


ISSN 2518-7929 (Print)
ISSN 2663–5011(Online)
Индексi 74618
Индекс 74618

ҚАРАҒАНДЫ
УНИВЕРСИТЕТIНIҢ
ХАБАРШЫСЫ

ВЕСТНИК
КАРАГАНДИНСКОГО

УНИВЕРСИТЕТА

BULLETIN
OF THE KARAGANDA

UNIVERSITY

МАТЕМАТИКА сериясы

Серия МАТЕМАТИКА

MATHEMATICS Series

No. 3(111)/2023
Шiлде–тамыз–қыркүйек
30 қыркүйек 2023 ж.
Июль–август–сентябрь
30 сентября 2023 г.

July–August–September
September, 30th, 2023

1996 жылдан бастап шығады
Издается с 1996 года

Founded in 1996

Жылына 4 рет шығады
Выходит 4 раза в год

Published 4 times a year

Қарағанды, 2023
Караганда, 2023
Karaganda 2023



Chief Editor
Associate Professor, Candidate of Physics and Mathematics Sciences

N.T. Orumbayeva
Responsible secretary
PhD O.I. Ulbrikht

Editorial board

M. Otelbayev,
U.U. Umirbaev,

M.A. Sadybekov,

A.A. Shkalikov,

H. Akca,
A. Ashyralyev,
A.T. Assanova,
T. Bekjan,
N.A. Bokaev,
K.T. Iskakov,
M.T. Jenaliyev,
M.T. Kosmakova
L.K. Kusainova,
V. Mityushev,
A.S. Morozov,
E.D. Nursultanov,
B. Poizat,
A.V. Pskhu,
M.I. Ramazanov,
A.M. Sarsenbi,

E.S. Smailov,
S.V. Sudoplatov,
B.Kh. Turmetov,

A.R. Yeshkeyev,
T.K. Yuldashev,

Academician of NAS RK, Professor, Dr. phys.-math. sciences, Gumilyov ENU, Astana (Kazakhstan);
Academician of NAS RK, Professor, Dr. phys.-math. sciences, Wayne State University,
Detroit (USA);
Corresponding member of NAS RK, Professor, Dr. of phys.-math. sciences, IMMM, Almaty
(Kazakhstan);
Corresponding member of RAS RF, Professor, Dr. phys.-math. sciences, Lomonosov Moscow State
University, Moscow (Russia);
Professor of Mathematics, College of Arts Sciences, Abu Dhabi University, Abu Dhabi (UAE);
Professor, Dr. phys.-math. sciences, Bahcesehir University, Istanbul (Turkey);
Professor, Dr. phys.-math. sciences, IMMM, Almaty (Kazakhstan);
Professor, Gumilyov ENU, Astana (Kazakhstan);
Professor, Dr. phys.-math. sciences, Gumilyov ENU, Astana (Kazakhstan);
Professor, Dr. phys.-math. sciences, Gumilyov ENU, Astana (Kazakhstan);
Professor, Dr. phys.-math. sciences, IMMM, Almaty (Kazakhstan);
PhD, Buketov KU, Karaganda (Kazakhstan);
Professor, Dr. phys.-math. sciences, Gumilyov ENU, Astana (Kazakhstan);
Professor, Dr. phys.-math. sciences, Cracow University of Technology, Cracow (Poland);
Professor, Dr. phys.-math. sciences, Sobolev Institute of Mathematics, Novosibirsk (Russia);
Professor, Dr. phys.-math. sciences, KB Lomonosov MSU, Astana (Kazakhstan);
Professor, Dr. of Math., Universite Claude Bernard Lyon-1, Villeurbanne (France);
Dr. phys.-math. sciences, IAMA KBSC RAS, Nalchik (Russia);
Professor, Dr. phys.-math. sciences, Buketov KU, Karaganda (Kazakhstan);
Professor, Dr. phys.-math. sciences, M. Auezov South Kazakhstan University, Shymkent
(Kazakhstan);
Professor, Dr. phys.-math. sciences, IMMM, Almaty (Kazakhstan);
Professor, Dr. phys.-math. sciences, Sobolev Institute of Mathematics, Novosibirsk (Russia);
Professor, Dr. phys.-math. sciences, Akhmet Yassawi International Kazakh-Turkish University,
Turkestan (Kazakhstan);
Professor, Dr. phys.-math. sciences, Buketov KU, Karaganda (Kazakhstan);
Professor, Dr. phys.-math. sciences, National University of Uzbekistan, Tashkent (Uzbekistan)

Postal address: 28, University Str., Karaganda, 100024, Kazakhstan
Теl.: (7212) 77-04-38 (add. 1026); fax: (7212) 35-63-98.

E-mail: vestnikku@gmail.com. Web-site: mathematics-vestnik.ksu.kz
Executive Editor

PhD G.B. Sarzhanova
Editors

Zh.Т. Nurmukhanova, S.S. Balkeyeva, I.N. Murtazina
Computer layout
M.S. Babatayeva

Bulletin of the Karaganda University. Mathematics series.
ISSN 2518-7929 (Print). ISSN 2663–5011 (Online).
Proprietary: NLC «Karagandy University of the name of academician E.A. Buketov».
Registered by the Ministry of Information and Social Development of the Republic of Kazakhstan.
Rediscount certificate No. KZ43VPY00027385 dated 30.09.2020.
Signed in print 29.09.2023. Format 60×84 1/8. Offset paper. Volume 24.13 p.sh. Circulation 200 copies.
Price upon request. Order № 89.
Printed in the Publishing house of NLC «Karagandy University of the name of acad. E.A. Buketov».
28, University Str., Karaganda, 100024, Kazakhstan. Tеl.: (7212) 35-63-16. E-mail: izd−kargu@mail.ru

c© Karagandy University of the name of acad. E.A. Buketov, 2023



CONTENT

MATHEMATICS

Aydin A., Temizsu F. Statistical convergence in vector lattices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V., Tolemis A.A. Homogenization of
Attractors to Ginzburg-Landau Equations in Media with Locally Periodic Obstacles: Critical
Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Dekhkonov F.N. On the time-optimal control problem for a heat equation. . . . . . . . . . . . . . . . . . . . 28

Karimov E.T., Hasanov A. On a boundary-value problem in a bounded domain for a time-
fractional diffusion equation with the Prabhakar fractional derivative . . . . . . . . . . . . . . . . . . . . . . . . 39

Kassymetova M.T., Mussina N.M. Geometry of strongly minimal hybrids of fragments of
theoretical sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Katsyv S., Kukharchuk V., Kondratenko N., Kucheruk V., Kulakov P., Karabekova D.
Development of the fuzzy sets theory: weak operations and extension principles . . . . . . . . . . . . . . 59

Lutsak S.M., Basheyeva A.O., Asanbekov A.M., Voronina O.A. Some non-standard
quasivarieties of lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Markhabatov N.D. Ranks and approximations for families of cubic theories . . . . . . . . . . . . . . . . . . 81

Ramazanov M.I., Gulmanov N.K., Kopbalina S.S. Solution of a two-dimensional parabolic
model problem in a degenerate angular domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Sartabanov Zh.A., Aitenova G.M. Bounded on the semi-axis multiperiodic solution of a linear
finite-hereditarity integro-differential equation of parabolic type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Temirkhanova A.M., Beszhanova A.T. Criteria for the boundedness of a certain class of matrix
operators from lpv into lqu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Tleukhanova N.T., Mussabayeva G.K., Manarbek M. On the Fourier transform of functions
from a Lorentz space L2,r with a mixed metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Ulbrikht O.I., Popova N.V. A fragment of a theoretical set and its strongly minimal central
type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Yeshkeyev A.R., Yarullina A.R., Amanbekov S.M. On categoricity questions for universal unars
and undirected graphs under semantic Jonsson quasivariety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Yessenbayeva G.A., Yesbayev A.N., Syzdykova N.K., Smirnova M.A. On the function
approximation by trigonometric polynomials and the properties of families of function classes
over harmonic intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

INFORMATION ABOUT AUTHORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Mathematics series. No. 3(111)/2023 3



DOI 10.31489/2023M3/4-10

UDC 517.98

A. Aydın1,∗, F. Temizsu2

1Department of Mathematics, Muş Alparslan University, Muş, Turkey;
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Statistical convergence in vector lattices

The statistical convergence is defined for sequences with the asymptotic density on the natural numbers, in
general. In this paper, we introduce the statistical convergence in vector lattices by using the finite additive
measures on directed sets. Moreover, we give some relations between the statistical convergence and the
lattice properties such as the order convergence and lattice operators.

Keywords: statistical convergence of nets, order convergence, vector lattice, directed set measure.

Introduction

The statistical convergence of sequences is handled together with the asymptotic (or, natural)
density of subsets on the natural numbers N. On the other hand, Connor introduced the notion of
statistical convergence of sequences with finitely additive set functions [1, 2]. After then, some similar
works have been done [3–5]. Also, several applications and generalizations of the statistical convergence
of sequences have been investigated by several authors [6–13]. However, as far as we know, the concept
of statistical convergence related to nets has not been done except for the paper [14], in which the
asymptotic density of a directed set (D,≤) was introduced by putting a special and strong rule on the
directed sets such that the set {α ∈ D : α ≤ β} is finite and the set {α ∈ D : α ≥ β} is infinite for each
element β in (D,≤). We aim to introduce a general concept of statistical convergence for nets with a
new notion called a directed set measure.

Recall that a binary relation “≤” on a set A is called a preorder if it is reflexive and transitive. A
non-empty set A with a preorder binary relation “≤” is said to be a directed upwards (or, for short,
directed set) if for each pair x, y ∈ A there exists z ∈ A such that x ≤ z and y ≤ z. Unless otherwise
stated, we consider all directed sets as infinite. For given elements a and b in a preorder set A such
that a ≤ b, the set {x ∈ A : a ≤ x ≤ b} is called an order interval in A. A subset I of A is called an
order bounded set whenever I is contained in an order interval.

A function domain of which is a directed set is said to be a net. A net is briefly abbreviated as
(xα)α∈A with its directed domain set A. Let (A,≤A) and (B,≤B) be directed sets. Then a net (yβ)β∈B
is said to be a subnet of a net (xα)α∈A in a non empty set X if there exists a function φ : B → A such
that yβ = xφ(β) for all β ∈ B, and also, for each α ∈ A there exists βα ∈ B such that α ≤ φ(β) for all
β ≥ βα (Definition 3.3.14 [15]). It can be seen that {φ(β) ∈ A : βα ≤ β} ⊆ {α′ ∈ A : α ≤ α′} holds for
subnets.

A real vector space E with an order relation “≤” is called an ordered vector space if, for each
x, y ∈ E with x ≤ y, x + z ≤ y + z and αx ≤ αy hold for all z ∈ E and α ∈ R+. An ordered vector
space E is called a Riesz space or vector lattice if, for any two vectors x, y ∈ E, the infimum and the
supremum

x ∧ y = inf{x, y} and x ∨ y = sup{x, y}
∗Corresponding author.
E-mail: a.aydin@alparslan.edu.tr
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exist in E, respectively. A vector lattice is called Dedekind complete if every nonempty bounded from
the above set has a supremum (or, equivalently, whenever every nonempty bounded below subset has
an infimum). A subset I of a vector lattice E is said to be a solid if, for each x ∈ E and y ∈ I with
|x| ≤ |y|, it follows that x ∈ I. A solid vector subspace is called an order ideal. A vector lattice E
has the Archimedean property provided that 1

nx ↓ 0 holds in E for each x ∈ E+. In this paper, unless
otherwise stated, all vector lattices are assumed to be real and Archimedean. We remind the following
crucial notion of vector lattices [16–20].

Definition 1. A net (xα)α∈A in a vector lattice E is called order convergent to x ∈ E if there exists
another net (yα)α∈A ↓ 0 (i.e., inf yα = 0 and yα ↓) such that |xα − x| ≤ yα holds for all α ∈ A.

We refer the reader to some different types of order convergence and some relations among them [21].
Throughout this paper, the vertical bar of a set will stand for the cardinality of the given set and P(A)
is the power set of A.

1 The µ-statistical convergence

We remind that a map from a fieldM (i.e.,M1,M2, · · · ∈ M implies ∪i=1Mn ∈M and Ac ∈M for
all A ∈M) to [0,∞] is called finitely additive measure whenever µ(∅) = 0 and µ(∪ni=1Ei) =

∑n
i=1 µ(Ei)

for all finite disjoint sets {Ei}ni=1 inM [22; 25]. Now, we introduce the notion of measuring on directed
sets.

Definition 2. Let A be a directed set andM be a subfield of P(A) (i.e., it satisfies the properties
of field). Then

(1) an order interval [a, b] of A is said to be a finite order interval if it is a finite subset of A;
(2)M is called an interval field on A whenever it includes all finite order intervals of A;
(3) a finitely additive measure µ :M→ [0, 1] is said to be a directed set measure ifM is an interval

field and µ satisfies the following facts: µ(I) = 0 for each finite order interval I ∈M and µ(A) = 1.
It is clear that µ(C) = 0 whenever C ⊆ B and µ(B) = 0 holds for B,C ∈ M because µ is finitely

additive.
Example 1. Consider the directed set N and define a measure µ from 2N to [0, 1] denoted by µ(A)

as the Banach limit of 1
k |A ∩ {1, 2, . . . , k}| for all A ∈ 2N. Then one can see that µ(I) = 0 for all finite

order interval sets because of 1
k |I∩{1, 2, . . . , k}| → 0. Also, it follows from the properties of the Banach

limit that µ(N) = 1 and µ(A∪B) = µ(A)+µ(B) for disjoint sets A and B. Thus, µ is finitely additive,
and so, it is a directed set measure.

Let’s give an example of a directed set measure for an arbitrary uncountable set.
Example 2. Let A be an uncountable directed set. Consider a field M consisting of countable or

co-countable (i.e., the complement of set is countable) subsets of A. ThenM is an interval field. Thus,
a map µ fromM to [0, 1] defined by µ(C) := 0 if C is a countable set, otherwise µ(C) = 1. Hence, µ
is a directed set measure.

In this paper, unless otherwise stated, we consider all nets with a directed set measure on interval
fields of the power set of the index sets. Moreover, in order to simplify the presentation, a directed set
measure on an interval fieldM of directed set A will be expressed briefly as a measure on the directed
set A. Motivated from [23; 302], we give the following notion.

Recall that the asymptotic density of a subset K of natural numbers N is defined by

δ(K) := lim
n→∞

1

n
|{k ≤ n : k ∈ A}| .

We refer the reader for an exposition on the asymptotic density of sets in N to [24, 25]. We give the
following observation.

Mathematics series. No. 3(111)/2023 5
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Remark 1. It is clear that the asymptotic density of subsets on N satisfies the conditions of a
directed set measure when P(N) is considered as an interval field on the directed set N. Thus, it can
be seen that the directed set measure is an extension of the asymptotic density.

Remind that a sequence (xn) in a vector lattice E is called statistically monotone decreasing to
x ∈ E if there exists a subset K of N such that δ(K) = 1 and the subsequence (xk)k∈K is decreasing to
x, i.e., xk ↓ and inf

k∈K
xk = x (see for example [8]). Now, by using the notions of measure on directed sets

and the statistical monotone decreasing which was introduced in [25] for real sequences, we introduce
the concept of statistical convergence of nets on vector lattices.

Definition 3. Let E be a vector lattice and (pα)α∈A be a net in E with a measure µ on the index
set A. Then (pα)α∈A is said to be µ-statistical decreasing to x ∈ E whenever there exists a subnet
qδ = (pφ(δ))β∈∆ such that µ(∆) = 1 and (qδ)δ∈∆ ↓ x. Then it is abbreviated as (pα)α∈A ↓stµ x.

We denote the class of all µ-statistical decreasing nets on a vector lattice E by Estµ↓, and also, the
set Estµ↓{0} denotes the class of all µ-statistical decreasing null nets on E. It is clear that µ(∆c) =
µ(A−∆) = 0 whenever µ(∆) = 1 because of µ(A) = µ(∆∪∆c) = µ(∆)+µ(∆c). We consider Example
2 for the following example.

Example 3. Let E be a vector lattice and (pα)α∈A be a net in E. TakeM and µ from Example 2.
Thus, if (pα)α∈A ↓ x then (pα)α∈A ↓stµ x for some x ∈ E.

For the general case of Example 3, we give the following work proof of which follows directly from
the basic definitions and results.

Proposition 1. If (pα)α∈A is an order decreasing null net in a vector lattice then (pα)α∈A ↓stµ 0.

Now, we introduce the crucial notion of this paper.

Definition 4. A net (xα)α∈A in a vector lattice E is said to be µ-statistical convergent to x ∈ E if
there exists a net (pα)α∈A ↓stµ 0 with a subnet qδ = (pφ(δ))β∈∆ such that µ(∆) = 1 and (qδ)δ∈∆ ↓ 0

and |xφ(δ) − x| ≤ qδ for every δ ∈ ∆. Then it is abbreviated as xα
stµ−−→x.

It can be seen that xα
stµ−−→x in a vector lattice means that there exists another sequence (pα)α∈A ↓stµ 0

such that µ
(
{α ∈ A : |xα − x| � pα}

)
= 0. It follows from Remark 1 that the notion of statistical

convergence of sequence coincides with the notion of µ-statistical convergence in the reel line. We
denote the set Estµ as the family of all stµ-convergent nets in E, and Estµ{0} is the family of all
µ-statistical null nets in E.

Lemma 1. Every µ-statistical decreasing net is µ-statistical convergent.

Remark 2. Recall that a net (xα)α∈A in a vector lattice E relatively uniform converges to x ∈ E if
there exists u ∈ E+ such that, for any n ∈ N, there is an index αn ∈ A so that |xα − x| ≤ 1

nu for all
α ≥ αn (Lemma 16.2 [18]). It is well known that the relatively uniform convergence implies the order
convergence on Archimedean vector lattices (Lemma 2.2 [20]). Hence, it follows from Proposition 1 and
Lemma 1 that every decreasing relatively uniform null net is µ-statistical convergent in vector lattices.

2 Main Results

Let µ be a measure on a directed set A. Following from Exercise 9. in [22; 27], it is clear that
µ(∆ ∩ Σ) = 1 for any ∆,Σ ⊆ A whenever µ(∆) = µ(Σ) = 1. We begin the section with the following
proposition and skip its simple proof.

Proposition 2. Assume xα ≤ yα ≤ zα satisfies in a vector lattices for each index α. Then yα
stµ−−→x

whenever xα
stµ−−→x and zα

stµ−−→x.

6 Bulletin of the Karaganda University
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It can be seen from Proposition 2 that if 0 ≤ xα ≤ zα satisfies for each index α and (zα)α∈A ∈ Estµ{0}
then (xα)α∈A ∈ Estµ{0}. We give a relation between the order and the µ-statistical convergences in
the next result.

Theorem 1. Every order convergent net is µ-statistical convergent to its order limit.
Proof. Suppose that a net (xα)α∈A is order convergent to x in a vector lattice E. Then there exists

another net (yα)α∈A ↓ 0 such that |xα−x| ≤ yα holds for all α ∈ A. It follows from Proposition 1 that
(yα)α∈A ↓stµ 0. So, we obtain the desired result, (xα)α∈A

stµ−−→x.

The converse of Theorem 1 need not to be true. To see this, we consider Example 3. [26].

Example 4. Let us consider the set of all real numbers R with the usual order. Define a sequence
(xn) in R as n2 whenever n = k2 for some k ∈ N and 1

n+1 otherwise. It is clear that (xn) is not an
order convergent sequence. However, if we choose another sequence (pn) as n whenever n = k2 for
some k ∈ N and 1

1 otherwise. Then we have pn ↓stµ 0. Setting K = {n ∈ N : n is not a square} ∪ {1}.
Then we get µ(K) = 1 and |xk| ≤ pk for each k ∈ K. Thus we have xn

stµ−−→ 0.

Moreover, following from Theorem 23.2 [18], we observe the following result.

Corollary 1. Every order bounded monotone net in a Dedekind complete vector lattice is µ-
statistical convergent.

By the definition of subnet given at the beginning of the paper, a subnet is based on some other
set B, where the measure µ is not defined. However, for a subnet yβ = xφ(β) of a net (xα)α∈A with
a measure µ on the index set A, we can consider the measure of a subset ∆ of B as the measure of
µ(φ(∆)) in A.

Proposition 3. The stµ-convergence of subnets implies the stµ-convergence of nets.
Proof. Let (xα)α∈A be a net in a vector lattice E. Assume that a subnet (xφ(δ))δ∈∆ of (xα)α∈A µ-

statistical converges to x ∈ E. Then there exists a net (pα)α∈A ∈ Estµ↓{0} such that |xφ(σ)−x| ≤ pφ(σ)

for all some σ ∈ Σ ⊆ ∆, (pφ(σ))σ∈Σ ↓ 0 and µ(Σ) = 1. Since Σ ⊆ A and (xφ(σ))σ∈Σ is also a subnet of
(xα)α∈A, we can obtain the desired result.

Since every order bounded net has an order convergent subnet in atomic KB-spaces (Remark 6.
[27]), we give the following result by considering Theorem 1 and Proposition 3.

Corollary 2. If E is an atomic KB-space then every order bounded net is µ-statistical convergent
in E.

The lattice operations are µ-statistical continuous in the following sense.

Theorem 2. If xα
stµ−−→x and wα

stµ−−→w then xα ∨ wα
stµ−−→x ∨ w.

Proof. Assume that xα
stµ−−→x and wα

stµ−−→w hold in a vector latticeE. So, there are nets (pα)α∈A, (qα)α∈A ∈
Estµ↓{0} with ∆,Σ ∈M and µ(∆) = µ(Σ) = 1 such that

|xφ(δ) − x| ≤ pφ(δ) and |wρ(σ) − w| ≤ qρ(σ)

satisfy for all δ ∈ ∆ and σ ∈ Σ. On the other hand, it follows from Theorem 1.9(2) [17] that the
inequality |xα ∨ wα − x ∨ w| ≤ |xα − x|+ |wα − w| holds for all α ∈ A. Therefore, we have

|xφ(δ) ∨ wφ(σ) − x ∨ w| ≤ pφ(δ) + qφ(σ)

for each δ ∈ ∆ and σ ∈ Σ. Take Γ := ∆∩Σ ∈M. So, we have µ(Γ) = 1, and also, |xφ(γ)∨wφ(γ)−x∨w| ≤
pφ(γ) + qφ(γ) holds for all γ ∈ Γ. It follows from (pφ(γ) + qφ(γ))γ∈Γ ↓ 0 that xα ∨ wα

stµ−−→x ∨ w.

Mathematics series. No. 3(111)/2023 7
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Corollary 3. If xα
stµ−−→x and wα

stµ−−→w in a vector lattice then
(i) xα ∧ wα

stµ−−→x ∧ w;
(ii) |xα|

stµ−−→|x|;
(iii) x+

α

stµ−−→x+;

(iv) x−α
stµ−−→x−.

We continue with several basic results that are motivated by their analogies from vector lattice
theory.

Theorem 3. Let (xα)α∈A be a net in a vector lattice E. Then the following results hold:

(i) xα
stµ−−→x iff (xα − x)

stµ−−→ 0 iff |xα − x|
stµ−−→ 0;

(ii) the µ-statistical limit is linear;
(iii) the µ-statistical limit is uniquely determined;
(iv) the positive cone E+ is closed under the statistical µ-convergence;

(v) xφ(δ)
stµ−−→x for any subnet (xφ(δ))δ∈∆ of xα

stµ−−→x with µ(∆) = 1.

Proof. The properties (i), (ii) and (iii) are straightforward.

For (iv), take a non-negative µ-statistical convergent net xα
stµ−−→x in E. Then it follows from

Corollary 3 that xn = x+
n

stµ−−→x+. Moreover, by applying (ii), we have x = x+. So, we obtain the
desired result x ∈ E+.

For (v), suppose that xα
stµ−−→x. Then there is a net (pα)α∈A ∈ Estµ↓{0} with ∆ ∈M and µ(∆) = 1

such that |xφ(δ) − x| ≤ pφ(δ) for each δ ∈ ∆. Thus, it is clear that xφ(δ)
stµ−−→x. However, it should

be shown that it is provided for all arbitrary elements in field under the assumption. Thus, take an
arbitrary element Σ ∈M with Σ 6= ∆ and µ(Σ) = 1. We show (xφ(σ))σ∈Σ

stµ−−→x. Consider Γ := ∆∩Σ ∈
M. So, we have µ(Γ) = 1. Therefore, following from |xφ(γ) − x| ≤ pφ(γ) for each γ ∈ Γ, we get the
desired result.

Proposition 1 shows that a decreasing order convergent net is µ-statistical convergent. For the
converse of this fact, we give the following result.

Proposition 4. Every monotone µ-statistical convergent net is order convergent.

Proof. We show that xα ↓ and xα
stµ−−→x implies xα ↓ x in any vector lattice E. To see this,

choose an arbitrary index α0. Then xα0 − xα ∈ E+ for all α ≥ α0. It follows from Theorem 3 that
xα0 − xα

stµ−−→xα0 − x, and also, xα0 − x ∈ E+. Hence, we have xα0 ≥ x. Then x is a lower bound of
(xα)(α∈A) because α0 is arbitrary. Suppose that z is another lower bound of (xα)α∈A. So, we obtain

xα − y
stµ−−→x − y. It means that x − y ∈ E+, or equivalent to saying that x ≥ y. Therefore, we get

xα ↓ x.

Remark 3. Let x := (xα)α∈A be a net in a vector lattice. If xX∆
o−→ 0 holds for some ∆ ∈ M with

µ(∆) = 1 and characteristic function X∆ on ∆ then x
stµ−−→ 0. Indeed, suppose that there exists ∆ ∈M

with µ(∆) = 1 and xX∆
o−→ 0 satisfies in a vector lattice E for the characteristic function X∆ of ∆. Thus,

there is another net (pα)α∈A ↓ 0 such that |xX∆| ≤ pα for all α ∈ A. So, it follows from Proposition
1 that (pα)α∈A ↓stµ 0. Then there exists a subset Σ ∈ M such that µ(Σ) = 1 and (pφ(σ))σ∈Σ ↓ 0.
Take Γ := ∆ ∩ Σ. Hence, we have µ(Γ) = 1. Following from |xXΓ| ≤ pφ(γ) for each γ ∈ Γ, we obtain

xX∆
stµ−−→ 0. Therefore, by applying Theorem 3 (v) and Remark 3, we obtain (xα)α∈A

stµ−−→ 0.

Proposition 5. The family of all stµ-convergent nets Estµ is a vector lattice.

8 Bulletin of the Karaganda University
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Proof. Let (xα)α∈A
stµ−−→x and (yβ)β∈B

stµ−−→ y in E. Then it follows from Theorem 3(ii) that (xα +

yβ)(α,β)∈A×B
stµ−−→x+y. So Estµ is a vector space. Take an element x := (xα)α∈A in Estµ . Then we have

x
stµ−−→ z for some z ∈ E. Thus, it follows from Corollary 3 that |x| stµ−−→|z|. It means that |x| ∈ Estµ ,

i.e., Estµ is a vector lattice subspace Theorem 1.3 and Theorem 1.7 [16].

Proposition 6. The set of all order bounded nets in a vector lattice E is an order ideal in Estµ{0}.

Proof. By the linearity of µ-statistical convergence, Estµ{0} is a vector space. Now, assume that
|y| ≤ |x| hold for arbitrary x := (xα)α∈A ∈ Estµ{0} and for an order bounded net y := (yα)α∈A. Since

x
stµ−−→ 0, we have |x| stµ−−→ 0. Then it follows from Proposition 2 that |y| stµ−−→ 0, and so, it follows from

Theorem 3(i) that y
stµ−−→ 0. (Therefore, we get the desired result, y ∈ Estµ{0}).
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27 Aydın, A., Emelyanov, E.Y., Özcan, N.E., & Marabeh, M.A.A. (2018). Compact-like operators

in lattice-normed spaces. Indagationes Mathematicae, 29 (2), 633–656.

А. Айдын1, Ф. Темизсу2

1Муш Альпарслан университетi, Муш, Түркия;
2Бингёль университетi, Бингёль, Түркия

Векторлық торлардағы статистикалық жинақталу

Статистикалық жинақталу, жалпы жағдайда, натурал сандардағы асимптотикалық тығыздығы бар
тiзбектер үшiн анықталады. Мақалада бағытталған жиындардағы ақырлы аддитивтi өлшемдердi
қолдана отырып, векторлық торларға статистикалық жинақталу енгiзiлген. Сонымен қатар, стати-
стикалық жинақталу мен тордың қасиеттерi арасындағы кейбiр қатынастар келтiрiлген, мысалы,
реттiк жинақталу және тор операторлары.

Кiлт сөздер: желiлердiң статистикалық жинақталуы, реттiк жинақталу, векторлық тор, бағытталған
жиынның өлшемi.
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1Университет Муш Альпарслан, Муш, Турция;
2Бингёльский университет, Бингёль, Турция

Статистическая сходимость в векторных решетках

Статистическая сходимость, в общем случае, определена для последовательностей с асимптотической
плотностью на натуральных числах. В статье мы вводим статистическую сходимость в векторных ре-
шетках, используя конечные аддитивные меры на направленных множествах. Кроме того, приводим
некоторые соотношения между статистической сходимостью и свойствами решетки, такими как схо-
димость порядка и операторы решетки.

Ключевые слова: статистическая сходимость сетей, порядковая сходимость, векторная решетка, мера
направленного множества.
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Homogenization of Attractors to Ginzburg-Landau Equations in
Media with Locally Periodic Obstacles: Critical Case

In this paper the Ginzburg-Landau equation is considered in locally periodic porous medium, with rapidly
oscillating terms in the equation and boundary conditions. It is proved that the trajectory attractors of
this equation converge in a weak sense to the trajectory attractors of the limit Ginzburg-Landau equation
with an additional potential term. For this aim we use an approach from the papers and monographs of
V.V. Chepyzhov and M.I. Vishik concerning trajectory attractors of evolution equations. Also we apply
homogenization methods appeared at the end of the XX-th century. First, we apply the asymptotic methods
for formal construction of asymptotics, then, we verify the leading terms of asymptotic series by means
of the methods of functional analysis and integral estimates. Defining the appropriate axillary functional
spaces with weak topology, we derive the limit (homogenized) equation and prove the existence of trajectory
attractors for this equation. Then we formulate the main theorem and prove it with the help of axillary
lemmas.

Keywords: attractors, homogenization, Ginzburg-Landau equations, nonlinear equations, weak convergence,
perforated domain, strange term, porous medium.

Introduction

This work is connected with modelling of processes in perforated materials and porous media.
Asymptotic analysis of solutions to problems in porous media is sufficiently complicated, especially in
the case of a threshold value of sizes and a number of cavities with nontrivial Robin (Fourier) conditions
on their boundaries, i.e. in the case of a singular perturbation of problems. In this situation the limit
equation describing the effective behavior of the model, has a different structure if one compares it
with the given one. We investigate the situation when an additional potential term appears in the limit
Ginzburg-Landau equation and prove the Hausdorff convergence of attractors as the small parameter
tends to zero. Thus, we construct the limit attractor and prove the convergence of the attractors of the
given problem, to the attractor of the limit problem with an additional potential in the equation. Here
we investigate the asymptotic behavior of attractors to an initial boundary value problem for complex
Ginzburg-Landau equations in porous media. In many pure mathematical papers one can find the
asymptotic analysis of problems in porous media (see, for example, [1–7]). Interesting homogenization
results have been obtained for periodic, almost periodic and random structures. We want to mention
here the basic frameworks [8–11], where one can find the detail bibliography.

About attractors see, for instance, [12–14] and the references in these monographs. Homogenization
of attractors were studied in [14–17] (see also [18–21]).

∗Corresponding author.
E-mail: abylaikhan9407@gmail.com
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In this paper we present the proofs of weak convergence of the trajectory attractor Aε to the
Ginzburg-Landau equation in a perforated domain, as ε → 0, to the trajectory attractor A of the
homogenized equation in some natural functional space. Here, the small parameter ε characterizes the
linear size of cavities and the distance between them in porous medium. We prove the appearance of
a so called “strange term” (the potential term) in the limit equation (for example see works [1, 2]).

1 Statement of the problem

We start by the definition of a perforated domain. Suppose Ω ⊂ Rd, d ≥ 2, is a smooth bounded
domain. Denote

Υε = {j ∈ Zd : dist (εj, ∂Ω) ≥ ε
√
d}, � ≡ {ξ : −1

2
< ξj <

1

2
, j = 1, . . . , d}.

Considering a smooth function F (x, ξ) 1-periodic in ξ, which satisfies F (x, ξ)
∣∣∣
ξ∈∂�

≥ const > 0,

F (x, 0) = −1, ∇ξF 6= 0 as ξ ∈ �\{0}, we define Dε
j = {x ∈ ε (�+ j) |F (x, xε ) ≤ 0}. The perforated

domain now is defined in the following way:

Ωε = Ω\
⋃
j∈Υε

Dε
j .

Denote by ω the set {ξ ∈ Rd | F (x, ξ) < 0}, and by S the set {ξ ∈ Rd | F (x, ξ) = 0}. The boundary
∂Ωε consists of ∂Ω and the boundary of the holes Sε ⊂ Ω, Sε = (∂Ωε) ∩ Ω.

We study the asymptotic behavior of attractors to the problem

∂uε
∂t

= (1 + αi)∆uε +R(x,
x

ε
)uε −

(
1 + β(x,

x

ε
)i
)
|uε|2uε + g(x), x ∈ Ωε,

(1 + αi)
∂uε
∂ν

+ εq(x,
x

ε
)uε = 0, x ∈ Sε, t > 0,

uε = 0, x ∈ ∂Ω,
uε = U(x), x ∈ Ωε, t = 0,

(1)

where α is a real constant, the vector ν is the outer unit vector to the boundary, u = u1 + iu2 ∈ C,
g(x) ∈ C1(Ω;C), a nonnegative 1-periodic in ξ function q(x, ξ) belongs to C1(Ω;Rd). Suppose that

−β1 ≤ β(x, ξ) ≤ β2, −R1 ≤ R(x, ξ) ≤ R2 (where R0, R1, β1, β2 > 0), (2)

for x ∈ Ω, ξ ∈ Rd and the functions R (x, ξ) and β (x, ξ) can be averaged in L∞,∗w(Ω). The averages
are R̄(x) and β̄(x) respectively, i.e.,∫

Ω
R (x, ξ)ϕ1(x)dx →

∫
Ω
R̄(x)ϕ1(x)dx,∫

Ω
β (x, ξ)ϕ1(x)dx →

∫
Ω
β̄(x)ϕ1(x)dx

(3)

for any ϕ1(x) ∈ L1(Ω), where ξ =
x

ε
as ε→ 0+ .

We define the following spaces:H := L2(Ω;C),Hε := L2(Ωε;C),V := H1
0 (Ω;C),Vε := H1(Ωε;C; ∂Ω)

is a set of functions from H1(Ωε;C) with a zero trace on ∂Ω, and Lp := Lp(Ω;C), Lp,ε := Lp(Ωε;C).
These spaces have, respectively, the next norms

‖v‖2 :=

∫
Ω
|v(x)|2dx, ‖v‖2ε :=

∫
Ωε

|v(x)|2dx, ‖v‖21 :=

∫
Ω
|∇v(x)|2dx,

‖v‖21ε :=

∫
Ωε

|∇v(x)|2dx, ‖v‖pLp :=

∫
Ω
|v(x)|pdx, ‖v‖pLp ε :=

∫
Ωε

|v(x)|pdx.
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Let us denote that dual spaces to V by V′ := H−1(Ω;C) and, moreover, Lq is the dual spaces of Lp,
where q = p

p−1 , in analogous way V′ε and Lq,ε are the dual spaces of Vε and Lp,ε.
As usually (see [14]) we investigate the behavior of weak solutions to initial boundary value problem

(1), i.e., the functions

uε(x, s) ∈ Lloc∞ (R+;Hε) ∩ Lloc2 (R+;Vε) ∩ Lloc4 (R+;L4,ε)

which satisfy problem (1) in the sense of integral identity, i.e. for any function ψ ∈ C∞0 (R+;Vε ∩L4,ε)
we have

−
∫ ∞

0

∫
Ωε

uε
∂ψ

∂t
dxdt+ (1 + αi)

∫ ∞
0

∫
Ωε

∇uε∇ψ dxdt−
∫ ∞

0

∫
Ωε

((
R
(
x,
x

ε

)
uε−

−
(

1 + β
(
x,
x

ε

)
i

)
|uε|2uε

))
ψ dxdt+ ε

∫ +∞

0

∫
Sε

q
(
x,
x

ε

)
uεψ dσdt =

∫ ∞
0

∫
Ωε

g(x)ψ dxdt. (4)

Since uε(x, t) ∈ L4(0,M ;L4,ε), one can get R
(
x, xε

)
uε(x, t) −

(
1 + β

(
x, xε

)
i
)
|uε(x, t)|2uε(x, t) ∈

L4/3(0,M ;L4/3,ε). In addition, since uε(x, t) ∈ L2(0,M ;Vε), we have (1 + αi)∆uε(x, t) + g (x) ∈
L2(0,M ;V′ε). Consequently, for any weak solution uε(x, s) to problem (1) we obtain

∂uε(x, t)

∂t
∈ L4/3(0,M ;L4/3,ε) + L2(0,M ;V′ε).

Keeping in mind the Sobolev embedding theorem, we conclude L4/3(0,M ;L4/3,ε) +L2(0,M ;V′ε) ⊂
L4/3

(
0,M ;H−rε

)
. Here the space H−rε := H−r(Ωε;C) and r = max {1, d/4}. Therefore, for an arbitrary

weak solution uε(x, t) of (1) we get ∂uε(x,t)
∂t ∈ L4/3 (0,M ;H−rε ).

Remark 1.1. Using the standard approach from [13], one can prove the existence of weak solution
u(x, s) to the problem (1) for every U ∈ Hε and fixed ε, satisfying u(x, 0) = U(x).

It is possible to prove the following basic Lemma similarly to Proposition 3 from [20].
Lemma 1.1. Suppose that uε(x, t) ∈ Lloc2 (R+;Vε) ∩ Lloc4 (R+;L4,ε) is a weak solution to (1). Then
(i) u ∈ C(R+;Hε);
(ii) the function ‖uε(·, t)‖2ε is absolutely continuous on R+ and, moreover,

1

2

d

dt
‖uε(·, t)‖2ε + ‖∇uε(·, t)‖2ε + ‖uε(·, t)‖4L4,ε

−
∫

Ωε

R
(
x,
x

ε

)
|uε(x, t)|2dx+

+ ε

∫
Sε

q
(
x,
x

ε

)
|uε(x, t)|2dσ =

∫
Ωε

Re (g(x)ūε(x, t)) dx,

for almost every t ∈ R+.
We fix ε. Bellow, where it is natural, we omit the index ε in the notation of functional spaces. Now we

use the approach described in Section 2 to construct the trajectory attractor of (1), which has the form
(7) if we set E1 = Lp∩V, E0 = H−r, E = H and A(u) = (1+αi)∆u+R(·)u− (1 + β(·)i) |u|2u+g(·).

To define the trajectory space K+
ε for (1), we use the general approaches of Section 2 and for every

[t1, t2] ∈ R we have the Banach spaces

Ft1,t2 := L4(t1, t2;L4) ∩ L2(t1, t2;V) ∩ L∞(t1, t2;H) ∩
{
v
∣∣∣ ∂v
∂t
∈ L4/3

(
t1, t2;H−r

)}
with the following norm

‖v‖Ft1,t2 := ‖v‖L4(t1,t2;L4) + ‖v‖L2(t1,t2;V) + ‖v‖L∞(0,M ;H) +

∥∥∥∥∂v∂t
∥∥∥∥
L4/3(t1,t2;H−r)

.
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Setting Dt1,t2 = Lq (t1, t2;H−r) we obtain Ft1,t2 ⊆ Dt1,t2 and for u(s) ∈ Ft1,t2 we have A(u(s)) ∈
Dt1,t2 . One considers now weak solutions to (1) as solutions of an equation in the general scheme of
Section 2.

Consider the spaces

F loc+ = Lloc4 (R+;L4) ∩ Lloc2 (R+;V) ∩ Lloc∞ (R+;H) ∩
{
v
∣∣∣ ∂v
∂t
∈ Lloc4/3(R+;H−r)

}
,

F locε,+ = Lloc4 (R+;L4,ε) ∩ Lloc2 (R+;Vε) ∩ Lloc∞ (R+;Hε) ∩
{
v
∣∣∣ ∂v
∂t
∈ Lloc4/3(R+;Hε

−r)

}
.

We introduce the following notation. Let K+
ε be the set of all weak solutions to (1). For any U ∈ H

there exists at least one trajectory u(·) ∈ K+
ε such that u(0) = U(x). Consequently, the space K+

ε to
(1) is not empty and is sufficiently large.

It is easy to see that K+
ε ⊂ F loc+ and the space K+

ε is translation invariant, i.e., if u(s) ∈ K+
ε , then

u(h+ s) ∈ K+
ε for all h ≥ 0. Hence, S(h)K+

ε ⊆ K+
ε for all h ≥ 0.

We define metrics ρt1,t2(·, ·) in the spaces Ft1,t2 by means of the norms from L2(t1, t2;H). We get

ρ0,M (u, v) =

(∫ M

0
‖u(s)− v(s)‖2Hds

)1/2

∀u(·), v(·) ∈ F0,M .

The topology Θloc
+ in F loc+ (respectively Θloc

ε,+ in F locε,+) is generated by these metrics. Let us recall that
{vk} ⊂ F loc+ converges to v ∈ F loc+ as k → ∞ in Θloc

+ if ‖vk(·) − v(·)‖L2(0,M ;H) → 0 (k → ∞) for
each M > 0. Bearing in mind (8), we conclude that the topology Θloc

+ is metrizable. We consider this
topology in the trajectory space K+

ε of (1). Also it can be seen that the translation semigroup {S(t)}
acting on K+

ε , is continuous in this topology.
Using the scheme of Section 2, one can define bounded sets in the space K+

ε by means of the Banach
space Fb+. We naturally get

Fb+ = Lb4(R+;L4) ∩ Lb2(R+;V) ∩ L∞(R+;H) ∩
{
v
∣∣∣ ∂v
∂t
∈ Lb4/3(R+;H−r)

}
and the set Fb+ is a subspace of F loc+ .

Consider the translation semigroup {S(t)} on K+
ε , S(t) : K+

ε → K+
ε , t ≥ 0.

Suppose that Kε is the kernel to (1), that consists of all weak complete solutions u(s),∈ R, to our
system of equations, bounded in

Fb = Lb4(R;L4) ∩ Lb2(R;V) ∩ L∞(R;H) ∩
{
v
∣∣∣ ∂v
∂t
∈ Lb4/3(R;H−r)

}
.

Proposition 1.1. Problem (1) has the trajectory attractors Aε in the topological space Θloc
+ . The

set Aε is uniformly (w.r.t. ε ∈ (0, 1)) bounded in Fb+ and compact in Θloc
+ . Moreover, Aε = Π+Kε, the

kernel Kε is non-empty and uniformly (w.r.t. ε ∈ (0, 1)) bounded in Fb. Recall that the spaces Fb+ and
Θloc

+ depend on ε.
To prove this proposition we use the approach of the proof from [14]. To prove the existence of an

absorbing set (bounded in Fb+ and compact in Θloc
+ ) one can use Lemma l.1 similar to [14].

It is easy to verify, that Aε ⊂ B0(R) for all ε ∈ (0, 1). Here B0(R) is a ball in Fb+ with a sufficiently
large radius R. By means of Lemma 2.1 we have

B0(R) b Lloc2 (R+;H1−δ), (5)

B0(R) b C loc(R+;H−δ), 0 < δ ≤ 1. (6)
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Formula (5) immediately follows, if we take E0 = H−r, E = H1−δ, E1 = H1 = V, and p1 = 2,
p0 = 4/3, keeping in mind the compact embedding V b H1−δ. Formula (6) follows from the compact
embedding H b H−δ, if we take E0 = H−r(D), E = H−δ, E1 = H1 = V, and p0 = 4/3.

Bearing in mind (5) and (6), the attraction to the constructed trajectory attractor can be strengthen.
Corollary 1.1. For any bounded in Fb+ set B ⊂ K+

ε we get

distL2(0,M ;H1−δ) (Π0,MS(t)B,Π0,MKε)→ 0 (t→∞),

distC([0,M ];H−δ) (Π0,MS(t)B,Π0,MKε)→ 0 (t→∞),

where M is a positive constant.

2 Trajectory attractors of evolution equations

This section is devoted to the construction of trajectory attractors to autonomous evolution equations.
Consider an autonomous evolution equation of the form

∂u

∂t
= A(u), t ≥ 0. (7)

Here A(·) : E1 → E0 is a nonlinear operator, E1, E0 are Banach spaces and E1 ⊆ E0. As an example
one can consider A(u) = (1 + αi)∆u+R(·)u− (1 + β(·)i) |u|2u+ g(·).

We study weak solutions u(s) to (7) as functions of parameter s ∈ R+ as a whole. To be precise
we say that s ≡ t denotes the time. The set of solutions of (7) is said to be a trajectory space K+ of
equation (7). Now, we describe the trajectory space K+ in detail.

Consider solutions u(s) of (7) defined on [t1, t2] ⊂ R. We consider solutions to problem (7) in
a Banach space Ft1,t2 . The space Ft1,t2 is a set f(s), s ∈ [t1, t2] satisfying f(s) ∈ E for almost all
s ∈ [t1, t2], where E is a Banach space, satisfying E1 ⊆ E ⊆ E0.

For instance, Ft1,t2 can be considered as the intersection spaces C([t1, t2];E), or Lp(t1, t2;E), for p ∈
[1,∞]. Suppose that Πt1,t2Fτ1,τ2 ⊆ Ft1,t2 and ‖Πt1,t2f‖Ft1,t2 ≤ C(t1, t2, τ1, τ2)‖f‖Fτ1,τ2 ∀f ∈ Fτ1,τ2 .
Here [t1, t2] ⊆ [τ1, τ2] and Πt1,t2 denotes the restriction operator onto [t1, t2], constant C(t1, t2, τ1, τ2)
does not depend on f .

Suppose that S(h) for h ∈ R denotes the translation operator S(h)f(s) = f(h+s). It is easy to see,
that if the argument s of f(·) belongs to the segment [t1, t2], then the argument s of S(h)f(·) belongs
to [t1−h, t2−h] for h ∈ R. Suppose that the mapping S(h) is an isomorphism from Ft1,t2 to Ft1−h,t2−h
and ‖S(h)f‖Ft1−h,t2−h = ‖f‖Ft1,t2 ∀f ∈ Ft1,t2 . It is easy to see that this assumption is natural.

Suppose that if f(s) ∈ Ft1,t2 , then A(f(s)) ∈ Dt1,t2 , where Dt1,t2 is a Banach space, which is larger,
Ft1,t2 ⊆ Dt1,t2 . The derivative ∂f(t)

∂t is a distribution with values in E0,
∂f
∂t ∈ D

′((t1, t2);E0) and we
suppose that Dt1,t2 ⊆ D′((t1, t2);E0) for all (t1, t2) ⊂ R. A function u(s) ∈ Ft1,t2 is a solution of (7),
if ∂u∂t (s) = A(u(s)) in the sense of D′((t1, t2);E0).

Let us define the space F loc+ = {f(s), s ∈ R+ | Πt1,t2f(s) ∈ Ft1,t2 , ∀ [t1, t2] ⊂ R+}. For instance,
if Ft1,t2 = C([t1, t2];E), then F loc+ = C(R+;E) and if Ft1,t2 = Lp(t1, t2;E), then F loc+ = Llocp (R+;E).

A function u(s) ∈ F loc+ is a solution of (7), if Πt1,t2u(s) ∈ Ft1,t2 and u(s) is a solution of (7) for
every [t1, t2] ⊂ R+.

Let K+ be a set of solutions to (7) from F loc+ . Note, that K+ in general is not the set of all solutions
from F loc+ . The set K+ consists on elements, which are trajectories and the set K+ is the trajectory
space of the equation (7).

Suppose that the trajectory space K+ is translation invariant, i.e., if u(s) ∈ K+, then u(h+s) ∈ K+

for every h ≥ 0.
Consider the translation operators S(h) in F loc+ : S(h)f(s) = f(s+ h), h ≥ 0. It is easy to see that

the map {S(h), h ≥ 0} forms a semigroup in F loc+ : S(h1)S(h2) = S(h1 + h2) for h1, h2 ≥ 0 and in
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addition S(0) is the identity operator. Next step is to change the variable h into the time variable t.
The translation semigroup {S(t), t ≥ 0} maps the trajectory space K+ to itself: S(t)K+ ⊆ K+ for all
t ≥ 0.

We investigate attracting properties of the translation semigroup {S(t)} acting on the trajectory
space K+ ⊂ F loc+ . Next step is to define a topology in the space F loc+ .

One can see, that metrics ρt1,t2(·, ·) is defined on Ft1,t2 for every [t1, t2] ⊂ R. Suppose that

ρt1,t2 (Πt1,t2f,Πt1,t2g) ≤ D(t1, t2, τ1, τ2)ρτ1,τ2 (f, g) ∀f, g ∈ Fτ1,τ2 , [t1, t2] ⊆ [τ1, τ2],

ρt1−h,t2−h(S(h)f, S(h)g) = ρt1,t2(f, g) ∀f, g ∈ Ft1,t2 , [t1, t2] ⊂ R, h ∈ R.

Now, we denote by Θt1,t2 metric spaces on Ft1,t2 . For instance, ρt1,t2 is metric associated with the norm
‖ · ‖Ft1,t2 of Ft1,t2 . At the other hand, in application ρt1,t2 generates the topology Θt1,t2 that is weaker
than the strong one of the Ft1,t2 .

The projective limit of the spaces Θt1,t2 defines the topology Θloc
+ in F loc+ , that is, by definition,

a sequence {fk(s)} ⊂ F loc+ tends to f(s) ∈ F loc+ as k → ∞ in Θloc
+ if ρt1,t2(Πt1,t2fk,Πt1,t2f) → 0 as

k → ∞ for all [t1, t2] ⊂ R+. It is possible to show that the topology Θloc
+ is metrizable. For this aim

we use, for example, the Frechet metric

ρ+(f1, f2) :=
∑
m∈N

2−m
ρ0,m(f1, f2)

1 + ρ0,m(f1, f2)
. (8)

The translation semigroup {S(t)} is continuous in Θloc
+ . This statement follows from the definition

of Θloc
+ .
We also define the following Banach space

Fb+ := {f(s) ∈ F loc+ | ‖f‖Fb+ < +∞},

where the norm
‖f‖Fb+ := sup

h≥0
‖Π0,1f(h+ s)‖F0,1 .

We remember that Fb+ ⊆ Θloc
+ . We need from our Banach space Fb+ only one fact It should define

bounded subsets in the trajectory space K+. For constructing a trajectory attractor in K+, instead
of considering the corresponding uniform convergence topology of the Banach space Fb+, we use much
weaker topology, i.e. the local convergence topology Θloc

+ .
Assume that K+ ⊆ F b+, that is, every trajectory u(s) ∈ K+ of equation (7) has a finite norm. We

define an attracting set and a trajectory attractor of the translation semigroup {S(t)} acting on K+.
Definition 2.1. A set P ⊆ Θloc

+ is called an attracting set of the semigroup {S(t)} acting on K+ in
the topology Θloc

+ if for any bounded in Fb+ set B ⊆ K+ the set P attracts S(t)B as t → +∞ in the
topology Θloc

+ , i.e., for any ε-neighbourhood Oε(P) in Θloc
+ there exists t1 ≥ 0 such that S(t)B ⊆ Oε(P)

for all t ≥ t1.
It is easy to see that the attracting property of P can be formulated equivalently: we have

distΘ0,M
(Π0,MS(t)B,Π0,MP) −→ 0 (t→ +∞),

where distM(X,Y ) := supx∈X distM(x, Y ) = supx∈X infy∈Y ρM(x, y) is the Hausdorff semidistance
from a set X to a set Y in a metric space M. We remember that the Hausdorff semidistance is not
symmetric, for any B ⊆ K+ bounded in Fb+ and for each M > 0.

Definition 2.2 ([14]). A set A ⊆ K+ is called the trajectory attractor of the translation semigroup
{S(t)} on K+ in the topology Θloc

+ , if
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(i) A is bounded in Fb+ and compact in Θloc
+ ,

(ii) the set A is strictly invariant with respect to the semigroup: S(t)A = A for all t ≥ 0,

(iii) A is an attracting set for {S(t)} on K+ in the topology Θloc
+ , that is, for each M > 0 we have

distΘ0,M
(Π0,MS(t)B,Π0,MA)→ 0 (t→ +∞).

Let us formulate the main assertion on the trajectory attractor for equation (7).
Theorem 2.1 ([13, 14]). Assume that the trajectory space K+ corresponding to equation (7) is

contained in Fb+. Suppose that the translation semigroup {S(t)} has an attracting set P ⊆K+ which is
bounded in Fb+ and compact in Θloc

+ . Then the translation semigroup {S(t), t ≥ 0} acting on K+ has
the trajectory attractor A ⊆ P. The set A is bounded in Fb+ and compact in Θloc

+ .

Let us describe in detail, i.e., in terms of complete trajectories of the equation, the structure of the
trajectory attractor A to equation (7). We study the equation (7) on the time axis

∂u

∂t
= A(u), t ∈ R. (9)

Note that the trajectory space K+ of equation (9) on R+ have been defined. We need this notion
on the entire R. If a function f(s), s ∈ R, is defined on the entire time axis, then the translations
S(h)f(s) = f(s+ h) are also defined for negative h. A function u(s), s ∈ R is a complete trajectory of
equation (9) if Π+u(s + h) ∈ K+ for all h ∈ R. Here Π+ = Π0,∞ denotes the restriction operator to
R+.

We have F loc+ ,Fb+, and Θloc
+ . Let us define spaces F loc,Fb, and Θloc in the same way:

F loc := {f(s), s ∈ R | Πt1,t2f(s) ∈ Ft1,t2 ∀ [t1, t2] ⊆ R}; Fb := {f(s) ∈ F loc | ‖f‖Fb < +∞},

where
‖f‖Fb := sup

h∈R
‖Π0,1f(h+ s)‖F0,1 . (10)

The topological space Θloc coincides (as a set) with F loc and, by definition, fk(s)→ f(s) (k →∞)
in Θloc if Πt1,t2fk(s)→ Πt1,t2f(s) (k →∞) in Θt1,t2 for each [t1, t2] ⊆ R. It is easy to see that Θloc is
a metric space as well as Θloc

+ .
Definition 2.3. The kernel K in the space Fb of equation (9) is the union of all complete trajectories

u(s), s ∈ R, of equation (9) that are bounded in the space Fb with respect to the norm (10), i.e.

‖Π0,1u(h+ s)‖F0,1 ≤ Cu ∀h ∈ R.

Theorem 2.2. Assume that the hypotheses of Theorem holds. Then A = Π+K, the set K is compact
in Θloc and bounded in Fb.

To prove this assertion one can use the approach from [14].
In various applications, to prove that a ball in Fb+ is compact in Θloc

+ the following lemma is useful.
Let E0 and E1 be Banach spaces such that E1 ⊂ E0. We consider the Banach spaces

Wp1,p0(0,M ;E1, E0) =
{
ψ(s), s ∈ 0,M | ψ(·) ∈ Lp1(0,M ;E1), ψ′(·) ∈ Lp0(0,M ;E0)

}
,

W∞,p0(0,M ;E1, E0) =
{
ψ(s), s ∈ 0,M | ψ(·) ∈ L∞(0,M ;E1), ψ′(·) ∈ Lp0(0,M ;E0)

}
,

(where p1 ≥ 1 and p0 > 1) with norms

‖ψ‖Wp1,p0
:=

(∫ M

0
‖ψ(s)‖p1E1

ds

)1/p1

+

(∫ M

0
‖ψ′(s)‖p0E0

ds

)1/p0

,
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‖ψ‖W∞,p0 := ess sup {‖ψ(s)‖E1 | s ∈ [0,M ]}+

(∫ M

0
‖ψ′(s)‖p0E0

ds

)1/p0

.

Lemma 2.1 (Aubin-Lions-Simon, [22]). Assume that E1 b E ⊂ E0. Then the following embeddings
are compact:

Wp1,p0(0, T ;E1, E0) b Lp1(0, T ;E), W∞,p0(0, T ;E1, E0) b C([0, T ];E).

In this paper we investigate evolution equations and their trajectory attractors depending on a
small parameter ε > 0.

Definition 2.4. We say that the trajectory attractors Aε converge to the trajectory attractor A as
ε→ 0 in the topological space Θloc

+ if for any neighborhood O(A) in Θloc
+ there is an ε1 ≥ 0 such that

Aε ⊆ O(A) for any ε < ε1, that is, for each M > 0 we have

distΘ0,M
(Π0,MAε,Π0,MA)→ 0 (ε→ 0).

3 Formal homogenization procedure

Let Mi be a solution to a problem ∆ξMi (x, ξ) = 0 in ω,
∂Mi(x, ξ)

∂ν
= −ν̃i on S(x).

(11)

Denote by 〈·〉 the integral over the set � ∩ ω, and Q(x) =
∫
S q(x, ξ) dσ.

The limit problem has the form

∂u0

∂t
− (1 + αi)

d∑
i,j=1

∂

∂xi

(〈
δij +

∂Mi(x, ξ)

∂ξj

〉
∂u0

∂xj

)
−

−R(x)u0 + (1 + β(x)i) |u0|2 u0 +Q(x)u0 = |� ∩ ω| g(x), x ∈ Ω,
u0 = 0, x ∈ ∂Ω, t > 0,
u0 = U(x), x ∈ Ω, t = 0.

(12)

It is easy to see that system (12) also has trajectory attractor A in the trajectory space K+

corresponding to problem (12) and A = Π+K, where K is the kernel of system (12) in Fb+.
The integral identity for problem (12) takes the form

−
∫
R+

∫
Ω
u0
∂v

∂t
dtdx+ (1 + αi)

∫
R+

∫
Ω

d∑
i,j=1

〈
δij +

∂Mi(x, ξ)

∂ξj

〉
∂u0

∂xi

∂v

∂xj
dtdx+

−
∫
R+

∫
Ω

(
R(x)u0 − (1 + β(x)i) |u0|2 u0 −Q(x)u0

)
vdtdx =

∫
R+

∫
Ω
|� ∩ ω| g(x) v dtdx

for any function v ∈ C∞0 (R+;V ∩ L4).

