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Statistical convergence in vector lattices

The statistical convergence is defined for sequences with the asymptotic density on the natural numbers, in
general. In this paper, we introduce the statistical convergence in vector lattices by using the finite additive
measures on directed sets. Moreover, we give some relations between the statistical convergence and the
lattice properties such as the order convergence and lattice operators.

Keywords: statistical convergence of nets, order convergence, vector lattice, directed set measure.

Introduction

The statistical convergence of sequences is handled together with the asymptotic (or, natural)
density of subsets on the natural numbers N. On the other hand, Connor introduced the notion of
statistical convergence of sequences with finitely additive set functions [1,2|. After then, some similar
works have been done [3-5]. Also, several applications and generalizations of the statistical convergence
of sequences have been investigated by several authors [6-13|. However, as far as we know, the concept
of statistical convergence related to nets has not been done except for the paper [14], in which the
asymptotic density of a directed set (D, <) was introduced by putting a special and strong rule on the
directed sets such that the set {o« € D : a < 5} is finite and the set {o« € D : a > [} is infinite for each
element S in (D, <). We aim to introduce a general concept of statistical convergence for nets with a
new notion called a directed set measure.

Recall that a binary relation “<” on a set A is called a preorder if it is reflexive and transitive. A
non-empty set A with a preorder binary relation “<” is said to be a directed upwards (or, for short,
directed set) if for each pair z,y € A there exists z € A such that © < z and y < z. Unless otherwise
stated, we consider all directed sets as infinite. For given elements a and b in a preorder set A such
that a < b, the set {x € A:a <z < b} is called an order interval in A. A subset I of A is called an
order bounded set whenever I is contained in an order interval.

A function domain of which is a directed set is said to be a net. A net is briefly abbreviated as
(Za)aeca with its directed domain set A. Let (A, <4) and (B, <p) be directed sets. Then a net (y3)secn
is said to be a subnet of a net (x4)aeca in a non empty set X if there exists a function ¢ : B — A such
that yg = z4(g) for all B € B, and also, for each o € A there exists 3, € B such that a < ¢(3) for all
B > Ba (Definition 3.3.14 [15]). It can be seen that {¢(8) € A: fo < B} C{/ € A:a < '} holds for
subnets.

A real vector space F with an order relation “<” is called an ordered vector space if, for each
r,y € Ewithez <y, z+4+ 2z <y+ zand ar < ay hold for all z € F and @ € R,. An ordered vector
space F is called a Riesz space or vector lattice if, for any two vectors x,y € F, the infimum and the
supremum

x ANy =inf{z,y} and zVy=sup{z,y}

*Corresponding author.
E-mail: a.aydin@alparslan.edu.tr
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Statistical convergence in ...

exist in F, respectively. A vector lattice is called Dedekind complete if every nonempty bounded from
the above set has a supremum (or, equivalently, whenever every nonempty bounded below subset has
an infimum). A subset I of a vector lattice F is said to be a solid if, for each z € E and y € I with
|z| < ly|, it follows that x € I. A solid vector subspace is called an order ideal. A vector lattice E
has the Archimedean property provided that %az 4 0 holds in E for each x € E,. In this paper, unless
otherwise stated, all vector lattices are assumed to be real and Archimedean. We remind the following
crucial notion of vector lattices [16-20].

Definition 1. A net (z4)aca in a vector lattice F is called order convergent to x € E if there exists
another net (yo)aca 4 0 (i.e., infy, = 0 and y, |) such that |z, — 2| < y, holds for all a € A.

We refer the reader to some different types of order convergence and some relations among them [21].
Throughout this paper, the vertical bar of a set will stand for the cardinality of the given set and P(A)
is the power set of A.

1 The u-statistical convergence

We remind that a map from a field M (i.e., My, My, --- € M implies U;—1 M,, € M and A € M for
all A € M) to [0, 00] is called finitely additive measure whenever () = 0 and p(UP_ E;) = >0 u(E;)
for all finite disjoint sets {E;}7; in M [22; 25]. Now, we introduce the notion of measuring on directed
sets.

