the unique
solution &} :~<I>*1d. Substituting &7 into (29), we find g7 and hence the first components of the unique
solution (g*,&*) of the parametric problem (8)-(12):

t t 0
HOE / e ds (I, + Ly @~ d + / =97 4sJL,, Dy} / e =9 ds (I, + Ln,]® d+
0 0 0
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t 0
+/et stSJLm{ 1/69 7 fi(s)ds + D;, / = ds T Ly [Ty — Ly ] f1(6 )}
0 0

t t
+ / =7 f1(s)ds + / e = ds T Ly, [In, — Ln,) " f1(6), t e [0,7), (34)
0 0

&=t (35)

As shown earlier, the second components of (7*, é*) are determined by:

Z NI §9) Z N D@, telo,T), (36)

v—1
=S N P(0) + Ln, Dy, ZNJf
7=0

+Lﬂ2D L”Q[N_LnQ]_1f2(0) _LHQ[N_LTLQ]_IfQ(H)' (37)
Therefore, taking into account the interrelation between the parametric problem (3)—(5) and the initial

value problem with parameter (8)-(12), we can summarize our result for this case.

Theorem 1. Let (E,A) be a regular pair of square matrices and let P and @) be nonsingular
matrices which transform (3) to Weierstrass canonical form (6). Furthermore, let v = ind(E, A) and
feC¥([0,T],C"). Assume that:

i) the matrices Ey and Ay have the forms (7) with constant matrices L,,, M, and L,,, M,, on
dimension nq, no, respectively;

ii) the matrices I,, — Ly, and N — L,,, are non-singular;

0 - ~

iii) the matrices Dy, = I, — [ 6(9""’)“7CL<>*JL,L1 and Dy, = I, + L,, are non-singular, where
0

Ly, = L, [In, — Lm]_l[J + My, + My, , Ly, = Lny [N — an]_l[Inz + Mu,] + Mp,.

Then the initial value problem with parameter (8)—(12) with the matrices B, C, and vector d of
the form (32) has a unique solution (7*,£*) if and only if the matrix

T T (%
d=B+C+Cy / e T ds ][I, + Lp,] + C1 / e "= dsJL,, Dy} / =945 J(I,, + Ln,]
0 0 0
is nonsingular.

Taking into account the interrelation between of the parametric problem (3)—(5) and the initial
value problem with parameter (8)—(12), we write the unique solution (y*(¢),£*) of the parametric
problem (3)—(5) in the following form

where the functions 7 (t), 95(t) and the vectors g‘{, g‘ are determined by (34), (36) and (35), (37),

respectively, R
_ [A®)
Pr = A0,
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0 0

e<t5>stJZmDml{ / =97 F1(s)ds + / e~ ds T Ly, [In, — Ln,| " fl(e)}—
0 0

d=d, —C,

o _

t
—Cy | 9 fi(s)ds — Cy / e ds T Ly, [In, — Ln,| " f1(6).
0

o _

From the equivalence problems (3)—(5) and (1), (2) it follows that

Theorem 2. Let (E,A) be a regular pair of square matrices and let P and @ be nonsingular
matrices which transform (3) to Weierstrass canonical form (6). Furthermore, let v = ind(E, A) and
feC¥([0,T],C"). Assume that:

i) the matrices Ey and Ag have the forms (7) with constant matrices L,,, My, and Ly,, M,, on
dimension nq, no, respectively;

ii) the matrices I,, — L, and N — L,,, are non-singular;

4 - -
iii) the matrices Dy, = I, — [ e"=9)dsJL,, and Dy, = I, + Ly, are non-singular, where
0

‘an = L, [In, — Lm]_l[‘] + My, ] + Mp,, f’nz = L, [N — an]_l[ITu + My,] + Mp,.
Then the problem (1), (2) with the matrices B,C, and vector d of the form (32) has a unique
solution if and only if the matrix
T T 0
®=DB+C+C /«C,’(T_S)‘]als,][ln1 + L, |+ C1 / e(T_S)‘]dSJINJmD;ll e~ dsJ(I,, + Ln,]
0

0 0

is nonsingular. And, the solution x*(¢) of problem (1), (2) is determined by equality
(b)) =y () +&5  te0,T],

where the function y*(t) and the vector £* are defined from (38) with components % (t), 73 (t), £F, &
give the expressions (34)—(37).
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Eneymi xxykremesiepi 6ap auddepeHnmaabK-aareopajblkK TeHaeyJiep
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YIIiH ecen

A.T. Acanosa!, 2K.M. Kamup6aesa?, P.A. Mener6exosa®, C.T. Mubaesa'+?

1
Mamemamuka dHcone MaAMeMamukaivk, modeavoey uncmumymot, Aamamo, Kasaxeman;
2 Xanvikapaavi; aKnapammonk, mezroaoeuasap yrusepcumemi, Aamamu, Kasakemar;

3 HTvimmenm yrusepcumemi, Hlwmxenm, Kasaxeman;

4 . . .
K. XKybanos amwindazes Axmebe onipaix ynusepcumemi, Axmebe, Kasaxcman

Maxkanana eneymi Kykremesepi 6ap auddepeHInaIIbK-aaredpaiblK, TeHIEYIep YIMH eCell 3€PTTEe/ITEH.
Egeyni xxykremesnepi 6ap guddepeHnmaliibiK, TeHIeyaep VIliH OYPbIH 3epPTTEJINeH eCenTepIeH aiflblpMAaIllbl-
JIBIFBI, KAPACTBIPBIIBII OTBIDFAH TEHJIEY/IIH COJI »KAFBIHJAFbl TYBIH/IBIHBIH, AJIIbIHIA KARTHIMCHI3 MaTpPUILA
6ap. Enpemte, Tenneynep xyiteci quddepeHaiIbK, TeHIEYIEPMEH KOCa, AJIre0pAIBIK, TeHIEYIEPIl /16 KaM-
Tubl. Koitbuiran ecenti memry yirin 2KyMmabaeBThHIH mTapaMeTpJiiey 9/IiCiHIH MOIU(MUKAIUICH! YChIHBLIAIbI.
KapacThIpbLIBIIT OTBIPFaH ecel eJieyiii KykTemesepi 6ap auddepeHuaIbK-aarebpablK, TeHIeYIep VIIiH
mapaMeTpJiiK ecenke Kearipiaren. Ocel ecenke Beitepirpacc KaHOHIBIK, (GOpMAChl KOJJAHBLIAILI. FKieyiti
KykKTemesepi 6ap guddepeHnnaliIblK, *KoHe ajaredpaJIblK TeHJIey/Iep VIIMH TapaMeTpJiK OacTalKbl ecelr
aJIbIHFaH. 3epPTTeJII OThIPFaH €CeNTiH IMEeNIMIUNK IapTTapbl aHbIKTAJIFAH.

Kiam cesdep: nuddepeHImaibIK-aarebpaibiK, TEHIEYIIEp, eeyli XKyKTemMeepi 6ap TeHeyiep, mapamerp,
mapaMeTpJiiK 6acTanKbl €Cerl, MIEIIiM.

Samava s nuddepeHnuaabHO-aaredpaniecKnx ypaBHEeHMI C
CYIIIECTBEHHBIMU HATrPy3KaMU

A.T. Acanosa!, 2K.M. Kamupbaesa?, P.A. Mener6exosa®, C.T. Munbaesal+?

L nemumym mamemamusy u Mamemamuueckozo modeauposarua, Aamame, Kazaxcman;
2 MeotcOyrapodnniii yrueepcumem uHBOPMAuUOHHHE mexnoroeut, Aimamo, Kazazcman;
3 MTvimxenmerxuts yrusepcumem, Hlvimxenm, Kasazeman;

4 Axmiobuncrut pezuonarvied yrusepcumem umenu K. Xybanosa, Axmobe, Kazaxcman

B crarpe nccnenosana 3amaga ais auddepeHnaabHO-aarebpanieckoro ypaBHeHHsI C CyIeCTBEHHBIMU Ha-
rpyskamu. B orimyme or paHee M3y4YeHHBIX 3aJa4 g auddepeHnmraabHbIX YPABHEHUI C CyIIeCTBEHHON
Harpy3KoOil, B pacCMaTpUBaeMOM YPaBHEHWH B JIEBOI YaCTW MPU MIPOU3BOIHON MMEETCsl HeobpaTuMasl MaT-
puma. CiieoBaTeIbHO, CHCTEMAa yPABHEHNN BKJIIOYAET B ceOs Kak AudhepeHImaibHbe, TaK U ajrebpande-
ckue ypaBHeHus. JlJisi penieHus: IOCTaBJIEHHON 3a/1a9u MPEJJIoYKeHa MOJUdUKAIUs METO/Ia IIapaMeTpu3a-
muu JIzxymabaesa, U 3a/1ada CBeJIEHA K TTapaMeTPUIECcKOil 3amade mjis auddepeHIna bHO-aIredbpandeckoro
YPaBHEHUsI C CyIIECTBEHHbIMHM Harpy3kamu. K 3Toil 3a1ade mpuMeHsieTcs KaHOoHUYecKas ¢dopma Beitep-
mrpacca. Ilosydena mapamerpudeckasi HadasJbHas 3aja4da st JuddepeHnnaibHbIX U ajJredpandecKnx
YPaBHEHUI C CYIECTBEHHBIMU HATPY3KAMU. YCTAHOBJIEHBI YCJIOBUSI PA3PEIINMOCTH UCCIEIYEMOM 33/ Ia9N.

Karouesvie crosa: muddepenimaibHo-aarebpandeckue ypaBHeHNsI, YPaBHEHUS C CyIIIECTBEHHON HArPY3KOIA,
mapaMeTp, ImapaMeTpudeckas HadaJ bHas 3aJ1a9a, PEIICHUE.
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In this paper, the inverse problem for a fourth-order parabolic equation with a variable complex-valued
coefficient is studied by the method of separation of variables. The properties of the eigenvalues of the
Dirichlet and Neumann boundary value problems for a non-self-conjugate fourth-order ordinary differential
equation with a complex-valued coefficient are established. Known results on the Riesz basis property
of eigenfunctions of boundary value problems for ordinary differential equations with strongly regular
boundary conditions in the space L2 (—1, 1) are used. On the basis of the Riesz basis property of eigenfunctions,
formal solutions of the problems under study are constructed and theorems on the existence and uniqueness
of solutions are proved. When proving theorems on the existence and uniqueness of solutions, the Bessel
inequality for the Fourier coefficients of expansions of functions from space Ls (—1,1) into a Fourier series
in the Riesz basis is widely used. The representations of solutions in the form of Fourier series in terms
of eigenfunctions of boundary value problems for a fourth-order equation with involution are derived. The
convergence of the obtained solutions is discussed.

Keywords: parabolic equation, inverse problem, classical solution, Fourier method, strongly regular boundary
conditions, Riesz basis.
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Introduction

With the further development of the theory of solvability of differential equations, with the advent
of new mathematical models in various fields of natural sciences, it becomes more and more important
to formulate new mathematical problems and to study more general cases of classical differential
equations. These are direct and inverse problems for the fourth-order partial differential equations.
A lot of papers are devoted to the study of boundary value problems for the fourth-order partial
differential equations (see, for example, [1,2], and references therein).

It should be noted that boundary value problems with complex-valued coefficients are of particular
interest. The existence and uniqueness of the solution of mixed problems for the heat equation with
a complex-valued coefficient was established in [3]. The solvability of mixed problems for a perturbed
wave equation with involution and with a variable complex-valued coefficient was studied in [4,5]. The
solvability of inverse problems for the perturbed heat equation with involution and with a variable
complex-valued coefficient was considered in [6-8].

The results on the existence of a unique solution to inverse problems for a fourth-order partial
differential equation with real coefficients depending on x and ¢ can be found in [9, 10].

*Corresponding author. E-mail: bolat_ 3084@mail.ru
This research is funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic
of Kazakhstan (Grant No. AP13068539).
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This article presents the results of studies of inverse problems for a fourth-order parabolic equation
with a variable complex-valued coefficient. The existence and uniqueness of the solution of mixed
inverse problems for a one-dimensional fourth-order equation is established

84
At @t ta(@)ulz,t) = f(z), (1)

where ¢ () = q1 (x) + ig2 (). We will use @ = {-1 <z <1, 0 <t < T} to denote an open domain,
and Q ={-1<x<1, 0<t<T} to denote a closed domain.

The space Cﬁi (2) consists of all functions wu (z,t) having continuous derivatives with respect to ¢
and x of the order [, k respectively, in the domain €.

ug (x,t) +

1 Problem Statement

Let us introduce a non-self-conjugate fourth-order differential operator Ly : D (Lq) CLy(—1,1) —
Ly (—1,1) by the formula
Ly =y" (@) +q(@)y(x), -1<z<1,

with the domain of definition

={y(x) e Wa[-1,1]: Ui(y) =0, i=1,2,3,4,}, (2)
where the linear forms U; (y) are written as U; (y)
Ui (y) = aiy” (=1) + asy” (1) + aizy” (1) + aiy” (1) + aisy’ (=1) + @iy’ (1) + airy (=1) + aigy (1),

with given complex coefficients a;;, Wi [-1,1] = {y(z) € C3[-1,1] : y'V (x) € Ly (—1,1)} is the
Sobolev space. Assume that the linear forms Uy (y), Uz (y), Us (y), Ui (y) are linearly independent.
The order of the highest derivative of the form will be called the order of the form. Then the maximum
number of forms of order 3 will be not more than two. Boundary conditions (2) can easily be reduced
to the form

/

any” (1) + a2y (1) + a13y” (—1) + a14y” (1) + a5y’ (—1) + a16y’ (1) + a17y (1) + a5y (1) = 0,

(-
az1y” (—1) + azey” (1) + azsy” (=1) + a2ay” (1) + azsy’ (=1) + a2y’ (1) + azry (—1) + azsy (1) =0,
(1) + azzy (—1) + assy (1) = 0,
aszy” (=1) + asay” (1) + assy’ (=1) + asey’ (1) + aary (1) + asgy (1) = 0, (3)

called the normalized boundary conditions [11; 66]. For the sake of simplicity, we have not changed the
notation of the coefficients. We proceed similarly if the order of the highest derivative of the forms is
less than 3.

Let us rewrite equation (1) in the form

aszy” (—1) + azay” (1) + assy’ (—1) + asey

ug (x,t) + Lyu (z,t) = f (x), (x,t) € Q, (4)

and then consider a differential operator L, with domain generated by one of the following two boundary
conditions:
D: Dirichlet boundary conditions

Ui () =u(=1,t) =0, Uz (u) =u(1,t) =0, Us(u) = ug, (—1,¢) =0,
Uy (u) = uge (1,6) =0, t € (0,7). (5)
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N: Neumann boundary conditions
Ui (u) =uz (—1,t) =0, Uz (u) = uy (1,t) =0, Us(u) = ugge (—1,) =0,

Ut (4) = tgae (1,£) = 0, t € (0,T). (6)

We have to find a pair of functions u (z,t) and f(x) satisfying equation (4) in the domain © and
conditions

u(,0) =@ (), u(z,T) =1 (), ze(-1,1), (7)
where () and ¢ (x) are given sufficiently smooth functions.

Definition 1. A pair of functions u (z,t) and f (x) is called a solution to inverse problem (4), (5),
and (7) if the following three conditions are satisfied:

1) the function u (z,t) € C () N C’i’to (Q);

2) there are derivatives wuy (x,t), Ugpy (%,t) and Upgz, (z,t) continuous in the open domain €,
f(x) e C[-1,1;

3) functions u (z,t) and f (x) satisfy equation (4), and the functionu (x,t) satisfies conditions (5),
(7) in the usual sense.

The notion of a solution to inverse problem (4), (6) with boundary conditions (7) is defined similarly.

To prove the existence and uniqueness of a solution to the inverse problem posed, we use the
Fourier method. The advantage of this method is that we will have a representation of the solution
to the inverse problem in the form of Fourier series. A disadvantage of the Fourier method may be
increased requirements for initial data. However, the aim of this work is not to reduce the smoothness
of the initial data.

In this regard, it is necessary to solve the inverse problem of convergence of expansions of functions
from a certain class in terms of eigenfunctions of the following spectral problem:

LyX () =AX (z), -1<z<1. (8)

2 Properties of eigenfunctions of spectral problems

It is easier to prove the convergence of expansions of operator L, in eigenfunctions if the system of
eigenfunctions { X} (x)} forms a Riesz basis in the class Ly (—1,1). Therefore, in this section, we study
the basis property of the eigenfunctions of a differential operator L,. The differential operator L, is
not a self-conjugate operator. The conjugate spectral problem is written as

LiZ (z) = Nz (x), (9)

where L7Z (x) = Z1V (z) + q(x) Z (x) is the operator conjugate to the operator L,. The domain
of definition of the conjugate operator L; is given by one of the boundary conditions (D) or (NV)
so that D(Ly) = D (LZ). Suppose that all eigenvalues of the operators L, are simple and zero is
not an eigenvalue. The systems of eigenfunctions {Xj (z)} and {Zj (z)} satisfy the biorthogonality
condition [11; 30|
1
(Xi, Zn) = / Xp (@) Zn (2) d = Gpon,

-1

where g, is the Kronecker symbol. In the case of positive self-conjugate operators, the eigenvalues are
real and positive. In the case of nonself-conjugate operators, the eigenvalues can be complex numbers.
Therefore, it is necessary to study the condition of non-negativity of their real parts.
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Lemma 1. Let g (x) € C'[—1,1]. Then the inequality [Im Ag| < max|g2 (z)| holds for all eigenvalues
Ak of the operator L,. Under an additional condition Re ¢ (z) = ¢; () > 0 in the interval —1 <z <1,
all eigenvalues )\ of the operator L, satisfy the inequality Re A, > 0.

Proof. Consider equation (8) with boundary conditions (5) or (6). We multiply both parts of
equation (8) by the complex conjugate function Xy (z) and integrate the resulting equality twice by
parts over the interval (—1,1). After this, the non-integral terms that arise disappear, and we obtain
the equality

1 1 1
X"y, ()2 dz + [ q (@) | X (2)de = N, [ Xy (2)]?de.
[t | /

Writing out the real and imaginary parts of the last equality separately, we get the following two
relations:

1 1
/q2 (2) | X (z)]Pda = Im)\k/|Xk (z)|*d,
—1 —1

1 1 1
X"y, (2)Pde + | g1 (2) | X, (2)Pde = Re Ay [ | Xy (2)]*da.
/ / /

From the first equality we obtain the first assertion of the lemma

max |g2 (x)] > [ImAg|, k€ N.
z€e[—1,1]

To prove the second assertion of the lemma, we assume the contrary. Let there be a subsequence
{An, } satisfying the condition Re A, < 0. Then the second relation implies the inequality

1 1 1
/ |X”nk (x)|2d1‘ + /ql (x) | Xn, (x)]de =Re,, / | X, (ac)|2da: <0,
21 21 21

whence, by virtue of ¢; () > 0, we get a contradiction, which proves the lemma.

Note that this lemma is valid for continuous ¢ (x) € C'[—1,1]. In this case Re A\, > 0, starting from
some number ko, as Re A\ > |min ¢ (x)| for & > ko, if ming; (z) < 0.

For further presentation, let us dwell on some well-known facts. Let A\ = p?. In the complex p-
plane, consider a fixed region S,, v =0,1,2,...,7, defined by the inequality “* < argp < % . We
enumerate w1, ws, ws,wy different roots of the number v/—1 so that for p € S, Re (pw1) < Re (pwe) <
Re (pw3) < Re (pwa).

It is well known that the normalized boundary conditions (3) are called regular (see, for example,
[11; 67] if the numbers #_;, 6; defined by the equality

anwi  (ar1 + sai2) wi (an + *a12) w§’ aowj

e aniw}  (ag1 +saxn)ws (a2 + fag)wi  agw}
s o asgsw? (ass + sazs) w3  (ass + ass) w3 a34wj
a43w% (@43 + Sa44) w% (CL43 + §a44) w§ a44wz

are different from zero. Here the power of the number w; is equal to the order of the highest derivative
of the corresponding boundary condition. We proceed similarly if the order of the highest derivative of
the forms is less than 3.

If the additional condition 63 — 46_16; # 0 is satisfied, then the boundary conditions (3) are called
strongly regular.
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Note that the differential operator L, generated by strongly regular boundary conditions can have
only a finite number of multiple eigenvalues.
The papers [12], [13] imply the following important theorem.

Theorem 1. [12], [13]. If the operator L is generated by strongly regular boundary conditions, then
the eigenfunctions and associated functions of this operator form a Riesz basis in the space Ls (—1,1).

It is easy to check that the boundary conditions (5) (and (6)) are strongly regular, so the system
of eigenfunctions { X}, (x)} of the operator L, forms a Riesz basis in the space Ly (—1,1). This is also
valid for the system of eigenfunctions {Zj (z)} of the operator L.

Everywhere below we will assume that all eigenvalues of the operator L, are single.

Lemma 2. For any function ¢ € D (L) each of the Fourier series

o0

p(x) =) (o Zk) Xy (z = (0. Xp) Zp (x (10)
k=1 k=1

by eigenfunctions { Xy (x)}, {Zk (z)} converges uniformly for —1 < x < 1.
(

Proof. Let us rewrite equation (8) in the form (the number A = 0 is not an eigenvalue)

XL () + g () Xi (2)

X (z) = "
Then . )
_ v _ XY (2) +q () Xy ()
(@,Xk)—/1g0(x)Xk(:c)da:—/1gp(x) k 3, de =
1
- jk J 16 @)+ a(a) o @) T (o) do = jk (Lo, %)
21

Using this relation, the second series in (10) can be written as

p(r) =) =2k (x), (11)

where

-1
On the other hand, it is well known that the conjugate spectral problem is equivalent to the integral

equation
1

Zela) =% [ 6 (@) Zu (0,
-1
where G* (x,t) is the Green’s function of the conjugate boundary value problem for A = 0. By definition
[11; 45], the Green’s function G* (ac t) is continuous for x € [—1,1] and ¢ € [—1, 1] and therefore it is

bounded. Let’s denote C (x f G* (x,t) Zy, (t) dt. Then equality (11) takes the form
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Further, using the inequality ab < % (a2 + b2), we obtain the following estimate

k=1

A,
:Z
VG (v)

=3 ARGk (2) < D AR+ |Ck (2) (12)
k=1 k=1 k=1

As the quantities Ay are the Fourier coefficients of the expansion in the Riesz basis Zy (x), k =
1,2,3, ..., and C (z) are the Fourier coefficients of the expansion of the Green’s function G (z,t) in the
Riesz basis { X} (x)}, due to the Bessel inequality for the Riesz bases, both series on the right side of
inequality (12) converge and

0o 1
SO ICk (@) < /|G* (2, 8)2dt < Mo, Vo € [—1,1].
k=1 k8

This implies absolute and uniform convergence of the second series (10) . The absolute and uniform
convergence of the first series (10) is proved similarly. The lemma is proved.

8 Formal solution to the inverse problem

In this section, we construct a formal solution to the inverse problem for equation (4) with Dirichlet
boundary conditions (5) and conditions (8). Recall that if the domain D (L) of the operator L, is
generated by one of the boundary conditions (D), (IV), then each of the systems { Xy, (x)} and {Zj, (z)},
consisting of the eigenfunctions of the operators L, and L7, respectively, forms a Riesz basis in the
space Lo (—1,1). The functions u (z,t) and f (z) can be represented as Fourier series

u(xvt) = ch (t) Xk (.’E), (13)
k=0

@) = X (@), (14)
k=0

1

1
Ch (1) = / w () Zy (x) de, fi, = / F (%) Z () da, (15)
—1 -1

where Cf (t) are unknown functions and f; are unknown constants. Substituting (13) and (14) into
equation (4), we obtain the equation

C't (t) + MC (8) = fr,

whose solution will be written in the form

I

Ch (t) =Dy - e Mkt + .
Ak

(16)

As, according to condition (7) and formula (15),

1 1
Cy (0) =/u<x,0>zk<x>dx=/so<x>2k (z) dz = g,
21 21
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1 1
Cy (T) = / w(2,T) Zy () dz — / b (2) Zy (z) da =,
1 2

from equality (16) we get

Dk + fk = Pk,
Dye~ ’\kT+ {Z = .

Solving this system of equations, we find the unknown quantities

Dy = %, fr = (er = Dg) A,

using which from relation (16) we find

1— —Akt

T e N7 [k — Yr] -

Ck(t)ZQOk_l

Substituting the found values of the unknowns Cj (t) and fi into (13) and (14), we find the formal
solution to the inverse problem in the form of the following series

u(a, +Z P (1) X (o), (17)
and
F@) = Lyp (@) = 32 2 X ). (18)
k=0

Now we have to prove that the functions (17) and (18) will be the classical solution to the studied
inverse problems.

4 Main results

In [9], the authors of this work proposed a new approach to prove the uniform convergence
of formally differentiated series, which represent a formal solution to the inverse problem for the
equation of a fourth-order hyperbolic equation with complex-valued coefficients. This approach has
two advantages: 1) the first advantage is the use of estimates of the norms of eigenfunctions derivatives
through the norm of eigenfunctions [14]; the second advantage is the use of the properties of uniform
boundedness of Riesz bases consisting of eigenfunctions of the differential operator [15]. In this section,
this approach is developed for the case of inverse problems for a fourth-order parabolic equation with
complex-valued coeflicients. It is clear that the formal solutions to hyperbolic and parabolic equations
have completely different structures. The conditions for the existence of solutions are also different.

Let us formulate the main result of the present work. The solvability of the inverse problem (4),
(7) with the Dirichlet boundary conditions (5) is formulated as the following theorem.

Theorem 2. Let q(x) € C*[—1,1], and functions ¢, ¥ are such that o, ¥, Lyp, Lytb € D (L,).
Then inverse problem (4), (5), (7) has a unique solution, which can be represented as Fourier series
(17), (18).

Proof. We have to show that the resulting formal solution in the form of series (17), (18) satisfies
equation (4) and conditions (5), (7). Let us first show that series (17), (18), as well as the formal
derivative with respect to the variable ¢t and formal derivatives up to the fourth order with respect to
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the variable x of series (17), converge uniformly in the open domain §2, i.e. let us prove the uniform
convergence of the series (17), (18) and the uniform convergence of the formally differentiated series

P — _
Z —e AkT )\kth (.T), (19)
- —¢
ug(z,t) = ¢ () + ;0_’“67_)\]:} (e*)"ct - 1) X'k (2), (20)
k=0
ok — Yk oAkt 7
Uza (2, 1) +Z T T —1) X" (2), (21)
S -9
g (1) = @ (@) + 3 7 (67— 1) X7 (@), (22)
k=0
— k=Y
k — ¥k _
tnaa(@,) = ¢!V (@) + Y 72—t (e = 1) X{Y (@), (23)

The uniform convergence of series (17) follows from the obvious inequality

u(z, )] < e (2)] + +

> (¢, Z1) X (2 > (W, Zk) X (@
k=0 k=0

and Lemma 2, taking into account Lemma 1 (Re A\ > 0).
To prove series (18) in the expressions ¢, = (¢, Zk), Y = (¥, Zx), the function Zj, (z) is replaced
by the conjugate equation (9). Then

etk = M (0, Z1) = (@, Ly Zi) = (Lo, Zi) , Muthi = (Lgth, Zy) - (24)

Substituting them into (18), we obtain

F) = Lyp (o) - Y et T S ).

Hence we get the inequality

1 (@) < 1 Lg (@) + Y (L, Zi) X ()| + Y (Lgwh, Z) X ()]
k=0 k=0

As, by the condition of the theorem Ly, Lyp € D (Lg), then, by virtue of Lemma 2, both series
on the right-hand side of the last inequality converge uniformly. The uniform convergence of the
series  (17), (18) is proved. The uniform convergence of the series (19) is proved as well as the
convergence of the series (18), taking into account the boundedness of the quantities e M = 0,
k — oo.

Let us prove the uniform convergence of series (20)—(23). Applying (24) to the series (20) we obtain
the relation

[e.e]

el )] < [¢ )] + 32 COL TSI (1) X )]

— A (1 —e~ )‘kT)
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In [14] the validity of the estimates

max ‘X,gs) ({E)) < cl<\4/ \)\k|>smax | X% (z)], s =1,2,3, (25)

for the eigenfunctions of the fourth-order differential operator is shown. Using estimates (25), from the
last inequality we obtain the estimate

|z (z, )] (2)] + a1 Z [(Lye, Zi) = (Lq, Zi)| max | X, ()] .

()’

It follows from [15] that only uniformly bounded systems of eigenfunctions of ordinary differential
operators can be Riesz bases. Therefore, due to the conditions of the theorem Lgp, Ly € D (Ly), the
Bessel inequality for the Riesz bases, and the asymptotics of the eigenvalues [11; 99|, the series on the
right-hand side of the following inequality

) 2
Juz(z,1)| < |¢' (= \+01Z[ (Las Zk)* + (La¥, Zg) +(\/E)3]

converges. The uniform convergence of series (20) is proved.
Using the estimates (25), the convergence of series (21), (22) in the open domain € is similarly
proved. Consider the uniform convergence of the series

o
¥ Zk w Zk) —
Upgza (T, 1) )+ g q)\k . @—/\iT) <e Akt 1) XV (x).
=0

Replacing the fourth derivative with the help of equation (8), we obtain the estimate

tgzze (z,1)] < [TV (z)

ZA() [(Lyes Ze) X () — (Lyth, Ze) X ()]
k=0

e}

> 1 Lge, Zi) X (z) — (Lath, Zi) Xi ()]

k=0

. (26)

The second series on the right-hand side of (26) converges by virtue of the conditions of the
theorem Lgp, Lqp € D(L,) and Lemma 2. The convergence of the first series in (26) follows from
the uniform boundedness of the system {X} (x)} [15], the Bessel inequality for the Riesz bases, the
asymptotics of the eigenvalues [11; 99|, and the boundedness of the function ¢ (x). This proves the
uniform convergence of the series uzz.s (2,t) in the open domain 2. Thus, we have shown that series
(17), (18) satisfy equation (4).

Obviously, the formal solution (17) satisfies conditions (7):

o0

i o= Uk (ot _
tiltr){lkou (2,1) = til(?}w [SO () + P 1 — e—2T (6 1) X (33)] =@ (z),

lim w(xz,t)= lim [90 (z) + L_qf:T (e‘Akt - 1) Xk (f)] = ().

t—T—0 t—T—0 1—e
k=0

The boundary conditions are satisfied as each term of the series (17) satisfies them. The existence of a
classical solution to problem (4), (5), (7) has been completely proved. To prove the uniqueness of the
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solution, we assume the contrary. Suppose that there are two sets of solutions {u; (z,t),

{ug (z,t), fo(x)} to the inverse problem (4), (5), (7). Denote
u(z,t) =uy (z,t) — ug (z,t)

and

(@)= fi(z) = fa(z).

fi(x)} and

Then the functions u (z,t) and f (x) satisfy equation (4), boundary conditions (5), and homogeneous

conditions

u(z,0) =0, u(z,T) =0, z € [-1,1].

Consider the Fourier coefficients:

1
g (1) = /u(m,t) X, (@) da, ke N,
1

1
sz/f(@xk(x)dw, ke N,
el

and note that the homogeneous conditions (27) lead to equalities

Differentiating equality (28) with respect to the variable ¢, we obtain

1
o (1) = / oy (2 8) Xy (2) da,
21

where the derivative u; (x,t) will be replaced using equation (4)

1

1
'y (t) = / [—tgzaz (2,1) — q () u (z,t)] Xk (z) dx + /f (x) Xk (x) dx,
]

-1

or

1
U/k (t) = / [_Uxoc:c:(: (SC, t) —4q (SC) u (x7 t)] Xk ($) dr + f.
-1

After integrating by parts four times, we get

W) = [ XY @)~ 7(0) X @)] () do + f

or

Welt) = [ NEu (@) u (et ot fi
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The last equality can be rewritten as
u't, (1) + Mguy, () = f-
As (29) is satisfied, i.e., ug (0) = ug (T') = 0, the last relation implies
fe =0, u (t) =0.
The basis property of the system {X} ()} implies the equality
fx)=0, u(z,t) =0, (z,t) € Q.

The uniqueness of the solution is proved. The theorem is completely proved. The assertion of the
theorem is fully applicable to the case of inverse problem (4), (6), (7).

Conclusion

The inverse problem of determining the right side for a fourth-order parabolic equation with a
complex-valued variable coefficient is studied. The existence of a unique solution to the inverse problem
with Dirichlet and Neumann boundary conditions is established
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Komniekc monai KoadduimenTi 6ap TOPTIiHII peTTi mapabdboJiadabIK,

TeHJley YIIIiH Kepi eCenTiH MIeNIiM/IiJIir TypaJbl
A.B. Nnman6erosal, A.A. Copcen6i®?, B.H. Ceiinbexos*

M. Oyeszos amvindazv. Onmycmix Kasaxeman yrusepcumemsi, Ivmkenm, Kasaxceman;

2]\4. Qyes06 amuvindaev. Owmycmix Kaszaxceman yrnusepcumemi, Teopuanvik, sicone Koadanbasv, Mamemamura
)

2HABLMU UHCTRUMYMYL, Kasakcmar;
32K.A. Towenos amwimdazs ynusepcumem, Ivmxenm, Kasaxcmar;
L Onmycmir Kasaxcman memaexemmir nedazozuxarvik ynueepcumemi, Hlvmkenm, Kasaxcman
) p

MakaJtasia aitHbIMaJIbLIAP/IBI A2KBIPATY 9ICIMEH aifHbIMAaJIbl KOMILIEKCTI KoadduimenTi 6ap TOPTIHII peTTi
mapaboJIasblK, TEHEY YIIiH Kepi ecen 3eprrenren. Komiuteke MoHai Koaddurenti 6ap e3iHe-e31 TyitiHmec
eMmec TepTiHII perTi 6ipTekTi Muddepennuasabk Tegaey yiria JIupuxie xxone HeiimaH 1mekapaJibik, ecerr-
TepiHiH MEHIIIKTI MOHJIEPiHIH KacueTTepi 6enrisenren. KymmTi peryssip/ibl mekapaJsblK, maprrapbl 6ap 6ip-
TekTi mudHepeHIMANIBIK TEHIEYJIED YITH MIEKAPAJIBIK, €CENTEP/IiH, MEeHTKTI hyHKImanapuabiH, Lo (—1, 1)
kenicririggeri Puc 6a3uctik Kacueri 60ibIHIIA OeJIriyi HoTHKeJIep Haijaaanbliaabl. MeHmmkTi dyHKIims-
sapabiy Puc 6asncrik KacueriHiy Herisinge 3eprreserin ecenrepain OPMAJIbIbI MIEMIIMIEP] KYPaCThIPbI-
JIBIT, THEermMIepaiH 6ap GOybl MEH XKAJFBI3ABIFBI Typajbl TeopeMasap maenaenren. [lemimaepain 6ap
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€KeH/IIN MeH »KaJIFbI3IBIFbl TYpPaJIbl TeOPEMaHBI Jasesaey Kesinme Beccenb Tencizniri @ypre koaddbumm-
enrrepi Lo (—1,1) xenicririnen Puc 6a3uci Goiibiaima @ypre KarapbiHa GyHKIUAIAD/BIHE, XKIKTeTiHyl yIIiH
KEeHiHEH KOJIIAHbLIAIbI. VIHBOIIOMUSIIBI TOPTIHII PETTI TEH LY VIIIH IETTIK eCenTePIiH MEeHITKTI (pyHKIIM-
anapsl 6oitbiaina Pypre KaTapapsl TYPiH/e MemiMAep/iH TYD CHIIATHI *Ka3blIIbl. AJIBIHFAH IIEIIiMIeP/IiH
JKUHAKTBLIBIFEI 1 TaJKbLIAHFAH.

Kiam ceadep: napabosiasiblk TEHIEY, Kepi ecelr, KJIacCHUKaJIbIK IrentiM, Pypbe oici, KYIITI peryssipsl mie-
KapaJiblK Imaprrap, Puc 6aswmci.

O paspermmMocTu 00paTHOI 3a/Ia4u JIJIsd TapaboJInYecKOro ypaBHEHUsT
4eTBEPTOro NOPsIKA C KOMILJIEKCHO3HAYHBIM K03 PUIMeHTOM

A.B. Uman6erosal, A.A. Capcenou®?, B.H. Ceitnbexon®*

L FOoeno-Kasaxemanexuti yrusepcumem umenu M. Ayszoea, ITvimxenm, Kazaxcman;
2 Hayunoiti uncmumym « Teopemuseckas u npukiadnas mamemamuras FOocno-Kazazemanckozo yrusepcumema
umenu M. Ayassosa, Hlvmxenm, Kazaxcman;
3 Vnusepcumem umenu XK. A. Towenosa, Ivmrenm, Kazaxcman;
4 JOorcno- Kasazemarckud zocydapemeeniiti nedazozuveckuts ynusepcumem, Hlvvkenm, Kasaxcman

B nacrosmeit pabore MeTooM paszesieHus TEPEMEHHBIX M3yUueHa oOpaTHas 3aJad9a Jjis mapabomdecKo-
ro ypaBHEHHUs] Y€TBEPTOrO IOPs/IKA C ITEPEMEHHBIM KOMIIJIEKCHO3HAYHBIM KO3 MUIIMEHTOM. YCTAHOBJIEHDI
CBOWMCTBA COOCTBEHHBIX 3HAUYEHUN KpaeBbIX 3asa4d upuxse u Heiimana sy HECAMOCONPSIXKEHHOTO OOBIK-
HOBEHHOTO udHEPEeHITNATHLHOTO YPABHEHUST Y€TBEPTOrO MOPSIKA C KOMIIJIEKCHO3ZHAYHBIM KO3 uiimen-
ToM. Vcronbp30BaHbl U3BECTHBIE PE3Y/IbTATHI 0 6asucHocTn Pucca B npocrpancrse Lo (—1,1) coberBeHHBIX
GbYHKIUN KpaeBbIX 38724 JIJIs OOBIKHOBEHHBIX TU(MMOEPEHIINATBHBIX YPABHEHUN C YCUIEHHO PEryIsPHBIMU
KpaeBbiMu ycyaoBusiMu. Ha ocHoBanuun 6a3ucHocTu Pucca cobcTBEHHBIX (DYHKITNN TOCTPOEHBI (hOpMaTbHBIE
pellleHnsl U3y9YaeMbIX 3aJ[a9 U JOKA3aHbI TEOPEMbBI O CYIIIECTBOBAHUU U €JIMHCTBEHHOCTH perieHus. [Ipu Jj1o-
Ka3aTeJIbCTBE TEOPEM O CYIIECTBOBAHWH U €IMHCTBEHHOCTHU PEIeHUI TPUMEHEHO HEPABEHCTBO Beccest st
koaddurmentos Pypbe pasnoxkennit Gyuaknuit u3 npocrpanctsa Lo (—1,1) B pag @ypbe no 6asucy Pucca.
Bruimmcansr nipejicraBiienus pemenuii B Bujie psioB Pypbe 110 coGCTBEHHBIM (DYHKIMAM KPAeBbIX 3314 JJIsi
YPaBHEHUsT YETBEPTOTO MOPsIIKA ¢ MHBOJIONMEH. TakxKe 00CYKIeHA CXOIUMOCTh TOJTYYE€HHBIX PEIeHMUIA.

Karoueswie caosa: mapaboiamdeckoe ypaBHeHHe, oOpaTHas 3ajada, Kjaccudeckoe pernenne, meror, Pypoe,
YCHJIEHHO DeryJisipHbIe KpaeBble ycjoBusi, basuc Pucca.
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Parameters such as various integral and differential characteristics of functions, smoothness properties of
regions and their boundaries, as well as many classes of weight functions cause complex relationships and
embedding conditions for multi-weighted anisotropic Sobolev type spaces. The desire not to restrict these
parameters leads to the development of new approaches based on the introduction of alternative definitions
of spaces and norms in them or on special localization methods. This article examines the embeddings of
multi-weighted anisotropic Sobolev type spaces with anisotropy in all the defining characteristics of the
norm of space, including differential indices, summability indices, as well as weight coefficients. The applied
localization method made it possible to obtain an embedding for the case of an arbitrary domain and
weights of a general type, which is important in applications in differential operators’ theory, numerical
analysis.

Keywords: Anisotropic Sobolev Spaces, Multi-Weighted Spaces, Embedding Theorems, Localization Methods,
Weighted Functions.

2020 Mathematics Subject Classification: 46E35.

Introduction

In the article embeddings of multi-weighted anisotropic Sobolev type spaces Wg’p(G , p,v) described
by a finite norm

lu; W};p(G, p,v)| = /|Dl u]ppldx /|u|pvdaz

are investigated in the case when py, ..., p, and v are connected by certain relations on average on
parallelepipeds in G with an adjustable edge length.

The article extensively utilizes approaches developed in the works [1-5]. Nonetheless, they have
enabled a slight expansion of the class of weights for which the considered embedding is valid. As
before [5], the spaces are anisotropic in terms of derivative orders, integrability indices, and weight
factors for these derivatives. Also, for the introduced class of weights, the localization method [1-4|
allows not imposing conditions on the domains, in which the spaces are considered and embeddings are
set. So, the conditions under which the embeddings (1) occur for a sufficiently broad class of weights,
restricted by a special condition II(s . introduced in Definition 1 are studied. The localization method
(Lemma 3) with the introduction of so-called “characteristic parallelepipeds” (3) allows considering the
domain G, with no additional conditions imposed.

*Corresponding author. E-mail: iskakova.1975@mail.ru
This work is funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of
Kazakhstan (grant No. AP15473253).
Received: 21 September 2023; Accepted: 11 December 2023.
(© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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For domains with conditions, fundamental embedding results have been obtained for anisotropic
Sobolev spaces [6,7]; as for weighted cases, in [8-10] the weights are functions of the distance to the
boundary, and inequalities in [8] are considered in cylindrical domains, in [9] — on a domain with cusp,
and in [10] an open connected domain is considered with various conditions. In [11], along with other
findings, an anisotropic Sobolev inequality is obtained for smooth bounded domains and the class of
p-admissible weights. In the work [12], Sobolev spaces are considered in open domains with certain
conditions of smoothness imposed on the functions introduced in them, anisotropy in terms of derivative
orders, and integrable classes of weights; alternative descriptions of these spaces are presented, including
norms and properties of the density of smooth functions within them, and the relationships between
the weights and anisotropic properties of Sobolev spaces are described. In [13], alternative definitions
of spaces are introduced, through which embeddings of weighted spaces are obtained. Here, we also
present studies of anisotropic Sobolev type spaces [14,15], and their embeddings [16-18].

1 Set up

Let us introduce the notation. Let R™ be an n-dimensional arithmetic space with a norm

n 1/2
]l = <Zw2> , = (21, Tn).
i=1

Denote by
I=(l1,...,1n), a=(a1,...,an), and b= (by,..., by)

fixed vectors with coordinates l;,a; > 0,b; > 0, ¢=1,...,n. Set for A > O:
at A= (a1 £\ ..., ap N, Aa=(May,..., Aay),

b : a= (bl/al,. R bn/an),B(z = (blal,..., bnan),

A= (N0 ) @ = (a), ., a),ab = (B A,
n n n
=30 o= 10 Y- 3o
i=1 i=1 i=1
.. aq+...+an . . 15
For a multi-index o = (aq, ..., o) D* = &‘1’1178#’ for integers ; Dﬁlu = aaxizu

Let L(G; loc) be the space of locally-summable functions, Lg(G; w) is the Lebesgue weighted space
of functions u(-), with a finite semi-norm

1/q
|u; L‘;(G;w)’ = |D%; Ly (Gw)| = /|D°‘u|qw(m)daj ,
G
where 1 < ¢ < o0,
Dy — 0%u _ 8a;+"'+a*;u
Oz~  Ox{"...0xn"
are mixed derivatives corresponding to the multi-index o = ag, ..., a,. We denote the class

CW ={ueC® :|u ng(G; p,v)| < oo}

by C*W.
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We consider issues related to the description of the conditions under which the embedding takes

place: _
l . A « .
Wﬁ’p(G, pyU) — Ly (Gsw). (1)

The embedding (1) is revealed through the embedding inequality as follows:
1/q ~
(/ |D°‘u\qw(x)d:v> < Clu WL (G; p,v)|u€ CW.
G

This article discusses the embeddings of spaces W})’p (G; p, v) in the case when ko = |(1+a) 1 1| > 1.

Further, by introducing weights satisfying multiplicative boundedness conditions on average on
parallelepipeds (Definition 1), we obtain embeddings of multiweighted anisotropic Sobolev type spaces
W}ép(G, p,v) into the weighted space Lg(G; w) on a domain G with irregular geometry, and anisotropy
is present in the orders of derivatives, in terms of summability and in weight multipliers for these
derivatives.