Remark 3.1. Note that Mi(x, ξ) are not defined in the whole Ω. We can extend Mi(x, ξ) into the
interior of the cavities retaining the regularity of these functions by means of the technique of the
symmetric extension, keeping the same notation for the extended functions.
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4 Auxiliaries

We study the asymptotics of solution uε(x) as ε→ 0 to the next boundary-value problem
−(1 + αi)∆uε = g(x) in Ωε,

(1 + αi)
∂uε
∂νε

+ εq
(
x,
x

ε

)
uε = 0 on Sε,

uε = 0 on ∂Ω.

(13)

Here nε is the internal normal to the boundary of cavities and q(x, ξ) is a sufficiently smooth 1-periodic
in ξ function.

Definition 4.1. The function uε ∈ H1(Ωε, ∂Ω) is a solution of problem (13), if the following integral
identity

(1 + αi)

∫
Ωε
∇uε(x)∇v(x) dx+ ε

∫
Sε

q
(
x,
x

ε

)
uε(x)v(x) ds =

∫
Ωε
g(x) v(x) dx

holds true for any function v ∈ H1(Ωε, ∂Ω).

Here H1(Ωε, ∂Ω) is the closure of the set of functions belonging to C∞(Ω
ε
) and vanishing in a

neighborhood of ∂Ω, by the H1(Ωε) norm.
Here we derive the leading terms of the asymptotic expansion and, then, construct the homogranized

problem. For this aim we consider the solution uε(x) to (13) as an asymptotic series

uε(x) = u0(x) + εu1

(
x,
x

ε

)
+ ε2u2

(
x,
x

ε

)
+ ε3u3

(
x,
x

ε

)
+ . . . (14)

Substituting expression (14) in equation (13) and bearing in mind the relation

∂

∂x
ζ
(
x,
x

ε

)
=

(
∂

∂x
ζ(x, ξ) +

1

ε

∂

∂ξ
ζ(x, ξ)

) ∣∣∣∣
ξ=x

ε

,

we get the formula

− g(x)

1 + αi
= ∆xuε(x) ∼= ∆xu0(x) + ε (∆xu1(x, ξ))

∣∣∣
ξ=x

ε

+ 2 (∇x,∇ξu1(x, ξ))
∣∣∣
ξ=x

ε

+

+
1

ε
(∆ξu1(x, ξ))

∣∣∣
ξ=x

ε

+ ε2 (∆xu2(x, ξ))
∣∣∣
ξ=x

ε

+ 2ε (∇x,∇ξu2(x, ξ))
∣∣∣
ξ=x

ε

+

+ (∆ξu2(x, ξ))
∣∣∣
ξ=x

ε

+ ε3 (∆xu3(x, ξ))
∣∣∣
ξ=x

ε

+

+ 2ε2 (∇x,∇ξu3(x, ξ))
∣∣∣
ξ=x

ε

+ ε (∆ξu3(x, ξ))
∣∣∣
ξ=x

ε

+ . . . (15)

Similarily, substituting (14) into boundary conditions in (13), we get the relation

0 =
∂uε
∂νε

+ ε
q
(
x, xε

)
1 + αi

uε ∼= (∇xu0, νε) + ε
q
(
x, xε

)
1 + αi

u0 + ε (∇xu1, νε) +

+
(
∇ξu1

∣∣
ξ=x

ε
, νε

)
+ ε2

q
(
x, xε

)
1 + αi

u1 + ε2 (∇xu2, νε) + ε
(
∇ξu2

∣∣
ξ=x

ε
, νε

)
+

+ ε3
q
(
x, xε

)
1 + αi

u2 + ε3 (∇xu3, νε) + ε2
(
∇ξu3

∣∣
ξ=x

ε
, νε

)
+ ε4

q
(
x, xε

)
1 + αi

u3 + . . . , (16)

which means that it satisfies the boundary condition on Sε.
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The normal vector νε depends on x and x
ε in Ωε. Now, we consider x and ξ = x

ε as independent
variables, and then we represent νε in Ωε in the form

νε(x,
x

ε
) = ν̃(x, ξ)

∣∣∣
ξ=x

ε

+ εν ′ε(x, ξ)
∣∣∣
ξ=x

ε

,

where ν̃ is a normal vector to S(x) = {ξ |F (x, ξ) = 0},

ν ′ε = ν ′ +O(ε).

Collecting all the terms of order ε−1 in (15) and of order ε0 in (16), we deduce the auxiliary problem ∆ξu1 (x, ξ) = 0 in ω,
∂u1(x, ξ)

∂ν
= − (∇x(u0(x)), ñ) on S,

(17)

which we solve in the space of 1-periodic in ξ functions and here x is a parameter, ω := {ξ ∈
Td |F (x, ξ) > 0}. This is the cell problem appearing in case of Neumann conditions on the boundary

of cavities. It is easy to see that the compatibility condition
∫
S(x)

(∇xu0(x), ν̃(ξ)) dσ = 0 of (17) is

satisfied, and the solution of this problem is the first corrector in (14).
At the next step we collect all the terms of order ε0 in (15) and of order ε1 in (16). This gives us

∆ξu2 (x, ξ) = − g(x)

1 + αi
−∆xu0(x)− 2 (∇ξ,∇xu1(x, ξ)) in ω,

∂u2(x, ξ)

∂ν
= − (∇xu1(x, ξ), ν̃)− (∇ξu1(x, ξ), ν ′)−

−
(
∇xu0(x), ν ′

)
− q(x, ξ)

1 + αi
u0(x) on S(x).

(18)

The 1-periodic in ξ solution of the latter problem is the second term of the internal asymptotic
expansion of uε(x).

It is easy to see that for our analysis it is convenient to represent the solution u1(x, ξ) of problem
(17) in the following form:

u1(x, ξ) = (gradxu0(x),M(x, ξ)) ,

where 1-periodic vector–function M(x, ξ) = (M1(x, ξ), . . . ,Md(x, ξ)) is a solution to (11).
Now, (18) can be rewritten as follows

∆ξu2 (x, ξ) = − g(x)

1 + αi
−∆xu0(x)− 2

d∑
i,j=1

∂2u0(x)

∂xi ∂xj

∂Mi(x, ξ)

∂ξj
−

−2

d∑
i,j=1

∂u0(x)

∂xi

∂2Mi(x, ξ)

∂ξj ∂xj
in ω,

∂u2(x, ξ)

∂ν
= −

d∑
i,j=1

∂2u0(x)

∂xi ∂xj
Mi(x, ξ)νj −

d∑
i,j=1

∂u0(x)

∂xi

∂Mi(x, ξ)

∂xj
νj−

−q(x, ξ)
1 + αi

u0(x)−
d∑

i,j=1

∂u0(x)

∂xi

(
∂Mi(x, ξ)

∂ξj
+ δij

)
ν ′j on S(x).
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Writing down the solvability condition in the last problem, we derive the equation:

∫
�∩ω

(
g(x)

1 + αi
+ ∆xu0(x) + 2

d∑
i,j=1

∂2u0(x)

∂xi ∂xj

∂Mi(x, ξ)

∂ξj
+ 2

d∑
i,j=1

∂u0(x)

∂xi

∂2Mi(x, ξ)

∂ξj ∂xj

)
dξ =

=

∫
Q

(
d∑

i,j=1

∂2u0(x)

∂xi ∂xj
Mi(x, ξ)νj +

d∑
i,j=1

∂u0(x)

∂xi

∂Mi(x, ξ)

xj
νj+

+

d∑
i,j=1

∂u0(x)

∂xi

∂Mi(x, ξ)

∂ξj
ν ′j +

d∑
i=1

∂u0(x)

∂xi
ν ′i +

q(x, ξ)

1 + αi
u0(x)

)
dσ. (19)

From (19) by the Stokes formula we derive the equation

|� ∩ ω|∆xu0(x) +
d∑

i,j=1

〈
∂2Mi(x, ξ)

∂xj ∂ξj

〉
∂u0(x)

∂xi
+

d∑
i,j=1

〈
∂Mi(x, ξ)

∂ξj

〉
∂2u0(x)

∂xi ∂xj
+

+ |� ∩ ω| g(x)

1 + αi
=

Q(x)

1 + αi
u0(x) +

d∑
i=1

Ui(x)
∂u0(x)

∂xi
, (20)

which is the limit equation in Ω. We denoted by < · > the integral over � ∩ ω, and Q(x) =∫
S(x) q(x, ξ) dσ. Moreover, Ui(x) =

∫
S(x)

(
∂Mi(x,ξ)
∂ξj

ν ′j + ν ′i

)
dσ.

It is not necessary to calculate Ui(x), since by the selfadjointness of the operators of the given
problems and the convergence of the corresponding belinear forms, we get that the G–limit operator
is necessary selfadjoint. Therefore, the limit equation (20) takes the form:

(1 + αi)
d∑

i,j=1

∂

∂xj

(〈
δij +

∂Mi(x, ξ)

∂ξj

〉
∂u0(x)

∂xi

)
+ |� ∩ ω|g(x) = Q(x)u0(x) (21)

and, consequently,

Ui(x) =
d∑
j=1

∂

∂xj

〈
∂Mi(x, ξ)

∂ξj

〉
−

d∑
j=1

〈
∂2Mi(x, ξ)

∂xj ∂ξj

〉
.

It is easy to see that
〈
δij + ∂Mi(x,ξ)

∂ξj

〉
is a smooth positively defined matrix (see [9]).

The next statement is about the limit behavior of the solution to (13).
Theorem 4.1. Suppose that g(x) ∈ C1(Rd) and that q(x, ξ) is smooth enough nonnegative function.

Then, for any sufficiently small ε problem (13) has the unique solution and the following convergence

‖u0 − uε‖H1(Ωε) −→ 0

takes place, where u0 is a solution of equation (21) with zero Dirichlet conditions on ∂Ω.
Remark 4.1. In fact, in the formulation of Theorem 4.1 the condition q(x, ξ) ≥ 0 can be replaced

by the weaker condition Q(x) ≥ 0.

4.1 Preliminary Lemmas

Here we give some technical propositions, which we use in the further analysis. Some of these
propositions have been proved in [3, 23]. We omit their proofs.
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Lemma 4.1. If the conditions of Theorem are satisfied, then the Friederichs type inequality∫
Ωε

|∇v|2dx+ ε

∫
Sε

q
(
x,
x

ε

)
v2ds ≥ C1‖v‖2H1(Ωε,∂Ω)

is valid for any v ∈ H1(Ωε, ∂Ω), where C1 is independent of ε.
Now we formulate a modified version of Lemma 5 from [23].
Lemma 4.2. If we suppose

1

|� ∩ ω|

∫
�∩ω

Q(x) dξ −
∫
S(x)

q(x, ξ) dσ ≡ 0,

then the following inequality∣∣∣∣ 1

|� ∩ ω|

∫
Ωε
Q(x) v(x) dx− ε

∫
Sε

q
(
x,
x

ε

)
v(x) dσ

∣∣∣∣ ≤ C2ε‖v‖H1(Ωε)

holds for any v(x) ∈ H1(Ωε, ∂Ω); the constant C2 is independent of ε.
Proof. The proof of this assertion can be found in [24].

Lemma 4.3. If yε is a solution to
−(1 + αi)∆yε = hε(x) in Ωε,

(1 + αi)
∂yε
∂νε

+ εq
(
x,
x

ε

)
yε = 0 on Sε,

yε = 0 on Ω,

where hε(x) = g(x) for x ∈ Ωε and 0 otherwise, then

‖yε‖H1(Ωε) ≤ C3ε.

The proposition, which is a modification of Lemma 5 from [23], formulated below.
Lemma 4.4. Suppose wε(x) ∈ L∞(Ω), and let Πε belong to {x ∈ Ω | dist (x, ∂Ω) ≤ C0ε}. Then the

following inequality ∣∣∣∣∫
Πε
wε(x)

∣∣∣
ξ=x

ε

∇xu0(x) v(x) dx

∣∣∣∣ ≤ C4ε
3
2 ‖w‖L∞(Ω)‖v‖H1(Ωε)

holds for any v(x) ∈ H1(Ωε, ∂Ω); the constant C4 is independent of ε.
Proof of the Theorem 4.1. The proof of this assertion can be found in [23].

5 The main assertion

Here formulate the main proposition concerning the Ginzburg-Landau equation.
Theorem 5.1. The following limit holds in the topological space Θloc

+

Aε → A as ε→ 0 + . (22)

Moreover,
Kε → K as ε→ 0 + in Θloc. (23)

Remark 5.1. The functions belonging the sets Aε and Kε are defined in the perforated domains Ωε.
But, all these functions can be extended insides the cavities remaining their norms in the spaces H,V,
and Lp (without perforation) with the constants independent of the small parameter (the prolongation
of functions defined in perforated domains, see, for instance, in [10; Ch.VIII]). Hence, in Theorem 5.1,
we have all the distances in the spaces without perforation.
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Proof. It is easy to see that (23) implies (22). Hence, it is sufficient to prove (23), i.e., for every
neighborhood O(K) in Θloc there exists ε1 = ε1(O) > 0, such that

Kε ⊂ O(K) for ε < ε1. (24)

Assume that (24) is not true. Then there exists a neighborhood O′(K) in Θloc, a sequence εk →
0 + (k →∞), and a sequence uεk(·) = uεk(s) ∈ Kεk , such that

uεk /∈ O
′(K) for all k ∈ N.

The function uεk(s), s ∈ R is a solution to

∂uεk
∂t

= (1 + αi)∆uεk +R

(
x,
x

εk

)
uεk −

(
1 + β

(
x,
x

εk

)
i

)
|uεk |

2uεk + g (x) , x ∈ Ωεk ,

(1 + αi)
∂uεk
∂ν

+ εkq
(
x,
x

εk

)
uεk = 0, x ∈ Sεk , t > 0,

uεk = 0, x ∈ ∂Ω,
uεk = U(x), x ∈ Ωεk , t = 0.

on the axis t ∈ R. To get the uniform in ε estimate of the solution we use the following Lemmas (see
[25; Ch. III, §5] and [26] respectively).

By means of integral identity (4) and Lemma 1.1 we derive the estimate, the sequence {uεk(x, s)}
is bounded in Fb, i.e.,

‖uεk‖Fb = sup
t∈R
‖uεk(t)‖+ sup

t∈R

(∫ t+1

t
‖uεk(s)‖21ds

)1/2

+

+ sup
t∈R

(∫ t+1

t
‖uεk(s)‖4L4

ds

)1/4

+ sup
t∈R

(∫ t+1

t

∥∥∥∂uεk
∂t

(s)
∥∥∥4/3

H−r
ds

)3/4

≤ C for all k ∈ N. (25)

The constant C is independent of ε.
Consequently, there exists a subsequence {uε′k(x, s)} ⊂ {uεk(x, s)}, such that uεk(x, s)→ u(s) as k →

∞ in Θloc. Here u(x, s) ∈ Fb and u(s) are the solution to (25) with the same constant C. Because
of (25) we get uεk(x, s) ⇀ u(x, s) (k → ∞) weakly in Lloc2 (R;V), weakly in Lloc4 (R;L4), ∗-weakly in
Lloc∞ (R+;H) and ∂uεk (x,s)

∂t ⇀ ∂u(x,s)
∂t (k → ∞) weakly in Lloc4/3,w (R;H−r). We claim that u(x, s) ∈ K.

We have ‖u‖Fb ≤ C. Hence, we have to establish that u(x, s) is a weak solution to (12).
According to the auxiliary problem in the case θ = 1 we have

(1 + αi)

∫ M

−M

∫
Ωεk

∇uεk∇ψ dxdt+ εk

∫ M

−M

∫
Sεk

q
(
x,
x

εk

)
uεkψdσdt+

∫ M

−M

∫
Ωεk

g(x)ψdxdt −→

(1 + αi)

∫ M

−M

∫
Ω

d∑
i,j=1

〈
δij +

∂Mi(x, ξ)

∂ξj

〉
∂u0(x, t)

∂xi

∂ψ

∂xj
dxdt−

+

∫ M

−M

∫
Ω
Q(x)u0(x, t)ψdxdt+

∫ M

−M

∫
Ω
|� ∩ ω| g(x)ψdxdt

as k →∞.
The differentiation is continuous in the space of generalized functions, also

∂uε
∂t
−→ ∂u0

∂t
as ε→ 0+.
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Now, we prove that

R

(
x,
x

εk

)
uεk(x, s) ⇀ R̄(x)u(x, s) (26)

and (
1 + β

(
x,
x

εk

)
i

)
|uεk(x, s)|2uεk(x, s) ⇀

(
1 + β̄(x)i

)
|u(x, s)|2u(x, s) (27)

as k →∞ weakly in Lloc4/3,w

(
R;L4/3

)
.

Fixing an arbitrary numberM > 0, we consider the sequence {uεk(x, s)} bounded in L4 (−M,M ;L4)
(see (25)). Hence, the sequence {|uεk(x, s)|2uεk(x, s)} is bounded in L4/3

(
−M,M ;L4/3

)
. Because

{uεk(x, s)} is bounded in L2(−M,M ;V) and
{
∂uεk(x, s)

∂t

}
is bounded in L4/3 (−M,M ;H−r) we

suppose that uεk(x, s)→ u(x, s) as k →∞ strongly in L2 (−M,M ;H) and hence

uεk(x, s)→ u(x, s) a.e. in (x, s) ∈ Ω× (−M,M).

It follows that

|uεk(x, s)|2uεk(x, s)→ |u(x, s)|2u(x, s) a.e. in (x, s) ∈ Ω× (−M,M). (28)

We have(
1 + β

(
x,
x

εk

)
i

)
|uεk(x, s)|2uεk(x, s)−

(
1 + β̄(x)i

)
|u(x, s)|2u(x, s) =

=

(
1 + β

(
x,
x

εk

)
i

)(
|uεk(x, s)|2uεk(x, s)− |u(x, s)|2u(x, s)

)
+

+

((
1 + β

(
x,
x

εk

)
i

)
−
(
1 + β̄(x)i

))
|u(x, s)|2u(x, s). (29)

We show that both terms in the right-hand side of (29) tends to zero as k → ∞ weakly in
L4/3

(
−M,M ;L4/3

)
.

The sequence
(

1 + β
(
x, xεk

)
i
) (
|uεk(x, s)|2uεk(x, s)− |u(x, s)|2u(x, s)

)
converges to zero as k →∞

almost everywhere in (x, s) ∈ Ω× (−M,M) (see (28)) and is bounded in L4/3

(
−M,M ;L4/3

)
(see (2)).

Consequently using Lemma 1.3 from [27] we get
(

1 + β
(
x, xεk

)
i
) (
|uεk(x, s)|2uεk(x, s)− |u(x, s)|2u(x, s)

)
⇀ 0 weakly in L4/3

(
−M,M ;L4/3

)
as k →∞.

The sequence
((

1 + β
(
x, xεk

)
i
)
−
(
1 + β̄(x)i

))
|u(x, s)|2u(x, s) goes weakly in L4/3

(
−M,M ;L4/3

)
to zero as k →∞, since by the assumption β

(
x,
x

ε

)
⇀ β̄(x) *-weakly in L∞,w (−M,M ;L∞) as k →∞

(see (3)) and |u(x, s)|2u(x, s) ∈ L4/3

(
−M,M ;L4/3

)
.

We have proved (27). The convergence of (26) is proved similarly.
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term” in homogenized equation. C.R. Mécanique, 348 (5), 351–359. https://doi.org/10.5802/crmeca.1

6 Bekmaganbetov, K.A., Chechkin, G.A., & Chepyzhov, V.V. (2020). “Strange term” in homogeni-
zation of attractors of reaction-diffusion equation in perforated domain. Chaos, Solitons & Frac-
tals, 140, article number 110208, 8 p. https://doi.org/10.1016/j.chaos.2020.110208

7 Bekmaganbetov, K.A., Chechkin, G.A., & Chepyzhov, V.V. (2023). Application of Fatou’s lemma
for strong homogenization of attractors to reaction–diffusion systems with rapidly oscillating
coefficients in orthotropic media with periodic obstacles. Mathematics, 11 (6), article number
1448, 21 p. https://doi.org/10.3390/math11061448
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Локальды периодты кеуектерi бар орталарда Гинсбург-Ландау
теңдеулерiнiң аттракторларын орташалау: критикалық жағдай

Жұмыста теңдеуде және шекаралық шарттарында тез тербелмелi мүшелерi бар Гинсбург-Ландау
теңдеуiн тесiк облыста қарастырылған. Бұл теңдеудiң траекториялық аттракторлары әлсiз мағынада
«оғаш мүшесi» (әлеуетi) бар орташаланған Гинсбург-Ландау теңдеуiнiң траекториялық аттрактор-
ларына жуықтайтыны дәлелденедi. Ол үшiн В.В. Чепыжовтың және М.И. Вишиктiң эволюциялық
теңдеулердiң траекториялық аттракторлары туралы мақалалары мен монографияларының әдiстемесi
қолданылған. Сондай–ақ, XX ғасырдың соңында пайда болған орташалау әдiстерi пайдаланылған.
Алдымен асимптотикалық әдiстердi асимптотиканы формальды құру үшiн қолданылған, содан кей-
iн асимптотикалық қатарлардың негiзгi мүшелерiн функционалды талдау және интегралды бағалау
әдiстерiн қолдана отырып таңдалған. Сәйкесiнше, көмекшi әлсiз топологиялы функционалды кеңiс-
тiктi анықтай отырып, шектi (орташаланған) теңдеуi алынған және осы теңдеудiң траекториялық
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аттракторы бар екенi дәлелденген. Содан кейiн негiзгi теорема тұжырымдалған, оны көмекшi лем-
малардың көмегiмен дәлелденген.

Кiлт сөздер: аттракторлар, орташалау, Гинсбург-Ландау теңдеулерi, сызықтық емес теңдеулер, әлсiз
жинақтылық, тесiк облыс, «оғаш мүше», кеуектi орта.
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Усреднение аттракторов уравнений Гинзбурга-Ландау в средах с
локально периодическими препятствиями: критический случай

Мы рассматриваем уравнение Гинзбурга-Ландау с быстро осциллирующими членами в уравнении
и граничных условиях в перфорированной области. Доказываем, что траекторные аттракторы этого
уравнения в слабом смысле сходятся к траекторным аттракторам усредненного уравнения Гинзбурга-
Ландау со «странным членом» (потенциалом). Для этого используем подход из статей и монографий
В.В. Чепыжова и М.И. Вишика о траекторных аттракторах эволюционных уравнений. Также мы
применяем методы усреднения, появившиеся в конце XX века. Сначала используем асимптотические
методы для формального построения асимптотик, далее выверяем главные члены асимптотических
рядов с помощью методов функционального анализа и интегральных оценок. Определяя соответству-
ющие вспомогательные функциональные пространства со слабой топологией, выводим предельное
(усредненное) уравнение и доказываем существование траекторного аттрактора для этого уравне-
ния. Затем формулируем основную теорему и доказываем ее с помощью вспомогательных лемм.

Ключевые слова: аттракторы, усреднение, уравнения Гинзбурга-Ландау, нелинейные уравнения, сла-
бая сходимость, перфорированная область, «странный член», пористая среда.
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On the time-optimal control problem for a heat equation
In previous works, we have considered some control problems for parabolic type equations, namely, control
problems for parabolic type equations were studied as boundary value problems of the first type, and the
weight function was expanded into a Fourier series by sines. In this paper, we consider boundary control
problem for a heat equation on the interval. In the part of the bound of the given domain it is given
value of a solution and it is required to find a control to get the average value of the solution. By the
mathematical-physics methods it is proved that like this control exists and the estimate of a minimal time
for achieving the given average temperature over some domain is found.

Keywords: heat equation, minimal time, admissible control, integral equation, initial-boundary value problem.

Introduction

Consider the heat equation

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
, (x, t) ∈ Ω = {(x, t) : 0 < x < l, t > 0}, (1)

with boundary value conditions

ux(0, t) = −µ(t), ux(l, t) = 0, t > 0, (2)

and an initial condition
u(x, 0) = 0, 0 ≤ x ≤ l. (3)

Definition 1. A function µ(t) is an admissible control if this function is piecewise smooth on t ≥ 0
and satisfies the conditions

µ(0) = 0, |µ(t)| ≤ M, where M = const > 0.

Consider the function ρ(x) ∈W 2
2 [0, l] satisfying the conditions

ρ′(x) ≤ 0, ρ′′(x) ≥ 0,
1

l

l∫
0

ρ(x) dx = 1. (4)

Let

ρ(x) =
∞∑
k=1

ρk cos
kπx

l
, x ∈ (0, l),

where

ρk =
2

l

l∫
0

ρ(x) cos
kπx

l
dx, k = 1, 2, ... (5)

∗Corresponding author.
E-mail: f.n.dehqonov@mail.ru
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Problem H. Let θ > 0 be a given constant. Problem H consists in looking for the minimal value
of T > 0 so that for t > 0 the solution u(x, t) of problem (1)–(3) with a control function µ(t) exists
and for some T1 > T satisfies the equation

l∫
0

ρ(x)u(x, t) dx = θ, T ≤ t ≤ T1. (6)

We recall that the time-optimal control for parabolic type equations was first investigated in [1]
and [2]. Recent results concerned with this problem were established in [3–12]. Some boundary control
problems for hyperbolic type equations are studied in [13]. The same result as in this article was seen
in detail in [5] case. Detailed information on the problems of optimal control for distributed parameter
systems is given in [14] and in the monographs [15, 16] and [17]. Close to this work, boundary control
problems for the pseudo-parabolic equation were studied in works [18,19].

Overall numerical optimization and optimal control have been studied in a great number of publications
such as [20]. The practical approaches to the optimal control of the heat equation are described in
publications such as [21].

Theorem 1. Let

0 < θ <
ρ1 l

2M

π2
.

Set

T0 = − l
2

π2
ln

(
1− θ π2

ρ1 l2M

)
.

Then a solution Tmin of the Problem H exists and the estimate Tmin ≤ T0 is valid.

1 Main integral equation

Let T > 0 and B be a Banach space. Set by C([0, T ] → B) the Banach space of all continuous
mappings u : [0, T ]→ B with the norm

‖u‖ = max
0≤t≤T

‖u(t)‖.

Now by symbol W̃ 1
2 (Ω) we denote the subspace of the Sobolev space W 1

2 (Ω) formed by functions
trace of which is equal to ∂Ω zero. Note that since W̃ 1

2 (Ω) is closed and the sum of a series of functions
from W̃ 1

2 (Ω) converging in metric W 1
2 (Ω) also in W̃ 1

2 (Ω) (see, [10]).

Definition 2. By the solution of the problem (1) - (3) we mean function u(x, t), expressed the form

u(x, t) = µ(t)
(l − x)2

2l
− v(x, t),

where the function v(x, t) is a generalized solution from C([0, T ]→ W̃ 1
2 (Ω)) of the problem

vt(x, t)− vxx(x, t) = µ′(t)
(l − x)2

2l
− 1

l
µ(t),

with initial and boundary conditions

vx(0, t) = vx(l, t) = 0, v(x, 0) = 0, 0 ≤ x ≤ l.
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Consequently, we get (see, [22, 23])

v(x, t) =
l

6
µ(t)− 1

l

t∫
0

µ(s) ds+
2 l

π2

∞∑
k=1

cos kπxl
k2

t∫
0

e−(kπ/l)2(t−s) µ′(s) ds.

Note that the class C([0, T ]→ W̃ 1
2 (Ω)) is a subset of the class W 1

2 (Ω) considered in the monograph
[24] in order to define a problem with homogeneous boundary conditions. So, the generalized solution
given above is also a generalized solution in the sense of monograph [24].

Proposition 1. Let µ ∈W 1
2 (R+) and µ(0) = 0. Then the function

u(x, t) =
1

l

t∫
0

(
1 + 2

∞∑
k=1

e−(kπ/l)2(t−s) cos
kπx

l

)
µ(s) ds (7)

is a solution of problem (1)–(3).

Proof. We write the function u(x, t) again in the form

u(x, t) = µ(t)
(l − x)2

2l
−

− l
6
µ(t) +

1

l

t∫
0

µ(s) ds− 2 l

π2

∞∑
k=1

cos kπxl
k2

t∫
0

e−(kπ/l)2(t−s) µ′(s) ds.

Now we show that function v(x, t) belongs to the class C([0, T ] → W̃ 1
2 (Ω)). For this, it is enough

to prove that the gradient of this function, taken in x ∈ Ω, continuously depends on t ∈ [0, T ] in the
norm of the space L2(Ω). According to Parseval’s equality, the norm of this gradient is

‖vx(·, t)‖2L2(Ω) =
2 l

π2

∞∑
k=1

1

k2

( t∫
0

e−(kπ/l)2(t−s) µ′(s) ds

)2

≤

≤ C ‖µ′‖2
∞∑
k=1

1

k4
≤ C1 ‖µ′‖2.

Proposition 1 is proved.
From (7) and condition (6), we can write

θ(t) =

l∫
0

ρ(x)u(x, t) dx =

=

t∫
0

(
1

l

l∫
0

ρ(x) dx+
2

l

∞∑
k=1

e−(kπ/l)2(t−s)
l∫

0

ρ(x) cos
kπx

l
dx

)
µ(s) ds.

Then according to (4) and (5), we have

θ(t) =

t∫
0

(
1 +

∞∑
k=1

ρk e
−(kπ/l)2(t−s)

)
µ(s) ds.
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Set

B(t) = 1 +

∞∑
k=1

ρk e
−(kπ/l)2t, t > 0. (8)

Then we get the main integral equation

t∫
0

B(t− s)µ(s)ds = θ(t), t > 0.

Lemma 1. [6] Let g(y) ≥ 0 and g′(y) ≤ 0. Then the inequality holds

nπ∫
0

g(y) sin ydy ≥ 0, y ∈ [0,∞), n = 1, 2, ....

Proposition 2. For the coefficients {ρk}k∈N defined by (5) the estimate

0 ≤ ρk ≤
C

k2
, k = 1, 2, ...

is valid.

Proof. From (5), we write

ρk =
2

l

l∫
0

ρ(x) cos
kπx

l
dx =

2

kπ
ρ(x) sin

kπx

l

∣∣∣∣x=l

x=0

−

− 2

kπ

l∫
0

ρ′(x) sin
kπx

l
dx = − 2

kπ

l∫
0

ρ′(x) sin
kπx

l
dx. (9)

By conditions (4) and Lemma 1 we obtain ρk ≥ 0. Then, from (9) we can write

ρk = − 2

kπ

l∫
0

ρ′(x) sin
kπx

l
dx =

2 l

k2π2
ρ′(x) cos

kπx

l

∣∣∣∣x=l

x=0

−

− 2 l

k2π2

l∫
0

ρ′′(x) cos
kπx

l
dx =

2 l

k2 π2
[ρ′(l) (−1)k − ρ′(0)] +

o(1)

k2
,

where ρ′(l) (−1)k − ρ′(0) ≥ 0.
Then we obtain

0 ≤ ρk ≤
C

k2
.

Proposition 2 is proved.

Proposition 3. A function B(t) defined by (8) is continuous on the half-line t ≥ 0.

Proof. Indeed, from (8) and Proposition 2 we obtain

1 ≤ B(t) ≤ 1 + const
∞∑
k=1

1

k2
e−(kπ/l)2t.

Proposition 3 is proved.
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2 Estimate for the Minimal Time

Consider the Volterra integral equation

t∫
0

B(t− s)µ(s) ds = θ, t ≥ T,

where

B(t) = 1 +

∞∑
k=1

ρk e
−(kπ/l)2 t. (10)

Proposition 4. For the function defined by Eq. (10) the following estimate

B(t) ≥ ρ1e
−(π/l)2 t

is valid.

Proof. Proof of the proposition comes from functional series defined by (10) is non-negative.
Proposition 4 is proved.
We introduce a function as follows

Q(t) =

t∫
0

B(t− s)ds =

t∫
0

B(s) ds.

It is clear that physical meaning of this function Q(t) equals the average temperature of Ω in case
where the heater is acting unit load (see, [3, 10]). We know that Q(0) = 0 and Q′(t) = B(t) > 0. Set

Q∗ = lim
t→∞

Q(t) =

∞∫
0

B(s)ds.

Proposition 5. Let 0 < θ < MQ∗. In that case there is T > 0 and a real measurable function µ(t)
and the equality

T∫
0

B(T − s)µ(s)ds = θ (11)

is valid.

Proof. Obviously, if we set µ(t) = M then we obtain

t∫
0

B(t− s)µ(s)ds = M

t∫
0

B(t− s)ds = MQ(t),

and since from (11) there exists T > 0 so that MQ(T ) = θ.
Proposition 5 is proved.

Remark 1. We know that the value T found in Proposition 5 gives a solution to the problem.
Clearly, T is a root of the following equation

Q(T ) =
θ

M
. (12)
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Proposition 6. Let

0 < θ <
ρ1 l

2M

π2
. (13)

Then there exists T > 0 and

T < − l
2

π2
ln

(
1− θ π2

ρ1 l2M

)
,

and the Eq. (12) is fulfilled.

Proof. Now we use Proposition 4. As result, we can write

Q(t) =

t∫
0

B(s) ds ≥ ρ1

t∫
0

e−(π/l)2 s ds = ρ1 l
2 1− e−(π/l)2 t

π2
. (14)

Consider the equation for the defining of T0:

ρ1 l
2 1− e−(π/l)2 T0

π2
=

θ

M
. (15)

Then we have

T0 = − l
2

π2
ln

(
1− θ π2

ρ1 l2M

)
.

From (14) and (15), we can write

0 <
θ

M
≤ Q(T0).

Obviously, there exists T , 0 < T < T0, which is a solution of Eq. (12).
Proposition 6 is proved.

Proposition 7. Let T > 0 satisfies Eq. (12) and condition (13). Then there exist T1 > T and the
measurable function µ(t) so that |µ(t)| ≤M and the equality

l∫
0

ρ(x)u(x, t) dx = θ, T ≤ t ≤ T1

is valid.

Proof. According to the following

t∫
0

B(t− s)µ(s)ds = θ,

it is enough to prove that there exists a solution of the equation

t∫
0

B(t− s)µ(s)ds = f(t), 0 ≤ t ≤ T1, (16)

where

f(t) =

{
MQ(t), if 0 ≤ t ≤ T ,
θ, if T < t ≤ T1.

(17)

Solution (17) is piecewise smooth and, according to Eq. (12), is continuous.
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Set

µ(t) =

{
M, if 0 ≤ t ≤ T ,
µ1(t), if T < t ≤ T1,

(18)

where µ1(t) is a solution of the following integral equation

T∫
0

B(t− s)Mds+

t∫
T

B(t− s)µ1(s)ds = θ, T ≤ t ≤ T1. (19)

Then differentiating this equation we obtain

B(0)µ1(t) +

t∫
T

B′(t− s)µ1(s) ds = M [B(t− T )−B(t)]. (20)

According to Proposition 2,

B(0) = 1 +

∞∑
k=1

ρk <∞.

We know that the function B(t) is convergence function on given interval. Therefore, equation (20)
has a unique solution µ1(t) for t ≥ T , which is continuous function on t ≥ T . Besides,

µ1(T ) = M
(
1− B(T )

B(0)

)
< M,

and there exists T1 > T so that
|µ1(t)| ≤M, T ≤ t ≤ T1.

We know that this function is the unique solution of equation (19). Hence, function (18) is piecewise
continuous and satisfies equation (16). Consequently, this function µ(t), which has a jump at the point
t = T , is the required solution.

Proposition 7 is proved.
Proof of Theorem 1 follows from Propositions 6 and 7.

Conclusions

Note that in case where the temperature θ is small enough, the value of T0 can be replaced by the
following one:

T0 =
θ

ρ1M
.

Hence, in this case the estimate of optimal time given by Theorem 1 is proportional to required
temperature θ and inversely proportional to size of the rod l and to the maximum output of heat
source M .
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Жылутеңдеуi үшiн оңтайлы уақыт мәселесi туралы
Алдыңғы жұмыстарда параболалық типтi теңдеулер үшiн кейбiр басқару есептерi қарастырылған.
Яғни параболалық типтi теңдеулердiң басқару есептерi бiрiншi типтi шекаралық есептер ретiнде
зерттелiп, салмақ функциясы синустар бойынша Фурье қатарына кеңейтiлдi. Мақалада интервал-
дағы жылу теңдеуi үшiн шектi бақылау мәселесi зерттелген. Өрiс шекарасының бұл бөлiгiнде бақы-
лаудың мәнi берiлген және температураның орташа мәнiн алу үшiн басқару элементiн табу қажет.
Математикалық-физикалық әдiстердi қолдана отырып, мұндай бақылаудың бар екендiгi дәлелдендi
және белгiлi бiр аумақта берiлген орташа температураға жету үшiн ең аз уақыттың бағасы табылды.

Кiлт сөздер: жылу теңдеуi, ең аз уақыт, рұқсат етiлген бақылау, интегралдық теңдеу, бастапқы-
шекаралық есеп.

Ф.Н. Дехконов

Наманганский государственный университет, Наманган, Узбекистан;
Университет Новый Узбекистан, Ташкент, Узбекистан

О задаче быстродействия для уравнения теплопроводности
В предыдущих работах мы рассмотрели некоторые задачи управления для уравнений параболическо-
го типа, а именно: задачи управления для уравнений параболического типа изучались как краевые
задачи первого типа, а весовая функция разлагалась в ряд Фурье по синусам. В настоящей работе
рассмотрена задача граничного управления для уравнения теплопроводности на отрезке. В части
границы данной области задано значение решения и требуется найти управление, чтобы получить
среднее значение решения. Методами математической физики доказано, что подобное управление
существует, и находится оценка минимального времени достижения заданной средней температуры
по некоторой области.

Ключевые слова: уравнение теплопроводности, минимальное время, допустимое управление, инте-
гральные уравнения, начально-краевая задача.
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Dunod Gauthier-Villars, Paris.

17 Friedman, A. (1964).Differential equations of parabolic type. XVI, (Englewood Cliffs, New Jersey).
18 Fayazova, Z.K. (2018). Granichnoe upravlenie dlia psevdoparabolicheskogo uravneniia [Boundary

control for a Psevdo-Parabolic equation]. Matematicheskie zametki SVFU — Mathematical notes
of NEFU, 25 (2), 40–45 [in Russian].

19 Dekhkonov, F.N. (2023). On a boundary control problem for a pseudo-parabolic equation. Commu-
nications in Analysis and Mechanics, 15 (2), 289–299.
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On a boundary-value problem in a bounded domain for a
time-fractional diffusion equation with the Prabhakar fractional

derivative
We aim to study a unique solvability of a boundary-value problem for a time-fractional diffusion equation
involving the Prabhakar fractional derivative in a Caputo sense in a bounded domain. We use the method
of separation of variables and in time-variable, we obtain the Cauchy problem for a fractional differential
equation with the Prabhakar derivative. Solution of this Cauchy problem we represent via Mittag-Leffler
type function of two variables. Using the new integral representation of this two-variable Mittag-Leffler type
function, we obtained the required estimate, which allows us to prove uniform convergence of the infinite
series form of the solution for the considered problem.

Keywords: Time-fractional diffusion equation, regularized Prabhakar fractional derivative, Mittag-Leffler
type functions.

Introduction and formulation of a problem

Application of Fractional Calculus in mathematical modeling of real-life processes became crucial
and appropriate mathematical tools have been developed [1–5].

A number of stochastic models for explaining anomalous diffusion have been introduced in literature
(see, for instance, [6–9]).

There are other applications of time-fractional diffusion, for example, in the image denoising model
[10].

Let us consider the following time-fractional diffusion equation

PCDα,β,γ,δ
0t u(t, x)− uxx(t, x) = f(t, x) (1)

in a domain Ω = {(t, x) : 0 < x < 1, 0 < t < T}. Here f(t, x) is a given function and

PCDα,β,γ,δ
0t y(t) = P Iα,m−β,−γ,δ0t

dm

dtm
y(t)

represents regularized Prabhakar fractional derivative [11] and

P Iα,β,γ,δ0t y(t) =

t∫
0

(t− ξ)β−1Eγα,β [δ(t− ξ)α] y(ξ)dξ, t > 0

represents Prabhakar fractional integral [12]. We note that above-given definitions are valid for α, β, γ, δ ∈
C such that <(α) > 0 and m− 1 < <(β) < m, m ∈ N.

We formulate a boundary-value problem for Eq.(1) in the particular case (0 < β < 1) as follows:
Problem: To find a solution of Eq.(1) in Ω, satisfying the following conditions:
∗Corresponding author.
E-mail: erkinjon@gmail.com
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• regularity conditions: u(t, x) ∈ C(Ω), u(·, x) ∈ C1
−1(0, T ), u(t, ·) ∈ C2(0, 1);

• initial condition: u(0, x) = ψ(x), 0 ≤ x ≤ 1;
• boundary conditions: u(t, 0) = u(t, 1) = 0, 0 ≤ t ≤ T .
Here the function ψ(x) is a given function such that ψ(0) = ψ(1) = 0 and a class of functions Cmµ

is defined as follows:

Definition 1. [13] We say that f ∈ Cµ[a, b], if there is a real number p > µ (µ > −1), such that
f(x) = (x−a)pf1(x) with f1 ∈ C[a, b]. Similarly, we say that f ∈ Cmµ [a, b], if and only if f (m) ∈ Cµ[a, b].

We would like to note related works, where the main objects are PDEs involving the above-
mentioned Prabhakar fractional derivative or some generalizations.

The following Cauchy problem for the time-fractional diffusion-wave equation
Dσ
ν,γ+ν,−λ,0+g(x, t) = Cgxx(x, t), x ∈ R, t > 0,

g(x, 0+) = δ(x),
gt(x, t)|t→0+ = 0, σ ∈ R, γ > 0, ν > 0, 0 < γ + ν ≤ 2

was the subject of investigation in [11]. The authors used the Laplace-Fourier transform to find a
solution to this problem in an explicit form. The solution was represented via Prabhakar and Wright’s
functions.

The explicit solution of the Cauchy problem in t > 0, x ∈ R has been found for the following
time-fractional heat equations [14]:

Dγ,µ,ν
ρ,ω,0+

u(x, t) = Kuxx(x, t)

and
CDγ,µ,ν

ρ,ω,0+
u(x, t) = Kuxx(x, t),

where
Dγ,µ,ν
ρ,ω,0+

f(t) = E−γ,ν
ρ,ν(1−µ),ω,0+

d

dt
E
−γ,(1−ν)
ρ,(1−ν)(1−µ),ω,0+f(t),

CDγ,µ,ν
ρ,ω,0+

f(t) = E−γ
ρ,1−µ,ω,0+

d

dt
f(t),

µ ∈ (0, 1), ν ∈ [0, 1], γ, ω ∈ R, ρ > 0,

Eγ
ρ,µ,ω,0+

f(t) =

t∫
0

(t− y)µ−1Eγρ,µ[ω(t− y)ρ]f(y)dy

is the Prabhakar fractional integral [12].
The following PDE involving the Prabhakar derivative

Dγ
α,β,ω,0+

u(x, t) = a(x)uxx(x, t) + b(x)ux(x, t) + c(x)u(x, t) + d(x, t)

was investigated together with the appropriate initial conditions [15]. Using the Sumudu transform,
the authors have found an approximate solution to the proposed problem.

Authors in [16] studied the following time-fractional heat conduction equation with a heat absorption
term in spherical coordinates in the case of central symmetry [17]:

CDγ,µ
ρ,ω,0+

T (r, t) = a

(
Trr(r, t) +

2

r
Tr(r, t)

)
− bT (r, t), t > 0, 0 ≤ r < R.

Imposing initial T (r, 0) = 0 and boundary T (R, t) = ptβ (β > 0) conditions and using the Laplace
transform, they found exact solutions for this problem.
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The distinctive side of the present problem is that we consider the boundary-value problem in a
bounded domain and use a method of separation of variables. We will get the solution to the problem
in an infinite series form represented by the new Mittag-Leffler type function of two variables. In the
next section, we provide the main result (a unique solvability of the problem) and corresponding proof
with details.

Main result

We search solution of the problem u(t, x) and the given function f(t, x) as follows

u(t, x) =
∞∑
n=0

Un(t) sinnπx, (2)

f(t, x) =
∞∑
n=0

fn(t) sinnπx, (3)

where Un(t) are unknowns to be found and fn(t) are the Fourier coefficients of the function f(t, x),
given as

fn(t) = 2

1∫
0

f(t, x) sinnπx.

Substituting (2) and (3) into (1) and considering initial condition, we obtain the following Cauchy
problem: {

PCDα,β,γ,δ
0t Un(t) + (nπ)2Un(t) = fn(t),

Un(0) = ψn,

where ψn are the Fourier coefficients of the given function ψ(x), which are defined as follows

ψn = 2

1∫
0

ψ(x) sinnπx.

Let us first present some statements, required for the further stages. The first statement is devoted
to finding an explicit solution to the Cauchy problem for a fractional differential equation with the
regularized Prabhakar derivative.

Lemma 1. Let α, β ∈ R+, γ, δ, a0, a1, ..., am−1 ∈ R, m = [β] + 1, m − 1 ≤ β < m. If f(t) ∈ Cmµ ,
then for any real number λ the following Cauchy problem{

PCDα,β,γ,δ
0t y(t)− λy(t) = f(t),

yk(0) = ak, k = 0, 1, ...,m− 1
(4)

has a solution represented by

y(t) =
m−1∑
k=0

akx
k

k! +
m−1∑
k=0

akx
β+kΓ(γ)E2

(
γ, γ, 1; 1, 0 |λtβ

β + k + 1, β, α; γ, γ; 1, 1 |δtα
)

+

+Γ(γ)
t∫
0

(t− z)β−1E2

(
γ, γ, 1; 1, 0 |λ(t− z)β

β, β, α; γ, γ; 1, 1 |δ(t− z)α
)
f(z)dz.

(5)

Mathematics series. No. 3(111)/2023 41



E.T. Karimov, A. Hasanov

Here E2(·) is the Mittag-Leffler type function in two variables represented as

E2

(
γ1, α1, β1; γ2, α2 |x

δ1, α3, β2; δ2, α4; δ3, β3 |y

)
=

=
∞∑
i=0

∞∑
j=0

(γ1)α1i+β1j(γ2)α2i

Γ(δ1 + α3i+ β2j)

xi

Γ(δ2 + α4i)

yj

Γ(δ3 + β3j)
.

(6)

This function for the first time was mentioned in the work [18], but not studied at all.
Proof. In [19], the solution of the Cauchy problem (4) is represented in the following infinite series

form:

y(t) =
m−1∑
k=0

akx
k

k!
+
∞∑
i=0

∞∑
j=0

m−1∑
k=0

ak
((1 + i)γ)j

j!

λ(i+1)δjtαj+(i+1)β+k

Γ(αj + (i+ 1)β + k + 1)
+

+

t∫
0

∞∑
i=0

∞∑
j=0

((1 + i)γ)j
j!

λiδj(t− z)αj+(i+1)β−1

Γ(αj + (i+ 1)β)
fn(z)dz.

(7)

The double series in this formulae can be represented by the function defined in (6). Considering the
well-known definition of the Pochhammer symbol, namely,

(a)n =
Γ(a+ n)

Γ(a)

one can easily deduce (5) from (7) using (6) in the following particular case:

γ1 = γ, α1 = γ, β1 = 1, γ2 = 1, α2 = 0, δ1 = β + k + 1, α3 = β,

β2 = α, δ2 = γ, α4 = γ, δ3 = 1, β3 = 1.

The next statements are related to the estimation of the function (6), which is crucial for the proof
of the uniform convergence of infinite series. First, we present an integral representation of the function
(6) via known functions.

Lemma 2. Let <(δ1) > <(γ1) > 0. If α3 = α1 and β2 = β1, then the following integral representation
holds true:

E2

(
γ1, α1, β1; γ2, α2 |x

δ1, α3, β2; δ2, α4; δ3, β3 |y

)
=

=
1

Γ(γ1)Γ(δ1 − γ1)

1∫
0

ξγ1−1(1− ξ)δ1−γ1−1Eγ2,α2

α4,δ2
(xξα1)Eβ3,δ3

(
yξβ1

)
dξ.

(8)

Here Eβ3,δ3(z) is two-parameter Mittag-Leffler function and

Eγ2,α2

α4,δ2
(z) =

∞∑
m=0

(γ2)α2mz
m

Γ(α4m+ δ2)
.

Proof. On the right-hand side of (8) we use the series form of functions Ek,pm,n(z) and Em,n(z) and
will integrate term-by-term:

1

Γ(γ1)Γ(δ1 − γ1)

1∫
0

ξγ1−1(1− ξ)δ1−γ1−1
∞∑
i=0

(γ2)α2i (xξα1)i

Γ(α4i+ δ2)

∞∑
j=0

(
yξβ1

)j
Γ(β3j + δ3)

dξ =
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=
1

Γ(γ1)Γ(δ1 − γ1)

∞∑
i=0

∞∑
j=0

(γ2)α2ix
i

Γ(α4i+ δ2)

yj

Γ(β3j + δ3)

1∫
0

ξα1i+β1j+γ1−1(1− ξ)δ1−γ1−1dξ.

Using the definition of Beta-function and after some simplifications, we deduce the left-hand side of (8).
In particular, if γ = β and α = 1, we have

E2

(
γ, γ, 1; 1, 0 |λxβ

β + k + 1, β, α; γ, γ; 1, 1 |δxα
)

=

=
1

Γ(γ)Γ(β + k + 1− γ)

1∫
0

ξγ−1(1− ξ)β+k−γE1,0
γ,γ

(
λxβξγ

)
E1,1 (δxαξ) dξ.

It is known that
E1,0
γ,γ(z) = Eγ,γ(z), E1,1(z) = ez.

Hence, considering the fact that if λ < 0, δ ≤ 0, then

|Eγ,γ(λxβξγ)| ≤ C1

1 + |λxβξγ |
, |eδxαξ| ≤ C2, (C1, C2 ∈ R+),

one can get the following: ∣∣∣∣E2

(
γ, γ, 1; 1, 0 |λxβ

β + k + 1, β, α; γ, γ; 1, 1 |δxα
)∣∣∣∣ ≤

≤ 1

Γ(γ)Γ(β + k + 1− γ)

1∫
0

ξγ−1(1− ξ)β+k−γ C1C2

1 + |λxβξγ |
dξ ≤

≤ C1C2

Γ(γ)Γ(β + k + 1− γ)

1∫
0

ξγ−1(1− ξ)β+k−γdξ =
C1C2

(β + k − γ)Γ(β + k)
= C,

where C is any positive real number.
Based on Lemma 1, we explicitly find Un(t) as follows

Un(t) = ψn

[
1 + tβΓ(γ)E2

(
γ, γ, 1; 1, 0 | − (nπ)2tβ

β + 1, β, α; γ, γ; 1, 1 |δtα
)]

+

+Γ(γ)
t∫
0

(t− z)β−1E2

(
γ, γ, 1; 1, 0 | − (nπ)2(t− z)β

β, β, α; γ, γ; 1, 1 |δ(t− z)α
)
fn(z)dz.

Since, in our case λ = −(nπ)2 and assuming that δ ≤ 0, we can easily get when γ = β, α = 1 the
following estimates:

|u(t, x)| ≤
∞∑
n=0

[C1|ψn|+ C2|fn(t)|] ≤ C̄1 ‖ψ(x)‖22 + C̄2 ‖f(t, x)‖22 .

This will be enough for the uniform convergence of the series (2), but for the infinite series corresponding
to the function uxx(t, x) we need to impose more conditions to the given functions. Namely,

|uxx(t, x)| ≤ C̄3

∥∥ψ′′(x)
∥∥2
2

+ C̄4

∥∥∥∥∂2f(t, x)

∂x2

∥∥∥∥2
2

.

The following statement is valid:
Theorem 1. If ψ(x) ∈ C1[0, 1], ψ′′(x) ∈ L2(0, 1) and f(·, x) ∈ C1

−1[0, T ], fx(t, ·) ∈ C[0, 1], fxx(t, ·) ∈
L2(0, 1), then there exists a unique solution of the problem represented as (2).
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Conclusion

In the bounded domain, we have considered a boundary problem for a sub-diffusion equation
involving regularized Prabhakar fractional order derivative. Presenting the solution of the corresponding
Cauchy problem via a two-variable Mittag-Leffler type function and using its new integral representation,
we have proved a unique solvability of the formulated boundary problem. We note that the same
approach can be done for the fractional wave equation. Moreover, various inverse problems can be
studied by applying obtained results.
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Прабхакар бөлшек туындысы бар уақыт-бөлшек диффузия
теңдеуi үшiн шектелген облыстағы шекаралық есеп бойынша

Зерттеудiң мақсаты шектелген облыста Капуто мағынасындағы Прабхакар бөлшек туындысын қам-
титын уақыттық-бөлшек диффузиялық теңдеу үшiн шекаралық есептiң бiрегей шешiмiн зерттеу.
Айнымалыларды бөлу әдiсi қолданылған және уақыт айнымалысында Прабхакар туындысы бар
бөлшек дифференциалдық теңдеу үшiн Коши есебi алынған. Осы Коши есебiнiң шешiмi екi айны-
малы Миттаг-Леффлер типтi функциясы арқылы берiлген. Осы екi айнымалы Миттаг-Леффлер
типтi функцияның жаңа интегралды көрiнiсiн пайдалана отырып, қарастырылып отырған есептiң
шешiмiнiң шексiз қатар түрiнiң бiркелкi жинақтылығын дәлелдеуге мүмкiндiк беретiн қажеттi баға
алынған.

Кiлт сөздер: уақыт-бөлшек диффузия теңдеуi, регуляризацияланған Прабхакар бөлшек туындысы,
Миттаг-Леффлер типтi функциялар.

Mathematics series. No. 3(111)/2023 45



E.T. Karimov, A. Hasanov

Э.Т. Каримов1,2, А. Хасанов2

1Ферганский государственный университет, Фергана, Узбекистан;
2Институт математики имени В.И. Романовского, Ташкент, Узбекистан

Об одной краевой задаче в ограниченной области для уравнения
диффузии дробного времени с дробной производной Прабхакара

Нашей целью является изучение однозначной разрешимости краевой задачи для уравнения диффу-
зии с дробным временем, включающего дробную производную Прабхакара по Капуто в ограниченной
области. Воспользуемся методом разделения переменных и в переменной по времени получим зада-
чу Коши для уравнения дробного дифференциала с производной Прабхакара. Решение этой задачи
Коши представим через функцию типа Миттаг-Леффлера от двух переменных. Используя новое ин-
тегральное представление этой функции типа Миттаг-Леффлера с двумя переменными, мы получили
требуемую оценку, которая позволяет доказать равномерную сходимость решения в виде бесконечно-
го ряда для рассматриваемой задачи.

Ключевые слова: уравнение диффузии с дробным временем, регуляризованная дробная производная
Прабхакара, функции типа Миттаг-Леффлера.
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Geometry of strongly minimal hybrids of fragments of theoretical sets

In this article, strongly minimal geometries of fragment hybrids are considered. In this article, a new concept
was introduced as a family of Jonsson definable subsets of the semantic model of the Jonsson theory T ,
denoted by JDef(CT ). The classes of the Robinson spectrum and the geometry of hybrids of central types
of a fixed RSp(A) are considered. Using the construction of a central type for theories from the Robinson
spectrum, we formulate and prove results for hybrids of Jonsson theories. A criterion for the uncountable
categoricity of a hereditary hybrid of Jonsson theories is proved in the language of central types. The
results obtained can be useful for continuing research on various Jonsson theories, in particular, for hybrids
of Jonsson theories.

Keywords: Jonsson theory, semantic model, fragment, hybrid of Jonsson theories, Jonsson set, theoretical
set, central type, pregeometry, Robinson theory, strongly minimal type.

Introduction

The current state of development of the conceptual and technical apparatus of model theory can be
described without exaggeration as a set of syntactic and semantic concepts related to the consideration
of most of the complete theories of first-order languages, on the other hand, due to the meager arsenal
of the capabilities of the technical apparatus, the subject of study of incomplete theories. A special
class of, generally speaking, incomplete theories is singled out in the study of Jonsson theories.

By virtue of the definition of the Jonsson theory, such a theory is, generally speaking, not complete.
In the class of its models, there can be infinite and finite models, and isomorphic embeddings will
also be used. Thus, we see that the transformation of certain results from complete theories to
Jonsson’s is complicated due to the different technical arsenal of the above theories. The reason
for this problem is the replacement of elementary embeddings by isomorphic embeddings and the
incompleteness of Jonsson theories. Thus, the universally homogeneous models that define the semantic
model of Jonsson’s theory are, generally speaking, not always saturated.

This fact clearly describes an example of group theory. The class of all groups has a Jonsson theory,
a semantic model that is not saturated. In this regard, this class does not have a model companion,
which makes it very difficult to apply the well-established technique of model companions to this class
when studying the property of the center of this class.

Thus, the study of Jonsson theories is an important task.
In the works of the following authors, such as B. Jonsson [1], M. Morley and R. Vaught [2], A.

Robinson [3], G. Cherlin [4], T.G. Mustafin [5], A.R. Yeshkeyev [6–8] gave a complete description of
Jonsson theories and their companions. We would like to acknowledge the following authors with their
publications, who played a great role in the study of this issue for Jonsson theories [9–12].

The notion of central type, which arises during signature enrichments, is one of the new concepts
in Jonsson theories [13]. Thus, within the framework of the model theory of Jonsson theories, new
relationships arise between classical concepts from the theory of models for complete theories.

∗Corresponding author.
E-mail: mussinanazerke@gmail.com
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Also noteworthy is the emergence of a new method for constructing a Jonsson theory from two
Jonsson theories. This is obtained using the concept of a hybrid of Jonsson theories, which was first
defined in [14]. Various examples of algebraic objects and their constructions can be associated with
this concept. In subsequent papers [15,16], results were obtained related to hybrids of Jonsson theories,
which play an important role in model theory and in universal algebra.

The paper [17] considered Jonsson theories and their many syntactic and semantic properties of
the first order in language enrichments that preserve the properties of Jonsson. Such Jonsson theories
are called hereditary [12].