Definition 2. Let A be a directed set and M be a subfield of P(A) (i.e., it satisfies the properties
of field). Then

(1) an order interval [a, b] of A is said to be a finite order interval if it is a finite subset of A;

(2) M is called an interval field on A whenever it includes all finite order intervals of A;

(3) a finitely additive measure p : M — [0, 1] is said to be a directed set measure if M is an interval
field and p satisfies the following facts: (1) = 0 for each finite order interval I € M and pu(A) = 1.

It is clear that u(C) = 0 whenever C' C B and u(B) = 0 holds for B,C' € M because p is finitely
additive.

Ezample 1. Consider the directed set N and define a measure p from 2" to [0, 1] denoted by p(A)
as the Banach limit of $|AN{1,2,...,k}| for all A € 2. Then one can see that u(I) = 0 for all finite
order interval sets because of %|I N{1,2,...,k}| — 0. Also, it follows from the properties of the Banach
limit that u(N) =1 and p(AUB) = u(A)+ p(B) for disjoint sets A and B. Thus, y is finitely additive,
and so, it is a directed set measure.

Let’s give an example of a directed set measure for an arbitrary uncountable set.

Example 2. Let A be an uncountable directed set. Consider a field M consisting of countable or
co-countable (i.e., the complement of set is countable) subsets of A. Then M is an interval field. Thus,
a map p from M to [0, 1] defined by p(C) := 0 if C is a countable set, otherwise p(C) = 1. Hence,
is a directed set measure.

In this paper, unless otherwise stated, we consider all nets with a directed set measure on interval
fields of the power set of the index sets. Moreover, in order to simplify the presentation, a directed set
measure on an interval field M of directed set A will be expressed briefly as a measure on the directed
set A. Motivated from [23; 302|, we give the following notion.

Recall that the asymptotic density of a subset K of natural numbers N is defined by

O(K):=lim —{k<n:keA}.

1
n—oo N

We refer the reader for an exposition on the asymptotic density of sets in N to [24,25]. We give the
following observation.

Mathematics series. No.3(111)/2023 5
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Remark 1. Tt is clear that the asymptotic density of subsets on N satisfies the conditions of a
directed set measure when P(N) is considered as an interval field on the directed set N. Thus, it can
be seen that the directed set measure is an extension of the asymptotic density.

Remind that a sequence (z,,) in a vector lattice E is called statistically monotone decreasing to

x € E if there exists a subset K of N such that 6(/K) = 1 and the subsequence (zj)rex is decreasing to

x,i.e., xx | and kln}f( x, = x (see for example [8]). Now, by using the notions of measure on directed sets
€

and the statistical monotone decreasing which was introduced in [25] for real sequences, we introduce
the concept of statistical convergence of nets on vector lattices.

Definition 3. Let E be a vector lattice and (py)aca be a net in E with a measure p on the index
set A. Then (pa)aca is said to be p-statistical decreasing to x € E whenever there exists a subnet
a5 = (pg(s))pea such that pu(A) =1 and (gs)sea | z. Then it is abbreviated as (pa)aca {** 2.

We denote the class of all u-statistical decreasing nets on a vector lattice £ by Ey,|, and also, the
set g, {0} denotes the class of all u-statistical decreasing null nets on E. It is clear that u(A°) =
pu(A—A) =0 whenever p(A) = 1 because of u(A) = p(AUA®) = u(A)+ p(A°). We consider Example
2 for the following example.

Ezample 3. Let E be a vector lattice and (py)aca be a net in E. Take M and p from Example 2.
Thus, if (pa)aca +  then (pa)aca {5 = for some z € E.

For the general case of Example 3, we give the following work proof of which follows directly from
the basic definitions and results.

Proposition 1. If (pa)aca is an order decreasing null net in a vector lattice then (pg)aca 5% 0.
Now, we introduce the crucial notion of this paper.

Definition 4. A net (x4)aca in a vector lattice E is said to be u-statistical convergent to x € E if
there exists a net (pa)aca 4™ 0 with a subnet gs = (pg(s))pea such that p(A) =1 and (gs)sea 4 0

t
and [z4(5) — 2| < g5 for every 0 € A. Then it is abbreviated as z, 2 g

It can be seen that z,, S—t“—> T in a vector lattice means that there exists another sequence (pq)aca 45 0
such that p({a € A : |zq — x| £ pa}) = 0. It follows from Remark 1 that the notion of statistical
convergence of sequence coincides with the notion of p-statistical convergence in the reel line. We
denote the set Eg, as the family of all st,-convergent nets in E, and EstM{O} is the family of all
p-statistical null nets in E.