2 Preliminaries

Let a = (a1, ...,ay), a; > 0. We denote the parallelepiped
a; .
Qo =Qu(x){y € R" :|yi— x| < EZ, i=1,2,...,n},

by Qu = Qu(x). For A > 0 let AQ = AQu = Qe
We will consider a positive vector function d(z) = (d1(z), ..., d,(z)), satisfying the conditions:

1) Q(z) = Qg () C G

2) supd;(x) < oo ,i=1,...,n;
G
3) There exist the constants 0 < e < 1 and by > 1:

di(y)
i(z)

Vi=1,..,n by’ <

9

as soon as
Qe (y) N Qey(x) # 0,
where Qo) (2) = (1—¢)Q(z). We call the function d(x) by the edge length function. Let {Q(z),z € G}
be the parallelepiped family
di(z)
5

Qz)={yeR" :|yi—wxi| < =1,2,...,n},
satisfying the conditions 1)-3). Let p;(x), w(z), v(z) be the weights in G, and

01(@) = fi(@)d" (@) € L(Gloc),

- 1-p;, 7 Di
Pi = p(i: -

i = p; pi_l),1<pi<oo(i:1,...,n).
Suppose
1/p, L/n
n
s = II| [ = Q)|
=@ @)
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N @)feCc@ : lef<dQ[}, 0<0 <1

Let
1/p

M I3 X)) = B X 1nf / v ) €cC 07 1 .
( »5)( ) ( >e€N(5)(Q(5)(m)) [ )
Q(E)(m)\e

_ Definition 1. [5] We say that the weight pair (p,v) satisfies the condition II(s ) with respect to
d(x) = (di(z), ..., dn(x)), if there are numbers § € [0,1) and ¢ € [0, 1) such that

M5 (x) > 1 fora.a z €G.

Short notation:
(P, v) € IL(s, o).
At the same time 0 < e < 1, if G C R", G # R".

Lemma 1. [3] Let 1 < pj,p < q¢ < 00, (i = 1,...,n), r = min{p1,...,pn,p}, w € L1(V), where

EEV:(—%,%)n,wZOand

MY1 = sup tl_”]Q(t’l-) Y < 0.
t>0
Q(tj)CV

Then
1/q

/ D fMw(€)ds | < MY fllyy
\Y

where ¢ does not depend on f € C®(V).
Let {P(:p), zeFl } be the closed parallelepiped family

Px)={yeR" : |y; — x| <ai(x)/2, i=1,...,n}, (2)

where a(z) = (a1(x),...,an(z)) is a a positive vector function defined on a bounded set E in R".

Theorem 1. Let E be a bounded set in R™, {]5(33), T € E} is the closed parallelepiped family (2),
satisfying the conditions:

1) supai(z) < oo, (i=1,...n);
el
2) there is a number ¢ > 0 such that

¢t <ai(y)/ai(z) <c(i=1,...n),

as soon as
Q(z) N P(y) # 0.
_ Then it is possible to distinguish from {P(x), z € E} no more than a countable subfamily
{P7};cs, PI = P(27), such that:
b) > ey Xpi(z) < k1 = Ki1(e,n) < oo for any  in R™;
c) {P7};ey is represented as a union of no more than ks = k1 + 1 subfamilies {P7};c;, of pairwise
disjoint parallelepipeds.
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The cover {P7} of the set F, which has the properties of finite multiplicity and finite separability
(respectively, properties b) and c), in Theorem 1, we will call B-covering.

Let X; = Xi(G) (i = 1,2) be spaces of functions defined in G, with the seminorms ||-|| v, ), Xi(G)
is the space of functions X;(G)/G with an induced seminorm ||| y, -

Lemma 2. [5] Let the spaces X; (i = 1,2) meet the following conditions:

il) C*(Q) C X;, Q € I" such that Q C G;
2) [flx, ) < I llx, @) i G € G2 C G

1 xi e = B fllx e »
if N
Gr CGr (k>1), G=|JGr CG;
1

i3) 1/l x;ave) = If I xi ()0 1f €] = 03
i4) There are numbers s; > 1, ¢; > 1 (i = 1,2) such that for any family

¢=Jg ca

J

{G;} of open sets such that

11 < & S 6,y - € XU 1150, < & 115
J

if G do not intersect in pairs with f € Xs(G);
i5) There are such a parallelepiped family {P(z), x € G} and a positive function K(z) on G, that

1, @@y < K@) 1 fllxou@) Vf € CT(Q@));

i6) From the family {P(z), x € G} , we can distinguish B-covers E = G N B(x,r), multiplicity s
and coefficients of finite separability ks, which do not depend on r. Then we have a true inequality

Ifllx, < cKllfllx,, feCF(G)N Xz,

where
sup K (x), where s < 51

K = Kga =4 " | o)y (s2—51)/(s152)
o (5 (Km0

and sup is taken over all at most countable families of {Q7} jeJ pairwise non-intersecting parallelepipeds

Q7 =Q(a7).

,  where s9 > s

8 Localization and embedding theorems

Below we will consider “characteristic parallelepipeds” of the form

T(x z)) /b
Q(z)ZQ;(x):{yER":|yi—xi|<( (@) pi (z)) ,i:1,2,...,n}, (3)

2
where 7 (z) such a positive function in G that the functions

di (z) = (7 (z) pi ()" <1
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and satisfy the conditions 1)-3). With respect to the functions p; (i =1, 2,...,n) we will assume that

and we introduce the following values connecting to the “characteristic parallelepipeds” Q () = Q7 ()
of the weight of p;, w and numeric parameters p;, p, ¢, & = (a1, ..., ) and [ = (1, ..., 1) ; namely, let
us put

1/q
_ _ I !
A alp) =sup 4 0 | [w) = (=2 0 Qi c (19 Q) §,
D
- 1—7—04 1 L
Knatelpo) = (T (07777 ) | ol
Lemma 3. [3-5] Let 1 <pj,p<g<oo (i=1,...,n), r= 1I<nln (pi, p), and the conditions are met:
M.y (zlp,7(-) =1
and
Kjpq(z|p,w) < oco.
Then .
1 —_— =
/a " pi p
/]Dau|qw < cK{,) ;4(7]p W) / piDliu + /]Uu]p ,
Q =1 Q

where Q = Q) (2) = (1 - )"/ Q5 (2).
Proof. Suppose f (¢) =u (x +(1- 5)1/l_d(:1:) : C), where

d (@) = (d (), ....dn (1)) C d; () = (7 () ps (&))" di = (1 — €)'/ d; ().

Let - ~
Q(C):w(l'+d'g)vd:(dla-'-adn)vQ:Q(s)(x)'

Then by virtue of Lemma 1

1/a / n 1/q
D%y ? = /g d- % < DS d )
< <MM>; [ </ )Dl )1/7“ </ |f| d£>1/T] .
- Hz 1d;1al i=1 -
M Nt IS o (1) )
< (=) 1@ {;m (L) ([ poran) }g
MV ot @[S et R @ | ()

=1
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w; W}, (Q; p,v)|| , wherep = (o}, ..., pbr) .

1
M q 1_1

S (H’n dqai) ‘Q’q " ‘
i=1"

It remains to note that

1
q
M 1.1 DM . - 1/a
; Qi (@) =7 (@) [[dr™ QI sup £77|Qup| | =
H dgaz i=1 Q(t,DC? @
=1
n 1/q
l - —K
=7 () [[d* QI | 7 (2)" 1stl>110> tt /w == Q . icy| =
=1 ﬁ

. 1 L L\ M
- H <T (@) 77 pi () T) Ap p,q (@0, 0) = KG o o(2]p; ).

Theorem 2. Let 1 < pj,p < q < oo(i=1,...n), a € Z, pP = (pI", ..., ph"). Let (pP,v) € H’(ﬂ&e)
and

p’p?q?a

K =sup K. . .(x|p,1) < o0.
z€G

Then on the class C°°W the inequality

( /G \Dauqu(x)dm) Ve

is valid with an exact constant C' < cK.

W (5 0o
u; W (G5 p,v) |, u € CFW

Proof. It follows from Lemma 2 and Theorem 1 that a pair of spaces X1 = Lg(G;w), X2 =

(W};p(G; pv)) satisfies all the requirements of Lemma 2, from which the statement of the theorem
follows.

Corollary 1. Let 1 < pi,p < ¢ < o (i=1,...,n), k = ‘1 : l_| < 1, w is the weight on R", which
satisfies the conditions of uniform boundedness on unit cubes Q = Q1(z) =2+ V :

1/q
K =sup / w < 00.
z Qi(z)

1/q _
(/G \u|qw(x)dx> < cK|lu: W (R, u € C¥W.

Then

Let 1 = (mq, ..., in) — 00 < mj,v < oo(i = 1,...n),

Wg,p(ﬁv U) = W}%,p(Rn; 12 U)

with
pi(x) = (1+ [z))",v(z) = (1 + |z])".
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Corollary 2. Let 1 < pi,p<qg< oo(i=1,..,n),k = ‘1 : ﬂ <1, —o0 < pj,v,y <oo(i=1,...,n),
and let the conditions be met:

———Z'uz<0—< min &.

T ai<n p;

Then the inequality is true

1/q
([ 1uloca-slolyan) < €l Wi, @ ol we e

Embeddings of weighted anisotropic Sobolev type spaces are relevant in applications where it is
necessary to consider the heterogeneity of the medium or the complex geometry of the domain, such
as in numerical methods for solving differential equations and in the theory of differential operators.
Localization methods, in particular, the norms of embeddings on cubes with variable edge length
considered in the work, can be applied for embeddings of more complex spaces, including fractional ones.
Considering weights that satisfy multiplicative conditions of boundedness on average in parallelepipeds
is particularly important for analyzing functions in multidimensional spaces with irregular geometries.
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Cob6oJ1eB THNITI KONCAJIMaKThl aHU30TPOIITHIK, KEHICTIKTiH eHri3yJiepi

[.I11. Uckakosa!, M.C. Aiirenoa®3, A.K. Cekcenbaepa’
M M

! Axademurx E.A. Boxemos amuwmdazs. Kapazandv ynusepcumemi, Kapazandw, Kazaxcman;
2 Kapaeandw, Kasmymumyodaes yrnusepcumemi, Kapaeandw, Kazaxcman;
3 M.B.JIomorocos amuindaen, Mackey memaemmir yrusepcumeminin, Kazaxcmarn guavaav, Acmana, Kasaxemar;
4JL.H. Dymunes amomdaen, Eypasus yammos ynueepcumemsi, Acmana, Kasaxcman

DyHKIUATAP/IBIH, 9PTYPJIi HHTErpaIbl-InddEePEeHITHATIBIK CATIATTAMAJIAPDI, O0JIBICTAD MEH OJIap/IbIH, II1e-
KapaJlapbIHBbIH TETICTIriHIH KaCUeTTepi, COHIal-aK CaJIMAKTHIK (OYyHKIUSIAPBIHBIH KOITEreH KIaCTaPhl CH-
akTbl napamerpsep CoboJieB THIIHJIEr KOIl CAaJIMAKTBIK, AHU30TPONTHI KEHICTIKTePIiH Kypei e3apa 6aii-
JIAHBICTAPBI MEH €HTi3y NMIapTTapblH aHbIKTailIbl. Bys mapamMerpJiiepi mekTeMeyre fereH YMTBLIBIC YKaHA
TOCIIZEPIiH JaMybIHA OKeJIe/Ii, OJIapIaFbl KEHICTIKTEp MEH HOPMAJIap/Ibl aHBIKTAYIBIH OaaMa HYCKAJIAPbIH
eHri3yre Hemece OKIIayJIay/IblH apHaibl 9jicTepine Herizgeared. Makasaj a KOl CaJMaKThIK, AuddepeHIim-
aJIJIbIK, MHJIEKCTEP/Ii, KOCBIHbLIAHY MHIEKCTEPIiH KOCa aJFaH]ia, KEeHICTIK HOPMACHIHBIH, OapJIbIK, ailKbIH/a-
VIIIBI CHMTATTaMAaJIaPBIH/IA aHU30TPONHSCH! 0ap, COHMaN-aK, canMak Koaddurnuentrepi 6ap CoboseB TumTi
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aHU30TPONTHI KEHICTIKTEP/IiH, eHri3iyi 3epTTenret. KoaHbliran JoKaau3anus 9ici auddepeHmaibik
omnepaTopJiap TEOPUSICHIH/IA YKOHE CAHJIBIK TaJIIay/IbIH KOCBIMINAIAPBIHIA MAHBI3/IBI OOJIBIN TaObLIATHIH Ke3
KeJITEH OOJIBIC TTEH JKAJIIBI TUIITET] cajMaK, VIIIiH €Hri3reHal ajayra MyMKIHIIK Gepesi.

Kiam cesdep: anmzorponTsik, Co60IEB KEHICTIKTEPI, KOM CAJIMAKTBIK KEHICTIKTEP, €Hri3y TeopeMaJsiaphbl,
JIOKAJIN3AINs JJIiCTePi, CAIMAKTHIK, (DYHKIUIIAP.

BiioxkeHnsi MHOrOBECOBOT0 aHIM30TPOIIHOI'O IIPOCTPAHCTBA THUIIA
CoboJieBa

[.III. Nckaxosa', M.C. Aiirenosa®?, A.K. Cekcenbaena*

! Kapazanduncruti yrusepcumem umenu axademura E.A. Bykemosa, Kapazanda, Kasaxcman;
2 Kapazanduncrutd yrnusepcumem Kasnompebeowsa, Kapazanda, Kazaxcman;
3 Kasazemanckut dunuar Mockosckozo zocydapemeennozo yrusepcumema um. M.B. Jlomorocosa,
Acmana, Kazaxcman;
4 Espasuiickuti nayuornarsrsd yrusepcumem umenu JI.H. Dymusesa, Acmana, Kasazemar

Takme mapamerpbl, Kak pasJjindHble UHTErpO-auddepeHnpaIbHble XapaKTePUCTUKN (DYHKIH, CBOWCTBA
IIaJKOCTH O0JIacTel U MX IPAHUIL, & TakyKe MHOYKECTBA KJIACCOB BECOBBIX (DYHKIUM, 00YCIOBIMBAIOT CJIOXK-
HbIE B3aMMOCBSI3H U YCJIOBUsI BJIOXKEHUI MHOTOBECOBBIX aHM30TPOIHBIX TpocTpancTs Tuia Cobosiesa. Crpem-
JIEHVWe He OTPaHWYUBATH 3TU IapaMeTPhl IPUBOAUT K PA3BUTHUIO HOBBIX I10/IX0OJI0B, OCHOBAHHBIX Ha BBEJEHUN
aJbTEePHATUBHBIX BAPUAHTOB OIpPEIeIeHII MPOCTPAHCTB U HOPM B HUX JINOO HA CIEIUAJIBHBIX METOJaX JIO-
Kaym3anuu. B 9T0i craTbe Ucc/ie0BaHbI BIOYXKEHUsI MHOIMOBECOBBIX AHU30TPOINHBIX IpocTpaHcTB Tura Co-
6oJieBa C aHU30TPOIIMENH BO BCEX OIPEIESIIONNX XapaKTEPUCTUKAX HOPMBI IIPOCTPAHCTBA, BKJIOUYAs TUd-
depeHImaIbHbIE WHIEKCHI, MHIAEKCHI CYMMUPYEMOCTH, a TaKKe BecoBble Kod(hdunmenTol. [IpumeneHHbIit
MEeTO/T JIOKA/IM3AIIAN TO3BOJIMI IOJIYIUTh BJIOXKEHUE JJIsI CJIydas IIPOU3BOJIBLHON 00JIACTH U BECOB OOIIETO
THUIIA, YTO BayKHO B MPUJIOKEHUSIX B Teopun JuddepeHIralbHbIX OepaTOpOB U YHCIEHHOM aHAJA3e.

Karoueswie caosa: annzorponnbie npocrpancrsa CobosieBa, MHOIOBECOBbBIE IPOCTPAHCTBA, TEOPEMbI BIIOXKE-
HUSI, METOJIbI JIOKAJIM3AI[UN, BECOBbIE (DYHKIINU.
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On the solvability of a boundary value problem for a two-dimensional
system of Navier-Stokes equations in a cone

M.T. Jenaliyev, A.M. Serik, M.G. Yergaliyev*

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
(E-mail: muvasharkhan@gmail.com, serikakerke00@gmail.com, ergaliev@math.kz)

Due to the fact that the Navier-Stokes equations are involved in the formulation of a large number of
interesting problems that are important from an applied point of view, these equations have been the
object of attention of mechanics, mathematicians and other scientists for several decades in a row. But
despite this, many problems for the Navier-Stokes equation remain unexplored to this day. In this work,
we are exploring the solvability of a boundary value problem for a two-dimensional Navier-Stokes system
in a non-cylindrical degenerating domain, namely, in a cone with its vertex at the origin. Previously, we
studied cases of the linearized Navier-Stokes system or non-degenerating cylindrical domains, so this work
is a logical continuation of our previous research in this direction. To the above-mentioned degenerate
domain we associate a family of non-degenerate truncated cones, which, in turn, are formed by a one-
to-one transformation into cylindrical domains, where for the problem under consideration we established
uniform a priori estimates with respect to changes in the index of the domains. Further, using a priori
estimates and the Faedo-Galerkin method, we established the existence, uniqueness of solution in Sobolev
classes, and its regularity as the smoothness of the given functions increases.

Keywords: Navier-Stokes system, degenerating domain, Galerkin method.

2020 Mathematics Subject Classification: 35Q30, 35K40, 35K55.

Introduction

As mentioned above, the Navier-Stokes equations have been the object of research by many
scientists due to their applied importance ([1-5|, and others). A significant number of practical problems
have not been solved to this day.

Boundary value problems for parabolic equations in domains with moving boundaries are often
models for ecological and medical processes [6], thermal processes in electrical contacts [7], thermo-
mechanics processes [8,9], and so on.

Among the works in this direction, we would like to mention the works [10] and [11]|, where the
solvability of boundary value problems for the Burgers equation (the so-called one-dimensional version
of the Navier-Stokes system) in domains with moving boundaries was researched. The results of these
works were continued in [12], where by using the Faedo-Galerkin method and a priori estimates, the
existence, uniqueness of the regular solution of the researched boundary value problems in Sobolev
spaces is established.

Previously, in [13-15], it was shown by the authors that homogeneous boundary value problems for
the Burgers equation and the nonlinear heat equation in an angular domain that degenerates at the
initial time, along with the trivial solution, have nontrivial solutions. For boundary value problems with
different inhomogeneities along the boundary, both unique and non-unique solvability were established

*Corresponding author. E-mail: ergaliev@math.kz

This research is supported by the grant project AP19674862 (2023—-2025) from the Ministry of Science and Higher
Education of the Republic of Kazakhstan.
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in the work [16]. Also, the following works [15,17, 18] devoted to problems in degenerating domains
may be of interest to the readers.

In this work, we research the solvability of a boundary value problem with Dirichlet conditions for
a two-dimensional Navier-Stokes system in a cone with its vertex at the origin. In Section 1, we present
the formulation of the main boundary value problem and a sequence of auxiliary boundary value
problems in the truncated cones. Then, in Section 2, these problems are transformed into boundary
value problems in cylindrical domains by a change of independent variables. In Section 3, using the
previously obtained results from the work [19], we obtain unique solvability of each of the above
sequence of problems. In Section 4, auxiliary lemmas and the theorem on uniform a priori estimates
are given. Section 5 is devoted to the main result.

1 Preliminary statement of the problem

Let us consider the next cone Qg = {z,t1 : || <t1, 0 <t; < T < oo}, which has its vertex at
the origin. Let Q4, be the section of the cone @4, for a given ¢; € (0,77).

In the cone @, , which degenerates into a point at t; € (0,71), we will consider the following
boundary value problem (BVP) for a system of Navier-Stokes equations with respect to a two-dimensional
vector-function of the fluid velocity wu(z,t1) = {ui(x,t1), ua(x,t1)} and the fluid pressure function

p(x,t1):

ou &
ar A i - - ’ 1
o, vAu + Zz;u oz, f—Vp (1)
. 8U1 aUQ
divey = 24 9¥2 _ 2
ivu 0z, oy 0, (2)
u=0, {z, t1} € Xy, is the lateral surface of the cone. (3)

Remark 1. Since at the initial moment of time the considering domain degenerates into a point, in
the formulation of problem (1)—(3) we do not set the initial condition.

To the problem (1)—(3) we will set a sequence of BVPs, each of which will be considered in the
corresponding truncated cone.

Let n € N*={n e N:n>ny,1/ny <Ti}, v = {x1,22}, and consider the domain Q7;, = {z,t1 :
|z] < t1, 1/n < t; < T < oo} which is an inverted truncated cone and let 2, be the section of the
cone Q7 for a given ¢; € (1/n,T1). As we can see, now the domain Q7 does not degenerate into a
point at the initial moment of time ¢; = 1/n. For domains Q¢ and Q7, , the following inclusions are
also true: Qf C Q’;tlfl C ... C Qqt,, moreover, n11_>n010 Qpt, = Quty -

Now in the non-degenerating domain @7, (for each finite n € N*) we consider the following BVP:

2
Ooun, Oup,
o vAu, + ; Uin e = fn— Vpp, (4)
. Ouiy, Ousznp,
d = =0 5
V= o * 0z ’ (5)
up =0 {x, t1} € X7, is the lateral surface of the cone Q7. (6)
un(x,1/n) =0, = € Qyy/yis the section of the cone at t; = 1/n. (7)

A BVP of form (4)—(7) (for each fixed finite n € N*) was studied by us in [19], in which we
established theorems on unique solvability in Sobolev spaces.
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2 Transformation of the problem (4)-(7) and its meaningful statement

Now we transform BVP (4)—(7) so that it would be posed in a cylindrical domain. For this purpose
we use the transformation of independent variables and pass from the variables {z, 1} to variables
{y,t}. Then we obtain

- =t S
l”z—n_t?/u l_n_ta yz_t17 =n tlvl_ ) &

v =1y, t: |yl <1, 0 <t <T}is a cylindrical domain, and  is a section of the cylinder @y, for
any fixed t € [0, 7],

1
tlzl/n@t:O, ti1=Tr<t=T=n——.
Ty
Since . .
- Yy - A Yy
; t) £ u; —_— t) = _— 8
Um(y, ) Uin, <n—t’n—t)’ pn(y, ) Dn <n—t’n—t>’ ( )

we obtain the next derivatives with respect to t; of function w;y,(z,t1) (8)

O, _ 6ﬂin(y7t) (n N t)2 _ i aain(y7 t)

oty ot Oyg

(n —t)y.
k=1

As for the derivatives with respect to xj of function u;,(x,t1) (8), we have:

8Um (%m aQUm 82711’71
= n— t) ) =

= = — ).
oxy Oy 81‘% ayz (n—1)
Using the above we write down the BVP (4)—(7) in the cylindrical domain @y,

2

Oy, 1 Dy, 1 - 1
A1 n N ~in — Y — n — n
o VR —t;(u Ol il s e )
divi, =0, {y,t} €Qp, (10)
Un(y,t) =0, {y,ty €y ={y, t: lyl=1, 0<t <T}, (11)
Un(y,0) =0, y€ Q={y: |y| <1}. (12)

Now instead of BVP (9)-(12) we will consider a more general BVP:

2 2
oy, oy, aun ~ -
— — VAU n ? 'La n n» 1
RSSO ST W SR GV O (13)
divi, =0, {y,t} € Qy ={y,t: [yl <1, 0<t < T}, (14)
ﬁn(y, )_0 {yat} ezyt_{yat: ‘y| :17 0<t<T}7 (15)
ﬂn(yao) =0, ye Q= {y : |y’ < 1}7 (16)

where the given functions «(t), B(t),vi(vi,t), i = 1,2, and 6(t), satisfy the following conditions

ar < a(t), o' (t) < az, [BE)] < B, [B()] < Br, [0()] <01, VEE[0,T],

. (17)
‘%(yz,tﬂ S’yla ‘m‘ S’Yl) 221727 v{y7t}€QZt7
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where a1, as, v1, B1, 61, are given positive constants.

It is easy to see that for the coefficients of equations (9) conditions (17) are aslo met.

Let us give a definition of a weak solution to problem (13)-(16). For this purpose we use the
following notation [3,4,20-22] (here and further the designation U? = U x U is accepted):

V ={¢lp € (D(Q))*, divp =0},
H = the closure of V in (Ly(Q))?,

V = the closure of V in (H(Q))%
For f,g € H we set

(f.9)= [ fwawdy, 1fl=(f. )2

Q
and for w,v € V we set
2 -
o 0 (y) Ov o
(@oy=Y [FLDED gy ) = (a2
oy v o

Then, identifying H with its conjugate: H = H’, we obtain the following inclusions
VCcCH=H cV,

and each of these spaces is dense in the subsequent with completely continuous embedding operators.
We can understand conditions (15) as conditions of belonging the function 4(y, t) to space V for almost
all ¢.

Now we assume that

2 ou; 0U;
e R u, veV, Vte (0,T
Z: ayz 8yz y7 u7 v E ) 6 ( ) )7

2
b(@, 9, D) Z/ (%szdy,Vte(OT)
Lk=10

for a triple of such two-dimensional vectors 4, ¥, w, for which the corresponding integrals converge.
Problem 1. Let
fn € L2<O7 T (H_1<Q))2)7

be given and functions «(t), 8(t),vi(yi,t), i = 1,2, and §(¢) satisfy conditions (17).
It is required to find such @, and pn, p, € D'(Qy,), that

Gin € L(0,T;V) N Loo(0, T; H),

Oty
ot

aun

2
6 n = _
~ vt a(t) ) Z% (41,0) 5, + B0 = () Vi, (18)

tn(y,0) = 0. (19)
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Despite the apparent accuracy, in the formulation of Problem 1 we have one ambiguity: there is no
information regarding the derivative ‘9”” (y,t) and py,(y,t), there is only the following relation

2 ~

0
2l 05" + B0 on Q.

=1

ot

+0(t)Vpy = vAu, — aft 8un

HMM

therefore the meaning of condition (19) is not obvious.
If we take p(y) € V, then (Vpy,, ) = 0 in (D’(0,T))?, and (18) leads to equality

2 ~
() = vt )~ 2O, 1) + 3 (60050515 0) + 5O ) for any 9 € V- (20)
i=1 v

Using the following equality
b(ﬂnv ﬂnv QD) = 7b(ﬂn’ 12 ﬂn)v
we get that (20) is equivalent to

2 ~
(8;;",so) V(i ) + (D, 9 Tn) + 3 (m,wgy, 90> T B (o) for any p € V. (21)
i=1 ¢

Let
X = the closure of V in (W (Q2))?,

we have
0, -
- < O[]l x,

2
’b(ﬂm%ﬁn)‘ < CIHQRH%LOO(Q)P Z
L1(Q)

2,j=1

since V C (Loo(f2))?, and therefore

whence it follows that g € L1(0,T; X').

From (21) we obtain that

Oty
% € Ly(0,T; V') + L1(0,T; X"),

so that (19) makes sense (for example, in X”).
Thus, we obtain a different formulation of Problem 1.
Problem 2. Let
fn € La(0,T; V") (22)

be given and functions a(t), 5(t), vi(vi, t), i = 1,2, and 6(t), satisfy conditions (17).
It is required to find such ,, that

Un € Lo(0,T;V)N Loo(0,T; H), (23)
~ 2 ~
(Fee0) + vl )+ a@ine s 8) = 3 (4000 52.0) = 5Ot VoV, (20
i=1 v
iin(y,0) =0, y € Q. (25)
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Next we want to formulate Problem2 in relation to the BVP (4)-(7). To do this, first, we need
the following correspondence of function spaces in terms of independent variables {y,t} € Qy: and

{‘T7 tl} € Qgtlz

fa(y,t) € Lz(0,T; V') & fu(z,t1) € La(1/n,Ty; V),
Un(y,t) € Lo(0,T; V)N Loo(0,T; H) < up(x,t1) € La(1/n,T1; Vi) N Loo(1/n, Ty; Hy,),
etc., where for almost all t; € [1/n,Th],
Ve, = {¢l ¢ € (D(Qr,))?, dive =0},
H;, = the closure of V}, in (Ly(Qu,))?,

Vi, = the closure of Vi, in (W3 (Qgut,))%.

Problem 3. Let
fn(l‘,tl) S LQ(l/?”L,Tl;V;/I) (26)

be given. It is required to find such u(x,t;), that

Un<$,t1> ELg(l/n,Tl;V;gl)ﬁLoo(l/n,Tl;Htl), (27)
ouy,

<at7v) + Va(unav) + b(urwu’mv) = (f,’l)) VU € ‘/1517 (28)
1

U (, 1/”) =0, ze Qavl/n (29)

Finally, we formulate Problem 4 in relation to the original BVP (1)-(3), which is given in a
degenerating cone.

Problem /. Let

be given. It is required to find such u(x,t;), that

u(xatl) € LZ(OaTl; th) N LOO(OvTU Ht1)a (31)
ou
(at,v> + va(u,v) + b(u, u,v) = (f,v) Vv € V4. (32)
1

Further, we will use the following Lemma ([3], Lemma 1.6.1); [4], Lemma II.1.1):

Lemma 1. The trilinear form {@,0,w} — b(4,v,w) is continuous on V- x V x V, ¥Vt € (0,T'), and
the following estimate is valid

0yi

_ OUy, -
i Gy Ok dy| < il Ly

Q

|0kl Ly (02> 35k =1,2.
Lo(Q2)
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3 Solvability theorems for problems (22)-(25), (26)-(29) and (30)-(52)

According to the results of [19] we have:

(a) in the case of each of the domains represented by the cylinders Qyt» n € N¥, Theorems 1-3 and
Corollary 1 are valid;

(b) and in the case of each of the domains represented by truncated cones Q7 , n € N*, Theorems
4-6 and Corollary 2 are valid.

Theorem 1. Let for the functions a(t), B(t), vi(ys,t) and §(t) conditions (17) met. Then Problem 2
(22)-(25) has a unique (weak) solution

iy, 1) € WO0,T) = {v]v € L0 T3V), 52 € (0,7 V')

Theorem 2. Let the following be true along with the conditions of Theorem 1:

% € Ly(0,T: V"), fuly,0) € H.

Then for the solution @y, (y,t) to Problem 2 (22)—(25) we have the following inclusion

Ot
% € Lo(0,T;V) N Loo (0, T; H).

Theorem 3. Let the following be true along with the conditions of Theorem 2:
fn € Loo(0, T3 H).
Then for the solution @y, (y,t) to Problem 2 (22)—(25) we have the following inclusion
ln € Loo(0, T3 (W5 (92))?).
Corollary 1. Let the following be true along with the conditions of Theorem 3:
fu € Lo(0,T; H).
Then for the solution @y, (y,t) to Problem 2 (22)—(25) we have the following inclusion
in € La(0,T; (W5(2))%).
Theorem 4. Let fy(x,t1) € La(1/n,T1; V{,). Then Problem 3 (26)(29) has a unique (weak) solution

ov
up(z,t1) € W(1/n,Th) = {v|v € La(1/n, T1; V4, ), ot S Lg(l/n,Tl;Vt’l)}.

Theorem 5. Let the following be true along with the conditions of Theorem 4:

0 fn
€ L0 T VL), fula /) € Hyp

Then for the solution wuy(z, 1) to Problem 3 (26)—(29) we have the following inclusion

ouy,
aitl € L2(1/7’L,T1;V;51) ﬂLOO(l/na Tl;Htl)‘
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Theorem 6. Let the following be true along with the conditions of Theorem 5
fn € Loo(1/n,T1; Hy,).
Then for the solution uy,(x,t;) to Problem 3 (26)—(29) we have the following inclusion
Un € Loo(1/n, Th; (W3 (Q0))%).
Corollary 2. Let the following be true along with the conditions of Theorem 6
fn € La(1/n,T1; Hy,).
Then for the solution uy(z,?1) to Problem 3 (26)-(29) we have the following inclusion
un € La(1/n, T1; (W3 (25,))?).

Remark 2. Note that Problem 3 (26)—(29) corresponds to BVP (4)—(7).

Further, by using the results of Theorems 4-6 and Corollaries 2, for BVP 3 (26)-(29) we will show
the validity of the following theorem.

Theorem 7. Let the conditions of Theorem 6 and Corollary 2 be satisfied. Then there exists a
positive constant K independent of n, such that for the solution u,(x,t1) to BVP 3 (26)-(29) we have
the following estimate

”un(x7tl)H?W;’l(Q:tl))Q + ”Vpn(xytl)H?[Q( n ))2 S K- Fn S K- F,

xtq

where
Fn = [fn(z, 1/”)|2 + an(xvt1)|’%/[/21(1/n,T1;I/'t’1) + ||fn($at1)||?L2(Q;tl))2a

F = |f(z,0)]* + ”f(%tl)HI%vZ}(o;rl;\ql) + Hf(xatl)H%Lg(tal))Q'

1 . .
Qut, € Q' C . € Qur, and obviously  lim Q3 = Qur,.-

The proof of this theorem will be given in the next section.
Now we can formulate the main result of the paper, which will be proved in Section 5 on the basis
of the assertion of Theorem 7.

Theorem 8. Let the conditions of Theorem 7 be met. Then in the degenerating domain ;¢, the
two-dimensional BVP 4 for the system of Navier-Stokes equations (30)—(32) has a unique solution

{u(x,t1),p(x,t1)} in space
(W3 (Qut))? % La(0, T W3 () X,

where Wi (Qu¢,)/ Xz, and ||1/1(93)||W21(ta1)/xzt1 = kei?(ft ||1/J(33)+k:\|w21(91t1) are, respectively, a quotient
zrty

space and a quotient norm in the subspace X, consisting of all possible constants k = const defined
on the set Q.

Remark 3. Problem 4 (30)—(32) corresponds to BVP (1)—(3).
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4 Auziliary lemmas. Proof of Theorem 7

To prove Theorem 7, we need to establish the following lemmas.

Lemma 2. Let the conditions of Theorem 4 be met. Then there exists a positive constant K3
independent of n, such that for the solution u,(z,t1) to BVP (4)—(7) we have the following estimate

||un(x7t1)||%L2(Q;tl))2 + Hvun(xatl)H?Lg(Qgtl))Z < K ||fn(x7t1)‘|%L2(Q;t1))2 ) (33)

where
T

||Un($,t1)||2LQ(Qgtl):/|Un($,t1)|2dt1,
1/n

|un (x,t1)] / {ulnxtl + [ugn(x,t1)] }dm
thl

Proof. By multiplying equation (4) scalarly by the function w,(x, 1) in space Lo(€4¢,), we obtain

1d

3¢ lun(z, 1) + a(un (@, t1), un (@, 01)) = (ful@, 01), un(2, 1)),

since b(un(x,t1), un(z,t1), un(x,t1)) = 0. From here, according to the Cauchy e-inequality, using the
Poincare inequality ([21], 6.30) and integrating the result from 1/n to T3, we obtain the required
inequality (33).

Lemma 3. Let the conditions of Theorem 5 be met. Then there exists a positive constant Ko
independent of n, such that at all ¢; € [1/n,T}] for the solution u,(x,t1) to BVP (4)—(7) we have the

following estimate
t1
2+/ A (,t1) ||
oty
1/n
Ouy (z,t1)

Proof. By multiplying equation (4) scalarly by the function — g, in space Lo(Qy,), fort; = 1/n
we will obtain:

Oup (x,t1)
oty

dt1 < Ky [’fn(m7 1/”)‘2 + ”fn(xﬂt1)||12/V21(1/n,T1;Vt’1) : (34)

2
]f’%{;ﬁ/m - (fu, 1/n>,8“n<gj/”>) < If, 1/ | 2B L)
i.e., we get
2
N < ol (35)

Now we differentiate equation (4) with respect to ¢;, then by multiplying the equation scalarly

by the function %f;tl) in space L2(£2};,), and considering (by virtue of Lemma II.1.3 from [4]) the

following equality
ou,, Ouy,
b >y ) = 07
(u at, 8151)

2
Ouy, Oup\ _ (Ofn Oup

92 Bulletin of the Karaganda University

we get
Oouy, 2
oty

1d
2dt;

un
ot




On the solvability of a boundary ...

We have
Oouy, Oouy, ou, Ouy, Oouy, 6un
b -, o Un, 5, =|-b , Un SC A, Un é
‘ (8151 8t1>’ ‘ <0t1 oty )‘ ° |l ot (L)’ la ”(L @z,))"
Oou, 3/2 Oup, 1/2 v || Ouy, 2 aun
<G| Zn| | L 0 <152 +cC n :
<050 | o] e =2 on o I H( @)’

Here we have used Lemma 1.6.2 from [3] and Young’s inequality (p~* + ¢! =1):

|AB| = <a1/pA) (al/qB>‘ < E‘A’p ’B‘q
a P qad
where y
3/2
:Haun B C@]un|1/2 aun s a:2—y7p:é’ (]:47
ot | Lagap,, )2 3 3
2 2 2
Ofn Oun\ _ o |Ofn]|On| _ C5|Ofn )" 1 |0un
8t1 8t1 atl 8151 2 (‘3t1 8t1

By using these inequalities and relations (35)—(36), we get uniform in ¢; and n required estimate (34).
The statement of Lemma 3 is proved.

Lemma 4. Let the conditions of Theorem 6 and Corollary 2 be met. Then there exists a positive
constant K3 independent of n, such that at all ¢; € [1/n, T3] for the solution wu,(x,t;) to BVP (4)—(7)
we have the following estimate

]Vun(ac,tl)]Q + / ]Aun(a:,tl)\Q dt1 < K3 - Fi,

1/n

where
Fin = |fa(z, 1/n)|2 + an(xatl)”l2/[121(1/n7T1;Vt’1) + ”f?’b(xatl)”%m(l/n,Tl;Htl) :

Proof. First, note that, by Lemma II.3.1 from [4] function B u,(z,t1), defined by equality
< By, v >= b(up, up,v) Yv € V;; almost everywhere on [1/n,T],

belongs to space Li(1/n,Ti; V{)).
We write equation (24) in the form

va(un(z,t1),0(z)) = (gn(z,t1),v(x)) Vo € Vy, (37)
where 5
gn(z,t1) = —% — Bup + fa (38)

Since uy, € Loo(1/n,T71; V4, ) and according to Lemmas 1.6.1-1.6.2 from 3]
\b(un(a:, tl)a Un(.%', tl)v 'U((L')| <

< Collun (2, t1) llacop,, 2 lun (@, )10 Lo, 2 < Cullun (@, 1) 0ll 2y, )2 (39)
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then Buy € Loo(1/n,T1; (Ly/3(%,))?). From (38) and the inclusion

Oun
aztt +fn€L (1/n,T1;Ht1>

(here we have used the statement of Lemma 3) we have

9n(@,t1) € Loo(1/n, T1: (Lay3(2,))?)- (40)
Further, applying the theorem from ([23]|, 309-311) and (|4], 1.2.5) for the elliptic BVP (37), we get

Up € Loo(1/n, T; (W4/3(Q;‘tl)) ), and the following estimates
2
Hun(l‘, tl) ”Loo(l/"’Tl?(Wf/s(ﬂztl))2) + ||pn($, tl)HLoo(l/n:Tl;Wi/J( Etl)/qu) <
2
<K Hgn(matl)HLoo(l/n,Tl;(L4/3(9”t1))2) ; (41)
where W, /3( t,)/ X2, 1s a quotient space in the subspace X}, consisting of all possible constants k =
const defined on the set €2}, . But according to Sobolev embedding theorem Wf/?’(Qgtl) Loo(S234,),

then u, € (Loo(Q%,))?.

xty
Now we can improve the inclusion (40). We replace inequality (39) with the following

[b(un(, 1), un (2, t1),0(2))] < Collunll(L (o, 2 llun (e, t)llv]],

from which it follows that Bu,, € Loo(1/n,T1; Hy, ). Thus, we obtain that g, € Loo(1/n,T1; Hy,).

Again, applying the theorem from ([23], 309-311) and ([4], [.2.5) for the elliptic BVP (37), we
get that u, € Loo(1/n,Th; (W3 (Q%,))?) C La(1/n,T1; (W3 (2%,))?), and estimates for the case of
Theorem 6:

2
et (s O w200, y2) + 1P (s L1 fmmwd (@ n/xE) S

<K ||gn($7tl)HLoo(l/n,Tl;Htl) ) (42)

and for the case of Corollary 2:
2 2
Hun(l‘, tl)||L2(1/n,T1;(W22(Q;Lt1))2) + ||pn($7 tl)HLQ(l/n,Tqu( a:tl)/thl) >

< K l|gn(@, Oy 1m0, - (43)
where W3 (Q7,)/X7, is a quotient space in the subspace X, consisting of all possible constants
k = const defined on the set Q7, . From here we also get that Vu, € Loo(1/n, Th; (W (Q2,))?) C
Lo(L/n, Ty; (W3 (1,))%)-

It remains to estimate the right-hand side in (41)—(43) with respect to the function f,(z,%1).
According to (38), it remains to estimate only the summand B u,,. We have

1B tnll Lo (1/n11:0:,) < C3llun(z, t1)]],
the right-hand side of which is estimated in Lemma 3. This completes the proof of Lemma 4.

Lemma 5. Let the conditions of Theorem 6 and Corollary 2 be satisfied. Then there exists a
positive constant K4 independent of n, such that for a solution to the boundary value problem (4)—(7)
the following estimate takes place

Oun(z, )|

oty (La(@m )2 + |‘Aun(x,t1)‘|?L2(Qgtl))2 + van(%tl)H?LQ(Q;ztl))z < Ky F, (44)
2 xtq

where
Fy = |f(x,0)]* + ’|f($,t1)||12/V21(0,T1;Vt'1) + ||f(mat1)||%L2(le))2‘
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Proof. The proof of Lemma 5 directly follows from the statements of Lemmas 3 and 4.
Thus, the statement of Theorem 7 follows from Lemmas 2, 5 and inequalities

2 2
1Fnllzaiap, 2 < 1 za(@er 2
i.e., we obtain the required estimate (44):
Hun(%tl)H?W;,l(Q;ztl))z + van(%tl)H?LQ(Qgtl))z S Ky Fop < Ky - Fy,

where
Fop = |fal, 1/n)|* + an<m7tl)”%/[/%(l/n,Tl;Vt’l) + an(xatl)H%L2(Qgtl))2 :

5 Proof of Theorem 8: the existence and uniqueness of a solution to boundary value problem (1)-(3)

Let {un(x,t1),pn(x,t1)} be a solution to boundary value problem (4)—(7), which exists and is
unique according to Theorems 4-6, Corollary 2 and Theorem 7. Denote by {u,(z,t1),pn(x,t1)} the
continuation of solutions {u,(x,t1),pn(x,t1)} by zero to the entire cone Q,,. Theorem 7 implies the
following inequality

”u’vn(xatl)H?Wg’l(tal))Q + ”vlf);(x’tl)H?LQ(thl))? < K-F,
that is uniform over n, where
F = 1£@,0)P + 1) gomay ) + 1700 gy e

It follows that from the bounded sequence {un(x, t1), Von(x, t1)},—; it is possible to extract a subsequence
(to denote the index of which we keep the letter n), such that the following limit relations take place:

Oup(z,t7) ou(x,t1)
oty oty

weakly in (L2(Qut, )%

Aup(x,t1) = Au(x,t;) weakly in (Lg(thl))2,

Up(x,t1) — u(x,t1) strongly in (Lg(thl))2,

Oug(z,t1)
8:1/‘1'

Vpn(z,t1) — Vp(x,t;) weakly in (Lg(thl))2.

Oupen (2, 1) ——

Uin (2, 1) D, Ugn (z,t1) — ui(z,t1) ug(z,t1) weakly in Lo(Qquy), i,k =1,2,
(2

Further, in a standard way, it is easy to show that
{ule,t),p(x,11)} € {W3 (Quin))? X La(0, Ths Wi (Qury)/Xor,) }

is the solution of the boundary value problem (1)—(3), where W3 (€.4,)/ X, is a quotient space in the
subspace X, consisting of all possible constants & = const defined on the set €24, .

We pass to the proof of uniqueness in problem (1)—(3). Let {@(x, t1), p(x, t1)} and {u*(x,t1), p*(z, t1)}
be two solutions of the boundary value problem (1)—(3), and let

u(x>t1) = ﬁ($,t1) - U*('rvtl)v p($,t1) :]3($,t1) —p*($,t1),
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which according to (1)—(3) satisfy the following equation:

(gtu,w> + va(u,w) + b(u, @, w) + b(u, u,w) — b(u, u, w) = 0.
1

If we take as the test function w = u, then we will have the equality

1 d _
57 ulBr, + vVl = b u, ), (45)
since b(u,u,u) = —b(u,w,u), b(u,u,u) =0, b(u,u,u)=0.