One of the classical methods of model theory is the method of interpreting a well-studied theory into
a less-studied theory. Following the ideology of this method, a new method for studying Jonsson theories
was defined, namely: using the concepts of syntactic and semantic similarity of Jonsson theories, new
results were obtained in the framework of the classification of Jonsson theories.

1 Local properties of the geometry of strongly minimal sets

This article discusses the basic concepts of local properties of the geometry of strongly minimal sets
on theoretical subsets of some existentially closed model. By studying the combinatorial properties of
the pregeometry given on Jonsson sets, we have obtained results on relatively strongly minimal Jonsson
sets. Minimal structures, pregeometries and geometries of minimal structures were defined. And also,
for Jonsson theories, the concepts of dimension, independence and basis in Jonsson strongly minimal
structures were considered.

First, let’s define a hybrid of the first type and the second type.

Definition 1 ([14], p. 102). 1) Let T1 and T2 be some Jonsson theories of the countable language
L of the same signature σ; C1 and C2 are their semantic models, respectively. In the case of common
signature of Jonsson theories T1, T2, let us call a hybrid of Jonsson theories T1 and T2 of the first type
the following theory Th∀∃(C1 �C2) if that theory is Jonsson in the language of signature σ and denote
it by H(T1, T2), where the operation � ∈ {×,+,⊕} and C1 � C2 ∈ Modσ. Here × means cartesian
product, + means sum and ⊕ means direct sum. Herewith, the algebraic construction (C1 � C2) is
called a semantic hybrid of the theories T1, T2.

2) If T1 and T2 are Jonsson theories of different signatures σ1 and σ2, thenH(T1, T2) = Th∀∃(C1�C2)
will be called a hybrid of the second type, if that theory is Jonsson in the language of signature
σ = σ1 ∪ σ2 where C1 � C2 ∈Modσ.

Obviously that 1) is the particular case of 2).

Since the hybrid of two Jonsson theories is a Jonsson theory, in the case when this theory is perfect,
we will say for brevity – a perfect hybrid of two Jonsson theories. As the center of the hybrid H(T1, T2),
we will mean the center of the Jonsson theory Th∀∃(C1 � C2) and denote it by H∗(T1, T2).

Let us define the Morley rank for existentially definable subsets of the semantic model.
We want to assign to each Jonsson subset of X of the semantic model an ordinal (or perhaps −1

or ∞ ) - its Morley rank, denoted by rM .
Let T be a fragment of some Jonsson set, and it is a perfect Jonsson theory, C be a semantic model,

Z be a definable set of C.

Definition 2. [6] rM (Z) ≥ 0, if and only if, Z is not empty; rM (Z) ≥ λ, if and only if, rM (Z) ≥ α
for all α < λ (λ is limit ordinal); rM (Z) ≥ α + 1, if and only if, in Z there is an infinite family Zi of
pairwise disjoint ∃-definable subsets such that rM (Zi) ≥ α for all i.

Then the Morley rank of the set Z is rM (Z) = sup{α | rM (Z)} ≥ α,
with the convention that rM (Z) = −1 and rM (Z) = ∞, if rM (Z) ≥ α for all α (in last case, we

say that Z has no rank).
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Definition 3. [6] The Morley degree rD(Z) of a Jonsson set Z, having Morley rank α, is the
maximum length d of its decomposition Z = Z1 ∪ ... ∪ Zn into disjoint existentially definable subsets
of rank α.

If the rank is 0, then the degree of an existentially defined subset is the number of its elements.
The Morley degree is also undefined if an existentially definable subset has no rank. In our case, we
study Jonsson minimal sets. Note that a strongly minimal set is a set of rank 1 and degree 1.

Consider the closure operator, which is defined by an algebraic closure in the model-theoretic sense.
A strongly minimal set that is equipped with the above closure operator is a pregeometry. A model of
a strongly minimal theory is defined up to isomorphism by its dimension as a pregeometry. Completely
categorical theories are controlled by a strongly minimal set; this remark is used in the proof of Morley’s
theorem. Boris Zilber considered the origin of pregeometry on vector spaces and algebraically closed
fields.

Consider an example of an algebraic closure in Jonsson’s strongly minimal theories, which is an
existentially complete perfect Jonsson’s theory in a countable language L.

If K is an algebraically closed field and Z ⊆ K, then acl(Z) is an algebraically closed subfield
generated by Z.

Consider the properties of the Jonsson algebraic closure that are true for any subset S of the
semantic model of the Jonsson theory T .

Let M be some existentially closed submodel of the semantic model for a fixed theory in the
language L, and S ⊆M be a Jonsson strongly minimal set.

Let S ⊆Mn be an infinite ∇-definable set, where ∇ ⊆ L is the set of existential formulas of a given
language.

Definition 4. [6] We say that S is Jonsson minimal in M if for any ∇-definable Y ⊆ S either Y is
finite or S\Y is finite.

Definition 5. [6] We say that S and ϕ are Jonsson strongly minimal if ϕ is Jonsson minimal in any
existentially closed extension N from M .

Definition 6. [6] We say that a theory T is Jonsson strongly minimal if the formula v = v is Jonsson
strongly minimal (that is, if M ∈ModET , then M is Jonsson strongly minimal)

Consider aclS is an algebraic closure restricted to S.
For Z ⊆ S let aclS(Z) = {b ∈ S : b be a Jonsson algebraic over Z}.
In our case, the properties of the [18] algebraic closure are true for the Jonsson algebraic closure of

any subset S of the semantic model of the theory.

Lemma 1. [6]
1 acl(acl(Z)) = acl(Z) ⊇ Z.
2 If Z ⊆ B, then acl(Z) ⊆ acl(B).
3 If z ∈ acl(Z), then z ∈ acl(Z0) for some finite Z0 ⊆ Z.

Lemma 2 (Exchange). [6] Suppose that S ⊂ M is Jonsson strongly minimal, Z ⊆ S and z, b ∈ S.
If z ∈ acl(Z ∪ {b})\acl(Z), then b ∈ acl(Z ∪ {z}).

The concept of linear independence in vector spaces is one of the important concepts of algebra,
and the concept of independence generalizes linear independence in vector spaces and in algebraically
closed fields. In turn, algebraic independence is defined in the Jonsson strongly minimal set we are
considering.

Let M ∈ModET , and S be a Jonsson strongly minimal set in M .

Definition 7. [6] We will call Z ⊆ S is Jonsson independently if a /∈ acl(Z\{z})) for all z ∈ Z. If
C ⊂ S, we say that Z is Jonsson independent over S if z /∈ acl(C ∪ (Z\{z})) for all z ∈ Z.
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Definition 8. [6] We will call Z is a Jonsson basis for Y ⊆ S if Z ⊆ Y is Jonsson independent and
acl(Z) = acl(Y ).

Note that any maximal Jonsson independent subset of Y is a Jonsson basis for Y .

Definition 9. [6] If Y ⊆ S, then the Jonsson dimension of the set Y is the cardinality of the Jonsson
basis for Y .

Let J dimY denote the Jonsson dimension of Y .
If S is uncountable, then J−dim(S) =| S |, since the language is countable and acl(A) is countable

for any countable Z ⊆ D.
A J-pregeometry (X, cl) is a subset X of the semantic model of some fixed Jonsson theory with

operator cl : P (X)→ P (X) on the set of subsets X and if the following conditions are satisfied:
1) if A ⊆ X, then A ⊆ cl(A) and cl(cl(A)) = cl(A);
2) if A ⊆ B ⊆ X, then cl(A) ⊆ cl(B);
3) (exchange) A ⊆ X, a, b ∈ X and a ∈ cl(A ∪ {b}), then a ∈ cl(A), b ∈ cl(A ∪ {a});
4) (finite character) If A ⊆ X and a ∈ cl(A), then there is a finite A0 ⊆ A, such that a ∈ cl(A0).
We say that A ⊆ X is closed, if cl(A) = A.
Since D is a Jonsson strongly minimal set, the Jonsson pregeometry is defined as follows cl(A) =

acl(A) ∩D for A ⊆ D (by Theorem 12 from [6] and Lemma 1).

Definition 10. [6] If (X, cl) is a Jonsson pregeometry, we will call A is Jonsson independent if
a /∈ cl(A \ {a}) for all a ∈ A, and B is a J-basis for Y if B ⊆ Y is J-independent and Y ⊆ acl(B).

If A ⊆ X, we also consider the localization clA(B) = cl(A ∪B).
If (X, cl) is a J-predgeometry, then we will call Y ⊆ X is Jonsson independent over A, if Y is

Jonsson independent in (X, clA).
dim(Y/A) is the dimension of Y in the localization (X, clA), dim(Y/A) is called the dimension of

Y over A.

Definition 11. [6] We will call a J-pregeometry (X, cl) is a J-geometry if cl(∅) = ∅ and cl({x}) =
{x} for any x ∈ X.

For further study, we denote some important properties of pregeometry.

Definition 12. [6] Let (X, cl) be a J-predgeometry. We will call (X, cl) is trivial if cl(A) =
⋃
a∈A

cl({a})

for any A ⊆ X. We will call (X, cl) is modular if, for any finite-dimensional closed sets A,B ⊆ X,
holds Jdim(A ∪B) = Jdim(A) + Jdim(B)− Jdim(A ∩B).

(X, cl) is locally modular if (X, cla) is modular for some a ∈ X.

Theorem 1. [6] For a J-predgeometry (X, cl) the following are equivalent:
1 (X, cl) is modular;
2 if A ⊆ X is closed and non-empty, b ∈ X, x ∈ cl(A, b), then ∃a ∈ A, such that x ∈ cl(a, b);
3 if A,B ⊆ X are closed and non-empty, x ∈ cl(A,B), then ∃a ∈ A and ∃b ∈ B, such that
x ∈ cl(a, b).

Proof. Similarly to the proof of Lemma 8.1.13 from [19].

2 Model-theoretical properties of the Robinson spectrum

This section is devoted to the study of the model-theoretic properties of the Robinson spectrum
of an arbitrary model of an arbitrary signature. The study of ω-categorical universals by specialists in
model theory and universal algebra is well known ([20], § 5 of the appendix). In this section, we will
deal with Robinson theories. The Robinson theory is a special case of the Jonsson theory, namely the
Jonsson universal. To study the above theory, an algorithm for working with central types of a fixed
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spectrum was used. The elements of this spectrum are Jonsson universals. The result will be a central
type enriched with additional constants and a unary predicate. Thus, we have obtained a criterion for
the uncountable categoricity of the Robinson spectrum class in the language of central types.

In [21], Hrushovski E. defined Robinson theories of a theory as universal theories admitting a
quantifier separation. In the study of Robinson theories, quantifier-free types occupy the main place.
In our case, we are using central types.

Considering the structure of Jonsson sets, one can easily see that they have a very simple structure
in the sense of the Morley rank, i.e. elements from the set-theoretic difference (hole) of the closure and
the set have rank 0, i.e., they are all algebraic.

Another advantageous point for us in considering the concept of a Jonsson set is that we can obtain
some existentially closed models by closing the Jonsson set.

This fact is necessary for studying the Morley rank for an arbitrary fragment of the set under
consideration. Saturation for complete theories is a condition for the correctness of the definition of
the Morley rank. Imperfect Jonsson theories require saturation with existential types in the semantic
model. In the case of Jonsson sets, when studying elements from the set-theoretic difference, one can
consider ∀∃-consequences that are true in the closures of the Jonsson set. Based on this, we can conclude
that the considered set of sentences will be Jonsson theory. In this section, strongly minimal Jonsson
sets have been considered and described. The basic concepts associated with the notion of strong
minimality for complete theories have been carried over to Jonsson theories. In particular, the notion
of strong minimality is considered for fixed formula subsets of the semantic model of the Jonsson theory.
In this case, the semantic model must be saturated in its power, i.e. the theory under consideration
must be perfect. As is known, Jonsson’s theory has a semantic model C of sufficiently large power. The
semantic models of the perfect Jonsson theory are uniquely determined by their power. In our case,
we will consider Jonsson subsets.

Definition 13. [6] A Jonsson theory T is called Robinson theory if it is universally axiomatizable.

Let T be a Robinson theory, A be an arbitrary model of signature σ. The Robinson spectrum of
the model A is the set:

RSp(A) = {T | T is Robinson theory in the language of signature σ and A ∈Mod(T )}.

Consider RSp(A)/./ the factor set of the Robinson spectrum of the model A with respect to ./.
If T is an arbitrary Robinson theory in the language of signature σ, then E[T ] =

⋃
E∆

∆∈[T ]

is the class

of all existentially closed models of class [T ] ∈ RSp(A)/./.
Let A be an arbitrary model of signature σ. Let |RSp(A)/./| = |K|, K be some index set. We

say that the class [T ] ∈ RSp(A)/./ is a ℵ-categorical if any theory ∆ ∈ [T ] is a ℵ-categorical and,
respectively, the class RSp(A)/./ will be called a ℵ-categorical if for each j ∈ K the class [T ]j is a
ℵ-categorical.

Definition 14. [9] The set X is said to be Jonsson in the theory T if it satisfies the following
properties:

1) X is the Σ-definable subset of C;
2) dcl(X) is a support of some existentially closed submodel C.

Definition 15. [9] Let T be some Jonsson theory, C is the semantic model of the theory T , X ⊆ C.
A set X is called theoretical set, if

1) X is Jonsson set, and let ϕ(x) be the formula that defines the set X;
2) ϕ(x) = ∃yφ(x, y) and let θ be the universal closure of the formula ϕ(x), i.e. θ is the sentence

∀x∃yφ(x, y) defines some Jonsson theory.
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Definition 16. [23] We say that all ∀∃-consequences of an arbitrary theory create a Jonsson fragment
of this theory, if the deductive closure of these ∀∃-consequences is a Jonsson theory.

Definition 17. [23] We say that all ∀-consequences of an arbitrary theory create a Robinson fragment
of this theory, if the deductive closure of these ∀-consequences is a Robinson theory.

We say that a model M ∈ ET is Jonsson minimal if for any definable X ⊆M either X is finite or
M\X is finite. We say that a theory T Jonsson strongly minimal, if every modelM ∈ ET is minimal. A
non-algebraic type containing a Jonsson strongly minimal formula is called Jonsson strongly minimal.

Theorem 2 ([22], p. 298). Let T be universal theory, complete for existential sentences, having a
countably algebraically universal model. Then T has an algebraically prime model, which is (Σ,∆)-
atomic.

Definition 18. A relational structure CT =< C, (Xi)i∈I > consists of a (non empty) set C, and a
family (Xi)i∈I of subsets of

⋃
n≥1C

n
T , that is, for each i, Xi is a subset of Cni

T for some ni ≥ 1. We add
the extra condition that the diagonal of C2

T is one of the Xi’s.
Each Xi is called an basic subset of CT .

Definition 19. Let CT =< C, (Xi)i∈I > be a semantic model of the Jonsson theory in pure predicate
language. We define the family of Jonsson definable subsets of the semantic model of the Jonsson theory
T , denoted by JDef(CT ). Def(CT ) is the smallest family of subsets of

⋃
n≥1C

n
T with the following

properties:
• For every i ∈ I, Bi ∈ JDef(CT )

• JDef(CT ) is closed under finite boolean combinations, i.e. if M,N ⊆ CnT , M,N are the Jonsson
sets. M,N ∈ JDef(CT ), then M ∪ N ∈ JDef(CT ),M ∩ N ∈ JDef(CT ) and CnT \ M ∈
JDef(CT ).

• JDef(CT ) is closed under cartesian product, i.e. if M,N ∈ JDef(CT ), M ×N ∈ JDef(CT ).
• JDef(CT ) is closed under projection, i.e. if M ⊂ Cn+m

T , N ∈ JDef(CT ), if πn(M) is the
projection of M on CnT , πn(N) ∈ JDef(CT ).

• JDef(CT ) is closed under specialization, i.e. if M ∈ Def(CT ), M ⊆ Cn+k
T and if m̄ ∈ CnT then

M(m̄) = {b̄ ∈ CkT ; (m̄, b̄) ∈M} ∈ JDef(CT ).

• JDef(CT ) is closed under permutation of coordinates, i.e. if M ∈ JDef(CT ),M ⊆ CnT , if σ is
any permutation of {1, ..., n},

σ(M) = {(aσ(1), ..., aσ(n); (a1, ..., an) ∈M} ∈ JDef(CT ).

cl : (P (CT ))→ P (CT ). P (CT ) = {A ⊆ CT | A ∈ JDef(CT )}. When T perfect Jonsson theory, then
T ∗ is the model complete, ϕ(x) ∈ T follow that ∃ψ(x), ψ(x) ∈ Σ1 such that T ∗ ` ∀x(ϕ(x)↔ ψ(x)).

Definition 20. [17] An enrichment T̃ is called admissible if the ∇-type (this means that the ∇subset
of the language Lσ and any formula from this type belongs to ∇) in this enrichment is definable within
the framework of T̃Γ-stability, where Γ is the enrichment of the signature σ.

Definition 21. [17] A Robinson theory T is called hereditary if, in any of its admissible enrichments,
any extension is a Robinson theory. The class [T ] ∈ RSp(A)/./ will be called hereditary if each theory
∆ ∈ [T ] is hereditary.

Definition 22. [17] A model A is called the ∆-good algebraically prime model of the theory T if
A is a countable model of the theory T and for each model B of the theory T , each n ∈ ω and all
a0, . . . , an−1 ∈ A, b0, . . . , bn−1 ∈ B if (A, a0, . . . , an−1) ≡∆ (B, b0, . . . , bn−1), then for each an ∈ A
there is some bn ∈ B, such that (A, a0, . . . , an) ≡∆ (B, b0, . . . , bn).
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Definition 23. [23] Let T1 and T2 are Jonsson theory. We will say, that T1 and T2 are J-syntactically
similar, if there is bijection f : E(T1)→ E(T2) such that:

1) restriction f to En(T1) is isomorphism lattice En(T1) and En(T2), n < ω;
2) f(∃vn+1ϕ) = ∃ϕn+ 1f(ϕ), ϕ ∈ En+1(T ), n < ω;
3) f(v1 = v2) = (v1 = v2)

Consider the general scheme for obtaining the central type for an arbitrary Robinson theory.
Let CT be a semantic model of the theory T , A ⊆ CT . Let σΓ = σ ∪ Γ, where Γ = {P} ∪ {c}.

Let T̄ = Th∀(CT , a)a∈P (CT ) ∪ Th∀(ET ) ∪ {P (c)} ∪ {”P ⊆”}, where P (CT ) is an existentially closed
submodel of CT , {”P ⊆”} is an infinite set of sentences, demonstrating that P is an existentially closed
submodel of signature σΓ. This means that P is a solution to the equation P (CT ) = M ⊆ ET of
signature σΓ. Due to the heredity of T , the theory T̄ is also a Jonsson theory. Consider all completions
of the theory T̄ of signature σΓ. Since the theory T̄ is Jonsson’s, it has its own center, denoted by
T̄ ∗. The above mentioned center is one of the completions of the T̄ theory. When the signature σΓ is
restricted to σ ∪ P , the constant c does not belong to this signature. Therefore, we can replace this
constant with the variable x. After that, this theory will be a complete 1-type for the variable x.

Let X1, X2 be the strongly minimal theoretical sets. Fr(X1) = T1, F r(X2) = T2 are the Robinson
fragments. H(T1, T2) = Th∀(CT1 × CT2), cl(X1) = M1, cl(X2) = M2;M1,M2 ∈ ET . Fr(X1) =
∆1, F r(X2) = ∆2. ∆1,∆2 are Jonsson syntactical similar. By virtue of Jonsson syntactical similarity
of this fact Th∀(M1) = T1, Th∀(M2) = T2 also Jonsson syntactical similar. T1, T2 are the Jonsson
strongly minimal theories. Then since T̄1 is a Jonsson theory, it has its own center, let us denote it by
T̄ ∗1 , this center is one of the above completions of the theory T̄1. Accordingly T̄2 is a Jonsson theory,
it has its own center, let us denote it by T̄ ∗2 , this center is one of the above completions of the theory
T̄2. In the theorem we consider the hybrid H(T̄1, T̄2) of the Jonsson theries T1, T2.

R1 is every existential formula ϕ(x̄) consistent with T is implied by some ∆ formula θ(x̄) consistent
with T .

Theorem 3. Let [T ] be class from RSp(A)/./, complete for existential sentences, admitting R1. Let
T1, T2 ∈ [T ]. Then the following conditions are equivalent:

1 H(T1, T2) has an algebraically prime model;
2 H(T1, T2) has (∃,∆)-atomic model;
3 H(T1, T2) has (∆,∃)-atomic model;
4 H(T1, T2) has a ∆-good algebraically prime model;
5 H(T1, T2) has a single algebraically prime model.

Proof. Let T1, T2 ∈ [T ] satisfies the conditions of Theorem 3, then by virtue of the theorem 4.1
([22], p.309) the H(T1, T2) also satisfies the conditions this theorem.

Theorem 4. Let [T ] be hereditary class from RSp(A)/./, T1, T2 ∈ [T ], then the following conditions
are equivalent:

1 any countable model from EH(T̄1,T̄2) has an algebraically prime model extension in EH(T̄1,T̄2);
2 P c

H(T̄1,T̄2)
is the strongly minimal type, where P c

H(T̄1,T̄2)
is the central type of H(T̄1, T̄2).

Proof. (1)⇒(2). For convenience of the proof, we denote H(T̄1, T̄2) = T. Consider a semantic
model CT of the class [T ]. The CT model is ω-universal by virtue of the definitions of κ-universality
and κ-homogeneity. In our case, the power is uncountable. Therefore, consider a countable elementary
submodelD of the CT model. The elementary submodelD is existentially closed since CT is existentially
closed by virtue of (Lemma [23], p. 162). Therefore, the elementary submodelD is countably algebraically
universal. We apply the 2 theorem, according to which every theory ∆ ∈ T has an algebraically simple
model A0. We define Aδ+1 by induction, which is an algebraically simple extension of the Aδ model and
Aλ =

⋃
{Aδ | δ < λ}. Then let A =

⋃
{Aδ|δ < ω1}. Suppose B |= ∆ and cardB = ω1. Let us show that
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B ≈ A, for this we decompose B into a chain {Bδ|δ < ω1} of countable models. Such a decomposition
is possible due to the fact that the ∆ theory is Jonsson. We define the function g : ω1 → ω1 and the
chain {fδ : Agδ → Bδ | 0 < δ < ω1} of isomorphisms by the formula induction on δ:

1) g0 = 0 and f0 : A0 → B0;
2) gλ =

⋃
{gδ|δ < λ} and fλ =

⋃
{fδ|δ < λ};

3) fδ+1 is equal to the union of the chain {fγδ |γ ≤ ρ}, which is determined by induction on γ;
4) f0

δ+1 = fδ, fλδ+1 =
⋃
{|fγδ+1|γ < λ};

5) suppose that fγ1 : Agδ+γ → Bδ+1. If f
γ
δ+1 is a mapping onto, then ρ = γ. Otherwise, by virtue of

the algebraic primeness of Agδ+γ+1, we can extend fγδ+1 to fγ+1
δ+1 : Agδ+γ+1 → Bδ+1;

6) g(δ + 1) = gδ + ρ.
By virtue of f =

⋃
{| fδ | δ < ω1} A is mapped isomorphically to B. Now let’s apply the theorem 3.

B is an arbitrary model of the ∆ theory. A is the only algebraic prime and existentially closed model.
By virtue of the condition and construction, it follows that E∆ for each ∆ ∈ T has a unique model in
uncountable cardinality. This condition means that the semantic model CT is saturated, i.e. the class
T will be perfect. Thus ModT∗ = ET. Therefore, the theory T∗ is ω1-categorical. T∗ has a strongly
minimal formula according to the Lachlan-Baldwin theorem. Since we are dealing with a central type,
we get a non-principal type that contains the Jonsson strongly minimal formula. This implies that the
type is Jonsson strongly minimal.

(2) ⇒ (1). Due to the fact that P cT is a strongly minimal type, when passing to the signature σΓ =
σ∪Γ, the type becomes T∗ theory. As mentioned above, the theory is the center of the class T, hence it
is complete. Let us show that T∗ is ω1-categorical. By inductance, for any models A,B ∈ModT∗ there
are models A′, B′ ∈ ET and isomorphic embeddings f : A→ A′, g : B → B′. Suppose |A′| = |B′| = ω1.
If A � B, then A′ � B′. Therefore, there exists ϕ(x) ∈ B(At) such that A′ |= ϕ(x) and B′ |= ¬ϕ(x).
Since in our case T is an inherited class, then T ∈ RSp(A)/./. Due to the universal axiomatizability of
this class and the fact that A′ ∈Mod(T∗) as an existentially closed model is isomorphically embedded
into the semantic model C of the class T. Since T∗ = Th(C) is complete, T∗ ` ∃xϕ(x) follows. Since A′

and B′ are Jonsson minimal, either ϕ(A′) is finite or A′\ϕ(A′) is finite. Let ϕ(A′) be finite, then there
exists a ∀∃-proposition ψ which shows that ϕ(A′) is finite and T∗ ` ∀∃(ϕ&ψ) hence B′ |= ψ(x) but
B′ |= ψ(x)&¬ϕ(x), but at the same time, since A′, B′ ∈ ET, A′ ≡∀∃ B′, then we got a contradiction
with strongly minimality.

If the definable complement of the formula is finite in the model A′ under consideration, then the
proof is carried out in a similar way. Thus T is ω1-categorical.

By virtue of Morley’s uncountable categoricity theorem, T∗ is ω1-categorical, and hence this theory
is perfect. Then, by virtue of the Jonsson theory completeness criterion T∗ is a model complete theory
and ModT∗ = E∆ for every ∆ ∈ T, i.e. ModT∗ = E(T ). If T∗ is model complete, then any isomorphic
embedding is elementary. Since T∗ is a complete theory, by virtue of Morley’s theorem we obtain what
is required.
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Қатты минималды гибридтерiнiң фрагменттерiнiң теоретикалық
жиындарының геометриясы

Мақала фрагмент гибридтерiнiң қатты минималды геометрияларын зерттеуге арналған. Авторлар
JDef(CT ) деп белгiленген «T йонсондық теорияның семантикалық моделiнiң йонсондық анықталған
iшкi жиындарының үйiрi» деген жаңа тұжырымдама енгiзген. Робинсон спектрiнiң кластары және
бекiтiлген RSp(A) централдық типтерiнiң гибридтерiнiң геометриясы қарастырылған. Робинсон спек-
трiндегi теориялар үшiн централдық типтi құруды пайдалана отырып, йонсондық теориялардың ги-
бридтерi үшiн нәтижелердi тұжырымдалған және дәлелденген. Йонсондық теориялардың мұралық
гибридiнiң саналымсыз категориялық критерийi централдық типтер тiлiнде дәлелденген. Алынған
нәтижелер йонсондық әртүрлi теориялар бойынша, атап айтқанда, йонсондық теориялардың гибрид-
терi бойынша зерттеулердi жалғастыру үшiн пайдалы болуы мүмкiн.

Кiлт сөздер: йонсондық теория, семантикалық модель, фрагмент, йонсондық теориялардың гибридi,
йонсондық жиын, теоретикалық жиын, централдық тип, алғашқы геометрия, робинсондық теория,
қатты минималды тип.

М.Т. Касыметова, Н.М. Мусина

Карагандинский университет имени академика Е.А. Букетова, Караганда, Казахстан

Геометрия сильно минимальных гибридов фрагментов
теоретических множеств

Статья посвящена изучению сильно минимальных геометрий гибридов фрагментов. Авторами было
введено новое понятие «семейство йонсоновских определимых подмножеств семантической модели
йонсоновской теории T», обозначаемое через JDef(CT ). Рассмотрены классы робинсоновского спек-
тра и геометрия гибридов центральных типов фиксированного RSp(A). С помощью построения цен-
трального типа для теорий из робинсоновского спектра формулируются и доказываются результаты
для гибридов йонсоновских теорий, в частности, критерий несчетной категоричности наследственно-
го гибрида йонсоновских теорий на языке центральных типов. Полученные результаты могут быть
полезны для продолжения исследований различных йонсоновских теорий, в частности, для гибридов
йонсоновских теорий.

Ключевые слова: йонсоновская теория, семантическая модель, фрагмент, гибрид йонсоновских тео-
рий, йонсоновское множество, теоретическое множество, центральный тип, предгеометрия, робинсо-
новская теория, сильно минимальный тип.
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Development of the fuzzy sets theory: weak operations and extension
principles

The paper considers the problems that arise when using the theory of fuzzy sets to solve applied problems.
Unlike stochastic methods, which are based on statistical data, fuzzy set theory methods make sense to
apply when statistical data are not available. In these cases, algorithms should be based on membership
functions formed by experts who are specialists in this field of knowledge. Ideally, complete information
about membership functions is required, but this is an impractical procedure. More often than not, even
the most experienced expert can determine only their carriers or separate sets of the α-cuts for unknown
fuzzy parameters of the system. Building complete membership functions of unknown fuzzy parameters
on this basis is risky and unreliable. Therefore, the paper proposes an extension of the fuzzy sets theory
axiomatics in order to introduce non-traditional (less demanding on the completeness of data on membership
functions) extension principles and operations on fuzzy sets. The so-called α-weak operations on fuzzy
sets are proposed, which are based on the use of separate sets of the α-cuts. It is also shown that all
classical theorems of Cantor sets theory apply in the extended axiomatic theory. New extension principles
of generalization have been introduced, which allow solving problems in conditions of significant uncertainty
of information.

Keywords: Cantor set, fuzzy set, function of belonging, set of α-cut, core of fuzzy set, α-weak operation.

Introduction

It is well known that the concept of a fuzzy set, proposed by L. Zadeh in 1965 [1], immediately
arouse great interest among mathematicians and scientists of other fields and stimulated the appearance
of a large number of works in this direction. Just two years later, Gauguin extended this concept to
L-fuzzy sets, and further introduced the interval fuzzy line, regular fuzzy numbers and fuzzy metric
spaces, fuzzy topological spaces, fuzzy relations and mappings, concepts and theorems of fuzzy algebra
[2–11]. All these works with slight variations are based on the well-known maximin extension principle
(ММPG) Zadeh [1], which fully satisfied the researchers. The mathematical apparatus of fuzzy set
theory (FST) began to be widely used both in physics [12,13] and in applied disciplines [14–18]. At the
same time, there are quite a few applied problems for which the use of the maximin extension principle
prevents their solution. The fact is that the application of MMPG requires complete information about
the membership functions of fuzzy defined parameters of the task, and this, unfortunately, is often the
almost impossible procedure. In these cases, even the most experienced expert can determine only
their cores or α-cuts for the unknown fuzzy parameters of the system. Building complete membership
functions of unknown fuzzy parameters on this basis is risky and unreliable.

Thus, it seems appropriate to expand the axiomatics of the fuzzy sets theory in order to introduce
non-traditional (less demanding on the completeness of data on membership functions) extension
principles and operations on fuzzy sets. In works [19, 20], an unconventional class of so-called α-weak
operations on fuzzy sets was proposed for the first time, further, introducing new concepts, we will
follow these works.

∗Corresponding author.
E-mail: vladimir.kucheruk@gmail.com
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Statement of the problem

All problems with uncertain parameters, which should be solved using fuzzy set theory methods,
can be divided into two classes:

1. Problems with non-numerical input parameters.
In these problems, each of the non-numerical parameters corresponds to a certain logical variable

(term), to which the expert assigns a membership function (performs fuzzification), then certain
procedures are carried out with the assigned membership functions, and the defuzzification procedure
is applied to the new membership functions obtained as a result. As a rule, the quality of these
calculations significantly depends on the knowledge of experts in the subject of research and on the
adequacy of fuzzification and defuzzification procedures.

2. Problems with non-numerical input parameters.
As a rule, it is advisable to solve such problems using the methods of probability theory, but for this

the researcher must have a sufficient amount of reliable statistical data. If these data are not available,
or their number is very small, then it makes sense to apply the methods of fuzzy set theory. In this
case, the uncertain parameters are given by vague numbers, the membership functions of which are
formed by experts who are specialists in this field of knowledge.

The main problem of these methods is that even the most experienced expert can determine only
their cores or α-cuts for unknown fuzzy parameters of the system. Building complete membership
functions of unknown fuzzy parameters on this basis is risky and unreliable.

Therefore, the task of expanding the axiomatics of the fuzzy sets theory in order to introduce non-
traditional (less demanding on the completeness of data on membership functions) extension principles
and operations on fuzzy sets is actual. For this, the authors propose to introduce the so-called α-weak
operations on fuzzy sets, which are based on the use of α-cuts.

Research results

Let’s consider the basics of weak operations axiomatics. The α-cut set of the fuzzy set Ã defined
on the universum X is the usual Cantor set of elements x ∈ X, for which the condition µÃ(x) ≥ α
is fulfilled, where α ≥ (0, 1]. The limiting case of the α-cut set is the so-called core (or, otherwise,
the 0-cut) of the fuzzy set Ã, which is also a Cantor set of elements x ∈ X for which the condition
µÃ(x) > 0 is fulfilled.

It is known that every operation on classical Cantor sets can be matched with many similar
operations on fuzzy sets. There is only one mandatory condition that each of these operations must
meet - they must reduce to the corresponding classical operation in the case of degeneracy of fuzzy
sets to classical Cantor sets.

Obviously, that weak operations on fuzzy sets must have the same properties as the analogical ones
on classical Cantor sets, that is the same theorems must be fair for them as for classical sets. Let’s
consider it on the example of the relation of loose inclusion. L. Zadeh defined this relation as: fuzzy set
Ã, which is defined on the universum X, if and only if includes fuzzy set B̃, defined on this universum,
when for all elements x ∈ X the membership function µÃ(x) is more or equal to the membership
function µB̃

Ã ⊇ B̃ ⇔ ∀x ≥ X
(
µÃ(x) ≥ µB̃(x)

)
. (1)

From the fuzzy theory point of view, the membership function of the classical Cantor set A in X
looks like µA : X → {0, 1}, and for the set A we can write

A = {(x, µA(x)) | ∀x ∈ X(x ∈ A⇔ µA(x) = 1)}.
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The definition of relation of inclusion for classical sets A and B, expressed through their membership
function is formulated as: classical set A, defined on the universum X, if and only if includes classical
set B, defined at the same universum, when for all elements x ∈ X, if µB(x) = 1, then and µA(x) = 1,
that is

Ã ⊇ B̃ ⇔ ∀x ∈ X(µB(x) = 1⇒ µA(x) = 1). (2)

The definition, which lessens the demands to the membership functions µÃ(x) and µB̃(x) in
comparison with (1), doesn’t demand the condition µÃ(x) ≥ µB̃(x) to be carried out, and is based on
the sets of α-cuts of fuzzy set (which are the commom Cantor sets) and is suggested being called loose

α-weak inclusion (is marked
α
⊇) and analogically can be formulated as (2): fuzzy set Ã, that defined on

the universum X, α-weakly includes fuzzy set B̃, defined on the same universum, if and only if when
for all elements x ∈ X, if µB̃(x) ≥ α, then and µÃ(x) ≥ α, or

Ã
α
⊇ B̃ ⇔ ∀x ∈ X

(
µB̃(x) ≥ α⇒ µÃ(x) ≥ α

)
.

In boundary case, the relation which is based on the cores of fuzzy sets Ã, B̃ is offered to call just

loose weak inclusion or loose 0-weak inclusion (is marked
0
⊇). Its definition can be formulated as: fuzzy

set Ã, defined on the universum X, if and only if 0-weakly includes fuzzy set B̃, defined on the same
universum, when for all elements x ∈ X, if µB̃ > 0, then and µÃ > 0, or

Ã
0
⊇ B̃ ⇔ ∀x ∈ X

(
µB̃(x) > 0⇒ µÃ(x) > 0

)
.

Let’s introduce the definition of the α-weak supplement operation. The traditional supplement of

the fuzzy set Ã in X is the accepted fuzzy set
−
Ã is X, for which the following condition is carried out

∀x ∈ X
(
µ−
Ã

(x) = 1− µÃ(x)

)
.

For classical Cantor sets, the supplement of set A is considered to be the set A, that is

∀x ∈ X
(
µA(x) = 1⇔ µA(x) = 0

)
. (3)

Analogically to (3) the definition of operation of α-weak supplement is offered to formulate as:

fuzzy set

α
−
Ã in X is α-weak supplement of fuzzy set Ã in X if and only if, when for all elements x ∈ X,

if µÃ(x) ≥ α, then µα
−
Ã

(x) < α, and vice versa, that is

∀x ∈ X

(
µÃ(x) ≥ α⇔ µα

−
Ã

(x) < α

)
. (4)

It follows from (4) that

∀x ∈ X

(
µÃ(x) < α⇔ µα

−
Ã

(x) ≥ α

)
.

Analogically to the definition (4) for the operation of weak supplement (or 0-weak supplement) we

can write: fuzzy set

0
−
Ã in X is a weak supplement of fuzzy set Ã in X if and only if, when for all the

Mathematics series. No. 3(111)/2023 61



S. Katsyv, V. Kukharchuk et al.

elements x ∈ X, if µÃ(x) > 0, then µ 0
−
Ã

(x) = 0, and vice versa, that is

∀x ∈ X

µÃ(x) > 0⇔ µ 0
−
Ã

(x) = 0

 . (5)

It follows from (5) that

∀x ∈ X

µÃ(x) = 0⇔ µ 0
−
Ã

(x) > 0

 .

The definition for the relation of α-weak equation between fuzzy sets Ã, B̃ in X is formulated as:
fuzzy set Ã, defined on the universum X, α-weakly equal to fuzzy set B̃, defined on this universum, if
and only if, when for all the elements x ∈ X, if µÃ > 0, then and µα

−
Ã

(x) = 0, and vice versa, that is

Ã
α
= B̃ ⇔ ∀x ∈ X

(
µB̃(x) ≥ α⇔ µÃ(x) ≥ α

)
.

For a weak equation (0-weak equation) we can write

Ã
0
= B̃ ⇔ ∀x ∈ X

(
µB̃(x) > 0⇔ µÃ(x) > 0

)
.

Let’s consider the definition for other main relations between fuzzy sets and operations on them.
It is suggested that α-weak combination of fuzzy sets Ã and B̃ in X is the fuzzy set C̃ α

= Ã
α
∪ B̃ in

X, if and only if, when for all elements x ∈ X, if µC̃(x) ≥ α then µÃ(x) ≥ α or µB̃(x) ≥ α, and vice
versa, that is

C̃
α
= Ã

α
∪ B̃ ⇔ ∀x ∈ X

(
µC̃(x) ≥ α⇔ µÃ(x) ≥ α ∨ µB̃(x) ≥ α

)
.

Analogically, weak (0-weak) association of fuzzy sets Ã and B̃ in X is the fuzzy set C̃ 0
= Ã

0
∪ B̃ in

X if and only if, when for all elements x ∈ X, if µC̃(x) > 0 then µÃ(x) > 0 or µB̃(x) > 0, and vice
versa, that is

C̃
0
= Ã

0
∪ B̃ ⇔ ∀x ∈ X

(
µC̃(x) > 0⇔ µÃ(x) > 0 ∨ µB̃(x) > 0

)
.

At last, α-weak crossing of fuzzy sets Ã and B̃ in X is the fuzzy set C̃ α
= Ã

α
∩ B̃ in X if and only

if, when for all elements x ∈ X, if µC̃(x) ≥ α, then µÃ(x) ≥ α and µB̃(x) ≥ α, and vice versa, that is

C̃
α
= Ã

α
∩ B̃ ⇔ ∀x ∈ X

(
µC̃(x) ≥ α⇔ µÃ(x) ≥ α ∧ µB̃(x) ≥ α

)
.

Analogically, a weak (0-weak) crossing of fuzzy sets Ã and B̃ in X is the fuzzy set C̃ 0
= Ã

0
∩ B̃ in

X if and only if µC̃(x) > 0, when for all elements x ∈ X, if then µÃ(x) > 0 and µB̃(x) > 0, and vice
versa, that is

C̃
0
= Ã

0
∩ B̃ ⇔ ∀x ∈ X

(
µC̃(x) > 0⇔ µÃ(x) > 0 ∧ µB̃(x) > 0

)
.

The definition of the more complex operation of the Descartes multiplication of fuzzy sets is
suggested as follows: α-weak Descartes multiplication of the fuzzy sets Ãi in X is the fuzzy set
Ã

α
= Ã1

α
× Ã2

α
× . . . · · ·

α
× Ãn in X = X1 × X2 × . . . . . . Xn if and only if, when for all elements

x = (x1, x2, . . . , xn) ∈ X, if µÃ(x) ≥ α, then simultaneously µÃ1
(x) ≥ α, µÃ2

(x) ≥ α, . . . , µÃn(x) ≥ α
and vice versa, that is

Ã
α
= Ã1

α
× Ã2

α
× . . . · · ·

α
× Ãn ⇔
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⇔ x = (x1, x2, . . . , xn) ∈ X
(
µÃ(x) ≥ α⇔ µÃ1

(x) ≥ α ∧ µÃ2
(x) ≥ α ∧ · · · ∧ µÃn(x) ≥ α

)
.

Accordingly, weak (0-weak) Descartes multiplication of fuzzy sets Ãi in X is the fuzzy set Ã 0
=

Ã1

0
× Ã2

0
× . . . · · ·

0
× Ãn in X = X1 × X2 × . . . . . . Xn if and only if, when for all elements x =

(x1, x2, . . . , xn) ∈ X, if µÃ(x) > 0, then simultaneously µÃ1
(x) > 0, µÃ2

(x) > 0, . . . , µÃn(x) > 0, and
vice versa, that is

Ã
0
= Ã1

0
× Ã2

0
× . . . · · ·

0
× Ãn ⇔

⇔ x = (x1, x2, . . . , xn) ∈ X
(
µÃ(x) > 0⇔ µÃ1

(x) > 0 ∧ µÃ2
(x) > 0 ∧ · · · ∧ µÃn(x) > 0

)
.

If we analyze all the above definitions of α-weak operations, we can come to the conclusion that
the results of α-weak operations are ambiguous. Unlike traditional operations on fuzzy sets, the result
of any α-weak operation is not a specific fuzzy set, but a set of fuzzy sets, each of which satisfies given
conditions. This ambiguity makes it possible to operate with fuzzy sets, the membership functions of
which are not completely specified or are specified imprecisely. Such functions are most often obtained
with the help of expert procedures.

It is obvious that α-weak operations on fuzzy sets should have the same properties as similar
operations on classical Cantor sets, that is, the same theorems as for classical sets should be valid for
them. Let’s formulate and prove analogical theorems for α-weak operations.

Theorems of idempotency.
Theorem 1. Operation of α-weak association is idempotent, that is

Ã
α
∪ Ã α

= Ã.

Proof. Let’s consider the fuzzy set C̃ α
= Ã

α
∪ Ã in X. According to the definition of the operation of

α-weak association for an arbitrary element x ∈ X, we can write µÃ(x) ≥ α∨µÃ(x) ≥ α⇔ µÃ(x) ≥ α.
Since the logical operation is idempotent, that is ∨, then for an arbitrary element x ∈ X, it will be
fair µC̃(x) ≥ α ∨ µÃ(x) ≥ α, what had to be proved.

It follows from the theorem 1, that the operation of weak association of fuzzy sets is also idempotent,
that is

Ã
0
∪ Ã 0

= Ã.

By means of analogical considerations we can prove that the operations of α-weak and weak crossing
are idempotent as well, that is

Ã
α
∩ Ã α

= Ã.

Ã
0
∩ Ã 0

= Ã.

Theorems of distributivenes.
Тheorem 2. Оperations of α-weak crossing of fuzzy sets is distributive, that is

Ã
α
∩
(
B̃

α
∪ C̃

)
α
=
(
Ã

α
∩ B̃

) α
∪
(
Ã

α
∩ C̃

)
.

Proof. Let’s consider C̃1
α
= B̃

α
∪ C̃, D̃1

α
= Ã

α
∩ C̃1, C̃2

α
= Ã

α
∩ B̃, C̃3

α
= Ã

α
∩ C̃, D̃2

α
= C̃2

α
∪ C̃3.

According to the definitions of the α-weak association and crossing operations for an arbitrary element
x ∈ X we can write

µC̃1(x) ≥ α⇔ µB̃(x) ≥ α ∨ µC̃(x) ≥ α, (6)
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µD̃1(x) ≥ α⇔ µÃ(x) ≥ α ∧ µC̃1(x) ≥ α, (7)

µC̃2(x) ≥ α⇔ µÃ(x) ≥ α ∧ µB̃(x) ≥ α, (8)

µC̃3(x) ≥ α⇔ µÃ(x) ≥ α ∧ µC̃(x) ≥ α, (9)

µD̃2(x) ≥ α⇔ µC̃2(x) ≥ α ∨ µC̃3(x) ≥ α. (10)

Having done the substitution of the equivalent expressions for the logical variables µC̃1(x) ≥ α,
µC̃2(x) ≥ α and µC̃3(x) ≥ α from logical equations (6, 8, 9) into logical equations (7, 10) we obtain

µD̃1(x) ≥ α⇔ µÃ(x) ≥ α ∧
(
µB̃(x) ≥ α ∨ µC̃(x) ≥ α

)
,

µD̃2(x) ≥ α⇔
(
µÃ(x) ≥ α ∧ µB̃(x) ≥ α

)
∨
(
µÃ(x) ≥ α ∧ µC̃(x) ≥ α

)
.

Since logical operation ∧ is distributive, that for an arbitrary element x ∈ X we can claim, that
µD̃1(x) ≥ α⇔ µD̃2(x) ≥ α, what had to be proved.

The operation of weak crossing of fuzzy sets is also distributive, that is

Ã
0
∩
(
B̃

0
∪ C̃

)
0
=

(
Ã

0
∩ B̃

)
0
∪
(
Ã

0
∩ C̃

)
.

By means of analogical considerations we can prove that operations of α-weak and weak association
are also distributive, that is

Ã
α
∪
(
B̃

α
∩ C̃

)
α
=
(
Ã

α
∪ B̃

) α
∩
(
Ã

α
∪ C̃

)
,

Ã
0
∪
(
B̃

0
∩ C̃

)
0
=

(
Ã

0
∪ B̃

)
0
∩
(
Ã

0
∪ C̃

)
.

Theorems of involution.
Theorem 3: For any fuzzy set Ã inX, the α-weak complement of its α-weak complement is α-weakly

equal to the fuzzy set Ã, that is
α
α

Ã
α
= Ã.

Proof. Let’s consider fuzzy sets B̃ α
=
α

Ã and C̃
α
=
α

B̃ in X. According to the definition of α-weak
complement, for the arbitrary element x ∈ X we can write µB̃(x) < α⇔ µÃ(x) ≥ α and µC̃(x) ≥ α⇔
µB̃(x) < α. So, for an arbitrary element x ∈ X the equivalency µC̃(x) ≥ α ⇔ µÃ(x) ≥ α will be fair,
what had to be proved.

It follows from Theorem 3, that for any of fuzzy sets Ã in X, the weak complement of its weak
complement is weakly equal to the fuzzy set Ã, that is

0
0

Ã
0
= Ã.

Theorems de Morgan.
Theorem 4. α-weak complement of the α-weak association of the fuzzy sets Ã and B̃ in X are

α-weakly equals to α-weak crossing of α-weak complement of these fuzzy sets, that is

α
α(

Ã ∪ B̃
)
α
=
α

Ã
α
∩
α

B̃ .
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Proof. Let’s consider fuzzy sets C̃1
α
= Ã

α
∪ B̃, and C̃2

α
=
α

Ã
α
∩
α

B̃ and C̃3
α
=

α

C̃1 in X. According to the
definitions of the corresponding operations, for the arbitrary element x ∈ X we can write

µC̃1(x) ≥ α⇔ µÃ(x) ≥ α ∨ µB̃(x) ≥ α, (11)

µC̃2(x) ≥ α⇔ µÃ(x) < α ∧ µB̃(x) < α, (12)

µC̃3(x) ≥ α⇔ µC̃1(x) < α. (13)

Taking into consideration that µC̃1(x) ≥ α ⇔ ¬µC̃1(x) ≥ α, let’s do the substitution of the
equivalent expression for the logical variable µC̃1(x) ≥ α from logical equation (11) into logical equation
(13), and as a result we’ll obtain

µC̃3(x) ≥ α⇔ ¬
(
µÃ(x) ≥ α ∨ µB̃(x) ≥ α

)
. (14)

Since µÃ(x) < α ⇔ ¬
(
µÃ(x) ≥ α

)
and µB̃(x) < α ⇔ ¬

(
µB̃(x) ≥ α

)
, the expression (12) we can

write as
µC̃2(x) ≥ α⇔ ¬

(
µÃ(x) ≥ α

)
∧ ¬

(
µB̃(x) ≥ α

)
. (15)

As it follows from the similar logical de Morgan’s law

¬
(
µÃ(x) ≥ α ∨ µB̃(x) ≥ α

)
⇔ ¬

(
µÃ(x) ≥ α

)
∧ ¬

(
µB̃(x) ≥ α

)
,

and the expressions (14) and (15) we can write µC̃3(x) ≥ α⇔ µC̃2(x) ≥ α, what had to be proved.
It follows from the theorem 4 that the weak complement of the weak association of fuzzy sets Ã

and B̃ in X weakly equals to the weak crossing of the weak complement of these fuzzy sets, that is

0
0(

Ã ∪ B̃
)

0
=

0

Ã
0
∩

0

B̃ .

By means of similar considerations we can prove the fairness of the second de Morgan’ theorem for
α-weak and weak operations, namely

α
α(

Ã ∩ B̃
)
α
=
α

Ã
α
∪
α

B̃,

0
0(

Ã ∩ B̃
)

0
=

0

Ã
0
∪

0

B̃ .

Besides above mentioned theorems, in classical theory of sets there are also theorems characterizing
the operations between fuzzy sets and universum or empty set. Let’s check the reality of the similar
theorem for α-weak operations’ class.

Theorem 5. α-weak association of the fuzzy set Ã in X and the empty set � α-weakly equals to
the fuzzy set Ã in X, that is

Ã
α
∪ � α

= Ã.

Proof. Let’s consider fuzzy set B̃ α
= Ã

α
∪ � in X. According to the definition of α-weak association

operation, for the arbitrary element x ∈ X we can write µB̃(x) ≥ α ⇔ µÃ(x) ≥ α ∨ µ�(x) ≥ α.
Since the definition of an empty set � µ�(x) = 0, then µÃ(x) ≥ α ∨ µ�(x) = 0 ⇔ µÃ(x) ≥ α. So,
µB̃(x) ≥ α⇔ µB̃(x) ≥ α, what had to be proved.

Similarly, the weak association of fuzzy set Ã in X and the empty set � are weakly equals to the
fuzzy set Ã in X, that is

Ã
0
∪ � 0

= Ã.
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Theorem 6. α-weak crossing of the fuzzy set Ã in X and the empty set � is α-weakly equal to the
empty set �, that is

Ã
α
∩ � α

= �.

Proof. Let’s consider the fuzzy set B̃ α
= Ã

α
∩ � in X. According to the definition of the α-weak

crossing operation, for the arbitrary element x ∈ X we can write µB̃(x) ≥ α⇔ µÃ(x) ≥ α∧µ�(x) ≥ α.
As to the definition of the empty �, that µÃ(x) ≥ α ∧ µ�(x) = 0 ⇔ µ�(x) = 0. So, µB̃(x) ≥ α ⇔
µ�(x) = 0, what had to be proved.

Similarly, a weak crossing of the fuzzy set Ã in X and the empty set � weakly equals the empty
set �, that is

Ã
0
∩ � 0

= �.

Theorem 7. α-weak association of the fuzzy set Ã in X with the universum X α-weakly equals to
the universum X, that is

Ã
α
∪ X α

= X.

Proof. Let’s consider the fuzzy set B̃ α
= Ã

α
∪ X in X. Acccording to the definition of the α-weak

association operation, for an arbitrary element x ∈ X we can write µB̃(x) ≥ α⇔ µÃ(x) ≥ α∨µX(x) =
1. As to the definition of the universum for all of the x ∈ X µX(x) = 1, that µÃ(x) ≥ α ∨ µX(x) =
1⇔ µX(x) = 1. So, µB̃(x) ≥ α⇔ µX(x) = 1, what had to be proved.

Similarly, weak association of the fuzzy set Ã in X with the universum X weakly equal to the
universum X, that is

Ã
0
∪ X 0

= X.

Theorem 8. α-weak crossing of the fuzzy set Ã in X with the universum X α-weakly equals the
fuzzy set Ã in X, that is

Ã
α
∩ X α

= Ã.

Proof. Let’s consider the fuzzy set B̃ α
= Ã

α
∩ X is X. According to the definition of the α-weak

crossing operation for an arbitrary element x ∈ X, we can write µB̃(x) ≥ α⇔ µÃ(x) ≥ α∧µX(x) ≥ α.
As to the definition of universum, for all x ∈ X µX = 1, that µÃ(x) ≥ α ∧ µX(x) = 1 ⇔ µÃ(x) ≥ α.
So, µB̃(x) ≥ α ⇔ µÃ(x) ≥ α, what had to be proved. Similarly, the weak crossing of the fuzzy set Ã
in X with universum X weakly equals the fuzzy set Ã in X, that is

Ã
0
∩ X 0

= Ã.

Let’s consider the theorems characterizing α-weak operations between fuzzy sets and their α-weak
complement. There are theorems for the Cantor sets

A ∪ Ā = X,

A ∩ Ā = �.

In the traditional theory of fuzzy sets similar theorems are absent.
As for weak operations between fuzzy sets, the following theorem exists.

Theorem 9. Weak crossing of the fuzzy set Ã in X with its weak complement
0

Ã in X weakly equals
the empty set �, that is

Ã
0
∩

0

Ã
0
= �.
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Proof. Let’s consider fuzzy sets B̃ 0
=

0

Ã and C̃ 0
= Ã

0
∩ B̃ in X. According to the definition of α-weak

crossing operation, for the arbitrary element x ∈ X we can write

µB̃(x) > 0⇔ µÃ(x) = 0, (16)

µC̃(x) > 0⇔ µÃ(x) > 0 ∧ µB̃(x) > 0. (17)

Having done the substitution of the equivalent expression for a logical variable µB̃(x) > 0 from the
logical equation (16) into the logical equation (17) we get µC̃(x) > 0⇔ µÃ(x) > 0 ∧ µÃ(x) = 0.

Since µÃ(x) > 0 ∧ µÃ(x) = 0⇔ False, then µC̃(x) = 0, what had to be proved.
Let’s consider α-weak operations on binary fuzzy relations (BFR). Binary fuzzy relation

(
Ã,X

)
–

is a fuzzy set defined on the Descartes square X ×X and for which the following is true:

∀x, y ∈ X
(
µÃ(x, y) ∈ [0, 1]

)
.

Since BFR is a common fuzzy set and the only difference is that its elements are the ordered pairs
of the Descartes square of the universum X, then for BFR all introduced beforehand α-weak operations
occur (association, crossing, complement, difference etc). At the same time, for BFR one can introduce
additionally operations which are absent for ordinary fuzzy sets. Therefore there is an inverted relation,
its definition is in the traditional theory is written as:(

Ã−1, X
)
is the inverted relation to

(
Ã,X

)
if and only if, when

∀x, y ∈ X
(
µÃ−1(y, x) = µÃ(x, y)

)
.

Following the principles of building the class of weak operations, for the α-weak inverted relation
we can write: ( α

Ã−1, X

)
is α− weak inverted relation to

(
Ã,X

)
if and only if, when

∀x, y ∈ X
(
µÃ−1(y, x) ≥ α⇔ µÃ(x, y) > 0

)
.

Accordingly,(
0

Ã−1, X

)
is α− weak inverted relation to

(
Ã,X

)
if and only if, when

∀x, y ∈ X
(
µÃ−1(y, x) > 0⇔ µÃ(x, y) > 0

)
.

Let’s formulate the definition for a weak composition of fuzzy relations. Traditional maximin
composition of fuzzy relations is formulated as: fuzzy relation

(
Ã1 ◦ Ã2, X

)
is a maximin composition

of fuzzy relations
(
Ã1, X

)
and

(
Ã2, X

)
as to the definition if and only if the, when

∀x, y ∈ X
(
µÃ1◦Ã2

(x, y) = MaxMin
z∈X

(µÃ1
(x, z), µÃ2

(z, y))

)
.

The definition for the α-weak composition can be written as: fuzzy relation
(
Ã1

α
◦̃ Ã2, X

)
is the

α-weak composition of fuzzy relations
(
Ã1, X

)
and

(
Ã2, X

)
аccording to its definition if and only if,

when

∀x, y ∈ X
(
µÃ1◦Ã2

(x, y) ≥ α⇔ ∃z ∈ X(µÃ1
(x, z) ≥ α ∧ µÃ2

(z, y)) ≥ α
)
, α ∈ (0, 1]. (18)
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It follows from (18) that fuzzy relation
(
Ã1

0
◦̃ Ã2, X

)
is the α-weak composition of fuzzy relations(

Ã1, X
)
and

(
Ã2, X

)
if and only if, when

∀x, y ∈ X
(
µÃ1◦Ã2

(x, y) > 0⇔ ∃z ∈ X(µÃ1
(x, z) > 0 ∧ µÃ2

(z, y)) > 0
)
, α ∈ (0, 1].

Let’s proceed to the fuzzy sets reflections and the extension principles. As it is known the extension
principles is the way of defining the image of fuzzy set under crisp or fuzzy reflection. There can be
many such methods, but all of them must satisfy two conditions:

1. The image of any fuzzy set, regardless of the nature of the reflection, is also a fuzzy set.
2. Any extension principle should not contradict the definition of a clear representation of classical

Cantor sets.
The definition of the maximin of extension principle, the most widespread in the traditional theory

of fuzzy sets, for the crisp reflection of fuzzy sets can be formulated as follows: fuzzy set f(Ã) in Y is
the image of the fuzzy set Ã in X under crisp reflection f : X → Y according to the definition if and
only if, when

∀y ∈ Y
(
µf(Ã)(y) = Max

x∈f−1(y)
µÃ(x)

)
, (19)

where f−1(y) is the proimage of the element y ∈ Y under crisp reflection f : X → Y .
Maximin of extension principle for fuzzy reflection of the fuzzy sets one can be written as: fuzzy

set f̃(Ã) in Y is the image of the fuzzy set Ã in X under fuzzy reflection f : X → Y according to the
definition if and only if, when

∀y ∈ Y
(
µf̃(Ã)(y) = MaxMin

x∈X
(µÃ(x), µf̃ (x, y))

)
, (20)

where µf̃ : X × Y → (0, 1] - membership function of fuzzy reflection f : X → Y .
Let’s formulate the extension principles for crisp and fuzzy reflections of fuzzy sets that are more

general than (19, 20) and less demanding on the completeness of data on membership functions.
The definition of α-weak extension principle for crisp reflections of fuzzy sets is formulated as: fuzzy

set f(Ã) in Y is the α-weak image of fuzzy set Ã in X under crisp reflection f : X → Y according to
the definition if and only if, when

∀y ∈ Y
(
µf(Ã)(y) ≥ α⇔ ∃x ∈ f−1(y)(µÃ(x) ≥ α)

)
,

where f−1(y) is the proimage of the element y ∈ Y under crisp reflection f : X → Y .
Accordingly, for the principle of weak extension for crisp reflections of fuzzy sets we can write: fuzzy

set f(Ã) in Y is a weak image of fuzzy set Ã in X under crisp reflection f : X → Y according to the
definition if and only if, when

∀y ∈ Y
(
µf(Ã)(y) > 0⇔ ∃x ∈ f−1(y)(µÃ(x) > 0)

)
.