Lemma 1. Every u-statistical decreasing net is u-statistical convergent.

Remark 2. Recall that a net (x4)qaca in a vector lattice E relatively uniform converges to x € E if
there exists u € E such that, for any n € N, there is an index «a,, € A so that |z, — z| < %u for all
a > oy, (Lemma 16.2 [18]). It is well known that the relatively uniform convergence implies the order
convergence on Archimedean vector lattices (Lemma 2.2 [20]). Hence, it follows from Proposition 1 and
Lemma 1 that every decreasing relatively uniform null net is p-statistical convergent in vector lattices.

2  Main Results

Let p be a measure on a directed set A. Following from Exercise 9. in [22; 27], it is clear that
w(ANX) =1 for any A, ¥ C A whenever u(A) = u(X) = 1. We begin the section with the following
proposition and skip its simple proof.

.. . . . . st
Proposition 2. Assume 2, < Yo < 2o satisfies in a vector lattices for each index a. Then ¥y, —=

sty stu
whenever z, — x and z, — .

6 Bulletin of the Karaganda University



Statistical convergence in ...

It can be seen from Proposition 2 that if 0 < x, < 2, satisfies for each index o and (24 )aca € Est, {0}
then (x4)aca € Estu{()}. We give a relation between the order and the p-statistical convergences in
the next result.

Theorem 1. Every order convergent net is p-statistical convergent to its order limit.

Proof. Suppose that a net (z4)aea is order convergent to x in a vector lattice E. Then there exists
another net (y4)aca 4 0 such that |z, — x| < y, holds for all a € A. It follows from Proposition 1 that

£
(Yo )aea 45 0. So, we obtain the desired result, (4)aea SN

The converse of Theorem 1 need not to be true. To see this, we consider Example 3. [26].

Ezxample 4. Let us consider the set of all real numbers R with the usual order. Define a sequence
(7,,) in R as n? whenever n = k? for some k € N and n%rl otherwise. It is clear that (x,) is not an
order convergent sequence. However, if we choose another sequence (p,) as n whenever n = k? for
some k € N and 1 otherwise. Then we have p,, |*% 0. Setting K = {n € N : n is not a square} U {1}.

Then we get pu(K) =1 and |z| < pg for each k € K. Thus we have x, N}
Moreover, following from Theorem 23.2 [18], we observe the following result.

Corollary 1. Every order bounded monotone net in a Dedekind complete vector lattice is u-
statistical convergent.

By the definition of subnet given at the beginning of the paper, a subnet is based on some other
set B, where the measure y is not defined. However, for a subnet yg = w45 of a net (z4)aca with
a measure y on the index set A, we can consider the measure of a subset A of B as the measure of

u(6(A)) in A,
Proposition 3. The st,-convergence of subnets implies the st,-convergence of nets.

Proof. Let (Ta)aca be a net in a vector lattice E. Assume that a subnet (z4(5))sea of (Ta)aca -
statistical converges to x € E. Then there exists a net (pa)aca € Fs, {0} such that |z4(,) — 2| < py(s)
for all some o € X C A, (pg(o))oex + 0 and p(X) = 1. Since X C A and (74())oes is also a subnet of
(Za)aca, we can obtain the desired result.

Since every order bounded net has an order convergent subnet in atomic K B-spaces (Remark 6.
[27]), we give the following result by considering Theorem 1 and Proposition 3.

Corollary 2. If E is an atomic K B-space then every order bounded net is p-statistical convergent
in E.

The lattice operations are p-statistical continuous in the following sense.
st t St
Theorem 2. If x, 2y 2 and W, s w then To V We 22V .