Further, proceeding in the same way as in the proof of Lemma 3, from (45) we obtain

d
Sillulf, < Kl

where K is a positive constant, and by Gronwall’s lemma it follows that v = 0, and thus the property
of uniqueness is proved.
This completes the proof of the main result of the work formulated in the following theorem.

Conclusion

The results of the work can be generalized to the case when the section of the cone for each
fixed t; can change according to the rule r = /2% + 23 < ¢(t1), t1 € [0,T1], ¢(0) = 0, under
some natural requirements for the function ¢(¢1). For example, the function ¢(t1) must satisfy the
following two conditions: 1°. in a sufficiently short period of time (0,#}) the function ¢(t1) could have
the representation ¢(t1) = pt1, where p is the given positive constant (in our work it was equal to
one); 2°. on the interval [t}, T3] the function ¢(#;) would be continuously differentiable and possess the
property of monotonicity, providing a one-to-one transformation from independent variables {x,¢;} to
variables {y,t}.
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Konycrars! ekiemmem i HaBbe-CToOKC TeH/ieysIepiHiH, XKyiieci YImiH
KOWBLJIFaH MIeKapaJbIK, €CENTiH IMeITiMIiIIri TypaJjbl

M.T. 2Kuenosmmes, A.M. Cepik, M.T'. Epranues

Mamemamuxa stcone mamemamuraisry modeavdey uncmumymat, Aamamo, Kazaxcman

Hapre-Crokc TeHmeynepi Komanba bl TYPFBIIAH MAHBI3IbI KOTITETE€H KBI3BIKTHI €CENTePIiH KONBLIYbIHIA
Ke3JIeceTiHaiKTeH, OyJT TeHaeyaep OipHele OHIaraH KbLIaap OOibl MEXaAHHKTEP/IiH, MATEMATHKTEPIIH KOHe
backa J1a FaJIbIMJAapAbIH Ha3apbiHaa Oospl. bipak 6yran kapamactan Hasbe-CTOKC TeHJeyiHe apHaJFaH
KOIITEreH eCeIrTep OChbl KYHTe Jeiin ot ge 3eprreivered. 2KyMbIcTa MUIMHAPJIK eMeC O3TelleIeHeTiH 00JIbI-
CcTarbl, aTall alTKaHIa Tebeci KoopauHaTaJIapablH OachlHIa OpHAJacKaH KoHycra exiemmemal Hasbe-CToke
Ky#leci yIIIiH meKapaJiblK, ecenTiH IeniMIaIiri 3eprrenred. Byran neitin ocbl ecenTiH chI3bIKTHI HaBbe-
Crokc Kyiteci yIiH KOWBLIYBI HEMECE ©3TelleIeHEeTIH eMeC UINHIPIIK OOJIBICTapAaFbl KONBLTY bl 3€PTTE-
PeH, COHJIBIKTAH OYJI 3KYMBIC OCBI OAFBITTAFbI AJIIBIHFBI 3€PTTEY/IEP/IiH JOTUKAJIBIK, KAJIFAChl OOJIBIIT TadbLIa~
nwl. 2Korapblia aTajaraH e3rellejeHeTiH 00JIbICKA ©3TellleJIeHETIH eMeC KeCJIeH KOHYCTap YKUBIHBI COUKECT-
iKKe KoMbLIaIbl. Bys obsbIcTap €3 Ke3erinie MUINHIPIIIK 0b/IbIcTapFa e3apa 6ipMOH/II TYPJIEHIIPY apKbLIbI
KeJiTipiziesi. Bysian keilin KapacThIPBLIBLIIT OTBIPFAH €Cell YIIIH 00JIbIC MHIEKCIHIH 3repyiHe KAThICThI 6ipTeK-
Ti alPUOPJILIK, barasayaapbl aifKbIHIAJIBII, 9pi Kapail, anpuopJblk Oarasaynap meH Paemo-lanepkun omicin
KoJimaHa OThIpbIn, CobOJIEB KaacTapbIHIarbl IIENINMHIH 0ap »KoHe KAJIFbI3 eKeHIIrH J9JIes e, OepiareHn
GYHKIULIaPbIH, TEricTiri apTKaH CalblH OHBIH, PETYJIsiPJILIFBIH AHBIKTAFaH.

Kiam cesdep: HaBbe-CToKc XKyiieci, e3remenenerin obbic, ['amepkun oici.

O pa3penmmMoCTH OJHOI I'PAHMYHON 3a/Ja4M JJid ABYMEPHOI CUCTEMbI
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ypaBHenuii HaBbe-CTOoKCca B KOHYCe

M.T. Txxenamumes, A.M. Cepux, M.I'. Eprasues

HHcmumym MAMEMAMUKY U MATNEMATUYECKO20 MoaenupoeaHun, Amamm, Kazaxcman

B cuy Toro, uro ypasuenusi HaBbe-CTOKCa y4acTBYIOT B TOCTAHOBKAX GOJIBIIIONO KOJUYECTBA WHTEPECHBIX
33184, BaXKHBIX C IPUKJIAJHON TOYKN 3pEeHNd, JaHHbIe YPABHEHNSA B Te€UeHNE HECKOIBKNAX JeCATUIETUN TOd-
psizt 6BLTH OOBEKTOM BHUMAHMS MEXAHUKOB, MATEMATUKOB U APYTUX y4aeHbix. Ho, HeCMOTps Ha 9TO, MHOXKe-
CTBO 3aJ1a4 111 ypaBHeHusi Hapbe-CTOKCa OCTAIOTCST HEMCCJIEIOBAHHBIMHI | TIO Ceii JeHb. B 3Toit paboTe MbI
WCCTeyeM pa3pelmMOCTh TPAHUIHON 3a7a49n 11 aByMepHoit cuctembl HaBbe-CTOKCA B HEIUINHIpUAYIE-
CKOI1 BBIPOXKJIAIOIIEHCsT 00/IACTH, & UMEHHO B KOHYCe C BEPIIMHON B Hadaje KoopauHaT. Panee Mbl u3y4daan
cllyJyan JInHeapu30BaHHON cucreMbl HaBbe-CTOKCA, MM HEBBIPOXKIAIOIINXCS TUJIMHIPUIECKUX 00J1acTeil,
IO9TOMY JIaHHAsT paboTa SBJISETCS JIOTUIECKUM ITPOIOI?KEHNEM HAINUX MIPEIbIIYIINX UCCIEIOBAHUN B 9TOM
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HaIpPaBJI€HNN. BBINIeyIOMSHYTOM BBIPOXK JAIONMIENCS 00JIACTU MBI COIIOCTABJISIEM CEMENCTBO HEBBIPOXK A0~
[IAXCST YCEUEHHBIX KOHYCOB, KOTOPBIE, B CBOIO OYepe b, (POPMUPYIOTCS IIyTEM B3aNMOOHO3HAYHOTO MPeod-
pa30BaHUsA B IUJIUHIpUYECKne OOJACTH, T/e MJIs PACCMATPUBAEMON 33/1a9M YCTAHABIUBAIOTCS APUOPHBIE
OIIEHKH, OJTHOPO/IHbIE OTHOCUTEILHO H3MEHEHUs HHIeKCa obacreil. Jlanee, ncronp3yst anpropHbIE OIEHKU U
merox Pasmo-laepkuHa, MBI YCTAHOBHUJIN CYIIIECTBOBAHUE, €IMHCTBEHHOCTD pelnreHns: B Kiaaccax CobosieBa
¥ €ro PEryJsipHOCTD IO MepPe YBEJIMICHHS TJIAJIKOCTA 38IaHHBIX (DYHKITAN.

Kmouesvie caosa: cucrema Hapre-CToKca, BBIpOXKIatomasics 061acTb, Mmeton [ajgepKuHa.
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Some properties of the one-dimensional potentials
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The main aim of this paper is to study the properties of the one-dimensional potentials. In this paper,
we have studied the connection between the one-dimensional potentials and the self-adjoint part of the
operator Ll}l, which Ll}l is the solution to the one-dimensional Cauchy problem. Moreover, a new method
is used that allows us to reduce the spectral problem for the Helmholtz potential to the equivalent problem.

Keywords: one-dimensional Helmholtz potential, spectral problem, Fredholm operator.

2020 Mathematics Subject Classification: 34B05.

Introduction

One-dimensional potentials are important in the field of mathematical physics, offering insight into
the behavior and characteristics of physical systems in a simplified form. The study of one-dimensional
potentials also involves the analysis of eigenvalues and eigenfunctions. These concepts provide valuable
information about the energy levels and corresponding wavefunctions associated with the potential.

In the study of elliptic equations, the Laplace and Helmholtz equations hold significant importance
due to their wide-ranging applications and deep implications. The solutions to these equations take
the form of Newton and Helmholtz potentials, respectively, which offer fundamental insights into the
behavior and properties of these equations.

The Newton potential’s properties have important applications in various fields, including physics
and engineering. Similarly, the Helmholtz potential finds extensive utilization in electromagnetic radiation,
seismology, and acoustics due to its inherent connection with the wave equation. In recent years, new
methods have been discovered for investigating the potentials of the elliptic equations in multidimensional
cases [1-4].

Let Q be a bounded simply-connected domain in R”. In multidimensional case, a Newton potential
is defined as follows:

u(z) = / enlz — ) F(E)de, 1)

Q

_1 _ —

el — €T n >3,

where

oy is the surface domain of the sphere in R”, and ¢, (z — ) is a fundamental solution of the Laplace
equation, such that

Agp(r — &) = d(z = §),

here 0(x) is the Dirac delta function.
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In [1], the general form of the boundary condition for the Newton potential (1) was discovered by
T.Sh. Kalmenov and D. Suragan used their method

Nu] = —“(21’) +/ <sn(:c —¢) 6;‘75? - ag"é‘”;; 5)u(5)> dE =0, x €0, 2)

o0

where 8%5 is a normal derivative. In the aforementioned study, the eigenvalues and eigenfunctions of

the volume potential were discovered for both the 2-disk and the 3-ball. In [2], the eigenfunctions of
two-dimensional Newton potential was studied.

In the work [3|, for the n-dimensional Helmholtz equation, after transforming the entire space
into a finite domain in R™, the Sommerfeld radiation condition is transferred into a general boundary
value condition with the same form as boundary value condition (2). Additional and comprehensive
references on this study can be found in [5-7].

In the present paper, we will study the connections between potentials in the Cauchy problem and
investigates the eigenvalue problem of the one-dimensional Helmholtz potential as a Fredholm operator,
employing a novel methodology. Furthermore, we will analyze the relationship between one-dimensional
Newton potential and the solution of the Cauchy problem.

1 Main functional relations

It is well known that the one-dimensional Newton potential is defined as follows

b
ute) = [ 25 pae, we o

and satisfies the following Poisson equation

d2

Lu = @u(x) = f(x).

Let f € La(a,b), then we can find the solution of the one-dimensional Cauchy problem in the following

form
X

uke () = Ll f 1= / (x — &) f(€)de.

An adjoint operator to L;<1 is
b

(L&) f= [~ )@ 3)

T

By using the Cartesian theorem for operators, we can rewrite operator (3) as follows

_ L )L - (L)
2 21

Lt f=Re (L) f+i-Im (L) f f
The operators e (Ll_(l) and Jm (Ll_{l) are respectively the real part and image part of the operator
Ll}l, and they are self-adjoint operators.
It is easily seen that the real part of the operator L[_{1 coincides with the one-dimensional Newton
potential such that
Ly + Ly

b
_ [le—¢
ety - [ e,
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Note that we have related the one-dimensional Newton potential to the classical Cauchy problem.
The proof above gives more, namely, we can generalize this fact to high-order differential equations.

Let us consider the following self-adjoint linear differential equation

d(Zm) d(2mf2)

LU = dx(2m) U(IZ‘) + alw

u(z) + ... + anu(z) = f(x), meN, =z € (a,b), (4)

where coefficients aq, ..., a,, € R are constants.
By the Malgrange-Ehrenpreis theorem [8] we know that equation (4) has a fundamental solution.
Now, we will construct the fundamental solution of the operator (4).

Lemma 1. Let z(x) is a solution of the following homogeneous equation
Lz=0,

which satisfies the conditions

Then the function

e(x) = Ssgn(z) - z(x) (6)
is a fundamental solution of the operator L.

Proof. By using the weak derivatives and properties of distributions, and taking into account
conditions (5), we have

g'(z) = (x) - 2(z) + %sgn(w) 2 (z) = %sgn(az) (),
() = 8(a) - (@) + goan(a) - 2"(x) = gsmn(e) - 2 (a),
. 1 - (7)
@ (x) = Ssgn(a) - 2" (a),
@M (z) = §(x) - 22V (z) + Zsgn(x) - 2™ (z)
= 5(a) + gomn(x) - 2O ()
We see at once that
(2m) (2m—2)
Le = di@m) e(z) + a1 dci(QmZ)s(x) + ...+ ape(x)
- %sgn(m) Lz +6(2)
= 6(x),

which is clear from (7).
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Using fundamental solution (6) we can write the potential of equation (4) as follows

b

u(w) =L =exf =5 [smnlo—€) -2l - OF©de. )

a

On the other hand, the solution of the Cauchy problem with zero-conditions of equation (4) is

ure () = L f = / 2z — ) F(€)de,

and
b

(L) f = / 2(€ — x) f(€)de.

x

By the Cartesian theorem, the real part of the operator L;(l is

L+ (LEY)

Re (L") f 5 f=
Y b )
-3 { [sa-or©i+ [ z(ﬁx)f(ﬁ)dﬁl .
Obviously z(z) is an odd function, i.e. z(—x) = —z(x), therefore we can rewrite (9) as

[ b
Re (L) f % / 2(x — €)F(€)dé + / 2(€ ~ x)f(&)d&] =

|
N |
N
o]
=3
&
|
o
2
8
|
"
N~—
=
o
Q
~
+
B

sgn(z —§) - 2(z — §)f(§)d€] =

:% /sgn(w — &) - z(x =€) f(§)dg,

a

which proves the following theorem.

Theorem 1. Potential (8) and the real part of the solution of the Cauchy problem for the equation
(4) are equal:

b

_ L+ (L) _ 1
Re (L) f=—F—5—+ 2( ) g gy 5 /sgn<:c — &) 2z — O F()de.
Example. If a; = ag = ... = a,, = 0 in (4), which we may assume, then we have the following
polyharmonic equation
d2m
Lu = A"u(z) = mu(x) = f(z), =€ (a,b) CR. (10)
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By using (6) and (8) the polyharmonic Newton potential is given by

b
ua) = 171 = 5 [ Gl — € (@)

a

We find the solution of the Cauchy problem for equation (10) as

xT

. | / (z— €L (€)de,

ug (r) = Lf_(lf = m

a

and
b
—1 * 2m 1

where (Lf}l)* is an adjoint operator to the operator Ll}l. By direct calculation we obtain

Ly + (L)

Re (L) f = 5 f=
7 b
;(21711—1) /(93 — &P f(&)de + /(5 —z)?lp(e)de | =
b
:% / (2m1—1)'x — &P f(&)de = LT,

and Re (Ll_(l) f=L"'f as claimed.

2 Spectral problem for Helmholtz potential
Let us consider a one-dimensional Helmholtz equation in (a,b) C R

d2
Lu = ———u(z) — k*u(z) = f(x), € (a,b). (11)

dx?

It is easy to check that a particular solution to the Helmholtz equation is defined as a one-dimensional
Helmholtz potential |9

1 /bsin (Jz — €))

= — d 12
a
here e1(z — &) := —%% is a fundamental solution of the Helmholtz equation, i.e.
d2

s i — ) — Ka(e — ) = 8z — €).

In [10] there are the considered boundary conditions of operator (12) with this fundamental solution
and with elk‘ - %w

. In this work, we will study the integral operator with e1(z — &) := —
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Lemma 2. Let f € Cla, b]. Then there is a unique solution to equation (11), defined by the Helmholtz

potential (12), and satisfies the following boundary conditions:

Nifu] == cos(bk)u! (b) + ~ cos(ak)e (a) + sin(bk)u(b) + sin(ak)u(a) = 0;

k k

Nofu] = sin(bk)a (b) + ~ sin(ak)u (a) — cos(bk)u(b) — cos(ak)u(a) = 0.

k k

Proof. Replacing f(§) by —%u(f) — K2u(€) in (12) we can rewrite (12) as

u(z) = - 5 = () =

b
1 [ sin(klz — &)
T

a

:éj“n%f‘“)<i;w®+k%@0da

a

hence using integration by parts, we have
b b
. o 2 . _

2\
b
_ sin(klz —¢]) d b d (sin(klz — &)\ | 42 (sin(k|z — €|)
B Td@“(g) - “(§>d§ (%) a*/dfg? (Qk
b
o [ sin(k|z —¢|)
+k /Qku(ﬁ)df,
since
d (sin(klz —¢[)\  cos(klx — &)
e (%) -0 9 -sgn(z — &),
we obtain

_ sin(k!x—ﬂ)i b

cos(klz — £])
ok d§U(§)

u(a) :

+ u(§)

a

sgn(z — &)

B sin(klx —&]) i

ey costklz =€)
=y g ) O

u(e) = +u(z),

a

sgn(z — )

a
we see that the same terms in the equality cancel out, and it follows that

b

I Y P A Y
2k S 2 ¢
_sin(klz —b|) d sinfkle — al) d
R

cos(klz — b))
2

+u(b) COS(’C|2$—G|>

sgn(z —b) — u(a) sgn(r —a) = 0.

b b
+/5(w—§)u
b

(13)

) u(§)dé+

(§)d¢ =
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Since a < xz < b, we have
_ sin(k(z —a)) d

sin(k(x — b)) d cos(k(z — b)) cos(k(xz — a)) B
—Td—gu(b) Td—gu(a) - fu(b) - fu(a) =
1 . 1 , 1 , . .
=5 sin(kx) <_k cos(kb)u'(b) — Z cos(ka)u'(a) — sin(kb)u(b) — sm(ka)u(a)) +
+% cos(kx) (/i sin(kb)u’(b) + %sin(k‘a)u'(a) — cos(kb)u(b) — cos(k‘a)u(a)) =0.

Since sin(kx) and cos(kz) are linearly independent, then we obtain the general conditions for the
one-dimensional Newton potential as follows:

Nifu] = = cos(kb)u'(b) + 1 cos(ka)u'(a) + sin(kb)u(b) + sin(ka)u(a) = 0;

k k
Nofu] = %sin(kb)u’(b) + %sin(ka)u’(a) — cos(kb)u(b) — cos(ka)u(a) = 0.

On the other hand, the general solution to equation (11) is given by

U(SU) — _/ sin (k(lf — g))f(ﬁ)df + Cleikx + cngikx’ (14)

boundary conditions (13) determine ¢; and ca:

b

b
1 —ik¢ 1 kg
a=1 [ @i w=-1 [ s (15)

a a

Substituting (15) into (14) we can assert that

sin (k(x — b ctk(z—8) b e—tk(z—¢)
uw) = — [ =D ey 1 [ e - [ —r(ea =

4 ik
x X b 3
:_/Sm(k(kf”’f))f(g)dgqté/mwgg))f(f)di:
b
1 [sin(klz—£])
__2/ S (©)d

The proof is completed.

Now, we will consider the spectral problem for potential (12) as Fredholm integral operator

1
1 [sin(klz —&]|) u(x)
T

5 u(de = ==, we(0,1). (16)
0

Applying lemma 2 we conclude that operator (11) with conditions (13) is inverse operator to
potential (12). Therefore, eigenvalue problem (16) and the following problem is equivalent
L )~ Ku(w) = () i
— —u(x) — k*u(z) = Mu(z
dz?
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that satisfies the conditions [10]
(18)

Since operator (12) is a self-adjoint operator, then it always has real eigenvalues. It follows the
problem (17)-(18) also has the real eigenvalue.
A solution to equation (17) is

u(z) = Cre™VATR? | Cpe=iaV ke,
The conditions (18) implies that
FIVA + k2 cos(k)e’ AR 4 ZivVA + k2 + sin(k)e’ Atk
%Z\/WSIH(I{)@ZW — Cos(k)ei\/m -1

—Liv/ N+ k2 cos(k)e™VATE — Liy/A + k2 + sin(k)e VAR [C’l} _0

—Liv/ N+ KZsin(k)e”VATE — cos(k)e VAR 1 Cs '
To have non-trivial solutions of this system, the determinant of the left-hand side matrix must be zero,
then

1 1 . )
— iV A+ k2 — <()\ + k) + 1> sin(k) (eWW — e—WW) -

) k k2 (19)
- Ei\/ A + k2 cos(k) (eiv AHRE | gmiv )‘+k2> =0,
equation (19) is a transcendental equation for eigenvalues of problem (17)-(18).
1) If A+ k? > 0, by Euler’s formula, we get
1
2VA+ K2 + (A4 k) sin(k) sin (VA+#)+
(20)
+2v/ A + k2 cos(k) cos (\/ A+ k‘z) + ksin(k) sin (\/ A+ k‘2> =0.
From (20) let v\ + k2 = 7n + «,, here ay, — 0 as n — oo, then we obtain
1 k ™m + oy, ) 1+ (=1)"coskcosay,
5 —1)" n= - )
2<7m+04n+ k >( Jsina sin k
it follows that as n — oo ) N
n- SinOén — kaM’
(—1)"msink
thus we have o, as
14+ (=1)"cosk 2k
" (=l)nwsink  n’
Then we can obtain asymptotic behavior of the eigenvalue A as n — oo
4k (14 (—1)"cos(k) 1
Ap = )’ =k =1n? — k% — — . 21
(. + o) mn 1) sin(k) O\ (21)
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2) Now we turn to the case A + k2 < 0. Denote by p = iv/ A+ k2 = v/ =\ — k2, of course > 0. In
this case, we can rewrite (19) as

—4p + sin(k) <]1,u2 - k:) (e" — e ") —2ucos(k) (e + e ) =0. (22)

It is easily seen that equation (22) has only one root
A= —pu? — k2.

However, this equation does not have a simple analytical solution, and graphical methods may be
needed to approximate the root.
Thus, we described the eigenvalues of the Helmholtz potential.

Theorem 2. The eigenvalues of problem (16) for A+ k2 > 0 are the roots of transcendental equation
(20) and asymptotic behavior as n — oo has the form (21), for A + k? < 0 has only one eigenvalue as

A= —p— k%
where p is a root of equation (22).
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Bipeamemai moreHnmuaagapabll Keiidip KacuerTepi

T.II. Kanmemenor, A. Komipbek, O. KoabipOaitKpi3bt
Mamemamuxa stcone mamemamuraisry modeavdey urncmumymat, Aamamo, Kasaxcman

MaxkaJianblH Herisri MakcaThl GipeJreM i MoTeHIraIIapIblH, KAaCHeTTepiH 3epTTey. ABTopaap Gipesmemii
noreHnuaJigap MeH oipesamemMai Komm ecebinig, memntivi 6o1aThbIH L;(l OIlepATOPBIHBIH, ©3iHe-031 TyliHIec
GeJlirinig, apachiHAAFbl OaliaHbIcThl 3epTTered. COHBIMEH KaTap, »KaHa dIiC apKbLIbI | €JIbMIOJIbIL IOTE€H-
[IUAJIBIHBIH, CIIEKTPAJIb/Ibl MOCeJIeCi SKBUKAJIEHTT] ecernKe KeJITipiii.

Kiam cesdep: b6ipemmemai ['elbMrosibIT TOTEHITHATBI, CIIEKTPAIBIALI Mocesie, PperoabM OmepaTophl.

HeKOTOpre CBOIICTBA O/IHOMEPHBbIX ITOTEHIINAJIOB

T.I. Kanbmenos, A. Kaaupoek, A. KbiabipbailKbi3nt
HHcmumym MAMEMATUKU U MATNEMATUYECKO20 MOa@./lupO@aHuﬂ, A./T,J\/lam'bb, Kasaxcman
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This article concerns the notion of weak circular minimality being a variant of o-minimality for circularly
ordered structures. Algebras of binary isolating formulas are studied for countably categorical weakly
circularly minimal theories of convexity rank greater than 1 having both a 1-transitive non-primitive
automorphism group and a non-trivial strictly monotonic function acting on the universe of a structure.
On the basis of the study, the authors present a description of these algebras. It is shown that there exist
both commutative and non-commutative algebras among these ones. A strict m-deterministicity of such
algebras for some natural number m is also established.

Keywords: circularly ordered structure, binary formula, isolating formula, algebra of formulas, Xo-categorical
theory, weak circular minimality, convexity rank, automorphism group, transitivity, primitiveness, m-
deterministicity.

2020 Mathematics Subject Classification: 03C64.

1 Preliminaries

Algebras of binary formulas are a tool for describing relationships between elements of the sets of
realizations of a type at the binary level with respect to the superposition of binary definable sets. A
binary isolating formula is a formula of the form ¢(x,y) such that for some parameter a the formula
¢(a,y) isolates a complete type in S({a}). The concepts and notations related to these algebras can
be found in the papers [1,2]. In recent years, algebras of binary formulas have been studied intensively
and have been continued in the works [3-7].

Let L be a countable first-order language. Throughout we consider L-structures and assume that
L contains a ternary relational symbol K, interpreted as a circular order in these structures (unless
otherwise stated).

Let M = (M, <) be a linearly ordered set. If we connect two endpoints of M (possibly, —oo and
+00), then we obtain a circular order. More formally, the circular order is described by a ternary
relation K satisfying the following conditions:

(col) VaVyVz(K(x,y,z) = K(y, z,x));

(co2) VaVyVz(K(z,y,z) N K(y,z,2) ©x=yVy=2zVz=ux),

(co3) VaVyVz(K (x,y, z) = Vt[K(z,y,t) V K(t,y, 2)]);

(cod) VaVyVz(K (z,y,2) V K(y,x, 2)).

Sometimes we will identify M and the universe M if a linear/circular order is fixed.
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The notion of weak circular minimality was studied initially in [8]. Let A C M, where M is a
circularly ordered structure. The set A is called convez if for any a,b € A the following property is
satisfied: for any ¢ € M with K(a,c,b), ¢ € A holds, or for any ¢ € M with K(b,c,a), ¢ € A holds.
A weakly circularly minimal structure is a circularly ordered structure M = (M, K, ...) such that any
definable (with parameters) subset of M is a union of finitely many convex sets in M. Recall 9] that
such a structure M is called circularly minimal if any definable (with parameters) of M is a union
of finitely many intervals and points in M. Clearly, the weak circular minimality is a generalization
of circular minimality. Notice also that any weakly o-minimal structure is weakly circular minimal.
The converse, in general, fails. The study of weakly circularly minimal structures was continued in the
papers [10-16].

Let M be an Ry-categorical weakly circularly minimal structure, G := Aut(M). Following the
standard group theory terminology, the group G is called k-transitive if for any pairwise distinct
a,az,...,ar € M and pairwise distinct by, be,...,bx € M there exists g € G such that g(a;) = by,
g(a2) =ba,...,g(ax) = bk. A congruence on M is an arbitrary G-invariant equivalence relation on M.
The group G is called primitive if G is 1-transitive and there are no non-trivial proper congruences
on M.

Let M, N be circularly ordered structures. The 2-reduct of M is a circularly ordered structure
with the same universe of M and consisting of predicates for each (-definable relation on M of arity
< 2 as well as of the ternary predicate K for the circular order, but does not have other predicates
of arities more than two. We say that the structure M is isomorphic to N up to binarity or binarily
isomorphic to N if the 2-reduct of M is isomorphic to the 2-reduct of N.

Notation. (1) Ko(z,y,2) := K(x,y,z) N\y #x ANy # 2z Nz # 2.

(2) K(uy,...,uy,) denotes a formula saying that all subtuples of the tuple (uy,...,u,) having the
length 3 (in ascending order) satisfy K; similar notations are used for Kj.

(3) Let A, B, C be disjoint convex subsets of a circularly ordered structure M. We write K (A, B, C)
if for any a,b,c € M with a € A, b € B, ¢ € C we have K(a,b,c). We extend naturally that notation
using, for instance, the notation Ky(A,d, B,C) if d ¢ AUBUC and Ky(A,d, B) A Ky(d, B,C) holds.

Let f: M — M be an (-definable function with Dom(f) = I C M, where I is an open convex set.
We say that f is monotonic-to-right (left) on I if it preserves (reverses) the relation Ky, i.e. for any
a,b,c € I such that Ko(a,b,c) we have Ko(f(a), f(b), f(c)) (Ko(f(c), f(b), f(a))).

The following definition can be used in a circular ordered structure as well.

Definition 1. [17,18] Let T be a weakly o-minimal theory, M be a sufficiently saturated model of
T, AC M. The rank of convezity of the set A (RC(A)) is defined as follows:

1) RC(A)=—-1if A=10.

2) RC(A) =0 if A is finite and non-empty.

3) RC(A) > 1 if A is infinite.

4) RC(A) > a + 1 if there exists a parametrically definable equivalence relation E(z,y) and an
infinite sequence of elements b; € A,i € w such that:

e For every i,j € w whenever i # j we have M = —E(b;, b;);

e For every i € w, RC(E(z,b;)) > a and E(M,b;) is a convex subset of A.

5) RC(A) > §if RC(A) > a for all a < §, where § is a limit ordinal.

If RC(A) = a for some «, we say that RC(A) is defined. Otherwise (i.e. if RC(A)) > « for all «),
we put RC(A) = oc.

The rank of convezity of a formula ¢(x,a), where a € M, is defined as the rank of convexity of the
set (M, a), i.e. RC(¢(z,a)) == RC(p(M,a)).

The rank of convexity of an 1-type p is defined as the rank of convexity of the set p(M), i.e.
RC(p) := RC(p(M)).
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In particular, a theory has convexity rank 1 if there are no definable (with parameters) equivalence
relations with infinitely many infinite convex classes.

The following theorem characterizes Np—categorical 1-transitive non-primitive weakly circularly
minimal structures of convexity rank greater than 1 having a non-trivial strictly monotonic function
up to binarity:

Theorem 1. |11] (monotonic case) Let M be an Ng—categorical 1-transitive non-primitive weakly
circularly minimal structure of convexity rank greater than 1 having a non-trivial strictly monotonic
function so that dcl(a) # {a} for some a € M. Then M is isomorphic up to binarity to M ., 1 := (M,
K, fl, E?, ...,EE,E§+1>, where
e M is a circularly ordered structure, M is densely ordered, s > 1, k > 2, m = 1 or k divides m;
e F. . is an equivalence relation partitioning M into m infinite convex classes without endpoints,
for every 1 < ¢ < s the relation FE; is an equivalence relation partitioning every Fj;;1—class into
infinitely many infinite convex E;—subclasses without endpoints so that the induced order on
FE;—subclasses is dense without endpoints;

e f is a bijection on M so that f*(a) = a for any a € M, for every 1 <i < s+ 1 f(E;(M,a)) =
Ei(M, f(a)) and —F;(a, f(a)), and either f is monotonic-to-right on M or f is monotonic-to-left
on M (and in this case k = m = 2).

In [19] algebras of binary isolating formulas are described for Nyp-categorical weakly circularly
minimal theories with a primitive automorphism group. In [20] algebras of binary isolating formulas are
described for Ry-categorical weakly circularly minimal theories of convexity rank 1 with a 1-transitive
non-primitive automorphism group and a non-trivial definable closure. Here we describe algebras
of binary isolating formulas are described for Ng-categorical weakly circularly minimal theories of
convexity rank greater than 1 with a 1-transitive non-primitive automorphism group and having a
non-trivial strictly monotonic function.

2  Results

Ezample 1. Consider the structure M 1 5 := (M, K3, f, E?) from Theorem 1, where f is monotonic-
to-right on M, F is an equivalence relation partitioning M into infinitely many infinite convex classes.
We assert that Th(M; ;1 2) has eight binary isolating formulas:

Oo(x,y) =2 =y,01(2,y) == Ko(z,y, f(z)) A E(z,y),
O2(z,y) == Ko(z,y, f(x)) A ~E(z,y) A ~E(f(2),y),
03(z,y) := Ko(z,y, f()) A E(f(x),y),

04(z,y) == f(2) = y,05(z,y) == Ko(f(z),y,2) N E(f(2),y),
O6(z,y) == Ko(f(2),y,x) A =E(z,y) A ~E(f(z),y),
O7(2,y) == Ko(f(2),y, ) N E(z,y),

and
K()(Q()(a, M), 91(&, M), 92(@, M),Hg(a, M), 04((],, M), 95(@, M), Hg(a, M), 97(&, M))

holds for any a € M.
Define labels for these formulas as follows:

label k for 6y (x,y) where 0 < k < 7.

It is easy to check that for the algebra Py, , , the Cayley table has the following form:
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1o 1 2 3 4 5 6 7
0] {0y | {1} {2} 3y [{4] {5} {6} {7}
Ly {1y {2} 3,45} | {5} | {5} {6} {7,0,1}
2 | {2} {2} {2,3,4,5} {6} {6} {6} {6,7,0,1,2} {2}
31 {3} | {3,4,5} {6} {7y {7 | {70,1} {2} {3}
41 {4r] {5} {6} {7y {0y | {1} {2} {3}
51 {50 | {5} {6} {r.0,1} | {1} | {1} {2} {3,4,5}
6| {6} {6} {6,7,0,1,2} {2} {2} {2} {2,3,4,5,6} {6}
71 {7 [{7,0,1} {2} {3y [ {3} {345} {6} {7}

By the Cayley table the algebra By, |, is commutative.

Theorem 2. The algebra Ry, , , of binary isolating formulas having a monotonic-to-right function
on M has 2k(s + 1) labels and is commutative.

Proof of Theorem 2. Indeed, since f*(a) = a, we have the following isolating formulas:
fl(z) =y forevery 0<1<k—1.

Since for every 1 < ¢ < s the relation E; is an equivalence relation partitioning every FE;i—class
into infinitely many infinite convex F;—subclasses without endpoints so that the induced order on
FE;—subclasses is dense without endpoints, we obtain the following binary isolating formulas:

Ko(f'(2),y, [ (2)) A B (f1(2),y), where 0 <1<k —1,

Ko(f'(x),y, (@) A=Ej(f' (), y) A Eja(fi(2),y), where 0<1<k—1,1<j<s—1,
Ko(f!(@),y, 7 (2)) A—Es(f (), ) A=Eo(fF(x),y), where 0 <1<k —1,
Ko(f!(x),y, f (@) A=E; (fF (@), y) A Bja (f 7 (2),y), where 0 <1<k —1,1<j<s—1,
Ko(f'(x),y, f () A EL(fF (), y), where 0 <1<k —1.

Thus, we obtain 4k + 2k(s — 1) = 2k(s + 1) binary isolating formulas.
Now we establish commutativity of this algebra. Since for any binary isolating formula 6(x,y) the
following holds:
Jtlx =t ANO(t,y)] = 0(z,y) and Ft[0(x,t) Nt =y|] = 0(x,y),

we obtain that 07 =1-0 = {l} for any label [ with the condition 0 <[ < 2k(s+ 1) — 1.
Obviously,
both 3t[f" (x) =t A f2(t) = y], and IH[f2(x) =t A f1(t) =y,

uniquely determine the formula fl1+2(mod &) (z) — o
Further, since Ko(a, f(a), f2(a), ..., f*"'(a)) holds for any a € M,

1 () = t A E(F2(8), ) A Ko(f2(2), 5, f2 T (1)),
where 1 <4 < s, uniquely determines the formula
(1200048 () ) A Kg(f1HmOd B (), phottimod ) g

independently from behaviour of the function f. On the other hand, since f is monotonic-to-right
on M,

B (2 (), y) A Ko(f=(2),y, f2H (@) A S (1) = ]
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also uniquely determines the formula
Ei(f12+ll(mod ) (z),y) A Ko(flerll(mod R (z),y, f12+11+1(mod M) (z)).
Further it is also easy to understand that the formulas
Ko (" (2),t, 14 (2)) A BL(f (@), 8) A Ko(f2(8), 9, 21 (1) A E1(f2(1), y)] and
Ko (f2 (@), t, f2H (@) A EL(F2(2), 1) A Ko(f1 (), f*TH(0) A EL(F7 (1), y)]
uniquely determine the formula
Ko(fllJrlz(mOd M (z),y, fll+lg+1(m0d R (2)) A El(fh“?(mOd R (z),y).
Now if we consider the formulas
Ko (f1 (@), ¢, 1 (2)) A B1(f" (@), 8) A Ko(f2(8), 9, f27H (1)) A B (f24(2), )] and

F[Ko(f2 (), t, 24 (2)) A EL(f2 (@), ) A Ko (1 (8), 9, FH () A BL(F2 (1), ),
there is no uniqueness, but both these formulas are compatible with the formulas
Ko(leﬂg(mod R (2),y, fl1+lz+1(mod M) (2)) A El(f11+12+1(mod M (2),y),
le+12+1(mod k) (z) =y,
Ko(fl1+lg+1(mod M (2),y, fll+l2+2(m0d R (2)) A El(fh—i-lz-i-l(mod N (2),y).

Further, we consider the following formulas:

Ko (f1 (@), t, 1 (2)) A E1(f7 (2),8) A Ko(f™2(t),y, f27 (1))

A-Ej(f2(t),9) A Bja(f2(t), )] (%)
and 3t[Ko(f2 ()., f2 (2)) A ~Ej(f2(2), 8) A Ejaa (f2(2), 1)
AEo(f1 (), y, S () A B (f1 (1), 9)]- ()

Since Ey(f%(z),t) implies Ej1(f"(x),t), the formula
EL(f1 (2),8) A =B (f2(1),y) A Ejra(f2(8), )]

is compatible with the formula Ej+1(fll+12(m0d ) (x),y) A —|Ej(fll+12(m0d k)(z),y). Consequently, the
formulas (x) and (x%) uniquely determine the formula

Ko(frtmod B gy phtlat 1 mod £ )y oy (phitlzmod &) ) o)

NEj gy (fl2mod k) ) oy

Similarly we can show that
3t[Ko(f1 (@), t, [ (2)) A EBa(f" (2),8) A Ko(f2(8),y, f27H(1))

A=Es(f12(8),y) A —~Es(f211(1), y)]
and Ko (F2 (), t, 1127 (@) A Eu(f2 (@), 8) A ~Es(£27 (@), )
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AEo(f1 (1), y, [ (1) A B (f2 (1), )

uniquely determine the formula
Ko(fh+mmod B () y, it mod b)) o g (fhHmmod B(g) )

/\_|E8(fl1+lg+1(m0d k) (.I), y)
Further, considering the following formulas
3K (f1 (), 8, [ (@) A=Ej (1 (2),0) A B (f1 (), ) A Ko (f2(1), y, f2H1 (1))
/\_‘Es(fl2 (t)7 y) N _‘Es(fl2+1(t)¢ y)]
and Jt[Ko(f12(z),t, f2HH(x)) A —Eo(f2(z),t) A —~Es(f2(z), 1)
AKo(f1 (), y, S () A=Ej (F1(8),9) A B (F1 (1), )],
we also obtain that they uniquely determine the formula

Ko(fllJrlz(mOd k) ($)7 v, fll+l2+1(m0d k) (l‘)) A _‘Eg(fll+l2(m0d k) (;1:)’ y)

/\_‘Es(fll-l—lz-&-l(mod k) (2),).
Consider now the following formulas:
Ko (" (2),t, 14 (2)) A =Ejy (f1 (), 8) A Ejya (f7 (2),8) A Ko (1), y, f27 (1))
N=Ejy (F2(1),y) A Ejya(f2(1), )]
and 3t[Ko(f® (), t, [ () A =Ej, (f2(2),) A Bjyr (f2(2),8) A Ko(f1 (1), y, [ (1))
A=Ej, (F (1), 9) A By (F1(8), ).
Let 7 = max{j1,j2}. Then it is easy to establish that these formulas uniquely determine the formula

Ko(fll-l—lg(mOd k) (CL'), v, fll+l2+1(m0d k) (.’E)) A _|Ej(fll+l2(m0d k) (.’E), y)

ABjy(fH 2000 B (@) ).
At last, consider the following formulas:
Ko (f1 (@), t, 1 (2)) A=Eg(f1 (), ) A =B (f7 (2),8) A Ko(f2(8), 5, f27 (1))
A=Es(f2(1),y) A —Es(f2(t),y)]
and 3t[Ko(f(z), ¢, 21 (2)) A —Es(f2(2),8) A =Es(f2(2),8) A Ko(f (1), y, F17(1))
/\_‘Es(fll (t)> y) A _'Es(fll (t)a y)]

Here we loss the uniqueness: these formulas are compatible with the formula Ky fhtte (x), vy,
flitl2+2(2)) which is in its turn compatible with the following 2s + 3 formulas:

fr @) =y,

Ko( 12 (@), y, f1HE @) A By (f1H (@), y),
Ko( 172 (@), y, [ @) A =B (f1 M (@), y) A B (S (), y),
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Ko(f142(2),y, [ (@) A =Ea (172 (@), y) A By (f1H27 (2), ),
Ko(f' 24 (@), y, 1212 (2)) A=Boa (f1H2 4 (2),y) A By (f1H2H (2), ),

Ko(f 424 @), y, [ (2) A=EL(f17 T (@), y) A Bo(f172H (), ),
Ko( 15t @), y, fAHEH22 () A By (124 (2), ).

Definition 2. [1] Let p € S1(0) be non-algebraic. The algebra P, is said to be deterministic if
uy - ug is a singleton for any labels uy, ug € p, ().

Generalizing the last definition, we say that the algebra P, is m-deterministic if the product
uy - ug consists of at most m elements for any labels u1,u2 € p, (). We also say that an m-deterministic
algebra P, (,) is strictly m-deterministic if it is not (m — 1)-deterministic.

Corollary. The algebra Py, |, of binary isolating formulas having a monotonic-to-right function

on M is strictly (2s + 3)-deterministic.

Example 2. Consider the structure Mj 29 = (M, K3,f1,E127E22> from Theorem 1, where f is
monotonic-to-right on M, F; is an equivalence relation partitioning M into infinitely many infinite
convex classes, Es is an equivalence relation partitioning M into two infinite convex classes. We assert
that Th(M; 22) has ten binary isolating formulas:

Oo(z,y) = v =y, 01(z,y) := Ko(z,y, f(z)) N Er(z,y),

O2(z,y) == Ko(z,y, f(x)) A —E1(z,y) A Ea(z,y),
O3(z,y) == Ko(z,y, f(z)) A =Ez(z,y) A ~E1(f(2),y),
01(z,y) == Ko(z,y, f(z)) A E1(f(2),y),

05(z,y) == f(x) = y,06(z,y) == Ko(f(2),y,2) N E1(f(2),y),
O7(2,y) == Ko(f(2),y,2) A =E1(f(z),y) N E2(f(2),y),
Os(z,y) == Ko(f(2),y,2) A ~Ea(f(z),y) A ~Er(z,y),
Og(x,y) := Ko(f(2),y,2) AN Er(z,y),

and

K()(H()(CL, M), 91(@, M), 92(@, M),Hg(a, M), 04((],, M), 05(@, M), 96((1, M), 07(a, M))
and K0(07(a, M), Qg(a, M), 99(&, M), 90(&, M))

holds for any a € M.
Define labels for these formulas as follows:

label & for 6y (x,y), where 0 < k <9.

It is easy to check that for the algebra Py, ,, the Cayley table has the following form:

0 T 2 3 1 5 6 7 B 9
0 0 1 2 {3} {4} 5 6 7 {8} {9}
1 T T 2 {3} {4,5, 6} 6 6 7 {8} {9,0,1}
2 2 2 2 {3,4,5,6,7} 7 7 7 7 {8,9,0, 1,2} 2
3 3 37 {3,4,5,6,7} 3 3 3 B {8,9,0,1,27} 3 3
1 1 {4,5,6) 7 8 9 9 {9,0,1} 27 3 1
5 5 6 7 B 9 0 T 2 3 1
6 6 6 7 B {9,0,1} 1 1 2 3 {4,5,6]
7 7 7 7 {8,9,0, 1,2} 2 2 2 2 {3,4,5,6,7} 7
B B 3 {8,9,0, 1,2} {3} 3 3 3 {3,4,5,6,7} {8} 3
9 9 {9,0,1} 2} {3} 1 1 {4,5,6} {7} {8} 9
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By the Cayley table the algebra By, ,, is commutative.

Theorem 3. The algebra Py, . of binary isolating formulas having a monotonic-to-right function

on M for m # 1 has 2k(s + 1) + m labels, is commutative and strictly (2s 4+ 3)-deterministic.