The definition of α-weak extension principle for fuzzy reflections of fuzzy sets can be written as:
fuzzy set f̃(Ã) in Y is the α-weak image of fuzzy set Ã in X under fuzzy reflection f̃ : X → Y according
to the definition if and only if, when

∀y ∈ Y
(
µf̃(Ã)(y) ≥ α⇔ ∃x ∈ X(µÃ(x) ≥ α) ∧ µf̃ (x, y) ≥ α

)
,

where µf̃ : X × Y → (0, 1] - membership function of fuzzy reflection f̃ : X → Y .
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Accordingly, for the principle of weak extension for the fuzzy reflections of fuzzy sets we can write:
fuzzy set f̃(Ã) in Y is a weak image of fuzzy set Ã in X under fuzzy reflection f̃ : X → Y according
to the definition if and only if, when

∀y ∈ Y
(
µf̃(Ã)(y) > 0⇔ ∃x ∈ X(µÃ(x) > 0) ∧ µf̃ (x, y) > 0

)
.

Conclusions

1. There is a large number of applied problems for which the use of the maximin extension principle
hinders their solution, since its application requires complete information about the membership
functions of vaguely defined parameters of the problem, and this is often a practically impossible
procedure. In these cases, even the highest-level expert can determine only cores or α-cuts for the
unknown fuzzy parameters of the system. Building complete membership functions of unknown fuzzy
parameters on this basis is risky and unreliable.

2. The axiomatics of the theory of fuzzy sets have been extended in order to introduce non-
traditional (less demanding on the completeness of data on membership functions) extension principles
and operations on fuzzy sets. The so-called α-weak operations on fuzzy sets are proposed, which are
based on the use of α-cuts.

3. The axiomatics of weak operations is constructed so that each of these operations reduces to the
corresponding classical operation in the case of degeneracy of fuzzy sets to classical Cantor sets.

4. For weak operations on fuzzy sets, the same theorems as for classical sets are valid, namely,
theorems of idempotency, distributivity, involution, de Morgan and others.

5. Weak operations are introduced not only for fuzzy sets, but also for binary fuzzy relations, which
made it possible to construct the principles of weak extension. All this makes it possible to use the
mathematical apparatus of fuzzy sets to solve problems in conditions of significant uncertainty of input
information.
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Анық емес жиындар теориясының дамуы: әлсiз операциялар
және жалпылау принциптерi

Жұмыста қолданбалы есептердi шешу үшiн анық емес жиындар теориясын пайдалану кезiнде туын-
дайтын мәселелер қарастырылған. Статистикалық деректерге негiзделген стохастикалық әдiстерден
айырмашылығы, статистикалық деректер болмаған кезде анық емес жиындар теориясы әдiстерiн
қолданған жөн. Бұл жағдайларда алгоритмдер осы бiлiм саласындағы мамандар болып табылатын
сарапшылар жасаған тиiстiлiк функциясына негiзделуi керек. Ең дұрысы, тиiстiлiк функциялары
туралы толық ақпарат қажет, бiрақ бұл практикалық процедура емес. Көбiнесе, тiптi ең тәжiри-
белi маман тек олардың тасымалдаушыларын немесе белгiсiз бұлыңғыр жүйе параметрлерi үшiн
α-деңгейiнiң бөлек жиынтықтарын анықтай алады. Осы негiзде белгiсiз анық емес параметрлердiң
толық тиiстiлiк функцияларын құру тәуекелдi және сенiмсiз. Сондықтан мақалада анық емес жиын-
дар теориясының аксиоматикасын кеңейту ұсынылады (тиiстiлiк функциялар туралы деректердiң
толықтығын талап етпейтiн) жалпылаудың және анық емес жиындардағы операциялардың прин-
циптерiн енгiзу. Бөлек α-деңгейлi жиындарды қолдануға негiзделген анық емес жиындардағы α-
әлсiз деп аталатын амалдар ұсынылған. Сондай-ақ, кеңейтiлген аксиоматикалық теорияда Кантор-
дың жиындар теориясының барлық классикалық теоремаларын қолдануға болатыны көрсетiлген.
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Ақпараттың маңызды белгiсiздiгi жағдайында мәселелердi шешуге мүмкiндiк беретiн жаңа жалпы-
лау принциптерi енгiзiлдi.

Кiлт сөздер: Кантор жиыны, анық емес жиын, тиiстiлiк функция, α-деңгейлi жиын, анық емес жиын-
ды қолдау, α-әлсiз операция.
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Развитие теории нечетких множеств: слабые операции и
принципы обобщения

В работе рассмотрены проблемы, возникающие при использовании теории нечетких множеств для
решения прикладных задач. В отличие от стохастических методов, основанных на статистических
данных, методы теории нечетких множеств целесообразно применять, когда статистические данные
недоступны. В этих случаях алгоритмы должны основываться на функциях принадлежности, фор-
мируемых экспертами, являющимися специалистами в данной области знаний. В идеале требуется
полная информация о функциях принадлежности, но это непрактичная процедура. Чаще всего даже
самый опытный специалист может определить только их носители или отдельные наборы α-уровня
для неизвестных нечетких параметров системы. Построение на этой основе полных функций принад-
лежности неизвестных нечетких параметров рискованно и ненадежно. Поэтому в статье предложены
расширение аксиоматики теории нечетких множеств с целью введения нетрадиционных (менее тре-
бовательных к полноте данных о функциях принадлежности) принципов обобщения и операций над
нечеткими множествами, а также так называемые α-слабые операции над нечеткими множествами,
основанные на использовании отдельных множеств α-уровня. Кроме того, показано, что все клас-
сические теоремы теории множеств Кантора применимы в расширенной аксиоматической теории.
Введены новые принципы обобщения, позволяющие решать задачи в условиях значительной неопре-
деленности информации.

Ключевые слова: множество Кантора, нечеткое множество, функция принадлежности, множество
α-уровня, носитель нечеткого множества, α-слабая операция.
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Some non-standard quasivarieties of lattices

The questions of the standardness of quasivarieties have been investigated by many authors. The problem
"Which finite lattices generate a standard topological prevariety?" was suggested by D.M. Clark, B.A. Davey,
M.G. Jackson and J.G. Pitkethly in 2008. We continue to study the standardness problem for one specific
finite modular lattice which does not satisfy all Tumanov’s conditions. We investigate the topological
quasivariety generated by this lattice and we prove that the researched quasivariety is not standard, as
well as is not finitely axiomatizable. We also show that there is an infinite number of lattices similar to the
lattice mentioned above.

Keywords: lattice, quasivariety, basis of quasi-identities, profinite algebra, topological quasivariety, profinite
quasivariety.

Introduction

The problems concerning finite axiomatizability and standardness of (quasi)varieties of algebras
are among the most researched and relevant topics in universal algebra.

According to R. McKenzie [1], each finite lattice has a finite identity basis. The analogous statement
for quasi-identities is incorrect. V.P. Belkin in [2] proved that there is a finite lattice which has no finite
quasi-identity basis. In this regard, the problem "Which finite lattices have finite quasi-identity bases"
was proposed by V.A. Gorbunov and D.M. Smirnov [3]. A sufficient two-part condition under which a
locally finite quasivariety of lattices does not have a finite (independent) quasi-identity basis was found
by V.I. Tumanov [4].

In [5] the concept of a standard (topological) quasivariety was introduced, and the basic properties
were investigated and many examples of standard and non-standard quasivarieties were provided. The
standardness of algebras was further studied by D.M. Clark, B.A. Davey, R.S. Freese and M.G. Jackson
in [6], who established a general condition guaranteeing the standardness of a set of finite algebras.
In [7] sufficient conditions were found under which a quasivariety contains a continuum of non-standard
subquasivarieties. In [6] it was proved that any finite lattice generates a standard variety. However,
in [8] it was established that Belkin’s lattice generates non-standard quasivariety. These naturally arose
the problem "Which finite lattices generate standard topological quasivarieties?" that was suggested
by D.M. Clark, B.A. Davey, M.G. Jackson and J.G. Pitkethly in [8].

In [9, 10] one specific lattice was studied and it was proved that this lattice has no finite basis of
quasi-identities [9] and generates non-standard quasivariety [10], respectively. The special feature of
this lattice is that it does not satisfy one of the two-part Tumanov’s condition (see Theorem 2).

In this paper we continue to study the standardness problem for one specific finite modular lattice.
This lattice does not satisfy all Tumanov’s conditions [4] and the quasivariety generated by this lattice
is not standard, as well as is not finitely based (Theorem 3). At the end we show that there is an
infinite number of lattices similar to this lattice (Theorem 4).

∗Corresponding author.
E-mail: basheyeva3006@gmail.com
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1 Basic concepts and preliminaries

We recall some basic definitions and results for quasivarieties that we will refer to. For more
information on the basic notions of general algebra and topology introduced below and used throughout
this paper, we refer to [11–13].

We assume that all classes of algebras the same fixed finite signature σ and abstract, unless we
specify otherwise. Also an algebra 〈A;σ〉 and its carrier (its basic set) A will be identified and denoted
by the same way, namely A.

A class of algebras which is closed with respect to subalgebras, direct products (including the direct
product of an empty family), and ultraproducts is a quasivariety. In other words, a class of algebras
axiomatized by a set of quasi-identities is a quasivariety. A quasi-identity is a universal Horn sentence
with the non-empty positive part

(∀x̄)[p1(x̄) ≈ q1(x̄) ∧ · · · ∧ pn(x̄) ≈ qn(x̄)→ p(x̄) ≈ q(x̄)],

where p, q, p1, q1, . . . , pn, qn are terms. A quasivariety closed with respect to homomorphisms is a
variety. In other words, a variety is a class of similar algebras axiomatized by a set of identities,
according to Birkhoff theorem [14]. An identity is a sentence of the form (∀x̄)[s(x̄) ≈ t(x̄)] for some
terms s(x̄) and t(x̄). A quasivariety K has a finite basis of quasi-identities (finitely axiomatizable) if
there is a finite set Σ of quasi-identities such as K = Mod(Σ). Otherwise K has no finite basis of
quasi-identities.

By Q(K) (V(K)) we denote the smallest quasivariety (variety) containing a class K. Q(K) is called
finitely generated if K is a finite family of finite algebras. In case when K = {A} we write Q(A) instead
of Q({A}). By Maltsev-Vaught theorem [15], Q(K) = SPPu(K), where S, P and Pu are operators of
taking subalgebras, direct products and ultraproducts, respectively.

Let K be a quasivariety. A congruence α on algebra A is called a K-congruence provided A/α ∈ K.
The set ConKA of all K-congruences of A forms an algebraic lattice with respect to inclusion ⊆. An
algebra A ∈ K is subdirectly K-irreducible if an intersection of any number of nontrivial K-congruences
is nontrivial. Since for any class R we have Q(R) = SPPu(R) = PsSPu(R), where Ps is operator
of taking subdirect products, then for finitely generated quasivariety Q(A), every subdirectly Q(A)-
irreducible algebra is isomorphic to some subalgebra of A.

A finite algebra A with discrete topology generates a topological quasivariety consisting of all
topologically closed subalgebras of non-zero direct powers of A endowed with the product topology.
An algebra A is profinite with respect to quasivariety R if A is an inverse limit of finite algebras from R.
A topological quasivariety Qτ (A) is standard if every Boolean topological algebra (compact, Hausdorf
and totally disconnected) with the algebraic reduct in Q(A) is profinite with respect to Q(A). In this
case, we say that algebra A generates a standard topological quasivariety. For more information on the
topological quasivarieties we refer to [6] and [8].

We say that X is pointwise non-separable with respect to quasivariety R if the following condition
holds: There exist a, b ∈ X, a 6= b, such that, for each n ∈ N , each finite structure M ∈ R and each
homomorphism ϕ : Xn →M , we have ϕ(a) = ϕ(b).

The following theorem provides non-standardness of quasivariety.
Theorem 1.(Second inverse limit technique [8])
Let X = lim←−{Xn | n ∈ N} be a surjective inverse limit of finite structures, and let K be a

quasivariety. Assume that X ∈ K is pointwise non-separable with respect to K and each substructure
of Xn that is generated by at most n elements belongs to K for all n ∈ N . Then K is non-standard,
as well as is not finitely axiomatizable.

To formulate our main result (Theorem 3) we need some special preliminaries.
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Let (a] = {x ∈ L | x ≤ a} ([a) = {x ∈ L | x ≥ a}) be a principal ideal (coideal) of a lattice L. A
pair (a, b) ∈ L × L is called splitting (semi-splitting) if L = (a] ∪ [b) and (a] ∩ [b) = ∅ (L = (a] ∪ [b)
and (a] ∩ [b) 6= ∅).

For any semi-splitting pair (a, b) of a lattice M we define a lattice

Ma−b = 〈{(x, 0), (y, 1) ∈M × 2 | x ∈ (a], y ∈ [b)};∨,∧〉 ≤s M × 2,

where 2 = 〈{0, 1};∨,∧〉 is a two element lattice.
Theorem 2. (Tumanov’s theorem [4])
Let a locally finite quasivarieties of lattices M and N ⊂M satisfy the following two conditions:
a) in any finitely subdirectly M-irreducible lattice M ∈ M\N there is a semi-splitting pair (a, b)

such that Ma−b ∈ N;
b) there is a finite simple lattice P ∈ N that is not a proper homomorphic image of any subdirectly

N-irreducible lattice.
Then the quasivariety N has no coverings in the lattice of subquasivarieties of M. In particular, N

has no finite (independent) basis of quasi-identities provided M is finitely axiomatizable.
A quasivariety is called proper if it is not variety. A subalgebra B of an algebra A is called proper

if B is not one-element (trivial) and B 6∼= A. For an algebra A and elements a, b ∈ A, by θ(a, b) we
denote the least congruence on A containing pair (a, b).

2 Main result

Let A′ and A are the modular lattices displayed in Figure 1. And letQ(A) andV(A) are quasivariety
and variety generated by A, respectively. Since every subdirectly Q(A)-irreducible lattice is a sublattice
ofA, andA′ is simple and a homomorphic image ofA, andA′ is not a sublattice, thenA′ ∈ V(A)\Q(A),
that is Q(A) is a proper quasivariety. One can check that A′ has no semi-splitting pair. Thus, the
condition a) of Tumanov’s theorem does not hold on the quasivariety Q(A). It is easy to see that M3

is unique non-distributive simple lattice in Q(A)SI and it is a homomorphic image of A. Hence, the
condition b) of Tumanov’s theorem is not hold on quasivarieties Q(A) and V(A).

A′ A

Figure 1: Lattices A′ and A

74 Bulletin of the Karaganda University



Some non-standard ...

The main result of the paper is
Theorem 3. The topological quasivariety generated by the lattice A is not standard, as well as is

not finitely axiomatizable.
Proof of Theorem 3.
To prove the theorem we use Theorem 1. According to this theorem we will construct L = lim←−{Ln |

n ∈ N} a surjective inverse limit of the finite lattices such that every n-generated sublattice of Ln
belongs to Q(A) and L is pointwise non-separable with respect to Q(A).

Let S be a non-empty subset of a lattice L. Denote by 〈S〉 the sublattice of L generated by S.
We define a modular lattice Ln by induction:
n = 0. L0

∼= M3−3 and L0 = 〈{a0, b0, c0, a0, b0, c0}〉 (Fig. 2).
n = 1. L1 is a modular lattice generated by L0∪{a1, b1, c1, a1, b1, c1} such that 〈{a1, b1, c1, a1, b1, c1}〉 ∼=

M3−3, and c0 = a1, a0 ∧ b0 = c0 ∨ b1 = c0 ∨ c1 (Fig. 3).
n > 1. Ln is a modular lattice generated by the set Ln−1 ∪ {an, bn, cn, an, bn, cn} such that

〈{an, bn, cn, an, bn, cn}〉 ∼= M3−3, and cn−1 = an, a0 ∧ b0 = c0 ∨ bn = c0 ∨ cn (Fig. 4).

M3

M3,3 M3−3

Figure 2: Lattices M3, M3,3 and M3−3

Let L−n be a sublattice of Ln generated by the set {ai, bi, ci, ai, bi, ci | 0 < i ≤ n}. One can see that
L−n
∼= Ln/θ(a0, b0) and L−n ≤s Mn

3−3. Hence, L−n ∈ Q(A).
Claim 1. Every proper sublattice of Ln belongs to Q(A).
Proof of Claim 1.
It is enough to prove the claim for arbitrary maximal proper sublattices of Ln. Since Ln is generated

by the set of double irreducible elements S = {a0, b0, b0, c0, cn}∪{bi, bi | 0 < i ≤ n} then every maximal
proper sublattices L of Ln generated by S − {x} for some x ∈ S, that is L = 〈S − {x}〉.

Suppose that x ∈ {a0, b0, b0, c0}. Then the lattice 〈{a0, b0, b0, c0}\{x}〉/θ(c0, a0∧b0) be a homomorphic
image of L with the kernel α = θ(a1, cn) and belongs to Q(A).

One can see that for β = θ(a0, b0) if x ∈ {b0, c0} and β = θ(b0, c0) if x ∈ {a0, b0}, L/β is isomorphic
to a sublattice of L−n × 2 and belongs to Q(A). Thus, α and β are Q(A)-congruences. One can check
that α ∩ β = 0. Hence L ≤s L/α× L/β. Therefore, L ∈ Q(A).

Suppose that x ∈ {bi, bi | 0 < i ≤ n} ∪ {cn}. Without loss of generality, assume that x =
bn. Let α = θ(c0, cn−1). Then L/α is isomorphic to the sublattice S of L1 generated by the set
{a0, b0, b0, c0, a1, b1, b1}. Since the lattice P = 〈{a0, b0, b0, c0, b1, c1}〉 is a sublattice of A and S ≤s P×22
we get S ∈ Q(A). On the other hand, L/θ(a0, b0) is a sublattice of L−n . Since L−n ∈ Q(A) then
L/θ(a0, b0) ∈ Q(A). One can see that α∩ θ(a0, b0) = 0. Hence, L is a subdirect product of two lattices
from Q(A). Therefore, L ∈ Q(A).
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a0 b0 c0

a0 b0 c0 a1 b1 c1

a1 b1 c1

Figure 3: Lattice L1

Let ϕn,n−1 be a homomorphism from Ln to Ln−1 such that kerϕn,n−1 = θ(an, bn), and ϕn,n an
identity map for all n > 1 and m < n. And let ϕn,m = ϕm+1,m ◦ · · · ◦ ϕn,n−1. It can be seen that
{Ln;ϕn,m, N} forms inverse family, where N is the linear ordered set of positive integers.

We denote L = lim←−{Ln | n ∈ N} and show that L ∈ Q(A).
Claim 2. The lattice L belongs to Q(A).
Proof of Claim 2.
Let α be a quasi-identity of the following form

&i≤rpi(x0, . . . , xn−1) ≈ qi(x0, . . . , xn−1)→ p(x0, . . . , xn−1) ≈ q(x0, . . . , xn−1).

Assume that α is valid on Q(A) and

L |= pi(a0, . . . , an−1) = qi(a0, . . . , an−1) for all i < r,

for some a0, . . . , an−1 ∈ L. From the definition of inverse limit we have that L ≤s
∏
i∈I Li. Therefore

Ls |= pi(a0(s), . . . , an−1(s)) = qi(a0(s), . . . , an−1(s)) for all i < r.

Each at most n generated subalgebra of Ls belongs to Q(A) for all s > n, by Claim 1. Hence α is true
in Ls for all s > n. And this in turn entails

Ls |= p(a0(s), . . . , an−1(s)) = q(a0(s), . . . , an−1(s)).

Since ai(m) = ϕs,m(ai(s)) for all 0 ≤ i < n and m < s, we get

Lm |= p(a0(m), . . . , an−1(m)) = q(a0(m), . . . , an−1(m)) for all m < s.

So
L |= p(a0, . . . , an−1) = q(a0, . . . , an−1).
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a0 b0 c0

a0 b0 c0 a1 b1 c1

a1 b1 c1 ancn−1 bn cn

an bn cn

Figure 4: Lattice Ln, n ≥ 2

Hence L |= α, for every α that is valid on Q(A). This proves that L ∈ Q(A).
Claim 3. The lattice L is point-wise separable with respect to Q(A).
Proof of Claim 3.
We obtain ϕn,m(a0) = a0 and ϕn,m(b0) = b0, by definition of ϕn,n−1. And a = (a0, . . . , a0, . . .),

b = (b0, . . . , b0, . . .) ∈ L, by definition of inverse limit. Let α : L→M be a homomorphism, M ∈ Q(A)
and M finite. There is n > 2 and homomorphism ψM : Ln → M such that α = ϕn ◦ ψM for some
surjective homomorphism ϕn : L → Ln (by universal property of inverse limit). It is not difficult to
see that any non-trivial homomorphic image of Ln is isomorphic to Lm, m < n, or contains M3,3 as a
sublattice. Since Lm,M3,3 /∈ Q(A) and ψM (Ln) ≤ M ∈ Q(A), then we obtain that ψM (Ln) is trivial.
That is ψM (x) = const for all x ∈ Ln. So we get α(a) = α(b).

Thus, the Claims 1–3 state that the conditions of Theorem 1 holds on Q(A). Therefore, the
quasivariety Q(A) generated by A is not standard, as well as not finitely axiomatizable.

Remark. In the paper [16] it has been proved that the quasivariety generated by the lattice A is
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not finitely based. We would like to point out that we presented the proof of the Claim 1 for the sake
of completeness of the proof of the main result. We also note that Claims 2 and 3 were proved by
arguments of [17].

We note that there is an infinite number of lattices similar to the lattice A. This is the context of
the following.

Theorem 4. Let L be a finite lattice such that M3,3 6≤ L, A ≤ L and Ln 6≤ L for all n > 1.
Then the topological quasivariety generated by the lattice L is not standard, as well as is not finitely
axiomatizable.
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С.М. Луцак1, А.О. Башеева2, А.М. Асанбеков3, О.А. Воронина1

1М. Қозыбаев атындағы Солтүстiк Қазақстан университетi, Петропавл, Қазақстан;
2Л.Н. Гумилев атындағы Еуразия ұлттық университетi, Астана, Қазақстан;

3ҚР ҰҒА Математика институты, Бiшкек, Қырғызстан

Кейбiр стандартты емес торлардың квазикөпбейнелерi
Квазикөпбейнелердiң стандарттылық мәселелерiн көптеген авторлар зерттедi. Д.М. Кларк, Б.А. Дэй-
ви, М.Г. Джексон және Дж.Г. Питкетли «Қандай соңғы торлар стандартты топологиялық предкөп-
бейненi тудырады?» деген мәселенi 2008 жылы ұсынды. Тумановтың барлық жағдайларын қанағат-
тандырмайтын бiр нақты модульдiк тордың стандарттылық мәселесiн зерттеу жалғастырылған. Осы
тордан пайда болған топологиялық квазикөпбейне зерттелген және зерттелетiн квазикөпбейне стан-
дартты емес, сонымен қатар әрине аксиоматизацияланбайтыны дәлелденген. Сондай-ақ жоғарыда
аталған торға ұқсас торлардың шексiз саны бар екенi көрсетiлген.

Кiлт сөздер: тор, квазикөпбейне, квазисәйкестiктердiң базисi, профиниттiк алгебра, топологиялық
квазикөпбейне, профиниттiк квазикөпбейне.

С.М. Луцак1, А.О. Башеева2, А.М. Асанбеков3, О.А. Воронина1

1Северо-Казахстанский университет имени М. Козыбаева, Петропавловск, Казахстан;
2Евразийский национальный университет имени Л.Н. Гумилева, Астана, Казахстан;

3Институт математики НАН КР, Бишкек, Кыргызстан

Некоторые нестандартные квазимногообразия решеток
Вопросы стандартности квазимногообразий исследовались многими авторами. Проблема «Какие ко-
нечные решетки порождают стандартное топологическое предмногообразие?» была предложена
Д.М. Кларком, Б.А. Дэйви, М.Г. Джексоном и Дж.Г. Питкетли в 2008 году. Мы продолжаем изучать
проблему стандартности для одной конкретной конечной модулярной решетки, которая не удовле-
творяет всем условиям Туманова. Исследуем топологическое квазимногообразие, порожденное этой
решеткой, и доказываем, что исследуемое квазимногообразие не является стандартным и конечно
аксиоматизируемым. Кроме того, показываем, что существует бесконечное число решеток, подобных
упомянутой выше.

Ключевые слова: решетка, квазимногообразие, базис квазитождеств, профинитная алгебра, тополо-
гическое квазимногообразие, профинитное квазимногообразие.
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Ranks and approximations for families of cubic theories

In this paper, we study the rank characteristics for families of cubic theories, as well as new properties
of cubic theories as pseudofiniteness and smooth approximability. It is proved that in the family of cubic
theories, any theory is a theory of finite structure or is approximated by theories of finite structures. The
property of pseudofiniteness or smoothly approximability allows one to investigate finite objects instead of
complex infinite ones, or vice versa, to produce more complex ones from simple structures.

Keywords: approximation of a theory, cube, cubic structure, cubic theory, pseudofinite theory, smoothly
approximated structure.

1 Introduction

Modern mathematical models, which are large relational structures (random graphs) and at the
same time time-dependent dynamic models, such as the growth of the Internet, social networks and
computer security, cannot be described and explored by infinite models in standard graph theory.
However, if a set of models is algorithmically well defined, then these sets exhibit general patterns that
are inherent in «almost all» models in the community. These general laws for well-defined systems can
be investigated using statistical and model-theoretic methods. From a model-theoretic point of view,
one can approach approximations [1], definability [2], and interpretability [3].

The ranks and degrees for families of complete theories [4], similar to the Morley rank and degree
for a fixed theory, and the Cantor-Bendixson rank and degree, were introduced by S. Sudoplatov.
The problem arises of describing ranks and degrees for natural theory families. Ranks and degrees for
families of incomplete theories are examined in [5, 6], for families of permutation theories - in [7], and
for families of all theories of arbitrary languages - in [8].

The [1] examines approximations of theories both in the general context and in relation to specific
natural theory families. The problem of describing the approximation forms of the natural theory
families arises.

This work is devoted to the description of the ranks and degrees of families of cubic theories, as
well as approximation by theories of finite cubic structures. Pseudofinite structures are mathematical
structures that resemble finite structures but are not actually finite. They are important in various
areas of mathematics, including model theory and algebraic geometry. Further study of pseudofinite
structures will continue to reveal new insights and applications in mathematics and beyond.

1.1 Preliminaries from cubic theories

Cubic structures are defined in [9], theoretical properties of the model are discussed and included in
the monograph [10], applications in discrete mathematics are presented [11]. The following necessary
terminology for cubic structures was taken from [9,11] without specifying it.

∗Corresponding author.
E-mail: markhabatov@gmail.com
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Definition 1. An n-dimensional cube or an n-cube (where n ∈ ω) is a graph isomorphic to the graph
Qn with universe {0, 1}n and such that any two vertices (δ1, . . . , δn) and (δ′1, . . . , δ′n) are adjacent if
and only if these vertices differ by exactly one coordinate.

Let λ be an infinite cardinal number. A λ-dimensional cube or a λ-cube is a graph isomorphic to
a graph Γ = 〈X;R〉 that satisfies the following conditions:

(1) the universe X ⊆ {0; 1}λ is generated from an arbitrary function f ∈ X by the operator 〈f〉
attaching, to the set {f}, all results of substitutions for any finite tuples (f (i1) , . . . , f(im)) by tuples
(1− f (i1) , . . . , 1− f(im));

(2) the relation R consists of edges connecting functions differing exactly in one coordinate.
The described graph Q � Qf with the universe 〈f〉 is a canonical representative for the class of

λ-cubes.
Note that the canonical representative of the class of n-cubes (as well as the canonical representatives

of the class of λ-cubes) are generated by any its function: {0, 1}n = 〈f〉, where f ∈ {0, 1}n. Therefore
the universes of canonical representatives Qf of n-cubes like λ-cubes, will be denoted by 〈f〉.

Any graph Γ = 〈X; R〉, where any connected component is a cube, is called a cubic structure. A
theory T of the graph language {R(2)} is cubic if T = Th(M) for some cubic structureM. In this
case, the structureM is called a cubic model of T.

The invariant of a theory T is the function

InvT : ω ∪ {∞} →ω ∪ {∞},

satisfying the following conditions:
(1) for any natural n; InvT (n) is the number of connected components in any model of T, being

n-cubes, if that number is finite, and InvT (n) =∞ if that number is infinite;
(2) InvT (∞) = 0 if models of T do not contain infinite-dimensional cubes (i. e., the dimensions

of cubes are totally bounded), otherwise we set InvT (∞) = 1.
The diameter d(T ) of a cubic theory T is the maximal distance between elements in models of T, if

these distances are bounded, and we set d(T) 
∞ otherwise. The support (accordingly the∞-support)
Supp(T )(Supp∞(T )) of a theory T is the set {n ∈ ω|InvT (n) 6= 0}({n ∈ ω|InvT (n) =∞}).

If the diameter d(T ) is finite then there exists an upper estimate for dimensions of cubes, being
in models of T. It means that Supp(T ) is finite, i. e., InvT (∞) = 0. In this case the ∞-support is
non-empty.

If d(T ) = ∞ then InvT (∞) = 1. In this case the support Supp(T ) can be either finite or infinite.

1.2 Preliminaries from model theory and approximations of theories

Historically, pseudofinite fields were first introduced by J. Ax and S. Kochen [12] in the form of
non-principal ultraproducts of finite fields. Later, J. Ax in [13] connected the notion of pseudofiniteness
and the construction of ultraproducts. The class of pseudofinite fields was defined in the work of J. Ax
[13] and regardless of him in the work of Yu. Ershov [14] with an axiom system indicating this class.

In 1965 J. Ax [15] investigated fields F having the property that every absolutely irreducible variety
over F has an F -rational point. It was shown that the non-principal ultraproduct of finite fields has
such property. Yu. Ershov called such fields regularly closed. The notion of pseudofiniteness is credited
to work in the 1968s by J. Ax [13]. He introduced the notion of pseudofiniteness to show the decidability
of the theory of all finite fields, i.e. there is an algorithm to decide whether a given statement is true
for all finite fields. It was proved that pseudofinite fields are exactly those infinite fields that have every
elementary property common to all finite fields, that is, pseudofinite fields are infinite models of the
theory of finite fields.
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In the early 1990s, E. Hrushovski resumed research in the field of pseudofinite structures in meeting
on Finite and Infinite Combinatorics in Sets and Logic [16], as well as in the joint works of E. Hrushovski
and G. Cherlin and the following definition first occurs in [17], subsequently in [18]:

Definition 2. Let Σ be a language and M be a Σ-structure. A Σ-structure M is pseudofinite if
for each Σ-sentences ϕ, M |= ϕ implies that there is a finite M0 such that M0 |= ϕ. The theory
T = Th(M) of a pseudofinite structureM is called pseudofinite.

In the work [1] S. Sudoplatov defined approximations relative given family T of complete theories.
Definition 3. [1] Let T be a family of theories and T be a theory such that T /∈ T . The theory T is

said to be T -approximated, or approximated by the family T , or a pseudo-T -theory, if for any formula
ϕ ∈ T there exists T ′ ∈ T for which ϕ ∈ T ′.

If a theory T is T -approximated, then T is said to be an approximating family for T , and theories
T ′ ∈ T are said to be approximations for T . We put Tϕ = {T ∈ T | ϕ ∈ T}. Any set Tϕ is called the
ϕ-neighbourhood, or simply a neighbourhood, for T . A family T is called e-minimal if for any sentence
ϕ ∈ Σ(T ), Tϕ is finite or T¬ϕ is finite.

Recall that the E-closure for a family T of complete theories is characterized by the following
proposition.

Proposition 1. [19] Let T be a family of complete theories of the language Σ. Then ClE(T ) = T for
a finite T , and for an infinite T , a theory T belongs to ClE(T ) if and only if T is a complete theory
of the language Σ and T ∈ T , or T 6= T and for any formula ϕ the set Tϕ is infinite.

We denote by T the class of all complete theories of relational languages, by T fin the subclass of
T consisting of all theories with finite models, and by T inf the class T \T fin.

Proposition 2. [1] For any theory T the following conditions are equivalent:
(1) T is pseudofinite;
(2) T is T fin-approximated;
(3) T ∈ ClE(T fin)\T fin.

1.3 Preliminaries from ranks for families of theories

In [4], rank RS(·) is defined inductively for families of complete theories.
(1) The empty family T is assigned the rank RS(T ) = −1.
(2) For finite nonempty families T set RS(T ) = 0.
(3) For infinite families T we set RS(T ) ≥ 1.
(4) For the family T and the ordinal number we set α = β + 1 RS(T ) ≥ α if there are pairwise

inconsistent Σ(T ) sets of ϕn, n ∈ ω such that RS(Tϕn) ≥ β, n ∈ ω.
(5) If α is a limit ordinal, then RS(T ) ≥ α if RS(T ) ≥ β for each β < α.
(6) Let RS(T ) = α if RS(T ) ≥ α and RS(T ) 6≥ α+ 1.
(7) If RS(T ) ≥ α for any α, we set RS(T ) =∞.
A family T is called e-totally transcendental, or totally transcendental, if RS(T ) is an ordinal.

If T is e-totally transcendental, with RS(T ) = α ≥ 0, we define the degree ds(T ) of T as the
maximal number of pairwise inconsistent sentences ϕi such that RS(Tϕi) = α.

Proposition 3. [4] T is e-minimal ⇔ RS(T ) = 1 and ds(T ) = 1

Definition 4. [4] A family T , with infinitely many accumulation points, is called a-minimal if for
any sentence ϕ ∈ Σ(T ), Tϕ or T¬ϕ has finitely many accumulation points.

Let α be an ordinal. A family T of rank α is called α-minimal if for any sentence ϕ ∈ Σ(T ),
RS(Tϕ) < α or RS(T¬ϕ) < α.

Proposition 4. [4] (1) A family T is 0-minimal ⇔ T is a singleton.
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(2) A family T is 1-minimal ⇔ T is e-minimal.
(3) A family T is 2-minimal ⇔ T is a-minimal.
(4) For any ordinal α a family T is α-minimal ⇔ RS(T ) = α and ds(T ) = 1.

2 Ranks for families of cubic theories

Consider a language Σ composed of R(2). Let Tcub be the family of all cubic theories of Σ. Let T
be a cubic theory and Q |= T . For a cubic theory T we consider the above invariants and the following
possibilities:

2.1 Family of cubic theories with a bounded number of InvT (n)

If for each theory T from the subfamily T ⊂ Tcub both diameters d(T ) and InvT (n) are finite, and
also InvT (∞) = 0 or Supp(T ) is finite, the subfamily T is finite, so RS(T ) = 0, and the degree of
ds(T ) is equal to the number of invariants. Let’s illustrate how the grades of families differ.

Example 1. Now we consider a one-element family T = {T1}. If we consider n0-cubes with invariant
InvT1(n0) = m, then RS(T ) = 0, ds(T ) = 1. And if we work with n0-cubes and n1-cubes with
InvT1(n0) = m and InvT1(n1) = l for m 6= l, then ds(T ) = 2. For a finite number k, if we are dealing
with nk-cubes with the set of invariants {InvT1(n0), . . . , InvT1(nk)}, ni 6= nj , we still have RS(T ) = 0
and degree ds(T ) = k + 1.

Example 2. Let us deal with the finite family T ⊂ Tcub consisting of theories T1, . . . , Tn. If the
number of mi-cubes in each theory Ti is equal to k, in other words, each theory has the same number
of mi-cubes, that is, InvTi(mi) = k with InvTi(mi) 6= InvTj (mj), i 6= j, then RS(T ) = 0, ds(T ) = n,
since T is represented as a disjoint union of finite subfamilies Tϕi = {Ti ∈ T |ϕi ∈ Ti is a sentence
describing mi-cubes }.

In the examples above, one can notice that the degree of the family depends on the number of
invariants. If for the theories considered in Example 2 we add the conditions that each theory has the
same number of invariants, let, for example, s, then ds(T ) = n · s. And if for different s1, . . . , sn, in
each theory Ti there are si invariants, then ds(T ) =

∑n
i=1 si.

For a family T ⊂ Tcub such that InvT (∞) = 0 and Supp(T ) is finite for every theory T ∈ T , the
degree varies in a similar way.

Let us now consider infinite subfamilies T ⊂ Tcub of all cubic theories with a bounded number of
InvT (n) =∞ and InvT (∞) = 0 for every T ∈ T . In this case, Supp(T ) is infinite and the rank of the
family increases, and for the degree of the family, we consider the number of accumulation points.

For natural numbers n,m ∈ ω, with n 6= m, we denote by Tn the family of cubic theories from Tcub
with one arbitrary value InvT (n), where T ∈ Tn and InvT (m) = 0.

Proposition 5. Each subfamily Tn of Tcub is e-minimal.

Proof. By Proposition 3, it suffices to prove that RS(Tn) = 1 and ds(Tn) = 1. The family Tn
consists of theories T1, . . . , Ts with InvTi(n) = ki, ki > 0 1 ≤ i ≤ s and the only theory T∞ with
InvT∞(n) =∞. The theory T∞ is the only accumulation point for Tn, and the number of accumulation
points is equal to the degree of the family. We get RS(Tn) = 1 and ds(Tn) = 1, which implies an
e-minimality of Tn.

Example 3. We are dealing with cubes of different sizes n0 and n1. Then we get a countable number
of options (InvT (n0), InvT (n1)). Thus there is a countable set of theories with n0-cubes and n1-cubes
forming the family T ′. Here every family with an infinite InvT (n0) or InvT (n1) has RS = 1, and
the only accumulation point with InvT (n0) = InvT (n1) =∞, has infinitely many n0 cubes, infinitely
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many n1 cubes and RS(T ′) = 2. Thus for the given family T ′ RS(T ′) = 2 and ds(T ′) = 1. Hence the
family is a-minimal.

Example 4. If there exists a countable number of ni-cubes, i ∈ ω, with countable (InvT (n0),
InvT (n1), . . . , InvT (ni)) one can construct an α-minimal family T consisting of a countable number
of e-minimal subfamilies Ti, i ∈ ω. According to the definition of α-minimality, the family T has
RS(T ) = α, ds(T ) = 1 and is represented as T∧

i∈ω ϕi
.

So by increasing the number of InvT (n) invariants and the dimension of the cubes, one can unlimited
increase rank to any natural number. If the set InvT (n) is countable, then the family T ⊂ Tcub of cubic
theories is e-totally transcendental and can contain e-minimal, a-minimal, α-minimal subfamilies.

Realizations of e-minimal, a-minimal, α-minimal subfamilies of the family Tcub of all cubic theories
allow one to construct a subfamily T with a given countable rank and degree. According to the
definition of α-minimality, a family of T cubic theories with RS(T ) = α and ds(T ) = n can
be represented as a disjoint union of subfamilies TInvT (k0), . . . , TInvT (kn−1) , somewhat differently
InvT (k0), . . . , InvT (kn−1), so every TInvT (ki) is α-minimal.

2.2 Family of cubic theories with an unbounded number of InvT (n)

The next result shows that the family Tcub of all cubic theories is not e-totally transcendental.
Theorem 1. RS(Tcub) =∞.
Proof. Repeating the arguments of [1; Proposition 4.4] and [8; Proposition 2.5] we can construct a

2-tree of sentences ϕ, ϕ0, ϕ1, ϕ01, . . . indicating an infinite rank.

3 Approximations of cubic theories

The following theorem shows that any cubic theory is approximated by theories of finite cubic
structures.

Theorem 2. Any cubic theory T with an infinite model is pseudofinite.
Proof. Let Q be an infinite model of a cubic theory T . Since for finite k and n, InvT (n) = k and

InvT (∞) = 0, the cubic model Q is finite and consists of a finite number of finite connected components
(n-cubes), we will consider only the following cases:

Case 1. If InvT (n) = ∞ and InvT (∞) = 0 (that is, ∞-support is a singleton), then Q consists of
an infinite number of connected components of finite diameters. The Q model is approximated by the
disjoint union

⊔
i∈ωQi of models Qi, i ∈ ω which the connected components are n-cubes. Each such

n-cubes are pairwise isomorphic that implies the pseudofiniteness of T .
Case 2. If for finite k and n ∈ ω, InvT (n) = k and InvT (∞) = 1, then the theory T has models

Q = Q0
⊔
Q1, where Q0 is a finite cubic model consisting of m ≤ k connected components (n-cubes)

of finite diameters, Q1 is an infinite cubic model consisting of k−m connected components of infinite
diameters. Since the components of the modelQ0 do not affect the pseudofiniteness,Q1 is approximated
by increasing the dimension, as well as the diameters of the connected components. Let Q′n be a finite
model with k−m connected components which are n-cubes. Using Q′i = Q′2 ∪Q′i−1, i > 2 in the limit,
we obtain the desired model Q1. The set of theories {Th(Q′i)|i ∈ ω} approximate the theory Th(Q1)
and theories {Th(Q0

⊔
Q′i)|i ∈ ω} approximate the T theory.

We can also grow connected components to get a pseudofinite model Q′ with InvT (n) = ∞ and
InvT (∞) = 1, having components of both finite and infinite diameters.

Case 3. Let InvT (n) =∞ and InvT (∞) = 1. Let the cubic model Q have only an infinite number
of connected components of infinite diameters. For the cubic model Q, it is true that Q =

⊔
i∈ωQ′i,

where Q′i = Q′2 ∪ Q′i−1, i > 2. That is, first we take the finite model and increase the diameters of the
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connected components, we get a model with a finite number of connected components, each of which
is infinite-dimensional cubes, then, increasing the number of the connected components, we get the
desired model Q.

4 Futher direction

Recently, various methods similar to the “transfer principle” have been rapidly developing, where
one property of the structure or pieces of this structure is satisfied in all infinite structures or in another
algebraic structure. Such methods include smoothly approximable structures, holographic structures,
almost sure theory, and pseudofinite structures approximable by finite structures. Pseudofinite structures
in an explicit form after J. Ax were not studied for a long time. Until the 1990s, only a few results
on this topic were obtained, and the very first result is the result of B.I. Zilber [20] asserting that
ω-categorical theory is not finitely axiomatizable. At the time, the property of being pseudofinite was
not considered particularly important or interesting, but the proof is based on pseudofiniteness.

One of the first results in the theory of classification of pseudofinite structures is the famous theorem
of G. Cherlin, L. Harrington and A. Lachlan [21], which generalizes Zilber’s theorem to the class of
ω-stable ω-categorical structures, stating that totally categorical theories (and in more generally, ω-
categorical ω-stable theories) are pseudofinite. They also proved that such structures are smoothly
approximated by finite structures.

Definition 5. [22] Let L be a countable language and let M be a countable and ω-categorical L-
structure. L-structure M (or Th(M)) is said to be smoothly approximable if there is an ascending
chain of finite substructures A0 ⊆ A1 ⊆ . . . ⊆ M such that

⋃
i∈ω Ai = M and for every i, and for

every ā, b̄ ∈ Ai if tpM(ā) = tpM(b̄), then there is an automorphism σ of M such that σ(ā) = b̄ and
σ(Ai) = Ai, or equivalently, if it is the union of an ω-chain of finite homogeneous substructures; or
equivalently, if any sentence in Th(M) is true of some finite homogeneous substructure ofM.

A. Lachlan introduced the concept of smoothly approximable structures to change the direction
of analysis from finite to infinite, that is, to classify large finite structures that appear to be smooth
approximations to an infinite limit.

Smoothly approximated structures were first examined in generality in [22], subsequently in [23].
The model theory of smoothly approximable structures has been developed very much further by
G. Cherlin and E. Hrushovski [18]. The class of smoothly approximable structures is a class of ω-
categorical supersimple structures of finite rank which properly contains the class of ω-categorical
ω-stable structures (so in particular the totally categorical structures).

Recall [24,25] that a countable model Q of a theory T is called a limit model if Q is represented as
the union of a countable elementary chain of models of the theory T that are prime over tuples, and
the model Q itself is not prime over any tuple. A theory T is called l-categorical if T has a unique (up
to isomorphism) limit model.

Homogeneity and l-categoricity, as well as the Morley rank for a fixed cubic theory, are studied in
[9, 10].

Proposition 6. Any model Q of the l-categorical cubic theory T is smoothly approximable by finite
cubic structures.

Proof. The limit model Q of l-categorical cubic theories T is represented as an ascending chain of
finite prime substructures Q′0 ⊆ Q′1 ⊆ . . . ⊆ Q such that Q =

⋃
i∈ωQ′i and there is an automorphism

σ of Q such that σ(Q′i) = Q′i.
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Conclusions

In the paper the ranks and degrees for families of cubic theories are described. Several examples
of families of finite rank cubic theories are given. It is proved that any cubic theory with an infinite
model is pseudofinite.

Acknowledgments

The study was partially supported by the Science Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan (AP19674850 (Section 3), AP19677451 (Section 2 and 4)).

References

1 Sudoplatov S.V. Approximations of theories / S.V. Sudoplatov // Siberian Electronic Mathema-
tical Reports. — 2020. — 17. — P. 715–725. https://doi.org/10.33048/semi.2020.17.049

2 Morozov A.S. Minimal Predicates for ∆-Definability / A.S. Morozov, D.A. Tussupov // Algebra
& Logic. — 2020. — 59. — No. 4. — P. 328–340.

3 Morozov A.S. On the existential interpretability of structures / A.S. Morozov, A.Zh. Satekbaeva,
D.A. Tussupov // Siberian Electronic Mathematical Reports. — 2014. — 11. — P. 557–566.

4 Sudoplatov S.V. Ranks for families of theories and their spectra / S.V. Sudoplatov // Lobachevskii
J. Math. — 2021. — 42. — P. 2959–2968 https://doi.org/10.1134/S1995080221120313

5 Markhabatov N.D. Topologies, ranks and closures for families of theories. I / N.D. Markhabatov,
S.V. Sudoplatov // Algebra and Logic. — 2020. — 59. — No. 6. — P. 437–455. https://doi.org/10.-
1007/s10469-021-09620-4

6 Markhabatov N.D. Topologies, ranks and closures for families of theories. II / N.D. Markhabatov,
S.V. Sudoplatov // Algebra and Logic. — 2021. — 60. — No. 1. — P. 38–52. https://doi.org/10.10-
07/s10469-021-09626-y

7 Markhabatov N.D. Ranks for families of permutation theories / N.D. Markhabatov // The
Bulletin of Irkutsk State University. Series Mathematics. — 2019. — 28. — P. 85–94. https://doi.org
/10.26516/1997-7670.2019.28.85

8 Markhabatov N.D. Ranks for families of all theories of given languages / N.D. Markhabatov,
S.V. Sudoplatov // Eurasian Mathematical Journal. — 2021. — 12. — No. 2. — С. 52–58.
https://doi.org/10.32523/2077-9879-2021-12-2-52-58

9 Sudoplatov S.V. Models of Cubic Theories / S.V. Sudoplatov // Bulletin of the Section of Logic.
— 2014. — 43(1-2). — P. 19–34.

10 Судоплатов С.В. Полигонометрии групп: моногр. / С.В. Судоплатов. — 2-е изд. — Новоси-
бирск: Изд-во Новосиб. гос. техн. ун-та, 2013. — 302 с.

11 Судоплатов С.В. Дискретная математика / С.В. Судоплатов, Е.В. Овчинникова. — М.:
Юрайт, 2023. —279 с.

12 Ax J. Diophantine Problems Over Local Fields I / J. Ax, S. Kochen // American Journal of
Mathematics. — 1965. — 87. — No. 3. — P. 605–630. https://doi.org/10.2307/2373065

13 Ax J. The Elementary Theory of Finite Fields / J. Ax // Annals of Mathematics. — 1968. — 88.
— No. 2. — P. 239–271. https://doi.org/10.2307/1970573

14 Ершов Ю.Л. О полях с разрешимой теорией / Ю.Л. Ершов // Докл. АН СССР. — 1967. —
174. — № 1. — С. 19,20.

15 Ax J. Solving diophantine problems modulo every prime / J. Ax // Ann. Math. — 1967. — 85.
— No. 2. — P. 161–183. https://doi.org/10.2307/1970438

Mathematics series. No. 3(111)/2023 87



N.D. Markhabatov

16 Hrushovski E. Finite Structures with Few Types / E. Hrushovski // In: Sauer N.W., Woodrow
R.E., Sands B. (eds) Finite and Infinite Combinatorics in Sets and Logic. NATO ASI Series
(Series C: Mathematical and Physical Sciences). — 1993. — Vol. 411. — Dordrecht: Springer.
https://doi.org/10.1007/978-94-011-2080-7

17 Cherlin G. Large finite structures with few types / G. Cherlin // In: Hart B.T., Lachlan A.H.,
Valeriote M.A. (eds) Algebraic Model Theory. NATO ASI Series. — Vol. 496. — Dordrecht:
Springer. — 1997. https://doi.org/10.1007/978-94-015-8923-9_3

18 Cherlin G. Finite Structures with Few Types / G. Cherlin, E. Hrushovski // Annals of Mathematics
Studies. — Princeton University Press, Princeton. — 2003. — Vol. 152.

19 Sudoplatov S.V. Closures and generating sets related to combinations of structures / S.V. Sudopla-
tov // The Bulletin of Irkutsk State University. Series Mathematics. — 2016. — 16. — P. 131–144.

20 Зильбер Б. К проблеме конечной аксиоматизируемости теорий, категоричных во всех беско-
нечных мощностях / Б. Зильбер /под ред. Б. Байжанова. Исследования по теоретическому
программированию. — Алма-Ата, 1981. — C. 69–75.

21 Cherlin G. ℵ0-categorical, ℵ0-stable structures / G. Cherlin, L. Harrington, A.H. Lachlan // Ann.
Pure Appl. Logic. — 1985. — 28. — P. 103–135. https://doi.org/10.1016/0168-0072(85)90023-5

22 Kantor W.M. ℵ0-categorical structures smoothly approximated by finite substructures / W.M.
Kantor, M.W. Liebeck, H.D. Macpherson // Proc. London Math. Soc. — 1989. — 59. — P. 439–
463. https://doi.org/10.1112/plms/s3-59.3.439

23 Macpherson D. Homogeneous and Smoothly Approximated Structures / H.D. Macpherson // In:
Hart B.T., Lachlan A.H., Valeriote M.A. (eds) Algebraic Model Theory. NATO ASI Series. —
1997. — Vol. 496. — Dordrecht: Springer. https://doi.org/10.1007/978-94-015-8923-9_7

24 Sudoplatov S.V. Complete Theories with Finitely Many Countable Models I / S.V. Sudoplatov //
Algebra and Logic. — 2004. — 43. — P.62–69 https://doi.org/10.1023/B:ALLO.0000015131.4121-
8.f4

25 Sudoplatov S.V. Complete theories with finitely many countable models II / S.V. Sudoplatov //
Algebra and Logic. — 2006. — 45. — P. 180–200 https://doi.org/10.1007/s10469-006-0016-5

Н.Д. Мархабатов

Л.Н. Гумилев атындағы Еуразия ұлттық университетi, Астана, Қазақстан;
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Кубтық теориялардың үйiрлерi үшiн рангiлер мен
аппроксимациялар

Жұмыста кубтық теориялар үйiрлерiнiң рангтық сипаттамалары, сонымен қатар псевдоақырлы және
тегiс аппроксимациялау сияқты кубтық теориялардың жаңа қасиеттерi зерттелген. Кубтық теория-
лар үйiрiндегi кез келген теория ақырлы құрылым теориясы болып табылатыны немесе ақырлы
құрылымдардың теорияларымен аппроксимацияланатыны дәлелдендi. Псевдоақырлылық немесе те-
гiс аппроксимациялану қасиетi күрделi шексiз құрылымдардың орнына ақырлы объектiлердi зертте-
уге немесе керiсiнше қарапайым құрылымдардан күрделi құрылымдарды тудыруға мүмкiндiк бередi.

Кiлт сөздер: теориялар аппроксимациялары, куб, кубтық құрылым, кубтық теория, псевдоақырлы
теория, тегiс аппроксимацияланатын құрылым.
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Ранги и аппроксимация для семейств кубических теорий

В работе изучены ранговые характеристики семейств кубических теорий, а также новые свойства
кубических теорий, такие как псевдоконечность и гладкая аппроксимируемость. Доказано, что в
семействе кубических теорий любая теория является теорией конечной структуры или аппроксими-
руется теориями конечных структур. Свойство псевдоконечности или гладкой аппроксимируемости
позволяет исследовать конечные объекты вместо сложных бесконечных или, наоборот, из простых
структур производить более сложные.

Ключевые слова: аппроксимация теории, куб, кубическая структура, кубическая теория, псевдоко-
нечная теория, гладко аппроксимируемая структура.
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Solution of a two-dimensional parabolic model problem in a
degenerate angular domain

In this paper, the boundary value problem of heat conduction in a domain was considered, boundary of
which changes with time, as well as there is no the problem solution domain at the initial time, that is,
it degenerates into a point. To solve the problem, the method of heat potentials was used, which makes it
possible to reduce it to a singular Volterra type integral equations of the second kind. The peculiarity of
the obtained integral equation is that it fundamentally differs from the classical Volterra integral equations,
since the Picard method is not applicable to it and the corresponding homogeneous integral equation has
a nonzero solution.

Keywords: heat equation, boundary value problem, degenerate domain, Volterra singular integral equation,
regularization.

Introduction

Recently, in connection with the intensive development of modern contact technology and due to
the high speed of electrical devices, more reliable measurement of the temperature field of the contact
system has become relevant. And, no less important, it is necessary to study the dynamics of its
change over time. At the same time, the temperature field of high-current contacts must be studied
taking into account the change in the size of the contact area, which changes both due to the action
of electrodynamic forces and due to the melting of the contact material at high temperatures.

When the electrodes are opened on the contact surface, the melting temperature is reached and a
liquid metal bridge appears between them. As a result of further opening, this bridge is divided into
two parts and the contact material is transferred from one electrode to another, that is, bridge erosion
occurs, which can eventually disrupt their normal operation.

To solve this kind of heat conduction problems, it is necessary to use generalized heat potentials
and further reduce the original boundary value problem to singular Volterra type integral equations.
From a mathematical point of view, the peculiarity of the problems under consideration is that, firstly,
the domain in which solutions are sought has a moving boundary, and secondly, at the initial moment
of time, the contacts are in a closed state and the problem solution domain degenerates into a point
[1–14].

The problem considered in this paper is called a model one, since the case is studied when the
boundary of the domain in which the solution of the problem is sought moves according to the linear
law x = t. In the future, it is planned to study this problem in the case when the boundary of the
domain will change according to an arbitrary law x = γ(t), γ(0) = 0.

∗Corresponding author.
E-mail: kopbalina@mail.ru
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1 Statement of the boundary value problem

We consider the following two-dimensional boundary value problem in spatial variables in a cone
Q =

{
(x, y, t)|

√
x2 + y2 < t, t > 0,

}
with a lateral surface Γ =

{
(x, y, t)|

√
x2 + y2 = t, t > 0

}
for

the equation
∂u

∂t
= a2

(
∂2u

∂x2
+
∂2u

∂y2

)
− a2β

(
1

x
· ∂u
∂x

+
1

y
· ∂u
∂x

)
(1)

with a boundary condition

u(x, y, t)|Γ = g(x, y, t), (2)

where 0 < β < 1, g(x, y, t) is a given function. It is necessary to find a function u(x, y, t) satisfying the
equation (1) in Q and the boundary condition (2).

Such boundary value problems in domains that change with time and degenerate into a point
arise, for example: when describing the heat transfer process in a moving medium velocity of which
is a function of the coordinates; in mathematical modeling of thermophysical processes in the electric
arc of high-current disconnecting devices, while taking into account the effect of contracting the axial
section of the arc into a contact spot in the cathode field. They are also relevant in the creation of new
technologies in metallurgy, the production of crystals, laser technologies, etc.

Passing in (1),(2) to cylindrical coordinates, in the domain Q = {(r, t)| 0 < r < t, t > 0}, we obtain
the following boundary value problem for the axisymmetric case:

∂u

∂t
= a2 · 1− 2β

r
· ∂u
∂r

+ a2 · ∂
2u

∂r2
, 0 < β < 1, (3)

u(r, t)|r=0 = g1(t), t > 0, (4)

u(r, t)|r=t = g2(t), t > 0. (5)

2 Representation of a solution of the boundary problem (3)–(5) using heat potentials

The fundamental solution for the equation (3) is the function

G(r, ξ, t− τ) =
1

2a2
· r

β · ξ1−β

t− τ
· exp

[
− r2 + ξ2

4a2(t− τ)

]
· Iβ

(
rξ

2a2(t− τ)

)
,

where ξ is a parameter, Iβ(z) is the modified Bessel function of order β. We will seek the solution of
the problem (3) – (5) as the sum of double layer heat potentials

u(r, t) =

∫ t

0

∂G(r, ξ, t− τ)

∂ξ

∣∣∣∣
ξ=τ

µ(τ)dτ +

∫ t

0

∂G(r, ξ, t− τ)

∂ξ

∣∣∣∣
ξ=0

ν(τ)dτ, (6)

where µ(t) and ν(t) are potential densities to be determined.
Let’s transform the function (6), for this we calculate the derivative:

∂G(r, ξ, t− τ)

∂ξ
=

1

4a4
· r

β · ξ1−β

(t− τ)2
· exp

[
− r2 + ξ2

4a2(t− τ)

]
·
{
rIβ−1

(
rξ

2a2(t− τ)

)
− ξIβ

(
rξ

2a2(t− τ)

)}
+

+
1

2a2
· r

β(1− 2β)

(t− τ)ξβ
· exp

[
− r2 + ξ2

4a2(t− τ)

]
· Iβ

(
rξ

2a2(t− τ)

)
,
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where we have used the relation [15; 975]:

I ′β(z) = Iβ−1(z)− β

z
Iβ(z).