Proof. Assume that z, Sy 2 and Wa 2%, w hold in a vector lattice E. So, there are nets (pa)aca, (qa)acA €
E,1{0} with A, ¥ € M and pu(A) = p(¥) = 1 such that

[Tg5) — 2| < Py(s) and |wy(e) — w| < gp(o)

satisfy for all 6 € A and o0 € ¥. On the other hand, it follows from Theorem 1.9(2) [17] that the
inequality |xq V we — 2V w| < |z4 — x| + |we — w| holds for all & € A. Therefore, we have

[ (5) V We(o) — TV W[ < Py(s) + dg(o)

foreach 6 € A and o € ¥. Take I' := ANY € M. So, we have p(I") = 1, and also, [4(,) Vwg(y)—zVw| <
Po(v) T dg() holds for all v € T'. It follows from (pg () + @g(y))yer 4 0 that x4 V wq, S 2w

Mathematics series. No.3(111)/2023 7



A. Aydin, F. Temizsu

Corollary 3. If x4 S—t“—> x and w, i@w in a vector lattice then

(1) xa/\waSt—”m:/\w;

(i) wal > Jo;

(iii) 2 225 o+

(iv) =y, Sy g

We continue with several basic results that are motivated by their analogies from vector lattice
theory.

Theorem 3. Let (z4)aca be a net in a vector lattice E. Then the following results hold:

) xa——m: iff (zq —a:)——>0 iff |zq —x|—t”—>0;
ii) the p-statistical limit is linear;

(i

(

(iii) the p-statistical limit is uniquely determined;

(iv) the p081t1ve cone E is closed under the statlstlcal [-convergence;
(v

) Ty (5) Sty 2 for any subnet (z4(5))sea of Za Sty 2 with p(A) =1.

Proof. The properties (i), (ii) and (iii) are straightforward.
¢

For (iv), take a non-negative u-statistical convergent net x, 24 2 in E. Then it follows from
Corollary 3 that z,, = z; Sty gt Moreover, by applying (ii), we have z = zT. So, we obtain the
desired result « € E.

t
For (v), suppose that x, 24 2. Then there is a net (Pa)aca € Ea, {0} with A € M and pu(A) =1
0

such that |z — x| < pgs) for each § € A. Thus, it is clear that x4 2 g However, it should
be shown that it is provided for all arbitrary elements in field under the assumption. Thus, take an

arbitrary element 3 € M with 3 # A and p(¥) = 1. We show (74(¢))oes Sy . Consider T := ANY. €
M. So, we have u(I') = 1. Therefore, following from [z4(,) — | < py(,) for each v € T', we get the
desired result.

Proposition 1 shows that a decreasing order convergent net is u-statistical convergent. For the
converse of this fact, we give the following result.

Proposition 4. Every monotone p-statistical convergent net is order convergent.
t
Proof. We show that z, | and z, S implies z, |  in any vector lattice E. To see this,
choose an arbitrary index ag. Then x,, — zo € E4 for all o > ag. It follows from Theorem 3 that

st .
Tag — Ta —”>a:a0 — x, and also, x,, —x € E. Hence, we have z,, > x. Then x is a lower bound of
(Ta)(aca) because aq is arbitrary. Suppose that z is another lower bound of (74)aca. So, we obtain

t
Ta — Y S — y. It means that x — y € E,, or equivalent to saying that x > y. Therefore, we get
To | .
Remark 3. Let x := (24)aca be a net in a vector lattice. If X 20 holds for some A € M with

p(A) =1 and characteristic function XA on A then x SN Indeed, suppose that there exists A € M
with 4(A) = 1 and 2Xa 2 0 satisfies in a vector lattice E for the characteristic function Xa of A. Thus,
there is another net (py)aca 4 0 such that |zXA| < p, for all a € A. So, it follows from Proposition
1 that (pa)aca ° 0. Then there exists a subset ¥ € M such that u(¥X) = 1 and (pg(o))oes 4 0.
Take I' := AN X. Hence, we have u(I') = 1. Following from |z&T| < py(,) for each v € ', we obtain

XA Sy, Therefore, by applying Theorem 3 (v) and Remark 3, we obtain (z4)aca Sy,

Proposition 5. The family of all st,-convergent nets Fy, is a vector lattice.