Proof of Theorem 3. Similarly as in Theorem 2 we have the following binary isolating formulas:
fl(x) =y forevery 0 <1< k—1,
Ko(f'(2),y, f7(2)) A Ba(f'(),y), where 0 <1<k —1,
Ko(f'(@),y, /(@) A =Ej(f'(2),9) A Eja(f'(2),), where 0 <1<k —1,1<j<s—1,
Ko(f' (@), y, S (@) A =E;(f* (@), 9) A Eja(f7 (2),9), where 0< 1<k —1,1<j<s—1,
Ko(f'(),y, 1 (@) A Ea (S (2), ), where 0 <1<k —1.

z)
z)

Since in this structure there exists additionally the equivalence relation Esi1(z,y) partitioning M
into m infinite convex classes, instead of the formulas

Ko(f'(2),y, /(@) A=Es(f'(2),y) A ~Ey(f(x),y), where 0 <1<k~ 1,
additionally the following binary isolating formulas appear:

Eo(f'(x),y, [ (@) A=Es(f1(2),9) A By (f'(2),), where 0 <1<k —1,

Ko(f'(x), y, fT () A =Es (1 (2),y) A Bsr (f7(x),y), where 0 <1<k — 1.

Also, the formulas #%(z,y) containing the conjunctive term Ko(f!(z),y, f1(x)) and extracting
the i-th Fy i-class to the right of F, i-class containing f!(x) for some 1 < i < m/k — 1 (here also
0 <1< k— 1) will be binary isolating formulas. For example, the formula 6! (z,y) has the following
form:

0" (z,y) := Ko(f'(x),y, () A~Es1(f' (), y)A
Vt[Ko(fl([B),t,y) A= s+1(t7 y) — E$+1(fl($),t)].

Thus, we obtain k+k +2k(s — 1) + k+ 2k + k(m/k — 1) = 2k(s+ 1) +m binary isolating formulas.
Take arbitrary labels [1,lo and show that Iy - lo =1y - 1.
It is easy to establish that the formulas

Ko (f" (), t, f* 7 (2)) A EL(f (2),8) A Ko(f2(t),y, f27(1)

AEs(f2(1),y) A Bsr (f2(1),9)]
and t[Ko(f2(2),t, f2 (2)) A ~E(f2(2),8) A Egya (f2(2), 1)

AEo(f1 (1), y, [ (1) A B (f1(1), )]

uniquely determine the formula
Ko(fl1+l2(mod k) (z), v, fll+12+1(mod k) (z)) A _|Es(fll+lg(m0d k) (z),y)

NBEgpq (fiet1mod &)y )

Similarly, the formulas
Ft[Ko(f1 (), t, [ (2)) A B (f1 (), ) A Ko(F2(8),y, f24(2))

/\_‘Es(fl2+1(t)> y) A Es+1(fl2+1(t)7 y)]
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and 3t[Ko(f"2(x), b, 2 (@) A =Es(f2H (@), 6) A B (f2F (@), 1)
/\KO(fll (t)7 Y, fl1+1(t)) A El (fll (t)> y)]
uniquely determine the formula

K0<f11+12(mod k)(x)7 Y, fz1+12+1(mod k) (z)) A _|Es(fl1+12+1(m0d k) (z),y)

/\Es+1(fll+lg+1(m0d k) (z),y).

Further, considering the formulas
Ko (f" (@), t, F1H1 () A BL(f* (x),8) A0 (2, y)]

and 3t[6™7 (z, t) A Ko(f" (8),y, f1FH () A BL(f2 (1), ),

we establish that they uniquely determine the formula pli-+ia(mod k).j (x,y) for arbitrary 1 < j <
m/k — 1.
Similarly, the formulas

Ko (f" (2),t, 14 (2)) A=Es(f1(2),8) A Esir (f1 (2),8) A 027 (2, y)]

and 3t[6™7 (w, t) A Ko(f1(8), 5, F1H () A ~Es(f7 (1), 9) A Bsra (f1(2), )]

uniquely determine the formula gh+ez+1(mod k) (

On the other hand, the formulas

x,y) for every 1 < j <m/k — 1.

Ko (f" (2),t, 14 (2)) A=Es(f14 (2),8) A Esir (f17 (@), 8) A 629 (2, )]

and 3t[6"27 (2, ¢) A Ko(f" (), y, [ (0) A=Bs(f* (), 9) A Bsin (21 (1), )]

uniquely determine the formula gi+(mod k):3(z,4) for arbitrary 1 < j < m/k — 1.
Also observe that the formulas

3tKo(f" (), 1, [ (@) A =B (F1 (2),0) A Eja (f* (), 8) A Ko(f2(t), 9, [ (1)

AEs(f2(t),y) A Bsya (f2(1), )]
and t[Ko(f2(2). ¢, [ (2)) A ~Es(f2(2),8) A Esyr (f2(2), 1)

AKo(F (), y, A1) A=E;(f (1), 5) A Ejea (f(8), )],

uniquely determine the formula
Ko(fllJrlz(mOd k) (l’), n fll+l2+1(m0d k) (l‘)) A _‘Eg(fll+l2(m0d k) (;1:)’ y)

NEg (frtmmod B gy 4y

If we consider the following formulas:
3Ko(f1 (@), t, 17 (@) A Er(f1 (), 8) A Ko(f2 (1), 9, f27H(1) A EL(f27 (), )] and

Ko (f*= (@), t, f2H () A BL(f27 (), 6) A Ko (F1 (1), 9, ST 0) A B (f (1), )]

there is no uniqueness, but both these formulas are compatible with the formulas

Ko(fhtemod k) gy ) plitletlmod &) )y oy (plitletimod ) (g )y
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fl1+l2+1(mod k) (z) =y,
Ko(fll+lg+1(mod k) (z),, fll+lg+2(m0d k) (z)) A El(fll+l2+1(m0d k)(;l?),y).

Consider now the formulas 6/ (z,y) and 67 (z,y) for arbitrary 1 < i,j < m/k — 1. If i 4 j
(mod m/k) # 0, it is easy to check that the formulas

[ (2, 1) A 629 (t,y)] and 3t[0'29 (z, 1) A 61 (¢, )]

uniquely determine the formula gh+2(mod k).i+j(mod m/k) (x,y).

If i + j (mod m/k) = 0, these formulas are compatible with the following 2s 4+ 3 formulas:

fll+l2+1(m0d k) (r) =y

Ko(frttemod By phottattmod 1)) oy (phtei(mod 1)) )
Ko(fll-i-lg(mod k) (.T), v, fl1+l2+1(m0d k) (33)) A _'Ej(fl1+l2+1<m0d k) (LE), y)

NEj o (firerimod B gy oy -y <<,
Ko(fll+l2+1(m0d k)(x)’y7fl1+l2+2(mod k)(:x)) A El(fl1+l2+1(m0d k)(az),y),

Ko(fl1+12+1(mod k) (), v, fll+l2+2(mod k)(ac)) A _|Ej<fll+l2+1(mod k)(ac), v)

NEj (frrertmod By gy oy 1< j <,

Ezample 3. Consider the structure Mjso = (M, K3, f!, E? E2) from Theorem 1, where f is
monotonic-to-left on M, Fj is an equivalence relation partitioning M into infinitely many infinite
convex classes, Fs is an equivalence relation partitioning M into two infinite convex classes. We assert
that Th(M; 22) has ten binary isolating formulas:

Oo(z,y) =z =y,01(2,y) := Ko(z,y, f(x)) A Ex(2,y),
O2(x,y) := Ko(w,y, f(z)) A ~Er(z,y) A Ex(z,y),
O3(z,y) == Ko(z,y, f(2)) A ~Ea(z,y) A ~E1(f(2),9),
Os(z,y) = Ko(z,y, f(2)) A E1(f(2),y),
05(z,y) == f(x) = y,06(z,y) == Ko(f(2),y,2) N E1(f(2),y),
O7(z,y) == Ko(f(2),y,2) A=E1(f(z),y) A E2(f(2),9),
Os(2,y) == Ko(f(2),y,2) A ~Ea(f(z),y) N ~Er(z,y),
Og(x,y) := Ko(f(2),y,2) AN Er(z,y),
and both
Ko(bo(a, M), 01(a, M), 02(a, M), 03(a, M), b4(a, M), 65(a, M), b6(a, M), b7(a, M))

and K0(07(a, M), 98((1, M), 99(&, M), 60((17 M))

hold for any a € M.
Define labels for these formulas as follows:

label k for 6y (x,y), where 0 < k <9.

It is easy to check that for the algebra Py, ,, the Cayley table has the following form:
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- 0 T 2 3 1 5 6 7 B 9

0 0 T 2 3 1 5 {6} {7} {8} {9}

1 1 1 2 3 1 1 {4,5,6} {7} {8} {9,0,17}
2 2 2 2 3 3 3 3 {3,4,5,6,7} | {8,9,0,1,2} 2

3 3 3 {3,4,5,6,7} | {8,9,0,1,2} 2 2 2 2 3 3

1 1 {4,5,6} 7 B {9,0,17} 1 T 2 3 1

5 5 6 7 3 9 0 T 2 3 1

6 6 6 7 3 9 9 {9,0,1} 2 3 {4,5,6}
7 7 7 7 B 3 3 3 {8,9,0,1,2} | {3,4,5,6,7} 7

3 B 8 {8,9,0,1,2} | {3,4,5,6,7} {7 7 7 {7} {8} 3

9 9 {9,0,1} {2} {3} {4,5,6} 6 6 {7} {8} 9

By the Cayley table the algebra %y, ,, is not commutative.

Theorem 4. The algebra By, ,, of binary isolating formulas having a monotonic-to-left function

on M has 4s + 6 labels, is strictly (2s + 3)-deterministic and is not commutative.

Proof of Theorem 4. In this case we have the following binary isolating formulas:

r=y, f(x)=y,

Ko(z,y, f(2)) A Ex(z,y),

Ko(z,y, f(2)) AN =Ej(z,y) A Ejn(z, y),lﬁ
Ko(z,y, f(2)) N=E;(f(2),y) N Eja(f(@),y),1 < j < s,
Ko(z,y, f(z)) N E1(f(2),y),
Ko(f(z),y,2) N E1(f(x),y),
Ko(f(z),y,2) AN=E;(f(2),y) N Eja(f(z),y),1 <j < s,
Ko(f(z),y,2) A—Ej(z,y) A Ejpa(2,y),1 < j <,

Ko(f(l’),y,l’) A E1($7y)'

Thus, we obtain 4s + 6 binary isolating formulas.
The formula

Elt[K()(I‘, t, f(.’IJ)) A El(x7 t) A KO(t7 Y, f(t)) A E1<t7 y)]
uniquely determines the formula Ko(z,y, f(z)) A Ei(x,y). Further, the formulas
Ht[Ko(CL‘, t, f(ﬁ)) A El(‘ra t) A Ko(t, Y, f(t)) A _'Ej(ta y) A Ej+1 (t7 y)]
and Elt[KO(l'a L, f(IE)) A _'Ej(xv t) A EjJrl(x? t) A KO(ta Y, f(t)) N Ey (t7 y)]
for every 1 < j < s uniquely determine the formula
Ko(z,y, f(x)) AN —Ej(z,y) A Ejr1(2,y).
Consider now the formulas
and 3t[Ko(z, t, f(2)) N =E;(f(2),8) A Eja(f(2), ) A Kolt, y, f() A Er(t,y)],

where 1 < j < s. It is easy to establish that they uniquely determine the formula

The formula
Ht[KO(x>t7 f(l’)) A El(wvt) A KO(tvy7 f(t)) A El(f(t)ay)]
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uniquely determines the formula Ko(z,y, f(z)) A E1(f(x),y). While the formula

Ft[Ko(x,t, f(x)) A Er(f(2), ) A Ko(t,y, [(8)) A Er(t, y)]

is compatible with the following three formulas:

Ko(x,y,f(a:))/\El(f(x),y), f([l?) =Y, Ko(f(x),y,x)/\El(f(x),y)

Thus, we established that the algebra %y, , , is not commutative.
Further, considering the formulas

Ft[Ko(a,t, f(2)) A Er(z, ) A f(E) = y] and 3t[f(x) =t A Ko(t,y, f(1)) A Ei(t, y)l,

we obtain that they uniquely determine the formulas

KO(x’yv f(ﬂ?)) N El(f(l‘)vy) and KO(f(‘T)a Y, .’E) A El(f(x)a y)

respectively, also confirming non-commutativity of the algebra Py, , ,-
Similarly, the formulas

F[Ko(x,t, f(z)) A E1(f(x), 1) A f(t) = y] and 3i[f(z) =t A Ko(t,y, f(£)) A E1(f (1), )],
uniquely determine the formulas
K(](.’I}, Y, f(x)> A El(x7 y) and Ko(f<l'), Y, $) N Er (3?, y): respeCtiVQIY'

The formula
Ft[Ko(z, t, f(x)) A Ex((w,t) A Ko(f(t),y,t) A E1(f(t),y)]
is compatible with the following three formulas:

Ko(z,y, f(x)) A EL(f(2),y),  fl2) =y, Ko(f(2),y,2) A Ei(f(2),y)-

While the formula
F[Ko(f (@), t, ) AN EL(f(2),t) A Kolt,y, f(1) A Er(t,y)]

uniquely determines the formula Ko(f(z),y,x) A E1(f(z),y).
Further, the formulas

[Ko(x, t, f(2) A Er(w,t) AKo(f(t), y, t) A=E;(f(t),y) A Ejra(f(£),y)]
and Ft[Ko(f(2),t,2) A ~E;(f(x),t) A Eja(f(@),8) A Ko(t,y, (1)) A EL(t,y)]
for every 1< j < s uniquely determine the formula
Ko(f(2),y,2) A=Ej(f(2),y) A Eja(f(2),y)-
Similarly, the formulas
FH[Ko(z, t, f(x)) A Er(z,t) AKo(f(t),y,t) A=E;j(t,y) A Eja(t, y)]
and 3t[Ko(f(2), t,2) A ~E;(z,t) A Eja(2,t) A Ko(t,y, £(£)) A Ev(t, y)

for every 1 < j < s uniquely determine the formula

Ko(f($),y,$) A _|Ej($,y) A Ej+1($7y)‘
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Further, the formulas
Ft[Ko(z,t, f(2)) A Er(z,1) A Ko(f(t), y,t) A Er(t,y)]
and Jt[Ko(f(x),t,2) A Ey(x,t) A Ko(t,y, f()) A E1(t,y)]
are compatible with the following three formulas:
Ko(f(x),y,2) A Er(z,y), x=y, Kolz,y,f(z))AEi(z,y).
The formula
t[Ko(@,t, f(2)) A ~Es(2,t) A Egra(z,t) A Ko(f(£),y,1) A=Es(f(£),y) A Esa(f(£),)]

is compatible with the following 2s + 3 formulas:
KO(xayaf(w)) A _‘E](f(l'),y) A Ej+1(f(x)7y)7 1< ] < S,
K0($ay7f<37) A El(f(x)ay)v
flx) =y,
KO(f(x)7y7x A El(f(x)uy)v
Ko(f(x),y,-%') A _‘Ej(f(x)vy A Ej-‘rl(f(x)?y)u 1 S ] S S.
While the formula

Et[KO(f(x)7t7 .CE) A _'Es(f(x)vt) N Es-i—l(f(x)vt) N KO(ta Y, f(t)) N _'Es(tvy) A Es-l-l(ta y)]

uniquely determines the formula
Ko(f (@), y,2) N =Es(f(2),y) N Esta(f(2),y)-
On the other hand, the formulas
Ft[Ko(z,t, f(2)) A —~Es(z,8) A Ega (2, 6) A Ko(f(£),y,8) A =Es(t,y) A Esa(t,y)]
and Jt[Ko(f (), t,2) A —Es(x, ) A Esyr(z,1) A Kot y, f(£) A —Es(t, y) A Esa(t, y)]
are compatible with the same 2s + 3 formulas:

Ko(f(SC),y,CC)/\_‘Ej(QT,y)/\Ej+1(I’,y)7 1 S] SS’

Ko(f(2),y,2) A Er(z,y),
r =y,
Ko(z,y, f(x)) A Er(z,y),
Ko(z,y, f(x)) N=Ej(z,y) AN Eja(z,y), 1<j<s.
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No-KaTeropmsJbIK, 9JICi3 IUKJIIIK MIHAMAJIALI Teopusjap YIIiH
OuHapJbIK dhopMmyJiajiap ajaredpaJjiapbl: MOHOTOH LI XKaFdaii

B.I1I. Kymmemos!?, C.B. Cynomraros*

! Mamemamuska owcone mamemamurarsis modesvdey unemumymot, Aivamo, Kazaxeman;
2 Kasaxcman-Bpuman meznuxaiok yrueepcumemi, Aamamot, Kazaxcman;
3 Hosocibip memaexemmix mexnukasy ynusepcumemi, Hoeocibip, Peceti;
4PFA CF C.JI. Coboaes amwmdaevs Mamemamura unemumymo, Hosoci6ip, Pecet

Maxkasiaia o-MAHUMAJIIBUIBIK, TYKBIPBIMIAMACHIHA, KATHICTHI IUKJIIIK PETTE/TeH KYPBIIBIMIApP YIMiH HYCKA
0OJIBIIT TAOBLIATHIH 9JICI3 MUKJIIK MUHUMAJJIBLIBIK TYCIHIN KapacThIPbLIFaH. 1-TPaH3UTHUBTIIIK aBTOMOP-
busMIepiH TPUMUATUBTIIIK €MeC IPYIITAchl KoHE KYPBLIBIMHBIH HEri3T1 >KUBIHBIHJIA 9PEKeT eTETiH TpU-
BHAJIBIBI €MeC KaTaH MOHOTOHIBI (DYHKITUSIHBIH €Keyi /e 6ap JeHeCTiK panrici 6ip/ieH YIKeH CaHAJIBIMIbI
KaTEeropusiyIbIK 9JICI3 IUKJIIIK MUHUMAJIJIBI TEOPUsiJIaphl VIIIIH OMHAPJIBI OKIIayaay dopMyiaagap ajiredpaJa-
PBI 3epTTesireH. 3epTTey HOTHXKECIHJIe aBTOpJIap OChI aJredpasiap/blH, CHIATTaAMAChIH yebiHFaH. Oap/ by
apachlH/Ia KOMMYTATHBTI XKoHe KOMMYTATHUBTI eMec ayrebpasiap 6ap ekeni kepceriarern. Myrnmait airebpa-
JIApJIbIH, KATaH M-IeTePMUHATTBIIBIFBI KEHOIp M HATypaJs CaHbl VIIH /e aHBIKTAJIFAH.

Kiam ce3dep: IMKIIIK PETTEIIeH KYPbUIbIM, OMHAPIBIK, hOpMysia, OKIinayinay ¢dhopmysachkl, dopMysiaiap
anrebpachl, CAHAJBIM/IBI KATETOPHUSIIBIK, TEOPUSsI, OJICI3 IMUKJIIK MUHUMAJIBLIBIK, JTOHECTIK paHrici, aBTO-
MOpPGU3M I'PYNIACH], TPAH3UTUBTLIIK, MPUMUTHBTIIIK, M-I€TePMUHATTHLIBIK.
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AreOpbl OMHAPHBIX (GOPMYJIT A4 Nj-KAaTerOPUIHBIX CJIA00
MUKJIAYECKN MAHUMAJIbHBIX TE€OPUii: MOHOTOHHBIN CJIy4Yaii

B.I1I. Kymmemos!?, C.B. Cynomraros*

L Mnemumym mamemamusy, U Mamemamuieckozo modeauposanus, Aamamol, Kasaxcman;
2 Kasaxzcmancko- Bpumancrut meznuveckuti yrusepcumem, Aamamo, Kazazcman;
3 Hosocubupcruti zocydapemeenniti mernuveckut ynusepcumem, Hosocubuperk, Poccus;
4 Inemumym mamemamusu umernu C.JI. Cobonesa CO PAH, Hosocubupck, Poccus

B Hacrosimeit crarbe paccMOTPEHO TOHSITHE CIa0O0U IUKJINIECKOW MUHUMAJBHOCTH, SIBJISIOIIENCS Bapu-
AHTOM O-MUHUMAJIBHOCTH JJIsI IIUKJIMYECKH YIOPSIOYEHHBIX CTPYKTYD. VlccienoBaubl aarebpbl OMHAPHBIX
U30JIUPYIOMUX (POPMYJT JIjIsi CIETHO KATEMOPUYHBIX CJIa00 IUKIUIECKH MUHUMAJIBHBIX TEOPHUl PaHIra BbI-
MyKJIOCTH, OOJIBITIETO UHUIIBI, UMEIOIINX KaK [ -TPaH3UTUBHYIO HETPUMUTHUBHYIO TPYIIILY aBTOMOP(MU3MOB,
TaK U HETPUBHUAJIBLHYIO CTPOTO MOHOTOHHYIO (PYHKIINIO, JEHCTBYIONIYIO HA OCHOBHOM MHOXKECTBE CTPYKTY-
pel. B pesynbrare mccienoBaHus aBTOPBI MPEJCTABISIOT onucanue 3Tux ajredp. Ilokazano, uro cpean
HUX UMEIOTCST KaK KOMMYTaTUBHBIE, TAK U HEKOMMYTATHUBHBIE aare6pul. Kpome Toro, ycraHoB/ieHa cTporast
M-eTEPMUHUPOBAHHOCTDh TAKUX aJIre0p I HEKOTOPOro HATYPAJbHOTO YUCJIA M.

Kmouesvie cro6a: MAKIMIECKN YIIOPSIOYEHHAs] CTPYKTYpa, OnHapHas dopmysia, u3oaupyiomas popmyJia,
anrebpa popMyJI, CIETHO KATETOPUYIHAST TEOPHsl, CJIa0as IUKINIECKAs MUTHUMAJIBHOCTD, PAHT BBIMYKJIOCTH,
rpymima aBroMopdU3MOB, TPAH3UTUBHOCTD, IPUMUTUBHOCTD, M-€T€PMUHAPOBAHHOCTD.
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The discrete and continuous dependencies’ relationship question has been investigated. An algorithm for
determining the final and total series sums through the equivalence ratio of the series common term a,, and
the a,-model function improper integral mean value within the change unit interval based on the extended
integral Cauchy convergence criterion has been developed. Examples of determining for the statistical
sum in the Boltzmann distribution, for the first time directly expressed through a,-model function. This
eliminates the need for calculations to accumulate the sum of the series up to a value that is specified
by a certain accuracy of this sum. In addition, it allows in this case to vary the energy variation interval
with any given accuracy. The conducted studies allow solving both theoretical and practical problems of
physics and materials science, directly using the Boltzmann distribution (energy spectrum) to calculate the
entropy, which determines the loss of thermal energy in technological processes.

Keywords: isomorphism, series sum, improper integral, Boltzmann distribution, equivalence relation.

2020 Mathematics Subject Classification: 40-02, 40C10, 44A20.

Introduction

The natural sciences are dominated by discrete (nanoparticles, atoms, molecules, genes, etc.), but
continuous (electromagnetic fields, wave theory, etc.) quantities are also used to describe real processes.
Classical mathematics is built on the continuity and a function limit concepts, which are difficult to
apply in practice. The basis of specific calculations are the laws of discrete mathematics, which has
developed as a result of only mathematical constructions recognition from a finite number of procedures
and finite objects. Evolution models are continuous and discrete dynamical systems. Continuous
dynamical systems are described by ordinary differential equations systems or in partial derivatives,
discrete dynamical systems are described by difference equations systems. There is a certain relationship
between continuous and discrete systems, regardless of the application. It is interesting to compare the
continuous model properties and their discrete counterparts. And the functional dependence question
arises, when it is possible to carry out the transition from continuous to discrete values and vice [1-3].
As it is known, the discrete dependencies’ identification with continuous ones as the argument tends to
an infinitely small value dx is the differential and integral calculus. But the relationship between discrete
and continuous distributions can turn out to be definite and productive for fixed variation intervals,
x, if we applied to them the isomorphism general provisions — one mathematics development the new
directions [4]. Prior to this, such a relationship manifested itself when establishing the convergence
of a series, i.e. sums of discrete quantities, using the Cauchy, Maclaurin series convergence integral
criterion [5], according to which the series Y 7, a, converges if for the function f(x), which takes
the values a, at the points n, namely, for f(n) = a,, and for condition of monotone decrease of f(x)
in the region = > ngy with observance of the inequality f(z) > 0, the convergence of the improper
integral fno; f(x)dx is ensured. The integral Cauchy criterion greatly facilitates the series convergence

*Corresponding author. E-mail: astra_mun@mail.ru
Received: 11 August 2023; Accepted: 17 October 2023.
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study, since to reduce this issue to finding out the integral convergence of a well-chosen corresponding
function f(x), which is easily done using the integral calculus methods. Thus, this sign establishes
a certain equivalence of discrete and a variable continuous distribution. Detailed calculations, but
without observing the isomorphism conditions, were presented earlier by the authors [6-10].

It is necessary to verify the proposed version provability for the series sum and the improper
integral of the auxiliary a,-model function isomorphism, the existence of which is entirely determined
by the structure and form of the common term of the series and corresponds to its direct purpose for
determining its sum. In this regard, the a,-model function has a peculiarity, the similarity of which has
not been found in the literature [11-17]. This originality emphasizes the insufficiency of the integral
criterion for the convergence of the series and the improper Cauchy and Maclaurin integral to determine
the sum of the series, copying according to the form the series common term. Such insufficiency is a
consequence of using only the inequalities of a series sum and the improper integral to prove the series
convergence or divergence in terms these integral the convergence or divergence. To determine of a
series sum itself, an analytical, quantitative expression of its relationship with the improper integral
is required for a given restriction of this relationship. In addition, isomorphism is generally aimed at
introducing analytical proofs of mathematical objects similarity instead of their qualitative similarity
indications. At the very least, it is not yet possible to determine a series sum based on the area
inequalities formed using a,, and f,(z).

1 Determination of the equivalence relation based on the Boltzmann distribution

The Boltzmann distribution for a monatomic ideal gas in a discrete version is expressed as

N, P .
P,:Nl:ek%/z;ek%, (1)
i

where P; is the particles fraction with the i-th energy level €;, and the first energy level for physical
and thermodynamic reasons is equal to zero as the lowest energy value to which the equilibrium system
tends. It, like quantum orbitals, is also the most populated, which is mathematically achieved by the
value exp(—e;/kT) = 1 and following from (1) at ¢; = (i — 1)Ae by the condition Py < P, if T > 0,
and Ppp1 = F; at T — oo.

The series sum » .o, e~ % until recently had no limit direct expression and was estimated either
from specific spectral distributions or as a continuous function

/ e *de = —kT
0

This result raises questions, first of all, due to its explicit energy dimension, J-particle™!, which
belongs not to the function, but to the argument. The function is a continuous sum of populations
of infinitesimally different energy levels, and the function must be dimensionless. We will try to solve
this question further as a special case of a more general solution. Meanwhile, it is possible to fairly
strictly determine of the series sum (statistical sum) using the equivalence relation A, for which the
series common term must be expressed in more detail and in the accepted notation

T 2)
0

_ £
e kT

_(n=1Ae
ap =€ KT (3)

which provide the condition: at n =1 a; =1, € = 0. In this case, A¢ is the energy variation step and
kT are constants (isothermal energy distribution is considered). a,-model function (3) is expressed as

_(z=1)Ae

fn(x) =e€ KT (4)
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and its improper integral (4) as

/OO _(z—1)Ac kT
e ET dr = ——
0 Ae

_(z=1)Ae o0
e kT

= —e*T, (5)

The integral (5) does not contain x = n that is, it converges, and hence the series >~ | a,, converges
according to the integral criterion for the Cauchy and Maclaurin series convergence.

nle
If we consider the integrand (2) as a,-model for the series Y ;°e™ *T , then its improper integral
is expressed as
o0 _zle kT
e+ dr =———1e
0 Ne

This dimensionless result (6) can be numerically equal to k7 only at Ae = 1 J-particle™!. This
interval is quite acceptable, as well as any others that do not have a fundamental physical justification.
It is much more convincing to use Ae = kT'. But let us continue the isomorphism possibility analysis
on the chosen example in the most general form.

kT
= A (6)

[e.9]
_zle
kT

0

To determine the equivalence relation, it is required to check its independence from n in an arbitrary
unit interval

— _(z=1)Ae _(z=1)Ae  p= _(n—1)Ae _ (n—2)Ae
Jyoy e ® de —kle e L L B 7
Al = _(n=1)Ae = _(n=1Ae = _(n=1H)Ae = Kg(e kT _1) # fn(n)
e kT e kT e kT

(7)
The equivalence relation does not depend on n, so it is possible to use formula (7) to find the series
sum. But first need to make sure that get the same result for the first unit interval, 0 =1 :

Ae

kT Le
A, = Jo fn@)de  — R (1=eFT) (e*T —1).

an 1

=
!

>
™

Then, according to (5) and (7), we establish an isomorphism and find the partition function in the
direct calculation formula form [6], which can be used to directly calculate the series sum

kT Qe Ae

_(n=1)Ae Ne ekT ekT 1
i = g [ hade/Se B - S —
A—(ekT —1) e —1 1—e #®7T

Using (8), we obtain the Boltzmann distribution calculation formula (1) with the usual indexing
t1=mn

ANe
N; _(i=1)Ae _(i=1)Ae _ (i=1)Ae exT zAs Ae
P, = 2t _ ¢ kT /E;?ile T — e kT —S—— =€ (e kT — 1) (9)
N exT — 1

So, the entropy calculations have been dramatically simplified and become more accurate and
variable [8-10]. The results of the calculation statistical sum members according to the formula (3),
their sum accumulation for comparison with the calculation data according to the formula for the sum
direct expression (8) are shown in Table. And Boltzmann distribution results in the form (9) to control
P, — 0 and the sum convergence P; to unity. Arbitrary 1000K temperature values and energy variation
step Ae = % =6,9032- 1072 J-particle™' were chosen for calculation.

Direct calculation by (8) gives the value 392, = 2.5415, from which the stepwise summation result
is only 0.0001 less. The accuracy of calculating the statistical sum, and indeed any convergent series,
can be determined or specified if the direct expression of this sum through the equivalence relation A
is known, since it is possible to select any interval of the sum in a commensurate set of its members.
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In this case, as in the general case, it is of great importance to set the exact limits of the discrete
and integral sums in order to avoid discontinuities in the continuous summation by at least one unit
interval. The fact is that the series is given by the common term number inclusive that is, by the
interval from (n — 1) to n.

Therefore, to cover the area a, x 1, we need to start integrating from a value equal to n — 1, and
end with the series higher term number, m > n. Then the partial sums in the continuous coverage of
the series, from a; to ao can be reflected with the appropriate limits of integration: from a; to a,~1,
that is [7" " fu(@)dz; from ani1 0 Gmsn — f;::wn Sn(@)dx; from apmir 10 as — [0 fr(x)da.

This implies the strict equality of the total sum of the series s to its initial s, (“partial”’, “final”),
intermediate s, (“middle”) and residual R, parts

$ =8y + Sm + R (10)

If any of the parts is missing (there is no need to take it into account), then the remaining ones
adjoin one another with the transition of the previous part upper limit to the next one lower limit, as
established above. In this case, it is possible to determine one of the three sums by difference with the
other two. The same possibility of difference calculation is applicable to the total sum (10).

Determining the equivalence relation of the series and the improper integral and establishing their
isomorphism drastically simplifies computational procedures, since it allows one to find calculation
formulas for all terms of equality (10)

1 rn 1 z=n _m=1Ae 1—e— nk%"S
Sn = 4 fo fo(z)dz = o1 L fx—O R dr = —Ae s
~e (e 1) 1—e kT
1 _nkATE 1 nie
s —ec -
EPHZ?”: e Agzl_e kT7
l—e kT l—e kT
(n—m)Ae
1 rx=m>n 1 kT —le=bleym  _nbey o~ g
Sm = 4 Jr=n fn(x)dx__z'is‘e - n e M IVACHE
l—e kT
(n—m)Ae
nle nle mAe
EPm:STmze_le_e kZS laaze_kT — e RT
l—e kT l—e kT
moe
1 [ 1 kT, _@-Dbe o e~ kT
R,, = 1 frn(x)dz = 1Az ‘e R | = ———ao (11)
z=m € 1—e %7
mAe
Rm 67 kT 1 __mAe
$Pp, = - = - =T (12)
8 1 —e &7 1—e %1
In this case, the X Ps total value is unity:
—nAe —nlAe —mAe —mAe

YP; =P, +%FP,+XPg, =1—e kT +e *T —e *sT +e +kT =1.

This indicates each relative sum probabilistic meaning, as follows from the Boltzmann distribution
itself, which is a series of relative P; values that sum to one. This result indicates the need for the
constant joint presence of all series members as a whole.

The same is displayed by expressions for ¥ P,, ¥P,, and ¥Pg,,, containing e*r° and e kT
exponents. There are some arbitrary energy quantities n/Ae and mAe opposed to the kKT system
thermal energy state. And the corresponding probabilities of overcoming energy barriers n/Ae or m/\e

by the particles of the system (or not overcoming them at values 1 — X P, and 1 — X F,,).
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This primarily refers to the activation energy, which expresses the probability of exceeding the
barrier €, by the exponent exp(—e,/(kT') in various chemical, physical, and mechanical processes [18].
The found energy quantity impact probability and its contribution to the process general conditions
everything is not specified. In the rate constant, which was developed by Arrhenius in the 19" century,
the exponent included in it is treated as a thermodynamically determined quantity, without connection
with the Boltzmann distribution, and even more so without analytical justification and expression.

2  Randomized particles concept

Much more modern is the randomized particles concept (RPC') proposed at the beginning of the
215¢ century by the authors of [19, 20| which is entirely based on overcoming or not overcoming the
natural thermal barriers of melting kT, and boiling kT} by its fractional (probabilistic) content of
three energy particles classes: with energy less than k7, — crystal-mobile (¢rm); with energy greater
than kT,,, but less than kT}, — liquid-mobile (Igm); with energy more than kT, — vapor-mobile (vm).
The entire spectrum of these particles is present at any temperature and in any state of substance
aggregation, in their probabilities sum it is unity with the difference from it to the fraction of c¢rm-
particles through P,..,, — the fraction of kT}, superbarrier particles and from the difference with this
fraction of vapor-mobile particles P,,, — the fraction liquid particles:

Py =1—exp(—kTy,) =1 —exp(=T,,/T),
Pym = exp(=T,/T) — exp(=T3,/T),
Py, = exp(=T1y/T),

Perm + Pigm + Pom = 1.

Each particle’s energy variety plays its role in ensuring the corresponding state of aggregation
stability and in preparing for the transition to it from other states, depending on the substance
temperature, based on system-wide criteria for limiting stability, in particular, in proximity to the
golden ratio.

In this case, the relationship between changes in the content of particles certain types and some
substance physicochemical properties, for example, with the metal plasticity, the melts viscosity, and
other properties, are revealed. With the advent of the randomized particles concept, finally, a general
“zero model” of matter as a whole took place, and it goes back to the universal, and therefore
fundamental, Boltzmann distribution according to the primary randomized (thermal) characteristic
of matter — its kinetic energy. It is all the more important to strengthen the evidence-based part of
RPC in order to eliminate some of its shortcomings.

First, from a physical point of view, the distribution is discrete both in content and form, since
the energy is quantized. This quantum of energy should be present at least in a general form in the
calculation formulas. Secondly, the possibility of expressing the partition function in a mathematically
rigorous isomorphism terms of continuous and discrete distributions must necessarily be taken into
account in the Boltzmann distribution, excluding the approximation in determining this sum. Thirdly,
each energy class and energy spectrum as a whole must be expressed independently, directly, thereby
proving the possibility of their isolation and unity in accordance with the superposition principle as a
fundamental property of complex systems.
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3 Isomorphism of discrete and continuous mappings of the Boltzmann distribution

The discreteness and continuity isomorphism analysis, which refers to accuracy expression of the
partition function terms calculating, and along with this, the particles distribution over energy levels P;
with a further entropy definition, is necessary for a more rigorous Boltzmann distribution justification.
In this case, the residual sum R,, (11) and its relative share Pry,, (12) play a special role. To determine
the calculation accuracy of all discrete quantities, only the residual sum related to series all members
a, matters, so we use the index n/ for the obtained absolute R, and relative Pg,, expressions of the
residual sum. Since it contains the terms closest to zero, which have a residual, almost negligible value,
then it determines the calculating accuracy of the series sum ¢ (up to the residual sum ones)

Rn n/Ae

6= = Py =e T (13)

We obtain the calculation formula excluding from (13) the required number of the series terms n’
to calculate their share with a given accuracy 4,

kT
= ———Iné. 14
" Ne " (14)

The higher § , the greater the number of terms of the series must be taken into account.

So, we limited ourselves to the results rounded to the nearest 1074 when calculating the data
in the Table. Substitute in (14) the used values Ae = 6.9032 - 10721J - particle™!, " = 1000K and
k = 1.38064 - 10~23.J - particle ' K1, we obtain the value n’ = 18.4. Rounding of the table data ends
exactly in the interval n = 1819. Let’s set a rougher accuracy limit 6 = 0.001, we get n’ = 13.8,
and this corresponds to the table data, where all values after n = 13 = 14 cease to differ in the third
decimal place. For control, we will take an even rougher accuracy § = 0.01(1%) and get n’ = 9.2. We
are convinced that in the interval n = 9 + 10 the data difference ends by more than 1%, abs.

Table

Partition function members a;, its accumulation ¥!_;a;, Boltzmann distribution P; and its accumulation
PP at T = 1000 K and Ae = %, J - particle™*

i(n) Qi D @i Pi i b
1 1 1 0.3933 0.3935
2 0.6065 1.6065 | 0.2386 0.6321
3 0.3679 1.9744 | 0.1448 0.7769
4 0.2231 2.1975 0.0878 0.8647
5 0.1353 | 2.3329 | 0.0532 0.9179
6 0.0821 2.4150 | 0.0323 0.9502
7 0.0498 | 2.4648 | 0.0196 0.9698
8 0.0302 | 2.4949 | 0.0119 0.9817
9 0.0183 | 2.5133 | 0.0072 0.9889
10 0.0111 2.5244 | 0.0044 | 0.9933
11 0.0067 | 2.5311 0.0026 0.9959
12 0.0041 2.5352 | 0.0016 0.9975
13 0.0025 | 2.5377 | 0.0010 0.9985
14 0.0016 | 2.5392 | 0.0006 0.9991
15 0.0009 | 2.5401 | 0.0004 | 0.9994
16 0.0006 | 2.5406 | 0.0002 0.9997
17 0.0003 2.5410 0.0001 0.9998
18 0.0002 | 2.5412 | 0.0001 0.9999
19 0.0001 2.5413 | 0.0000 0.9999
20 0.0001 2.5414 0.0000 1.0000

Mathematics series. No.1(113)/2024 133



V.P. Malyshev, S.Sh. Kazhikenova et al.

It is possible to estimate the requirement for the variation interval Ae by setting it to the smallest
value Ae = 1.3806410722.J - particle 1. In this case, formula (14) takes the form

n' = —TIné. (15)

We obtain the series terms required number n’ = 9210, having set a practically acceptable calculation
accuracy 6 = 10~%, which would be difficult to implement without taking into account the discrete and
continuous distributions isomorphism. Finally, using formula (15), one can determine the convergence
condition, discrete and continuous distributions identification: since the latter of them are characterized
by infinitely high accuracy, or vanishingly small error, this can be ensured by the condition § — 0,
under which the required number of series sum terms tends to infinity

limn' __
sl — oo
From formula (14) we release Ae and find its limit:
_ _kT lim Ae __
Aﬁ——ﬁlné, n,_>oo—0.

Next, the isomorphism conditions (7) with respect to the equivalence relation A

]CT ANe 0
li A= 1 —(e*T — 1) = —.
Jim A= lim 2 (err —1)

This uncertainty is revealed by L’Hopital’s rule:

Ne
kT &c dkT(e*r —1)d kT 2
lim A= lim —(ek% —1)= lim (exr )de = lim —G%T =
Ne—0 Ne—0 Ae Ne—0 de Ne—0

Thus, we can assume that establishing the discrete and continuous sequences isomorphism represents
a broader scope of the problem than limiting the close proximity of both. And in any case, it involves
both internal and external resources of the analyzed mathematical objects in solving the problem.

Conclusion

Establishing the series sum and an improper integral isomorphism requires knowledge or selection
of a function that takes the series common term values at the points = n. As such, a function
is recommended that completely repeats the structure and the series common term form - a,-model
function, f,(z). The equivalence relation between the elements of the a,-model function improper
integral and the series of a common term is defined in an arbitrary unit interval and must satisfy the
condition

Jomn—1 fn(2)d

an

L2 ).

In this case, it is possible to transfer A to each unit interval and to their entire set as a whole,
ensuring complete mutual invertibility of both the two sets the elements and the series sum with an

improper integral
[e.e] 1 [e'e)
Zan = / fn(x)d.
i=1 A Jo

The found isomorphism extends to finite sums of both convergent and divergent series.

A=
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Thanks to the established algorithm for identifying the series sum and an improper integral
isomorphism, the Cauchy and Maclaurin series convergence integral criterion is developed in terms
of proving not only convergence, but also determining the series sum.

The presented partition function is defined in its direct expression for the first time in many years of
its discovery. Thanks to this, the concept of randomized particles received a more rigorous justification.
This allowed the Boltzmann distribution itself to be expressed not in continuity approxima-tion, but
taking into account its discreteness, that is, closer to its physical reality. At the same time, it became
possible to single out its final and residual sums in the particle energy spectrum, and to associate the
latter with a given accuracy of calculating the statistical sum, taking into account the necessary and
this sufficient sum members number.

The decisive role of the a,-model function is revealed in determining the isomorphism and accuracy
of the calculation of compared infinite sequences as the most closely related to both the discrete and
continuous sides of their isomorphism, automatically appearing along with the common term of the
series and disappearing after the establishment or rejection of their isomorphism. Its modest role as
a discreteness reducer and carrier to the improper integral of a continuous mapping is reminiscent of
very fundamental isomorphic self-organization procedures in nature and in solving general scientific
problems, consisting in maintaining their unity through the analytical connection of arbitrary elements
of each of such sets.

The a,-model function decisive role is to determine the isomorphism and compared infinite sequences
calculation accuracy, closely related to both the discrete and continuous sides of their isomorphism,
automatically appearing along with the series common term and disappearing after the establishment
or rejection of their isomorphism. Its modest role as a discreteness reducer and carrier to the improper
integral of a continuous mapping is reminiscent of the fundamental isomorphic self-organization proce-
dures in nature and in solving general scientific problems, which consist in maintaining their unity
through the analytical connection of such sets arbitrary each element.
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KarapablH KOCBIHABICHI MEH MEHIIIKCi3 MHTerpaJJabIH n30Mopdu3mMi
TypaJibl TeopeMaJap

B.II. Mamemmes!, C.I1I. Kazkukenosa?, A.M. Maxamesa', A.Ill. Kaxxuxenosa®

LK. Obiwes amvimdaen, Xumua-memaniypeus urncmumymo, Kapazands, Kazaxcman;
29. Caevmos amwmodaet: Kapaeandv, mezrnukasvk yrusepcumemi, Kapaeanow, Kasaxemar;
3 Axademur E.A. Boxemos amuwmdaes. Kapaeardv ynusepcumemi, Kapaeandw, Kazaxcman

Maxkasnama IUCKpeTTi XKoHe Y3IIKCi3 Toye aiIiKTepIin 6ailyTaHbIChl TYyPaJIbl Macese 3epTreren. Komn ka-
TApPBIHBIH YHJIeCIMIINHIH KEHEHTIJITeH MHTEerpaJIAbIK Oerici Heri3inae a, KaTapbIHbIH, *KaJIIIbl MYIIIECIHIH
9KBUBAJIEHTTIK KATBIHACKHI XKOHE OJIAP/IbIH ©3repyiHiH O6ip/IiK MHTEPBAJIBI APAIBIFBIHIAFBL (,-TOPI3/Il PYHK-
[USHBIH, OPTAIla UHTETPAJIIBIK, IIIAMACHI APKbLIBI KATAPIbIH COHFBI YKOHE TOJIBIK, KOCBIHBIIAPBIH aHBIKTAY
aJropuTMi 2KacaJiibl. BosbiMaH yirecTipiMiHeri cTaTHCTHKAIBIK, KOCBIH/IBI VINIH MYH/Iail coMaJiapapl aHbI-
KTay MBICAJIIAPbI KEJITIPIITeH, OJlap aJIFall PET d,-Topi3l PYyHKIMS apKbLIb Tikeseil kopceriimi. Bym ocbr
CcoMaHbIH Oenrisi 6ip momiriMen 6epiiren MoHTe JIeiiH KATAP/IbIH KOCHIHIBICHIH KUHAKTAY YIIIH eCenTeyiep
JKYPrizy KaxkerTisirid xkos/bl. COHbIMEH Karap, OyJI »Kariail/[a SHEPrUsHbIH 63repy apaJIbIFbIH Ke3 KeJIreH
JOJIIKIIEH e3repTyre MYMKIHIK Gepemi. 2Kyprizisren 3epTreysiep TEXHOJOTHSIIBIK, MPOIECTEPIET] KBLITY
SHEPTUSCHIHBIH KOFATYbIH AHBIKTANTBHIH SHTPONUAHBI €CENTey YIIiH BOJIbIIMAHHBIH TapasyblH (SHEPrus
CIIEKTPIH) TiKeJel KOJIaHa OTBIPHII, (DU3UKA MEH MATEPUAITAHY CAJIACHIHIAFBl TEOPHUIIBIK, YKOHE IIPAKTH-
KAJIBIK, MOCeJIeJIep/Ii TIeNryre MyMKIHIIK Gepesi.