Next we find

∂G(r, ξ, t− τ)

∂ξ

∣∣∣∣
ξ=0

=
1

(2a2)β+1
· r2β

2β(t− τ)β+1
· 1

βΓ(β)
· exp

[
− r2

4a2(t− τ)

]
(7)

and

∂G(r, ξ, t− τ)

∂ξ

∣∣∣∣
ξ=τ

=

=
1

4a4
· r

β · τ1−β

(t− τ)2
· exp

[
− r2 + τ2

4a2(t− τ)

]
·
{
rIβ−1

(
rτ

2a2(t− τ)

)
− τIβ

(
rτ

2a2(t− τ)

)}
+

+
1

2a2
· r

β(1− 2β)

(t− τ)τβ
· exp

[
− r2 + τ2

4a2(t− τ)

]
· Iβ

(
rτ

2a2(t− τ)

)
.

We transform the last equality as follows:

∂G(r, ξ, t− τ)

∂ξ

∣∣∣∣
ξ=τ

=

=
rβτ1−β(r − τ)

4a4(t− τ)2
· exp

[
− (r − τ)2

4a2(t− τ)

]
· exp

[
− rτ

2a2(t− τ)

]
Iβ

(
rτ

2a2(t− τ)

)
+

+
rβ+1τ1−β

4a4(t− τ)2
· exp

[
− (r − τ)2

4a2(t− τ)

]
exp

[
− rτ

2a2(t− τ)

]
Iβ−1,β

(
rτ

2a2(t− τ)

)
+

+
rβ(1− 2β)

2a2(t− τ)τβ
· exp

[
− (r − τ)2

4a2(t− τ)

]
· exp

[
− rτ

2a2(t− τ)

]
· Iβ

(
rτ

2a2(t− τ)

)
, (8)

where we introduced the notation

Iβ−1,β(z) = Iβ−1(z)− Iβ(z).

We substitute the obtained relations (7), (8) into the equality (6), and then we obtain the integral
representation of the solution for the equation (9):

u(r, t) =

∫ t

0

{
rβτ1−β(r − τ)

4a4(t− τ)2
exp

[
− (r − τ)2

4a2(t− τ)

]
exp

[
− rτ

2a2(t− τ)

]
Iβ

(
rτ

2a2(t− τ)

)
+

+
rβ+1τ1−β

4a4(t− τ)2 exp

[
− (r − τ)2

4a2(t− τ)

]
exp

[
− rτ

2a2(t− τ)

]
Iβ−1,β

(
rτ

2a2(t− τ)

)
+

+
rβ(1− 2β)

2a2(t− τ)τβ
exp

[
− (r − τ)2

4a2(t− τ)

]
exp

[
− rτ

2a2(t− τ)

]
· Iβ

(
rτ

2a2(t− τ)

)}
µ(τ)dτ+

+

∫ t

0

1

(2a2)β+1
· r2β

2β(t− τ)β+1
· 1

βΓ(β)
· exp

[
− r2

4a2(t− τ)

]
· ν(τ)dτ, (9)

where
t−βe

t
4a2 µ(t) ∈ L∞(0,∞).
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3 Reduction of the boundary value problem (3) – (5) to a singular Volterra type integral equation

We require that the function u(r, t) defined by the equality (9) satisfy the boundary conditions
(4),(5), which will allow us to define the functions µ(t) and ν(t).

lim
r→0

u(r, t) = lim
r→0

[∫ t

0

{
rβτ1−β(r − τ)

4a4(t− τ)2
exp

[
− (r − τ)2

4a2(t− τ)

]
exp

[
− rτ

2a2(t− τ)

]
Iβ

(
rτ

2a2(t− τ)

)
+

+
rβ+1τ1−β

4a4(t− τ)2 exp

[
− (r − τ)2

4a2(t− τ)

]
exp

[
− rτ

2a2(t− τ)

]
Iβ−1,β

(
rτ

2a2(t− τ)

)
+

+
rβ(1− 2β)

2a2(t− τ)τβ
exp

[
− (r − τ)2

4a2(t− τ)

]
exp

[
− rτ

2a2(t− τ)

]
· Iβ

(
rτ

2a2(t− τ)

)}
µ(τ)dτ+

+

∫ t

0

1

(2a2)β+1
· r2β

2β(t− τ)β+1
· 1

βΓ(β)
· exp

[
− r2

4a2(t− τ)

]
· ν(τ)dτ

]
=

=
1

(2a2)β+1
· 1

2β
· 1

βΓ(β)
· lim
r→0

∫ t

0

r2β

(t− τ)β+1
· exp

[
− r2

4a2(t− τ)

]
· ν(τ)dτ =

=

∥∥∥∥ r2

4a2(t− τ)
= z

∥∥∥∥ =
1

(2a2t)β+1
· 1

2β
· 1

βΓ(β)
×

× lim
r→0

∫ ∞
r2

4a2t

r2β · (4a2)β+1 · zβ+1

r2β+2
· r2

4a2z2
· e−z · ν

(
t− r2

4a2z

)
dz =

=
1

(2a2)β+1
· 1

2β
· 1

βΓ(β)
· (4a2)β+1

4a2
· lim
r→0

∫ ∞
r2

4a2t

zβ−1 · e−z · ν
(
t− r2

4a2z

)
dz =

=
1

2a2
· 1

βΓt(β)
· ν(t) ·

∫ ∞
0

zβ−1 · e−zdz =
1

2a2
· 1

βΓ(β)
· Γ(β) · ψ(t) =

1

2a2β
· ν(t) = g1(t).

from here one of the sought-for densities ν(t) is directly determined

ν(t) = 2a2βg1(t).

Therefore,

u(r, t) =
3∑
i=1

u1(r, t) + g̃1(r, t), (10)

where

u1(r, t) =

∫ t

0

rβτ1−β(r − τ)

4a4(t− τ)2
· e−

(r−τ)2

4a2(t−τ) · e−
rτ

2a2(t−τ) · Iβ
(

rτ

2a2(t− τ)

)
µ(τ)dτ,

u2(r, t) =

∫ t

0

rβ+1τ1−β

4a4(t− τ)2
· e−

(r−τ)2

4a2(t−τ) · e−
rτ

2a2(t−τ) · Iβ−1,β

(
rτ

2a2(t− τ)

)
µ(τ)dτ,

u3(r, t) =

∫ t

0

rβ(1− 2β)

2a2(t− τ)τβ
· e−

(r−τ)2

4a2(t−τ) · e−
rτ

2a2(t−τ) · Iβ
(

rτ

2a2(t− τ)

)
µ(τ)dτ,

g̃1(r, t) =
1

(2a2)β
· 1

2β
· 1

Γ(β)

∫ t

0

r2β

(t− τ)β+1
· exp

[
− r2

4a2(t− τ)

]
· g1(τ)dτ.

Remark 1. If g1(t) is bounded, then g̃1(r, t) is also bounded.
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Indeed,

g̃1(r, t) ≤ 1

(2a2)β
· 1

2β
· 1

Γ(β)
· |g1(t)|

∫ t

0

r2β

(t− τ)β+1
· exp

[
− r2

4a2(t− τ)

]
dτ =

=

∥∥∥∥ r2

4a2(t− τ)
= z

∥∥∥∥ =
1

(2a2)β
· 1

2β
· 1

Γ(β)
· 4β · a2β · |g1(t)|

∫ ∞
r2

4a2t

zβ−1 · e−zdz =

= |g1(t)| ·
Γ
(
β, r2

4a2t

)
Γ(β)

< |g1(t)| , ∀(r, t) ∈ G.

Now let us satisfy the boundary condition (5).

u(r, t)|r=t = lim
r→t−0

u(r, t) = g2(t) = g̃1(t, t)+

+

∫ t

0

{
tβ+1τ1−β

4a4(t− τ)2
exp

[
− t− τ

4a2

]
exp

[
− tτ

2a2(t− τ)

]
Iβ−1,β

(
tτ

2a2(t− τ)

)
+

+
tβ(1− 2β)

2a2(t− τ)τβ
exp

[
− t− τ

4a2

]
exp

[
− tτ

2a2(t− τ)

]
· Iβ

(
tτ

2a2(t− τ)

)}
µ(τ)dτ − µ(t)

2a2
.

As a result, we obtain the following integral equation for the unknown density µ(t):

µ(t)−
∫ t

0

{
tβ(1− 2β)

(t− τ)τβ
exp

[
− t− τ

4a2

]
exp

[
− tτ

2a2(t− τ)

]
· Iβ

(
tτ

2a2(t− τ)

)
+

+
tβ+1τ1−β

2a2(t− τ)2
exp

[
− t− τ

4a2

]
exp

[
− tτ

2a2(t− τ)

]
Iβ−1,β

(
tτ

2a2(t− τ)

)
+

+
tβτ1−β

2a2(t− τ)
exp

[
− t− τ

4a2

]
exp

[
− tτ

2a2(t− τ)

]
Iβ

(
tτ

2a2(t− τ)

)}
µ(τ)dτ = F (t). (11)

where
F (t) = −2a2g2(t) + 2a2g̃1(t, t).

We introduce the following notation

t1−β exp

[
t

4a2

]
µ(t) = µ1(t), t1−β exp

[
t

4a2

]
F (t) = F1(t).

Then the last integral equation is transformed into the following equation:

µ1(t)−
∫ t

0
N(t, τ)µ1(τ)dτ = F1(t), (12)

kernel of which has the form:

N(t, τ) =
2∑
i=1

Ni(t, τ),

and, moreover,

N1(t, τ) =
t(1− 2β)

τ(t− τ)
exp

[
− tτ

2a2(t− τ)

]
· Iβ

(
tτ

2a2(t− τ)

)
+

+
t2

2a2(t− τ)2
exp

[
− tτ

2a2(t− τ)

]
Iβ−1,β

(
tτ

2a2(t− τ)

)
,

N2(t, τ) =
t

2a2(t− τ)
exp

[
− tτ

2a2(t− τ)

]
Iβ

(
tτ

2a2(t− τ)

)
.

A feature of this integral equation follows from
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Remark 2. The kernel of the integral equation (11) satisfies the equality

lim
t→0

∫ t

0
N(t, τ)dτ =

1− β
β

,

moreover, ∀t > 0, ∀β ∈ (0; 1):∫ t

0
N1(t, τ)dτ =

1− β
β

, lim
t→0

∫ t

0
N2(t, τ)dτ = 0.

Indeed, ∫ t

0
N1(t, τ)dτ =

∫ t

0

{
t(1− 2β)

τ(t− τ)
exp

[
− tτ

2a2(t− τ)

]
· Iβ

(
tτ

2a2(t− τ)

)
+

+
t2

2a2(t− τ)2
exp

[
− tτ

2a2(t− τ)

]
Iβ−1,β

(
tτ

2a2(t− τ)

)
dτ

}
=

∥∥∥∥ tτ

2a2(t− τ)
= z

∥∥∥∥ =

=

∫ ∞
0

(1− 2β) · 1

z2
· z · e−z · Iβ(z)dz +

∫ ∞
0

e−z · {Iβ−1(z)− Iβ(z)} dz =

= (1− 2β)

∫ ∞
0

1

z
· e−z · Iβ(z)dz + 1 = ‖(2.15.4.3) [16; 272]‖ =

=
(1− 2β)√

π
· Γ
[
β, 1

2
1 + β

]
+ 1 =

1− β
β

;∫ t

0
N2(t, τ)dτ =

∫ t

0

t

2a2(t− τ)
exp

[
− tτ

2a2(t− τ)

]
Iβ

(
tτ

2a2(t− τ)

)
dτ =

=

∥∥∥∥ tτ

2a2(t− τ)
= z

∥∥∥∥ =

∫ ∞
0

t

t+ 2a2z
· e−z · Iβ(z)dz ≤ t

2a2

∫ ∞
0

1

z
· e−z · Iβ(z)dz =

=
t

2a2
· 1√

π
· Γ
[
β, 1

2
1 + β

]
=

t

2a2β
−→
t→0

0.

4 Solution of the characteristic integral equation

In order to find a solution of the integral equation (10), we first study the following characteristic
integral equation:

µ1(t)−
∫ t

0
N1(t, τ)µ1(τ)dτ = Φ(t). (13)

Remark 3. Remark (12) implies that for 1
2 < β < 1,

(
0 < 1−β

β < 1
)
the integral equation (13) in

the class of essentially bounded functions has a unique solution that can be found by the method of
successive approximations.

By Remark 2 for 0 < β ≤ 1
2

(
1−β
β ≥ 1

)
equation (13) is indeed characteristic for the equation (11).

Instead of the variables t, τ we introduce new variables x, y:

t =
1

y
, τ =

1

x
; µ1(t) = µ1

(
1

y

)
= µ2(y), Φ(t) = Φ

(
1

y

)
= Φ1(y), (14)

Then the equation (13) reduces to the following integral equation with respect to the unknown
function µ2(y):
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µ2(y)−
∫ ∞
y

M−(y − x)µ2(x)dx = Φ1(y), (15)

where
M−(y − x) =

1− 2β

x− y
· exp

(
− 1

2a2(x− y)

)
· Iβ

(
1

2a2(x− y)

)
+

+
1

2a2(x− y)2
· exp

(
− 1

2a2(x− y)

)
· Iβ−1,β

(
1

2a2(x− y)

)
.

Remark 4. If we find a solution to the equation (13), then we will obtain a solution to the equation
(11) by applying the equivalent regularization method to the solution of the characteristic equation
[17,18].

5 Solution of the homogeneous characteristic equation

The equation (15) differs fundamentally from the Volterra equations of the second kind, for which
the solution exists and is unique. The solution of the corresponding homogeneous equation

µ2(y)−
∫ ∞
y

M−(y − x)µ2(x)dx = 0, (16)

in the general case may also be non-trivial. The eigenfunctions of the integral equation (16) are
determined by the roots of the following transcendental equation [18; 569] with respect to the parameter
p:

M̂−(−p) =

∫ ∞
0

M−(z) · epzdz = 1, Rep < 0, (17)

since, by applying the Laplace transform to the equation (16), we obtain

µ̂2(p) ·
[
1− M̂−(−p)

]
= 0, Rep < 0. (18)

In order to find the image of the function M̂−(−p) we use:
1) the formula (29.169) [19; 350];
2) the property: let f(t) : f̂(p), then 1

t f(t) :
∫∞
p f̂(p)dp [20; 506]. Thus, we have

M̂−(−p) = 2(1− 2β)Kβ

(√
−p
a

)
Iβ

(√
−p
a

)
+

+
1

a2

∫ p

−∞

[
Kβ−1

(√
−q
a

)
Iβ−1

(√
−q
a

)
−Kβ

(√
−q
a

)
Iβ

(√
−q
a

)]
dq.

To calculate the last integral, we use the formula (1.12.4.3) [16; 44]:

1

a2

∫ p

−∞

[
Kβ−1

(√
−q
a

)
Iβ−1

(√
−q
a

)
−Kβ

(√
−q
a

)
Iβ

(√
−q
a

)]
dq =

=

∥∥∥∥√−qa = z

∥∥∥∥ = 2

∫ ∞
√
−p
a

z [Kβ−1(z)Iβ−1(z)−Kβ(z)Iβ(z)] dz =

= z2

[(
1 +

(β − 1)2

z2

)
Iβ−1(z)Kβ−1(z)− I ′β−1(z)K ′β−1(z)

]∣∣∣∣∣
∞

√
−p
a

−
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− z2

[(
1 +

β2

z2

)
Iβ(z)Kβ(z)− I ′β(z)K ′β(z)

]∣∣∣∣∞√−p
a

=

= z2

[(
1 +

(β − 1)2

z2

)
Iβ−1(z)Kβ−1(z) −

−
{
Iβ(z) +

β − 1

z
Iβ−1(z)

}{
−Kβ(z) +

β − 1

z
Kβ−1(z)

}]∣∣∣∣∞√−p
a

−

− z2

[(
1 +

β2

z2

)
Iβ(z)Kβ(z)−

{
Iβ−1(z)− β

z
Iβ(z)

}{
−Kβ−1(z)− β

z
Kβ(z)

}]∣∣∣∣∞√−p
a

=

=
[(
z2 + (β − 1)2

)
Iβ−1(z)Kβ−1(z) + z2Iβ(z)Kβ(z) −

−z (β − 1)Iβ(z)Kβ−1(z) + z(β − 1)Iβ(z)Kβ(z)− (β − 1)2Iβ−1(z)Kβ−1(z)
]∣∣∞√−p

a
−

−
[
(z2 + β2)Iβ(z)Kβ(z) + z2Iβ−1(z)Kβ−1(z) + zβIβ−1(z)Kβ(z) −

−zβIβ(z)Kβ−1(z)− β2Iβ(z)Kβ(z)
]∣∣∞√−p

a
=

=
[
zIβ(z)Kβ−1(z)− zIβ−1(z)Kβ(z)

]∣∣∣∞√−p
a

=

= [2zIβ(z)Kβ−1(z)− (zIβ(z)Kβ−1(z) + zIβ−1(z)Kβ(z))]|∞√−p
a

=

= 2zIβ(z)Kβ−1(z)
∣∣∣∞√−p

a

= 1− 2

√
−p
a

Iβ

(√
−p
a

)
K
β−1

(√
−p
a

)
,

where we used the following relations:

K ′β(z) = −Kβ−1(z)− β

z
Kβ(z),

K ′β−1(z) = −Kβ(z) +
β − 1

z
Kβ−1(z),

I ′β(z) = Iβ−1(z)− β

z
Iβ(z),

I ′β−1(z) = Iβ(z) +
β − 1

z
Iβ−1(z).

Then the equation (17) will take the form:

2Iβ

(√
−p
a

)[
(1− 2β)Kβ

(√
−p
a

)
−
√
−p
a

Kβ−1

(√
−p
a

)]
= 0, Rep < 0,

where Kβ

(√
−p
a

)
is the Macdonald function.

Let’s assume that Iβ
(√
−p
a

)
= 0. According to the definition of the Bessel function for the imaginary

argument Iβ
(√
−p
a

)
= e−

π
2
βiJβ

(
i
√
−p
a

)
, where Jβ

(
i
√
−p
a

)
is the Bessel function – cylinder function of

the first kind. The function Jβ(z) for any real β has an infinite set of real roots; for β > −1 all its
roots are real and equal izk = αk, zk = −iαk, αk ∈ R, k ∈ Z\{0} [21], i.e. in our case i

√
−pk
a = αk,

where αk ∈ R. Hence pk = a2α2
k, which contradicts the condition Rep < 0.

Thus, it is necessary to find the roots of the equation for 0 < β ≤ 1
2
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(1− 2β)Kβ

(√
−p
a

)
−
√
−p
a

Kβ−1

(√
−p
a

)
= 0, Rep < 0. (19)

It should be noted that for 1
2 < β < 1 this equation has no roots. This means that in the equation (18)

1− M̂−(−p) 6= 0,

whence it follows that µ̂2(p) = 0. That is, the homogeneous integral equation (16) has only a zero
solution in this case. For 0 < β ≤ 1

2 the equation (19) has a unique real root p0 ≤ 0, and the root
p0 = 0 corresponds to the case β = 1

2 . And for 0 < β < 1
2 the root is p0 < 0. This means that

the equation (16) for 0 < β < 1
2 has a non-zero solution µ2(y) = Cep0y, p0 < 0. Then, returning to

the original variables (14), we obtain that the homogeneous integral equation corresponding to the
equation (13), for 0 < β < 1

2 has an eigenfunction

µ(0)(t) = C · 1

t1−β
· e

p0
t
− t

4a2 , p0 < 0, C = const.

Accordingly, for β = 1
2 , the eigenfunction has the form:

µ(0)(t) = C · 1√
t
· e−

t
4a2 , C = const.

6 Solution of an inhomogeneous characteristic integral equation. Construction of the resolvent.

The equation (15) cannot be solved by directly applying the Laplace transform, since the convolution
theorem is not applicable here. Let’s apply the method of model solutions [18; 561]. Then the solution
of the equation (15) has the form

ϕ1(y) =
1

2πi

∫ σ+i∞

σ−i∞

Φ̂1(p)

1− M̂−(−p)
dp = Φ1(y) +

1

2πi

∫ σ+i∞

σ−i∞
R̂−(−p)Φ̂1(p)epzdp,

where

Φ̂1(p) =

∫ ∞
0

Φ1(y)e−pydy, R̂−(−p) =
M̂−(−p)

1− M̂−(−p)
, Rep < 0;

M̂−(−p) = 1 + 2Iβ

(√
−p
a

)[
(1− 2β)Kβ

(√
−p
a

)
−
√
−p
a

Kβ−1

(√
−p
a

)]
, Rep < 0.

If R̂−(−p) : R−(y), then the solution of the equation (15) has the form

ϕ1(y) = Φ1(y) +
1

2πi

∫ ∞
y

R−(y − x)Φ1(x)dx. (20)

To find the resolvent R−(y), we write its image in the following form:

R̂−

(√
−p
a

)
=

1− 2Iβ

(√
−p
a

) [√
−p
a Kβ−1

(√
−p
a

)
− (1− 2β)Kβ

(√
−p
a

)]
2Iβ

(√
−p
a

) [√
−p
a Kβ−1

(√
−p
a

)
− (1− 2β)Kβ

(√
−p
a

)] , Rep < 0,

and use the following properties [19; 191]:
1. If ϕ(t) : ϕ̂(p), then

ϕ(αt) :
1

α
ϕ̂
( p
α

)
, α > 0.
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2. If ϕ̂(p) : ϕ(t), then

ϕ̂ (
√
p) =

1

2
√
π
· 1

t
3
2

∫ ∞
0

τ · e−
τ2

4t ϕ(τ)dτ.

For convenience, we introduce the notation
√
−p
a = z and find the original expression

R̂∗(z) =
1− 2Iβ(z) [zKβ−1(z)− (1− 2β)Kβ(z)]

2Iβ(z) [zKβ−1(z)− (1− 2β)Kβ(z)]
.

According to [20; 519]:

R̂∗(z) =
A(z)

B(z)
:

+∞∑
−∞

A(zk)

B′(zk)
· e−zky,

where zk are zeros of the function

B(z) = 2Iβ(z) [zKβ−1(z)− (1− 2β)Kβ(z)] .

1) Let yβ(z) = zKβ−1(z)− (1− 2β)Kβ(z) = 0. This equation, as noted earlier, has one root z0 for
0 < β < 1

2 .
2) Let Iβ(z) = e−

π
2
βiJβ (iz) = 0. Therefore, izk = αk or zk = −iαk, where αk ∈ R.

Then

R̂∗(z) =
A(z)

B(z)
:

+∞∑
−∞

A(zk)

B′(zk)
· e−zky =

∑
k∈Z\{0}

A(zk)

B′(zk)
· e−zky +

A(z0)

B′(z0)
· e−z0y = R∗−(y),

where
B(z) = 2Iβ(z) [zKβ−1(z)− (1− 2β)Kβ(z)]

B′(z) = 2Iβ−1(z) [zKβ−1(z)− (1− 2β)Kβ(z)] + 2(1− 2β)Iβ(z)Kβ−1(z)+

+

(
4β(1− 2β)

z
− 2z

)
Iβ(z)Kβ(z).

Thus, we obtain that for 0 < β < 1
2 :

R∗−(y) =
∑

k∈Z\{0}

e−zky

2Iβ−1(zk) [zkKβ−1(zk)− (1− 2β)Kβ(zk)]
+

+
e−z0y

2Iβ(z0)Kβ−1(z0)
[
1− 1

1−2β z
2
0

] . (21)

We introduce the following notations:

Aβ,k =
1

2Iβ−1(zk) [zkKβ−1(zk)− (1− 2β)Kβ(zk)]
, Aβ,0 =

1

2Iβ(z0)Kβ−1(z0)
[
1− 1

1−2β z
2
0

] .
From equality (21) we have

R̂−

(√
−p
a

)
: R−(y) =

a2

2
√
πy

3
2

·
∑

k∈Z\{0}

Aβ,k ·
∫ ∞

0
xe
−x

2

4y
−ia2αkxdx+

+
a2

2
√
πy

3
2

·Aβ,0 ·
∫ ∞

0
xe
−x

2

4y
−z0a2xdx.
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Lemma 1. The resolvent R−(y) satisfies the estimate

R−(y) ≤ A
√
y
.

Proof.

R−(y) ≤

∣∣∣∣∣∣ a2

2
√
πy

3
2

 ∑
k∈Z\{0}

Aβ,k

∫ ∞
0

xe
−x

2

4y
−iαka2xdx+Aβ,0

∫ ∞
0

xe
−x

2

4y
−z0a2xdx

∣∣∣∣∣∣ ≤
≤ a2

2
√
y
·


∣∣∣∣∣∣
∑

k∈Z\{0}

Aβ,k

∣∣∣∣∣∣+ |Aβ,0|

 .

Since |Aβ,0| = Cβ = const, we estimate the sum
∣∣∣∑k∈Z\{0}Aβ,k

∣∣∣:∣∣∣∣∣∣
∑

k∈Z\{0}

Aβ,k

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k∈Z\{0}

1

2Iβ−1(zk) [zkKβ−1(zk)− (1− 2β)Kβ(zk)]

∣∣∣∣∣∣ =

=

∥∥∥∥∥∥∥
Kβ(z) = πi

2 e
π
2
βiH

(1)
β (iz); Iβ(z) = e−

π
2
βiJβ(iz);

zk = −iαk; z−k = iαk;

Jβ(−z) = eβπiJβ(z); H
(1)
β (−z) = −e−βπiH(2)

β (z)

∥∥∥∥∥∥∥ =

=
1

π

∣∣∣∣∣∣
∞∑
k=1

 1

Jβ−1(αk)
[
αkH

(1)
β−1(αk) + (1− 2β)H

(1)
β (αk)

]−
− 1

e(β−1)πiJβ−1(αk)
[
−αke−(β−1)πiH

(2)
β−1(αk) + (1− 2β)e−βπiH

(2)
β (αk)

]
∣∣∣∣∣∣ =

=

∥∥∥∥∥ H
(1)
β (z) = Jβ(z) + iNβ(z); H

(2)
β (z) = Jβ(z)− iNβ(z)

Jβ(αk) = 0

∥∥∥∥∥ =

=
2

π

∣∣∣∣∣∣
∞∑
k=1

αk

(αkJβ−1(αk))
2 + (αkNβ−1(αk))

2 + 2αk(1− 2β)Nβ−1(αk)Nβ(αk) + ((1− 2β)Nβ(αk))
2

∣∣∣∣∣∣ ≤
≤ 2

π

∣∣∣∣∣
∞∑
k=1

αk

(αkJβ−1(αk))
2 + (αkNβ−1(αk))

2

∣∣∣∣∣ =
2

π

∣∣∣∣∣∣
∞∑
k=1

1

αkH
(1)
β−1(αk)H

(2)
β−1(αk)

∣∣∣∣∣∣ ≤
≤ 2

π

∣∣∣∣∣∣
∫ ∞
α1

d(αn)

αk ·H
(1)
β−1(αk) ·H

(2)
β−1(αk)

∣∣∣∣∣∣ = ‖(1.10.3.3) [16; 42]‖ =

=
2

π

∣∣∣∣∣∣− π4i · ln H
(2)
β−1(αk)

H
(1)
β−1ν(αk)

∣∣∣∣∣∣
∞

α1

∣∣∣∣∣∣ =
1

2
·

∣∣∣∣∣∣
ln

∣∣∣∣∣∣H
(2)
β−1(αk)

H
(1)
β−1(αk)

∣∣∣∣∣∣ + i · arg
H

(2)
β−1(αk)

H
(1)
β−1(αk)


∣∣∣∣∣∣
∞

α1

∣∣∣∣∣∣ =

=
1

2
·
∣∣∣argH

(2)
β−1(αk) − argH

(1)
β−1ν(αk)

∣∣∣ ≤ π

2
.
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Thus, we get

R−(y) ≤ a2

2
√
y
·


∣∣∣∣∣∣
∑

k∈Z\{0}

Aβ,k

∣∣∣∣∣∣+ |Aβ,0|

 ≤ a2(π + 2Cβ)

4
√
y

=
Cβ

(1)

√
y
, Cβ

(1) = const.

R−(y) ≤ a2

2
√
y
·

∣∣∣∣∣∣
∑

k∈Z\{0}

Aβ,k

∣∣∣∣∣∣ ≤ a2π

4
√
y
.

Lemma is proved.

7 Solution of the characteristic equation

We found a solution of the equation

µ2(y)−
∫ ∞
y

M−(y − x)µ2(x)dx = Φ1(y),

which for 0 < β < 1
2 has the form

µ2(y) = Φ1(y) +

∫ ∞
y

R−(x− y)Φ1(x)dx+ Cep0y.

Returning to the original variables, we write the solution of the characteristic equation (20) as
follows:

µ1(t) = Φ(t) +

∫ t

0

R−(t, τ)

τ2
Φ(τ)dτ + Ce

p0
t .

For the convergence of the last integral it is necessary that

Φ2(t) =
1

t
· Φ(t) ∈ L∞(0,∞).

Then we write the solution of the characteristic equation (20) as

µ1(t) = t · Φ2(t) +

∫ t

0
R̃(t, τ) · Φ2(τ)dτ + Ce

p0
t ,

where

R̃(t, τ) ≤ C ·
√
t

√
τ ·
√
t− τ

.

The last inequality follows from Lemma 1.

8 Solution of the initial integral equation. The Carleman-Vekua regularization

Theorem 1. Initial integral equation (11) for any function t−βe
t

4a2 · F (t) ∈ L∞(0,∞)
(
0 < β < 1

2

)
has the unique solution in the class of functions

t−β exp

[
t

4a2

]
µ(t) ∈ L∞(0,∞),

(
0 < β <

1

2

)
which can be found by the method of successive approximations.
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Proof. We rewrite the initial integral equation (11) as

µ1(t)−
∫ t

0
N1(t, τ)µ1(τ)dτ = F1(t) +

∫ t

0
N2(t, τ)µ1(τ)dτ. (22)

Assuming the right-hand side of the equation (22) to be temporarily known, we write it in the following
form:

[1−M]µ2(t) ≡

≡ µ2(t)−
∫ t

0
M(t, τ)µ2(τ)dτ =

1

t
F (t) +

1

t

∫ t

0
R̃(t, τ) · F (τ)

τ
dτ +

C

t
e
p0
t , (23)

where

µ2(t) =
1

t
µ1(t),M(t, τ) =

τ

t
N2(t, τ) +

τ

t
·
∫ t

τ
R̃(t, ξ) · N2(ξ, τ)

ξ
dξ.

The following estimate for the kernel M(t, τ)

M(t, τ) ≤ D̃1√
t− τ

+ D̃2, D̃1, D̃2 = const

holds. Thus, we show that equation (23) for each C 6= 0 has a unique solution

µ2(t) = µ2,part(t) + Cµ2,hom(t),

where
µ2,hom(t) = [1−M]−1µ(0)(t), µ2(t) = t−βe

t
4a2 µ(t).

At the same time, if F (t) = 0, then integral equation (23) has a solution µ(0)
2 (t) = C · [1−M]−1µ(0)(t).

The theorem is proved.

9 Solution of the boundary value problem (3)–(5)

Theorem 2. If the conditions g1(t) ∈ L∞(0,∞), t−βg2(t) ∈ L∞(0,∞)
(
0 < β < 1

2

)
are satisfied,

then the boundary value problem (3) – (5) has a solution u(r, t) ∈ L∞(G).

Proof. From the integral representation (10) of the boundary value problem (3)–(5) we have

u(r, t) =

3∑
i=1

ui(r, t) + g̃1(r, t),

where

u1(r, t) =

∫ t

0

rβτ1−β(r − τ)

4a4(t− τ)2 · e−
(r−τ)2

4a2(t−τ) · e−
rτ

2a2(t−τ) · Iβ
(

rτ

2a2(t− τ)

)
µ(τ)dτ,

u2(r, t) =

∫ t

0

rβ+1τ1−β

4a4(t− τ)2 · e
− (r−τ)2

4a2(t−τ) · e−
rτ

2a2(t−τ) · Iβ−1,β

(
rτ

2a2(t− τ)

)
µ(τ)dτ,

u3(r, t) =

∫ t

0

rβ(1− 2β)

2a2(t− τ)τβ
· e−

(r−τ)2

4a2(t−τ) · e−
rτ

2a2(t−τ) · Iβ
(

rτ

2a2(t− τ)

)
µ(τ)dτ,

g̃1(r, t) =
1

(2a2)β
· 1

2β
· 1

Γ(β)

∫ t

0

r2β

(t− τ)β+1
· exp

[
− r2

4a2(t− τ)

]
· g1(τ)dτ.
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Let t−αe
t

4a2 · µ(t) ∈ L∞(0,∞). Let us find out for what values of α the solution of the problem u(r, t)
will satisfy the condition u(r, t) ∈ L∞(G). First, we estimate the first term.

u1(r, t) =

∫ t

0

rβτ1−β(r − τ)

4a4(t− τ)2
exp

[
− (r − τ)2

4a2(t− τ)

]
exp

[
− rτ

2a2(t− τ)

]
Iβ

(
rτ

2a2(t− τ)

)
µ(τ)dτ ≤

=

∥∥∥∥∥ exp
[
− (r−τ)2

4a2(t−τ)

]
≤ exp

[
− t−τ

4a2

]
,

rτ
2a2(t−τ)

= ξ

∥∥∥∥∥ =

= C1e
− t

4a2 · r
βt1−β+α

(2a2)2

∫ ∞
0

ξ1−β+α(
r

2a2
+ ξ
)2−β+α

· e−ξIβ(ξ)dξ ≤

≤ C1e
− t

4a2 · r
βt1−β+α

(2a2)2

∫ ∞
0

1

ξ
· e−ξIβ(ξ)dξ = e−

t
4a2 · r

βt1−β+α

(2a2)2
· Γ
[
β, 1

2
1 + β

]
=

= C1e
− t

4a2 ·
√
πt1+α

(2a2)2β
·
(r
t

)β
≤ C1

√
π

(2a2)2β
· e−

t
4a2 · t1+α ≤ C̃1 = const ∀(r, t) ∈ Q.

Now we estimate the second term.

u2(r, t) =

∫ t

0

rβ+1τ1−β

4a4(t− τ)2
· e−

(r−τ)2

4a2(t−τ) · e−
rτ

2a2(t−τ) · Iβ−1,β

(
rτ

2a2(t− τ)

)
µ(τ)dτ =

=

∥∥∥∥∥ exp
[
− (r−τ)2

4a2(t−τ)

]
≤ exp

[
− t−τ

4a2

]
,

rτ
2a2(t−τ)

= ξ

∥∥∥∥∥ ≤
≤ C2e

− t
4a2 · r

βtα−β

2a2

∫ ∞
0

ξ1−β+α(
r

2a2
+ ξ
)1−β+α

· e−ξIβ−1,β(ξ)dξ ≤

≤ C2e
− t

4a2 · r
βtα−β

2a2

∫ ∞
0

e−ξIβ−1,β(ξ)dξ ≤ C2e
− t

4a2 · t
α

2a2
≤ C̃2 = const, ∀(r, t) ∈ Q.

And, finally, we estimate the third term.

u3(r, t) =

∫ t

0

rβ(1− 2β)

2a2(t− τ)τβ
· e−

(r−τ)2

4a2(t−τ) · e−
rτ

2a2(t−τ) · Iβ
(

rτ

2a2(t− τ)

)
µ(τ)dτ =

=

∥∥∥∥∥ exp
[
− (r−τ)2

4a2(t−τ)

]
≤ exp

[
− t−τ

4a2

]
,

rτ
2a2(t−τ)

= ξ

∥∥∥∥∥ ≤
≤ C3e

− t
4a2 · r

β(1− 2β)tα−β

2a2

∫ ∞
0

ξα−β(
r

2a2
+ ξ
)1+α−β · e

−ξIβ(ξ) dξ ≤

≤ C3e
− t

4a2 · r
β(1− 2β)tα−β

2a2

∫ ∞
0

1

ξ
· e−ξIβ(ξ)dξ = C3e

− t
4a2 · r

β(1− 2β)tα−β

2a2
· Γ
[
β, 1

2
1 + β

]
=

= C3e
− t

4a2 · (1− 2β)
√
πtα

2a2β
·
(r
t

)β
≤ C3

(1− 2β)
√
π

2a2β
· e−

t
4a2 · tα ≤ C̃3 = const, ∀(r, t) ∈ Q.

Hence it is clear that for α ≥ 0 the solution of the problem u(r, t) ∈ L∞(G).
The estimate for the fourth term follows from Remark 1. This implies the validity of the main

result, Theorem 2.
The results of this work will be used in solving a similar problem in a funnel-shaped degenerate

domain, that is, when the boundary of the domain changes according to the law r = γ(t), γ(0) = 0.

104 Bulletin of the Karaganda University



Solution of a two-dimensional ...

Acknowledgments

This research is funded by the Science Committee of the Ministry of Science and Higher Education
of the Republic of Kazakhstan (Grants no.AP09259780, 2021 – 2023, and AP09258892, 2021–2023).

References

1 Kavokin A.A. Application of thermal potentials to the solution of the problem of heat conduction
in a region degenerates at the initial moment / A.A. Kavokin, A.T. Kulakhmetova, Y.R. Shpadi
// Filomat. — 2018. — 32. — No. 3. — P. 825–836. https://doi.org/10.2298/FIL1803825K

2 Amangaliyeva M.M. Boundary value problems for a spectrally loaded heat operator with load
line approaching the time axis at zero or infinity / M.M. Amangaliyeva, D.M. Akhmanova,
M.T. Dzhenaliev, M.I. Ramazanov // Differential Equations. — 2011. — 47. — No. 2. — P. 231–
243. https://doi.org/10.1134/S0012266111020091

3 Jеnаliyеv М. On a Volterra equation of the second kind with “incompressible” kernel / М. Jеnаliyеv,
М. Аmаngаliyevа, M. Kosmakova, M. Ramazanov // Advances in Difference Equations. — 2015.
— 71. — P. 1–14. https://doi.org/10.1186/s13662-015-0418-6

4 Amangaliyeva M.M. On one homogeneous problem for the heat equation in an infinite angular
domain / M.M. Amangaliyeva, M.T. Jenaliyev, M.T. Kosmakova, M.I. Ramazanov // Sib. Math.
Jour. — 2015. — 56. — No. 6. — P. 982–995. https://doi.org/10.1134/S0037446615060038

5 Jenaliyev M. On a homogeneous parabolic problem in an infinite corner domain / M. Jenaliyev, M.
Ramazanov // Filomat. — 2018. — 32. — No. 3. — P. 965–974. https://doi.org/10.2298/FIL1803965J

6 Рамазанов М.И. О сингулярном интегральном уравнении Вольтерра краевой задачи теп-
лопроводности в вырождающейся области / М.И. Рамазанов, Н.К. Гульманов // Вестн.
Удмурт. ун-та. Математика. Механика. Компьютерные науки. — 2021. — 31. — № 2. — С. 241–
252. https://doi.org/10.35634/vm210206

7 Ramazanov M.I. Solution of the boundary value problem of heat conduction in a cone / M.I. Rama-
zanov, M.T. Jenaliyev, N.K. Gulmanov // Opuscula Mathematica. — 2022. — 42. — No. 1. —
P. 75–91. https://doi.org/10.7494/OpMath.2022.42.1.75

8 Ramazanov M.I. Solution of a two-dimensional boundary value problem of heat conduction in a
degenerating domain / M.I. Ramazanov, N.K. Gulmanov // Journal of Mathematics, Mechanics
and Computer Science. — 2021. — 111. — No. 3. — P. 65–78.
https://doi.org/10.26577/JMMCS.2021.v111.i3.06

9 Pskhu A.V. Boundary value problem for fractional diffusion equation in a curvilinear angle
domain / A.V. Pskhu, M.I. Ramazanov, N.K. Gulmanov, S.A. Iskakov // Bulletin of the Karaganda
university. Mathematics series. — 2022. — No. 1(105). — P. 83–95.
https://doi.org/10.31489/2022M1/83-95

10 Jenaliyev M.T. To the solution of one pseudo-Volterra integral equation / M.T. Jenaliyev,
M.I. Ramazanov, M.T. Kosmakova, A.O. Tanin // Bulletin of the Karaganda university. Mathematics
series. — 2019. — No. 1(93). — P. 19–30. https://doi.org/10.31489/2019M1/19-30

11 Jenaliyev M.T. On the Solvability of the Burgers Equation with Dynamic Boundary Conditions in
a Degenerating Domain / M.T. Jenaliyev, A.A. Assetov, M.G. Yergaliyev // Lobachevskii Journal
of Mathematics. — 2021. — 42. — P. 3661–3674. https://doi.org/10.1134/S199508022203012X

12 Kosmakova M.T. To solving the fractionally loaded heat equation / M.T. Kosmakova, S.A. Iskakov,
L.Zh. Kasymova // Bulletin of the Karaganda university. Mathematics series. — 2021. — No. 1(101).
— P. 65–77. https://doi.org/10.31489/2021M1/65-77

Mathematics series. No. 3(111)/2023 105



M.I. Ramazanov, N.K. Gulmanov, S.S. Kopbalina

13 Zarifzoda S.K. Volterra-Type Integro-Differential Equations with Two-Point Singular Differential
Operator / S.K. Zarifzoda, T.K. Yuldashev, I.Djumakhon // Lobachevskii Journal of Mathematics.
— 2021. — 42. — P. 3784–3792. https://doi.org/10.1134/S1995080222030234

14 Yumagulov M.G. First Approximation Formulas in the Problem of Perturbation of Definite
and Indefinite Multipliers of Linear Hamiltonian Systems / M.G. Yumagulov, L.S. Ibragimova,
A.S. Belova // Lobachevskii Journal of Mathematics. — 2021. — 42. — P. 3773–3783.
https://doi.org/10.1134/S1995080222030222

15 Gradshteyn I.S. Table of Integrals, Series, and Products / I.S. Gradshteyn, I.M. Ryzhik. —
Academic Press, 2014. — 1220 p.

16 Прудников А.П. Интегралы и ряды / А.П. Прудников, Ю.А. Брычков, О.И. Маричев. – М.,
2003. — Т. 2. — 688 с.

17 Гахов Ф.Д. Уравнения типа свертки / Ф.Д. Гахов, Ю.И. Черский. — М.: Наука, 1978. —
296 с.

18 Polyanin A.D. Handbook of integral equations / A.D. Polyanin, A.V. Manzhirov. — Boca Raton:
CRC Press, 2008. — 796 p.

19 Диткин В.А. Справочник по операционному исчислению / В.А. Диткин, А.П. Прудников.
— М.: Высш. шк., 1965. — 468 с.

20 Лаврентьев М.А. Методы теории функций комплексного переменного / М.А. Лаврентьев,
Б.В. Шабат.— 4-е изд., перераб. и доп. — М.: Наука, 1973. — 749 с.

21 Ватсон Дж.Н. Теория бесселевых функций / Дж.Н. Ватсон; пер. с англ. — М.: Изд-во ино-
странной литературы, 1949. — 800 с.
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Академик Е.А. Бөкетов атындағы Қарағанды университетi, Қарағанды, Қазақстан

Бұрыштық жойылатын облыста модельдiк екi өлшемдi
параболалық есептi шешу

Жұмыста шекарасы уақыттың өзгеруiмен қозғалатын жылу өткiзгiштiктiң шекаралық есебi зерт-
телген, сонымен қатар есептi шешу облысы уақыттың бастапқы сәтiнде болмайды, яғни нүктеге ай-
налады. Берiлген есептi шешу үшiн жылу потенциалдары әдiсi қолданылған, бұл оны екiншi реттi
Вольтерра типтi сингулярлық интегралдық теңдеуге түрлендiруге мүмкiндiк бередi. Алынған инте-
гралдық теңдеудiң ерекшелiгi — ол классикалық Вольтерра интегралдық теңдеулерiнен түбегейлi
ерекшеленедi, өйткенi оған Пикар әдiсi қолданылмайды және сәйкес бiртектi интегралдық теңдеудiң
нөлдiк емес шешiмi бар.

Кiлт сөздер: жылу өткiзгiштiк теңдеуi, шекаралық есеп, жойылатын облыс, Вольтерраның сингу-
лярлық интегралдық теңдеуi, регуляризация.
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Карагандинский университет имени академика Е.А. Букетова, Караганда, Казахстан

Решение модельной двумерной параболической задачи в угловой
вырождающейся области

В работе исследована краевая задача теплопроводности в области, граница которой преобразуется
с изменением времени, а также область решения задачи отсутствует в начальный момент времени,
то есть вырождается в точку. Для решения поставленной задачи использован метод тепловых потен-
циалов, что позволяет редуцировать ее к сингулярному интегральному уравнению типа Вольтерра
второго рода. Особенность полученного интегрального уравнения заключается в том, что оно принци-
пиально отличается от классических интегральных уравнений Вольтерра, так как к нему неприменим
метод Пикара и соответствующее однородное интегральное уравнение имеет ненулевое решение.

Ключевые слова: уравнение теплопроводности, краевая задача, вырождающаяся область, сингулярное
интегральное уравнение Вольтерра, регуляризация.
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Bounded on the semi-axis multiperiodic solution of a linear
finite-hereditarity integro-differential equation of parabolic type
The question of the existence of a solution of linear integro-differential systems of parabolic type limited on
the semiaxis in a spatial variable and multiperiodic in time variables was considered. Sufficient conditions
of multiperiodic oscillations in time variables in a linear homogeneous equation with a boundary condition
and in a linear inhomogeneous equation were established. A linear homogeneous and inhomogeneous finite-
hereditarity integro-differential equation of convective-diffusion type were investigated.

Keywords: integro-differential, finite-hereditarity, convection, diffusion, parabolic type, differentiation operator,
Fourier series.

Problem statement

It is known [1,2] that many hereditary phenomena in biology and mechanics are described by various
types of integro-differential equations. If the state of a phenomenon at the moment τ is determined by
the set of states at the moments of the interval (τ − ε, τ ], then such a phenomenon is called hereditary
with a finite hereditary period ε > 0.

In the case of ε = +∞, the state of the phenomenon at the moment τ depends on its states at
moments in the interval (−∞, τ ]. The hereditary of the phenomenon can also be related to the interval
(τ0, τ ], where τ0 is some constant.

When the heredity of the phenomenon is bounded by the period ε > 0, then a linear phenomenon
with bounded hereditarity can be described by an integro-differential equation of the form

du(τ)

dτ
= A(τ)u(τ) +

τ∫
τ−ε

K(τ, s)u(s)ds+ f(τ). (1)

In the case of a quasilinear phenomenon of the heredity of the period ε > 0 we obtain the equation

du(τ)

dτ
= A(τ)u(τ) +

τ∫
τ−ε

K(τ, s)u(s)ds+ f

τ, u(τ),

τ∫
τ−ε

K(τ, s)u(s)ds

 .

In the linear (1) and quasi-linear equations the functions A(τ), K(τ, s) and f(τ, u, v) are known.
Such equations, along with biological phenomena, describe the processes of elastic deformations,
electromagnetism, and other sections of the general dynamics related to the hereditary propagation of
thermal, magnetic, light, sound and other waves along the x axis. Propagations of this kind type can
also be of a diffusion nature. Propagations of this kind may have a diffusive character also. Then the
equation describing this phenomenon takes a form [3,4]:

∂u(x, τ)

∂τ
− a2∂

2u(x, τ)

∂x2
= a(x, τ)u(x, τ)+

∗Corresponding author.
E-mail: gulsezim-88@mail.ru
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+

τ∫
τ−ε

b(x, τ, s)u(x, s)ds+ f (x, τ, u(x, τ)) . (2)

In the case of multi-frequency waves and fluctuations, to study the processes, following [5–19], it
will be necessary to introduce a variable t = (t1, ..., tm), varying on the vector field dt

dτ = c and one has
to consider the equation

Dcu(x, t, τ)− a2∂
2u(x, t, τ)

∂x2
= a(x, t, τ)u(x, t, τ)+

+

τ∫
τ−ε

b(x, t, τ, t− cτ + cs, s)u(x, t− cτ + cs, s)ds+ f (x, t, τ, u(x, t, τ)) (3)

with differentiation operator

Dc =
∂

∂τ
+

m∑
j=1

cj
∂

∂tj

in the direction of the vector c = (c1, ..., cm) with constant coordinates cj > 0, j = 1,m, and all the
input data of this equation are assumed to be periodic in time variables (t, τ) = (t1, ..., tm, t0), t0 = τ
period-vector (ω, θ) = (ω1, ..., ωm, ω0), with incommensurable components ω0 = θ, ωj , j = 1,m.

Obviously, [5–16] along the t = c(τ − τ0) characteristics vector field operator Dc of the equation
(3) turns into the equation (2), and its (ω, θ)-periodic on (t, τ) ∈ Rm × R solutions turn into almost
periodic τ solutions of the latter at x ∈ R+.

Thus, the investigation of multiperiodic by (t, τ) solutions of equation (3) of period (ω, θ) at x ∈ R+

is of great importance in applied problems of the theory of fluctuations and oscillations.
Note that problem studies in such a formulation are not found in the scientific literature. The

research is carried out in the inductive order from the particular to general. In this connection, the
problem was studied for various linear cases of equations (3).

It is clear [17,18] that the problem under consideration and its methods of investigation are closely
related to some applied aspects of equations of mathematical physics of parabolic type and analytical
problems of the theory of multi-frequency oscillations.

The researchers’ interest in the problems for integro-differential equations, started at the end of the
XIX century, has not weakened to this day [19,20]. From various points of view, where the hereditary
terms of the equations are described by integrals of Volterra or Fredholm types, and the dynamics of
phenomena are characterized by ordinary or partial derivatives of unknowns, developing their theory
from equations to inclusions.

1 Multiperiodic zeros of the differentiation operator in the multiperiodic boundary condition

Applying the differentiation operator ∇c = Dc − a2 ∂2

∂x2
of the variables x ∈ R+ = (0,+∞),

τ = t0 ∈ R, t = (t1, ..., tm) ∈ Rm to the function v(x, t, τ) we introduce the equation

∇cv(x, t, τ) = 0. (4)

Here Dc the differentiation operator for time variables (t, τ) of the form Dc = ∂
∂τ +

m∑
j=0

cj
∂
∂tj

, c0 = 1;

a = conts > 0; ∇c is the differentiation operator by (x, t, τ). The equation with one-dimensional time
tj of the form cj

∂vj
∂tj
− a2 ∂

2vj
∂x2

= 0 has solution vj , depending on γj
√
cjx + γ2

j a
2tj running waves with
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parameter γj , then the solution of equation (4) with multidimensional time (t, τ) can be represented
by the relations

v(x, t, τ) = α+ βe

m∑
j=0

(γj
√
cjx+γ2j a

2tj)
(5)

with arbitrary differentiable functions α, β and γj , j = 0,m vector variable t− cτ = (t1− c1τ, ..., tm−
cmτ), c = (c1, ..., cm).

Consequently, relation (5) represents zeros of the operator ∇c at x ∈ R+, (t, τ) ∈ Rm ×R.
In what follows we will deal with bounded zeros of the operator ∇c. Then by setting x to zero from

(5) we obtain the limit function

v(x, t, τ)|x=0 = α+ βe
a2

m∑
j=0

γ2j tj
≡ v0(t, τ) (6)

and for x→ +∞, in the case of Reγj < 0, we have

v(x, t, τ)|x=+∞ = α ≡ v+(t, τ). (7)

To ensure that the solution (5) for tj > 0, by virtue of (6) and (7), the functions α, β, γj and along
with the condition Reγj < 0, the conditions Imγj > Reγj , j = 0,m must be bounded.

The main problem is related to the establishment of sufficient conditions for the existence of (ω, θ)-
periodic on (t, τ) real-analytic at tj ∈ Πρ =

{
tj : 2π

ωj
|Imtj | < ρ

}
, j = 0,m, ω0 = θ, ω = (ω1, ..., ωm),

ρ = const > 0, solutions of the equations in question. Therefore in this case we assume that the
boundary condition (6) is defined by the function

v0(t+ ω, τ + θ) = v0(t, τ) ∈ Aω,θt,τ
(
Πm
ρ ×Πρ

)
. (8)

Here Aω,θt,τ
(
Πm
ρ ×Πρ

)
is a class of (ω, θ)-periodic rea-analytic at (t, τ) ∈ Πm

ρ × Πρ and continuous on
closures Π

m
ρ ×Πρ functions, with ω0 = θ, ω1, ..., ωm are rationally incommensurable positive constants,

ρ being the bandwidth Πρ of the interval 0 < ρ < 1.
From the condition (8) we have a Fourier series representation of the function v0(t, τ):

v0(t, τ) =
∑

k∈Zm+1

v0
ke

2πi
m∑
j=0

kjνjtj
, (9)

where k = (k0, k1, ..., km), ν = (ν0, ν1, ..., νm), νj = ω−1
j , j = 0,m; v0

k - are Fourier coefficients having
the properties v0

k = v0
−k and satisfying the estimate

|v0
k| ≤ ||v0||e−ρ|k| (10)

with the norm ||v0|| = sup
Πmρ ×Πρ

|v0(t, τ)| and |k| =
m∑
j=0
|kj |.

Due to rational incommensurability of frequencies νj = ω−1
j , j = 0,m parameters α, β, γj become

constant, for the function depending on the difference tj − τ to be ωj and θ = ω0 - periodic as by tj
and so by τ it is necessary and sufficient. Assuming (8) with respect to (6) we find the solution (4),
(6) in the form of series

v(x, t, τ) =
∑

k∈Zm+1

vke

m∑
j=0

(γj
√
cjx+γ2jka

2tj)
(11)
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with constant coefficients vk and indicators γjk, j = 0,m, k ∈ Zm+1.
Obviously, (11) is a generalization of the function (5) to an infinite series, which represents the

solution of the equation (4) in general form.
Substituting (11) and (9) into the boundary conditions (6) formally we obtain vk = v0

k, γ
2
jka

2 =

2πikjνj , j = 0,m, kj = Z0
+, Z0

+ is the set of non-negative integers.

Hence γjk = ±
√

2πνjkj
a ·

√
i = ±

(√
πνjkj
a + i

√
πνjkj
a

)
at kj ∈ Z0

+ is the set of positive integers.

Since we are interested in the solution bounded by x in R+, we have

γjk = −

(√
πνjkj

a
+ i

√
πνjkj

a

)
, j = 0,m, kj = Z0

+. (12)

In the case of negative kj = −|kj | < 0 we have the equation γ2
jka

2 = −2πi|kj |νj , j = 0,m, kj = Z−

to determine the indicators γjk. Hence we find γjk = ±
√
−1

√
2π|kj |νj
a2

·
√
i = ±i

√
2πνj |kj |
a · 1+i√

2
=

±
(
−
√
πνj |kj |
a + i

√
πνj |kj |
a

)
.

Hence, to ensure that the solution is bounded by x ∈ R+ we take the roots with a plus sign:

γjk = −
√
πνj |kj |
a

+ i

√
πνj |kj |
a

, j = 0,m, kj = Z−. (13)

Thus, the roots (12) and (13) are mutually conjugate. Hence, combining these formulas we have

γjk = −
√
πνj |kj |
a

− signkj
√
πνj |kj |
a

, j = 0,m, kj = Z, (14)

where this formula includes the case kj = 0, at which sign 0 = 0.
Substituting (14) into (11) we obtain the solution

v(x, t, τ) = v0
0+

+
∑

06=k∈Zm+1

v0
kexp

− m∑
j=0

√
πνjcj |kj |
a

x+ i

signkj m∑
j=0

√
πνjcj |kj |
a

x+ 2πkjνjtj

 . (15)

Obviously, the series (15) converges absolutely and uniformly at x ∈ R+ and (t, τ) ∈ Rm × R,
differentiable by x (a finite number of times), analyticity at (t, τ) is preserved. In support of this

claim, we use the evaluation (10) and
m∑
j=0
|kj |1/2 ≤

√
m+ 1

(∑m
j=1 |kj |

)1/2
, which follows from the

Bunyakovskii-Schwartz inequality.
The solution (15) is multiperiodic at (t, τ), bounded at (x, t, τ) ∈ R+×Π

m
ρ ×Πρ and unique in the

class of bounded functions.

Theorem 1. The Problem (4), (6) under the condition (8) has at (x, t, τ) ∈ R+×Π
m
ρ ×Πρ the only

real-analytic (ω, θ)-periodic on (t, τ) solution v(x, t, τ) of the form (15) satisfying the

|v(x, t, τ)| ≤ c0||v0||/δm+1, x ∈ R+, (t, τ) ∈ Π
m
ρ−δ ×Πρ−δ (16)

with an arbitrary constant δ from the interval 0 < δ < ρ < 1, where c0 = c0(m)is a constant,
independent of δ and v0.
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The proof of all the positions of the theorem is given above. To complete it, it is necessary to verify
the validity of the estimate (16).

Indeed, from (15) we have the series

v(x, t, τ) =
∑

k∈Zm+1

vk(x)e
2πi

m∑
j=0

kjνjtj
(17)

with coefficients

vk(x) = v0
kexp

− m∑
j=0

√
πνjcj |kj |
a

(1 + isignkj)x

 , (18)

which satisfy the inequalities

|vk(x)| ≤ |v0
k|, k ∈ Zm+1. (19)

The case of absence of t is considered in [17; 201–202]. Then, by virtue of (10), from (19) it follows
that

|vk(x)| ≤ ||v0||e−ρ|k|. (20)

Consequently, according to the properties of the Fourier coefficients of analytic functions [18; 108],
the function (17) with coefficients (18) satisfying the evaluation (20) is analytic and obeys the constraint
(16).

2 Multiperiodic solution of a linear diffusion equation with a multi-frequency oscillating source

Consider the equation

∇cu(x, t, τ) ≡ Dcu(x, t, τ)− a2∂
2u(x, t, τ)

∂x2
= f(x, t, τ). (21)

Here a = const > 0, the function f(x, t, τ) is represented as a series

f(x, t, τ) =
∑

k∈Zm+1

fke
−γkx+2πi

m∑
j=0

kjνjtj
(22)

with constants of γk > 0, fk, k = (k0, k1, ..., km) ∈ Zm+1; νj = ω−1
j , j = 0,m with

|fk| ≤ ||f ||e−ρ|k|, (23)

where ||f || = sup
R+×Π

m
ρ ×Πρ

|f(x, t, τ)|.

The multiperiodic solution of the equation (21) will be sought in the form

u(x, t, τ) =
∑

k∈Zm+1

Wk(t, τ)e−γkx. (24)

Substituting (22) and (24) in (21) we obtain

∑
k∈Zm+1

[
DcWk(t, τ)− a2γ2

kWk(t, τ)
]
e−γkx =

∑
k∈Zm+1

fke
2πi

m∑
j=0

kjνjtj
e−γkx.
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Hence we have equations DcWk(t, τ) − a2γ2
kWk(t, τ) = fke

2πi
m∑
j=0

kjνjtj
, k ∈ Zm+1 which have (ω, θ)-

periodic by (t, τ) solutions

Wk(t, τ) =

τ∫
+∞

fke
2πi

m∑
j=0

kjνj(tj−cjτ+cjs)+a
2γ2k(τ−s)

ds =

=
fk

−a2γ2
k + 2πi

m∑
j=0

kjνjcj

e
2πi

m∑
j=0

kjνjtj
=

1

ak + ibk
fke

2πi
m∑
j=0

kjνjtj
, (25)

since conditions ∆k = ak + ibk 6= 0, where ak = −a2γ2
k , bk = 2π

m∑
j=0

kjνjcj , k ∈ Zm+1 are satisfied. By

substituting (25) into (24) we obtain solution

u∗(x, t, τ) =
∑

k∈Zm+1

1

ak + ibk
fke

2πi
m∑
j=0

kjνjtj−γkx
. (26)

To ensure the convergence of the series (26), we assume that the strong incommensurability
condition is fulfilled ν̃j = νjcj , j = 0,m of the form

|bk| = 2π

∣∣∣∣∣∣
m∑
j=0

kj ν̃j

∣∣∣∣∣∣ ≥ λ−1|k|−1, |k| =
m∑
j=0

|kj | > 0 (27)

with constants λ > 0 and l ≥ m+1, or the sequence ak satisfies the condition of boundedness condition
of the form

|ak| ≥ r, k ∈ Zm+1 (28)

with constant r > 0.
If one of the conditions (27) and (28), together with estimation (23) is satisfied, the series (26) will

converge absolutely and uniformly.

Thus we distinguish two kinds of running waves ψk(x, t, τ) = 2πi
m∑
j=0

kjνjtj − γkx, k ∈ Zm+1, for

which a) ∆k = ak + ibk = 0 and b) ∆k = ak + ibk 6= 0, k ∈ Zm+1. In the case a) uk = eψk(x,t,τ) will
turn out to be zeros of the operator ∇c, and in the case b) ∇cuk 6= 0.

Note that a similar result can be obtained when the real function f(x, t, τ) is defined for complex
values γk = αk + iβk, βk 6= 0.

So equation (21) under the conditions (22), (23) and under one of the conditions (27) and (28)
admit only (ω, θ)-periodic on (t, τ) solution (26) with values ∆k = ak + ibk 6= 0, k ∈ Zm+1.

In general, equation (21) has an infinite set of (ω, θ)-periodic solutions u(x, t, τ) by (t, τ), consisting
of the sum of the solutions v(x, t, τ) of the homogeneous equations (4) with ∆k = 0, k ∈ Zm+1 and
the solution u∗(x, t, τ) of the nonhomogeneous equation (21) with ∆k 6= 0, k ∈ Zm+1:

u(x, t, τ) = v(x, t, τ) + u∗(x, t, τ), (29)

where v(x, t, τ) is defined by the problem (4), (6), and u∗(x, t, τ) by the relation (26) and satisfies the
boundary condition
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u(0, t, τ) = v(0, t, τ) + u∗(0, t, τ). (30)

The solution (29) of the boundary value problem (21), (30) is singular.

Theorem 2. Under the conditions (22), (23) and (27) or (28) the equations (21) has (ω, θ)-periodic
solutions represented in the form (29) with terms (15) and (26).

If for some k0 = (k0
0, k

0
1, ..., k

0
m) we have ∆k0 = ak0 + ibk0 = 0, then we exclude the corresponding

k0-subject from relation (26) and introduce a function

u0(x, t, τ) =
α0τ + α1t1 + ...+ αmtm
α0 + α1c1 + ...+ αmcm

fk0e
2πi

m∑
j=0

k0j νjtj−γk0x
(31)

with an arbitrary constant vector α = (α0, α1, ..., αm) satisfying equation

∇cu0(x, t, τ) = fk0e
2πi

m∑
j=0

k0j νjtj−γk0x
. (32)

Then, based on (31) and (32), the solution (26) can be represented in the form

ũ∗(x, t, τ) = u0(x, t, τ) +
∑

k0 6=k∈Zm+1

fk
ak + ibk

e
2πi

m∑
j=0

kjνjtj−γkx
. (33)

Theorem 3. If ak0 + ibk0 = 0 and ak + ibk 6= 0 at k 6= k0, then under the conditions of Theorem 2,
equation (21) has a solution u(x, t, τ) = v(x, t, τ)+ ũ∗(x, t, τ), where v(x, t, τ) is defined by the formula
(6), and ũ∗(x, t, τ) by relation (33).

3 Multiperiodic solutions of a linear homogeneous integro-differential parabolic equations with finite
hereditarity

Consider (ω, θ)-periodic by (t, τ) equation

∇cu(x, t, τ) ≡ Dcu(x, t, τ)− a2∂
2u(x, t, τ)

∂x2
=

= a(x, t, τ)u(x, t, τ) +

τ∫
τ−ε

b(x, t, τ, t− cτ + cs, s)u(x, t− cτ + cs, s)ds.

This equation describes a multi-frequency phenomenon propagating along the semi-axis R+ 1) diffusion
with constant a2 6= 0, 2) linearly hereditary with finite period ε > 0 and kernel b = b(x, t, τ, σ, s), 3) at
each point x ∈ R+ it is linearly related to the external environment by the coefficient a = a(x, t, τ) and
4) flows with speed Dcu(x, t, τ) defined by differentiation along the direction of vector field of operator
Dc = ∂

∂τ +
∑m

j=1 cj
∂
∂tj

.
An important special case of the process is when its heredity and coupling to the external world

do not depend on x ∈ R+. In this regard, we introduce into consideration the equation

∇cu(x, t, τ) = a(t, τ)u(x, t, τ) +

τ∫
τ−ε

b(t, τ, σ, s)u(x, σ, s)ds, (34)

where the matrices a(t, τ) and b(t, τ, σ, s) are real-analytic functions.
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Consider the null operator ∇c, depending on m+1 running waves
m∑
j=0

(γjx+ 2πitjνjkj) of the form

vk(x, t, τ) = be2πi
∑m
j=0 tjνjkj+γjx (35)

with constant coefficient b 6= 0 and parameter γj = γj(kj , νj , cj , a).
It’s obvious that vk(x, t, τ) has the property

∇cvk(x, t, τ) = 0,

vk(x, t− cτ + cs, s) = b−1vk(0,−cτ + cs)vk(x, t, τ). (36)

Next, by replacing

u(x, t, τ) = U(t, τ)vk(x, t, τ) (37)

equation (34) on the basis of (35), (36) is reduced to

DcU(t, τ) = a(t, τ)U(t, τ) +

τ∫
τ−ε

b(t, τ, σ, s)b−1vk(0, σ, s)U(σ, s)ds.

Under the conditions

a(t, τ) ∈ Aω,θt,τ
(
Πm
ρ ×Πρ

)
, b(t, τ, σ, s) ∈ Aω,θ,ω,θt,τ,σ,s

(
Πm
ρ ×Πρ ×Πm

ρ ×Πρ

)
(38)

it is possible to show the existence of a single solution Uk(t, τ, σ, s) ≡ Uk(t, τ, t− cτ + cs, s), satisfying
the condition Uk(t, s, t, s) = E at τ = s and Uk(t, τ, σ, s) ∈ Aω,θ,ω,θt,τ,σ,s

(
Πm
ρ ×Πρ ×Πm

ρ ×Πρ

)
.

Suppose that Uk(t, τ, σ, s) satisfies the estimate

|Uk(t, τ, t− cτ + cs, s)| ≤ Λe−λ(τ−s) (39)

with constants Λ ≥ 1 and λ > 0 for any k ∈ Zm+1.
Then a solution of the form (37), which is bounded at x ∈ R+, t ∈ Rm and τ ≥ s and satisfies the

evaluation

|u(x, t, τ)| ≤ Λe−λ(τ−s)|vk(x, t, τ)| ≤ u0e−[λ(τ−s)+µx] (40)

with some constant u0, λ > 0 and µ > 0. Here µ > 0 is defined on the estimation of the zero (35)
operator ∇c.

Inequality (40) shows that under the condition (39) the homogeneous equation (34) has only a zero
bounded (ω, θ)-periodic solution on (t, τ).

Theorem 4. Under the conditions (38) and (39), equation (34) has only zero (ω, θ)-periodic in (t, τ)
solution.

4 Multiperiodic solution of a complete linear inhomogeneous integro-differential equation of parabolic
type

Let’s introduce the equation

∇cu(x, t, τ) = a(t, τ)u(x, t, τ) +

τ∫
τ−ε

b(t, τ, σ, s)u(x, σ, s)ds+
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+f(t, τ)exp

 m∑
j=0

[γjx+ 2πikjνjtj ]

 . (41)

Here vj(x, tj) = γjx+ 2πikjνjtj are the travelling waves defined by the equation

∇cexp[vj(x, tj)] = 0, j = 0,m (42)

with unknown parameters γj and constants, νj = ω−1
j , kj ∈ Z with the condition that x→ +∞ follows

expvj(x, tj)→ 0. (43)

The functions a(t, τ), b(t, τ, σ, s) and f(t, τ) are (ω, θ)-periodic by (t, τ) and (σ, s), belong to the
class Aω,θ,ω,θt,τ,σ,s

(
Πm
ρ ×Πρ ×Πm

ρ ×Πρ

)
.

From the conditions (42) and (43) we have a2γ2
j = ±2πikjνjcj , j = 0,m and c0 = 1 at t0 = τ .

Hence we have γj = ±
√

2πkjνjcj
a

1±i√
2
, kj > 0; γj = ±

√
2π|kj |νjcj

a
1∓i√

2
, kj < 0. To satisfy the condition

(43) we choose γj as

γj = −
√
π|kj |νjcj
a

(1− isignkj). (44)

Thus, by virtue of the latter relationship, the function

v(x, t, τ) = exp

 m∑
j=0

vj(x, tj)

 (45)

has the property
∇cv(x, t, τ) = 0, x ∈ R+, (t, τ) ∈ Rm ×R. (46)

It can be shown that

v(x, t− cτ + cs, s) = v(x, t, τ)exp

−2πi

m∑
j=0

kjνj(τ − s)

 . (47)

Next, enter the replacement
u(x, t, τ) = U(t, τ)v(x, t, τ) (48)

into the equation (41) and due to (47) we obtain

DcU(t, τ)v(x, t, τ) + U(t, τ)∇cv(x, t, τ) = a(t, τ)U(t, τ)v(x, t, τ)+

+

τ∫
τ−ε

b(t, τ, σ, s)exp

−2πi
m∑
j=0

kjνjcj(τ − s)

U(σ, s)v(x, t, τ)ds+ f(t, τ)v(x, t, τ).

Then, given (46), reducing by v(x, t, τ) 6= 0 we have the equation

DcU(t, τ) = a(t, τ)U(t, τ) +

τ∫
τ−ε

b(t, τ, σ, s)exp

−2πi

m∑
j=0

kjνjcj(τ − s)

U(σ, s)ds+ f(t, τ). (49)

The solution U(t, τ, σ, s) of the homogeneous equation corresponding to equation (49) with initial
condition U(t, s, t, s) = E satisfies the evaluation (40).
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Then it is easy to show that the inhomogeneous equation (49) admits a single (ω, θ)-periodic by
(t, τ) solution

U∗(t, τ) =

τ∫
−∞

U(t, τ, t− cτ + cs1, s1)f(t− cτ + cs1, s1)ds1. (50)

Then by substituting (50) in (48), we obtain a single bounded on x ∈ R+, (ω, θ)-periodic on (t, τ)
solution

u∗(x, t, τ) = U∗(t, τ)v(x, t, τ) (51)

of equations (41).

Theorem 5. Let the functions a, b and f belong to the class Aω,θ,ω,θt,τ,σ,s

(
Πm
ρ ×Πρ ×Πm

ρ ×Πρ

)
. Then

under conditions (43), (44) and (40) equation (41) has a unique bounded in x ∈ R+ (ω, θ)-periodic on
(t, τ) solution of the form (51) with factors (50) and (45).

By the superposition method, the theorem can be generalised when the free term f(x, t, τ) equation
(41) can be represented as

f(x, t, τ) =
∑

k∈Zm+1

fk(t, τ)exp

 m∑
j=0

[
γkjx+ 2πikjνjtj

] ,

where γkj is a constant from (44).
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Ж.А. Сартабанов1, Г.М. Айтенова2
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Параболалық типтi ақырлы-эредитарлы сызықты
интегралды-дифференциалдық теңдеудiң жартылай осьте

шектелген көппериодты шешiмi
Параболалық типтi сызықты интегралды-дифференциалдық теңдеулер жүйесiнiң кеңiстiк айныма-
лысы бойынша жартылай осьте шектелген және уақыт айнымалылары бойынша көппериодты шешi-
мiнiң бар болуы жөнiнде сұрақ қарастырылған. Шекаралық шартты сызықты бiртектi теңдеуде жә-
не сызықты бiртексiз теңдеуде уақыт айнымалысы бойынша көппериодты тербелiстердiң жеткiлiктi
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шарттары анықталған. Конвективтi-диффузиялы типтi ақырлы-эредитарлы интегралды-дифферен-
циалдық сызықты бiртектi және бiртексiз теңдеу зерттелген.

Кiлт сөздер: интегралды-дифференциалдық, ақырлы-эредитарлы, конвективтi, диффузиялы, пара-
болалық типтi, дифференциалдық оператор, Фурье қатары.

Ж.А. Сартабанов1, Г.М. Айтенова2

1Актюбинский региональный университет имени К. Жубанова, Актобе, Казахстан;
2Западно-Казахстанский университет имени М. Утемисова, Уральск, Казахстан

Ограниченное на полуоси многопериодическое решение линейного
конечно-эредитарного интегро-дифференциального уравнения

параболического типа
Рассмотрен вопрос о существовании ограниченного на полуоси по пространственной переменной и
многопериодического по временным переменным решения линейной интегро-дифференциальной сис-
темы параболического типа. Установлены достаточные условия многопериодических колебаний по
временным переменным в линейном однородном уравнении с граничным условием и в линейном
неоднородном уравнении. Исследованы линейное однородное и неоднородное конечно-эредитарное
интегро-дифференциальное уравнения конвективно-диффузионного типа.

Ключевые слова: интегро-дифференциальное, конечно-эредитарное, конвективный, диффузионный,
параболический тип, дифференциальный оператор, ряд Фурье.
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another one. Thus, it is very important to find the norm of the matrix operator, at least, to find upper and
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O±2 satisfying weaker conditions than Oinarov’s condition.
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Introduction

Let 1 < p, q <∞, 1
p + 1

p′ = 1. Let u = {ui}, v = {vi} be sequences of positive numbers, which will
be called the weight sequences. Let lpv the space of all sequences f = {fi}∞i=1 of real numbers such

that ‖f‖pv =

( ∞∑
i=1
|vifi|p

) 1
p

, 1 ≤ p <∞.

We consider the problem of boundedness for the following matrix operators

(
A+f

)
i

=
i∑

j=1

aijfj , i ≥ 1, (1)

(
A−f

)
j

=

∞∑
i=j

aijfi, j ≥ 1 (2)

from lpv into lqu, where aij > 0, i ≥ j ≥ 1 , i.e. the vaidity of the inequality

‖A±f‖qu ≤ C‖f‖pv, ∀f ∈ lpv. (3)

The matrix operators (1), (2) were studied in many papers in different sequence spaces. The almost
complete collection of these results is presented in the work by M. Stieglitz and H. Tietz [1]. There the
mappings of matrix operators are considered in 11 sequence spaces except its mapping from lpv into
lqu. The remaining case is still an open problem.

When aij = 1, i ≥ j ≥ 1 operators (1), (2) coincide with the discrete Hardy operators, which have
been studied by many researchers, and main results were obtained in [2–7].

In the general case, the question is open on conditions on the entries of a matrix (aij) that giving
boundedness of operators (1) and (2). For several classes of matrices, criteria for boundedness of the

∗Corresponding author.
E-mail: ainura-t@yandex.kz
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operators (1), (2) are known. One of the first studied classes was the class of operators matrices of
which satisfy the following discrete Oinarov’s condition: there exists d ≥ 1 such that

1

d
(aik + akj) ≤ aij ≤ d (aik + akj)

for all i ≥ k ≥ j ≥ 1 (see [8], [9]).
In 2012 in paper [10] the wide classes O+

n , O−n , n ≥ 0 of matrices were presented, which defined by
conditions on a matrix (aij) that are weaker than Oinarov’s condition, and the necessary and sufficient
conditions for boundedness of these operators for 1 < p ≤ q <∞ were obtained, where their matrices
belonged to these classes. However, the problem of boundedness of operators (1) and (2) with matrix
from the classes O+

n , O−n , n > 1 for the case 1 < q < p <∞ is still open. But the first results for this
case - the criteria of boundedness for matrix operators from O±1 are found in [11], [12].

In the present paper, we find criteria of boundedness for operators (1), (2) from lpv into lqu, where
their matrices belong to the class O±2 when 1 < q < p <∞.

Convention: The symbol M << K means that M ≤ cK, where c > 0 is a constant depending only
on unessential parameters. If M << K << M , then we write M ≈ K.

We assume gi = 0 when i < 1 and ∆−gi = gi − gi−1,∆+gi = gi − gi+1.

1 Preliminaries

Let’s give the definition of classes O±1 , O
±
2 .

Definition 1. Let (aij) be a matrix which is non-negative and non-decreasing in the first index for
all i ≥ j ≥ 1. A matrix (aij) belongs to the class O+

1 , if there exist a non-negative matrix (a1,0ij ), a
number r1 ≥ 1 such that the estimates

1

r1

(
a1,0ik + akj

)
≤ aij ≤ r1

(
a1,0ik + akj

)
hold for all i ≥ k ≥ j ≥ 1.

Definition 2. Let (aij) be a matrix which is non-negative and non-increasing in the second index
for all i ≥ j ≥ 1. A matrix (aij) belongs to the class O−1 , if there exist a non-negative matrix (a0,1ij ), a
number r̄1 ≥ 1 such that the estimates

1

r̄1

(
aik + a0,1kj

)
≤ aij ≤ r̄1

(
aik + a0,1kj

)
hold for all i ≥ k ≥ j ≥ 1.

Definition 3. Let (aij) be a matrix which is non-negative and non-decreasing in the first index for
all i ≥ j ≥ 1. A matrix (aij) belongs to the class O+

2 , if there exist a non-negative matrices (a2,0ij ),

(a2,1ij ), (a
(1)
ij ), a number r2 ≥ 1 such that (a

(1)
ij ) ∈ O+

1 ,

1

r2

(
a2,0ik + a2,1ik a

(1)
kj + akj

)
≤ aij ≤ r2

(
a2,0ik + a2,1ik a

(1)
kj + akj

)
for all i ≥ k ≥ j ≥ 1.

Definition 4. Let (aij) be a matrix which is non-negative and non-increasing in the second index
for all i ≥ j ≥ 1. A matrix (aij) belongs to the class O−2 , if there exist non-negative matrices (a0,2ij ),

(a1,2ij ), (a
(1)
ij ) , a number r̄1 ≥ 1 such that (a

(1)
ij ) ∈ O−1 ,

1

r̄2

(
aik + a

(1)
ik a

1,2
kj + a0,2kj

)
≤ aij ≤ r̄2

(
aik + a

(1)
ik a

1,2
kj + a0,2kj

)
for all i ≥ k ≥ j ≥ 1.
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Let us consider some examples of matrices that belong to the classes O±1 and O±2 .

Example 1. Let α > 0. Let {ai}∞i=1 be a non-decreasing positive sequence and {bi}∞i=1 be an arbitrary
positive sequence, such that ai ≥ bj , i ≥ j ≥ 1. Then aij = a

(1)
ij :=

(
ln ai

bj

)α
∈ O+

1 , when i ≥ j ≥ 1.

Indeed, for all i ≥ k ≥ j ≥ 1

a
(1)
ij =

(
ln
ai
ak
· ak
bj

)α
≈
(

ln
ai
ak

)α
+

(
ln
ak
bj

)α
= a1,0ik + a

(1)
kj ,

where a1,0ik =
(

ln ai
ak

)α
.

Example 2. Let {ai}∞i=1 and {bi}∞i=1 satisfy the conditions from Example 1. Moreover, we assume

that {ωi}∞i=1 is a non-negative sequence. Then aij = a
(2)
ij :=

i∑
s=j

ωs

(
ln as

bj

)α
∈ O+

2 , i ≥ j ≥ 1.

Indeed, for all i ≥ k ≥ j ≥ 1 we have

a
(2)
ij =

i∑
s=j

ωs

(
ln
as
bj

)α
≈

k∑
s=j

ωs

(
ln
as
bj

)α
+

i∑
s=k

ωs

(
ln
as
bj

)α
≈

≈ a(2)kj +
i∑

s=k

ωs

(
ln
as
ak

)α
+

(
ln
ak
bj

)α i∑
s=k

ωs =

= a2,0ik + a2,1ik a
(1)
kj + a

(2)
kj ,

where a(1)kj =
(

ln ak
bj

)α
∈ O+

1 , a
2,0
ik =

i∑
s=k

ωs

(
ln as

ak

)α
, a2,1ik =

i∑
s=k

ωs, i ≥ k ≥ j ≥ 1.

In the same way, one can show that a(1)ij =
(

ln ai
bj

)α
∈ O−1 and a

(2)
ij :=

i∑
s=j

ωs

(
ln as

bj

)α
∈ O−2 ,

i ≥ j ≥ 1, if {ai}∞i=1 is an arbitrary positive sequence and {bi}∞i=1 is a non-decreasing positive sequence,
such that ai ≥ bj , i ≥ j ≥ 1.

Remark 1. As it is shown in [10] the matrices (a2,0ij ), (a2,1ij ), (a
(1)
ij ), (a0,2ij ), (a1,2ij ) can be considered

non-decreasing in i and non-increasing in j.

Lemma A. [9] Let γ > 0, 1 ≤ n < N ≤ ∞ and let {hk} be a non-negative sequence. Then(
N∑
k=n

hk

)γ
≈

N∑
k=n

(
k∑
i=n

hi

)γ−1
hk, (4)

(
N∑
k=n

hk

)γ
≈

N∑
k=n

(
N∑
i=k

hi

)γ−1
hk. (5)

Let us state the necessary assertions from [5], [11] in a convenient form.
Theorem A. Let 1 < q < p <∞. The inequality ∞∑

k=1

∣∣∣∣∣∣
k∑
j=1

fj

∣∣∣∣∣∣
q

uqk


1
q

≤ C

( ∞∑
k=1

|fkvk|p
) 1

p

,∀f ∈ lpv (6)
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holds if and only if

F =

 ∞∑
k=1

 ∞∑
j=k

uqj


p

p−q ( k∑
i=1

v−p
′

i

) p(q−1)
p−q

v−p
′

k


p−q
pq

<∞.

Moreover, F ≈ C, where C is the best constant in (6).
Theorem B. Let 1 < q < p < ∞ and the matrix (aij) belongs to the class O+

1 . Then inequality (3)
for operator (1) holds if and only if B = max{B0, B1} <∞, where

B0 =

 ∞∑
k=1

 ∞∑
j=k

(a1,0jk )quqj


p

p−q ( k∑
i=1

v−p
′

i

) p(q−1)
p−q

v−p
′

k


p−q
pq

,

B1 =

 ∞∑
k=1

 ∞∑
j=k

uqj


q

p−q ( k∑
i=1

ap
′

kiv
−p′
i

) q(p−1)
p−q

uqk


p−q
pq

.

Moreover, B ≈ C, where C is the best constant in (3).

2 Main results

Our main results read.
Theorem 1. Let 1 < q < p <∞ and (aij) ∈ O+

2 . Then operator (1) is bounded from lpv into lqu if
and only if M+ = max{M+

2,0,M
+
2,1,M

+
2,2}, where

M+
2,0 =

 ∞∑
i=1

( ∞∑
s=i

(a2,0si )quqs

) p
p−q

 i∑
j=1

v−p
′

j


p(q−1)
p−q

v−p
′

i


p−q
pq

,

M+
2,1 =

 ∞∑
i=1

( ∞∑
s=i

(
a2,1si

)q
uqs

) p
p−q

 i∑
j=1

(
a
(1)
ij

)p′
v−p

′

j


p(q−1)
p−q

∆−

 i∑
j=1

(
a
(1)
ij

)p′
v−p

′

j




p−q
pq

,

M+
2,2 =

 ∞∑
i=1

( ∞∑
s=i

uqs

) p
p−q

 i∑
j=1

ap
′

ijv
−p′
j


p(q−1)
p−q

∆−

 i∑
j=1

(aij)
p′v−p

′

j




p−q
pq

.

Moreover, ‖A+‖pv→qu ≈M+, where ‖A+‖pv→qu is the norm of operator A+ from lpv into lqu.
Our corresponding result for operator (2) reads as follows.
Theorem 2. Let 1 < q < p <∞ and (aij) ∈ O−2 . Then operator (2) is bounded from lpv into lqu if

and only ifM− = max{M−0,2,M
−
1,2,M

−
2,2}, where

M−0,2 =

 ∞∑
i=1

(
i∑

s=1

(a0,2is )quqs

) p
p−q

 ∞∑
j=1

v−p
′

j


p(q−1)
p−q

v−p
′

i


p−q
pq

,
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M−1,2 =

 ∞∑
i=1

(
i∑

s=1

(
a1,2is

)q
uqs

) p
p−q

 ∞∑
j=i

(
a
(1)
ji

)p′
v−p

′

j


p(q−1)
p−q

∆+

 ∞∑
j=i

(
a
(1)
ji

)p′
v−p

′

j




p−q
pq

,

M−2,2 =

 ∞∑
i=1

(
i∑

s=1

uqs

) p
p−q

 ∞∑
j=i

ap
′

jiv
−p′
j


p(q−1)
p−q

∆+

 ∞∑
j=i

(aji)
p′v−p

′

j




p−q
pq

.

Moreover, ‖A−‖pv→qu ≈M−, where ‖A−‖pv→qu is the norm of operator A− from lpv into lqu.
Using the conjugacy of operators (1) and (2) from Theorem 1 and Theorem 2 we obtain the following

results.
Theorem 3. Let 1 < q < p <∞ and (aij) ∈ O+

2 . Then operator (2) is bounded from lpv into lqu if
and only if M− = max{M−2,0,M

−
2,1,M

−
2,2}, where

M−2,0 =

 ∞∑
i=1

( ∞∑
s=i

(a2,0si )p
′
v−p

′
s

) q(p−1)
p−q

 i∑
j=1

uqj


q

p−q

uqi


p−q
pq

,

M−2,1 =

 ∞∑
i=1

( ∞∑
s=i

(a2,1si )p
′
v−p

′
s

) q(p−1)
p−q

 i∑
j=1

(a
(1)
ij )quqj


q

p−q

∆−

 i∑
j=1

(a
(1)
ij )quqj




p−q
pq

,

M−2,2 =

 ∞∑
i=1

( ∞∑
s=i

v−p
′

s

) q(p−1)
p−q

 i∑
j=1

aqiju
q
j


q

p−q

∆−

 i∑
j=1

aqiju
q
j




p−q
pq

.

Moreover, ‖A−‖pv→qu ≈M−, where ‖A−‖pv→qu is the norm of operator A− from lpv into lqu.
Theorem 4. Let 1 < q < p < ∞ and (aij) ∈ O−2 . Then operator (1) is bounded from lpv into lqu if

and only ifM+ = max{M+
0,2,M

+
1,2,M

+
2,2}, where

M+
0,2 =

 ∞∑
i=1

(
i∑

s=1

(a2,0is )p
′
v−p

′
s

) p
p−q

 ∞∑
j=i

uqj


p(q−1)
p−q

uqi


p−q
pq

,

M+
1,2 =

 ∞∑
i=1

(
i∑

s=1

(a1,2is )p
′
v−p

′
s

) p
p−q

 ∞∑
j=i

(a
(1)
ji )quqj


p(q−1)
p−q

∆+

 ∞∑
j=i

(a
(1)
ji )quqj




p−q
pq

,

M+
2,2 =

 ∞∑
i=1

(
i∑

s=1

v−p
′

s

) p
p−q

 ∞∑
j=i

aqjiu
q
j


p(q−1)
p−q

∆+

 ∞∑
j=i

aqjiu
q
j




p−q
pq

.

Moreover, ‖A+‖pv→qu ≈M+, where ‖A+‖pv→qu is the norm of operator A+ from lpv into lqu.
Since the proof of Theorem 2 is completely analogous to the proof of Theorem 1, we introduce the

proof of Theorem 1.
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Proof. Necessary. Let operator (1) be bounded from lpv into lqu, ‖A+‖pv→qu <∞, i.e. the following
inequality holds:  ∞∑

i=1

 i∑
j=1

aijfj

q

uqi


1
q

≤ ‖A+‖pv→qu

( ∞∑
i=1

fpi v
p
i

) 1
p

, (7)

for all non-negative sequences f ∈ lpv, in particular, for non-negative finite sequences f ∈ lpv. By
applying (4), a relation aik >> a2,0ij , i ≥ j ≥ k ≥ 1 from Definition 3 and using the Abel transform, we
obtain

∞∑
i=1

(aijfj)
q uqi ≈

∞∑
i=1

i∑
j=1

aijfj

(
j∑
s=1

aisfs

)q−1
uqi >>

>>
∞∑
i=1

i∑
j=1

(a2,0ij )qfj

(
j∑
s=1

fs

)q−1
uqi =

∞∑
j=1

fj

(
j∑
s=1

fs

)q−1 ∞∑
i=j

(a2,0ij )quqi =

=
∞∑
j=1

∆−

 j∑
n=1

fn

(
n∑
s=1

fs

)q−1 ∞∑
i=j

(a2,0ij )quqi =

=
∞∑
j=1

 j∑
n=1

fn

(
n∑
s=1

fs

)q−1∆+

 ∞∑
i=j

(a2,0ij )quqi

+ lim
N→∞

 N∑
n=1

fn

(
n∑
s=1

fs

)q−1 ∞∑
i=N+1

(a2,0iN+1)
quqi ≈

≈
∞∑
j=1

(
j∑
s=1

fs

)q
∆+

 ∞∑
i=j

(a2,0ij )quqi

+ lim
N→∞

 N∑
n=1

fn

(
n∑
s=1

fs

)q−1 ∞∑
i=N+1

(a2,0iN+1)
quqi .

Due to the finiteness of f and a2,0ij is non-increasing in j, we have

lim
N→∞

 N∑
n=1

fn

(
n∑
s=1

fs

)q−1 ∞∑
i=N+1

(a2,0iN+1)
quqi = 0.

Then
∞∑
i=1

 i∑
j=1

aijfj

q

uqi >>
∞∑
j=1

(
j∑
s=1

fs

)q
∆+

 ∞∑
i=j

(a2,0ij )quqi

 .

Hence and from (7) it follows that ∞∑
j=1

(
j∑
s=1

fs

)q
∆+

 ∞∑
i=j

(a2,0ij )quqi

 1
q

<< ‖A+‖pv→qu

( ∞∑
i=1

(fivi)
p

) 1
p

.

Then according to Theorem A, we get

∞ > ‖A+‖pv→qu >>

 ∞∑
k=1

 ∞∑
j=k

∆+

 ∞∑
i=j

(a2,0ij )quqi


p

p−q ( k∑
s=1

v−p
′

s

) p(q−1)
p−q

v−p
′

k


p−q
pq

=

=

 ∞∑
k=1

( ∞∑
i=k

(a2,0ik )quqi

) p
p−q
(

k∑
s=1

v−p
′

s

) p(q−1)
p−q

v−p
′

k


p−q
pq

= M+
2,0. (8)
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Inequality (7) holds if and only if the following dual inequality ∞∑
j=1

 ∞∑
i=j

aijgi

p′

v−p
′

j


1
p′

<< ‖A+‖pv→qu

( ∞∑
i=1

(giu
−1
i )q

′

) 1
q′

(9)

holds for all non-negative sequences g ∈ lq′,u−1 , in particular, for non-negative finite sequences g ∈
lq′,u−1 . Using (5), a relation aij << akj , k ≥ i from Definition 3 and applying the Abel transform, we
obtain

∞∑
j=1

 ∞∑
i=j

aijgi

p′

v−p
′

j ≈
∞∑
j=1

∞∑
i=j

aijgi

( ∞∑
s=i

asjgs

)p′−1
v−p

′

j >>

>>
∞∑
j=1

∞∑
i=j

ap
′

ijgi

( ∞∑
s=i

gs

)p′−1
v−p

′

j =
∞∑
i=1

gi

( ∞∑
s=i

gs

)p′−1 i∑
j=1

ap
′

ijv
−p′
j =

=
∞∑
i=1

∆+

 ∞∑
n=i

gn

( ∞∑
s=n

gs

)p′−1 i∑
j=1

ap
′

ijv
−p′
j =

=
∞∑
i=1

 ∞∑
n=i

gn

( ∞∑
s=n

gs

)p′−1∆−

 i∑
j=1

ap
′

ijv
−p′
j

+ lim
N→∞

 ∞∑
n=N+1

gn

( ∞∑
s=n

gs

)p′−1 N∑
j=1

ap
′

Njv
−p′
j ≈

≈
∞∑
i=1

( ∞∑
s=i

gs

)p′
∆−

 i∑
j=1

ap
′

ijv
−p′
j

+ lim
N→∞

 ∞∑
n=N+1

gn

( ∞∑
s=n

gs

)p′−1 N∑
j=1

ap
′

Njv
−p′
j .

Due to the finiteness of g we have, that

lim
N→∞

 ∞∑
n=N+1

gn

( ∞∑
s=n

gs

)p′−1 N∑
j=1

ap
′

Njv
−p′
j = 0.

Since ∆−(
∑i

j=1 a
p′

ijv
−p′
j ) ≥ 0, we assume ωi =

(
∆−(

∑i
j=1 a

p′

ijv
−p′
j )

) 1
p′ . Then

∞∑
j=1

 ∞∑
i=j

aijgi

p′

v−p
′

j >>
∞∑
i=1

( ∞∑
s=i

gs

)p′
ωp
′

i .

Hence and from (9) it follows ∞∑
i=1

( ∞∑
s=i

gs

)p′
ωp
′

i

 1
p′

<< ‖A+‖pv→qu

( ∞∑
i=1

(giu
−1
i )q

′

) 1
q′

. (10)

We pass to dual inequality (10), i.e. ∞∑
j=1

(
j∑
s=1

fs

)q
uqj

 1
q

<< ‖A+‖pv→qu

( ∞∑
i=1

(
fiω
−1
i

)p) 1
p

, 0 ≤ f ∈ lpv.
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Then by applying Theorem A, we obtain

∞ > ‖A+‖pv→qu >>

 ∞∑
k=1

 ∞∑
j=k

uqj


p

p−q ( k∑
s=1

ωp
′
s

) p(q−1)
p−q

ωp
′

k


p−q
pq

=

=

 ∞∑
k=1

 ∞∑
j=k

uqj


p

p−q
 k∑
i=1

∆−

 i∑
j=1

ap
′

ijv
−p′
j


p(q−1)
p−q

∆−

 k∑
j=1

ap
′

kjv
−p′
j




p−q
pq

=

=

 ∞∑
k=1

 ∞∑
j=k

uqj


p

p−q
 k∑
j=1

ap
′

kjv
−p′
j


p(q−1)
p−q

∆−

 k∑
j=1

ap
′

kjv
−p′
j




p−q
pq

= M+
2,2. (11)

From Definition 3 it follows, that aij >> a2,1ik a
(1)
kj , i ≥ k ≥ j ≥ 1. Then for i ≥ k ≥ j ≥ 1

aij >> a2,1ik a
(1)
kj = a2,1ik a

(1)
kj θk, (12)

where

θk =

{
1, j ≤ k ≤ i,
0, k > i, k < j.

Let ϕ = {ϕi}∞i=1 be a sequence of non-negative numbers such that
∑∞

i=1 ϕi = 1. Multiplying both parts
of (12) to ϕ and summing up by k ∈ N , we have

aij >>
i∑

k=j

a2,1ik a
(1)
kj ϕk. (13)

Then using (13) and changing the order of summation twice, we have

∞∑
i=1

uqi

 i∑
j=1

aijfj

q

=
∞∑
i=1

uqi

i∑
j=1

aijfj

(
i∑

s=1

aisfs

)q−1
≥

≥
∞∑
i=1

uqi

i∑
j=1

 i∑
k=j

a2,1ik a
(1)
kj ϕk

 fj

(
i∑

s=1

(
i∑

τ=s

a2,1iτ a
(1)
τs ϕτ

)
fs

)q−1
=

=
∞∑
i=1

uqi

i∑
k=1

ϕka
2,1
ik

k∑
j=1

a
(1)
kj fj

(
i∑

τ=1

ϕτa
2,1
iτ

τ∑
s=1

a(1)τs fs

)q−1
≥

≥
∞∑
k=1

ϕk

 k∑
j=1

a
(1)
kj fj

 ∞∑
i=k

uqia
2,1
ik

(
i∑

τ=k

ϕτa
2,1
iτ

τ∑
s=1

a(1)τs fs

)q−1
>>

>>

∞∑
k=1

 k∑
j=1

a
(1)
kj fj

q
∞∑
i=k

uqia
2,1
ik

(
i∑

τ=k

ϕτa
2,1
iτ

)q−1
ϕk =
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=
∞∑
k=1

 k∑
j=1

a
(1)
kj fj

q

hk, (14)

where hk =
∞∑
i=k

uqia
2,1
ik

(
i∑

τ=k

ϕτa
2,1
iτ

)q−1
ϕk. From (7) and (14) it follows

 ∞∑
k=1

 k∑
j=1

a
(1)
kj fj

q

hk


1
q

<< ‖A+‖pv→qu

( ∞∑
i=1

(fivi)
p

) 1
p

, 0 ≤ f ∈ lpv.

By applying Theorem B and taking into account (4), we get

‖A+‖pv→qu >> B1 :=

 ∞∑
k=1

 ∞∑
j=k

hj


q

p−q ( k∑
i=1

(a
(1)
ki )p

′
v−p

′

i

) q(p−1)
p−q

hk


p−q
pq

.

Using that B1 <∞ and
k∑
i=1

(a
(1)
ki )p

′
v−p

′

i is increasing in k, we have

0 = lim
N→∞

∞∑
k=N

hk

 ∞∑
j=k

hj


q

p−q ( k∑
i=1

(a
(1)
ki )p

′
v−p

′

i

) q(p−1)
p−q

≥

≥ lim
N→∞

∞∑
k=N

hk

 ∞∑
j=k

hj


q

p−q ( N∑
i=1

(a
(1)
Ni)

p′v−p
′

i

) q(p−1)
p−q

.

Further, using this relation to the Abel transform in B1, (5) and the following elementary estimate

bγ − aγ ≈ bγ−1(b− a), (15)

where b > a > 0, γ > 0, we obtain

‖A+‖pv→qu >> B1 ≈

 ∞∑
k=1

∆+

 ∞∑
j=k

hj

 ∞∑
s=j

hs


q

p−q

( k∑
i=1

(a
(1)
ki )p

′
v−p

′

i

) q(p−1)
p−q


p−q
pq

=

=

 ∞∑
k=1

 ∞∑
j=k

hj

 ∞∑
s=j

hs


q

p−q

∆−

(
k∑
i=1

(a
(1)
ki )p

′
v−p

′

i

) q(p−1)
p−q


p−q
pq

≈

≈

 ∞∑
k=1

 ∞∑
j=k

hj


p

p−q

∆−

(
k∑
i=1

(a
(1)
ki )p

′
v−p

′

i

) q(p−1)
p−q


p−q
pq

≥

≥

 ∞∑
k=1

 ∞∑
j=k

hj


p

p−q ( k∑
i=1

(a
(1)
ki )p

′
v−p

′

i

) p(q−1)
p−q

∆−

(
k∑
i=1

(a
(1)
ki )p

′
v−p

′

i

)
p−q
pq

,
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where

∞∑
j=k

hj =
∞∑
j=k

∞∑
i=j

uqia
(2,1)
ij

 i∑
τ=j

ϕτa
(2,1)
iτ

q−1

ϕj =
∞∑
i=k

uqi

i∑
j=k

a
(2,1)
ij ϕj

 i∑
τ=j

ϕτa
(2,1)
iτ

q−1

≈

≈
∞∑
i=k

uqi

 i∑
j=k

ϕja
(2,1)
ij

q

.

Therefore, due to ∀ϕ :
∞∑
k=1

ϕk = 1, we have

‖A+‖pv→qu >>

>> sup
ϕ

 ∞∑
k=1

 ∞∑
i=k

uqi

 i∑
j=k

ϕja
2,1
ij

q
p

p−q ( k∑
s=1

(a
(1)
ks )p

′
v−p

′
s

) p(q−1)
p−q

∆−

(
k∑
s=1

(a
(1)
ks )p

′
v−p

′
s

)
p−q
pq

.

Assume, that ϕj = δj(m),m ≥ 1, where

δj(m) =

{
1, j = m,

0, j 6= m.

Then taking into account that a2,1ij is non-increasing in j
‖A+‖pv→qu >>

>> sup
m≥1

 ∞∑
k=1

 ∞∑
i=k

uqi

 i∑
j=k

a2,1ij δj(m)

q
p

p−q ( k∑
s=1

(a
(1)
ks )p

′
v−p

′
s

) p(q−1)
p−q

∆−

(
k∑
s=1

(a
(1)
ks )p

′
v−p

′
s

)
p−q
pq

=

=

 ∞∑
k=1

( ∞∑
i=k

uqi (a
2,1
ik )q

) p
p−q
(

k∑
s=1

(a
(1)
ks )p

′
v−p

′
s

) p(q−1)
p−q

∆−

(
k∑
s=1

(a
(1)
ks )p

′
v−p

′
s

)
p−q)
pq

= M+
2,1. (16)

Thus, from (8), (11) and (16) it follows

M+ = max{M+
2,0,M

+
2,1,M

+
2,2} << ‖A

+‖pv→qu <∞. (17)

Sufficiency. Let M+ <∞ and 0 ≤ f ∈ lpv. Z is the set of integer numbers. Let’s assume
n∑
i=k

= 0 when

k > n and aij = 0 when i < j.
For all i ≥ 1 we define the following set of integer numbers:

Ti = {k ∈ Z : (r2 + 1)k ≤ (A+f)i},

where r2 is the constant from Definition 3 and we assume that ki = maxTi. Then

(r2 + 1)ki ≤ (A+f)i < (r2 + 1)ki+1,∀i ∈ N. (18)

Let m1 = 1 and M1 = {i ∈ N : ki = k1 = km1}. Suppose that m2 is such that supM1 + 1 = m2.
Obviouslym2 > m1 and if the setM1 is upper bounded, thenm2 <∞ andm2−1 = maxM1 = supM1.
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Suppose that we have found numbers 1 = m1 < m2 < ... < ms < ∞, s ≥ 1, then we define ms+1 by
ms+1 = supMs + 1, where Ms = {i ∈ N : ki = kms}.

Let N0 = {s ∈ N : ms <∞}. Further, we assume that kms = ns, s ∈ N0. From the definition of ms

and from (18) it follows that, for s ∈ N0

(r2 + 1)ns ≤ (A+f)i < (r2 + 1)ns+1,ms ≤ i ≤ ms+1 − 1 (19)

and N =
⋃
s∈N0

[ms,ms+1 − 1], where [ms,ms+1) ∩ [ml,ml+1) 6= 0.
By using (19), Definition 3 and ns−2 +1 ≤ ns−1, which follows from the inequality ns−2 < ns−1 <

ns, we can estimate the value (r2 + 1)ns−1:

(r2 + 1)ns−1 = (r2 + 1)ns − r2(r2 + 1)ns−1 ≤ (r2 + 1)ns − r2(r2 + 1)ns−2+1 ≤

≤ (A+f)ms − r2(A+f)ms−1−1 =

ms∑
i=1

amsifi − r2
ms−1−1∑
i=1

ams−1ifi =

=

ms∑
i=ms−1

amsifi +

ms−1−1∑
i=1

[amsi − r2ams−1−1i]fi <<

<<

ms∑
i=ms−1

amsifi +

ms−1−1∑
i=1

[r2a
2,0
msms−1−1 + r2a

2,1
msms−1−1a

(1)
ms−1−1i]fi <<

<<

ms∑
i=ms−1

amsifi + r2a
2,0
msms−1−1

ms−1−1∑
i=1

fi + r2a
2,1
msms−1−1

ms−1−1∑
i=1

a
(1)
ms−1−1ifi. (20)

Then taking into account (20), we get

‖A+f‖qqu =
∑
s∈N0

ms+1−1∑
i=ms

uqi (A
+f)qi <

∑
s∈N0

(r2 + 1)(ns+1)q

ms+1−1∑
i=ms

uqi ≤

≤ (r2+1)2q
∑
s∈N0

 ms∑
i=ms−1

amsifi + r2a
2,0
msms−1−1

ms−1−1∑
i=1

fi + r2a
2,1
msms−1−1

ms−1−1∑
i=1

a
(1)
ms−1−1ifi

q
ms+1−1∑
i=ms

uqi <<

<<
∑
s∈N0

 ms∑
i=ms−1

amsifi

q
ms+1−1∑
i=ms

uqi +
∑
s∈N0

(
a2,0msms−1−1

)q (ms−1−1∑
i=1

fi

)q ms+1−1∑
i=ms

uqi+

+
∑
s∈N0

(
a2,1msms−1−1

)q (ms−1−1∑
i=1

ams−1−1ifi

)q ms+1−1∑
i=ms

uqi =

= S2,2 + S2,0 + S2,1. (21)

By applying Hölder’s inequality twice and (5), we estimate S2,2.

S2,2 =
∑
s∈N0

 ms∑
i=ms−1

amsifiviv
−1
i

q
ms+1−1∑
i=ms

uqi ≤
∑
s∈N0

 ms∑
i=ms−1

(fivi)
p


q
p
 ms∑
i=ms−1

ap
′

msi
v−p

′

i


q
p′ ms+1−1∑

i=ms

uqi ≤
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≤

∑
s∈N0

ms∑
i=ms−1

(fivi)
p


q
p

∑
s∈N0

 ms∑
i=ms−1

ap
′

msi
v−p

′

i


q(p−1)
p−q (

ms+1−1∑
i=ms

uqi

) p
p−q


p−q
p

≤

≤ 2
q
p ‖f‖qpv

∑
s∈N0

 ms∑
i=ms−1

ap
′

msi
v−p

′

i


q(p−1)
p−q ms+1−1∑

i=ms

uqi

ms+1−1∑
j=i

uqj


q

p−q


p−q
p

≤

≤ ‖f‖qpv

 ∞∑
i=1

uqi

 ∞∑
j=i

uqj


q

p−q ( i∑
n=1

ap
′

inv
−p′
n

) q(p−1)
p−q


p−q
p

= ‖f‖qlpvM̃
q
2,2,

where

M̃
pq
p−q

2,2 =

∞∑
i=1

uqi

 ∞∑
j=i

uqj


q

p−q ( i∑
n=1

ap
′

inv
−p′
n

) q(p−1)
p−q

.

Using the Abel transform, (5) and (15), we have

M̃
pq
p−q

2,2 =
∞∑
i=1

∆+

 ∞∑
k=i

uqk

 ∞∑
j=k

uqj


q

p−q

( i∑
n=1

ap
′

inv
−p′
n

) q(p−1)
p−q

=

=

∞∑
i=1

 ∞∑
k=i

uqk

 ∞∑
j=k

uqj


q

p−q

∆−

(
i∑

n=1

ap
′

inv
−p′
n

) q(p−1)
p−q

≈

≈
∞∑
i=1

( ∞∑
k=i

uqk

) p
p−q
(

i∑
n=1

ap
′

inv
−p′
n

) p(q−1)
p−q

∆−

(
i∑

n=1

ap
′

inv
−p′
n

)
= M+

2,2 <∞.

Therefore
S2,2 << (M+

2,2)
q‖f‖qpv. (22)

To estimate S2,0, we assume

ηi(ms−1 − 1) =


∑
s∈N0

(
a2,0msms−1−1

)q ms+1−1∑
i=ms

uqi , i = ms−1 − 1,

0, i 6= ms−1 − 1.

and we use Theorem A.

S2,0 =
∑
s∈N0

(
a2,0msms−1−1

)q (ms−1−1∑
i=1

fi

)q ms+1−1∑
i=ms

uqi =

∞∑
n=1

(
n∑
i=1

fi

)q
ηn <<

<<

 ∞∑
n=1

( ∞∑
i=n

ηj

) p
p−q

 n∑
j=1

v−p
′

j


p(q−1)
p−q

v−p
′

n


p−q
p

‖f‖qpv. (23)
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Taking into account Remark 1, we estimate
∞∑
i=n

ηi:

∞∑
i=n

ηi =
∑

s:ms−1−1≥n

(
a2,0msms−1−1

)q ms+1−1∑
i=ms

uqi =
∑

s:ms−1−1≥n

ms+1−1∑
i=ms

(
a2,0msms−1−1

)q
uqi <<

∞∑
i=n

(
a2,0in

)q
uqi .

Hence and from (23), we have

S2,0 <<

 ∞∑
n=1

( ∞∑
i=n

(
a2,0in

)q
uqi

) p
p−q

 n∑
j=1

v−p
′

j


p(q−1)
p−q

v−p
′

n


p−q
pq

‖f‖qpv = (M+
2,0)

q‖f‖qpv. (24)

Now, by using Theorem B we estimate S2,1.

S2,1 =
∑
s∈N0

(
a2,1msms−1−1

)q (ms−1−1∑
i=1

a
(1)
ms−1−1ifi

)q ms+1−1∑
i=ms

uqi <<

<<
∑
s∈N0

(
ms−1−1∑
i=1

a
(1)
ms−1−1 ifi

)q ms+1−1∑
i=ms

(
a2,1ims−1−1

)q
uqi =

=
∞∑
k=1

(
k∑
i=1

a
(1)
ki fi

)q
θk ≤

(
max{B̃0, B̃1}

)q
‖f‖qlpv , (25)

where θk =
∑
s∈N0

ms+1−1∑
n=ms

(
a2,1nms−1−1

)q
uqn when k = ms−1 − 1 and θk = 0 when k 6= ms−1 − 1,

B̃0 =

 ∞∑
k=1

 ∞∑
j=k

(
a1,0jk

)q
θj


p

p−q ( k∑
i=1

v−p
′

i

) p(q−1)
p−q

v−p
′

k


p−q
pq

,

B̃1 =

 ∞∑
k=1

 ∞∑
j=k

θj


q

p−q ( k∑
i=1

(
a
(1)
ki

)p′
v−p

′

i

) q(p−1)
p−q

θk


p−q
pq

.

Let’s evaluate the expression
∞∑
j=k

(
a1,0jk

)q
θj in B̃0.

∞∑
j=k

(
a1,0jk

)q
θj =

∑
s:ms−1−1≥k

(
a1,0ms−1−1 k

)q ms+1−1∑
n=ms

(
a2,1nms−1−1

)q
uqn =

=
∑

s:ms−1−1≥k

ms+1−1∑
n=ms

(
a2,1nms−1−1

)q (
a1,0ms−1−1 k

)q
uqn.

In [10] it is shown that a2,1nms−1−1a
1,0
ms−1−1 k << a2,0nk when n ≥ ms−1 − 1 ≥ k ≥ 1. Then

∞∑
j=k

(
a1,0jk

)q
θj <<

∞∑
n=k

(
a2,0nk

)q
uqn.
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Thus

B̃0 <<

 ∞∑
k=1

( ∞∑
n=k

(
a2,0nk

)q
uqn

) p
p−q
(

k∑
i=1

v−p
′

i

) p(q−1)
p−q

v−p
′

k


p−q
pq

= M+
2,0 <∞. (26)

By using the Abel transform, (5) and (15) we estimate the value B̃1.

B̃
pq
p−q

1 =
∞∑
k=1

∆+

 ∞∑
i=k

θi

 ∞∑
j=i

θj


q

p−q

( k∑
i=1

(
a
(1)
ki

)p′
v−p

′

i

) q(p−1)
p−q

=

=
∞∑
k=1

 ∞∑
i=k

θi

 ∞∑
j=i

θj


q

p−q

∆−

(
k∑
i=1

(
a
(1)
ki

)p′
v−p

′

i

) q(p−1)
p−q

≈

≈
∞∑
k=1

( ∞∑
i=k

θi

) p
p−q
(

k∑
i=1

(
a
(1)
ki

)p′
v−p

′

i

) p(q−1)
p−q

∆−

(
k∑
i=1

(
a
(1)
ki

)p′
v−p

′

i

)
. (27)

Since
∞∑
i=k

θi =
∑

s:ms−1−1≥k

ms+1−1∑
n=ms

(
a2,1n,ms−1−1

)q
uqn ≤

∞∑
n=k

(
a2,1nk

)q
uqn,

hence and from (27), it follows

B̃1 <<

 ∞∑
k=1

( ∞∑
n=k

(
a2,1nk

)q
uqn

) p
p−q
(

k∑
i=1

(
a
(1)
ki

)p′
v−p

′

i

) p(q−1)
p−q

∆−

(
k∑
i=1

(
a
(1)
ki

)p′
v−p

′

i

)
p−q
pq

= M+
2,1.

(28)
Thus, from (25), (26) and (28), we obtain

S2,1 <<
(

max{M+
2,0,M

+
2,1}
)q
‖f‖qlpv .

Hence and from (21), (22), (24) we have

‖A+f‖qu << max{M+
2,0,M

+
2,1,M

+
2,2}‖f‖lpv = M+‖f‖lpv ,

i.e. the operator A+ is bounded from lpv into lqu and takes place for the norm ‖A+‖pv→qu << M+,
which with (17) gives us ‖A+‖pv→qu ≈M+.
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Л.Н. Гумилев атындағы Еуразия ұлттық университетi, Астана, Қазақстан

Матрицалық операторлар бiр класының lpv-дан lqu-ға шенелгендiк
критерийi

Матрицалар теориясының негiзгi мiндеттерiнiң бiрi матрицалық оператордың бiр нормалы кеңiстiк-
тен басқа нормалы кеңiстiкке үзiлiссiз өту үшiн матрицалар элементтерiне қажеттi және жеткiлiктi
шарттарын анықтау. Сонымен қатар матрицалық оператордың нормасын немесе оның дәл жоғарғы
және төменгi бағалауын табу маңызды. Бұл есеп жалпы жағдайда Лебег тiзбектер кеңiстiгiнде ашық
есеп. Берiлген мақалада матрицалық операторының lpv-дан lqu-ға 1 < q < p < ∞ болғанда шенелген-
дiгi қарастырылған және бұл есептiң қажеттi және жеткiлiктi шарттары алынды, мұндағы матрица
O±2 дискреттi Ойнаров класына тиiстi.

Кiлт сөздер: матрицалық оператор, түйiндес оператор, салмақты тiзбек, шенелгендiк, салмақты
теңсiздiктер, Лебег салмақты кеңiстiгi, Ойнаров шарты, Харди операторы, Харди теңсiздiгi, матрица.
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Критерий ограниченности некоторого класса матричных
операторов из lpv в lqu

Одной из основных задач теории матриц является нахождение необходимых и достаточных условий
для элементов матрицы, при которых матричный оператор непрерывно действует из одного нормиро-
ванного пространства в другое. При этом очень важно найти значение нормы матричного оператора,
в крайнем случае, зафиксировать точные верхние и нижние оценки. Эта задача в лебеговых про-
странствах последовательностей в общем случае остается открытой. В статье рассмотрена проблема
ограниченности матричных операторов из lpv в lqu при 1 < q < p < ∞ и получены необходимые и
достаточные условия этой задачи, когда матричные операторы принадлежат классам O±2 , удовлетво-
ряющим более слабым условиям, чем условие Ойнарова.

Ключевые слова: матричный оператор, сопряженный оператор, весовая последовательность, огра-
ниченность, весовые неравенства, весовое пространство Лебега, условие Ойнарова, оператор Харди,
неравенство Харди, матрица.
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On the Fourier transform of functions from a Lorentz space L2,r

with a mixed metric

The classical inequalities of Bochkarev play a very important role in harmonic analysis. The meaning of
these inequalities lies in the connection between the metric characteristics of functions and the summability
of their Fourier coefficients. One of the most important directions of harmonic analysis is the theory of
Fourier series. His interest in this direction is explained by his applications in various departments of
modern mathematics and applied sciences, as well as the availability of many unsolved problems. One
of these problems is the study of the interrelationships of the integral properties of functions and the
properties of the sum of its coefficients. The solution of these problems was dedicated to the efforts of many
mathematicians. And further research in this area are important and interesting problems and can give
new, unexpected effects. In the article we receive a two-dimensional analog of the Bochkarev type theorem
for the Fourier transform.

Keywords: Lorentz Space, Hausdorff-Young-Riesz theorem, Bochkarev’s theorem, Cauchy-Bunyakovsky
inequality, Helder’s inequality.

Introduction

This article is devoted to the Hardy-Littlewood inequalities for an anisotropic Lorentz space. This
inequalities characterize the connection between the Fourier coefficients and integral properties of the
function. The study of relationship between the integrality of a function and the summability of its
Fourier coefficients has been the subject of many papers. There are well-known classical results in this
direction, such as Parseval, Bessel, Riesz, Hardy-Littlewood, Palley, Stein [1, 2], also modern works
[3–11] and others. However, the Hausdorff-Young-Riesz theorem does not extend to the spaces L2,r, if
r 6= 2.