Kiam cesdep: mzomopdusM, Karap KOCBIHIBICHI, MEHIIKCI3 MHTErpaJ, GipJiK WHTEepBaJ, SKBUBAJEHTTIK
KaTBIHAC.

Teopembl 06 n3oMopdu3Me CyMMbI psijia 1 HECOOCTBEHHOTO MHTErpaJia

B.II. Magpmmes!, C.III. Kaxuxenosa?, A.M. Maxamesa', A.IIl. Kaxxuxenosa?

! Xumuro-memannypeuseckut unemumym umerny K. Abuwesa, Kapazanda, Kazaxcman;
2 Kapazanduncruti mexnuneckuds ynusepcumem umenu Abwaxaca Cazunosa, Kapazanda, Kaszaxeman;
3 Kapazandurckut yrnusepcumem umenu axademura B.A. Byxemosa, Kapaeanda, Kaszazcman

WccnenoBan BOnpoc 0 B3aMMOCBSA3U JUCKPETHBIX U HENIPEPBIBHBIX 3aBucuMocTeil. Ha ocHOBe paciuimpeHHOro
MHTErPAJBHOTO MPU3HAKA CXOAUMOCTH psifa Ko pa3paboraH aJropuTM OnpeIeseHnsi KOHEYIHON U TOJTHOMN
CYMM psiJia Yepe3 OTHOIIEHNE SKBUBAJIEHTHOCTHU ODIIETO YiIeHa PN Gn U CPEIHENHTEIDAJIHHON BEJTUINHBI
ap-00pa3HoOil PYHKIMY B TIpeeiaX eINHUIHONO WHTEPBAJIa UX W3MeHeHus. |IpuBeseHnl mpuMepsl onpeie-
JIEHUSI TAKUX CYMM JIJIsE CTATHCTUIECKON CYMMBI B pacupejiesieHnn BosbiivMana, BliepBble HEITOCPEICTBEHHO
BBIPAXKEHHOM Yepe3 G,-00pa3Hyio (pyHKIMIO. DTO MUCKJII0YAeT HeOOXOIUMOCTD IIPOBEJICHNS] PACIETOB 110 Ha-
KOIIEHUIO CYMMBI PsIZIa JIO0 3HAYEHUsI, KOTOPOE 3a/IaeTCsl OMPEIEICHHON TOYHOCTBHIO 3TO# cymMMbl. Kpome
TOr0, OHA TIO3BOJISIET B JIAHHOM CJIydUae BapbUPOBATH MHTEPBAJI BAPUAINH SHEPIUU C JII000M 3aaHHON TOY-
HOoCTbIO. IIpOBe/ieHHbBIE MCCIIEIOBAHNS TT03BOJISIOT PellaTh KaK TeOPETUYeCKUe, TaK U IIPAKTHYECKHe 33713~
un (DUBMKHA W MATEPUAJIOBE/ICHUsI, HEOCPEICTBEHHO UCIIOb3Ys PACIIPEIETICHUE (SHEPreTUIeCKHil CIIEKTD )
BonpnmMana mis pacdera sHTponmu, OIpesesSIONeil MOTepr TEIJIOBON SHEPIUHM B TEXHOJOTUIECKUX IIPO-
1eccax.

Kmouesvie crosa: n3oMmopduaM, CyMMa, psifia, HECOOCTBEHHBIN MHTETPAJI, € IMHIIHBIN WHTEPBAJI, OTHOIIIEHUE
9KBUBAJIEHTHOCTH.
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A boundary value problem for the fourth-order degenerate equation
of the mixed type
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Many problems in mechanics, physics, and geophysics lead to solving partial differential equations that are
not included in the known classes of elliptic, parabolic or hyperbolic equations. Such equations, as a rule,
began to be called non-classical equations of mathematical physics. The theory of degenerate equations is
one of the central branches of the modern theory of partial differential equations. This is primarily due to
the identification of a variety of applied problems, the mathematical modeling of which serves the study of
various types of degenerate equations. The study of boundary value problems for mixed type’s equations of
the fourth-order with power-law degeneration remains relevant. In this work, a boundary value problem in
a rectangular domain for a degenerate equation of the fourth-order mixed-type is posed and investigated.
Well-posedness of the boundary value problem for a fourth-order partial differential equation is established
by proving the existence and uniqueness of the solution. Under sufficient conditions, a solution to the
problem under consideration was explicitly found by the variable separation method.
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Introduction

In the modern theory of partial differential equations, the studies of degenerate equations and
equations of a mixed type occupy an important place, which is explained both by the theoretical
significance of the results obtained and the presence of their practical applications in the gas dynamics
of transonic flows, magnetic hydrodynamics, in the theory of infinitesimal bending of surfaces, in various
sections of continuum mechanics and other branches of knowledge.

The fundamental results for second-order degenerate equations of elliptic type were obtained by
academician M.V. Keldysh (1951), where first the cases were indicated in which the characteristic
part of the domain boundary can be freed from boundary conditions, which are then replaced by the
condition of boundedness of solutions. The work of M.V. Keldysh spurred numerous further studies
in the direction he indicated. Later, A.V. Bitsadze noted in his work that the boundedness condition
can be replaced by a boundary condition with a certain weight function. The results he obtained were
then developed and generalized by O.A. Oleinik. It is also worth noting the works of V.P. Glushko,
Yu.B. Savchenko [1], S.A. Iskhokov [2], S.N. Sidorov [3]. In particular, the work [2] was focused on
the study of the unique solvability of a variational problem for an elliptic equation with a “non-
power* degeneration. It is also noteworthy that a ”"power degeneration was initiated in the research of
M.I. Vishik and V.V. Grushin. Degenerate elliptic equations of high order, including their connection
with pseudodifferential operators, were studied in the works of A.D. Baev [4-6].

K.B. Sabitov [7] investigated the Dirichlet problem for the second-order degenerate equation of
the mixed type of first kind in a rectangular domain. By the methods of spectral analysis, the
criteria of uniqueness of a solution that is constructed in the form of the sum of a Fourier series was
established. The question of the correctness of the formulation of the Dirichlet problem depending on
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the degree of degeneracy was investigated for a mixed type equation of second kind by K.B. Sabitov and
A.Kh. Tregubova (Suleimanova) [8,9]. A boundary-value problem with nonlocal boundary conditions
for a mixed type equation was studied by M.E. Lerner and O.A. Repin in work [10]. The uniqueness
of solutions of the problem was proved by using the principle of extremum, the existence of solutions
of the problem was proved by methods of integral transformations and equations. Nonlocal boundary
value problems of Bitsadze-Samarsky type for a fourth-order mixed type equation were studied by
L.R. Rustamova in [11|. Many authors also studied boundary value problems for degenerate equations
[12-14]. In the present paper, the boundary value problem is studied for the fourth-order degenerate
equation in a rectangular domain.

1 Problem formulation

In the domain
Q={(zx,t): 0<z<b, -T<t<T, T>0}

we consider the equation
Lu = sgnt - [t Uygpe — u + asgnt - [t|"u = 0, (1)
where m = const > 0, a = const > 0. The equation Lu = 0 for ¢ > 0 has the form
[t™ (ugzze + a®u) — uy =0, (2)

fort <0
Mm (uxzzz + a2u) +uy = 0. (3)

We denote QT =QN(t>0),Q" =QnN(t<0).
Problem A. Find in the domain Q a bounded function u (x,t) satisfying the conditions

u(z,t) € C(QNCH (QNCyE(QTUQT), (4)

Lu=0, (z,t)€qQ, (5)

g];iL(a:,—I—O)—?;:L(x,—O), k=0,1 (6)
uw(0,t) =u(b,t)=0,-T <t <T,

Uzg (0,1) = Ugy (b,8) =0,-T <t < T,} (7)

u(z, T)=¢(x), 0<ax<b, (8)

u(r,-T)=v¢(z), 0<z<b, 9)

¢ (x) and 9 (x) are given sufficiently smooth functions, moreover ¢ (0) = ¢ (b) =0, ¢ (0) = ¢ (b) = 0.

2 The existence of a solution

To prove the existence of a solution to the problem, we use the method of separation of variables,
i.e. particular solutions of equation (1) that are not equal to zero in the domain 2, will be sought in
the form of a product u (x,t) = X (z) - T'(t), satisfying zero boundary conditions (7). The following
theorem holds:

Theorem 1.

{ v (k) = Ki/2q) (prT7) # 0, (10)
6 (k) = Y1/(2q) (PkT?) # 0.
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Proof. By substituting this product into equation (1), we obtain

XV(X)-XNX(X)=0, 0<z<b, (11)

we solve equation (11) with conditions (7), which change to the following
X (0)=X(b)=X"(0)=X"(b) =0, (12)
T (t) — (A +a*)sgn t"T (t) =0, -T<t<T, (13)

where ) is the separation constant.
The solution to problem (11), (12) has the form

2 k
Xk(x):\/;sin)\k:u, )\k:%, k=1,2,... (14)
From equation (13), following [15], (with A = A\g) for ¢t > 0 we obtain
T(t) =W (pt") Vi = VtW (2), (15)

in which ¢ = (m +2)/2, p2 = (a® + \¢)/¢*. Then we obtain the modified Bessel equation [16]

W (2) + %W’ (2) — <1 + Zj) W () =0,

where z = pit?, v =1/(2q) =1/(m+2) € (0,1/2), the general solution of which is determined by
the formula as follows

W (z) = Cilyy2q) (2) + C2Ky)009) (2), 2 >0, (16)

where I /(24) () and K /(24) (2) are the modified Bessel functions and C, C3 are arbitrary constants.
Taking into account (15), (16), the general solution (13) for ¢ > 0 can be written as

T, (t) = ApVthjag) (Pat?) + BiViKy o) (prt?), >0, (17)

where Ay, Bj are arbitrary constants.
In the same way, from equation (13) for t<0 we get

T(t)=Z (p(—t)") V-t =vV~tZ (2), (18)

and the Bessel equation

7+ 7+ (1-5) 2(2) =0
z 22 o
The general solution is written as
A (Z) = Cljl/(Qq) (Z) + C2Y1/(2q) (Z) , 2>0, (19)

where Jy2q) (2), Y1/(2¢) (2) are the Bessel functions. Taking into account (18), (19), the general
solution of equation (13) for ¢ < 0 can be written as

T, (t) = CeV=tJ1)2) (Pr(=1)?) + DY /(2) (p(—t)?), t <0,

where C}, Dy are arbitrary constants.
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Therefore, the solutions of equation (13) for ¢ > 0 have the form of (17), and for ¢ < 0 have the
form of (21). To find the unknown constants Ay, By, C, Dy, we use the gluing conditions (6), that
respectively change to the following conditions

Ty, (0 + 0) = T}, (0 — 0) (20)

Ty (04 0) =T, (0—0). (21)

Condition (20) is satisfied for any Ay, By if Dy = —wBy/2, and condition (21) is satisfied for
Cy = mByctg (7/(4q) )/2 — A and when Dy = —mBy/2 . Considering all of these, the solution of
equation (13) can be written as

Ty (t) = { - (t)TI{ (f)AZ \;111\/511/(2@ (pxt?) ;FBkI\/fKu@q) (pit9), z> 0, (22)
k() = —Apv/—tJ1q) (Pe(=1)") — 37BEY1/29) (Pe(-1)7), t <0,
where
Y12 (or(—t)") = m [J1/2q) (0r(=0)T) + J_12¢) (Pr(—=1)D)] .

For function (22), the equality, T}.” (0 + 0) = Tx"” (0 — 0) , holds i.e. functions (22) belong to the class
C? [-T;T) and satisfy equation (13). Functions (22) are not limited, because v/tIy /(24 (prt?) — oo,
therefore we assume Ay =0, Vk € N, then

le_ (t) = Bk\/iKl/@q) (pktq) , t>0,

10 ={ 15 () Bty (a0, 120 >
8 The uniqueness of the solution
Theorem 2. If there is a solution to problem A, then it is unique when
lim  wg, (2,t)sin Lk:r = lm wug, (x,t)sin ka =0, T<t<-T (24)
2040 P z—p—0 P

and if condition (10) is satisfied for all k € N.

Proof. Let u (x,t) be the solution of problem (4)—(9). Consider the functions (14) which form into
L5 (0,b) a complete orthonormal system.

We denote
_ ut(21),(2,t) € QF,
u (@, t) = { u (21), (2,1) € 0. (25)
We consider the integral
b
/u+(a:,t)Xk(x)da::ak.(t), E=1,2,... (26)
0

Suppose that the partial derivative u,, (x,t) satisfies conditions (24).
Differentiating (26) with respect to ¢ twice, taking into account equation (2) and conditions (7) we
have

4
oy (t) — |t <a2 T <“::> ) ap(t) =0, k=1,2,.. (27)
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For negative values of ¢t we denote the integral

b
/u_ (,t) Xk (z) dx = B (t), k=1,2,... (28)
0

By a similar transformation from (28) and (3) we obtain

b
/}L(xﬁyxk@odzzxﬁ(w, k=1,2,... (29)
0

Equations (27) and (29) for A = A coincide with equation (13), i.e. for t > 0, ay (t) = T;F (¢), and
for t < 0, there will be 8 (t) = T (t), which means that functions oy, (t) and fy, () are determined
by functions (25). To find the coefficients By, we use the boundary conditions (8), (9), i.e. oy (T) =
Yk, Br(—=T) = (8), (9) and formulas (26), (28), then:

b b
a (T) = /u (z,T)sin %kxdx :/go (x) sin Lbk$dx = Yk, (30)
0 0
b
Br (=T) = /u (x,—T)sin %kxdac :/w (x) sin Lbkxdx = g, (31)
0

then from (23), (30) and (31), taking into account condition (10), we have

__
L= 3 , t<O0.
VTs(k)

Substituting (32) into (23), we find the functions T} (¢) :

Kl/(2q) (prt9) £>0

_ v(k) ’ ’
Ty (1) = Vy/ 7 Y1/<2q> (Pk t<0. o

)

Let now ¢ (z) = 0 and ¢ (z) = 0. Then, from equahtles (30), (31) and solution (33), it follows that
Ty (t) =0, Yk € N. Therefore, by virtue of (26) and (28)

b
/u+(:z,t)Xk(a:)dx:0, kE=1,2,...

Hence follows that u (z,t) = 0 for all x € [0,b] and t € [-T;T], due to the completeness of system
(24) in Ly (0,b).
Based on the Bessel asymptotic formula [16], for large k, we have estimate
jJﬁk‘>c>o, 5
‘\f'y k ‘ > C() > 0.
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Under conditions (10) and (34), taking into account (25) and (33), the solution to problem (1),
(4)—(9) can be written as

u(x,t) = Z Ty (t) - sin Lbkx (35)
k=1

Given (34) and if the functions ¢ (z) € C3t7, 0 < v < T; ¢” (0) = ¢" (b)) =0, ¢ (0) = ¢ (b) =0
and ¢ () € G309, —T < § < 0; 9 (0) = (b) = ¢" (0) = 4" (b) = 0, then for o and 1 the estimates
lon] < C3/k3Y 5] < Cy/kPT0 ; C3, Cy = const > 0 are valid. Then the series (35) converges
uniformly in the domain € and it can be differentiated term-by-term twice with respect to, t and 4
times with respect to, x. Therefore, for the solution of problem A we have u (z,t) € C’;{’f (Q) .

Since the constructed solution is u (x,t) € C’;lf (Q) , then the condition (24) of Theorem 2 is always
satisfied.
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Teprinimi perTi apaJjac TUIITI e3relle/JIeHeTiH TeHJaey YIIiH
IEeKaPaJIbIK, ecern

2K.A. Oraposa

Bepdax amwndazor Kaparasinax, memaexemmix ywusepcumems, Hywxic, ©36excman

Mexanuka, pusuka koHe reopU3UKAIAFbl KOIITETeH eCeNnTep JIMITUKAIBIK, TapaboIaIblK HeMece TUIlep-
GoJTaJIbIK, TEHIEYJIEPIiH OeIriIl KIacTapbhlHa KipMeUTIH qepbec TyBIHABLIB AuddOEPEHITNATIBIK, TEHIEYTePI
mrerryre okeseni. MyHmait TeHaeyiep oeTTe, MaTeMATHKAJBIK, (DU3NKAHBIH, KJIACCUKAJIBIK eMeC TeHIeY Iepi
Jlen aTajaibl. O3rele/eHeTiH TeHIeyJIep TEOPUsIChl Kas3ipri aepbec auddepeHnmaiblK TeHIeyIep TeOPH-
SICBIHBIH, HETi3T1 Gesimaepinin 6ipi. By, eH anmpiMen, opTypJii KoJmaHbasIbl ecenTepi aHbIKTayMeH TYCiH-
Oipiieni, oJlap/iblH, MaTeMaTHKAJIBIK, MOJIE/Ib/IEY1 ©3TellleIeHeTiH TeH ey Iep/IiH, OPTYPJIl TYPJIepiH 3epTTeyre
KosmaHbLIaabl. OChl yakbITKA JEiiH e3relle/ieHeTiH TeHIey/Iepre apHaJjFaH ecelnTep Heri3iHeH MOJIeJIbIiK
TeHJey/Iep MEH TOMEHT1 MYIIIe/IEpPiHiH X KeTKITKTI Teric KoadduimenTrepi 6ap ToMeHri mytenepi 6ap TeH-
neyaep yiriH 3eprresai. Teprinmi perTi apasac TunTi gopekesepi e3relneeHeTiH TeHAeYIep YIMH IIeKa-
PaJIBIK, ecenTep/ii 3epTTey 63eKTi Oosbin Kasta 6epeai. Makasiata Tepriiini perri apajac Tumrti Oip e3rere-
JIEHETIH TeHJIey VIIiH TIKOYPBIIITHI 0O/IBICTA MIEKAPAJIBIK, €Cell KOWBLIBII, 3epTTesai. Teprinmm perti aepbec
TYBIHABLIBI M dEPEHITNAIIBIK TEHAEY YIMH MeKapasIblK €CeNTiH KOPPEKTiIiri memiMuig 6ap 60ybl MeH
2KaJIFBI3/IBIFBIH JIDJIEJIIEY apKbLIbl OesriieHei. 2KeTKiTiKTi mapTrap KORbLIFaH YKaFIai1a KapacThIPbIIFaH
€CeIITiH, MeMiMi afHBIMATBLIAPILI OOy OIiCiMEH TaOBLIIHI.

Kiam cesdep: Teptinmii perrti apasnac Tenuey, beccens dyuknustaps, Pypbe KaTapbl, TOJBIKTHIK, PETY-
JISIPJIBI TIETIIM.
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KpaeBag 3asava /1j1si BBIPOXK/JAIOIErOCs yPaBHEHNS CMEINIaAHHOTO
TUMA Y€TBEPTOTO MOPSIKA

2K.A. Oraposa

Kaparxaanaxcrui eocydapcmeennnti yHusepcumem umeru bepdaxa, Hykyc, Ysbexucman

MHuorue 3a/1a91 MEXaHUKH, (DUIUKU, TeODUIUKHI IPUBOJIAT K PEIIEHUIO YPABHEHM B YaCTHBIX IPOU3BOHBIX,
KOTOPbIE HE BXOJISIT B U3BECTHBIE KJIACCHI DJIMIITUYIECKUX, TapabOJIMIECKUX WU MUITEPOOIMIECKUX YpaBHe-
uuit. Takue ypaBHEHUsI, KaK MPABUJIO, CTAJIU HA3BIBATH HEKJIACCHIECKUMHU YPABHEHUSIMUA MATEMATHICCKOMN
busuku. Teopus BBIPOKIAIOMINXCA YPABHEHUH SBJISAETCS ONHUM U3 IEHTPAJIBHBIX PA3/IeI0B COBPEMEHHOMN
TEOpUM yPABHEHUN C YACTHBIMU TPOU3BOIHBIMU. DTO OOBSIICHSIETCs, TPEXKJIE BCErO, BBISIBIEHUEM MHOXKE-
CTBa MPUKJIAIHBIX 33/1a9, MAaTEMATHYECKOE MOJEIMPOBAHNE KOTOPBIX OOCTYKUBAECT M3yUEeHUE PA3TUIHBIX
THUIIOB BBIPOXKIAIOMMXCS ypaBHeHH. /{0 HACTOSIIEro BpeMeHN 3a4a9H s BBIPOXKIAIONINXCS yPABHEHHI,
B OCHOBHOM, WCCJIEJIOBAHBI JJIS MOJI€JIbHBIX YPABHEHUI U YPaBHEHUI C MJIQIIIIVMU YJI€HAMH C JIOCTATOYHO
MIAAKUMA KO3 PUIMEeHTAMT IPU MJIAIINuX wieHax. VcciremoBanne KpaeBbIx 3324 JJis yPaBHEHHUI cMe-
MIAHHOTO TWIIA Y€TBEPTOrO IOPSIIKA CO CTEIEHHBIM BBIPOXKIEHNEM OCTAETCsA aKTyaJabHbIM. B aToit pabore
MMOCTABJIEHA U MCCJIEIOBaHA KPaeBas 3a/1a9a B IPSIMOYTOJILHOM 06IACTH J17IsI OTHOT'O BBIPOXK JAOIIEr0CsT YpaB-
HEHWsI CMEINTAHHOTO TUIIA Y€TBEPTOrO MOpsiaka. KOppeKTHOCTh KpaeBoil 3a/1a4du /it yPABHEHUST C YACTHBIMHU
IIPOU3BOAHBIMHA YeTBEPTOrO MOPsA/IKa yCTaHABJINBAETCA JOKA3aTeJIbCTBOM CYIIeCTBOBAHUSA U €IUHCTBEHHO-
ctu perteHus. [Ipu TOCTATOYHBIX YCJIOBUAX HAWJIEHO PEIIEHUE PACCMATPUBAEMOIl 3a/ladd B sIBHOM BH/IE
MeTO/IOM pa3/ieJIeHus IIepeMeHHBbIX.

Karoweswie crosa: cMeliaHHOe ypaBHEHHE YeTBEPTOro mopsifika, pyHkimn Beccesns, psgy Pypbe, nosHoTA,
peryJIIpHOE peIleHue.
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Introduction

Integro-differential equations (IDEs) are used to model many problems in science, engineering,
economics, medicine, control theory, micro-inhomogeneous media and viscoelasticity [1-9]. Very impor-
tant tools in solving of Boundary Value Problems (BVPs) with IDEs are the Parametrization Method
[10] and the Factorization (Decomposition) method, but the applicability of the last method is confined
to certain kinds of integro-differential operators, corresponding to BVPs and cannot be universal for
all problems. There are several types of decomposition methods for solving BVPs with IDEs. The most
popular is Adomyan decomposition method and its modifications, where the Adomyan polynomials
are used, and approximate solutions of given BVPs are obtained [11-19]. Other types of decomposition
method were considered in [4], [5], [20]. Factorization of tensor integro-differential wave equations of
the acoustics of dispersive viscoelastic anisotropic media is performed for the one-dimensional case in
[4]. The integro-differential one-dimensional tensor wave equations of the electrodynamics of dispersive
anisotropic media are factorized in |5]. The initial first order integro-differential operator with arbitrary
nonpositive parameters was decomposed on three factors in [20] and further the sufficient conditions
for the existence of a solution are obtained on half line.

We propose in this article another factorization method on two factors which successfully was
applied in the articles by the authors [6], [7], [21]-[26] and by another author in [27]. Here we generalize
the results of these papers and study a more complicated boundary value problem with an abstract
operator equation

Biu = A%u — VO(Agu) — YO(A2u) — SU(AAgu)—

—GU(A%u) = f, D(B1) = D(A?)

on a Banach space X, where A, Ay are abstract linear differential operators, the functional vectors
®, U are defined on X,, and vectors VY, S,G € X,,. We obtained the conditions on the vectors
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V,Y, S, G under which the operator B can be factorized in a product of two second degree operators,

i.e. By = BB( with
Bou = A2u — So®(Agu) — Go®(A3u) = f, D(Bg) = D(A3),

Bu = A%u — SU(Au) — GU(A%u) = f,  D(B) = D(A?)

and then found the exact solution in closed form of the given problem, using the exact solutions of
the above two simple problems. Using of the obtained formula for the exact solution of the equation
Biu = f makes it possible to easily obtain exact solutions of a class of Fredholm IDEs with ordinary
or partial differential operators. The decomposition method, applied to abstract operator equation

Tu=Au— Ku—GY(Au) = f, D(T)=D(A)={ue X, : ®(u) =0}

on a Banach space X for solving boundary value problems for n-th order linear Volterra-Fredholm
integro-differential equations of convolution type, was used in [6], [7], where were constructed the
closed-form solutions to the two-phase integral model of Euler-Bernoulli nanobeams in bending under
transverse distributed load and various types of boundary conditions. In [21]| the operator B; corres-
ponding to the abstract operator equation

Blu = AAou - S(Aou, (I)t>Hm - G<AAOU, Ft>Hm = f
on a Hilbert space H was factorized in two operators, i.e. By = BgBg,, where
Bgou = Agu — Go(Agu, @Y gm = f,  D(Bg,) = D(Ap),

Bou = Au — G{Au, F"Y ym = f, D(Bg) = D(A).

Further, using the exact solutions of these two simple equations, the exact solution of Byu = f was
obtained. An exact solution to the abstract operator equation

Biu= Au — S®(Agu) — GV (Au) = f, D(B;1) = D(A)

on a Banach space was found in [22| by factorization of Bj in two simple operators, and then the
corresponding theory was applied for solving of Hyperbolic integro-differential equations with integral
boundary conditions. The exact solution to the abstract operator equation

Biu = A*u — S®(Au) — GU(A*u) = f, D(B;) = D(A?)

on a Banach space was obtained in [23]. The operator Bj corresponding to the abstract operator
equations

Biu = A%u — SF(Au) — SF(A%u) = f,
D(B;) = {u € D(A?) : ®(u) = NU(Au), ®(Au) = DF(Au) + NU(A%u)}, and
Biu = A%y — SF(Au) — SF(A%u) = f,
D(By) = {u € D(A?): ®(u) = NV (u), ®(Au) = DF(Au) + NV (Au)},

where D, N are matrices, .S, G are vectors, by decomposition method for squared operators is factorized
in By = B? and then the exact solution of Bju = f in closed form is easily obtained in [24], [25],
respectively. The exact solution to the abstract operator equation

Blu = Au — S<I>(u) - G\II(A()U) = f, D(Bl) = D(AA())
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on a Banach space by factorization of B; in two simple operators B, By, was investigated in [26]. The
exact solution in closed analytical form to the abstract operator equation

Bru = Au — SoF(Au) — Go®(Au) = f, D(B1) = D(A)

was obtained by decomposition method in [27], and then was applied for solving some ordinary integro-
differential and partial integro-differential equations. Our decomposition method is simple to use and
can be easily incorporated into any Computer Algebra (CAS). The paper is organized as follows.
In Section 1 we give an introduction, terminology and notation. In Section 2 we develop the theory
for the solution of the problem Bix = f when B; = BBy with B and By being two linear second
degree abstract operators and give an example of boundary problem with integro-differential equation
demonstrating the power and usefulness of the methods presented.

Preliminaries

Throughout this paper by X we denote the complex Banach space and by X* the adjoint space of
X, i.e. the set of all complex-valued linear and bounded functionals f on X. We denote by f(z) the
value of f on x. We write D(A) and R(A) for the domain and the range of the operator A: X — Y,
respectively. An operator A : X — Y is said to be injective or uniquelly solvable if for all uj,us € D(A)
such that Au; = Aus, follows that u; = us. Remind that a linear operator A is injective if and only
if ker A = {0}. An operator A : X — Y is called surjective or everywhere solvable if R(A) =Y. The
operator A : X — Y is said to be bijective if A is both injective and surjective. An operator A and the
corresponding problem Au = f are called correct if A is bijective and its inverse A~! is bounded on
Y. Lastly, if for operator By : X — X there exist two operators B and By such that By = BBy then
we say that BBy is a decomposition (factorization) of By. If g; € X and ¢, € X*i=1,...,m,x € X,
then we denote by G = (g1,...,9m), ¥ =col(¢1,...,¢n) and ¥(z) =col(¢1(x), ..., ¥m(x)) and write
GeXy, YeXh . ItG=1(91,-,9m), 91, -, gm € D(A), then we write G € [D(A)],,. We will denote
by U(G) the m x m matrix whose i, j-th entry 1;(g;) is the value of functional ¢; on element g;. Note
that ¥(GC) = ¥(G)C, where C is a m x k constant matrix. We will also denote by I,,, the identity
m X m matrix.

We will use the following Theorem, that have been shown in [20] and is recalled here but with a
different notation tailored to the needs of the present article.

Theorem 1. Let X be a complex Banach space, the vectors Gy = (910, --+s gm0), G = (91, -+, gm), S =
(S1y..ry Sm) € X, the components of the vectors ¥ = col(1, ..., ¥p,) and ® = col(¢1, ..., pm) belong
to X* and the operators By, B, B : X — X defined by

Bou = Aou - Goq)(Aou) = f, D(Bo) = D(Ao),

Bu = Au — GU(Au) = f, D(B) = D(4),
Blu = AAou — S(I)(Aou) — G\I/(AA()U) = f, D(Bl) = D(AA()), (1)

where Ag, A : X — X are linear correct operators and Gy € [D(A)],. Then the following statements
are fulfilled:
(i) If
S € [R(B),, and S = BGo= AGy— GU(AGy), (2)

then the operator B; can be factorized in By = BBy.
(ii) If the components of the vector ® are linearly independent elements of X™* and the operator
Bj can be factorized in By = BBy, then (2) is fulfilled.
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(iii) If there exists a vector Gy € [D(A)]m, satisfying the equation AGy — G¥(AGy) = S, then B
is bijective if and only if the operators By and B are bijective, which means that

det V =det[l,, — ®(Go)] #0 and det L = det[],, — ¥(G)] # 0.
In this case, the unique solution to the boundary value problem (1) for any f € X, is given by
u=DB'f=A v+ Ay 'GoV @ (v), where v=A"'f+ATIGLTIU(f). (3)

Lemma 2. Let X be a complex Banach space. Then a linear operator A : X — X is bijective if and
only if A? is bijective.

Proof. Let A be bijective and u € ker A2. Then A%u = 0. Applying twise the operator A~! to this
equation we obtain u = 0 which proves that ker A2 = {0}. Consider the equation A%u = f, f € X.
Applying twise the operator A~ to this equation, we obtain u = A~! (Aflf) = A=2f for every f € X,
which proves that R(A%) = X. Thus A? is a bijective operator.

Conversely, let A2 be bijective. Then ker A2 = {0} and R(A?) = X, and from well-known relations

ker A C ker A%, R(A?%) C R(A),

for a linear operator A : X — X, follows that ker A = {0} and R(A) = X. Hence A is a bijective
operator.

Bellow we prove the main theorem.

Theorem 3. Let X be a complex Banach space, Ag, A3, A, A% : X 2 X linear operators and the
vectors V)Y, G,S € X, @, 0 € [X*],n, So,Go € [D(A?)]n. Then for the operators Bg, B, By : X —
X, defined by

Bou = AZu — So®(Agu) — Go®(A3u) = f, D(By) = D(A2), (4)
Bu = A%u — SU(Au) — GU(A%u) = f,  D(B) = D(A?), (5)

Biu = A?A2u — V®(Agu) — YP(A3u) — SU(AAZu) — GU(A2A%u) = f,
D(B1) = D(A’A}) = {u € D(A) : Aju € D(A*)}, (6)

hold true the next statements:
(i) If the vectors Go = (910, s gmo) and Sy = (810, ..., Smo) belong to [D(A?)],, and satisfy the
system of equations

V = BSy = A2S) — SU(AS,) — GU(A2S), (7)
Y = BGy = A2Gy — SU(AGy) — G¥(A%Gy), (8)

then the operator By can be factorized in By = BBy.
(ii) If Go = (910, -, 9m0), So = (510, --+sSmo) € [D(A?)],, and the operator By is factorized in
B, = BBy, where A, Ay are bijective, and if the functional vectors

(f) = (P+ A1 AT2) (f) = ®(ATAT2S), B(f) = (@ A7) (f) = B(A7))

are linearly independent on X, then (7), (8) hold true.
(iii) The operators By, B are bijective if and only if, respectively,

. -1 . -1

det Ly = det <Im _((II))((?O) So) Ij(_Aq)(gg))) # 0, 9)
_ -1 _ -1

det L = det <Im _‘\II’,((‘;) 5) Jf(_Am(g))) # 0, (10)
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and in this case the unique solutions of (4), (5) for any f € X are given by

-1
u=By'f =A% f + (45250, Ag>Go)Ly ! (q’%‘(‘})f )> 7 (11)
u=B7lf=A"2f + (A28, A72G)L! (‘P(\I]“l(}l)f)> , (12)

respectively.
(iv) If VY are defined by (7), (8) and A, Ay are bijective operators, then B; is bijective if and only
if (9) and (10) are fulfilled, and the unique solution of (6) in this case for every f € X is given by

u= Ay + (Ay 23S0, Ay 2Go)Ly* (@((gl(i;v)) , where (13)
v=A"2f 4+ (A28, A72Q)L (‘I’(\P"l(}l)f )) . (14)

Proof (i). Taking into account that Gy, So € [D(A?)],, we obtain
D(BBy) = {u € D(By) : Bou € D(B)} =
={u e D(A2) : A2u — Sy®(Agu) — Go®(A%u) € D(A?)} =
= {u € D(A3) : A2u € D(A?)} = D(A%A%) = D(B,).
We put y = Bou. Then for each u € D(A?A3) since (5) and (4) we have
BBu = By = A%y — SU(Ay) — G\Il(Azy) =
= A’Bou — SU(ABgu) — GU(A’Bgu) =
= A?[A%u — So®(Agu) — Go®(AZu)]—
—SU (A[Afu — So@(Agu) — Go®(Afu)]) —
—GU (A*[Afu — So®(Agu) — Go®@(Afu)]) =
= A2A%u — A%Sy®(Agu) — A2Go®(Au)—
—SU (AA§u — ASy®(Agu) — AGy®(Aju)) —
—GU (A*Aju — A?Sy@(Agu) — A’ Go®(Afu)) =
== AQA%U - A2SO(I)(A()U) - A2G0<I>(A3u)f
—SU(AAZu) + SW(ASy)®(Agu)+
+SU(AG))P(AZu) — GU(A?Alu)+
+GU(A%S)®(Agu) + GU(A2Go)P(Adu).

So we obtain
BBou = A2A%u — [A%Sy — SU(ASy) — GV (A%S,)]®(Agu)—

—[A%Gy — SU(AGy) — GU(A%Gy)]|®(Adu)—
—SU(AA3u) — GU(A%A3u), or
BBou = A2A%u — BSy®(Agu) — BGo®(A2u) — SU(AAZu) — GU(A2AZu), (15)
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where the relations
BSy = A%2Sy — SU(ASy) — GU(A2Sy),

BGy = A%Gy — SU(AGy) — GU(A%GY)

follow by substituting u = Sy and v = Gy in (5). By comparing (6) with (15), it is easy to verify that
BBou = Byu for each u € D(A2A2) if (7), (8) hold true.

(ii) Let now BBou = Bju for each u € D(A?A3). Then by subtraction for each u € D(A%A32), we
get BBou — Biu = 0, which implies

(BSy — V)®(Agu) + (BGy — Y)®(A3u) =0,

or, since the operators A, Ay are bijective and, by Lemma 2, the operators A2, A3 are bijective too, we
have
(BSy — V)®(A, A2 A% A%u) + (BGo — Y)P(A 2 A% A3u) = 0,

or denoting f = A?A2u, for each f € X we get
(BSo = V)@(A5 ' A7) + (BGo — Y) (AT f) =0,

which is
(BSy — V)®(f) + (BGo — Y)®(f) =0, VYfeX.

The last equation, because of the vectors <_T:>, & are linear independent on X, gives V = BSy, Y = BGy.
(iii)-(iv) Let the operator B; and the vectors V,Y be defined by (6), (7) and (8), respectively.
Equation (6) can also be written in matrix notation as

Byu = A2A%u — (BSy, BGy) (‘D<A0“)> —(5,G) (‘I’(AA%“))) =/,

P(A3u) W(A2A%u
or ( 142 ) (A 1A2A2 )
A2 A2, (0] AO_ AOU . L\ - OU o
or . .
Biu = AAgu — S®(Agu) — GY(AAgu) = f, D(B1) = D(AA), (16)
where _ _ _ _
A:A27 AO :A27 SZBGO? G: (S7G)7 GO - (SO7GU)7 (17)
B =col(PxAy', @), T=col(WsA' V) (18)

and (@ x Ag')(v) = ®(A;'), (¥ A~Y)(v) = ¥(A™'v). Remind that by Lemma 2, the operators
A= A? and Ay = A3 are bijective, because of A and Ay are bijective. Notice that the components of

the vectors ® and W are bounded on X, since the operators Aal, A~1 are bounded, the components of
the vectors ® and ¥ belong to X* and for any f € X the elements AglA*Qf, A72f € X. It is easy
to verify that Equations (4) and (5) can be equivalently represented in matrix form:

Bou = Agu — Go®(Aopu) = f,  D(Bo) = D(Ap),

Bu=Au—GU(Au) = f,  D(B)= D(A).

Now by Theorem 1, where instead of B, By, By, S,G,®,¥, A, Ay, L,V and m we have B, By, By, §, é,
ZI;, ‘I/,A, Ao, L,V and 2m, respectively, we conclude that the operator By can be factorized in By =
BBy if N o N

AGy — GU(AG)) = G. (19)
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It is easy to verify that Equation (19) is equivalent to System (7), (8). Also by Theorem 1, the operator
B; is bijective if and only if

det V = det[Ioy, — ®(Go)] #0 and  det L = det[lo, — W(G)] # 0,

respectively. The last inequalities, since

~ =~ (%A (S0) (DxA;N)(Go)\ [ ®(A;1S0) P(A;'Go)
@(GO)_< ‘I’(OSO) 0 ‘@(OGO) 0>_< ‘I’((igo)o CD(OGO)O)’
=~ ((TxATH(S) (TxATHG)\  [(¥(ATLS) v(AaTlG)
q’“”‘( u(s) (@) >‘< us) W) )

give (9) and (10). Let Bju = BBou = f, f € X. By Theorem 1 using (3), since B, By are bijective
operators, we obtain the unique solution of (16) or (6)

u=Bylv=A1v+ AaléoLalé(’U), where
v=B7lf = A1 f + ATIGLTIU(f),
which since (17), (18) gives

u=Bylv= Ay + (4,250, A;%Go)Ly* <<I>(£lg);v)) , where (20)
_R-lr_ 42 20 4-2m7.-1 ‘I’(Alf)>
v=B  f=A"f4+(A7°S,A"°G)L < w(f) ) (21)

So we proved (13), (14). From (20), (21) we immediately obtain (11), (12). The theorem is proved.
The next theorem follows from Theorem 3 and is useful in applications and gives the decomposition
B, = BBy, where B, By beforechand we do not know. Also this theorem gives a criterion for the
bijectivity of By and the solution of Bju = f in an elegant way.
Theorem 4. Let the space X and the vectors VY, S, G, P, ¥ be defined as in Theorem 3 and the
operator By : X — X by

Biu = A%u — V®(Agu) — Y®(A3u) — SU(AAgu) — GU(A%u) = f, D(B1) = D(A?),  (22)

where Ay : X — X is a bijective ni-order differential operator and A : X — X is a n-order differential
operator, n1 < n. Suppose that there exists a bijective linear differential n — nq order operator
A: X — X such that

A= AAy, D(B;)= D(A%A3) (23)

and

(24)

det L = det (Im — (A7) _‘I/(AlG)) £0.

—U(S) I, — Y (G)
Then the operator B is factorized into By = BBy, where By, B are defined by (4), (5), respectively,
and

So = A2V 4 (A28, A2G)L"! <‘I’(\I/A(;)V )> , (25)
Go= A" 4 (A28, A2G)L™! (‘I’(\IIA(;;/ )> : (26)

Furtermore the operator B is bijective if (9) is fulfilled, and in this case a unique solution to the
boundary value problem (22), (23) for any f € X is given by (13), (14).
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Proof. Substituting A = AAy into (22) we obtain the operator By in the form (6). Construct the
operators By and B by using (4) and (5), respectively, where for B we take the elements G, S, ¥ and
A from (22) and (23), and for By the elements Ay, ® and Sy, Go from (22) and (25), (26).

Note that the operator B, by Theorem 3 (iii), since (24) and bijectivity of A, is bijective, and that
taking into account (12) the system of equations (25), (26) can be represented as So = B~V and
Go = B7'Y. The last system, because of bijectivity of B, is equivalent to the system V = BSj and
Y = BG), which is the system (7), (8). Then by Theorem 3 (i), the operator By can be factorized
in B; = BBy. Furthermore by Theorem 3 (iv), since (24) and bijectivity of Ay, the operator B; is
bijective if (9) holds. The unique solution to (22), (23), by Theorem 3 (iv), is given by (13), (14). The
theorem is proved.

A reader can prove easily by Lemma 2 the next proposition.

Proposition 5. Let the operators Ay, A : C[0,1] — C|0, 1] be defined by

Aou(t) =u'(t) = f, D(Ag) = {u(t) € C1[0,1] : u(0) =0}, (27)

Au(t) =4'(t) = f, D(A) = {u(t) € C'[0,1] : u(1) = 0}. (28)

Then:
(i) The operators Ag, A are bijective and the unique solution of the problem (27) and (28) is given
by

u(t) = A7 (1) = /0 f(z)dz, (29)

t 1
u(t) = AV f(t) = /0 f()de /O f(z)dz, (30)

respectively.
(ii) The operators A2, A% : C[0,1] — C][0, 1] are defined by

Adu(t) =u"(t) = f, D(A3) = {u(t) € C?[0,1] : u(0) =0, «'(0) = 0}, (31)
A?u(t) =u"(t) = f, D(A?) = {u(t) € C?[0,1] : u(1) =0, /(1) = 0}, (32)

and bijective. The unique solution of the problem (31), (32) is given by

u(t) = A2 (t) = /0 (t — ) f(x)de, (33)

t 1
u(t) = A2 f(t) = /0 (t — ) f(2)de — /O (t — 2)f(x)dz, (34)
respectively.

Ezxample 6. Let the operator B : C[0, 1] — C|0, 1] be defined by
1 1
Biu=u"(t) — (5 —2t) / 2/ (x)dx — (6t — 3)/ a2 (x)dx—
0 0

1 1
—12/ zu" (x)dx — (2t + 1)/ zu® (2)dzx = 2 — 3t, (35)
0 0

D(B;) = {u(z) € C*0,1] : u(0) = v/(0) = «”(1) = «”'(1) = 0}. (36)

Then:
(i) By can be factorized as a product of two operators and is bijective.
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(ii) The unique solution of Problem (35)-(36) is given by

t2(12271#% — 46530t* + 63410t — 33760)
t)=— .
u(t) 531448 (37)

Proof (i). If we compare equation (35) with equation (22), it is natural to take Agu = u/(x), A3u =
u'(z), Adogu = v (x), Au =u® ny =1, V=5-2Y =6t—-3,85=12 G =2t+1, f=2-
3t, ®(Apu) = fol 22/ (z)dz, @ A%u fo 22u"(z)dz, V(AAgu) = folxu'"(x)da:, U(A%u) =

fol zu®(z)de.
Then

1 1
CD(U):/O 2% v(z)de, \I/(v):/o zv(z)dz. (38)

It is evident that ®, ¥ € X*. We chooce the operator A to satisfy (23), namely Au = AAou, D(B;1) =
D(A2A3). From Au(z) = AAgu(z), AAou = v (x) and Agu(z) = v/(z) we get AAgu(z) = AA%u(z)
Au"(z) = u"(x). Denote v(x) = u”(x), then Av(z) = v'(x). Let D(Ap) = {u(x) € C[0,1] : u(0) =
0}, D(A) = {v(x) € C1[0,1] : v(1) = 0}. So we proved that the operators Ay, A are defined as in (27),
(28). Then the operators A2, A% are defined as in (31), (32), respectively. Further we find

D(A%A2) = {u(t) € D(A2) : A2u(t) € D(A%)} =

= {u(t) € C?[0,1] : w(0) = «/(0) = 0, u"(t) € C?[0,1], u”’(1) =" (1) =0} =
= {u(t) € C*0,1] : u(0) = ' (0) = 0, u”(1) = u"' (1) = 0} = D(By).
This proves that the conditions (23) are satisfied and so we can apply Theorem 4. Using (30) and (38)
by simple calculations we find
ATIS = [V Sda — [} Sdx =12t — 12,
A—1G fg Gdr — [} Gdz = [j(2z + l)d:c - f01(2x +1)de =t +t -2,

= [ a(122 — 12)d:n = Q) = [} x(a? + @ — 2)dzr = —5/12,
\I/ fo 12zdx = 6, fo 21‘ +1) d:z: =7/6.
. (3 512 L (-1/12 —5/24
By (10), we obtain L = (—6 —1/6) . ThendetL #0 and L™ = < 3 3/2 ) By Theorem 4,

the operator B; is factorized in By = BBy, where By, B and Sy, Gy are defined by (4), (5) and (25),
(26), respectively. Using (34) for S =12, G =2z + 1, we obtain

A28 = [¥(t —x)Sdx — [ (t — x)Sdx = 6(t — 1)?,

ATAG =133 +12/2 — 2t + 7/6.
By (30), (3 )forV—5 2z, Y—6x—3 we get

A7V = fo dx—fo r)dr = 5t — 2 — 4,
ATlY = fo dx—fo da:—3t2 3t
ATV = [H(t —2)V fot—x z)dr = —t3/3 + 5t2/2 — 4t + 11/6,
A*ZY = t3 —3t?/2 —|— 1/2 and further by (38) we have
fol 5t — 12 —4)dt = —7/12,  W(A"Y)=—1/4,
fo 5—2t)dt =11/6,  U(Y)=1/2.

Applymg (25), (26) and the above calculations we get
So=So(t) = (t—1)2, Go=Go(t) =t(t—1)2
By (29) we find Aj'Sy = fot So(x)dz = t(t? — 3t + 3)/3,
Ay Gy = [f Go(x)dx = t*(3t> — 8t +6)/12.  Then
B(Ay1So) = [ t2(t> — 3t + 3)/3dt = 19/180,
B(Ay'Go) = [ t23(3t% — 8t + 6)/12dt = 31/1260,
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®(Sp) = [ 12(t — 1)%dt = 1/30,
B(Go) = [ t3(t — 1)2dt = 1/60.

Using (9) we obtain Ly = (161/180 —31/1260

~1/30  59/60 >'It is easy to verify that

det Lo # 0, Lt

1 74340 1860
0 7 66431 :

2520 67620

Then, by the Theorem 4, the operator B; is bijective.
(ii) Now we find the solution of (35)-(36). Using (29), (33), (30), (34), (38) we find

2 t3

t
Ag?Sy = —=(t* —4t+6), A;°Gy= 0

3t2 — 10t + 10

and for f=2—3t

1 1
ATl = 5 (4t = 3t2 1), A?f= 5(—#” + 2t — 1),

U(f) = /01(2 —3t)tdt =0, W(Alf)=1/24.

Using (14) from the above we get

B 1183 — 2562 + 17t — 3

v=0o(t) = Y

Then by (29), (33) and (38) we have

t 3 2
t(33t° — 100t 4 102¢ — 36
Agto(t) = / v(z)dr = — ( i ),
. 288

t2(33t3 — 1252 + 170t — 90)

A%0(t) = /O (t - 2)o(@)ds = — sl ,

t2(t? — 4t +6)

450 = [ =a)sa(wyte = [ (¢ =)= 1P = LD,

t3(3t2 — 10t + 10)
60 ’

1
1
O(v) = /0 22 (x)dr = ~ 988’

1 1 3 2
_ _ 33x° — 100z* + 102z — 36) 29
F(A-1y) — — 2 4-1 _ _/ A 2
(Ay v) /0 z Ay v(x)d ; T 588 dx 15120

Substituting these values into (13) we obtain (37).
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AOcTpakTijii omepaTopJiapAbl €KiHIII JapeXKeJli eKi onmepaTopra

dakTopu3aluaiay »KoHe OHbl MHTErpaablK auddepeHnnaaabIkK,
TenaeyJsiepre KoJaddany
N.H. ITapacuauc, E. [IpoBumac
Deccanrusn ynusepcumemi, Jlapuca, I'peyus

MakaJjtazia nepbec TybIHIBLIBL Tud depeHuaIabK oreparopmMer Hemece OpeirosibM HHTErpasiIbiK-1udde-
PeHIMAJIIBIK TeHJIeyiHe ColiKec KeJIeTiH KapamnaibiM JuddepeHnnaniblK orepaTopsl 6ap B abCTpaKTHIIbI
CBI3BIKTBIK oneparopbiMeH Bix = f mekapasbik ecebi 3eprresnren. Buektusri oneparop Bi Typinzgeri
dakTopusarusiHbl ©TKi3reH )karmaiina B = BBg, Bix = f ecebiniH mo/1 aHAIUTHKAJIBIK, TIEMMI aJIBIHIIBL,
myHaarsl B, Bg B1 kaparanga KapamnaiibiM, eKiHII J19pekeii €Ki ChI3BIKTHIK, aOCTPaKThLIbI oreparop. Bi

OIepaTOPBIHBIH, (DaKTOPU3AIUAIAY IIAPTTAPhI XKoHE OMEKTUBTIIIKTIH, KPUTEPHUiil TaObLIIbI.

Kiam cesdep: KOppeKTini oneparop, GUEKTUBTI OIEPATOP, CHI3BIKTHIK, OIEPATOPIAPAbl (paKTOPU3AIAAIAY

(>xikTey), @peArosbM HHTErPATIBIK- A OEPEHINATIBIK, TEHAEYIIeP], MIeKAPAJIbIK €CeNTep, JoJI IIENIiMAED.

dakTopm3anusa aOCTPAKTHBIX OIIEPATOPOB Ha JABa OllepaTopa BTOPOit
CTeNeHN 1 ee IIPUJIOKEHNHA K MHTerpo-anddepeHnnabHbIM

YPaBHEHUSM

WN.H. Ilapacumuc, E. IIpoBuaac
Vwnusepcumem @eccanruu, Japuca, I'peyus

Wccnenosana kpaeBast 3amada Bix = f ¢ abcrpakTHBIM JIMHEHHBIM OmepaTopoM Bi, COOTBETCTBYIOIIAsT
uHTEerpo-auddepennuaabHOMy ypaBHeHnio PpearosibMa ¢ OOBIKHOBEHHBIM AuddepeHInaIbHBIM OIIePaTo-
poM min auddepeHnraIbHbBIM OIepaToOpOM B YaCTHBIX MPOU3BOJHBIX. [losydeHo TouHOE aHAIMTHYECKOE
pemenne 3amaun Bixz = f B ciaydae, Korga OGmeKTUBHBIN omepaTrop Bi momyckaer dpakTopusaiuo BHUIA
B, = BBy, e B, By — gBa juHeitHbIX aOCTPaKTHBIX OIl€paTOpa BTOPO cTemeHu, 60jiee TPOCThIX, YeM

B, . Haitnens! ycmoBust pakTopu3anuu u Kpurepuit OneKTUBHOCTH onepatopa Bi.

Kmouesvie ca06a: KOPPEKTHBI ONEpaTop, OUEKTUBHBLA onepaTop, dakTopusanus (pas/oXkKeHue) JTHHEHHBIX

OIEPaTOpPOB, UHTErpO-AuddepeHImanbuble ypapaenus Openaroabpma, KpaeBble 3aJa4Un, TOYHbIE PEIIEHN.
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This article addresses the problems observed in branching fractal structures, where super-slow transport
processes can occur, a phenomenon described by diffusion equations with a fractional time derivative. The
characteristic feature of these processes is their extremely slow relaxation rate, where a physical quantity
changes more gradually than its first derivative. Such phenomena are sometimes categorized as processes
with “residual memory”. The study presents a solution to the first boundary problem in an angular domain
degenerating into a point at the initial moment of time for a fractional diffusion equation with the Riemann-
Liouville fractional differentiation operator with respect to time. It establishes the existence theorem of
the problem under investigation and constructs a solution representation. The need for understanding
these super-slow processes and their impact on fractal structures is identified and justified. The paper
demonstrates how these processes contribute to the broader understanding of fractional diffusion equations,
proving the theorem’s existence and formulating a solution representation.

Keywords: partial differential equation, fractional calculus, angular domain, kernel, weak singularity, parabolic
cylinder, Carleman-Vekua equation, general solution, unique solution, Riemann-Lioville fractional operator.
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Introduction

The paper discusses an equation of the form:

le 2
(gta - (fﬂ) (e t) = f(a,1), (0<a<1), (1)

[

where gta is a fractional derivative of an order o with respect to the variable ¢, starting from the point
t = 0. This type of fractional differentiation is defined by the Riemann-Liouville operator:

ri L@ = ) g(e)ds, v <0,

(
%Dﬁ fm(x - é)_yg(é)d§7 0 S v < ]-a

a (v) = aD; — ) I'(l-v) a
P =D = e e g rigede, 1< <2

Fractional diffusion equations (where 0 < a < 1) have been extensively studied in recent years. This
surge in interest is due to their widespread applications in physics and modeling, as referenced in sources
[1-5]. The primary methodologies for exploring diffusion-wave equations are detailed in publications
[6-24], while monographs [25] and [26] provide a comprehensive bibliography on the subject.
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Nearly all studies related to equation (1) have focused on initial and boundary problems in both
limited and unlimited cylindrical areas. Specifically, the first boundary problem for the fractional
diffusion equation in a rectangular area was examined in [17,18]. In publication [27], the first boundary
problem for the fractional diffusion-wave equation in a non-cylindrical area was solved. However, the
area where the solution is sought does not degenerate into a point at the initial moment in time.

The aim of this study is to solve the first boundary problem for equation (1) in a domain that is
not cylindrical, but rather angular, and degenerates into a point at the initial moment in time.

In relation to the boundary value problems for the heat conduction equation with a diffusion
coefficient « set to 1:

<§t _ ;;) w(z,t) = f(z, 1),

these problems have been investigated in non-cylindrical domains by several authors [28-32]. It is
important to underline that boundary value problems for the Laplace equation in domains with evolving
boundaries are distinct from the classical ones defined in fixed cylindrical domains. The reason is that
the dimensions of the domain where the solution is sought are time-dependent, which makes these
problems unsuitable for classical variable separation and integral transformation methods.

The potential theory approach allows reformulating the boundary value problem into a Volterra
system of second kind integral equations. In such cases, if the domain’s boundary does not exist at
the initial time, then the corresponding system of integral equations can be solved by the method of
successive approximations due to the weak singularity of their kernels. In contrast, if the boundary
exists at the initial time, the integral equations of the boundary value problem might admit additional
solutions, and the implementation of the Picard method encounters certain mathematical complexities.
Similar issues occur for boundary value problems of the Dirichlet problem for the Laplace equation in
non-cylindrical domains that originate at the initial moment in time.

1 Problem Statement

To determine a regular solution for the fractional time-derivative heat equation:

[e] 2
<aata_8axz) U(l‘,t) :f(LL‘,t), (0<Oé< 1),

within the domain
D={(z,t):0<z<t0<t<o0},

that adheres to the boundary conditions:
uw(0,t) =0, wu(t,t)=0, 0<t<oo. (2)
We denote u(z,t) as a regular solution of equation (1) in domain D such that:
1Y u(z, t) € O(D)
for some v > 0. Additionally, the solution u(z,t) must be continuous within D and possess a continuous
partial derivative with respect to x, and its second-order derivative with respect to z, o Dyu(x,y), must

be continuous in the variable ¢ at fixed = inside the domain D and up to the boundary set {0 < = < t},
with u(z,t) fulfilling equation (1) at every point in D.

Mathematics series. No.1(113)/2024 163



M.I. Ramazanov, A.V. Pskhu, M.T. Omarov

2  Main Result

Definitions are introduced as follows:
« T
_ = _ M*lﬂr o . | |
B* 27 wﬁ,u(x7t)*t < /87/1/7 tﬁ)a

w(x, t) = WQ’O(.%', t)v

in which
Zk

W(=B,p52) = ) i~
kzzo T (u — Bk)

represents the Wright function, as discussed in [33].
The following statement holds true:

Theorem 1. Let the conditions be satisfied: t1=7g;(t) € C[0,T], i = 1,2, for some v > 0, and
tI=Hf(z,t) € C(D),u > 0, if f(x,t) satisfies the Holder condition with respect to the variable z.
Then the solution to problem (1)-(2) exists and can be expressed as

u(x,t) /1/}1 w(x,t—7) d7'+/¢2 T—x,t—7)dr + F(x,t), (3)

1 t T
t) = / / f(s,T)wg u(x — s,t — 7)dsdr,
2 Jo Jo

and 11 (t),¥2(t) from (3) are the solutions to the system of integral equations

here

{ 91() + [y Ua(m)e(r t =T = ~F(0,1), @
Va(t) + [y hri(T)w(t, t — 7)dr + [§ ho(T)w(T —t,t — 7)dT = —F(t,1).
From the first equation of this system (4), we obtain
/ o(rYlt, T — t)dr — F(0,1),
and substituting 1y () into the second equation of the system (4), we get [33]:
/ < / (€ )€, T — €)dE — F(0, T)> Wbt — 7)dr+ .

+/0 s (DT — 1t — 7)dr = —F (L, 1).

Substituting into the repeated integral and changing the order of integration as well as the dummy
variables ¢ and 7, from equation (5), we arrive at a special integral equation of the second kind in the
form of a Volterra equation:

- /0 K(t, 7)o (7)dr = F (L), (6)

here

t
Kt,T)= / w,o(T,§ — Twgo(t,t —&)dE —wgo(T —t,t —7), (7)
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and

F(t) = /O PO, T)wlt, 7 — t)dr — B(t,1). (8)

To perform the calculation of integral (6) having (7) and (8), it is necessary to employ.

t
[ ol = mhwsolnt - e)de.

The convolution formula is applied to the Wright function as referenced in [33|, and this is expressed
through the function wg ,(z,t):

Yy
/0 Waus (21,€) Wap (22, (4 — €)) dE = Wy (21 + T2, )

Then we obtain,

t
[ wnolr& = mhaltst - €)dg = 1€ ~ 7 =l =
" t—1

= [ wmalrmsa(t. = 7) = myin =

=wgo(t+71,t—71).
Therefore, the conclusive kernel Kg(t, 7) is determined by the following relation:

Ks(t,7) =wgo(t+7,t —7) —wgo(r —t,t — 7). (9)
The second term of kernel (9) has a weak singularity, since the following estimate is valid for it:

c(B)
(t—71)8"

wgo(r —t,t—7) < (10)

Indeed, by applying the estimate found in [26]:

jwp (@, y)| < C(B, 1, 0) || Py 0HH1,
D{o, (-u) £ NU {0}
-1, (—n) e NU{0}

taking into account that u = 0, and choosing

9:—L>—1.

1-p

This leads to the confirmation of inequality (10). Next, we aim to demonstrate the special nature of
the kernel Kg(t, 7).

Lemma. If 0 < g < 1/2, the equality holds true

t
lim/ Ks(t,7)dr = 1. (11)
0

t—0
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Proof. Initially, when t is small, these inequalities are applicable:
wpo(t,t —7) Z wgo(t + 7,6 —7) = wgo(2t,t — 7).
Using equation [33]
D(q)}twﬁ,u (:l:a y) = wﬁ,,u—’u (:Ev y)

these results in .
li bt,t — 7)dr = li bt,t) =1, b=1,2.
tim [t = r)ar = T (0.0) =1, D=1,
Therefore, considering inequality (10), we establish the validity of equality (11).

The kernel’s properties make it unsuitable for solving the corresponding integral equation through
the method of successive approximations. This limitation of the integral equation is due to the solution
domain for the problem collapsing to a single point at the start. Otherwise, if this collapse didn’t
occur, the kernel for the integral equation would possess a weak singularity, enabling the use of Picard’s
method for finding a solution [33].

3 Solution of the special integral equation (6)

To solve the integral equation mentioned in equation (6), we apply the Carleman-Vekua method.
This involves using a specific integral equation, which we refer to as the characteristic equation.

- [ Kyt atriar = o) (12)

1 t+7 (t+7)? 1 t—T1
fant) = QGf{(t—r) o (g 2o7) + e (- 4)} "

Relation (13) can be verified directly using the following formula [34; 5.2.10(2)] for (n = —2),

Z a L omr2,atsp ) V2
k:'F1+ k)2 Jx - 2 |’

here D_,,_1 (2) is the function of a parabolic cylinder.
At the same time, the kernel K1 (¢, 7) possesses a similar property as described in equation (11):
2

here

t
lim [ Ki(t,7)dr =1.

t—0 0 2

This means that the kernel difference IC1 (t,7) — Kg (t,7) = K (t,7) has a weak singularity. We will
2

employ the regularization method to solve the characteristic equation, known as the Carleman-Vekua
equation, and to do so, we will express equation (12) in a particular form:

/ICéth/)g )dr = Q /thdjg (14)

Assuming the right-hand side of this equality is temporarily known and denoting it by

- /0 K(t,7)a(7)dr
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Equation (14) can be represented in the following form:

Kajan = alt) = [ Ky (t.7)balr)dr = Q1) (15)

In [35] it is shown that the general solution of equation (15) in the weight class of functions

Viexp <Z>¢ (£) € Lo (0, 50)

has the form:

Ktpo = 9o(t) — [K%} - Q(t) = cotpo(t) (16)
and the function . . JF Vi /7
Yo(t) = %exp <_4aQ> + g erf <2a> + oa

is the general solution of the corresponding homogeneous integral equation.
The integral equation (16) is already solvable by the method of successive approximations and the
solution to the corresponding homogeneous equation will be determined by the equality:

0(t) = co[K] " [0 ()]

Similarly, as in the work [33], it is proven that function (6) is a solution to equation (1) and satisfies
conditions (2), thus proving the validity of Theorem 1.

Conclusion

It is shown that in a non-cylindrical domain that degenerates at the initial moment of time into a
point, the first boundary value problem for a fractional diffusion equation with the Riemann-Liouville
fractional differentiation operator with respect to a time variable is singular, that is, it may not have
a unique solution.
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BypbImThIK 2KOMBLIMAJIBI asgaarbl OeriekTi nuddys3us TeHaeyi YImiH
OipiHIi IeKapaJibIK, ecen

M.U. Pamazanos!, A.B. Ilexy?, M.T. Omapos!

! Koadanbanv, mamemamura uncmumymaes, Axademur E.A. Boxemos amundaen, Kapaeandvu yrusepcumemd,
Kapaeardo, Kaszaxcman;
2PFA Kabapoun-Barkap eviavimu opmarvieviioiy Koadanbaiv, Mamemamura s#cone aemomammanobpy uHCmumymal,
Hanvuux, Peceti

Maxkasia TapMakTaaran GpakTaabl KyPBLIBIMIAPIa GaliKaaaThiH MoceIe/Iep/ii KapacThIPAIbl, MYH/Ia, YAKbIT
OolibiHIa OOJIITEKTIK TYBIHABLIAPEI 0ap muddy3usaIblK TEHIEYIePMEH CHUMATTAJATHIH ©Te 0asly TpaHC-
MOPTTHIK, IIporecTep 6oJrybl MyMKiH. Ocbl mporecrep/iiy epekine Gesrici — onapipid, eTe Oasy peJsakca-
[UsT KBUTIAMIBIFBI, MYH/Ia (DU3UKAJIBIK, IIIaMa OHBIH GipiHII TYBIHIBICKIHAH Tepi 6ipTiHmen e3repeai. MyH-
Jail KyObLIbICTap Kelijle «KAJIBIK KaJbl» 0ap Iporecrep periHje Kikreseni. 3eprreyie yakbIT OGOWbIH-
ma Puman-JIuysuinb GesmiekTik nuddepennuaiay omeparopbl 6ap OeJnekTiK auddy3usaiblK TeHIeY
YIIiH OYPBIMTHIK, 0OJIBICTA, OACTANKBI yaKbIT MOMEHTIHJ/Ie HYKTere JereHeparusijianFal OipiHmi 1mekapa-
JIBIK, ecenTiy miemriMi yebrabuirad. OHJa 3epTTesieTid ecentid, 6ap eKeHJIiri TypaJjibl TeOpeMa AHBIKTAJIFAH
JKOHE ecelTiH, memntiMi Kepceriniren. MakaJsiaga ocbIHIaM oTe Oasty TIPOIECTepIl *KoHe OJIap/IblH, (hPaKTaJIIbI
KYPBLIBIMAPFa 9CEPIH TYCIHY/IIH KaxkeTTiIiri atamn eTiareH. 2Kymbic 6emekTik 1uddy3usiibk TeHIeyIep-
JiH KeHipeK TYCiHlIyiHe OCBI MpOoIecTep/iiH, Kajaail bIKIAJ eTeTiHIH KepceTe/, TeopeMaHblH 6ap eKeHIIriH
JRJIeJIAei Tl K9He eCeNTiH MIeNIMiH TYXKbIPbIM 1A IbI.

Kiam cesdep: nepbec TyBIHIBI TeHJEY, OOJIIEK ecenTey, OYPBIMITHIK, OOJIBIC, PO, OJICI3 epeKINeTiK, ma-
pabonukabik muanHAp, Kapieman-Bekya Tenaeyi, »Kaamsl merrmiM, ykaJarbi3 memtiM, Puman-JlnyBuibain
OOJIIIEKT] OIepaTophI.

IlepBas kpaeBas 3amada Ajsg ApobHOro And@Hy3MOHHOIO YpaBHEHUS B
YTJIOBO# BBIpOXKJIaforreiica objiacTu

M.N. Pamazanos!, A.B. Ilexy?, M.T. Omapos!

L Bnemumym npukaadnot mamemamuru, Kapazandunckuti yrnusepcumem umenu axademura E.A. Byxemosa,
Kapaeanda, Kazaxcman;
2 Mnemumym npukaadnoti mamemamuky v asmomamusayuu, Kabapouro-Barxapekut naywnodl yernmp PAH,
Haavuux, Poccus

Crarbst paccMaTpuBaer npobiieMbl, HaOJIOJaeMble B BETBSAIMXCs (PPAKTAIbHBIX CTPYKTYypPax, IJe MOIYT
[IPOUCXO/IUTH CBEPXME/JICHHbIE TPAHCIIOPTHBIE ITPOIECCHI; sIBJIEHNE, ONUChIBaeMoe nddy3NOHHBIMA ypaB-
HEHUSMH C JIPOOHON TPOM3BOIHOM MO BpeMeHH. XapaKTEPHON 0COOEHHOCTHIO STUX MPOIECCOB SIBISETCS UX
KpaiiHe MeJJIEeHHAsI CKOPOCTb PEJIAKCAINH, IPA KOTOPOi (bu3MUIecKasi BeJIMINHA U3MeHsIeTCsE Oojiee mocTe-
[IEHHO, YeM €€ IepBasi IPOU3BOJHAA. TaKye sIBJIEHUsI MHOIIA KJIACCHMUIMPYIOTCS KaK IPOIECCHI C «OCTa-
TOYHOHN MAMSATHIO». B mccae0BaHNy PECTABICHO PEeIeHne MePBOil KpaeBoil 3a/1a4n B yIJIOBOi 00JacTn,
BBIPOK/IAIONIEHCA B TOYKY B HA9aJIbHBII MOMEHT BPEMEHH, JJ1s NPOOHOro 1uddy3nOHHOrO yPABHEHUS C OIle-
paTropoMm spobHoro muddepeniuposanus Pumana-JInysusis o Bpemenu. B Hem ycranaBiamBaercst Teope-
Ma CyIIECTBOBAHUSI UCCJIELyeMON 38141 U CTPOUTCS NIPEJCTABJIEHUE PeleHus. ABTopaMu Mo aépKUBaeTCst
HEeOOXOMMMOCTD TIOHUMAHUSA STUX CBEPXME/JIEHHBIX IIPOIECCOB U UX BJIMSHUS HA (PpaKTaJIbHbIE CTPYKTYPHI.
Pa6ora memoncrpupyer, Kak 9TH IPOIECCHI CIIOCOOCTBYIOT OoJiee MIMPOKOMY ITOHUMAHHIO JIPOOHBIX 1nddy-
3MOHHBIX YPaBHEHU, TOKA3bIBasl CYIIECTBOBAHNE T€OPEMBI 1 (DOPMYIUPYS MIPE/ICTABJICHIE PEITICHUS.

Kmouesvie crosa: ypaBHEeHNE B YACTHBIX MPOU3BOIHBIX, APOOHOE UCIUCTICHUE, YIJIOBas 00JIaCTb, SIAPO, CJia-
bast 0CODEeHHOCTD, MMapabosimyeckuit UJIMHID, ypaBHenne Kapsemana-Bekya, obiiee perenue, e IuHCTBEH-
HOe perrenne, ApobHbIi orepaTrop Pumana-Jluysuimis.
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The goal of this study is to propose the existence of mild solutions to delay fractional neutral stochastic
differential systems with almost sectorial operators involving the Hilfer fractional (HF) derivative in Hilbert
space, which generalized the famous Riemann-Liouville fractional derivative. The main techniques rely on
the basic principles and concepts from fractional calculus, semigroup theory, almost sectorial operators,
stochastic analysis, and the Monch fixed point theorem via the measure of noncompactness (MNC).
Particularly, the existence result of the equation is obtained under some weakly compactness conditions.
An example is given at the end of this article to show the applications of the obtained abstract results.

Keywords: Hilfer fractional evolution system, Neutral system, Measure of noncompactness, Fixed point
theorem.
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Introduction

Applications for fractional calculus extend from engineering and natural phenomena to financial
views and physical accomplishments, and the subject is always growing. Fields like viscoelasticity,
electrical engineering circuits, the vibration of seismic movements, biological systems, etc. usually
contain an increasing number of fractional frameworks. Numerous good monographs provide the
essential scientific methods for the attractiveness of this research topic. It should be possible to compare
frameworks with practical systems of fractional power to the framework of ordinary integer order.
Regarding fractional order, the derivative of the framework sum in the practical system might be
correct. Numerous models in scattering, sensor fusion, automation, and so forth might all be used
using this system. Learners can examine the literature [1-3|, as well as research articles [4-8] that deal
with the concept of fractional evolution systems to gain a thorough understanding of the concepts as
well as the specifics of how it is implemented.

Due to the prevalence of neutral differential equations in many applications of applied mathematics,
only neutral systems have received substantial attention in recent decades. In most cases, neutral
systems with or without delay serve as an optimal configuration of numerous partial neutral systems
that emerge in problems related to heat stream in components, viscoelasticity, acoustic waves, and
various natural processes. One may mention [9-11] for a very helpful discussion on neutral systems
involved in differential equations. Instead of deterministic models, stochastic ones should be studied
since both natural and manufactured systems are prone to noise or uncontrolled fluctuations. Differential
equations with stochastic components contain unpredictability in their theoretical depiction of a specific
event. For a general overview of stochastic differential equations (SDE) and its applications [12-15].
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The R-L and Caputo fractional derivatives were among the additional fractional order derivatives
that Hilfer [16] started. The significance and consequences of the Hilfer fractional derivative (HFD)
have also been found through conceptual forecasts of experiments in hard materials, pharmaceutical
industries, set architecture design, architecture, and other fields. Gu and Trujillo [17] recently showed
that the HFD evolution problem has an integral solution using a fixed point approach and a MNC
strategy. In order to identify the derivative’s order, he constructed the greatest current variable ¢ € [0, 1]
and a fractional variable ) so that ¢ = 0 generates the R-L derivative and ( = 1 generates the Caputo
derivative. Numerous papers have been written about Hilfer fractional calculus [18,19]. According
to [20-23], researchers discovered a mild solution for HF differential systems employing almost sectorial
operators and a fixed point method.

The research articles [24-27] to improve the fractional existence for fractional calculus by utilizing
almost sectorial operators. Investigators in the study by [20-22] employed almost sectorial operators
to get their results using Schauder’s fixed point theorem. Researchers have subsequently constructed
nonlocal fractional differential equations with or without delay using non-dense fields, semigroups,
cosine families, many fixed point strategy, and the MNC. To the best of our knowledge, the existence
of HF neutral stochastic differential systems using the measure of noncompactness mentioned in this
study is an exposed area of research that appears to give an extra incentive for completing this research.

The following subject will be looked at in this article: HF stochastic differential systems contain
almost sectorial operators with nonlocal condition

DY [:0) — 20, ))] = Asl) + Fprz) + Hlpz) Do ped' = ()

157 092(0) +R(2)) = a € LX(A, By),  p € (—00,0], (2)

where A denote the almost sectorial operator, which generate an analytic semigroup {7T'(p),p > 0} on
Y. Consider z(+) is the value in a Hilbert space Y with || - || and D + represents the HFD of order
n, 0 <1 < landtype ¢, 0 < ¢ < 1. The histories 2, : (—00,0] = B, zp( a) = z(p+a), a < 0 connected
with the abstract phase space B,. Fix ® = [0,d], and let F : ® x B, = Y, H : ® x B, — LY(J,Y)
and © : ® X B, — Y are the Y-valued function and non-local term X : B, — Y.

Now let’s break up our content into the following sections. In Section 1 we outline a few crucial
ideas and details from our study that are referenced throughout the body of this article. We discussed
the existence of a mild solution to the problem in Section 2. We provide an illustration of our main
notion in Section 3. Then, a few conclusions are offered.

1 Preliminaries

The fundamental concepts, theorems, and lemma that are used throughout the whole work are
introduced here.

The notations (Y, ||-||) and (7, ||-||) signify two real distinct Hilbert spaces. Suppose (A, .%, P) is a
full probability area connected with full family of right continuous growing sub o-algebra {.#, : p € D}
fulfills .#, C .#. Consider W = {W(p)},>0 is a Q-Wiener strategy identified on (A,.%, P) with the
correlation operator @ such that Tr(Q) < oo. We assume there exists a full orthonormal system ey,
k > 1in U, a limited series of non-negative real integers x; such that Qer = xrer, £ =1,2,--- and
{pi} of independent Brownian movements such that

(W(p),e)y = > vxrler e)uklp), e €U p=>0.

k=1

Assuming that the area of all @-Hilbert-Schmidt operators ¢ : Q%j ? Y with the inner product
HgoHé = (p,9) = Tr(pQy) is signified by the symbols L) = Ly(Q27,Y). Let us consider the
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resolvent operator of A, 0 € p(A), where S(-) is uniformly bounded, that is, [|S(p)|| < M, M > 1, and
p > 0. Thus, given ¢ € (0,1], the fractional power operator A% on its range D(A®) may be obtained.
Furthermore, D(A?) is dense in Y.

The succeeding substantial characteristic of A% will be discussed.

Theorem 1. [1]

1 If 0 < 8 <1, then Y5 = D(A%) is a Banach space with ||z||; = | A%z]|, z € Y.

2 Assume 0 < v < § < 1, embedding D(A\é) — D(/TV) and the implementation are compact
whenever A is compact.

3 For all 0 < é <1, there exists Cs > 0 such that

1A < 53, 0<p<d

Consider C : ® — Y is the family of all continuous functions, where ® = [0,d] and ®’ = (0, d] with
d > 0. Choose
Y ={z€l:lim Pl T2 (p) exists and finite },
p—0

which is the Banach space and its || - ||y, specified as

Izly = sup {p" =T z(p)| }.
peED’

Fix Zp(®) = {u € C such that |[ul| < P}. Let z(p) = p~ 1T+ (p), p € (0,d] then, z € YV if and
only if y € 0 and |z[ly = [|y[|. We produce H with ||H|1s(p r+), where H € LP(D,RT) for some p
along with 1 < p < 0co. Also LP(®,Y) represent the Banach space of functions H : © x B, — Y which
are the Bochner integrable normed by HHHLP(@,Y).

Definition 1. [16] For the function H : [d,+00) — R, the HFD of order 0 < n < 1 and type
¢ € [0, 1], presented by

Dy F(p) = (1" DO F)l(p)

The abstract phase space B; is now specified. Assume that w : (—o0,0] — (0,+00) is continuous
along [ = f_ooo w(p)dp < +o00. Now, for all n > 0, we obtain

B = {e:[-n,0] = Y such that £(p) is bounded and measurable},
and set the space B with the norm

lellj=n0 = sup [le(7)]], for all e € &.
T€[—n,0]

We now specify,

B, :{5 : (=00,0] = Y such that for all n. > 0, e[j_, o € #

0
and/ w(T)\|5\|[T,O]dT<+oo}.

—00

Suppose B; is endowed with

0
lells, = / ’u}(T)HEH[.,.’O]dT, for all € € By,

—00
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therefore (By, || - ||) is a Banach space.
Now, we specify the space

Bl = {z:(—00,d] — Y such that z|p € C, o € B, }.

Let us consider the seminorm || - || in By defined as

Izla = llall 5, + sup{[lz(7)]| - 7 € [0,d]}, = € By.

Lemma 1. If z € By, then for all p € ®, z, € B;. Furthermore,

Uz(p)| < llzpllB. < Nl +1 sup [z(r)],
r€(0,p]
where | = f_ooo w(p)dp < 0.

Definition 2. |25] We explain the family of closed linear operators @3, for0<d¥ <1, 0<w< 3,
the sector S, = {0 € C\{0} with |arg 0] <w} and A:D(A) C Y — Y that fulfills
(i) o(A) C Su;
(i) ||(6 - A) )7H| < Kele| ™7, for all w < & < 7 and there exists K. as a constant,
afterward A € 057 is bpemﬁed like almost sectorial operator on Y.

Theorem 2. 3| S,(p) and Q,(p) are continuous in the uniform operator topology, for p > 0, for all
d > 0, the continuity is uniform on [d, co).

Lemma 2. 28] Suppose {T;(p)},>0 is a compact operator, then {S, (p)},>0 and {Q;(p)},>0 are
also compact linear operators.

Lemma 3. [17] System (1)-(2) is unique to an integral equation offered by

a(0) — R(z,) ~ (0, a(0))

z(p) = T(C(1—mn) +n) p~ T 1+ 0(p, 2,)
+ F(ln) /op(p — )1t [A\zLdL + F (62 )de+ H (e, 2,)dW ()]

Definition 3. [17] Let z(p) be the solution of the integral equation offered by Lemma 3 then z(p)
fulfills

z2(p) = Sy.c(p) [a(O) — N(z,) — (0, a(O))} +0(p, 2p) + /OP Ky (p — L)]:(L, ZL)dL
+ /p Kn(p — )M (1, 2,)dW (), peD,
0

1- _
where S, c(p) = I 7" Ky (p), Ky(p) = p""1Qy(p) and Qy(p) = f5° ne,(e)T (p"e)de.
Definition 4. |7] A stochastic process z : (—0o0,d] — Y is sald to be a mild solution of the system

(1)-(2) if I(()}:n)(kC)z(O) + R(z,) = a € L3(n, By), p € (—00,0] and the preceding integral equation
that fulfills

z(p) = Spc(p) [oz(()) —N(zp) — D(O,a(O))] +0(p, 2p) + /Op(p — L)"ilA\Qn(p —0)0(¢, 2,)dL

+ [0 000y~ )2+ [ o= 0000 — MG 2)aW ().
0 0
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Lemma 4. |21]
1 Ky(p) and S, ¢(p) are strongly continuous, for p > 0.
2 Ky(p) and S, ¢(p) are bounded linear operators on Y, for all fixed p € Sz _,, we obtain

[Kn(0)z]| < kpp™ N2l (| Qu(p)z]| < mpp™ ™2,
I'(0) —1+¢—n¢+nd
ISnc0)2ll < T =y oy El

-~

Proposition 1. [19] Let n € (0,1), ¢ € (0,1] and for all z € D(A), then there exists a x; > 0 such
that

nkgl'(2 —q)
p1L(1+n(1—q))
The Hausdorff MNC will now be briefly discussed.

Definition 5. [29] For a bounded set X in a Banach space Y, the Hausdorff MNC p is represented
as

1A7Q,(p)z| < Iz]l, 0 < p < d.

u(X) =inf{e > 0: X can be linked by a finite number of balls with radii €}.

Theorem 3. (8] If {vx}72, is a sequence of Bochner integrable functions from ® — Y with the
measurement |vg(p)|| < u(p), for all p € V and for all k > 1, where u € L'(D,R), then the function
w(p) = p({v(p) : k> 1}) is in L'(D,R) and fulfills

u<{ /Opvk(b)dLi k> 1}> SQ/OPW(L)dL.

Lemma 5. [8] Let X C Y be a bounded set, then there exists a countable set Xy C X such that
1(X) < 2u(Xo).

Definition 6. [29] If E™ is the positive cone of an order Banach space (E, <). Let U be the function
represented on the family of all bounded subset of the Banach space Y with values in ET is known as

MNC on Y if and only if U(conv(t)) = U(¢) for all bounded subset ¢ C Y, where conv(t) denoted the
closed convex hull of «.

Lemma 6. [30] Let G be a closed convex subset of a Banach space Y and 0 € G. Suppose F' : G — Y
continuous map which fulfils Ménch’s requirements, i.e., if G; C G is countable and, G; C E({O} U
F(G1)) = G} is compact. Then F has a fixed point in G.

2 FExistence

We require the succeeding hypotheses:
(Hp) Let A be the almost sectorial operator of the analytic semigroup T'(p), p > 0 in Y such that
IT(p)|| < Ki where K; > 0 be the constant.
(Hz) The function F : ® x By — Y fulfills:
(a) Caratheodory circumstances: F(-, z) is strongly measurable for all z € B, and F(p,-) is
continuous for a.e. p € D, F(-,-): [0,S] — Y is strongly measurable;

1
(b) There exists a constant 0 < 171 < 1 and my € L™ (D,R") and non-decreasing continuous
function f: RT — R such that || F(p, 2)|| < mi(p)f(p* ¢ ||z])), z € Y, p € D where

f fulfills lim infs_, o @ = 0;
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(c) There exists a constant 0 < 72 <7 and e; € L (D, R™) such that, for any bounded subset
M cCY, p(F(p, M)) < er(p)u(M) for a.e. p€D.
(H3) The function H : ® x B, — L(J,Y) fulfills:
(a) Caratheodory circumstances: H(-, z) is strongly measurable for all z € B, and H(p,-) is
continuous for a.e. p € D, H(-,-) : [0, 5] — LY(T,Y) is strongly measurable;
(b) There exists a constant 0 < 13 < 1 and mg € L%(D,R"’) and non-decreasing continuous
function 7 : R* — R* such that ||H(p, z)|| < ma(p)h(p*~¢T"||2]|), 2 € Y, p € D where
h fulfills lim infy 0 28 = 0;
(¢) There exists a constant 0 < 1y <7 and ey € Li(Q,RJF) such that, for any bounded subset
MCY, u(H(p, M)) < e2(p)u(M) for a.e. p e D.
(Hy) The function X : C(®,Y) — Y is continuous, compact operator and there exists L; > 0 as the
value such that [|[R(z1) — R(z2)|| < L1]|z1 — 22|
(Hs) The function O : ® x By — Y is continuous and there exists ¢ > 0, 0 < ¢ < 1 such that © € D(ﬁq)
forallzeY, pe?, Eqa(-, z) is strongly measurable, then there exists M,, > 0, M/ > 0 such
that v1,72 € Y and KqD(p, -) satisfies the following:

149D (p, 11.(p)) — A%D(p,12(p))|| < Muwp™ ™" |ly1(p) — 72(p)| B,
149D (o, 2()| < My, (1 + o'~ 2], ).

Take ||A~49| = M.
Theorem 4. Suppose (H1) — (Hs) holds, then the HF neutral stochastic system (1)-(2) has a unique
solution on ® presented, a(0) € D(A?) with 6 > 1 + .

Proof. Consider the operator ¥ : B, — Bi, defined

¢

qjl(ﬂ)? (—O0,0],

Sn.c(p)[a(0) = R(z,) = D(0,a(0))] +(p, 2,)
Ve = + 7o o"wmApr< )i

+ 5 (0= 0 IQy(p — ) F (1, 2)de
+ [ (p— )" 1Qn( OH (1, 2)dW (L), peD.

Ly 2,

For ¥y € B,, we specify T as

I _ \Ijl(p)’ p < (*00’0]7
“m_{%Ammm,pen

then U € B! Let z(p) = p =<1 [y(p) + \T/(p)], o0 < p < d. Tt is trivial to establish that u fulfills
by the Definition 4 if and only if v satisfies vy and

v(p) == Spc(p) [N (pliﬁncimﬂ[i’p + @p]) +9(0, a(O))] + D(P> (Plf&ﬁciw [vp + @p}))
+ /p(p — L)n—lA\Qn(p — L)D(L, Ll_H”C_"ﬁ[UL + (I\/L])dL
0
+ /Op(p —0)"1Qu(p — ) F (1,1 CHIC=mI [y, 4 J)de

+ /Op(p —0)"1Qu(p — )H (¢, Loy, 4 \/I}L])dW(b).

Mathematics series. No.1(113)/2024 179



S. Sivasankar, R. Udhayakumar et al.

Let B! = {v € B : vy € B,}. For any v € By,

lvlla =llvolls, +sup{llv@)]| : 0 < ¢ < d}
—sup{Jlo(0)]| :0 < 1 < d}.

Hence, (B/,| - ||) is a Banach space.

For P > 0, take Bp = {v € B! : ||v||q < P}, then Bp C B} is uniformly bounded, and for v € %p,
by Lemma 1,

oo+ Woll, < llvplls, + [¥]5,
I(9)
<IlP+
< I'(¢C(1 —n)+nv)
=P,

’fpp_lﬂ_"“"ﬁ) + | 1] B,

Consider an operator U : B} — B!/, specified by

0, p € (—00,0],
=S0.c(p) R (p' =+ [0, 4+ W, ]) 4 2(0, 2(0))]
_ +9(p, (1’“’74””9 + 7))
Ou(p) = + [P(p— )" AQy(p — 1D (1, I [y, 4+ T, ) ) de
+ J§ (o = "1 Qup = ) F (117 o, + W) de
+ [P(p— )" 1Qy(p — O)H (1, LTIy, —l-\I/])dW(L), pED.

Then to prove U has a fixed point.
Step 1: To prove there exists a positive value P such that O(#p(D)) C Bp(D). Suppose the claim
is incorrect i.e., for all P > 0, there exists vI’ € Zp(D), but U(v!) not in Bp(D), that is,

2
Ep|?<P<E

sup p! I (0P ()
p€[0,d]

sx[lpd} p”*”c”ﬁ{ = Syc(p) [R(p T, +,]) +D(0,a(0))]
pel0,

+0(p, (0" vy + 0]

P ~ ~
+ / (p— )" AQ,(p — 1) (1, T [y, + 1, ] ) e
0

<FE

+ /p(p — L)”_IQ,,(p — L)]:(L, LI_C—'—T]C_nﬁ[UL + \/I\’L])db
0

2

N /Op(p _ L)n_lQn(p _ L)H(L, Ll—C-HIC—nﬁ[UL + @L])dW(L)}

< 5a2(=¢+n—nv) [EHSM(P) [N(pl CHme— 7719[ L3 ]) +9(0,a(0))] 2

2

+ B|0(p, ol 4 )

P R R 2
+FE / (p— )" TAQy(p — 1) (1, S P ) du
0

2

p ~
+FE / (p— )" 'Qu(p — )F (e, S P L)) du
0
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|

< 5?0 =crnemm) [Hsn,c(p)IIZ[L?IIvf + W17+ [IR(O)][ + M| |?]

+FE

[ =0yl = (et E £ B ) )
0

+ MZM?(1 4 @>(=C+ne—nd)y p!

P —~ —~ —~
4 / (p— 2D AT9Q, (p — o) 2B A% (1, P 1)) [Pl
0
p
4 /0 (p— 02T D) Qyp — )|Pm3(d) £2(P')d

+10(@ [ (o020 (o - L>u2m§<d>h2<P'>db}
e r'(9) 2

< sdtimermem [(F(C(l —n)+ 7719)>
[L2P? + RO + MZ]o?]

,igd2(—1+c—77€+m9)

+ MZM2(1 + @>(A=CHne=n)) pr2

M,"‘fl—qr(l""‘Q))z 2(1— -
w 1 4 @2(=¢+nc=nd) pry j2nq
( qr'(1 + nq) ( )

dn’ dn’

2 2
n (w) R2m2(d) f2(P') + Tr(Q) (W) nzmad)h?(P')]
S 5d2(17C+anm9)M**’

where

M*™ = [(F(C(l _<77))+n19>> Hng( 1+¢—n¢+n9) [L%PQ"’_HN(O)HQ_'_M{UQHO(HQ]

M k1-T'(1+¢q
ql'(1 +nq)
dm

(& Qnﬁm?(d)ﬁ(P’HTr(Q) — Qf@%m%(d)h?(P’%
no o

By dividing the aforementioned inequality by P and using the limit as P — oo, we arrive at the
contradiction, which is 1 < 0. Consequently, U(%p (D)) C £p(D).