In 1997 Bochkarev S.V. [12] established that, in contrast to the spaces Lp,r, 1 < p < 2, 1 ≤ r ≤ ∞,
in the Lorentz space L2,r, 2 < r ≤ ∞ the direct analogue of the Hausdorff - Young - Riesz theorem is
not satisfied. And he derived upper bounds for the Fourier coefficients of functions from L2,r replacing
the Hausdorff-Young-Riesz theorem and proved that for some class of multiplicative systems these
estimates are unstrengthened.

Theorem (S.V. Bochkarev). Let {φn}∞n=1 be an orthonormal system of complex-valued functions on
[0, 1],

‖φn‖ ≤M, n = 1, 2, ...

and let f ∈ L2,r, 2 < r ≤ ∞. Then the inequality

sup
n∈N

1

|n|
1
2 log(n+ 1)

1
2
− 1

r

n∑
m=1

a∗m ≤ C‖f‖L2,r′

holds, where an are the Fourier coefficients of the system {φn}∞n=1.

∗Corresponding author.
E-mail: makpal9136@mail.ru
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In 2015 an analogue of Bochkarev’s theorem was received for the Fourier transform of a function
from the space L2,r(R).

Theorem A [13]. Let <N = {A =
N⋃
i=1

Ai, where Ai are segments in R}, then for any functions

f ∈ L2,r(R), 2 < r <∞ the following inequality holds:

sup
N≥8

sup
A⊂<N

1

|A|
1
2 log2(1 +N)

1
2
− 1

r

∣∣∣∣∣∣
∫
A

f̂(ξ)dξ

∣∣∣∣∣∣ ≤ 23‖f‖L2,r .

The aim of this article is to obtain a two-dimensional analog of the Bochkarev type theorem for
the Fourier transform. To do this, we need to introduce the following definitions:

Definition 1 [14]. Let p̄ = (p1, p2), r̄ = (r1, r2) and satisfy the following conditions: 0 < p̄ ≤ ∞,
0 < r̄ ≤ ∞. The Lorentz Space Lp̄,r̄[0, 1]2 with a mixed metric is defined as the set of all measurable
functions defined on [0, 1]2, for which the norms are finite:

‖f‖Lp̄,r̄ = ‖‖f‖Lp1,r1
‖Lp2,r2

=

 1∫
0

t 1
p2
2

 1∫
0

(
t

1
p1
1 f∗1(t1, ·)

)r1 dt1
t1

∗2
t2


r2
r1

dt2
t2


1
r2

in the case 0 < r̄ <∞, and

‖f‖Lp̄,∞ = sup
t1,t2

t
1
p1
1 t

1
p2
2 f∗1∗2(t1, t2)

in the case r̄ =∞.
Definition 2 [15]. Let f ∈ L1(R2). Its two-dimensional Fourier transform is defined by the following

formula:

f̂(ξ1, ξ2) =

∞∫
−∞

∞∫
−∞

f(x1, x2)e−2πi(x1ξ1+x2ξ2)dx1dx2.

Main results

To prove the main theorem, it is necessary to prove an auxiliary lemma:
Lemma. Let 4

3 < q1, q2 < 2 and f ∈ Lq̄,2̄(R2). Then for any measurable sets A1 and A2 of finite
measure in <N the inequality

sup
A1⊂<N

sup
A2⊂<N

1

|A1|
1
q1 |A2|

1
q2

∫
A1

∫
A2

∣∣∣f̂(ξ1, ξ2)
∣∣∣ dξ1dξ2 ≤

≤ C
(

q1

2(q1 − 1)

)(
1
q1
− 1

2

)(
q2

2(q2 − 1)

)(
1
q2
− 1

2

)
‖f‖Lq̄,2̄

holds.
Proof. We consider the following inequality∣∣∣∣∣∣

∫
A1

∫
A2

f̂(ξ1, ξ2)dξ1dξ2

∣∣∣∣∣∣ =
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=

∣∣∣∣∣∣
∫
A1

∫
A2

 ∞∫
−∞

∞∫
−∞

f(x1, x2)e−2πx1ξ1x2ξ2dx1dx2

 dξ1dξ2

∣∣∣∣∣∣ ≤
≤ |A1||A2|

∞∫
−∞

∞∫
−∞

|f(x1, x2)|dx1dx2 = |A1||A2|‖f‖L1̄
, (1)

and from the Cauchy-Bunyakovsky inequality and from the Plancherel theorem we have:

∣∣∣∣∣∣
∫
A1

∫
A2

f̂(ξ1, ξ2)dξ1dξ2

∣∣∣∣∣∣ ≤ |A1|
1
2 |A2|

1
2

∫
A1

∫
A2

(
f̂(ξ1, ξ2)

)2
dξ1dξ2

 1
2

=

= |A1|
1
2 |A2|

1
2

∫
A1

∫
A2

(f(x1, x2))2 dx1dx2

 1
2

= |A1|
1
2 |A2|

1
2 ‖f‖L2̄

.

(2)

Consider representation (2) f = f00 + f01 + f10 + f11 constructed like the following.
Let 0 < τ1, τ2 <∞, χΩx2

(x1) be a set characteristic function Ωx2 .

Ωx2 = {(x1, x2) : |f(x1, x2)| > f∗1(τ1, x2)} ∪ ex2 ,

where ex2 is a measurable subset {(x1, x2) : |f(x1, x2)| = f∗1(τ1, x2)} such that:

µ1(Ωx2) = τ1.

This set is always available, since for a fixed x2

µ1{(x1, x2) : |f(x1, x2)| > f∗1(τ1, x2)} ≤ τ1,

µ1{(x1, x2) : |f(x1, x2)| ≥ f∗(τ1, x2)}.

Denote by g0 and g1 the functions

g0(x1, x2) = f(x1, x2)χΩx2
(x1),

g1(x1, x2) = f(x1, x2)− g0(x1, x2).

In turn, each function g0, g1 can be represented as

g0 = f00 + f01, g1 = f10 + f11.

Let
W0 = {x2 ∈ (0,∞) : ‖g0(·, x2)‖L1 > (‖g0(·, x2)‖L1)∗2(τ2)} ∪ e0,

where
e0 ⊂ {x2 ∈ (0,∞) : ‖g0(·, x2)‖L1 = (‖g0(·, x2)‖L1)∗2(τ2)}, µ2(W0) = τ2,

and
W1 = {x2 ∈ (0,∞) : ‖g1(·, x2)‖L2 > (‖g1(·, x2)‖L2)∗2(τ2)} ∪ e1,

where
e1 ⊂ {x2 ∈ (0,∞) : ‖g1(·, x2)‖L2 = (‖g1(·, x2)‖L2)}, µ2(W1) = τ2.
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Then
f00(x1, x2) = g0(x1, x2)χW0(x2), f01(x1, x2) = g0(x1, x2)− f00(x1, x2),

f10(x1, x2) = g1(x1, x2)χW1(x1), f11(x1, x2) = g1(x1, x2)− f10(x1, x2).

Thus representation is constructed

f = f00 + f01 + f10 + f11.

Then for an arbitrary τ = (τ1, τ2) ∈ (0,∞)2, we get∣∣∣∣∣∣
∫
A1

∫
A2

f̂(ξ1, ξ2)dξ1dξ2

∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣
∫
A1

∫
A2

f̂00(ξ1, ξ2)dξ1dξ2

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
A1

∫
A2

f̂01(ξ1, ξ2)dξ1dξ2

∣∣∣∣∣∣+
+

∣∣∣∣∣∣
∫
A1

∫
A2

f̂10(ξ1, ξ2)dξ1dξ2

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
A1

∫
A2

f̂11(ξ1, ξ2)dξ1dξ2

∣∣∣∣∣∣ = I1 + I2 + I3 + I4. (3)

For I1 we use inequality (1) and get the following estimate

I1 ≤ |A1||A2|M1M2

∞∫
0

∞∫
0

|f00(x1, x2)|dx1dx2.

Now let us estimate I2

I2 ≤ |A2|
1
2

∫
A2

∫
A1

f̂01(ξ1, ξ2)dξ1

2

dξ2


1
2

≤

≤ |A2|
1
2

∫
A2

∣∣∣∣∣∣
∫
A1

+∞∫
−∞

+∞∫
−∞

f01(x1, x2)e−2πx1ξ1x2ξ2dx1dx2dξ1

∣∣∣∣∣∣
2

dξ2


1
2

≤

≤ |A2|
1
2

∫
A2

∣∣∣∣∣∣
+∞∫
−∞

∫
A1

+∞∫
−∞

f01(x1, x2)e−2πx1ξ1dx1dξ1

 e−2πix2ξ2dx2

∣∣∣∣∣∣
2

dξ2


1
2

.

Applying Plancherel theorem, we get

I2 ≤ |A2|
1
2


+∞∫
−∞

 ̂∫
A1

+∞∫
−∞

f01(x1, x2)e−2πix1ξ1dx1dξ1


2

k2

dx2


1
2

=

= |A2|
1
2

 +∞∫
−∞

∣∣∣∣∣∣
∫
A1

+∞∫
−∞

f01(x1, x2)e−2πix1ξ1dx1dξ1

∣∣∣∣∣∣
2

dx2


1
2

≤
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≤ C|A1||A2|
1
2

 +∞∫
−∞

 +∞∫
−∞

|f01(x1, x2)|dx1

2

dx2


1/2

.

Let’s estimate I3

I3 =

∣∣∣∣∣∣ ̂∫
A1

∫
A2

f10(ξ1, ξ2)dξ1dξ2

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∫
A1

∫
A2

+∞∫
−∞

+∞∫
−∞

f10(x1, x2)e−2πix1ξ1x2ξ2dx1dx2dξ1dξ2

∣∣∣∣∣∣ ≤

≤
∫
A1

∫
A2

+∞∫
−∞

∣∣∣∣∣∣
+∞∫
−∞

f10(x1, x2)e−2πix1ξ1dx1

∣∣∣∣∣∣ dξ1e
−2πix2ξ2dξ2dx2 ≤

≤ C|A2|
∫
A1

+∞∫
−∞

∣∣∣∣∣∣
+∞∫
−∞

f10(x1, x2)e−2πix1ξ1dx1dξ1

∣∣∣∣∣∣ dx2.

Using Cauchy-Bunyakovsky inequality, we obtain

I3 ≤ C|A2||A1|
1
2

∫
A1

 +∞∫
−∞

∣∣∣∣∣∣
+∞∫
−∞

f10(x1, x2)e−2πix1ξ1dx1dξ1

∣∣∣∣∣∣ dx2

2


1
2

≤

≤ C|A2||A1|
1
2

+∞∫
−∞

∫
A1

∣∣∣∣∣∣
+∞∫
−∞

f10(x1, x2)e−2πix1ξ1dx1dξ1

∣∣∣∣∣∣
2


1
2

dx2.

Using Plancherel theorem, we get the following

I3 ≤ C|A2||A1|
1
2

+∞∫
−∞


∣∣∣∣∣∣

+∞∫
−∞

f10(x1, x2)dx1

∣∣∣∣∣∣
2


1
2

dx2.

Applying for I4 Cauchy-Bunyakovsky inequality and Plancherel equality, we get the following estimate

I4 =

∣∣∣∣∣∣
∫
A1

∫
A2

f̂11(ξ1, ξ2)dξ1dξ2

∣∣∣∣∣∣ ≤ |A1|1/2|A2|1/2
∫
A1

∫
A2

∣∣∣f̂11(ξ1, ξ2)dξ1dξ2

∣∣∣2
 1

2

=

= |A1|1/2|A2|1/2
 +∞∫
−∞

+∞∫
−∞

|f11(x1, x2)|2 dx1dx2


1
2

.

Substituting the obtained estimates into relation (3), we have
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∣∣∣∣∣∣
∫
A1

∫
A2

f̂(ξ1, ξ2)dξ1dξ2

∣∣∣∣∣∣ ≤ |A1||A2|
+∞∫
−∞

+∞∫
−∞

|f00(x1, x2)|dx1dx2+

+|A1||A2|
1
2

 +∞∫
−∞

 +∞∫
−∞

|f01(x1, x2)|dx1

2

dx2


1
2

+

+|A2||A1|
1
2

+∞∫
−∞

 +∞∫
−∞

|f10(x1, x2)|2 dx1


1
2

dx2+

+|A1|
1
2 |A2|

1
2

 +∞∫
−∞

+∞∫
−∞

|f11(x1, x2)|2dx1dx2


1
2

.

Further ∣∣∣∣∣∣
∫
A1

∫
A2

f̂(ξ1, ξ2)dξ1dξ2

∣∣∣∣∣∣ ≤ |A1||A2|
∞∫

0

 ∞∫
0

f∗1(t1, ·)dt1

∗2
t2

dt2+

+|A1||A2|
1
2

 ∞∫
0


 ∞∫
τ1

f∗1(t1, ·)dt1

∗2
t2


2

dt2


1
2

+

+|A1|
1
2 |A2|

∞∫
0

 ∞∫
0

(f∗1(t1, ·))2dt1

∗2
t2


1
2

dt2+

+|A1|
1
2 |A2|

1
2

 ∞∫
τ2

 ∞∫
τ1

(f∗1(t1, ·))2dt1

∗2
t2

dt2


1
2

=

= J1 + J2 + J3 + J4.

Now we estimate each term. To estimate J1 we use Helder’s inequality

J1 = |A1||A2|
∞∫

0

t
1
q2
2 t

1
q′2
2

 ∞∫
0

t
1
q1
1 t

1
q′1
1 f∗1(t1, ·)

dt1
t1

∗2
t2

dt2
t2
≤

≤ |A1||A2|

 ∞∫
0

t
2
q2
2

 ∞∫
0

(
t

1
q1
1 f∗1(t1, ·)

)2 dt1
t1

∗2
t2

dt2
t2


1
2

×

×

 ∞∫
0

t

2
q′2
2

 ∞∫
0

t

2
q′1
1

dt1
t1

 dt2
t2

 1
2

=

Mathematics series. No. 3(111)/2023 143



N.T. Tleukhanova, G.K. Mussabayeva, M. Manarbek

= |A1||A2|‖f‖Lq̄,2̄

 ∞∫
0

t

2
q′1
1

dt1
t1

 1
2
 ∞∫

0

t

2
q′2
2

dt2
t2

 1
2

=

= |A1||A2|‖f‖Lq̄,2̄

(
q′1
2

) 1
2
(
q′2
2

) 1
2

τ

1
q′1

1 τ

1
q′2

2 =

= |A1||A2|‖f‖Lq̄,2̄

(
q1

2(q1 − 1)

) 1
2
(

q2

2(q2 − 1)

) 1
2

τ
1− 1

q1
1 τ

1− 1
q2

2 .

To estimate the term J2 we also use Helder’s inequality

J2 = |A1||A2|
1
2

 ∞∫
τ2

 τ1∫
0

f∗1(t1, ·)dt1

∗2
t2

2

dt2


1
2

=

= |A1||A2|
1
2

 ∞∫
τ2

t 1
q2
2 t
− 1

q2
2

 τ1∫
0

t
1
q1
1 t

1
q′1
1 f∗1(t1, ·)

dt1
t1

∗2
t2

2

t2dt2
t2


1
2

≤

≤ |A1||A2|
1
2

 ∞∫
τ2

t
1
q2
2

 τ1∫
0

(
t

1
q1
1 f∗1(t1, ·)

)2 dt1
t1

∗2
t2

dt2
t2


1
2

×

×

 ∞∫
τ2

t
1− 2

q2
2

 τ1∫
0

t
2
q1
1

dt1
t1

 dt2
t2

1/2

=

= |A1||A2|
1
2 ‖f‖Lq̄,2̄

 ∞∫
τ2

t
1− 2

q2
2

dt2
t2

 1
2
 τ1∫

0

(
t

2
q′1
1

)
dt1
t1

 1
2

.

Since q2 < 2, the second integral is estimated in terms of τ
1
2
− 1

q2
2 . So

J2 ≤ |A1||A2|
1
2 ‖f‖Lq̄,2̄

(
q′1
2

) 1
2

τ

1
q′1

1 τ
1
2
− 1

q2
2 =

= |A1||A2|
1
2 ‖f‖Lq̄,2̄

(
q1

2(q1 − 1)

) 1
2

τ
1− 1

q1
1 τ

1
2
− 1

q2
2 .

Now we estimate J3

J3 = |A1|
1
2 |A2|

τ2∫
0


 ∞∫
τ1

(f∗1(t1, ·))2dt1

∗2
t2


1
2

dt2 =

= |A1|
1
2 |A2|

τ2∫
0

t
− 1

q2
2


 ∞∫
τ1

(
t

1
q1
1 t

1
q2
2 f∗1(t1, ·)t

− 1
q1

1

)2 t1dt1
t1

∗2
t2


1
2

t2dt2

t
1
2

+ 1
2

2

.
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We use Helder’s inequality

J3 ≤ |A1|
1
2 |A2| sup

τ1<t1<∞
t

1
2
− 1

q1
1

 τ2∫
0

t
− 1

q2
2


 ∞∫
τ1

(
t

1
q1
1 t

1
q2
2 f∗1(t1, ·)

)2 dt1
t1

∗2
t2

 dt2
t2


1
2

×

×

 τ2∫
0

(
t
1− 1

q2
2

)2 dt2
t2

 1
2

=

= |A1|
1
2 |A2|‖f‖Lq̄,2̄

sup
τ1<t1<∞

t
1
2
− 1

q1
1

 τ2∫
0

t
2
(

1− 1
q2

)
2

dt2
t2

 1
2

=

= |A1|
1
2 |A2|‖f‖Lq̄,2̄

τ
1
2
− 1

q1
1 τ

1− 1
q2

2

(
q2

2(q2 − 1)

) 1
2

.

It remains to estimate the last integral

J4 ≤ |A1|
1
2 |A2|

1
2

 τ1∫
0

 ∞∫
τ2

(f∗1(t1, ·))2t
2
q1
−1

1 t
1− 2

q1
1 t

2
q2
−1

2 t
1− 2

q2
2 dt1

∗2
t2

dt2


1
2

.

Since q2 < 2, we get

J4 ≤ |A1|
1
2 |A2|

1
2

 τ1∫
0

 ∞∫
τ2

(
t

1
q1
1 t

1
q2
2 f∗1(t1, ·)

)2 dt1
t1

∗2
t2

dt2
t2


1
2

τ
1
2
− 1

q1
1 τ

1
2
− 1

q2
2 ≤

≤ |A1|
1
2 |A2|

1
2 ‖f‖Lq̄,2̄

τ
1
2
− 1

q1
1 τ

1
2
− 1

q2
2 .

Thus, we have ∣∣∣∣∣∣
∫
A1

∫
A2

f̂(ξ1, ξ2)

∣∣∣∣∣∣ ≤ ‖f‖Lq̄,2̄

(
|A1||A2|

(
q1

2(q1 − 1)

) 1
2
(

q2

2(q2 − 1)

) 1
2

×

× τ
1− 1

q1
1 τ

1− 1
q2

2 +

+|A1||A2|
1
2

(
q1

2(q1 − 1)

) 1
2

τ
1− 1

q1
1 τ

1
2
− 1

q2
2 +

+|A1|
1
2 |A2|

(
q2

2(q2 − 1)

) 1
2

τ
1
2
− 1

q1
1 τ

1− 1
q2

2 + |A1|
1
2 |A2|

1
2 τ

1
2
− 1

q1
1 τ

1
2
− 1

q2
2

)
.

Choosing τ1 =

(
q1

2(q1−1)

)−1

|A1| and τ2 =

(
q2

2(q2−1)

)−1

|A2| , we get∣∣∣∣∣∣
∫
A1

∫
A2

f̂(ξ1, ξ2)

∣∣∣∣∣∣ ≤ ‖f‖Lq̄2̄

(
|A1||A2|

(
q1

2(q1 − 1)

) 1
2
(

q2

2(q2 − 1)

) 1
2

×
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×
(

q1

2(q1 − 1)

) 1
q1
−1

|A1|
1
q1
−1
(

q2

2(q2 − 1)

) 1
q2
−1

|A2|
1
q2
−1

+

+|A1||A2|
1
2

(
q1

2(q1 − 1)

) 1
2
(

q1

2(q1 − 1)

) 1
q1
−1

|A1|
1
q1
−1 ×

×
(

q2

2(q2 − 1)

) 1
q2
− 1

2

|A2|
1
q2
− 1

2 +

+|A1|
1
2 |A2|

(
q2

2(q2 − 1)

) 1
2
(

q1

2(q1 − 1)

) 1
q1
− 1

2

|A1|
1
q1
− 1

2×

×
(

q2

2(q2 − 1)

) 1
q2
−1

|A2|
1
q2
−1

+ |A1|
1
2 |A2|

1
2

(
q1

2(q1 − 1)

) 1
q1
− 1

2

|A1|
1
q1
− 1

2×

×
(

q2

2(q2 − 1)

) 1
q2
− 1

2

|A2|
1
q2
− 1

2

)
.

We get the following inequality: ∣∣∣∣∣∣
∫
A1

∫
A2

f̂(ξ1, ξ2)

∣∣∣∣∣∣ ≤
≤M |A1|

1
q1 |A2|

1
q2

(
q1

2(q1 − 1)

)(
1
q1
− 1

2

)(
q2

2(q2 − 1)

)(
1
q2
− 1

2

)
‖f‖Lq̄,2̄

,

or

1

|A1|
1
q1 |A2|

1
q2

∫
A1

∫
A2

∣∣∣f̂(ξ1, ξ2)dξ1dξ2

∣∣∣ ≤
≤
(

q1

2(q1 − 1)

)(
1
q1
− 1

2

)(
q2

2(q2 − 1)

)(
1
q2
− 1

2

)
‖f‖Lq̄,2̄

.

Taking the least upper bound over all A1 ⊂ <N and A2 ⊂ <N , we obtain the assertion of the lemma,
that is,

sup
A1⊂<N

sup
A2⊂<N

1

|A1|
1
q1 |A2|

1
q2

∫
A1

∫
A2

∣∣∣f̂(ξ1, ξ2)
∣∣∣ dξ1dξ2 ≤

≤ C
(

q1

2(q1 − 1)

)(
1
q1
− 1

2

)(
q2

2(q2 − 1)

)(
1
q2
− 1

2

)
‖f‖Lq̄,2̄

,

where |A| is the number of elements in A.
Theorem. Let Φm1,m2(x1, x2) = ϕm1(x1) ·ψm2(x2), m1,m1 ∈ N be an orthonormal bounded system

of functions. Then, for any f ∈ L2̄,r̄(R2), where 2 < r1, r2 <∞ the inequality holds:

sup
|A1|≥8
A1⊂N

sup
|A2|≥8
A2⊂N

1

|A1|
1
2 |A2|

1
2 (log2(|A1|+ 1))

1
2
− 1

r1 (log2(|A2|+ 1))
1
2
− 1

r2

×

×
∫
A1

∫
A2

∣∣∣f̂(ξ1, ξ2)
∣∣∣ dξ1dξ2 ≤ ‖f‖L2̄,r̄

.
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Proof. Let |A1|, |A2| ≥ 8. Then for any (q1, q2) such that 1 < q1, q2 < 2 and f ∈ Lq̄,2̄ the following
estimate is true

‖f‖Lq̄,2̄
≤ ‖f‖L2̄,r̄

‖1‖Lp̄,r̄′ , (4)

where 1
q̄ = 1

2̄
+ 1

p̄ ,
1
r̄′ = 1

2̄
− 1

r̄ . Now we consider

‖1‖Lp̄,r̄′ =


1∫

0

 1∫
0

t

r′1
p1
1 t

r′1
p2
2

dt1
t1


r′2
r′1
dt2
t2


1
r′2

=

=

 1∫
0

t
r′1

(
1
q1
− 1

2

)
1

dt1
t1


1
r′1
 1∫

0

t
r′2

(
1
q2
− 1

2

)
2

dt2
t2


1
r′2

=

=

 1

r′1

(
1
q1
− 1

2

)
 1

r′1
 1

r′2

(
1
q2
− 1

2

)
 1

r′2

≤
(

2q1

2− q1

) 1
r′1
(

2q2

2− q2

) 1
r′2
.

According to the previous inequality, we obtain

‖f‖Lq̄,2̄
≤
(

2q1

2− q1

) 1
r′1
(

2q2

2− q2

) 1
r′2 ‖f‖L2̄,r̄

.

Applying Lemma 1, we get
1

|A1|
1
q1 |A2|

1
q2

∫
A1

∫
A2

∣∣∣f̂(ξ1, ξ2)
∣∣∣ dξ1dξ2 ≤

≤ C
(

q1

2(q1 − 1)

)(
1
q1
− 1

2

)(
q2

2(q2 − 1)

)(
1
q2
− 1

2

)
‖f‖Lq̄,2̄

.

Taking into account (4), we get the following inequality

1

|A1|
1
q1 |A2|

1
q2

∑
k1∈A1

∑
k2∈A2

∣∣∣f̂(ξ1, ξ2)
∣∣∣ dξ1dξ2 ≤ C

(
q1

2(q1 − 1)

)(
1
q1
− 1

2

)(
q2

2(q2 − 1)

)(
1
q2
− 1

2

)
×

×
(

2q1

2− q1

) 1
r′1
(

2q2

2− q2

) 1
r′2 ‖f‖L2̄,r̄

.

Taking into account the arbitrariness of parameters q1 and q2, we set

q1 =
2 log2 |A1|

log2 |A1|+ 2
< 2,

q2 =
2 log2 |A2|

log2 |A2|+ 2
< 2,

1
q̄ −

1
2̄

= 1
log2 N̄

, |A1|
1
q1 = |A1|

1
log2 |A1|

+ 1
2 = 2|A1|

1
2 , |A2|

1
q2 = 2|A2|

1
2 .

1

|A1|
1
2 |A2|

1
2

∫
A1

∫
A2

∣∣∣f̂(ξ1, ξ2)
∣∣∣ dξ1dξ2 ≤
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≤ C

 1

2
(

1− 1
q1

)


(
1
q1
− 1

2

) 1

2
(

1− 1
q2

)


(
1
q2
− 1

2

)
×

×

(
1

1
q1
− 1

2

) 1
r′1
(

1
1
q2
− 1

2

) 1
r′2
‖f‖L2̄,r̄

≤

≤ 4M

 1

2
(

1
2 −

1
log2 |A1|

)
 1

log2 |A1|
 1

2
(

1
2 −

1
log2 |A2|

)
 1

log2 |A2|

×

× (log2 |A1|)
1
r′1 (log2 |A2|)

1
r′2 ‖f‖L2̄,r̄

.

Considering |A1|, |A2| ≥ 8, we get the following estimate

1

|A1|
1
2 |A2|

1
2 (log2 |A1|)

1
2
− 1

r1 (log2 |A2|)
1
2
− 1

r2

∫
A1

∫
A2

∣∣∣f̂(ξ1, ξ2)
∣∣∣ dξ1dξ2 ≤ C‖f‖L2̄,r̄

.

Taking the least upper bound over all A1 and A2 from N, we get

sup
|A1|≥8
A1⊂N,

sup
|A2|≥8
A2⊂N,

1

|A1|
1
2 |A2|

1
2 (log2(|A1|+ 1))

1
2
− 1

r1 (log2(|A2|+ 1))
1
2
− 1

r2

×

×
∫
A1

∫
A2

∣∣∣f̂(ξ1, ξ2)
∣∣∣ dξ1dξ2 ≤ C‖f‖L2̄,r̄

.

Conclusions

The results obtained in this study specifically the Bochkarev-type inequality in a space of a mixed
metric, allow us to effectively address problems concerning Fourier series multipliers [16–18].
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Л.Н. Гумилев атындағы Еуразия ұлттық университетi, Астана, Қазақстан

Аралас метрикалы L2,r Лоренц кеңiстiгiндегi Фурье
функцияларының түрлендiрулерi жайлы

Гармоникалық талдауда классикалық Бочкарев теңсiздiктерi өте маңызды рөл атқарады. Бұл теңсiздiк-
тердiң мәнi функциялардың метрикалық сипаттамалары мен олардың Фурье коэффициенттерiнiң
қосындысы арасындағы байланыста жатыр. Гармоникалық талдаудың маңызды бағыттарының бiрi
Фурье қатарларының теориясы. Оның бұл салаға деген қызығушылығы қазiргi математика мен қол-
данбалы ғылымдардың әртүрлi салаларында қолданылуына, сондай-ақ көптеген шешiлмеген мәселе-
лердiң болуына байланысты. Осы мақсаттардың бiрi функцияның интегралдық қасиеттерi мен оның
коэффициенттерiнiң қосындысының қасиеттерi арасындағы байланысты зерттеу. Көптеген матема-
тиктердiң еңбектерi осы есептердi шешуге арналды. Бұл саладағы әрi қарайғы зерттеулер маңызды
және қызықты зерттеу болып табылады және жаңа, күтпеген нәтижелерге әкелуi мүмкiн. Мақалада
Фурье түрленуi үшiн Бочкарев типтi теореманың екi өлшемдi аналогы алынған.

Кiлт сөздер: Лоренц кеңiстiгi, Хаусдорф–Янг–Рис теоремасы, Бочкарев теоремасы, Коши-Буняковский
теңсiздiгi, Хельдер теңсiздiгi.
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О преобразовании Фурье функций в пространстве Лоренца L2,r

со смешанной метрикой

Классические неравенства Бочкарева играют очень важную роль в гармоническом анализе. Смысл
этих неравенств заключается в связи между метрическими характеристиками функций и сумми-
руемостью их коэффициентов Фурье. Одним из важнейших направлений гармонического анализа
является теория рядов Фурье. Его интерес к этому направлению объясняется его приложениями в
различных разделах современной математики и прикладных наук, а также наличием многих нерешен-
ных проблем. Одной из таких задач является изучение взаимосвязей интегральных свойств функции
и свойств суммы ее коэффициентов. Решению этих задач были посвящены усилия многих математи-
ков. И дальнейшие исследования в этой области являются важными и интересными задачами и могут
привнести новые, неожиданные эффекты. В данной статье мы получаем двумерный аналог теоремы
типа Бочкарева для преобразования Фурье.

Ключевые слова: пространство Лоренца, теорема Хаусдорфа-Юнга-Рисса, теорема Бочкарева, нера-
венство Коши-Буняковского, неравенство Гельдера.
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A fragment of a theoretical set and its strongly minimal central type

The paper defines a new class of algebras, the theory of which is a special case of Jonsson theories. This
class applies to both varieties and Jonsson theories. The main results of this article are the following two
results. In this article, an answer is obtained to the question of the equivalence of existential closure and
algebraic closure of the model of the cosemantic class of a fixed spectrum of a Robinson hereditary variety.
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Keywords: Jonsson theory, existentially closed model, algebraically closed model, cosemanticness, Robinson
spectrum, Robinson hereditary variety, central type, Jonsson fragment, theoretical set, strongly minimal
type.

Introduction

This article belongs to a fairly well-known topic in the field of model theory. Namely, this topic is
related to the classification of theories regarding such an important concept as categoricity. As it is well
known, only 4 combinations are possible with respect to the concept of categoricity: total categoricity;
ω-categoricity and not ω1-categoricity; ω1-categoricity and not ω-categoricity; nowhere categoricity.
The notion of strong minimality is closely related to the notion of ω1-categoricity, that is, in all four
combinations of the above concept of categoricity, the concept of strong minimality is either present or
absent. Thus, the study of the strong minimality property is important in classifying complete theories.

The topic studied in this article is related to the study of Jonsson theories and their classes of models
[1–6]. In papers earlier than this paper, the main methods used to study Jonsson theories [1,5,7,8] were
considered. One of the methods for studying complete theories is to enrich the signature with symbols
that allow one to obtain new information about the models of the old signature and their theories in
the language of these symbols. In the works [9–11], related to the enrichment of Jonsson theories, the
notion of a central type was introduced on the basis of the notion of heredity of Jonsson theory. The
concept of heredity is closely related to the concept of the stability of the center of the Jonsson theory
and the Jonsson stability of the Jonsson theory itself. As is well known, the best description among
Jonsson theories lends itself to the study of perfect Jonsson theories due to the existence of a model
companion of such theories. The concept of stability is closely related to the concept of categoricity,
which plays an important role in the theory of classification of complete theories and, accordingly,
incomplete theories. Due to the fact that the concept of heredity of Jonsson theory still does not
have a complete description, this topic is relevant and modern in the framework of the study of the
enrichment of Jonsson theories.

Jonsson theories, in their essence, are, generally speaking, incomplete theories. That is, the technical
apparatus of the study of Jonsson theories, in comparison with complete theories, is less adapted to
the transfer and adaptation of the concepts and achievements of complete theories.

∗Corresponding author.
E-mail: ulbrikht@mail.ru
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A valuable concept for operating on the properties of elements and subsets of a semantic model is
the Jonsson set, that is, a definable set with the help of some existential formula, the definable closure
of which defines some existentially closed submodel of the considered semantic model. An interesting
and important special case of the Jonsson set is the notion of a theoretical set. In fact, within the
framework of the study of the Jonsson set, we get a “new and special” Jonsson theory, the axioms of
which are directly related to the given Jonsson set.

Until now, an unresolved problem is a problem of characterization of the concept hereditу of Jonsson
theory. The relevance of this problem is confirmed by the following important counterexample: the
elementary theory of an algebraically closed field ceases to be Jonsson after enrichment with an unary
predicate. In this regard, the study of the model-theoretic properties of central types in predicate
enrichment is an important model-theoretic task for describing hereditary Jonsson theories.

The concepts of central type and Jonsson spectrum were first introduced by Yeshkeyev A.R.,
respectively, in [12, 13]. With the help of these concepts, complete descriptions of Jonsson Abelian
groups [13] and Jonsson modules [14] with respect to the concept of cosemanticness were obtained,
thereby starting a new study in the framework of model-theoretic algebra. Later, the study of the
model-theoretic properties of these concepts was continued in the works [9, 11,14–18].

Note that another method of studying Jonsson’s theories is to study these theories using the
concepts of syntactic and semantic similarities. In the papers [19–21], using these concepts, some
results were obtained in the framework of the study of Jonsson theories and their centers, as well as
definable subsets of the semantic model.

1 Basic necessary concepts and preliminaries

Let us give the main definitions of the concepts of model-theoretic concepts that you need to know
in order to understand and be able to work in the framework of studying Jonsson theories and their
classes of models. The following definitions and their model-theoretic properties are generators for that
part of model theory that studies the basic properties of definable subsets of the semantic model of
various fixed Jonsson theories.

Definition 1. [22; 80] A theory T is called a Jonsson theory if
1) theory T has an infinite model;
2) theory T is inductive, i.e. T is equivalent to the set of ∀∃-sentences;
3) theory T has the joint embedding property (JEP ), i.e. any two models A, B of the theory T

are isomorphically embedded in some model C of the theory T ;
4) theory T has the amalgamation property (AP ), i.e. if for any A, B, C |= T such that f1 : A→ B,

f2 : A → C are isomorphic embeddings, there are D |= T and isomorphic embeddings g1 : B → D,
g2 : C → D, such that g1f1 = g2f2.

Examples of Jonsson theories are the theories of well-known classical algebras such as groups,
Abelian groups, Boolean algebras, linear orders, fields of fixed characteristic, and polygons.

Note that Jonsson theories, generally speaking, are not complete.
Definition 2. [23] Let κ ≥ τ . A model M of the theory T is called κ-universal for T , if each model

of the theory T of cardinality strictly less than κ is isomorphically embeddable into M .
Definition 3. [23] Let κ ≥ τ . A model M of the theory T is called κ-homogeneous for T , if for any

two models A and A1 of the theory T , which are submodels of M , cardinality is strictly less than κ,
and isomorphism f : A→ A1, for each extension B of the model A, that is a submodel of M and the
model of the theory T of cardinality is strictly less than κ there exists an extension B1 of the model
A1, which is a submodel of M , and the isomorphism g : B → B1, continuing f .

A homogeneous-universal model for T is called a κ-homogeneous-universal model for T of cardinality
κ, where κ ≥ τ .
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The following concept is crucial when working with Jonsson theories.

Definition 4. [23] Let T be a Jonsson theory. A model C of the theory T is called a semantic model
if it is τ+–homogeneous and τ+–universal simultaneously.

A semantic model plays an important role as a semantic invariant. Such a model always exists for
any Jonsson theory.

The next important fact shows that any Jonsson theory is determined by its semantic model.

Fact 1. [23] Every Jonsson theory T has a κ+-homogeneous-universal model of cardinality 2κ.
Conversely, if T is inductive, has an infinite model, and has a τ+-homogeneous-universal model, then
T is a Jonsson theory.

Theorem 1. [23] Let T be a Jonsson theory. Two κ-homogeneous-universal for T models A and B
are elementarily equivalent.

Definition 5. [1; 161] Let CT be a semantic model of the Jonsson theory T . Then the elementary
theory Th(CT ) of the model CT is called the center of T and is denoted by T ∗.

The following result makes it possible to describe a special subclass of Jonsson theories that have
a model companion.

Fact 2. [23] Let T be the Jonsson theory. If T ∗ is model complete and κ > τ , then κ-homogeneous
universal models of T are κ-saturated; if T ∗ is not model complete, no semantic model of T is τ+-
saturated.

It follows from the Fact 2 and the mutual model compatibility of the Jonsson theory T and its
center T ∗ that T ∗ is a model companion of the theory T .

Further in our article, the language will be countable, which means that τ = ω and κ > ω or κ > ω.
From the Fact 2 for the notion of the perfectness of the Jonsson theory κ must be greater than τ .

Definition 6. [24] Let κ > τ . Jonsson theory T is perfect if its semantic model is τ+-saturated.

Thus, from the Fact 2 and the Definition 6 we can conclude that a perfect Jonsson theory is a
Jonsson theory that has a model companion and it is equal to its center.

Recall that а model M of theory T is existentially closed in T if every existential sentence ϕ of LM
which holds in some model of T extending M holds in M .

The notion of an existentially closed model is a generalization of the notion of an algebraically
closed field.

Lemma 1. [24] The semantic model CT of the Jonsson theory T is T -existentially closed.

Proposition 1. [22; 97] If T is inductive theory, then every model of theory T can be extended to
an existentially closed model.

Let us denote by ET the class of all existentially closed models of the theory T .

Theorem 2. [24] If the Jonsson theory T is perfect, then ET = Mod(T ∗), where T ∗ = Th(CT ).

Definition 7. [25] Let A ∈ Σ, where Σ is a universal class in a countable language L(Σ). Then A
is algebraically closed if A has no proper algebraic extensions. An extension B of A is an algebraic
closure of A if B is an algebraically closed algebraic extension of A.

The ability to compare complete theories is an important tool in classifying these theories. Mustafin
T.G. a method of syntactic and semantic similarity was proposed for the classification of complete
theories and their monster models [26]. Let us give the main definitions related to these concepts.

Let T be complete theory then F (T ) =
⋃
n<ω Fn(T ), where Fn(T ) is Boolean algebra of formulas

with n free variables.

154 Bulletin of the Karaganda University



A fragment of a theoretical set ...

Definition 8. [26] Let T1 and T2 be complete theories. We will say that T1 and T2 are syntactically

similar (T1
S
./ T2) if exists bijection f : F (T1)→ F (T2) such that:

1) restriction f to Fn(T1) is isomorphism of Boolean algebras Fn(T1) and Fn(T2), n < ω;
2) f(∃vn+1ϕ) = ∃vn+1f(ϕ), ϕ ∈ Fn+1(T ), n < ω;
3) f(v1 = v2) = (v1 = v2).

Definition 9. [26] 1) 〈A,Γ,M〉 is called the pure triple, where A is not empty, Γ is the permutation
group of A and M is the family of subsets of A such that from M ∈ M follows that g(M) ∈ M for
every g ∈ Γ.

2) If 〈A1,Γ1,M1〉 and 〈A2,Γ2,M2〉 are pure triples and ψ : A1 → A2 is a bijection then ψ is an
isomorphism if:

(i) Γ2 = {ψgψ−1 : g ∈ Γ1};
(ii)M2 = {ψ(E) : E ∈M1}.

Definition 10. [26] The pure triple 〈C,Aut(C), Sub(C)〉 is called the semantic triple of complete
theory T , where C is the universe of Monster model C of theory T , Aut(C) is the automorphism group
of C, Sub(C) is a class of all subsets of C each of which is a carrier of the corresponding elementary
submodel of C.

Definition 11. [26] Complete theories T1 and T2 are semantically similar if and only if their semantic
triples are isomorphic.

Proposition 2. [26] If T1 and T2 are syntactically similar, then T1 and T2 semantically similar. The
converse implication fails.

In what follows, we will denote the syntactic and semantic similarities of the complete theories T1

and T2 as T1
S
./ T2 and T1 ./

S
T2, respectively.

Let us recall the definition of semantic property.

Definition 12. [26] A property (or a notion) of theories (or models, or elements of models) is called
semantic if and only if it is invariant relative to semantic similarity.

For example from [26] it is known that:
The ability to compare complete theories with the help of syntactic and semantic similarity was

useful in describing the most important properties of the theory of stability in the study of complete
theories. The following result confirms the importance of syntactic and, accordingly, semantic similarity
of complete theories.

Proposition 3. [26] The following properties and notions are semantic:
(1) type;
(2) forking;
(3) λ-stability;
(4) Lascar rank;
(5) Strong type;
(6) Morley sequence;
(7) Orthogonality, regularity of types;
(8) I(ℵα, T ) – the spectrum function.

The following definition was introduced Yeshkeyev A.R. in the frame of Jonsson theories study [24].
Let T be an arbitrary Jonsson theory, then E(T ) =

⋃
n<ω En(T ), where En(T ) is a lattice of ∃-

formulas with n free variables, T ∗ is a center of Jonsson theory T , i.е. T ∗ = Th(C), where C is semantic
model of Jonsson theory T in the sense of [23].
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Definition 13. [24] Let T1 and T2 are arbitrary Jonsson theories. We say that T1 and T2 are Jonsson

syntactically similar (T1

S
o T2) if it exists a bijection f : E(T1) −→ E(T2) such that:

1) the restriction of f to En(T1) is an isomorphism of lattices En(T1) and En(T2), n < ω;
2) f(∃vn+1ϕ) = ∃vn+1f(ϕ), ϕ ∈ En+1(T ), n < ω;
3) f(v1 = v2) = (v1 = v2).
In particular, a criterion was obtained that connects fixed Jonsson theories and their centers, which

are complete theories. Thus, a connection is found between the concepts of syntactic and semantic
similarity of complete theories and the corresponding similarities of fixed Jonsson theories.

Theorem 3. [24] Let T1 and T2 are ∃-complete perfect Jonsson theories, then following conditions
are equivalent:

1) T1

S
o T2;

2) T ∗1
S
./ T ∗2 .

One of the important and useful concepts of model theory is the formulaic definability of fixed
subsets of the models under consideration. In particular, when studying complete theories, there are
axiomatic approaches to such subsets [27]. In this article, when passing to fixed subsets of the semantic
model of a fixed Jonsson theory, the concept of special definable formulaic subsets of the semantic
model is used. These concepts were defined by Yeshkeyev A.R. [28], where he defined the concept of
the Jonsson set and its particular case, the theoretical set. This approach is a generalization of the
well-known concept of a basis in linear algebra.

Definition 14. [28] Let T be some Jonsson theory in a fixed language and CT is its semantic model.
A subset X ⊆ CT is called a Jonsson set in the theory T , if it satisfies the following properties:

1) the set X is a ∃-definable subset of CT (this means that there is a ∃-formula, the solution of
which in the CT is the set X);

2) cl(X) = M , M ∈ ET , where cl is some closure operator defining a pregeometry [29; 289] over C
(for example cl = acl or cl = dcl).

Further in our article it is assumed that acl = dcl.
Consider a countable language L, a complete for existential sentences perfect Jonsson theory T in

the language L and its semantic model CT . Let X be a Jonsson set in T and M be an existentially
closed submodel of the semantic model CT , where dcl(X) = M . Then let Th∀∃(M) = Fr(X), where
Fr(X) is the Jonsson fragment of the Jonsson set X.

Definition 14. A set X is called a theoretical set, if X is Jonsson set, ϕ(C) = X and the universal
closure of the formula ϕ(x) defines some finitely axiomatizable Jonsson theory.

The concept of strong minimality, both for sets and for theories, has played an important role in
the description of uncountably categorical complete theories [32]. Recall the definition of a strongly
minimal type.

Let M be a structure of language L. A subset X of M is called minimal if it is definable (with
parameters in M), infinite, and if for any definable (with parameters in M) subset Y of M either
X ∩ Y or X \ Y is finite. A formula ϕ(x) (in L(M)) is strongly minimal if it defines a minimal set
in all elementary extensions of M . A non-algebraic type is strongly minimal if it contains a strongly
minimal formula.

2 Main results

Definition 15. A Jonsson theory T is called Robinson theory if it is universally axiomatizable.
Definition 16. [10] An enrichment T̃ is called admissible if the ∇-type (this means that ∇ ⊂ Lσ

and any formula from this type belongs to ∇) in this enrichment is definable within the framework of
T̃Γ-stability, where Γ is the enrichment of the signature σ.
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Definition 17. [10] A Robinson theory T is called hereditary if in any of its admissible enrichments
any extension is a Robinson theory.

Let T be a Robinson theory, A be an arbitrary model of signature σ. The Robinson spectrum of
the model A is the set:

RSp(A) = {T | T is Robinson theory in the language of signature σ and A ∈Mod(T )}.

Definition 18 (T.G. Mustafin [1]). We say that the Jonsson theory T1 is cosemantic to the Jonsson
theory T2 (T1 ./ T2), if CT1 = CT2 , where CTi is the semantic model of the theory Ti, i = 1, 2.

It is easy to see that the cosemantic relation on a set of Jonsson theories is an equivalence relation.
Since the Robinsonian theory is a special case of the Jonsson theory, then we can consider theRSp(A)/./
factor set of the Robinson spectrum of the model A with respect to ./.

And one can define the Robinson spectrum RSp(K) of the classK structures for arbitrary signature
by analog with the Robinson spectrum RSp(A):

RSp(K) = {T | T is a Robinson theory in the language K ⊆ Mod(T )}.

We can note that if A ∈ K then RSp(A) ⊃ RSp(K).
Let [T ] ∈ RSp(K)/./, then E[T ] =

⋃
E∆

∆∈[T ]

is the class of all existentially closed models of class [T ].

We will call a class [T ] ∈ RSp(K)/./ perfect if every theory ∆ ∈ [T ] is perfect.
We will call the class [T ] ∈ RSp(K)/./ hereditary if each theory ∆ ∈ [T ] is hereditary.
In what follows, we will work with a special class of K structures called a variety.
Recall that identities are formulas of the form (∀x1, . . . xn)ϕ(x1, . . . xn), where ϕ(x1, . . . xn) is an

atomic formula of signature σ.

Definition 19. [30] A class K of systems of signature σ is called a variety if there exists a collection
F of identities of signature σ such that K consists of those and only those systems of signature σ in
which all formulas from F . The collection F is called the defining collection of the variety.

Note that every variety is an axiomatizable class of algebras.
Examples of varieties are the classes of all semigroups, all groups, Abelian groups, Boolean rings,

nilpotent groups of steps ≤ s.
Let us formulate the following the well-known classical result:

Theorem 4 (Birkhoff [30], p. 337). For a non-empty class K of algebraic systems to be a variety, it
is necessary and sufficient that the following conditions be satisfied:

1) the Cartesian product of an arbitrary sequence of K-systems is a K-system;
2) any subsystem of an arbitrary K-system is a K-system;
3) any homomorphic image of an arbitrary K-system is a K-system;

i.e. it is necessary and sufficient that the class K be hereditary, multiplicatively, and homomorphically
closed.

Definition 20. A class of structures KR of signature σ will be called a Robinson class if Th∀(KR)
is a Robinson theory.

Definition 21. We will call a variety K Robinson hereditary if every Robinson class KR ⊆ K is a
subvariety of the class K.

In [25] the question was formulated about the coincidence of the concepts of algebraic closure and
existential closure in classes of models of a fixed variety. This question in this context is relevant to
universal algebra. The concepts of algebraic closure and existential closure in the theory of models have
an independent meaning, since the theory, generally speaking, may not be connected with the concept
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of variety. In this paper, the following result gives a positive answer to the above Forrest question
in the framework of studying the cosemanticness classes of a fixed Robinson spectrum of a Robinson
hereditary variety.

Theorem 5. Let K be a Robinson hereditary variety, [T ] ∈ RSp(K)/./ is perfect class, then for any
algebraically closed model A ∈Mod[T ] it follows that A ∈ E[T ].

Proof. Suppose the opposite. Let there exist a model A ∈ Mod([T ]) such that A is algebraically
closed, but A /∈ E[T ]. Then there exists a sentence θ = ∃x¬ϕ(x) and a model B ∈Mod([T ]) such that
B ⊇ A and B |= θ, but A 2 θ. Then A |= ¬θ, that is, A |= ∀xϕ(x). Since any theory ∆ ∈ [T ], ∆ is
Robinson theory, then according Proposition 1, there exists B′ ∈ E[T ] such that A → B′, B′ → C,
where C is a semantic model of the class [T ]. Since class [T ] is perfect, then C |= ¬θ. On the other
hand, if B ∈ E[T ], then B ≡∀∃ B′ and B′ |= θ. If B /∈ E[T ], then there exists B′′ ∈ E[T ], such that
B → B′′ and B′′ → C. In both cases we have C |= θ. We got a contradiction. So our assumption was
wrong, therefore, A ∈ E[T ].

The idea of a central type allows one to study classes of models of the center of hereditary Jonsson
theory in an enriched language. In this context, in the considered enrichment, we use a one-place
predicate and some constant symbols, and one constant symbol is fixed in terms of the location of the
interpretation of this constant relative to an existentially closed submodel of a fixed semantic model,
which is an interpretation of a one-place predicate symbol. Taking into account the fact that in the
pregeometry that specifies the closure of the set of types under consideration, the definable closure and
algebraic closure of which are equal to each other, it allows avoiding collisions of non-preservation of
the notion of Jonsson property in this enrichment.

Consider the general scheme for obtaining the central type for a hereditary cosemanticness class of
Robinson theories [6].

Let A be an arbitrary model of signature σ, [T ] ∈ RSp(A)/./ be a hereditary class, C[T ] be semantic
model of class [T ]. For each theory ∆ ∈ [T ], consider its enrichment ∆̄ in language of signature
σΓ = σ ∪ Γ, where Γ = {P} ∪ {c}, obtained as follows:

∆̄ = Th∀(C[T ], a)a∈P (C[T ]) ∪ Th∀(E∆) ∪ {P (c)} ∪ {”P ⊆ ”},

where {”P ⊆”} is an infinite set of sentences expressing the fact that the interpretation of the symbol
P is an existentially closed submodel in the language of the signature σΓ. That is, the interpretation of
the symbol P is a solution to the equation P (C[T ]) = M ⊆ E∆ in the language σΓ. Due to the heredity
of the theory ∆, the theory ∆̄ is a Robinson theory. Collecting all such theories ∆̄, we obtain the class
[T̄ ] of Robinson theories. The center [T̄ ]∗ = Th(C[T̄ ]) of class [T̄ ] is one of the completions for each
theory ∆̄ ∈ [T̄ ]. Restricting the signature σΓ to σ ∪ {P}, due to the laws of first-order logic, since the
constant c does not already belong to this signature, we can replace this constant with the variable x.
Then the theory [T̄ ]∗ will be a complete 1-type for the variable x. We will call this type the central
type of the class [T̄ ] in the above enrichment and denote it P c

[T̄ ]
.

In work [6] was obtained criterion of uncountable categoricity for the hereditary Jonsson theory in
the language of central types.

Theorem 6. [6] Let [T ] be hereditary class from RSp(A)/./, then the following conditions are
equivalent:

1) any countable model from E[T ] has an algebraically prime model extension in E[T ];
2) P c

[T ]
is the strongly minimal type, where P c

[T ]
is the central type of [T ].

To prove the main result, we need a well-known fact:
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Theorem 7 (Morley [31]). A theory T is ω1-categorical if and only if any of its countable models
has a simple proper elementary extension.

Obviously, we can use Morley’s uncountable categoricity theorem in connection with the existence of
an algebraically simple model extension for the central type in the framework of the following theorem.
This means the following: the central type obtained by enriching the corresponding hereditary Robinson
theory is exactly the center of the enriched Jonsson theory. If we replace the variable x with a constant
that defines the central type, then we get a complete theory, which is model complete due to the
perfection of the enriched Jonsson theory of this center. Thus, due to the model completeness, an
algebraically simple model extension will also be a simple model extension, which allows us to consider
this center as an ω1-categorical theory, in which there is a strongly minimal formula, by virtue of the
above Morley theorem.

Theorem 8. LetK be a Robinson hereditary variety, [T ] ∈ RSp(K)/./ be hereditary class, X ⊆ C[T ]

be a theoretical set defined by some strongly minimal ∃-formula ϕ(x), ∆ is some ∃-complete finitely
axiomatizable Jonsson theory defined by ∀xϕ(x), then the following conditions are equivalent :

1) ∆
S
o Fr(X)

S
o T ;

2) the central type P c
[T ]

of class [T ] is strongly minimal.

Proof. If ∆
S
o Fr(X)

S
o T , then by Theorem 3 ∆∗

S
./ Fr∗(X)

S
./ T ∗. But then, according to

Proposition 3, these theories preserve the Morley rank, and, accordingly, the ω1-categoricity, which
is expressed in terms of the Morley rank. Thus, we have obtained that the theories ∆∗, Fr∗(X) and
[T ]∗ are ω1-categorical, i.e. all semantic models of these theories are saturated, hence the theories ∆,
Fr(X) and T are perfect. This means that the class [T ] is also perfect.

Note that in Theorem 6 item 1) is equivalent to the fact that the class [T ] is ω1-categorical (this
follows from Morley’s theorem), and therefore perfect. Then, from Theorem 6 it follows that the central
type P c

[T ]
of the class [T ] is strongly minimal.
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Теоретикалық жиынның фрагментi және оның қатты минималды
централдық типi

Жұмыста алгебралардың жаңа класы анықталған, оның теориялары йонсондық теориялардың дербес
жағдайы болып табылады. Бұл класс көптүрлiлiктерге де, йонсондық теорияларға да қолданылады.
Осы мақаланың негiзгi нәтижелерi келесi екi нәтиже болып табылады. Авторлар робинсон мұралық
көптүрлiлiгiнiң бекiтiлген спектрiнiң косеманттылық класының моделiнiң экзистенциалды тұйықта-
луы мен алгебралық тұйықталуының эквиваленттiлiгi туралы сұраққа жауап алынған. Централдық
кластардың централдық типтерiн және бекiтiлген спектрдiң фрагменттерiн зерттеу аясында қатты
минималдылық критерийi алынды.

Кiлт сөздер: йонсондық теория, экзистенциалды тұйық модель, алгебралық тұйық модель, косемант-
тылық, робинсон спектрi, робинсон мұралық көптүрлiлiгi, централдық тип, йонсондық фрагмент,
теоретикалық жиын, қатты минималдық тип.
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Фрагмент теоретического множества и его сильно минимальный
центральный тип

В работе определён новый класс алгебр, теория которых является частным случаем йонсоновских
теорий. Данный класс относится и к многообразиям, и к йонсоновским теориям. Основными резуль-
татами настоящей статьи являются следующие два: авторами получены ответ на вопрос об экви-
валентности экзистенциальной замкнутости и алгебраической замкнутости модели класса косеман-
тичности фиксированного спектра робинсоновски наследственного многообразия, а также критерий
сильной минимальности в рамках изучения центральных типов центральных классов и фрагментов
фиксированного спектра.

Ключевые слова: йонсоновская теория, экзистенциально замкнутая модель, алгебраически замкну-
тая модель, косемантичность, робинсоновский спектр, робинсоновски наследственное многообразие,
центральный тип, йонсоновский фрагмент, теоретическое множество, сильно минимальный тип.
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and semantic model. In order to prove two main results of the paper, Robinson spectra RSp(JCU) and
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considered. The main results are presented in the form of theorems 11 and 13 and imply following useful
corollaries: countably categorical Robinson theories of unars are totally categorical; countably categorical
Robinson theories of undirected graphs are totally categorical. The obtained results can be useful for
continuation of the various Jonsson algebras’ research, particularly semantic Jonsson quasivariety of S-acts
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Introduction

This paper and focuses on the study of model-theoretic properties of well-known and sufficiently
simple classes in the sense of the signature of algebras, namely unars and undirected graphs. One can
note that this paper is a continuation of works [1–4].

At one time, the famous mathematician-logician H.J. Keisler, in his review article "Fundamentals
of Model Theory" in the four-volume monograph "Reference Book on Mathematical Logic" (edited by
J. Barwise), defined the basic concepts and directions of the development of model theory. H.J. Keisler
identified two historical trends in the development of model theory. They are called "western" and
"eastern" model theory. This division is due to the fact that A. Tarski lived on the west coast from
1940, and A. Robinson lived on the east coast from 1967 until his premature death in 1975. This
distinction has long lost its geographical significance, but it is useful from a mathematical point of
view.

"Western" model theory develops in the traditions of Skulem and A. Tarski. It was mostly motivated
by problems in number theory, calculus and set theory, it uses all the formulas of first-order logic.

"Eastern" model theory develops in the traditions of A.I. Mal’tsev and A. Robinson. It was
motivated by problems in abstract algebra, where the formulas of theories usually have at most two
blocks of quantifiers. It emphasizes a set of quantifier-free and existential formulas.

Jonsson theories as an object of research were first considered in the works of Jonsson [5] and Morley,
Voot [6]. In the mid-80s of the twentieth century, the works of T.G. Mustafin identified a new direction
in the study of Jonsson theories. In particular, he defined a natural subclass of Jonsson theories, which
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he called perfect. The main method of his research was the following: the study of the properties
of arbitrary Jonsson theories by transferring the properties of the central completion of this Jonsson
theory. In the early 90s of the twentieth century A.R. Yeshkeyev obtained a criterion for the perfection
of the Jonsson theory [7]. In particular, there was obtained a complete description of the Jonsson
universal unars in the works [2,3] by A.R. Yeshkeyev, T.G. Mustafin, as well as the relationship between
the theory of unars and their center in the language of stability. On the other hand, one of the weak
points in the study of Jonsson theories within the framework of the method proposed by T.G. Mustafin
was the presence of an additional axiom about the existence of a strongly inaccesible cardinal to the
axioms of Zermelo-Frenkel set theory in the definition of a semantic model. It should be noted that
during the talk of R.M. Ospanov at the "5th Kazakh-French colloquium on model theory well-known
experts in the field of model theory Ye.A. Palyutin and B. Poizat pointed out the need to change this
definition. The realization of this remark was the output of the work of Ye.T. Mustafin [8], in which
he redefines the concept of k-homogeneity and semantic model. Accordingly, the modified definition of
the perfection of the Jonsson theory appeared in [9], in which the main results obtained earlier in [10]
were re-demonstrated within the framework of the new definition.