Step 2: The operator U is continuous on Bp(D). For U : #p(D) — Bp(D) and for all vk,
v € Bp(®), k = 0,1,2,--- such that limj_,o v® = v, then we get limp_ v*(p) = v(p) and
limy,_so0 p! TR () = pl=CHIC=10q (),

By (H>),

Fp, z1(p)) = F(p, p' =T [0 (p) + W(p)]) = F(p, 0~ [0(p) + ¥(p)])
= F(p,z(p)) as k — 0.

2
+ M[?M{Uz(l + d2(1—<+n<—m9))p/2 + ( )) (1 + d2(1—C+77C—m9)p') d2na

Take
Fr(v) = F(, JLetne=nd ko (I\’L]) and F(1) = F(, Gy, 4 ‘/I}L])

Then, using the assumption (Hs) and Lebesgue’s dominated convergence theorem (LDCT), we can
obtain

/p(/’ = 0?7 VNQu(p = OIPE Fi(e) = F()|[*de = 0 as k — oo, p € D. (3)
0
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By (H3),

H(p, 2k(p)) = H(p, p =T [k (p) + W (p)]) = H(p, p' =T [0(p) + ¥ (p)])
=H(p,z(p)) as k — oo.
Take
Hp (1) = H(e, L=k ‘/I\/L]) and H(t) = H (e, ST [y, + ‘/I}L])

Then, using the hypotheses (H3) and LDCT, we can obtain

[ 0= P10 = 0B Helo) — HQ)PAW() = 0 s k> o0, pe .
0

Take Ni(p) = R(pt =T [vk + \/I\/p]) and N (p) = R(pl=¢Fm=my, + \Tlp]), from (Hy), we get

E|Ni(p) = N(p)||> = 0 as k — cc.

()

Then, Dk(p, zk(p) = D(p, p' = [vk + W,]) and D(p, 2(p)) = D(p, p' =T [uv, + W,]). From

hypotheses (Hj), we obtain

Ello(p, zi(p)) = 2(p, 2(p))[|* = 0 as k — oo,

Now,
2
I\ 2
+HABIRup. o) ~ 2002+ 463 (T3 ) BN - FOIP

o\ 2
+ATT(Q)K? (%) E||H.() - HO)|”.
Using (3), (4), (5) and (6), we obtain

EHka — UUHZ —0as k — 0.

As a result, U is continuous on %Bp.
Step 3: To prove U is equicontinuous.
For z € Zp(®), and 0 < p; < p2 < d, we obtain

2

E] B2 (pa) — B(p)

pé_Gnc_W( = Suclp2) [R(p~ " vy, + U, ]) +0(0,(0))]
+ D(p27 (/0;_4—’_77C_n19 [vpz + ‘/I\/m]))

P2 R /\
4 [ o2 = 07 AQ 2 — 0D (et 4 8
0

P2 =~
[ o= 0y = )F (1 4 B
0

(6)
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+ /0P2 (p2 — L)"_lQn(pg — L)’H(L, LI_C"'"C_W[UL + (I\JL])dW(L)>

B p%—c+nc—m9< — Syc(p) [R(p [, 4+ 0,.]) +D(0, a(0))]

+ (o1, (01 vy + )
p1 R R

+ / (p1— )" T AQy(p1 — 1)O(e, JLene=ndy, 4 W,])de
0
p1 ~

[T =0y = 0 F 1+ T

P1 N 2
+ / (1 — )" Qulpr — M (1, =Sy, 4 M)dww)
0

<5k

p;—C-S-nC—W( — Syc(p2) [R(p2™H 0, +0,,]) +D(0, a(0))]

2
_ pi_f"‘”c_"ﬂ( —Sp.c(p1) [N (p%—€+77€—7719 [vp, + \/I\'m]) + (0, O‘(O))]>

Py D (2, (py T T 0y + W)

2

+5E‘

. p%—C-&-nC—WD(m’ (pi—g—&-nC—W[vpl + (I}Pl]))

+5E‘

p2 N ~
py STeTm / (p2 — )" TAQy(p2 — )O (1, 1T v, + W] ) de
0

P1 ,\ ~ 2
_ pi“”cnﬁ/ (p1— )" FAQy(p1 — )O (1, T v, + W) de
0

+55]

P2 =~
p%—C‘FUC—Wﬂ/ (p2 — L)nilQn(PQ — L)]:(L, JLctn=n? [v, + ‘I’L])db
0

P1 =~ 2
L /U (p1 — )" Qy(p1 — )F (1, 7T [y, + 0, de

—I—5E’

p2 ~
pr T / (p2 = )" Qulp2 — )M (1,1~ o, 4+ W) AW (1)
0

P1 -~ 2
_ phCnen / (p1 = )" Qypr — )H (1, = [, + W, )) AW (1)
0

< 10E||py TS, (02) [R(py =T T (g, + W) +D(0, a(0))]

2

=y TS, (o) R (T oy 4 T]) +D(0,0(0))]

+ 10E’ Py TS, (o) (R (o1 T [, + Ty ]) +2(0,a(0))]

2
— pi TS, (o) [R(01 T [,y + T ,,]) + D(0, (0))]

! 5E’ I (e (S W)
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2
A g (A 1)

+ 15E’

o1 N -
p%H"C"’?/ (p2 — )" FAQy(p2 — 1) (1, T v, + W) de
0

2

-~

P1 ~
_ piG"C"ﬁ/ (p1 — )" FAQ,(p2 — 1) (4, UL TR U,])de
0

+15E’

pP1 - ~
plm¢tne=m? /0 (p1 — )" AQy(p2 — 1D (1, P [y, + ] ) de

P1 -~ ~ 2
S / (p1— )T EAQy(p1 — )D (1, 1T 0, + W, ])du
0

2

P2 N ~
- 15E’ py ot / (p2 = )" AQy(p2 — 1)O (1,4 =y, + W] de
p1
p1 ~
+ 15E’ p;—ﬁnc—nﬂ/ (p2 — )" Qu(p2 — ) F (6, T [y, + T, ])de
0

P1 ~ 2
_ phGHneny /U (o1 — )" Qu(p2 — ) F (1, A=, 4 3] de

+ 15E’

p1 T
P}_H%_nﬂ/ (o1 = )" Qulpz — ) F (1, = o, + 0] e
0

P1 ~ 2
— plmcntomo / (p1 — )" Qy(p1 — )F (1, T [y, + 0] ) de
0

2
+15E’

p2 ~
ph=¢Hne—md / (2 — )" 1Qy(p2 — ) F (6, F=H [y, 0, ])de
p1

P1 =
pé—4+71§—7719/ (pg — L)n_lQn(pQ - L)H(L, Ll_C—HK_mg['UL + \PL])dW<L)
0

+ 15E’

1 ~ 2
_ pi—CJF”C_W/ (p1— )" Qy(p2 — )H (1, T [y, + 0] )dW (1)
0

+ 15E’

p1 ~
plm¢tne=nd / (p1 — )" Qup2 — )H (1, =T v, + ) AWV (1)
0

o1 ~ 2
_ p%G”C"ﬁ/ (p1 — L)”_lQn(Pl — L)H(L, JCHne—n? [v, + \I]L])dW([’)
0

2
+ 15E’

12
Z I.
=1

P2 o~
pp T / (p2 = )" Qulpz — )M (1, = o, + W, ])dW (1)
pP1

IN

L =10E||p, T™71S, (pa) [R(p5 T vy, + U,,]) + (0, a(0))]

2
—py TS, (p2) [N (o1 T gy + W) + (0, (0))]

2

~

<10E p;H"C*WSn’g(pz) <N (,oéfH”C*W [Vpy + Wp,]) — N(Piigncinﬁ [vpy + Eﬁn]))
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From hypotheses (Hy) and (5), we obtain I; tends to zero as p2 — pi.

I = 1012]p§‘<+"<‘””sng(p2>[N(p%‘<+"4‘"ﬂ[vpl+—fﬁpJ) +9(0, a(0))]

2
— py TS, (1) [R (1T [, + U, ]) + D(0, (0))]

2

1— —n 1— —nd
< 10|y TS, (p2) — py TS, (1)

2
B (o1, 8, +200,0(0)

By the strong continuity of S, ¢(p) and (Hy), we get I — 0 as pa — p1.

~

I3 = 5E‘ P;HWGWD(P% (P;an?nﬁ[l’pz + \I’pz]))

2
- pi*CJrnC*m?D (Pla (p}*CJrnC*W [Um + \I’m]))

2

1=C+n¢—m9 _ 1-C+n¢—nd
P2

< 5MZM*(1 + P?) o1

From hypotheses (Hj), we obtain I3 — 0 as p2 — p1.

Iy = 15E‘

P1 N ~
pé_c"“"c_"ﬁ/o (p2 — )T L AQ,(p2 — 1), ey, v,])de
p1 —~ ~ 2
_ phmctnon /0 (p1 — )" AQy(p2 — 1) (b, T [y, + T, ]) e
p1
<15E H /0 (pi“ncw(m — )1 = gy gy — L)”‘1>

AQy(p2 = )2 (1! =T o, + W) de

P
<5 [ (s o = gt g - )
0

2

2

2

2

X A\I_an(PQ — ) AT (¢, Letne=ndy, 4 (I\’L]) du

g

/ 2
<15 M) (e
qU'(1 +nq)

P1
— 1- —nd — 1— —nv —
/O (p2 — )"V <p2 S (g = )T py T (=) 1>db

Implies Iy — 0 as p2 — p1.

2
X

~

P1 ~
Is = 15E||pi ¢t / (p1 — )" FAQy(p2 — )D (1, T [y, + 0] ) de
0

P1 Y ~ 2
_ p%GnCnﬁ/ (p1 — )" FAQ,(p1 — 1) (4, LNy, 4 U,])de
0

2
< 15M3M,L/U2(1 + p?(I*CJF??C*m?)P/Q)

pP1
ACMCWA (o1 — )" [Qulp2 — 1) — Qulpr — 1)) de
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Since Q;(p) is uniformly continuous in operator norm topology, we obtain Is — 0 as pa — py.

2
I = 15E‘

1—¢+n¢— nﬁ/ <P2 _ L)U—lA\Qn(p2 _ L)D(L, Ll—C+77C—7719[UL + \/I}L])dL
p1

< 15<M{uﬁl—q77r(1+Q)) (1+ 2(1—¢4n¢— ?719)]3/2) 2(1—C+n¢—nv) /pQ(pQ_L)%(lq)dL
ql'(1 + ngq) o1

Integrating and ps — p1 = I = 0.

I; = 15E‘

1—C¢+n¢— m‘}/ (p2 — L)nilQn(pQ _ L)f(L, L1*C+77<*7719[1)L + \/I\’L])db
0

p1 ~ 2
_éﬂwGW/(m_mlwwywvﬁf<ﬂ<wm+wmm
0
< 15EH /p1 <p§—4+n4—m9(p2 B L)n—l _ p}—CJrnC—nﬂ(pl N L)n—l)
0
Qy(p2 — A)}"(L, JLCtnC—nd [v, + (I\/L])db

P1
< 15r, /0 (pé_““_”ﬁ(m — )" =T (o L)”‘1>
(p2 = )*""~Vmi(d) f(P')de.

2

2

Implies Iy — 0 as p2 — p1.

Is = 15F

P [ o1 = 77 1Q = ) F (o 1 8
0

2l = ?
_ p%CH?C?W/ (p1— )" Qu(p1 — ) F (6, T [y, + T, ])de
0

_ _ P1 _
< 15p§(1 ¢Hné m?)/o (p1 — )2 1)HQ77(/)2 — 1) = Qulp1 — o)||mi(d) f2(P")de

Since Qy(p) is uniformly continuous in operator norm topology, we obtain Iz — 0 as pa — p1.

2
Iy =15E||p

2 ~
1=CHnc—nd / (2 — )" Qy(p2 — 1) F (1, A= 0, + 0] de
p1

p2
< 1523 = [ gy 2 V) (P
p1

Integrating and ps = p1 = Ig = 0.

To = 15E‘

p1 ~
1=Cne=nd /O (p2 =)' Qulp2 — )H (1, =T o, + W,])dW (1)

PL ~ 2
_piu%vm/ (o1 = )" Qylp2 = )M (1, = [0, + W,])dW (1)
0

P1
< 15EH /0 (p;CJrnCW(pz _ L)n—l . pifCJrnC*nﬂ(pl _ L)??—1>
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2
Q,(p2 — L)H(L, L1_<+77C_7719[UL + \/I}L])dW(L)

P1
/ <p;‘<+"<‘"ﬁ<pz — O >>
0
(p2 = P Dmi(d)R* ().

2

< 15T7"(Q)/<;127

Implies I1g — 0 as p2 — p1.

I = 15E‘

1=C4ne— 7719/ (p1— )" Qy(p2 — ) H (e, ey, 4 (I}L])dW(L)
0

p1 ~ 2
e / (1 = )" Qulpr — )H (1, =T o, + W) dW (1)
0

p1
< 15Tr(Q)py ) /0 (o1 — 027V Qyp2 — 1) — Qulpr — 0)||*m3(d)R2(P")de.

Since Q,(p) is uniformly continuous in operator norm topology, we get I — 0 as ps — p1.

2
Iip = 15E‘

1=C+n¢— nﬂ/ (pg — L)nilQn(p2 - L)H (L, Llicﬂ]cinﬁ [UL + \/I}L])dW([’)
pP1

p2
<15Tr (@) [ oy = P V(@) ()

p1

Integrating and py — p1 = I12 = 0.
Hence, U is equicontinuous on 3.

Step 4: The Monch statement is true.
Let G =01 + Uy + U3 + U4 + U5, where

B10(p) = =Syc(p) [R(p" 7 0, + W,)) + (0, a(0))],
Bav(p) = (p, (P!, + T, ))),

Bau(p) = [0 =01 AQy (= 02 (01, 8 ),
Gio(p) = [ o= 077 1Qu = 0F (17T, 4 B )
Usv(p) = /Op(p — )" 1Qu(p — ) H (e, LSy, 4 (I\’L])dW(L).

Suppose G C Bp is countable and G; C co({0} U F(G;)). We demonstrate that u(Gy) = 0,
where p is the Hausdorff MNC. Without loss of generality, suppose Gy = {v*}%°,. Since U(G1) is
equicontinuous on ® as well.

Utilising Lemma (see [29]), and the hypotheses (H2)(c), (H3)(c), and (Hy), we have

n({B1F (0)1i21) < id — Spc(@) (P f 4+ 8,1) +0(0,a(0)] 132,
since N is compact, then S, ¢(p) is relatively compact, we get U;v(p) becomes zero. Next consider,
({20 (0)}72) < (D (p, (P~ g + D)) 1

({30 () 17) < u{ / (0= 0 LAQy (p — D (1, Pk 4 @A)cu}

o0

k=1
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From hypotheses (Hs) and properties of function o and A\Q, we obtain, that terms are relatively
compact. So Ugv(p) and Usv(p) become zero.

o0

u({Uw (p) Iz 1) < {/Op(p—L)"lQn(p—L)]:(L,LlC+n§nﬁ[vf+\flL])dL}
2 [0 0o - e swp (eI )

—00<6<0

< 2( TV lrl g gy (O,

k=1

IN

/\

o

u({Ts* ())72) < u{ / "0 — Q0 — Y H (1, I @J)dwm}

k=1

<21v(@ | "= Q- Des(t) s p({0h(0)}32)de

—00<0<0
uos

d oo
<2r(Q) (55 Jleal, g 0,30 HRENEL):
Thus, we have

p({00%(p)12) < n({B10%(0)132) + 1({B20"(p)}221) + n({Usv™(p)}221)
+ ({00 (0)1221) + 1 ({Us0%(0)132)

<2( TVl g gy (5O
+20rQ) (5 Yleal oy (EEOE)

9
§2<Cf;9>[’61\| 1 +Tr(Q)]|ea| Ju({o* (0)152)

L2 (D,RT) L (D,RY)

% dnﬂ
where 0 =2(55 ) [leal y o+ Tr@eal g )

Since G and U(Gy) are equlcontlnuous on D, it follows from Lemma (see [29]) that the constraint
implies that u(0G1) < M*u(Gy).

Therefore, given the requirements of the Mdnch’s, we get
1(G1) < p(ea{0} UB(G1)) = w(UG1) < M*uGh.

Given M* < 1, we have u(Gy) = 0. Therefore, G is relatively compact. As a result, U has a fixed
point v in Gy from Lemma 6.

Hence, completed the proof.
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3 FExample

Consider the HF neutral stochastic differential systems with infinite delay of the form
3¢
Dgy [2(p,7) + [y p(B;7)2(p, 7)dB] = 227 (p,T) + 7 (p, JZxale = p)2(p, T)dé>

. <p, J2 e = Ao, T>dW<c>>a (7)

z(p,0) = z(p,m) =0, p€ D,

Iéi_g)(l_C)z(O,T) + [y N(B,7)z(p, 7)df = 2(0,7), T €[0,7], p € (—00,0),

where D§ J’f denoted the HFD of order n = 2/3, type ¢ and x, X1, p and A are the necessary functions.
Consider, W (p) is the one-dimensional Brownian movements in Y represented on the filtered probability
space (A, .7, P) and with || - ||y to write the system (7) in the abstract form of (1)-(2). Let Y = L?[0, 7],
to transform this structure into an abstract structure, and A: D(ﬁ) C Y — Y is classified as Az = 2/
with

D(A) = {z € Y:z,2" are absolutely continuous, z” € Y, z(0) = z(x) = 0}

and

Az =Y K (x, ar)on, 0 € D(A),
k=1

where the orthogonal set of eigen vectors of A is or(z) = \/gsin(k:x), ke N.

Here, A is the almost sectorial operator of the analytic semigroup {T'(p), p > 0} in Y, T'(p)
is noncompact semigroup on Y with ((T'(p)B) < ((B), where ¢ denoted the Hausdorff measure of
noncompactness and there exists a constant Ky > 1, satisfy sup,cp [|T(p)| < K.

Specify, F : D x By = Y, H: D x B, —» LY(J,Y), 0: D x B, — Y and X : B, — Y are the
suitable functions, which fulfils the assumptions (Hy) — (Hs),

F(p 20)(r), = v(p, JE T>db>7

o

1oz 0= x(r [ xale= (o).

o0

2, 20)(7) = /0 " p(B. )2, ),
R(z,)(r) = /0 " N(B.7)2(p. 7)dB.

We also establish some acceptable requirements for the above-mentioned functions in order to validate
all of the Theorem 4’s hypotheses, and we confirm that the HF stochastic system (1)-(2) has a mild
solution.

Conclusion

The existence of a mild solution to HF neutral stochastic differential systems was the main emphasis
of this research. Almost sectorial operators, fractional calculus, MNC, and the fixed point approach
are used to establish the key conclusions. We offered an example to further illustrate the idea. In the
following years, we’ll use the fixed point approach to examine the exact controllability of HF stochastic
differential systems with delay.

Mathematics series. No.1(113)/2024 189



S. Sivasankar, R. Udhayakumar et al.

Acknowledgments

The authors thank the referees very much for their valuable advice on this paper.

Author Contributions

All authors contributed equally to this work.

Conflict of Interest

The authors declare no conflict of interest.

References

Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations.
Applied Mathematical Sciences, Vol. /4. Springer, New York. https://doi.org/10.1007/978-1-
4612-5561-1

Podlubny, I. (1999). Fractional Differential Equations. Academic Press, San Diego.

3 Zhou, Y. (2014). Basic Theory of Fractional Differential Equations. World Scientific, Singapore.

10

11

12

190

https://doi.org/10.1142/9069

Agarwal, R.P., Lakshmikanthan, V. & Nieto, J.J. (2010). On the concept of solution for fractional
differential equations with uncertainty. Nonlinear Analysis, Theory Methods and Applications
72(6), 2859-2862. https://doi.org/10.1016/j.na.2009.11.029

Ahmad, B., Alsaedi, A., Ntouyas, S.K., & Tariboon, J. (2017). Hadamard-Type Fractional Diffe-
rential Equations, Inclusions and Inequalities. Springer International Publishing AG.
https://doi.org/10.1007/978-3-319-52141-1

Diethelm, K. (2010). The analysis of fractional differential equations. An application-oriented
exposition using differential operators of Caputo type. Lecture Notes in Mathematics. Springer-
Verlag, Berlin.

Wang, J., & Zhou, Y. (2011). Existence and Controllability results for fractional semilinear
differential inclusions. Nonlinear Analysis: Real World Applications, 12, 3642-3653.
https://doi.org/10.1016 /j.nonrwa.2011.06.021

Wang, J.R., Fan, Z., & Zhou, Y. (2012). Nonlocal controllability of semilinear dynamic systems
with fractional derivative in Banach spaces. Journal of Optimization Theory and Applications,
154(1), 292-302. https://doi.org/10.1007 /s10957-012-9999-3

Guo, Y., Shu, X.B., Li, Y., & Xu, F. (2019). The existence and Hyers-Ulam stability of solution for
an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with
infinite delay of order 1 < 8 < 2. Boundary Value Problems, 59, 1-18. https://doi.org/10.1186/
$13661-019-1172-6.

Li, F., Xiao, T.J., & Xu, H.K. (2012). On nonlinear neutral fractional integro-differential inclusions
with infinite delay. Journal of Applied Mathematics, 2012, 916543, 1-19. https://doi.org/10.1155/
2012/916543

Ma, X., Shu, X.B., & Mao, J. (2020). Existence of almost periodic solutions for fractional

impulsive neutral stochastic differential equations with infinite delay. Stochastics and Dynamics,
20(1), 1-31. https://doi.org/10.1142/S0219493720500033

Boudaoui, A., & Slama, A. (2016). Approximate controllability of nonlinear fractional impulsive
stochastic differential equations with nonlocal conditions and infinite delay. Nonlinear Dynamics
and Systems Theory, 16(1), 35-48.

Bulletin of the Karaganda University



Existence of Hilfer fractional ...

13 Evans, L.C. (2013). An Introduction to Stochastic Differential Equations. Berkeley, CA: University
of California, Berkeley.

14 Mao, X. (1997). Stochastic Differential Equations and Applications. Horwood, Chichester, UK.

15 Sivasankar, S., & Udhayakumar, R. (2022). A note on approximate controllability of second-order
neutral stochastic delay integro-differential evolution inclusions with impulses. Mathematical
Methods in the Applied Sciences, 45(11), 6650-6676. https://doi.org/10.1002/mma.8198

16 Hilfer, R. (2000). Application of fractional calculus in physics. World Scientific, Singapore.

17 Gu, H., & Trujillo, J.J. (2015). Existence of integral solution for evolution equation with Hilfer
fractional derivative. Applied Mathematics and Computation, 257, 344-354. http://dx.doi.org/
10.1016/j.amc.2014.10.083

18 Sivasankar, S., & Udhayakumar, R. (2022). Hilfer Fractional Neutral Stochastic Volterra Integro-
Differential Inclusions via Almost Sectorial Operators. Mathematics, 10(12), 2074. https://doi.org/
10.3390 /math10122074.

19 Yang, M., & Wang, Q. (2017). Existence of mild solutions for a class of Hilfer fractional evolution
equations with nonlocal conditions. Fractional Calculus and Applied Analysis, 20(3), 679-705.
https://doi.org/10.1515 /fca-2017-0036

20 Bedi, P., Kumar, A., Abdeljawad, T., Khan, Z.A., & Khan, A. (2020). Existence and approximate
controllability of Hilfer fractional evolution equations with almost sectorial operators. Advances
in Differential Equations, 615, 1-15.

21 Jaiswal, A., & Bahuguna, D. (2020). Hilfer fractional differential equations with almost sectorial
operators. Differential Equations and Dynamical Systems, 31, 301-317. https://doi.org/10.1007/
$12591-020-00514-y.

22 Karthikeyan, K., Debbouche, A., & Torres, D.F.M. (2021). Analysis of Hilfer fractional integro-
differential equations with almost sectorial operators. Fractal and Fractional, 5(1), 1-14.
https://doi.org/10.3390 /fractalfract5010022

23 Varun Bose, C.S.,; & Udhayakumar, R. (2022). A note on the existence of Hilfer fractional
differential inclusions with almost sectorial operators. Mathematical Methods in the Applied
Sciences, 45(5), 2530-2541. https://doi.org/10.1002/mma.7938

24 Li, F. (2013). Mild solutions for abstract differential equations with almost sectorial operators
and infinite delay. Advances in Differential Equations, 2013(327), 1-11.

25 Periago, F., & Straub, B. (2002). A functional calculus for almost sectorial operators and applications
to abstract evolution equations. Journal of Evolution Equations, 2, 41-68. https://doi.org/10.1007/
s00028-002-8079-9

26 Wang, R.N., De-Han Chen, & Xiao, T.J. (2012). Abstract fractional Cauchy problems with almost
sectorial operators. Journal of Differential Equations, 252(1), 202-235. https://doi.org/10.1016/
j.jde.2011.08.048

27 Zhang, L., & Zhou, Y. (2014). Fractional Cauchy problems with almost sectorial operators.
Applied Mathematics and Computation, 257, 145-157. https://doi.org/10.1016 /j.amc.2014.07.024

28 Zhou, M., Li, C., & Zhou, Y. (2022). Existence of mild solutions for Hilfer fractional differential
evolution equations with almost sectorial operators. Axioms, 11, 144. https://doi.org/10.3390/
axioms11040144.

29 Ji, S., Li, G., & Wang, M. (2011). Controllability of impulsive differential systems with nonlocal
conditions. Applied Mathematics and Computation, 217, 6981-6989. https://doi.org/10.1016/
j.amc.2011.01.107

30 Monch, H. (1980). Boundary value problems for nonlinear ordinary differential equations of
second order in Banach spaces. Nonlinear Analysis, 4 (5), 985-999.

Mathematics series. No.1(113)/2024 191



S. Sivasankar, R. Udhayakumar et al.

IMTekci3 kemiryi 6ap 6eJIek-HeHTPaJIaAbl CTOXaCTUKAJBIK XUJIbdep
anddepeHIInaAIbIK >KylieJepiHiH 00JIybI

C. Cupacankap', P. ¥Vaxaaxymap!, B. Myrxymapan?, I'. Toxyn!, I1I. Anp-Omapu®

L XK emindipineen evivmdap mexmebi, Bearypy mexnonozuanvs uremumymuo, Beaaypy, Yndicman;
2 Mnocenepair orcone mernoroezusap koaredsnci, SRM Fouavim scone mernorozus uncmumymon, Kammankyaamyp,
Ynoicman;
3 Fowvim axyavmemi, Oa-Baaka xordanbars yrnueepcumemi, Amman, Hopdarus

3eprreyain MakcaTsl oirii Puman-Jluysunn Gestimek TyBIHIBICHIH KaINbLIANTBIH [ MasbepT KeHicTiriHme-
ri Xunabdep OOIIeK TYyBIHIBICH KATHICATHIH JEPJIK CEKTODJIBIK OINEPATOpJapbl 0ap KeImireTin Oesrnex-
HENTPaJIbl CTOXaCTUKAJIBIK, AU depeHINaJIbIK, Kyieaep YIMH »KYMCaK IMIeniMIep/ i O0oJIyblH YCBHIHY.
Herisri ogmicTep Gemrmiek ecenTeymiH, >KapTbLIail TPYIIa TEOPUSICHIHBIH, JIEPJIK CEKTOPJIBIK OMEpaTOpJIap-
IBbIH, CTOXaCTUKAJIBIK TAJIIayIbIH YKOHE KOMIAKTBIIBI eMeC OJIIIeMi apKbLTbl MEHXTIH KO3FAJIMANTHIH HYKTE
TeOpEeMaChIHbIH, HEri3r Karuaaaapbl MEH TYKBbIPhIMIaMaJiapblHa Heri3Jeared. Aram aiiTKaHa, TEHAEYIIH
Gap OOJIYBIHBIH HOTUKECI 9JICI3 KOMIIAKTHIIBIKTEIH, Oe/IrisTi 6ip KaFmaiblHIa aJIbHIRL. MaKaJlaHbIH COHBIHIA
aJIBIHFaH aOCTPAKTBLIBI HOTHKEJIEP/IiH, KOJIJIAHY asChIH KOPCETeTiH MbICaJ Oap.

Kiam cesdep: Xunbdepais 66IIIeK 3BOMIOMUSIBLIK, >Kyieci, HeATpaaabl Kyiie, KOMIAKTBHIIbI €MEC ©JIIIEM,
KO3FaJIMafiThIH HYKTE TEOPEMACHI.

CyecTBoBaHue JAPOOHO-HENTPAJIBHBIX CTOXACTUYIECKNX
anddepeHInaJIbHBIX cucTeM XmiIbdepa ¢ 6eCKOHEeYHBIM
3ana3AbIBAHNEM

C. Cupacanxap!, P. ¥Vaxaaxymap!, B. Myrxymapan?, I'. Toxyx!, I1I. Anb-Omapu®

ITkona nepedoswx nayk, Texnoroeuveckud unemumym Beaaypy, Beaypy, Hrndus;
2 . o
Hnotcenepro-mexHosozuveckutl xKoanedatc; Unemumym Hayrxu u mexnoroeutit SRM, Kammanxyaramyp, Unous;
3 [Tpurradnoti yrnusepcumem Aav-Banka, Amman, Hopdarus

Ilens qaHHOTO UCCIIE0OBAHNST — MPEJJIOXKUTD CyIIECTBOBAHUE MATKUX PEIIEHUI JIJTsT 3aI1a3/IbIBAIOIIIX IPOOHO-
HEUTPAJIBHBIX CTOXACTUIECKUX AP DEPEHITNATBHBIX CUCTEM C IOYTH CEKTOPUATHLHBIMA OTIEPATOPAME, BKJTIO-
JaOIIMMHK JIPOOHYIO TTPOU3BOIHYI0 Xuibdepa B I'HJILOEPTOBOM IIPOCTPAHCTBE, KOTOPas 0000IIaeT 3HaMe-
HUTYIO JIpOOHYI0 Tpon3Bouyo Pumana-JIuysuiisi. OCHOBHBIE METO/BI TOCTPOEHBI HA 6A30BBIX ITPUHITUIIAX
¥ KOHIIEMIUAX JIPOOHOTO MCUUC/IEHUSI, TEOPUHU MOTYTPYII, TOYTH CEKTOPUAIBHBIX OIIEPATOPax, CTOXACTU-
YeCKOM aHajim3e U TeopemMe MEHXa O HENOJBMXKHOIM TOUYKE Yepe3 Mepy HEeKOMIIaKTHOCTH. B uacrHOCTH,
pe3yJIbTaT CyIeCTBOBaHUs YPABHEHUS TIOJIYUEH IIPU HEKOTOPBIX YCIOBUSAX CJIabOil KOMIAKTHOCTH. B KoHIEe
CTaTbU IIPUBEJIEH IIPUMEDP, JTEMOHCTPUPYIOMIMI MPUMEHEHNE IOy I€HHBIX aOCTPAKTHBIX PE3Y/IHTATOB.

Kmouesvie caosa: npobHasi IBOTIONMMOHHAS CUCTeMa XMibdepa, HeTpaabHasi CHCTEMA, MePa HEKOMIIAKT-
HOCTH, TEOPEMa O HEIIOJ[BUXKHOM TOYKE.
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A Novel Numerical Scheme for a Class of Singularly Perturbed
Differential-Difference Equations with a Fixed Large Delay
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A trigonometric spline based computational technique is suggested for the numerical solution of layer
behavior differential-difference equations with a fixed large delay. The continuity of the first order derivative
of the trigonometric spline at the interior mesh point is used to develop the system of difference equations.
With the help of singular perturbation theory, a fitting parameter is inserted into the difference scheme
to minimize the error in the solution. The method is examined for convergence. We have also discussed
the impact of shift or delay on the boundary layer. The maximum absolute errors in comparison to other
approaches in the literature are tallied, and layer behavior is displayed in graphs, to demonstrate the
feasibility of the suggested numerical method.

Keywords: singularly perturbed differential-difference equation, delay, trigonometric spline, fitting parameter.

2020 Mathematics Subject Classification: 65L11, 65L12.

Introduction

Delay differential equations (DDEs) are frequently encountered in a wide range of application
disciplines and are also explained in technological components like control circuits. DDEs are widely
occurred in various branches of physiological control systems [1], models of red blood cell system [2],
pupil light reflex behaviour [3], hybrid optically bistable devices with delayed feedback [4]| and the
navigational control of ships and aircraft and in more general control problems [5|. Time delays are
virtually always present in systems with feedback controls. These happen because detecting information
and responding to it both take time. If the argument for the delay does not appear in the highest order
term, the DDE is of the retarded type. Delay differential equations of the retarded type are obtained
by restricting the class in which the highest order derivative term is multiplied by a small parameter.
Bender and Orszag [6], O’Malley [7], Doolan and Miller [8], Miller et al. [9], Roos et al. [10] have
written books detailing several approaches to addressing singularly perturbed problems (SPPs). Driver
[11], Bellman and Cooke [12], provided books that explained differential-difference equations. In [13],
the researchers elucidated analysis of a class of singularly perturbed differential-difference equations
[SPDDEs]|. In [14], problems with solutions having a layer structure at one or both of the boundaries are
addressed. The layer can alter its nature and possibly be destroyed when the shifts rise but stay small,
as demonstrated by the study of the layer equations using Laplace transforms. The same researchers
handle two situations in [15]. The first is concerned with the magnitude of the shifts that affect the
solution, while the second is concerned with the SPDE’s oscillatory solutions. Kadalbajoo and Sharma
[16], provided a numerical procedure for solving SPDE with larger or smaller delay argument. To handle
the delay term, a mesh is generated so that the delay term falls on nodal points. Kadalbajoo et al. [17],
utilize Shishkin mesh to derive the fitted mesh approach to solve singularly perturbed general DDEs.
Gabil and Erkan [18], devised a fitted difference scheme for convection-diffusion problems by employing
exponential basis functions, integral identities and interpolating quadrature procedures. The authors

*Corresponding author. E-mail: kollojuphaneendra@yahoo.co.in
Received: 07 June 2023; Accepted: 07 December 2023.
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in [19], suggested adaptive grid methods for the solutions to problems with boundary or interior layers.
A grid with equidistributing arc-length monitor function is constructed to solve the problem. In [20], a
first-order uniform convergence fitted difference approach is built in the discrete maximum norm. Ravi
Kanth and Murali [21], devised a numerical scheme for solving nonlinear SPDE. The Quasilinearization
technique is implemented on the nonlinear SPDE to get a sequence of linear SPDEs. A fitted spline
method is implemented for the solution of these problems. In [22], it is established that the family of
periodic boundary value issues for the system of ordinary differential equations with delayed argument
and the periodic boundary value problem for the system of hyperbolic equations with delayed argument
are related. The construction and convergence of algorithms for solving the comparable problem are
demonstrated. The author of [23] investigated a boundary value problem with the Sturm-Liouville type
conditions using Green’s function method for a linear ordinary differential equation of fractional order
with delay. In [24], authors proposed a scheme for the solution of a differential equation with delay and
advanced parameters having an interior layer behaviour using a non-standard finite difference method.

1 Statement of problem
Consider the following SPDDE with a fixed delay
") +p ()2 (0) +q ()2 (¥ —1) = f(9), ¥ €[0,2] (1)

subject to the boundary constraints

z(2) = 4, (2)

where, 0 <e< 1 and p(¥) > a > 0, 0 < ¢(9) < Oand f (¥) are smooth functions on [0, 2], ¢ () is
smooth functions on [—1,0] and f is given constant. The solution of Eq. (1) with Eq. (2) reveals a
boundary layer at ¥ = 2 with the small values of ¢.

2 Numerical method using a trigonometric spline

The domain of the integration [0, 2] is partitioned into L equal sub intervals with mesh length
h = %, so that ¥; = ih, i = 0,1, 2,..., L are the nodes with 0 =3¢, 2 = ¥ . Let z(9) be the
exact solution and ¥J; be an approximation to z(%¢;) by the trigonometric spline S;(¢}) passing through
the points (9;, z;) and (9541, zi+1). Here S;(¥) satisfies the conditions of interpolation at ¥; and ;41
and also the first order derivative continuity at the common nodes (9;, 2;) is satisfied. For each it

subinterval, the trigonometric spline function S;(¢) has the form
51(19) = a; +b; (19 — 19¢)+cisin7'(19 — 291')—|-di6087' (19 — ’191) ,t=20,1,..., L — 1. (3)

Here a;, b;, ¢; and d; are constants and 7 is a free parameter.

The trigonometric spline S;(9) of class C2[0, 2] interpolating z () at the points ¥;, i = 0, 1,..., L
depends on 7 and deduces to cubic spline in [0, 2] as 7 — 0. The following are defined to obtain an
expression for the coefficients of Eq. (3) in terms of z;, zj+1, ©¥; and ¥4

1

Si (03) = zi,  Si(Vig1) = zit1, S;/ (05) =i, S; (Vig1) = Yiga.

Using these conditions, the following expressions are obtained:

i by = Zi—zz‘+1+¢i+1—¢z‘,

ai:zi_‘_ﬁ’ - h 70
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. wiCOSH — 1/%.;,.1
T2sin6

(0

72’

i and di =
where 0 = Th, for i = 0,1,..., L — 1. Using the continuity of the first order derivative at (¢;, z;), that
is S;+1 (9;) = S (9;), we get the following relation for i =1,2,...,L — 1.

(2

Zio1— 22 + zi11
athi iy + 2B +onp_ = = h; = (4)

where
B -1 1 B 1 cosb

a_ﬁ—i_ﬁsmﬂ and 6_@_ fsinb’
=2 (9;),j=i+1,i.

At the mesh point ¥}, the suggested approach can be discretized by the convection-diffusion equation
(1) as
1
b=~ (f W) = p(d)

3

’

(9) = q (9) 2 (9 = 1)) for j = i % 1,3 (5)
using Eq. (5), Eq. (4) can be represented as

a

- (f (9i41) =P (Vit1) 2 (Vi1) —q (Diz1) 2 (192'+1—1)> +

£

+¥ (f(ﬁz') —p (%) 2 (%) —q () = (ﬂi_l)) n

+

™R

<f (9i1) —p (9_1)7 (9j_1) —q(9i_1) 2 (192,71_1)> _ <Zi—1 - QhZ; + Z¢+1> |

!

el (f (it1) =p (Vit1) 2 (tit1) —q (Piy1) 2 (19i+1—1)> +

+28 (£ (9) —p (9,) 2

!

(¥) —a (9:) 2 (9,=1)) +

/

+a (f (Vi—1) —p (Vi—1) 2

Using the finite differences

/ zi—1—42i—32i11 / Zif1—Zi-1
z (Viy1) = < on a ), z (V) = <+2h>’

/ zir1—4z;—3zi_
: (ﬂi_l):< o 1)'

(¥i—1) —q (Viz1) 2 (?9z‘—1—1)> = % (zic1 — 22 + zi41) - (6)

Eq. (6) is reduced to

zi—1—42i—3zi11

a (f(ﬁiﬂ) =P (Vit1) ( oh ) —q (Pi1) 2 (19z‘+1—1)) +

+25 (100 -p () () —a ) 2 00-)) +

Zit+1 —421—32171

+a (f(ﬂil) —p (¥i-1) ( o ) —q(9i-1) 2 (191.1_1)> _

&
=72 (2zi—1—22i+2i41) ,
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e Bai @ -2 2«
(h2 - + (ﬁ (i1 — 3P¢1)>> Zi-1+ (h2 T (Pit1 pil)) Zit

e a; (e%
+ <hQ + Bh + o (3pit1 — pil)) Zig1 = af(¥i—1) — aq(¥i—1)z(Pi—1—1)+

+28f(0i) — 28q(¥:)2(Vi—1) + af (Viy1) — aq (Vit1) 2 (Fir1—-1) . (7)

To reduce the error value in the solution over the domain ;= (0, 1), we insert a fitting parameter
o (p) in the above numerical scheme Eq. (7) for the equation

"

eo(p)z (9) +p()z (9)+q@)z(0—1)=f(9).
h

The value of the fitting parameter is o (p) = p (o + 3) coth (25%) , where p = 2.
The scheme Eq. (7) with a fitting factor can be written as

Fizi 1+ Fizi + Gijzi_1 — H; =0 fori=1,2,...,L—1, (8)

where 8
o€ a; o
E; = (h? -5t <ﬁ (Pig1 — 31%‘—1))) ;
-2 2
F; = < h;jg - fa (Pit+1 —Pi—1)> )
G; = (:; + B;Lli + % (3pis1 —pi—1)>
and
Hi =a(f (Vi-1) — ¢ (i-1) pi-1) + 28(f (0:) — ¢ (%) i) + a (f (Yi1) — q (Vit1) pit1) ,

here

pir1=2Wit1—1), pi=20;—1), pi-1 =2z (-1 —1) in[0,1].
Now, to find the solution in Q9= (1, 2), we consider the finite difference scheme Eq. (7) with fitting
factor o (p) in the equation

1"

eo(p)z () +p @)z (9)+q@)z(0—-1)=f ().
Here the value of o (p) is o (p) = p (o + f3) coth (22) , where p = 2

E-

Then, the scheme Eq. (7) with a fitting factor can be written as
Eizi 1+ Fizi+Gizip1— H; =0 fori=L, L+1,...,2L -1, (9)

where 8
oe a; o
E; = <h2 - + (% (pit1 — 3]02—1))) ;
—20e 2«
F; = <h2 - (Pit+1 _pi1)> ;
Gie (524 8% L @ g )
T h2 h oh Di+1 Di—1
and

Hi=a(f(Wi-1) —q(Wi-1) 2 (i1 — L)) + a (f (Vi+1) —a(Pir1) 2 (Jip1 — L)) +
+26(f (9:) —a(¥y) z (9 — L)).
To solve the system of equations Eq. (8) and Eq.(9), the condition z(L) is required. To get the

value of z(L), we utilize the reduced problem of Eq. (1) by setting ¢ = 0 and Runge-Kutta 4*" order
method is used to solve the reduced differential equation.
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3 Local error estimate

The local error estimate for the numerical scheme of Eq. (8) is

700 = 2o+ 26 - e + ((a= ) estt = (24 8) il w008 (0

Hence, with a = % and o+ 5 = % , the truncation error is fourth order.

4 Convergence analysis

Considering the matrix version of Eq. (8) with the boundary conditions, we have

(A+P)Z+Q+T(h)=0, (11)
where
[ —2e0  eo 0o 0 .. 0
eo —2e0 €0 .. .. 0
. 0 .. e 0
| 0 eoc —2¢e0
and
mi kl 0 0 ... 0 1
lo mo ko 0 ... 0
0 { ms ks ... 0
P = [li,mi,ki] = 3 3 5 9
. 0 0 lp—1 mp—1 |
where
h 2
l; = 5 (=3api—1 — 2Bpi + apiq1) + h agi—19i-1,
h 2
mi =5 (4api—1 — apiy1) + 2h°Baipi,
h 9 .
ki = 5 (—api—1 +2Bp; + 3apiy1) + hagiy1pir, for 1 <i <L -1
and
Q = [Tl + (E(T + kl) $0,72,73, ., "TL—2,TL—1 + (EU =+ k‘lL—l)’Y]T )
where

qi = h2 [Oék‘i+1 + 28k; + Oé/{?ifl] , 1<i<L-—-1,

T (h) =0 (h*)and Z = [Zy, Zo, . . ., Zr T T (h) =T, Tas ..., To1]', O =10,0,...,0]  are associated
vectors of Eq. (11).
Let n = [n1,ng, ...,nL_l]T = 7 satisfy the equation

(A+P)n+Q =0. (12)
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Let e; =n; — Z;, i =1,2..., L — 1 be the discretized error E = [eq, e, ...,eL,l]T =n—Z.
Using Eq. (12) and Eq. (11), we get the error equation as

(A+P)E =T(h). (13)
Let [p(s)] < Dy and |q (s)] < Dy, where Dy, Dj are positive constants. Let (i, /)™ element of the
matrix (A + P) be (; j then
(Giir1] < () + h(a+ B)D1 + h*(agiy1pit1 + 28aipi), 1 <i <L -2,
(Giim1| < () + h(a+ B)D1 + h*(agi10i1 + 2Bqipi), 1<i<L—1.
Hence, for small values of h, we have
‘sz+1! <eo, 1<i<L-2

and
|Ci,i—1’ <eo, 2<i<L-—1.
Hence (A + P) is irreducible [25].
Let S; be the i*" row elements sum, of the matrix (A 4 P), then we have
Si = =& + h(a + B)pi + h*(agi1piv1 + 2Bgipi) for i =1,
Si = h? (agi1pi1 + 2B¢ii + aginipiy1) for i=2,3,..., L -2,
Si = —& — h(a+ B)pi + h*(agi—1pi—1 + 2Bqipi) for i=L—1.