The results discussed here relate in their content to the "eastern" model theory. Various properties
of unars from the perspective of "western" model theory (the case when the complete theory of some
unar is considered) were obtained in the works of Yu.E. Shishmarev [11], A.N. Ryaskin [12].

The notion of countable categoricity in "western" model theory distinguishes probably the narrowest
class of theories, and it is well studied. In the case of "eastern" model theory (meaning studies of
Jonsson theories), it should be noted that Vought theorem on the relationship between completeness
and categoricity of the theory does not hold, since Jonsson theories, generally speaking, are not complete
and have finite models. The following question of Ye.A. Palyutin is well-known: is there an ω-categorical
universal K that is not ω1-categorical? If this question is projected into the framework of research on
the Jonsson theories, then one can notice some interesting connections between the Jonsson theory
itself and its center appear.

In this regard, A.R. Yeshkeyev [13] obtained the following results:

Theorem 1. If the Jonsson theory T is ω-categorical, then T is perfect.

Theorem 2. If the Jonsson theory T is k-categorical, then the #-companion of the theory T is
k-categorical, where k ≥ ω.

Theorem 3. In the case of a negative answer to question of Ye.A. Palyutin for a Jonsson theory that
satisfies the conditions of the question, the center of the Jonsson theory cannot be finitely axiomatized.

There is considered a class of existentially closed models of an arbitrary universal theory in the
work of A. Pillai [14], and for this class he develops a forking theory with a suitable concept of the
simplicity of the theory. S. Shelah [15], E. Hrushovski [16] studied classes of existentially closed models
of Robinson theory. A theory is called a Robinson theory if it is universal and admits AP and JEP .
From here it is easy to see that any Robinson theory is a special case of the Jonsson theory. And
if we take into account that unars and undirected graphs are Jonsson universals, then obtaining a
description of their existentially closed models within the framework of the above topic is an urgent
task. This article discusses the description of an existentially closed model of a countably categorical
universal of unars, as well as undirected graphs.

All definitions that were not given in the current article can be extracted from [7,17–27].

1 Necessary concepts of Jonsson model theory

Let us recall the conditions, that should be satisfied in order for a theory to be Jonsson.

Definition 1. [5] A theory T is said to be Jonsson, if:
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1) T has at least one infinite model;
2) T is ∀∃-axiomatising;
3) T has JEP property;
4) T has AP property.

For example, the following theories are Jonsson: unars, graphs and their various subclasses, groups,
abelian groups, Boolean algebras, linear order, fields of characteristic p (p is a prime number or zero),
ordered fields. In addition to these natural examples and rather broad classes of algebras, we may also
notice that for an arbitrary theory T its scolemization and morleization are also examples of Jonsson
theories.
∀-axiomatizing Jonsson theory is called the Robinson theory.
By virtue of theorem of Morley and Vaught [6] an arbitrary Jonsson theory T has T -universal,

T -homogeneous model C in some inaccessible cardinality. Let us consider elementary theory Th(C).
We denote it as T ∗, i.e. T ∗ = Th(C).

The next definitions belong to T.G. Mustafin.

Definition 2. [7] 1) Let T be a Jonsson theory. A model CT of power 2|T | is called to be a semantic
model of the theory T if CT is a |T |+-homogeneous |T |+-universal model of the theory T .

2) The elementary theory of a semantic model of the Jonsson theory T is called the central
completion or center of this theory. The center is denoted by T ∗, i.e. Th(C) = T ∗.

In the "west" model theory, when isomorphic embedding in the definitions of universal and homogeneous
model changes to elementary embedding, and also the definition of the homogeneous model changes,
then the following theorem is true:

Theorem 4. [7] A system A is saturated iff it is homogeneous and universal.

Unfortunately, in the "east" model theory T -universal, T -homogeneous model does not have to be
saturated model. The following notions are required for proofing the main theorems of this paper.

Definition 3. [7] Jonsson theory T is called perfect theory, if its semantic model CT is saturated.

Theorem 5. [7] Let T be arbitrary Jonsson theory, then the following conditions are equivalent:
1) Theory T is perfect,
2) T ∗ is model completion of theory T .

The following criterium is nedded for clarification of constructing semantic Jonsson quasivariety.

Theorem 6. [7] T is Jonsson iff it has a semantic model CT .

Since we will work with Robinson theories of unars and undirected graphs, let us recall the definition
of universal.

Definition 4. [2] If T = T∀, then T is said to be universal.

The next two notions of κ-categorical Jonsson theory and existentially closed model of theory T
are nedded for obtaining main theorems of this paper.

Definition 5. [7] Let κ ≥ ω. Jonsson theory T is called κ-categorical, if any two models of power κ
of theory T are isomorphic to each other.

Definition 6. [7] Model A of theory T is called existentially closed model of theory T , if for any
model B of theory T such that A ⊆ B, for any ∃ - formula ∃xϕ(x, y), for any a from A (l(a)) = (l(y))
from B |= ∃xϕ(x, a) follows that A |= ∃xϕ(x, a)

We will denote a class of existentially closed models of theory T as ET .
Since the current research is connected with consideration of Robinson spectrum for classes of

algebras, let us give the following conditions of Jonsson theories cosemanticness.

Mathematics series. No. 3(111)/2023 167



A.R. Yeshkeyev, A.R. Yarullina, S.M. Amanbekov

Definition 7. [7] Let T1 and T2 be Jonsson theories, CT1 and CT2 be their semantic models,
respectively. T1 and T2 are said to be cosemantic Jonsson theories (denoted by T1 ./ T2), if CT1 = CT2 .

Theorem 7. [7] Let T1 and T2 be Jonsson theories, CT1 and CT2 be their semantic models, respectively.
Then the next conditions are equivalent:

1) CT1 ./ CT2 ;
2) CT1 ≡J CT2 ;
3) CT1 = CT2 .

Let K be a class of models of fixed signature σ. Then we can consider Jonsson spectrum for K,
which can be defined as follows.

Definition 8. [28] A set JSp(K) of Jonsson theories of signature σ, where

JSp(K) = {T |T is Jonsson theory and K ⊆Mod(T )},

is called the Jonsson spectrum for class K.

Hence, in the particular case, when the Jonsson theory is ∀-axiomatising we get the concept of the
Robinson theory, respectively, the notion of the Jonsson spectrum allows us to consider the Robinson
spectrum.

Definition 9. [4] A set RSp(K) of Robinson theories of signature σ, where

RSp(K) = {T |T is Robinson theory and ∀A ∈ K,A |= T},

is called the Robinson spectrum for class K.

Based on theorem 7, we can consider the cosemanticity relation on Jonsson spectrum JSp(K) and
obtain a partition of JSp(K) onto equivalence classes. we get a factor-set, denoted as JSp(K)/./. The
factor-set RSp(K)/./ will be obtained correspondingly.

Let K be a class of quasivariety in the sense of [29] of first-order language L, L0 ⊂ L, where L0 is
the set of sentences of language L. Let us consider the elementary theory Th(K) of such class K. By
adding to Th(K) ∀∃ sentences of language L, that are not contained in the Th(K), we can consider
the set of Jonsson theories J(Th(K)) defined as follows.

Denotation 1. [4] A set J(Th(K)) = {∆ | ∆ − Jonsson theory, ∆ = Th(K) ∪ {ϕi}}, where
ϕi ∈ ∀∃(L0) and ϕi /∈ Th(K), i ∈ {0, 1}, Th(K) is elementary theory of class of quasivariety K,
∀∃(L0) is a set of all ∀∃ sentences of language L.

Let us consider the set of such semantic models and denote it as JC.

Denotation 2. [4] A set JC = {C∆ | ∆ ∈ J(Th(K)),C∆ is semantic model of ∆}.
We will call the set JC semantic Jonsson quasivariety of class K if its elementary theory Th(JC)

is Jonsson theory.

2 Countable categoricity of semantic Jonsson quasivarieties of universal unars

Let A be some unar, i.e. the model of signature σ = {f}, where f is a unary functional symbol. Let
f0(x) = x, fn+1(x) = f(fn(x)), n ∈ ω. Elements a, b ∈ A are called A-connected in X if there exist
natural numbers m and n such that (fm(a) = fn(b)) and f0(a) = fm(a), f0(b), ..., fn(b) ∈ X.

A set X ⊆ A is called A-connected if any two elements from X are A-connected. A subsystem
B ⊆ A carrier of which is the maximal A-connected subset of carrier A is called a component in A. If
B is a component in system A, then the set {a ∈ B : A |= (fn(a) = a) for some n ∈ ω is called a cycle
of component. By K(a,A) we denote the restriction of A to the set {b ∈ A : A |= (fn(b) = a) for some
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n ∈ ω} and we call it the root of the element a in the unar A, while the element a is called the vertex
of the root K(a,A).

We will write down the special connections between the elements of the unar in the form of ∃-
formulas:

1) the property of the elements to be at "the beginning of the cycle":
Φn

0 (z) = Φn(z)&∃y¬Φ(y)&f(y) = z, where Φn(z) = (fn(z) = z)&(f(z) 6= z)...(fn−1(z) 6= z);
2) "x has no less than k different immediate representatives":
Θ(x) = ∃x1, ...,∃k(∧i 6=j<xxi 6= xj ∧ ∧ki=1f(xi) = x);
3) "there are exactly k different elements between x and the beginning of the cycle":
Ψk(x) = ∃z∃y1...∃yk(∧i 6=j<x(yi 6= yj) ∧ f i(x) = yi ∧ ∧k−1

i=1 f(yi) 6= f(yi+1) ∧ Φn
0 (z) ∧ f(yk) = z).

By virtue of works [2,4] we can use the conclusion that ∀-axiomatisability of elemantary theory of
unars, Th∀(U) is the Robinson theory of unars.

Thus, we consider a set JCU = {C∆U
| ∆U ∈ J(Th(K)),C∆U

is a semantic model ∆U} of signature
σU =< f >, where ∆U is a Robinson theory of unars, f is unary functional symbol. Such JCU defines
semantic Jonsson quasivariety of Robinson unars as in [4].

We are using the definition of the Robinson spectrum of the set JCU [4].
Definition 10. [4] A set RSp(JCU) of Robinson theories of signature σU, where

RSp(JCU) = {∆U |∆U is Robinson theory of unars and ∀C∆U
∈ JCU,C∆U

|= ∆U},

is called the Robinson spectrum for class JCU, where JCU is semantic Jonsson quasivariety of Robinson
unars.

Further we obtain a factor-set, denoted as RSp(JCU)/./ and consisted of equivalence classes parted
by cosemanticness relation [∆U] ∈ RSp(JCU)/./.

Remark 1. Everywhere in this section [∆U] denotes an equivalence class of Robinson theories of
unars parted by cosemanticness relation on Robinson spectrum RSp(JCU). C∆U

denotes semantic
model and E∆U

denotes a class of existentially closed models of class [∆U].
Further we obtained two useful theorems, concerning the equivalence class [∆U] of Robinson theories

of unars parted by cosemanticness relation on Robinson spectrum RSp(JCU).
We will use the denotations from [2–4].
Theorem 8. Let [∆U] be a class of Robinson theories of unars, [∆∗U] its center. Then
1) [∆∗U] is model completion of [∆U];
2) [∆∗U] allows quantifier elimination (i.e. submodel complete);
3) [∆∗U] is ω-stable.
Proof . 1) Let C be semantic model of [∆U]. Then [∆∗U] = Th(C). Let C∗ be saturated model of [∆∗U].

We can assume that C∗ ⊆ C. It easy to understand that if a ∈ C∗, then tpC∗(a,∅) = tpC(a,∅) = χ(a).
Hence CC(a) ' CC∗(a), whene CA(b) by definition is {c ∈ A : ∃n, k < ω fn(c) = fk(b)}. The quantity
of pairwise isomorpic components is uniquely defined by char[∆U]. Hence C∗ ' C. It means that [∆U]
is perfect Jonsson theory and [∆∗U] is its model completion.

2) follows from 1) and Robinson theorem [3].
3) Let H be arbitrary subunar of C. From lemma 5 [2] we have

|SC(H)| ≤ (1 + ω2) + (1 + ω) + |H|, because
|{f(a) : a ∈ C}| − |Ω| ≤ 1 + ω2,
|{ρ(a,H) : a ∈ C}| ≤ 1 + ω,
|{enter(a,H) : a ∈ C}| ≤ |H|.

From this, if |H| ≤, then |SC(H)| ≤ ω.
The theorem is proven.
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Theorem 9. 1) The quantity of pairwise different [∆U] classes of Robinson theories of unars is equal
to 2ω.

2) The quantity of pairwise different maximal [∆U] classes of primitive Robinson theories is equal
to 2ω.

3) The quantity of pairwise different maximal [∆U] classes of Robinson theories of unars is equal to ω.
Moreover, these are precisely the classes of theories, that have following characteristics: πω, {π0,m 1 ≤
m < ω}, {πn,m 1 ≤ n,m < ω}, where

πω : Ω = {ω}, ν(m) = 0 ∀m < ω, µ(ω) = 1, ε =∞;

π0,m : Ω = {(0,m)}, ν(m) =

{
0, if k 6= m,

∞, if k = m;
µ(0,m) = 0, ε = 0;

πn,m : Ω = {(0,m), .., (n,m)}, ν(k) =

{
0, if k 6= m,

1, if k = m,

µ(k,m) =


1, if k < n− 1,

∞, if k = n− 1, ε = 0.

0, if k = n,

4) Maximal ∇-complete [∆U] classes of Robinson theories of unars is the only class, that has
characterstic πω.

Proof . 1) It is easy to note that the quantity of pairwise different characteristics is equal to 2ω.
By theorem 3 [4] the quantity of [∆U] classes of Robinson theories of unars is equal to 2ω.

2) Let [∆U]′π = (Th(Cπ))∇ where Cπ is semantic model of class of Robinson theories of unars of
characteristic π. Obviously [∆U]′π is ∇-complete primitive. By lemma 1 [3] [∆U]′π is class of Robinson
theories of unars. By Proposition 3 [3] [∆U′π ] is maximal class of primitive Robinson theories. If π1 6= π2,
then [∆U′π1

] 6= [∆U′π2
], since ([∆U′π1

])∀ 6= ([∆U′π2
])∀, hence, the quantity of maximal [∆U] classes of

primitive Robinson theories is equal to 2ω.
3) Let us consider partial order on set of all characteristics in following form. Let πi = (Ωi, νi, µi, εi),

i = 1, 2. Then suppose π1 ≤ π2 ⇔ Ω1 ⊆ Ω2 & ∀m < ω(ν1(m)) ≤ ν2(m)) & ∀α ∈ Ω1(µ1(α) ≤
µ2(α)) & ε1 ⊆ ε2. From definition of class [∆U]π in the proof for theorem 3 [4] it easy to see that

[∆U]π1
⊇ [∆U]π2

⇔ π1 ≤ π2.

Case 1. ε =∞.
Among such characteristics the minimal is the only characteristic πω.
Case 2. ε = 0.
In this case ω /∈ Ω and |Ω| < ω. By condition 10) from definition of characteristic [3] either

∃0 < k < ω (ν(k) =∞), either ∃(k, l) ∈ Ω, (µ(k, l)) =∞).
Case 2.1. ∃1 ≤ k < ω (ν(k)) =∞)).
Among such characteristics the minimal are characteristics π0,m, 1 ≤ n < ω, 1 ≤ m < ω.
Case 2.2. ∃1 ≤ k < ω, 1 ≤ l < ω (µ(k, 1) =∞).
In the set of such characteristics the minimal are characteristics πn,m, 1 ≤ n < ω, 1 ≤ m < ω.
4) Note that the class [∆U]π , that has characteristic πω is complete, in particular ∇-complete.

Therefore it is maximal among classes of Robinson theories of unars. Classes [∆U]n,m , 0 ≤ n <
ω, 1 ≤ m < ω are not ∇-complete, since [∆U]n,m ∪ ∃x1, ..., xm+1(∧1≤i<j≤m+1(xi 6= xj)) and [∆U]n,m ∪
∀x1, ..., xm+1(∨1≤i<j≤m+1(xi = xj)) are consistent. The theorem is proven.

By consideration of theorems 9 and 10, we can obtain the following result:
Theorem 10. Let [∆U] be a class of ω-categorical Robinson theories of unars. Then the following

conditions are equivalent:
1) A ∈ E∆U

, where A is a model of class [∆U];
2) A is disjoint union of components with cycles of the same length.
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Proof . The proof of this theorem is based on the following theorem, three facts and three lemmas.

Theorem 11. [30] In order for the algebraic system A to be some ω-categorical universal, it is
necessary and sufficient that the following conditions will be satisfied:

1) A is locally finite;
2) there is a function g : ω → ω such that for every a ∈ A and for every finite subset X ⊆ A the

type tp(a,X,A) is realized in every subsystem B ⊆ A that contains X and has a power ≥ g(|X|).
Fact 1. [13] If the Jonsson theory T is ω - categorical, then T is perfect.

Fact 2. [30] Let T be a Jonsson theory. Then the following conditions are equivalent:
1) T is perfect;
2) E(T ) = ModT ∗;
3) T ∗ is a model companion of the theory T .

Fact 3. [31] Let T be ∀∃-complete Jonsson theory. Then the following conditions are equivalent:
1) T is ω-categorical;
2) T ∗ is ω-categorical.

We get as a consequence of these facts (1 - 3) that, since [∆U] is ω-categorical, [∆U] is an equivalence
class of perfect Robinson theories, and E∆U

= Mod(∆∗U) is ω-categorical universal. Thus, if A ∈ E∆U
,

then A ∈Mod(∆∗U). Consequently, A satisfies the conditions of E.A. Palyutin criterion (Theorem 11).
By virtue of these arguments, it is sufficient to prove the following lemmas to prove Theorem 10.

Lemma 1. Let A ∈ ω-categorical Jonsson universal, x ∈ A. Then ∃n, k ω : fn(x) = fk(x).

Proof . By virtue of E.A. Palyutin criterion, A is locally finite. Now suppose that ∀n, k ∈ ω :
fn(x) 6= fk(x). This means that there is a set Y = {y1, y2, ..., yn, ...} ⊆ A, where f(yi) = yi+1, and
yi 6= yj if i 6= j, where i ∈ {1, 2, ...}. But then an element, for example y1, generates an infinite
(countable) set Y . And this contradicts the local finiteness of unar A.

Lemma 2. Let A ∈ ω-categorical Jonsson universal. Then for any element a ∈ A, the root K(a,A)
is finite.

Proof . Let us assume the opposite. Let there be an element a ∈ A such that the root K(a,A) is
infinite. Then there are two possible cases:

1) Ψk(x) : k ∈ ω is realized in unar A;
2) Θk(x) : k ∈ ω is realized in unar A.
By virtue of the Palyutin criterion, there exists a function φ : ω → ω such that for any n ∈ ω,

for any subunar B [3] of an unar A with a power of at least φ(n), for any type p ∈ Sj(b) (b ∈ B)
from the fact that A |= p(a), it follows that there exists a b ∈ B such that A |= p(b). Let φ(0) = s.
Then according to the criterion for any subunar B of a unar A with a power of at least s for any type
p ∈ Sj(b) (b ∈ B) A |= p(a)⇒ ∃b ∈ B : A |= p(b)(i.e. any type of element of unar A is realized in B).

1) Consider the chain Г. Let Гs be a subchain Г with a cycle, and the number of elements in Гs is
equal to s.

It has the form:

A type containing the formula Ψs−n+1(x) cannot be implemented in Гs (i.e., there are exactly
s− n+ 1 different elements between x and the beginning of the cycle).

2) Consider a subset where the number of elements of the preimages with a cycle is s:
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It is clear that no finite unar realizes the set of formulas {Θk(x) : k ∈ ω}. We get a contradiction.

Lemma 3. Let A ∈ ω-categorical Jonsson universal. Then:
1) each element of A enters some cycle;
2) all cycles of unar A have the same length.

Proof . By virtue of the previous lemmas, each component of the unar A is finite and has the form
Dn ⊕n K, where Dn is a cycle of length n, a is an element of the cycle, K is the finite root of a.

Let b ∈ K and b 6= a. b is not included in any cycle. Then there exists k such that fk(b) = a
and fs(b) 6= a for s < k. Consider the formula ∃y(fk(y) = a&i<kf

i(y) 6= a)&fk(a) = a&&i<kf
i(a) 6=

a, k > 1. It is clear that in the infinite subunar A′ ⊆ A, obtained by combining only the elements
included in some cycles, this formula is not realized. Which contradicts condition 2) of the criterion.
Thus point 1) of the lemma is proved.

2) Let us assume the opposite: there are at least two cycles of different lengths. Then there are two
possible cases:

2.1) For some n there is a finite number of cycles of length n. Then for some n0 (with a non-empty
set of cycles of length n0), we remove all cycles of length n0 from unar A. We get an infinite subunar
in which the formula fn0(x) = x&&i<n0f

i(x) 6= x is not realized.
2.2) (Negation of the first case) Let n0 be a number for which there is an infinite set of length n0

in A. By assumption, there is at least one cycle k 6= n0 in A. Remove all cycles of length k from A. We
get an infinite subunar in which the formula fk(x) = x&&i<kf

i(x) = Z is not realized.
There is obtained a contradiction to condition 2) of the criterion in each of the two cases.
Let us prove sufficiency. If unar A is a disjunctive union of an infinite number of components that

are a cycle of the same length, then A is ω-categorical universal.
We will show the satisfaction of points 1) and 2) of the criterion.
1) Consider a finite subset of {a1, ..., an} ⊆ A. Each of the elements generates a cycle of length n.

Therefore, a subsystem generated by a finite subset of {a1, ..., an} contains no more than nk elements.
2) Find the function g, the existence of which is required by the criterion. Consider a finite subset

of elements Xk = {a1, ..., ak} ⊆ A. It is not difficult to understand that the total number of different
types over Xk does not exceed the number n(k + 1). Then any submodel contains cycles "connected"
with elements from Xk, and one cycle independent of them realizes all n(k+ 1) types. Therefore, g(k)
will be equal to n(k + 1).

In connection with the above question by Ye.A. Palyutin, from the description of the existentially
closed unar model (Theorem 11.), it can be noted that

Corollary 1. Countably categorical Robinson theories of unars are totally categorical.
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3 Countable categoricity of semantic Jonsson quasivarieties of undirected graphs

G graph is further understood as an algebraic system of the signature < R >, where R is binary
symmetric relation, i.e. an undirected graph. Further, the elements of the graph are called vertices,
and pairs < x, y > such that R(x, y) are called edges. A graph set of edges of which is empty is
called a quite disconnected graph. A path in graph G is an alternating sequence of vertices and edges:
xi, < xi, xi+1 >, xi+1, < xi+1, xi+2 >, .... A path is called a chain if all its edges are different, and a
simple chain if all vertices (and therefore edges) are different. A graph G is called connected if any pair
of its vertices is connected by a simple chain. A graph is called acyclic if there are no cycles in it. A tree
is a connected acyclic graph. The maximal connected subgraph of a graph G is called a connectivity
component, or simply a graph component. A subgraph of a graph G is a graph in which all vertices
and edges belong to G. The degree of a vertex in a graph G is the number of edges incident to this
vertex. A vertex of degree I is called a pendant (or end point) vertex.

Countably categorical graphs were studied in [32]. The main result of this work is the following
theorem:

Theorem 12. Let G be an arbitrary countable graph in which each component contains a finite
number of cycles. Then G is ω-categorical if and only if G is bounded and a finite number of I-types
is realized in it.

By virtue of works [3,4] we can use the conclusion that ∀-axiomatisability of elemantary theory of
graphs, Th∀(G) is the Robinson theory of graphs.

Thus, we consider a set JCG = {C∆G
| ∆G ∈ J(Th(K)),C∆G

is a semantic model ∆G} of signature
< R >, where ∆G is a Robinson theory of unars, R is binary symmetric relation. Such JCG defines
semantic Jonsson quasivariety of Robinson undirected graphs as in [4].

We are using the definition of the Robinson spectrum of the set JCG as in [4].

Definition 11. A set RSp(JCG) of Robinson theories of signature < R >, where

RSp(JCG) = {∆G |∆G is Robinson theory of graphs and ∀C∆G
∈ JCG,C∆G

|= ∆G},

is called the Robinson spectrum for class JCG, where JCG is semantic Jonsson quasivariety of Robinson
undirected graphs.

Further we obtain a factor-set, denoted as RSp(JCG)/./ and consisted of equivalence classes parted
by cosemanticness relation [∆G] ∈ RSp(JCG)/./.

Remark 2. Everywhere in this section [∆G] denotes an equivalence class of Robinson theories of
undirected graphs parted by cosemanticness relation on Robinson spectrum RSp(JCG). C∆G

denotes
semantic model and E∆G

denotes a class of existentially closed models of class [∆G].

Let us compare theorem 12 with the following theorem.

Theorem 13. Let [∆G] be a class of ω-categorical Robinson theories of undirected graphs. Then the
following conditions are equivalent:

1) B ∈ E∆G
, where B is a model of class [∆G];

2) B is infinite quite disconnected graph.

Proof . To prove this theorem, the same scheme is used as in the proof of Theorem 10 of the
previous paragraph, i.e. it is enough for us to prove the following lemmas.

Lemma 4. The following conditions are equivalent:
1) G is a countably categorical universal graph;
2) G is infinite quite disconnected graph.
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Let us prove the necessity.
Let us assume the opposite. Suppose that there is a pair < x, y > in graph G such that xRy.
The following statement is known: If G is a countably categorical universal graph, then from the

fact that G has an infinite number of disconnected components follows that G is quite disconnected.
Thus, G consists of a finite number of components, but then, due to the infinity of the graph G,

there must be at least one infinite component. Possible cases:
1. There is a bound for the lengths of the chains.
2. There are chains of any given length.
Consider the first case.
Let us take an arbitrary point a from this component. Consider the set of all paths passing through

a. The set of all points included in these paths coincides with the component, therefore, is infinite.
Since the lengths of the paths are limited, an infinite number of paths pass through a. The ends of
these paths are pendant vertices:

Consider a subgraph Г consisting only of these pendant vertices.
Obviously, if there are a ∈ G and b ∈ G such that R(a, b), then the type tp(a, b/∅) is not realized

in Г. Which contradicts the criterion of Ye.A. Palyutin.
Consider the second case. To do this, we will prove the following lemma.

Lemma 5. Let [∆G] be a class of ω-categorical Robinson theories of undirected graphs. If G |= [∆G]
and without cycles, then there are no infinite chains in G.

Proof . Let {xi}i∈ω be a chain. Consider the subgraph {xi}i∈ω\{x3k}k∈ω, which has the form:

We select a disconnected subgraph Г in the chain, then the type tp(a, b/∅) is not realized in Г. By
virtue of infinity, Г contradicts universal categoricity (Palyutin criterion).

The lemma is proved.
Let Г be a connected component, BГ be a set of pendant vertices.

Lemma 6. BГ is an infinite set.

Proof . Suppose the opposite: BГ is finite. Since the component is infinite, and the set of BГ is
finite, therefore, there is an infinite set E of Г vertices that are not pendant. Let E = {e1, e2, ...}. But
Г is a connected component, which means that the set of non-pendant vertices forms an infinite chain,
which contradicts the last Lemma 5.

So, we have obtained that if a graph G has a pair < x, y > such that xRy, then the graph does not
satisfy the assumption condition of Lemma 4 on the countably categorical universality of the graph.
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Therefore, if the graph G is a countably categorical universal graph, then G is a quite disconnected
graph.

Let us prove sufficiency.
If the graph G is an infinite quite disconnected graph, then G is a countably categorical universal

graph.
Let us show the satisfaction of the conditions:
1) universality and 2) categoricity.
1) The universality of the class of quite disconnected graphs follows from the fact that it is

axiomatized by the universal formula ∀x∀y¬R(x, y).
2) Take two subgraphs Г1, Г2 such that |Г1| = |Г2| . The set-theoretic mapping of Г1 to Г2 gives

us an isomorphism of Г1 and Г2 as graphs. The theorem is proved.
Just as in the case of unars with respect to the question of Palyutin, from the description of an

existentially closed graph, the following obviously takes place

Corollary 2. Countably categorical Robinson theories of graphs are totally categorical.

Acknowledgments

This research was funded by the Science Committee of the Ministry of Science and Higher Education
of the Republic of Kazakhstan (Grant No. AP09260237).

References

1 Ешкеев А.Р. Описание экзистенционально-замкнутых моделей счетно-категоричных йонсо-
новских универсалов унаров и графов / А.Р. Ешкеев, Р.М. Оспанов // Вестн. Караганд.
ун-та. Сер. Математика. — 2006. — № 1. — С. 38–44.

2 Ешкеев А.Р. Описание йонсоновских универсалов унаров / А.Р. Ешкеев, Т.Г. Мустафин //
Исследования в теории алгебраических систем: cб. науч. тр. — Караганда: Изд. КарГУ,
1995. — С. 51–57.

3 Ешкеев А.Р. Некоторые свойства йонсоновских примитивов унаров / А.Р. Ешкеев, Т.Г. Му-
стафин // Исследования в теории алгебраических систем: сб. науч. тр. — Караганда: Изд.
Караганд. гос. ун-та, 1995. — С. 58–61.

4 Yeshkeyev A.R. On Robinson spectrum of the semantic Jonsson quasivariety of unars / A.R. Yesh-
keyev, A.R. Yarullina, S.M. Amanbekov, M.T. Kassymetova // Bulletin of the Karaganda University.
Mathematics Series. — 2023. — No. 2(110). — P. 169–178.

5 Jonsson B. Homogeneous relational systems / B. Jonsson // Math. Scand. — 1960. — 8. — No. 1.
— P. 137–142.

6 Morley M. Homogeneous universal models / M. Morley, R.L. Vaught // Math. Scand. — 1962.
— 11. — No. 3. — P. 37–57.

7 Ешкеев А.Р. Йонсоновские теории и их классы моделей / А.Р. Ешкеев, M.T. Касыметова.
— Караганда.: Изд-во Караганд. гос. ун-та, 2016. — 370 c.

8 Mustafin Y. Quelques proprietes des theories de Jonsson / Y. Mustafin // The Journal of
Symbolic Logic. — 2002. — 67. — No. 2. — P. 528–536.

9 Ешкеев А.Р. Йонсоновские теории и их компаньоны / А.Р. Ешкеев, Р.М. Оспанов // Мате-
риалы 10-й межвуз. конф. по математике и механике. — Алматы, 2005. — № 1. — С. 85–90.

10 Ешкеев А.Р. Связь йонсоновских теорий с теоремой Линдстрема / А.Р. Ешкеев, Р.М. Оспа-
нов // Тр. V Казах.-франц. коллоквиума по теории моделей: сб. науч. тр. — Караганда:
Изд-во Караганд. гос. ун-та, 2001. — С. 65–75.

Mathematics series. No. 3(111)/2023 175



A.R. Yeshkeyev, A.R. Yarullina, S.M. Amanbekov

11 Шишмарев Ю.Е. О категоричных теориях одной функции / Ю.Е. Шишмарев // Матем.
заметки. — 1972. — 11. — № 1. — С. 89–98.

12 Ряскин А.Н. Число моделей полных теорий унаров / А.Н. Ряскин / АН СССР. Сиб. отд.
// Тр. Ин-та мат. — 1988. — № 8. — С. 162–182.

13 Yeshkeyev A.R. Properties of companions of Jonsson’s theory / A.R. Yeshkeyev // Model theory
and algebra France-Kazakhstan conference: Abstracts. Astana. — 2005. — C. 77.

14 Pillay A. Forking in the category of existentially closed structures / A Pillay. — Connection
between Model Theory and Algebraic and Analytic Geometry (A. Macintyre, ed). Quaderni di
Matematica. University of Naples, 2000.

15 Shelah S. The lazy model-theoreticians guide to stability / S. Shelah // Logique et Analyse. —
1976. — 71–72. — P. 241–308.

16 Hrushovski E. Simplicity and the Lascar group / E. Hrushovski. — Preprint, 1998.
17 Yeshkeyev A.R. The J-minimal sets in the hereditary theories / A.R. Yeshkeyev, M.T. Omarova,

G.E. Zhumabekova // Bulletin of the Karaganda University. Mathematics Series. — 2019. —
No. 2(94). — P. 92–98.

18 Yeshkeyev A.R. Small models of hybrids for special subclasses of Jonsson theories / A.R. Yeshkeyev,
N.M. Mussina // Bulletin of the Karaganda University. Mathematics Series. — 2019. — No. 3(95).
— P. 68–73.

19 Yeshkeyev A.R. Model-theoretic properties of the #-companion of a Jonsson set / A.R. Yeshkeyev,
M.T. Kasymetova, N.K. Shamatayeva // Eurasian mathematical journal. — 2018. — 9. — No. 2.
— P. 68–81.

20 Yeshkeyev A.R. The properties of central types with respect to enrichment by Jonsson set
/ A.R. Yeshkeyev // Bulletin of the Karaganda University. Mathematics Series. — 2017. —
No. 1(85). — P. 36–40.

21 Yeshkeyev A.R. Method of the rheostat for studying properties of fragments of theoretical sets
/ A.R. Yeshkeyev // Bulletin of the Karaganda University. Mathematics Series. — 2020. —
No. 4(100). — P. 152–159.

22 Poizat B. Back and Forth in Positive Logic / B. Poizat, A.R. Yeshkeyev. // Studies in Universal
Logic, 2022. — P. 603–609.

23 Yeshkeyev A.R. An essential base of the central types of the convex theory / A.R. Yeshkeyev,
M.T. Omarova // Bulletin of the Karaganda University. Mathematics Series. — 2021. — No. 1(101).
— P. 119–126.

24 Yeshkeyev A. R. Companions of (n(1), n(2))-Jonsson theory / A.R. Yeshkeyev, M.T. Omarova
// Bulletin of the Karaganda University. Mathematics Series. — 2019. — No. 4(96). — P. 75–80.

25 Yeshkeyev A. R. Connection between the amalgam and joint embedding properties / A.R. Yeshkeyev,
I.O. Tungushbayeva, M.T. Kassymetova // Bulletin of the Karaganda University. Mathematics
Series. — 2022. — No. 1(105). — P. 127–135.

26 Yeshkeyev A.R. On Jonsson varieties and quasivarieties / A.R. Yeshkeyev // Bulletin of the
Karaganda University. Mathematics Series. — 2021. — No. 4(104). — P. 151–157.

27 Yeshkeyev A.R. An algebra of the central types of the mutually model-consistent fragments /
A.R. Yeshkeyev, N.M. Mussina // Bulletin of the Karaganda University. Mathematics Series. —
2021. — No. 1(101). — P. 111–118.

28 Ешкеев А.Р. JSp-косемантичность R-модулей / А.Р. Ешкеев, О.И. Ульбрихт // Сиб. элек-
трон. мат. изв. — 2019. — 16. — С. 1233–1244.

29 Мальцев А.И. Алгебраические системы / А.И. Мальцев. — М.: Наука, 1970. — 392 с.

176 Bulletin of the Karaganda University



On categoricity questions ...

30 Палютин Е.А. Модели со счетно-категоричными универсальными теориями / Е.А. Палютин
// Алгебра и логика. — 1971. — 10. — № 1. — С. 23–32.

31 Ешкеев А.Р. Связь йонсоновских теорий и универсальных подклассов йонсоновских теорий
с их центром / А.Р. Ешкеев // Теория моделей в Казахстане: сб. науч. работ, посвящ. памяти
А.Д.Тайманова; под ред. М.М. Еримбетова. — Алматы: ECO STUDY, 2006. — С. 102–118.

32 Овчинникова Е.В. Счетно-категоричные графы / Е.В. Овчинникова // IX Всесоюзн. конф.
по мат. логике: тез. — 1998. — 106. — С. 120.

А.Р. Ешкеев, А.Р. Яруллина, С.М. Аманбеков

Академик Е.А. Бөкетов атындағы Қарағанды университетi, Қазақстан;
Қолданбалы математика институты, Қарағанды, Қазақстан

Семантикалық йонсондық квазикөптүрлiлiк аясында универсал
унарлар мен бағытталмаған графтар үшiн категориялық

мәселелер туралы

Мақала универсалды унарлар мен бағытталмаған графтардың cемантикалық йонсондық квазикөп-
түрлiлiктерiн зерттеуге арналған. Мақаланың бiрiншi бөлiмi йонсондық модельдер теориясының негiз-
гi қажеттi ұғымдарынан тұрады. Келесi екi бөлiмде робинсондық унарлардың семантикалық йон-
сондық квазикөптүрлiлiктерiнiң jU және робинсондық бағытталмаған графтардың семантикалық
йонсондық квазикөптүрлiлiктерiнiң JCG, оның элементар теориясы мен семантикалық моделiнiң
жаңа ұғымдарын қолданудың нәтижелерi берiлген. Мақаланың екi негiзгi нәтижесiн дәлелдеу үшiн
RSp(JCU) және RSp(JCG) робинсондық спектрлерi және олардың косемантты қатынас арқылы [∆]U
және [∆]G эквиваленттiк кластарға бөлiнуi қарастырылды. Негiзгi нәтижелер 11 және 13 теорема-
лар ретiнде ұсынылған және келесi пайдалы салдарлар туындайды: унарлардың саналымды кате-
гориялық робинсондық теориялары тоталды категориялық; бағытталмаған графтардың саналымды
категориялық робинсондық теориялары тоталды категориялық. Алынған нәтижелер әртүрлi йонсон-
дық алгебраларды, атап айтқанда циклдi моноид арқылы анықталған полигондардың семантикалық
йонсондық квазикөптүрлiлiктердi зерттеудi жалғастыру үшiн пайдалы болуы мүмкiн.

Кiлт сөздер: йонсондық теория, унарлар, графтар, бағытталмаған графтар, универсалды теория, ро-
бинсондық теория, квазикөптүрлiлiк, cемантикалық йонсондық квазикөптүрлiлiк, йонсондық спектр,
робинсондық спектр, косеманттылық, категориялық, саналымды категориялық.

А.Р. Ешкеев, А.Р. Яруллина, С.М. Аманбеков

Карагандинский университет имени академика Е.А. Букетова,
Институт прикладной математики, Караганда, Казахстан

О категоричности универсальных унаров и неориентированных
графов с позиции семантического йонсоновского

квазимногообразия

Статья посвящена изучению семантических йонсоновских квазимногообразий универсальных унаров
и неориентированных графов. Первый раздел статьи состоит из базовых необходимых понятий из
йонсоновской теории моделей. Следующие два–это результаты использования новых понятий семан-
тического йонсоновского квазимногообразия робинсоновских унаров JCU и семантического йонсонов-
ского квазимногообразия робинсоновских неориентированных графов JCG, их элементарной теории
и семантической модели. Для того чтобы доказать главные результаты статьи, были рассмотрены
робинсоновские спектры RSp(JCU) и RSp(JCG) и их разбиение на классы эквивалентности [∆]U и
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[∆]G с помощью отношения косемантичности. Были проанализированы особенности таких классов
эквивалентности [∆] ∈ RSp(JCU ). Основные результаты представлены в виде теорем 11 и 13 и вле-
кут за собой следующие полезные следствия: счетно категоричные робинсоновские теории унаров
— тотально категоричные; счетно категоричные робинсоновские теории неориентированных графов
— тотально категоричные. Полученные результаты могут быть полезны в продолжении исследова-
ния различных йонсоновских алгебр, в частности, семантического йонсоновского квазимногообразия
полигонов над циклическим моноидом.

Ключевые слова: йонсоновская теория, унар, граф, неориентированный граф, универсальная теория,
робинсоновская теория, квазимногообразие, семантическое йонсоновское квазимногообразие, йонсо-
новский спектр, робинсоновский спектр, косемантичность, категоричность, счетная категоричность.
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On the function approximation by trigonometric polynomials and the
properties of families of function classes over harmonic intervals

The article is devoted to research on approximation theory. When approximating functions by trigonometric
polynomials, the spectrum is chosen from various sets. In this paper, the spectrum consists of harmonic
intervals. Devices, various processes, perception of the senses have a limited range. In the mathematical
modeling of numerous practical problems and in the further study of such mathematical models, it is
sufficient to find a solution in this range. It is possible to study such models to some extent with the help of
harmonic intervals. To prove the main theorem, an auxiliary lemma was proved, and elements of the theory
of approximations with respect to harmonic intervals were used. For the constructed families of function
classes associated with the best approximations by trigonometric polynomials with a spectrum of harmonic
intervals, their relationship with classical Besov spaces is shown.

Keywords: harmonic interval, spectrum, the best approximation of a function by trigonometric polynomials
with a spectrum of harmonic intervals, Dirichlet kernel, family of function classes.

Introduction

In recent decades, the penetration of ideas and methods of the approximation theory into various
branches of mathematical science has been observed. According to a certain rule, the approximation
of a function is understood as the replacement of one function by another, close to the original in
one sense or another. In the study of periodic functions, trigonometric polynomials occupy a central
position as approximating objects. The fundamental results in this theory were obtained in classical
works [1, 2]. Further development of the theory is connected with the works of [3, 4] and with the
works of other mathematicians. The results obtained are also described in detail in books [5, 6] and
others.

When choosing an approximating functions, the spectrum is essential. The spectrum of approximating
functions can have the most diverse configuration and consist of the most diverse sets. For example,
the spectrum can be a hyperbolic cross [7, 8] or the spectrum is a ball [9], etc.

Devices, various processes, perception of the human senses have a limited finite range. In the
mathematical modeling of numerous practical and applied problems and in the subsequent study of
the compiled mathematical models, it is enough to find a solution in this range. The study of such
models [10, 11] can be carried out to some extent using harmonic intervals.

Harmonic intervals are defined as sets INk [12] of a special form, where the parameter characterizes
the specified limited range to some extent. The definitions of harmonic segments and harmonic intervals
were given by E.D. Nursultanov in [13, 14]. These sets built according to a certain rule, and their
accompanying elements have found wide application in harmonic analysis.

The lemma and the main theorem are presented in the second section. The theorem is proved
using an auxiliary lemma and using the properties of harmonic intervals and the mathematical objects
associated with them.

∗Corresponding author.
E-mail: esenbaevagulsima@mail.ru
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As an auxiliary problem, families of function classes
{
Br
p,q,N

}
N
connected by the best approximations

over harmonic intervals are introduced. Section 3 is based on the study of the properties of these families
of function classes

{
Br
p,q,N

}
N
. The constructed families of function classes are related to the classical

Besov spaces, and this is shown in the third section.

1 Definitions and auxiliary results

Definition 1. [12] If k, ν, d,N ∈ N, k < N , then the sets of the following types

IN,dk =
d⋃

ν=−d
([−k, k] + 2νN) ,

INk =
∞⋃

ν=−∞
([−k, k] + 2νN) =

∞⋃
ν=−∞

(m+ 2νN : m ∈ [−k, k])

are called harmonic segment and harmonic interval in Z, respectively.
Let TNk be the set of trigonometric polynomials in the harmonic interval, defined by the formula

[12]

TNk =

{
s∑

ν=−s
aν · eiνx : aν = 0 if ν /∈ INk , s ∈ N

}
.

We have
ENk (f)p = inf

t∈TN
k

∥∥f − t∥∥
p
,

where ENk (f)p is the best approximation over the harmonic interval INk of the function f ∈ Lp[0, 2π),
1 ≤ p ≤ ∞ by trigonometric polynomials from TNk of order less than or equal to k [12].

If f ∈ Lp[0, 2π), 1 ≤ p ≤ ∞, then we will consider the following sums as partial sums of the Fourier
series of the function f over the harmonic segment IN,dk and the harmonic interval INk , respectively [12]

SN,dk (f) =
∑

ν∈IN,d
k

aν · eiνx, SNk (f) =
∑
ν∈INk

aν · eiνx.

Lemma 1. Let the functions f and g belong to the space L2k[0, 2π), where k ∈ N. If the functions
f and g satisfy the condition ∫ 2π

0
fk · ḡkdx = 0, (1)

then we have an inequality of the form(∫ 2π

0

(
|f |2k + |g|2k

)
dx

) 1
2k

6 k

(∫ 2π

0
|f + g|2kdx

) 1
2k

.

Lemma 2. [14] Let B = [−k, k] be a segment in Z. k, d, h ∈ N, k < h.
{
Ih,dB

}∞
d=0

be a sequence of

harmonic segments in Z, converging to a harmonic integral IhB, and

IhB =
∞⋃

ν=−∞
(B + νh) .
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If f ∈ Lp[0, 2π), 1 ≤ p ≤ ∞,
∑

ν∈Z aν · eiνx is its Fourier series, then the sequence of partial sums
of the Fourier series of the function f over the harmonic segment

Sh,dB (f) =
∑
ν∈Ih,dB

aν · eiνx

converges in Lp[0, 2π) as d→∞ to the function

ShB(f) =
1

h

h−1∑
ν=0

f

(
x+

2πr

h

)
DB

(
2πr

h

)
,

where
DB(x) =

∑
m∈B

am · eimx

is the Dirichlet kernel corresponding to the segment B from Z, and its Fourier series will be the function∑
ν∈IhB

aν · eiνx.
Theorem 1. [15] Let f ∈ Lp[0, 2π), 1 < p < ∞, m ∈ N, SNm(f) be the partial sum of the Fourier

series and ENm(f) be the best approximation of the function f over the harmonic interval INm , then the
following correspondence is fulfilled

ENm(f)p ∼
∥∥f − SNm(f)

∥∥
p
.

Let 1 ≤ p, q ≤ ∞, r > 0, f ∈ Lp[0, 2π). Let’s construct a family of function classes
{
Br
p,q.N

}
N

satisfying the condition

Br
p,q.N =

{
f :
∥∥f∥∥

Br
p,q.N

<∞
}
, N ∈ N,

where ∥∥f∥∥
Br

p,q.N
=

(
N∑
k=1

krq−1
(
ENk−1(f)p

)q) 1
q

.

2 Properties of partial sums of the Fourier series over harmonic intervals

Lemma 3. Let f be a function from the space L2k[0, 2π), where k ∈ N.
∑

n∈Z an · einx is its Fourier
series, d ∈ N, (m+ 1)k < d− 1.

I1 = Idm =
∞⋃

ν=−∞
([0,m] + νd) ,

I2 =

∞⋃
ν=−∞

{[
m+ 1,

[
d− 1

k

]]
+ νd

}
,

Id
[ d−1

k
]
=

∞⋃
ν=−∞

{[
0,

[
d− 1

k

]]
+ νd

}
are harmonic intervals in Z; Sdm(f) and Sd

[ d−1
k

]
(f) are partial sums of the Fourier series of the function

f(x) over harmonic intervals Idm and Id
[ d−1

k
]
, respectively, then the inequality holds∥∥∥Sdm(f)
∥∥∥
2k
≤ k

∥∥∥Sd
[ d−1

k
]
(f)
∥∥∥
2k
.
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Proof. We introduce the following notation

u(x) =
∑
n∈I1

an · einx, v(x) =
∑
n∈I2

an · einx.

The functions u(x) and v(x) are partial sums of the Fourier series of the function f(x) over harmonic
intervals I1 and I2, respectively, and therefore belongs to the space L2k[0, 2π).

Let’s prove that ∫ 2π

0
uk · v̄kdx = 0

or ∫ 2π

0

(∑
n∈I1

an · einx
)k
·
(∑
n∈I2

ān · einx
)k
dx = 0.

Taking into account the values of the integral
∫ 2π
o einxdx when n = 0 and n 6= 0 we conclude that

the last condition will be satisfied if there are no identical numbers among the numbers n ∈ I1 and
n ∈ I2 when raising the partial sums

∑
n∈I1 an · e

inx and
∑

n∈I2 an · e
inx to the power of k.

Note that when u(x) is raised to the power of k, the numbers n fall into the set, which is a harmonic
interval, which we denote by I1k and

I1k =
∞⋃

ν=−∞
([0,mk] + νd) .

Indeed, by definition, we have

I1 + I2 + ...+ Ir =
{
n1 + n2 + ...nr, ni ∈ Ii, n = 1, 2, ...r

}
so

I1k = I1 + ...+ I1︸ ︷︷ ︸
k

=
{
n1 + n2 + ...nk, ni ∈ I1, n = 1, 2, ...k

}
.

Since ni ∈ I1, then ni = li + νd, where li ∈ [0,m], ν ∈ Z, i = 1, ..., k. Therefore,

k∑
i=1

ni =
k∑
i=1

li + νd.

Thus,

νd 6
k∑
i=1

ni 6 mk + νd.

It means that
∑k

i=1 ni ∈ Ik.
Applying the same reasoning, we get that the numbers n, when the partial sum v̄(x) is raised to

the power k, fall into the harmonic interval I2k, and

I2k =

∞⋃
ν=−∞

{[
(m+ 1)k, d− 1

]
+ νd

}
.

It is obvious that
I1k ∩ I2k = ∅.
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This equality ensures the fulfilment of the condition (1) for u(x) and v(x). The fulfilment of this
condition guarantees the application of Lemma 1, namely{∫ 2π

0

∣∣u∣∣2kdx} 1
2k

6

{∫ 2π

0

(∣∣u∣∣2k +
∣∣v∣∣2k)dx} 1

2k

6

{∫ 2π

0

∣∣u+ v
∣∣2kdx} 1

2k

,

∫ 2π

0

∣∣∣∣ ∑
n∈Idm

an · einx
∣∣∣∣2kdx

 1
2k

6 k


∫ 2π

0

∣∣∣∣ ∑
n∈Id[

d−1
k

] an · einx
∣∣∣∣2kdx


1
2k

or ∥∥∥Sdm(f)
∥∥∥
2k
≤ k

∥∥∥Sd
[ d−1

k
]
(f)
∥∥∥
2k
.

Lemma 3 is proved.
Theorem 2. Let f ∈ Lp[0, 2π), 1 < p < ∞,

∑
ν∈Z aν · eiνx be its trigonometric Fourier series, then

the following inequality∥∥∥∥∥f − 1

2N

2N−1∑
r=0

f

(
x+

πr

N

)
Dm

(
πr

N

)∥∥∥∥∥
p

6 C

∥∥∥∥f − Sm(f)

∥∥∥∥
p

, (2)

is true, where Dm(y) is Dirichlet kernel corresponding to the segment[−m;m], C is a constant that
depends only on the parameter p.

Proof. According to Lemma 2, we have∥∥∥∥∥f − 1

2N

2N−1∑
r=0

f

(
x+

πr

N

)
Dm

(
πr

N

)∥∥∥∥∥
p

=

∥∥∥∥f − SNm(f)

∥∥∥∥
p

=

=

∥∥∥∥∥∥
∑

ν∈Z\INm

aν · eiνx
∥∥∥∥∥∥
p

=

∥∥∥∥∥∥∥
∑

ν∈QN
m+1

aν · eiνx

∥∥∥∥∥∥∥
p

=

∥∥∥∥SQN
m+1

(f)

∥∥∥∥
p

,

where QNm+1 are harmonic intervals in Z, and

QNm+1 =

∞⋃
ν=−∞

{
[−N, −m− 1] ∪ [m+ 1, N ] + 2νN

}
.

Then we have ∥∥∥∥SQN
m+1

∥∥∥∥
p

=

∥∥∥∥SQN
m+1

(f − Sm)

∥∥∥∥
p

.

Since SQN
m+1

(f − Sm) is a partial sum of the Fourier series of the function

f − Sm(f) =
∑

ν∈Z\[−m, m]

aν · eiνx

then, by the theorem [14] on the boundedness of partial sums of Fourier series over the harmonic
interval, we obtain the necessary inequality∥∥∥∥f − SNm(f)

∥∥∥∥
p

=

∥∥∥∥SQN
m+1

(f − Sm)

∥∥∥∥
p

6 C

∥∥∥∥f − Sm(f)

∥∥∥∥
p

.
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Thereby, Theorem 2 is proved.
Note 1. According to Theorem 1 and Lemma 9.3 [16] the relation (2) can be presented in the

equivalent form
ENm(f)p 6 Em(f)p,

3 Properties of the family of function classes
{
Br
p,q.N

}
N

Definition 2. [12] Let two classes of functions AN and BN depending on the parameter N be given.
We will say that the class of functions AN is embedded in the class of functions BN and denote it by
AN ↪→ BN if the following conditions are satisfied:

1) AN ⊂ BN ;
2) there is a parameter C such that for any f ∈ AN the relation∥∥f∥∥

BN 6 C
∥∥f∥∥

AN

is true, moreover, the parameter C does not depend on f and N .
Definition 3. [15] Function classes

{
AN
}
N

and
{
BN
}
N
, where N ∈ N, are equivalent∥∥f∥∥

AN ∼
∥∥f∥∥

BN ,

if there are parameters C1, C2 such that for any f ∈ AN there is a correspondence

C1

∥∥f∥∥
BN ≤

∥∥f∥∥
AN ≤ C2

∥∥f∥∥
BN ,

moreover, the parameters C1, C2 do not depend on f and N .
In this case, the families of function classes

{
AN
}
N

and
{
BN
}
N

coincide, namely{
AN
}
N

=
{
BN
}
N
.

Theorem 3 relates families of function classes
{
Br
p,q.N

}
N

to classical Besov spaces [17].
Theorem 3. Let N ∈ N, 1 6 p, q 6∞, r > 0 then the following relationship is performed

∞⋂
N=1

Br
p,q,N = Br

p,q.

Proof By definition, we have ∥∥f∥∥ ∞⋂
N=1

Br
p,q,N

= sup
N

∥∥f∥∥
Br

p,q,N

Since the following inequality ∥∥f∥∥
Br

p,q,N
6 C

∥∥f∥∥
Br

p,q

holds for any N ∈ N then we obtain the accordance

sup
N

∥∥f∥∥
Br

p,q,N
=
∥∥f∥∥ ∞⋂

N=1
Br

p,q,N

6
∥∥f∥∥

Br
p,q
.

This correspondence follows from the last inequality

Br
p,q ↪→

∞⋂
N=1

Br
p,q,N .
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From other side, for a partial sum S2m(f), where m ∈ N, we get the ratio∥∥S2m(f)
∥∥
Br

p,q
=
∥∥S2m(f)

∥∥
Br

p,q,2m
6 C(p, q, r)

∥∥f∥∥
Br

p,q,2m
6

6 C(p, q, r) sup
N

∥∥f∥∥
Br

p,q,N
= C(p, q, r)

∥∥f∥∥ ∞⋂
N=1

Br
p,q,N

.

Further, from the last relation, according to the Banach-Steinhaus theorem [18], we obtain the desired
inequality ∥∥f∥∥

Br
p,q

6 C(p, q, r)
∥∥f∥∥ ∞⋂

N=1
Br

p,q,N

or
∞⋂
N=1

Br
p,q,N ↪→ Br

p,q.

Thus, Theorem 3 is proved.
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Функцияларды тригонометриялық көпмүшелер арқылы жуықтау
және гармониялық интервалдарға қатысты функциялар

кластарының үйiрлерiнiң қасиеттерi туралы

Мақала жуықтау теориясы саласындағы зерттеулерге арналған. Тригонометриялық көпмүшелер
арқылы функцияларды жуықтау кезiнде спектр әртүрлi жиындардан таңдалады. Бұл жұмыста спектр
гармоникалық интервалдардан тұрады. Құрылғылар, әртүрлi процестер, сезiмдердi қабылдау мүше-
лерi шектеулi ауқымға ие. Көптеген практикалық есептердi математикалық модельдеу кезiнде және
берiлген математикалық модельдердi одан әрi зерттеу кезiнде осындай диапазонда шешiм табу жет-
кiлiктi. Мұндай модельдердi зерттеу белгiлi бiр дәрежеде гармоникалық интервалдардың көмегiмен
мүмкiн болады. Негiзгi теореманы дәлелдеу үшiн көмекшi лемма дәлелдендi және гармоникалық
интервалдар бойынша жуықтау теориясының элементтерi қолданылды. Гармоникалық интервалдар-
дың спектрi бар тригонометриялық көпмүшелiктермен функцияның ең жақсы жуықтауымен байла-
нысқан функциялар кластарының құрылған үйiрi үшiн олардың классикалық Бесов кеңiстiктерi мен
байланысы көрсетiлген.

Кiлт сөздер: гармоникалық интервал, спектр, гармоникалық интервалдардың спектрi бар тригоно-
метриялық көпмүшелiктермен функцияның ең жақсы жуықтауы, Дирихле өзегi, функция кластары-
ның үйiрi.
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Г.А. Есенбаева1, А.Н. Есбаев2, Н.К. Сыздыкова1, М.А. Смирнова1

1Карагандинский университет имени академика Е.А. Букетова, Караганда, Казахстан;
2Назарбаев Интеллектуальная школа, Астана, Казахстан

О приближении функций тригонометрическими полиномами и
свойствах семейств классов функций по гармоническим

интервалам
Статья посвящена исследованию по теории приближений. При приближении функций тригонометри-
ческими полиномами спектр выбирается из различных множеств. В работе спектр состоит из гармо-
нических интервалов. Приборы, различные процессы, восприятие органов чувств имеют ограничен-
ный диапазон. При математическом моделировании многочисленных практических задач и дальней-
шем исследовании таких математических моделей достаточно найти решение в заданном диапазоне.
Проведение исследований таких моделей возможно в некоторой степени с помощью гармонических
интервалов. Для доказательства основной теоремы была приведена вспомогательная лемма и исполь-
зовались элементы теории приближений по гармоническим интервалам. Для построенных семейств
классов функций, связанных с наилучшими приближениями тригонометрическими полиномами со
спектром из гармонических интервалов, показана их связь с классическими пространствами Бесова.

Ключевые слова: гармонический интервал, спектр, наилучшее приближение функции тригонометри-
ческими полиномами со спектром из гармонических интервалов, ядро Дирихле, семейство классов
функций.
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