Let D1« = [p(s)| and D} =|p(s)|, D2+ = |q(s)| and D3 =|q(s)|. Since 0 < ¢ < 1, and € x O (h)

it is verified that for sufficiently small h. (A + P) is monotone [25,26]. Hence (A + P) ™' exists and
(A+ P)~" > 0. Thus using Eq. (13), we have

1BN < [[ca+ Py - (14)
Let (A + P); ! be the (i, k)" element of (A 4+ P)~" and define
1y L-1 .
H(A+P) = max »  _ (A+ P)i and [ T(h)] = (Joax | [T(R)]
Since
(A+P);, Oandz A+PZ,€, Sp=1 for 1 <i<L-1, (15)

we have ) )
A+ P)7E < . i=1, 16
(A+ )”k max S; < h2Do ! (16)
1<i<L—1

1 1
A+ P <= < ——
( + )Z,k’ SZ < h2D27

i=L-1. (17)

Further . ) )

-1 .

< <1< L —

> (AP < —— 5 < wDy for 2<i<L—2. (18)
2<i<L—2

From Eq. (10), Eq. (14) and using of Egs. (15)-(18) we get
1Bl <0 ().

Second-order convergence of the proposed scheme is thus observed in the first half of the interval.
Similarly, we can demonstrate that the scheme exhibits second-order convergence in the second half of
the interval by using Eq. (9).
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5 Numerical examples

Three examples are used to demonstrate the proposed scheme. The maximum absolute errors
(MAEs) in the solution are computed using the double mesh principle [4].
Utilizing the following formula

L
RL lOg KZEL

log2

the numerical convergence for each case has been determined.
Ezample 1. ez (9) — 32" (9) 4+ 2(9 —1) =0, with 2 (¥) = 1; =1 <9 <0, 2(2) =2.

Ezample 2. ez (9) — 22 (9) + 529 —1) =0, with z(9) = 1; =1 <9 <0, 2(2) = 2.

" ! — < v <
Ezample 3. ez (9) — 5z (79)_,_%2(19_1):{ 1,0<9 <1

6 Discussions and conclusion

To solve a SPDE with a fixed large delay, a trigonometric spline-based numerical technique is
proposed. The strategy is designed by utilizing the continuity of the first order derivative of the
spline. The convergence of the method is investigated, and it reached second order convergence. Three
examples of the scheme with the right end boundary layer are provided. The maximum absolute errors
(MAEs) in the solutions are tabulated in Tables 1, 2 and 3 in comparison to the method given in [27].
The rate of convergence in the solutions is also computed. The layer structure is depicted in Figures
1, 2 and 3. In the illustration, it can be seen that the width of the right end layer similarly reduces as
the perturbation value does.
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7 Tables and Figures

Table 1
MAEs in Example 1
5\1/ L N 27 28 29 210 211 212
suggested method

2% 9.5547e-06  2.3939e-06  5.9883e-07  1.4975e-07  3.7573e-08  9.7531e-09
1.9968 1.9991 1.9996 1.9948 1.9458

26 1.9455e-05  4.9061e-06  1.2292e-06  3.0749e-07  7.6942¢-08  1.9565e-08
1.9458 1.9875 1.9969 1.9987 1.9755

277 3.8180e-05 9.8729e-06  2.4898e-06  6.2383e-07  1.5608e-07  3.9153e-08
1.9513 1.9874 1.9968 1.9989 1.9951

28 6.8209e-05  1.9242¢-05 4.9774e-06  1.2552e-06  3.1452e-07  7.8749e-08
1.8257 1.9508 1.9875 1.9967 1.9978

279 9.7588e-05  3.4253e-05  9.6682e-06  2.5001e-06  6.3049e-07  1.5801e-07
1.5105 1.8249 1.9513 1.9874 1.9965

210 1.0755e-04  4.8915e-05 1.7177e-05 4.8460e-06 1.2532¢-06  3.1606e-07
1.1367 1.5098 1.8256 1.9512 1.9873

2~ 1.0808¢-04  5.3879e-05  2.4506e-05 8.6011e-06  2.4264e-06  6.2744e-07
1.0043 1.1366 1.5105 1.8257 1.9513

9-12 1.0808e-04  5.4147e-05  2.6966e-05 1.2265e-05  4.3037e-06  1.2141e-06
0.9971 1.0057 1.1366 1.5109 1.8257

2718 1.0808e-04 5.4147e-05 2.7100e-05 1.3490e-05 6.1354e-06  2.1526e-06
0.9971 0.9986 1.0064 1.1367 1.5111

Results in [27]

275 3.8774(-5)  9.6108(-6)  2.3975(-6)  5.9904(-7)  1.4972(-7)  3.7294(-8)

26 8.2126(-5)  1.9910(-5)  4.9349(-6)  1.2310(-6)  3.0757(-7)  7.6825(-8)

277 1.8429(-4)  4.1727(-5)  1.0104(-5)  2.5044(-6)  6.2472(-7)  1.5606(-7)

278 4.5000(-4)  9.2878(-5)  2.1029(-5)  5.0938(-6)  1.2626(-6)  3.1493(-7)

279 1.0778(-3)  2.2589(-4)  4.6641(-5)  1.0566(-5)  2.5585(-6)  6.3417(-7)

2-10 2.3688(-3)  5.4102(-4)  1.1321(-4) 2.3389(-5)  5.2961(-6)  1.2825(-6)

2~ 11 4.9529(-3)  1.1891(-3)  2.7104(-4)  5.6715(-5)  1.1712(-5)  2.6518(-6)

2712 1.0121(-2)  2.4862(-3) 5.9570(-4) 1.3565(-4)  2.8385(-5)  5.8601(-6)

2~ 13 2.0458(-2)  5.0805(-3)  1.2455(-3)  2.9814(-4)  6.7859(-5)  1.4200(-5)
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Table 2
MAESs in Example 2
el L— o7 98 29 910 ol1 912
suggested method

275 3.5024e-04  8.7651e-05 2.1918e-05 5.4801e-06 1.3706e-06  3.4554¢-07
1.9985 1.9997 1.9998 1.9994 1.9880

276 7.2423e-04  1.8177e-04 4.5489e-05 1.1375e-05 2.8445e-06  7.1278e-07
1.9943 1.9944 1.9986 1.9996 1.9996

277 1.4561e-03  3.6979e-04  9.2808e¢-05 2.3225¢-05 5.8078¢-06  1.4533e-06
1.9773 1.9944 1.9986 1.9996 1.9987

278 2.7805¢-03  7.3682¢-04 1.8705¢-04 4.6948¢-05 1.1749¢-05  2.9382¢-06
1.9160 1.9778 1.9943 1.9985 1.9995

279 4.6105e-03  1.3988e-03  3.7082e-04 9.4139e-05 2.3626e-05  5.9127e-06
1.7207 1.9154 1.9779 1.9944 1.9985

2710 5.8590e-03  2.3143e-03  7.0214e-04 1.8607e-04 4.7237¢-05  1.1855e-05
1.3401 1.7207 1.9159 1.9779 1.9944

21! 6.0756e-03  2.9352e-03  1.1594e-03  3.5176e-04  9.3215¢-05  2.36604e-05
1.0496 1.3401 1.7207 1.9160 1.9779

2712 6.0797e-03  3.0438¢-03 1.4691e-03  5.8029e-04 1.7606e-04  4.6657e-05
0.9981 1.0509 1.3401 1.7207 1.9159

2718 6.05797e-03  3.0458e-03  1.5234e-03  7.3489¢-04 2.9031e-04  8.8084e-05
0.9920 0.9953 1.0517 1.3399 1.7206

Results in [27]

27" 1.4101(-3)  3.5121(-4)  8.7724(-5)  2.1926(-5)  5.4809(-6)  1.3713(-6)

276 2.9715(-3)  7.3183(-4)  1.8226(-4) 4.5523(-5)  1.1378(-5)  2.8438(-6)

277 6.3962(-3)  1.5166(-3) 3.7366(-4)  9.3055(-5)  2.3241(-5)  5.8086(-6)

278 1.4877(-2)  3.2366(-3)  7.6743(-4)  1.8901(-4)  4.7072(-5)  1.1757(-5)

279 3.6799(-2)  7.4974(-3) 1.6281(-3)  3.8622(-4)  9.5120(-5)  2.3688(-5)

2710 8.4871(-2)  1.8472(-2) 3.7635(-3)  8.1727(-4)  1.9379(-4)  4.7729(-5)

21 1.8184(-1)  4.2603(-2)  9.2539(-3)  1.8854(-3)  4.0944(-4)  9.7084(-5)

2712 3.7579(-1)  9.1277(-2)  2.1343(-2)  4.6315(-3)  9.4363(-4)  2.0493(-4)

2718 7.6369(-1)  1.8863(-1) 4.5728(-2)  1.0682(-2)  2.3169(-3)  4.7207(-4)
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Table 3
MAESs in Example 3
5~L L — 27 28 29 210 211 212
suggested method

275 4.7341e-05 1.3845¢-06  3.7561e-06  9.7905¢-07  2.5003e-07  6.3369¢-08
1.7737 1.8821 1.9398 1.9693 1.9803

276 7.1268e-05  2.3726e-05 6.9366e-06 1.8816e-06 4.9045e-07  1.2535e-07
1.5868 1.7742 1.8823 1.9398 1.9681

277 8.9077e-05 3.5691e-05 1.1878¢-05 3.4721e-06  9.4179e-07  2.4552¢-07
1.3195 1.5873 1.7744 1.8823 1.9396

278 0.4225¢-05 4.4593e-05  2.2312e-05  5.9429¢-06 1.7371e-06  4.7118e-07
1.0793 0.9990 1.9086 1.7745 1.8823

279 0.4324e-05 4.7161e-05  2.3593e-05  8.9346e-06 2.9725¢-06  8.6884e-07
1.0000 0.9992 1.4009 1.5877 1.7745

2710 9.4287¢-05  4.7190e-05  2.3593e-05 1.1160e-05 4.4684e-06  1.4866e-06
0.9986 0.9996 1.0800 1.3205 1.5877

21! 9.4287¢-05 4.7172¢-05  2.3602¢-05  1.1799¢-05  5.5810e-06  2.2345¢-06
0.9991 0.9996 1.0002 1.0801 1.3206

2712 9.4287e-05 4.7172e-05  2.3593e-05  1.1803e-05  5.9004e-06  2.7908e-06
0.9991 0.9996 0.9992 1.0003 1.0801

2718 9.4287e-05 4.7172e-05  2.3593e-05  1.1798e-05  5.9019¢-06  2.9504e-06
0.9991 0.9996 0.9998 0.9993 1.0003

Results in [27]

275 1.9126(-4)  6.2523(-6)  1.7063(-5)  4.3683(-6)  1.0987(-6)  2.7510(-7)

276 2.2400(-4)  9.7185(-5)  3.1769(-5)  8.6781(-6)  2.2223(-6)  5.5895(-7)

277 2.2703(-4)  1.1381(-4)  4.8981(-5)  1.6049(-5)  4.3824(-6)  1.1219(-6)

278 2.2705(-4)  1.1535(-4)  5.7355(-5)  2.4657(-5)  8.0719(-6)  2.2029(-6)

279 2.2705(-4)  1.1536(-4)  5.8131(-5)  2.8790(-5)  1.2377(-5)  4.0479(-6)

2710 2.2705(-4)  1.1536(-4)  5.8136(-5)  2.9180(-5)  1.4423(-5)  6.2006(-6)

2~ 2.2705(-4)  1.1536(-4) 5.8136(-5) 2.9182(-5)  1.4618(-5)  7.2188(-6)

2712 2.2705(-4)  1.1536(-4)  5.8136(-5) 2.9182(-5)  1.4620(-5)  7.3164(-6)

2718 2.2705(-4)  1.1536(-4)  5.8136(-5)  2.9182(-5)  1.4620(-5)  7.3171(-6)
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Figure 1. Layer profile in the solution Example 1 with ¢ = 275,2710, 2720,
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Figure 2. Layer profile in the solution Example 2 with ¢ = 275,2710, 2720,
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Figure 3. Layer profile in the solution Example 3 with ¢ = 275,2710,2720,
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BekiTisiren ken kemnriryi 6ap CUHIYJISIPJIbI aybITKbIFAH
anddepeHIaIabIK-albIPBIMABIK, TEHJIEYJIEP KJIACBIHBIH >KaHa
CaHJBIK CXeMaChl

9. Hlpunusac, K. @aneenipa
Vhusepcumemmin, 2viavim Koaredsrci, Ocmarus yrusepcumemsi, Xatidapabad, Yrndicman

TpuroHoMeTpusiIbIK, CIJIAfHFa HEri3eJIreH ecenTey 91ici OekiTiireH Kem Kerriryi 6ap KabaTTbiH dpeKeTi
yirie auddepeHnnaaabK-aibIPBIMIBIK, TEHAEYIEPIl CAHIABIK, eIy VIIiH YChIHBLIFaH. AWBIPBIMIBIK, TEH-
Jeyaep Kyi#eciH Kypy VIIMH TOP/BIH iMKi HYKTECIHJEri TPUTOHOMETPHUSIBIK, CILUIARHHBIH OipiHIm perTi
TYBIHABICBIHBIH, y3iaiccizairi Kommanbuiaasl. CUHTYISAPIIBI ayBITKBIFAH TEOPUSICHIH KOJIAHA OTHIPBIIN, IIIe-
miMeri KaTeHi asaiiTy VIMiH afbIPBIMIBIK, CXEMaChIHA COWKECTEHIIIPETiH mapaMerp eHrisijemi. Oic Ku-
HaKTBUIBIKKA Tekcepinred. COHBIMEH KaTap IMeKapaJiblK KabaTKa BIFBICY HEMeCe KeIlry dcepi KapacTbhi-
pBLIABL. OmaebuerTepe KeaTipiaren 6acka ToCIaIepMeH CabICTBIPFAaHIa MaKCUMAJIAbl abCOTIOTTI KaTeaep
ecernTesie/ll >KoHe YChIHBLIFaH CaHJIBbIK, 9/IICTIH, OPBIHABIIBIFBIH KOPCETY VIIiH KabaTTapablH e3repyi rpaduk-
TepJie KOPCEeTLI .

Kiam cosdep: CHHTYSPIIBI aybITKBIFAH 1 dEPEHITNAIIBIK-ANBIPBIMIBIK, TEHJEY, KEIIiry, TPUTOHOMETPHsI-
JIBIK, CIJIAiH, COMKECTEH/IIPEeTIH HapaMeTp.
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HoBast unciieHHasi cxeMa JJisi KJacCca CUHTYJISPHO BO3MYIIIEHHBIX
anddepeHImaIbHO-PA3HOCTHBIX YPaBHEeHN ¢ (PUKCUPOBAHHBIM
OOJBIIUM 3ama3/IbIBAHNEM

9. Hlpunusac, K. @aneenipa
Vhusepcumemcexuti xKoanredorc nayku; Ynusepcumem Ocmaruu, Xatidapabad, Hnous

IIpenmozken BBIMUCIUTETBHBIN METOM, HA OCHOBE TPUTOHOMETPHUYECKOTrO CILIANHA IS IUCJCHHOTO pellre-
HusA uddepeHnnaabHO-PA3HOCTHBIX YPABHEHUI ITIOBEJIEHUS CJI0s1 ¢ (DUKCHPOBAHHON OOIBIION 3aJePKKOIL.
st mocTpoeHns CUCTEMbI PA3HOCTHBIX YPABHEHUM HMCHOJIB3YETCS HEIMPEPBIBHOCTH IIPOU3BOJIHON IIEPBOIO
MOPSIKA TPUTOHOMETPUIECKOTO CILIAifHAa BO BHYyTpPeHHeH Touke ceTKH. C MOMOIIBIO TEOPUU CHHTYJISIPHBIX
BO3MYIIEHUI B PA3HOCTHYIO CXeMY BBOJUTCS IIOJAIOHOYHBIN ITapaMeTp, ITO3BOJIAIONINNH MUHUMHU3UPOBATH
omubKy B perneHun. MeToji MpoBepeH Ha CXOAUMOCTb. MBI TakkKe pacCMOTPENH BJIMSTHUE CIABUTA WJIH 3a-
JEePKKM Ha MOrpaHndHbli ci1oil. [loncuanTansl MakcuMaIbHbIE aDCOTIOTHBIE TOTPEITHOCTH IO CPABHEHUIO C
JPYTUMH IIOAXOJAaMHU, OIMCAHHBIMH B JINTEPATYPE, & IIOBEJEHNE CJIOEB OTOOPAaXKeHO Ha rpadurax, 4ToObI
IIPOJIEMOHCTPUPOBATH OCYIIECTBUMOCTD MPEII0KEHHOTO YUCIEHHOTO METO/IA.

Karoueswie cao6a: CHHTYJISIDHO BO3MyIleHHOE nuddepeHnuaabHo-pa3HoCTHOe yPaBHEHNE, 3ala3/bIBAHNe,
TPUIOHOMETPUYECKUN CIIAH, IIOJAIOHOYHBIN ITapaMeTp.
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In this article, within the framework of the study of Jonsson theories, the model-theoretic properties of
cosemanticness classes belonging to the factor set of the Jonsson spectrum of an existentially closed models’
subclass of some Jonsson theory in a fixed language were studied. Various results have been obtained. In
particular, the properties of the cosemanticness of models and classes of models are considered; some results
concerning the Jonsson equivalence in generalization for classes of existentially closed models are obtained;
a criterion for the cosemanticness of J-classes in connection with their Kaiser hulls has been found.
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Introduction

It is well known that in modern Model Theory, the issue of studying incomplete theories occupies
a special place due to the small number of suitable methods and techniques. Anyway, this is a very
difficult task, so, as a rule, model theorists use various limiting conditions to obtain results concerning
incomplete theories. One of the relevant directions in this sense is studying Jonsson theories. The
relevance is determined by various reasons, and the main one is that the Jonsson theories are of
great applied importance in algebra due to the presence of many classical examples linking these two
mathematical areas.

Traditionally, the Karaganda School of Model Theory uses the definition of the Jonsson theory given
in the Russian-language edition of [1]. In recent years, the apparatus for studying Jonsson theories has
been significantly expanded, which is demonstrated by the number and variety of approaches in the
works [2-9].

At the same time, one of our essential areas of research in this area is not only to obtain results
describing the properties of the Jonsson theories, but also to generalize these results. In 2018,
Yeshkeyev A.R. introduced the concept of the Jonsson spectrum of a fixed class of models, which is a
special set of Jonsson theories. When considering the Jonsson spectrum we also use the notion of the
cosemanticness relation proposed by Mustafin T.G. Cosemanticness is a specific equivalence relation
that generalizes and refines the elementary equivalence in terms of researching Jonsson theories. It
is well known that equivalence relation is a classical instrument for studying and constructing the
classification of theories in Model Theory. In this matter, in [10,11], Yeshkeyev A.R. and Ulbrikht O.I.
obtained some considerable results on abelian groups and R-modules concerning cosemanticness and
other related concepts, such as consemanticness classes.

Thus, studying the properties of the cosemanticness classes of the Jonsson spectrum is of great
importance not only for the development of the apparatus for the study of Jonsson theories. Firstly, this
area is of interest from the point of view of research in Model Theory. In addition, it was found in [12-16|
that the Jonsson theories and their cosemanticness classes in the Jonsson spectrum of fixed classes of
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structures have interesting structural properties that are important for Universal Algebra. In [17], the
lattices of existential formulas of a fixed Jonsson theory are considered in terms of syntactic similarity.
In this article, we present some basic results that demonstrate the relationship of the cosemanticness
classes of the Jonsson spectrum with fixed classes of structures and the specific properties of Kaiser
hulls of these classes. These results are the forerunner of the study of Jonsson theories from the point
of view of lattice algebra and other related fields.

This paper consists of two sections. In Section 1, we give some basic information on Jonsson theories.
In Section 2, we present our results obtained for cosemanticness classes of Jonsson spectrum, so-called
J-classes of structures and their Kaiser hulls.

1 Preliminary information on Jonsson theories

In this section we describe the apparatus of the study of Jonsson theories. Let us start with some
basic definitions.

Definition 1. [1] A theory T has the joint embedding property (JEP), if, for any models A and B
of T, there exists a model M of T" and isomorphic embeddings f: A — M, g: B — M.

Definition 2. [1] A theory T has the amalgamation property (AP), if for any models A, By, By of
T and isomorphic embeddings f1 : A — Bj, fa : A — Bs there are M = T and isomorphic embeddings
g1 :B1— M, go: By — M such that g1 o f{ = gg 0 fo.

Originally, the properties of amalgamation and joint embedding are algebraic notions. However they
play a crucial role in studying various classes of structures in Model Theory, especially for incomplete
theories.

There are syntactic criteria of AP and JEP. We give two classical theorems of them.

Theorem 1 (Robinson). [18] For the first order theory T of the language L (of arbitrary cardinality)
the following conditions are equivalent:

1) T has JEP;

2) For all universal sentences a, f of L, if ' aV S then THa or T+ f.

It is well known that the given theorem is equivalent to the following statement:

Theorem 2. Let T be a theory of the first-order language L. Then T has JEP iff whenever T'U {¢}
and T'U {1} are consistent sets, where ¢ and 1 are arbitrary existential sentences of L, T'U {p A 9}
is also consistent.

Theorem 3 (Bryars). [18] The following are equivalent:

1) T has the amalgamation property;

2) for all a1 (%), a2(Z) € Vi with T' F a3 V ag there are 51(T), f2(Z) € 31 such that T+ 8; — «;
(Z = 1,2) and T+ (1 V Bo.

The following theorem plays an important role in studying Jonsson Model Theory.

Theorem 4 (Hodges). [19; 363] Let T be a theory of the first-order language L, and let T" have JEP.
Suppose that A and B are existentially closed models of T'. Then every V3-sentence true in A is true
in B as well.

Now we recall the main definition of our study.
We are working within the framework of the following definition of Jonsson theory published in the
Russian edition of [1].

Definition 3. [1; 80] A theory T is called Jonsson if the following conditions hold for T":
1. T has at least one infinite model,;

2. T is an inductive theory;

3. T has the amalgam property (AP);

4. T has the joint embedding property (JEP).

Mathematics series. No.1(113)/2024 209



A.R. Yeshkeyev, I. O. Tungushbayeva, A. K. Koshekova

There are a lot of algebraic examples of Jonsson theories. Classical examples include
1) group theory;
2) the theory of abelian groups;
3) the theory of Boolean algebras;
) the theory of linear orders;
)
)
)

W

5) field theory of characteristic p, where p is zero or a prime number;
6) the theory of ordered fields;
7) the theory of modules.

In [20], it is proved that the theory of differentially closed fields of the fixed characteristic is a
Jonsson theory as well.

It is important to note that, by Theorem 4, we can see that, for any Jonsson theory T, all
existentially closed models of T" are elementary equivalent by V3-sentences.

Further we give the notions and statements that are of great importance in research in Jonsson
theories. Definitions 4, 5 and Theorem 5 were introduced by Mustafin T.G.

Definition 4. [21; 155] Let T' be a Jonsson theory. A model Cr of power 2IT1 is called a semantic
model of the theory T if Cr is a |T|*t-homogeneous |T'|*-universal model of the theory 7.

Theorem 5. [21; 155] An inductive theory T is Jonsson iff it has a |T|*-homogeneous |T'|"-universal
model.

Definition 5. [21; 161] The elementary theory of the semantic model of the Jonsson theory T is
called the center of this theory. The center is denoted by T%, i.e. Th(C) = T*.

Now we move to the central notion of this work.

Let L be a first-order language of a signature o and let K be a class of L-structures. We consider
a specific sets of theories for K that is called a Jonsson spectrum of K. The Jonsson spectrum can be
described as follows.

Definition 6. [11] A set JSp(K) of Jonsson theories of L, where
JSp(K) ={T |T is a Jonsson theory and K C Mod(T)},

is said to be a Jonsson spectrum of K.

Jonsson spectra are well-described in [12,22-24].
In terms of studying Jonsson theories, the notion of cosemanticness relation plays an important
role. Let T} and T3 be Jonsson theories, T} and T3 be their centres, respectively.

Definition 7. |21; 40] T} and T, are said to be cosemantic Jonsson theories (denoted by 77 1 T5),
it Ty =T5.

It is well known that the cosemanticness between two Jonsson theories is an equivalence relation.
This means that, when introducing the relation of cosemanticness on the Jonsson spectrum JSp(K), we
get a partition of JSp(K) into cosemanticness classes. The obtained factor set is denoted by JSp(K) /g
This technique allows to obtain many significant generalizations when considering the cosemanticness
classes instead of single theories. As it is mentioned before, applying this technique is the main idea of
this paper, which will be revealed in Section 2.

2 The properties of Kaiser hulls for J-classes

In this section, we present the results of generalization of some well-known theorems published in
different papers of the first author of this article. All of these theorems one can also find in [21].

Let T be a Jonsson theory in L, K C Ep. We consider the Jonsson spectrum of the given class
K. Let us introduce the cosemanticness relation on JSp(K). As it is well known, this relation is an
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equivalence relation, and therefore divides the spectrum into cosemanticness classes. Thus, we get a
factor set JSp(K) g Next, we will work with some fixed cosemanticness class [T']. It is clear that all
the Jonsson theories in this class have the same semantic model, which we denote by Cipy. In this
section, we will work with this fixed class K, unless otherwise specified in the terms of the theorems
or definitions.

Here we introduce the following notation. Let T' € [T, [T] € JSp(K) /s, A be an L-structure. Then
A = [T] means that A |= T for any T' € [T]. Similarly, this notation is generalized for the class of
models as well, i.e. K’ = [T] means that A =T for any A € K’ and any theory T € [T].

Note that we only work within the framework of the fixed language L of signature o.

Now we give the definitions of some necessary notions, which are actually generalizations of some
well-known concepts from [21].

Definition 8. The class K’ of existentially closed models of the signature o is called a J-class, if
the set of sentences Thy3(K’) is a Jonsson theory.

Definition 9. The theory Thys(K) that is a set of all V3-sentences of L true for each model of K,
is said to be a Kaiser hull of K. We denote it by T°(K).

Note that the theory T°(K) is Jonsson, if it admits the amalgamation property, because it has
infinite models, is inductive and, due to 3-completeness, admits JEP. Moreover, in case of AP, T°(K)
is a maximal Jonsson theory of K, and all theories 7" such that T C 7" C T°(K), where T is some
Jonsson theory of K under consideration, are Jonsson.

Lemma 1. Let [T] € JSp(K) sq consist only of 3-complete theories, and let in JSp(K) g there be
such a class [T”], which consists of extensions of theories of the class [T in the same language. Then if
p(Z)UT is consistent for each theory T' € [T, then p(Z) UT" is also consistent for each theory 77 € [T"],
where p(Z) is the set of 3-formulas.

Proof. Let us consider an arbitrary theory T' € [T]. According to the condition of the Lemma, there
is T' € [T"] such that T'C T". It is obvious that if 7" is an J-complete theory, so is T". Let T'U p(Z) be
a consistent set of formulas, for any T' € [T], and T’ U p(Z) be inconsistent, for any 7" € [T"]. It means
that there is 35p(Z, y) € p(T), where p(Z,7) is a quantifier-free formula such that 7"+ —=3z35¢(Z, 7).
Consequently, T" - VZVy—p(Z,y), and T + VZVy—¢(Z,§) as well, due to its V-completeness. The latter
means that T'U p(Z) is inconsistent, so we obtain a contradictory. Thus, for any theory T € [T] and
any theory 7" € [T'], if T'U p(Z) is consistent, T" U p(Z) is also consistent.

The following statement is one of the important properties of J-class.

Proposition 1. Let [T'] € JSp(K) s consist only of 3-complete theories. Then any class K" C K
of infinite models is a J-class.

Proof. 1t is clear that K’ is never empty, as soon as, by the conditions stated before, K consists
of existentially closed models of some Jonsson theory T, which are infinite. We need to show that
K' is a J-class, i.e., according to Definition 8, Thyz(K’) is a Jonsson theory. Let us check it through
Definition 3:

1) K’ contains infinite models by the condition of the Proposition;

2) It is obvious that Thys(K') is a set of V3-sentences, so this theory is inductive;

3) Thys(K') is always an existentially complete theory, so it is easy to see that, by Theorem 1, it
has JEP;

4) Let Thys(K') F a1 Vg for any L-formulas oy (T), as(Z) € V1. By JEP, it means that Thys(K')
ay or Thy3(K') b ag. Since every T € [T"] is an inductive theory, 7" C Thy3(K'), for all T € [T"].
And due to the fact that each 7" in this cosemanticness class is 3-complete (and therefore V-complete),
T b aq, if Thys(K') b ay, and T' b ag, if Thys(K') b ag. Every theory in [T”] admits AP, so if T - o
then T' = a1 V o and, by Theorem 3, there are 51(Z), 82(T) € 31 such that 7" F 8; — «; (i = 1,2) and
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T+ 1V By. The same is if T' + 5. Therefore, Thvg(K/) FBi — a; (i=1,2) and Thvg(K’) F BV Ba,
which means that Thy3(K’) admits AP.
To prove some further theorems, we need the following lemma.

Lemma 2. Let Ty and T, be L-theories and let T/ =Ty VT = {p V) | ¢ € Ty, ¢ € To}. Then
Mod(T") = Mod(Ty) U Mod(T).

Proof. Firstly, the inclusion Mod(T1) U Mod(T2) C Mod(T") is true, as soon as all sentences of 7"
are deducible both in T} and T,. Now we show the inclusion Mod(T") C Mod(Ty) U Mod(Ts). Suppose
that it is false; then there is a model M € Mod(T") such that M ¢ Mod(Ty)U Mod(T5). It means that
M ¢ Mod(Ty) and M ¢ Mod(T5), which is equivalent to the fact that there are p € T} and ¢ € T, such
that M ¥ ¢ and M ¥ . But according to the condition of the Lemma, for any model M € Mod(T"),
M E oV for all p € Ty and ¢ € Ty that is a contradiction. Hence Mod(T") C Mod(Ty) U Mod(T»)
and Mod(T") = Mod(T1) U Mod(T3).

Now we demonstrate the result that concerns to the lattices of Jonsson theories in terms of
cosemanticness classes in the Jonsson spectrum.

Proposition 2. Let K' C K, [T] € JSp(K) ., and let Cip) be a semantic model of [T]. Then
T' € [T, where

T = TOK')V T(Ciry) = {9V & | ¢ € TO(K), & € T°(Cia)}.

Proof. Firstly, we note that, according to Lemma 2, Mod(T") = Mod(T°(K')) U Mod(TO(C[T})). In
addition, for any theory T' € [T], T C T’, which means that 7" is a Jonsson theory cosemantic to any
T € [T]. It remains to show that 77 € JSp(K). Since K C Ep, K’ C K, then K’ =y3 K, which means
that TY(K) = T°(K"). Hence T°(K') € JSp(K).

Now let us consider some specific relations between structures.

Definition 10. [21; 174] L-structures A and B are called Jonsson equivalent, if for any Jonsson
theory T the following holds:

AET < BET.
Definition 11. [11] Structures A and B are called cosemantic, if JSp(A) = JSp(B).

The following theorem also presents the result of structural approach in studying Jonsson theories
and their cosemanticness classes.

Theorem 6. Let T be an arbitrary inductive L-theory such that A = T for any A € K, where K
is a class of infinite L-structures, and let the cosemanticness class [T'] € JSp(K) . consist only of
3-complete theories. Then [T"] € JSp(K) s, where

[T"] ={T" | T" =T UT for each T' € [T}.

Proof. Firstly, we should note that all theories of [T”] are consistent, as soon as, for any A € K,
AT for each T' € [T"], and A =T, hence A = T" for any T” € [T"]. Let us consider an arbitrary
T" € [T']. Tt remains to show that 7”7 = T U T is a Jonsson theory. We do it by Definition 3.

1) All models in K are infinite, consequently 7" has infinite models;

2) Obviously, T” is an inductive theory;

3) T CT" and T is F-complete theory, hence T” is F-complete as well. It means that 7" has JEP;
4) Here we use Theorem 3 again. Let 7" F a1 V ag for some L-formulas aq(Z), as(Z) € V1. T” has
JEP, it means that 7" F aq or T” F as. Since 7" C T" and T” is F-complete, T F aq, if T" F aq,
and T' F ag, if T" & ag. T" admits AP, so if T' F a1 then T” - ay V aq and, by Theorem 3, there are
B1(T), B2(T) € F1 such that T+ B; — «; (i = 1,2) and T" F 81 V B2. The same is if T" - «y. Therefore,
T"F Bi = «; (i =1,2) and T" = 81 V B2, which means that 7" admits AP.

In [21], it was introduced the definition of cosemantic models. Now we give its analogue for classes
of L-structures.

212 Bulletin of the Karaganda University



The cosemanticness of ...

Definition 12. Let K; and Ko be some classes of L-structures. Then K; and K5 are said to be
cosemantic (K1 1 Ko) if JSp(K1) = JSp(K2).

Now we move to the main result of this paper. Theorem 7 is a criterion that connects the cosemanticness
of J-classes with their Kaiser hulls.

Theorem 7. Let K1, Ko be J-classes. Then the following conditions are equivalent:
1) K~ KQ;
2) TO(K;) = TO(K3).

Proof. Since K1 and K3 are J-classes, TY(K7) and TY(K3) are Jonsson theories. Let us prove (1)
— (2). If K1 > Ko, then JSp(K1) = JSp(K>), which means that T°(K;) € JSp(Kz) and T°(K3) €
JSp(K1). But it follows that TO(K;) C T°(K2) and T°(Ks) C T°(K1). Then TY(K;) = T°(K3). The
implication (2) — (1) is trivial due to inductiveness of Kaiser hulls and Jonsson theories.
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— 43. — No. 12. — P. 3658-3673.
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BekiTtisren moaeabaep kJjacblHbIH Kaiizep KaOBIKIIACHIHBIH,
KOCEMaHTUKAJIBLIBIFbI

A.P. Emikeer, 1. O. Tynrymbaesa, A. K. Komekosa

Konadarnbarv, mamemamura uwcmumymaot, Axademur FE.A. Boxemos amuwindazv. Kapazandv, yrusepcumemi,
Kapaeando, Kasaxcman

MakaJtasia HOHCOH/IBIK, TEOPUSIHBI 3epTTey OapbICHIHIa OEKITIIreH Tijijge Keitbip HOHCOHIBIK TEOPUSTHBIH, K-
3UCTEHITNAJIIbI TYHBIK MOJIE/IbIEPIHIH IIIIKi KJIACBIHBIH, KOCEMaHTUKAJIBLIBIK, KJIACHIHBIH MOEThTi-T€OPUSIIIBIK,
KacueTTepi 3eprreiii. OPTYpJIi HoTHXKeIep aJabliabl. CoHgai-aK, MOJIE/IbIEP MEH MOJIE/bIEPIiH KIacTaphl-
HBIH KOCEMAaHTHKAJIBLIBIK, KACHETTEP] KAPACTBIPBLIIbI; 9K3UCTEHIINAJIIHI TYWBIK, MOJAEIbIED KJIACHIHBIH, YKaf-
JAUBIH/IA, YKAJTBLIAYIAFbl HOHCOH/IBIK, SKBUBAJEHTTIKKE KATHICTHI Kefbip HOTUKEIEP AJIbIHJIbI; J-KIACHIHBIH,
Kaitzep kabbIKIacbiHa 6aiIaHbICTBI KOCEMAHTUKAJIBIIBIK, KPUTEPHUill TabbIIIbI.

Kiam ceadep: HOHCOHIBIK TEOPHUsI, KOCEMaHTUKAJIBIIBIK, KOCEMAHTTHI HOHCOH/IBIK, TEOPUIAD, HOHCOHIBIK,
CIEKTP, KOCEMAHTHUKAJIBLIBIK KiacTapbl, Kaiizep KaObIKIIAChl, HOHCOHIBIK IKBUBAJIEHTTLIIK, J-KIacc, Mo-
JeIbIAEPiH, KOCEMaHTUKAIBLIBIFDI, KJIACTAP/IbIH, KOCEMAaHTUKAJIBLIBIFI.

KocemanTuaHocTh obosiouek Kaiizepa (pukcmpoBaHHBIX KJIACCOB
MoJieJien

A.P. Emkeen, 11.0. Tynrymbaesa, A.K. Komiekosa

HUnemumym npukaadnot mamemamuru, Kapazandunckut yrusepcumem umenu axademura FE.A. Bykemosa,
Kapazanda, Kasaxcman

B craTbe B pamMkax m3ydeHusi HOHCOHOBCKUX TEOPHl OBLIN PACCMOTPEHBI TEOPETUKO-MOJIE/IbHBIE CBONCTBA
KJIACCOB KOCEMAHTUIHOCTH, TIPUHAJJIEXKAITNX (DAKTOP-MHOXKECTBY HOHCOHOBCKOT'O CIIEKTPA MOIKJIACCA IK3U-
CTEHIMAJILHO 3aMKHYTBIX MOJIEJIe HEKOTOPOI HOHCOHOBCKOI TeoprH Ha (PUKCUPOBAHHOM si3bIKe. [losyueHbr
pas3yinyHble Pe3y/IbTaThl. B 9acTHOCTH, N3y4YeHBbI CBOMCTBA KOCEMAaHTUIHOCTU MOJEJENH U KJIaCCOB MOJIEIENt;
MOJTy Y€HbI HEKOTOPBIE PE3Y/IbTATHI, KACAIOIINECs] HOHCOHOBCKOIM 9KBUBAJEHTHOCTH B OOOOIIEHUN HA CJIYIan
KJIACCOB 9K3UCTEHINAIBHO 3aMKHYTBIX MOJIeJIelt; Hal/IeH KPUTEPHUil KOCEMaHTHYHOCTH J-KJIACCOB B CBS3H C
ux obosioukamu Kaiizepa.

Karouesvie crosa: HOHCOHOBCKAS TEOPHUsi, KOCEMAaHTUYHbIE HOHCOHOBCKUE TEOPHH, HOHCOHOBCKUI CHEKTD,
KJIACChI KOCEMAHTUYIHOCTH, obosiouka Kaitzepa, HOHCOHOBCKas IKBUBAJIEHTHOCTDb, J-KJIACC, KOCEMAHTUY-
HOCTBb MOJleJIel, KOCEMaHTUYHOCTb KJIACCOB.
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ANNIVERSARIES

75th anniversary of Doctor of Physical and Mathematical Sciences,
Professor M.I. Ramazanov

/ f-o1‘5\£‘
(Z. . u_)#_

Murat Ibraevich Ramazanov, Doctor of Physical and Mathematical Sciences, Professor, was born
on February 24, 1949, in Bulaevo, North Kazakhstan region. After graduating from the Faculty
of Mechanics and Mathematics at the Kazakh State University named after S.M. Kirov (now Al-
Farabi Kazakh National University) in 1971, he began his career at Karaganda State University
and continues to make significant contributions to the development of the university to this day. He
defended his PhD thesis in 1981 and his Doctoral thesis in 2006. M.I. Ramazanov is a highly qualified
specialist in the field of loaded partial differential equations, integral equations, and their applications
to applied problems. He regularly presents scientific reports at international congresses, conferences,
and symposiums dedicated to discussing contemporary problems of mathematics, held both in the
Republic of Kazakhstan and abroad. The scientific achievements of M.I. Ramazanov were published in
high-ranking journals indexed in Web of Science and Scopus. Professor M.I. Ramazanov described the
resolvent set and the spectrum for the spectrally loaded parabolic operator in terms of the (complex)
spectral parameter, which is the coefficient of the loaded term, and characterized the multiplicity of
eigenfunctions in the space of bounded and continuous functions depending on the value of the spectral
parameter. Based on these studies, he published the monograph “Loaded Equations as Perturbations
of Differential Equations”.
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Murat Ibraevich’s contribution to the training of scientific personnel is invaluable. Under his
supervision, 3 PhD theses and 5 doctoral dissertations were defended. Currently, M.I. Ramazanov
is the scientific supervisor of PhD doctoral candidates in the field of “Mathematics”. His name is also
associated with scientific research conducted within the framework of grant funding from the Ministry
of Education and Science of the Republic of Kazakhstan. For many years, he served as the scientific
editor of the journal “Bulletin of the Karaganda University. Mathematics series”, chairman of the
Dissertation Council in the specialty 6D060100 — “Mathematics” at the Karaganda State University
named after academician E.A. Buketov, and is currently a member of the editorial boards of the
journals “Bulletin of KRASEC. Physical and Mathematical Sciences” (Russia), “Bulletin of Karaganda
University. Mathematics series”, and deputy chairman of the dissertation council for the educational
program 8D05401 — Mathematics for the defense of PhD at the Karaganda Buketov University.

For his significant contribution to science, M.I. Ramazanov was awarded the State Scientific Scholar-
ship for scientists and specialists who have made an outstanding contribution to the development of
science and technology for 2008-2010, was decorated with the “For Merits in the Development of
Science of the Republic of Kazakhstan” badge, twice received the grant for the title of “Best University
Teacher” (2009, 2020). He is a laureate of the Prize named after D.Sc, Professor T.G. Mustafin, an
honored worker of the Karaganda Buketov University; he has received several honorary diplomas from
the akim of the Karaganda region “For active participation in the socio-political life of the region
and personal labor contribution to the construction of a new Kazakh society”, the National Chamber
of Entrepreneurs of the Republic of Kazakhstan “For great merits to Kazakh science and invaluable
contribution to the development of higher education, training of highly professional specialists for the
Republic of Kazakhstan”. M.I. Ramazanov is included in the TOP-50 of the General Rating of TPS of
universities of the Republic of Kazakhstan (National Rating of Demand for Universities of the Republic
of Kazakhstan, Astana).

The editorial board of the scientific journal “Bulletin of the Karaganda University. Mathematics
series” and the faculty of mathematics and information technologies of the Karaganda Buketov University
warmly congratulate Murat Ibraevich with his 75th anniversary and wish him strong health and creative
longevity.

Editorial board of the journal
«Bulletin of the Karaganda University. Mathematics seriess
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EVENTS

The 15th International ISAAC Congress

Dear Colleagues,

We are pleased to announce that Nazarbayev University in Astana, Kazakhstan, will host the
15th International ISAAC Congress from July 21-25, 2025. The International Society for Analysis, its
Applications, and Computation (ISAAC) Congress is a prestigious event that continues a successful
series of meetings previously held across the globe.

The congress will cover a wide range of topics, including but not limited to:

1.

10.

11.

12.

13.

14.

15.

Application of Dynamical Systems Theory in Biology

Complex Analysis and Partial Differential Equations

Complex Variables and Potential Theory

Constructive Methods in Boundary Value Problems and Applications
Function Inequalities: New Perspectives and New Applications
Function Spaces and their Applications to Nonlinear Evolutional Equations
Fractional Calculus and Fractional Differential Equations
Generalized Functions and Applications

Harmonic Analysis and Partial Differential Equations

Integral Transforms and Reproducing Kernels

Partial Differential Equations on Curved Spacetimes

Pseudo Differential Operators

Quaternionic and Clifford Analysis

Recent Progress in Evolution Equations

Wavelet Theory and its Related Topics
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The conference will feature plenary and sectional talks, as well as poster presentations. The official
language of the conference is English. We plan to publish the abstracts prior to the conference’s
commencement.

Registration Fees:

e ISAAC Members:

— Before April 30, 2025: 150 EUR or 73,155 KZT
— From May 1, 2025: 200 EUR or 97,540 KZT

e Non-Members:

— Before April 30, 2025: 200 EUR or 97,540 KZT
— From May 1, 2025: 250 EUR or 121,925 KZT

e Students and Participants from Developing Countries:

— Before April 30, 2025: 80 EUR or 39,016 KZT
— From May 1, 2025: 130 EUR or 63,400 KZT

Further Information:

Details on registration procedures, abstract submission guidelines, accommodation options in Astana,
and information about the Programme and Organizing Committees, as well as invited speakers, will
be announced in due course.

Contact Information:

Organizing Committee, School of Science and Humanities, Nazarbayev University, Qabanbay Batyr
Ave 53, Astana 010000, Kazakhstan.

Email: info@isaac2025.org

Website: https://isaac2025.org/

Important Dates:

e Registration and abstract submission deadline: May 1, 2025
e Arrival day: July 20, 2025

e Departure day: July 26, 2025

We encourage you to share this information with interested colleagues. We look forward to welcoming
you to Astana for an engaging and fruitful congress.

Warm regards,

Prof. Durvudkhan Suragan, Nazarbayev University, Chairman of Organizing Committee
Dr. Bolys Sabitbek, Queen Mary University of London, Member of Organizing Committee
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