8 Bulletin of the Karaganda University
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Proof. Let (x4)aca Sy 2 and (yg)peB i@y in E. Then it follows from Theorem 3(i7) that (z, +

¢
yg)(a”g)eAXB AN x+y. So Eg, is a vector space. Take an element x := (24 )aca in Eg,. Then we have

2% 2 for some z € E. Thus, it follows from Corollary 3 that |x| il |z|. Tt means that [z| € Eg,,
i.e., By, is a vector lattice subspace Theorem 1.3 and Theorem 1.7 [16].

Proposition 6. The set of all order bounded nets in a vector lattice E is an order ideal in EStM{O}.

Proof. By the linearity of u-statistical convergence, Ey,{0} is a vector space. Now, assume that
ly| < |z| hold for arbitrary  := (Za)aca € Est,{0} and for an order bounded net y := (ya)aca. Since

x —Si”—>0, we have |x] 50, Then it follows from Proposition 2 that |y| —Si“—>0, and so, it follows from
Theorem 3(7) that y N (Therefore, we get the desired result, y € Eg,{0}).
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A. At @. Temuscy?

! Myw Anvnapesar ynusepcumemi, Myw, Typrusa;
2 . . .
Buneéav ynusepcumemsi, Buwneéav, Typrusa

BeKTOp.TIbIK TOpJIapdarbl CTATUCTUKAJIBIK 2KNHAKTAJIYy

CraTUCTUKAJIBIK, JKUHAKTAJLY, >KAJIIbl XKAaFIaiiia, HaTypaJsl caHIapAaFrbl aCHMITOTUKAJIBIK, ThIFBI3/IBIFB 6ap
TizbeKkTep VIIiH aHbIKTaJabl. Makajaaga OarbITTaIraH >KUBIHIAPIAFbl aKbIPJIbl aJIUTUBTI OJIIIeMIep/Ii
KOJIZIaHa OTBIPBII, BEKTOPJIBLIK TOpJIapFa CTATUCTUKAJBIK *KUHAKTay eHriziared. CoOHbIMEH KaTap, CTaTh-
CTHKAJIBIK YKUHAKTAJY MEH TODJBIH KACHEeTTepi apachIHIafbl KeibIp KaThIHACTAP KeJITIPLIreH, MBICAJIBI,
PeTTIK >KUHAKTAJIY >KOHE TODP OIepPaTOPJIAPHI.

Kiam cesdep: x)eJijiep/iiH, CTATUCTUKAJIBIK, >)KUHAKTAJIYbI, PETTIK YKUHAKTAJLY, BEKTOPJIBIK TOP, OAFbITTaFal
JKUBIHHBIH, OJIIIEMI.

A. At @. Tevmscy?

! Viusepcumem Myw Aavnapeaan, Myw, Typuus;
2 Buneéavcrut yrusepcumem, Buneéan, Typuus

CraTucrunyeckas CXOOAMMOCTDb B BEKTOPHBIX pelleTKax

Crarucrudeckasi CXOAUMOCTb, B 0OIIEM CJIydae, OIpe/iesieHa 1JIsl T0CJIe[0BATELHOCTEN C AaCHMIITOTHIECKO
IUIOTHOCTHIO HA HATYPAJbHBIX YHCIaX. B cTaThe MBI BBOAUM CTATHCTHIECKYIO CXOANMOCTD B BEKTOPHBIX Pe-
[IeTKaX, UCIOJIb3ysl KOHEYHbIE a/IIUTUBHBIE MePbl HA HAIIPABJIEHHBIX MHOXKecTBaX. Kpome Toro, mpuBomgum
HEKOTOPbIE COOTHOIIIEHUS MEXK/Iy CTATHUCTUYECKOIN CXOJIMMOCTBIO M CBOMCTBAMM PENIETKN, TAKUMU KaK CXO-
JOUMOCTD TOPSAJIKA M OIIePATOPHI PEITeTKH.

Kamouesvie c06a: CTATUCTUYECKAST CXOIUMOCTD CETEH, TOPSIIKOBAas CXOAUMOCTb, BEKTOPHAsI PEIleTKa, Mepa
HAIIPABJIEHHOTO MHOYKECTBA.
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Homogenization of Attractors to Ginzburg-Landau Equations in
Media with Locally Periodic Obstacles: Critical Case

In this paper the Ginzburg-Landau equation is considered in locally periodic porous medium, with rapidly
oscillating terms in the equation and boundary conditions. It is proved that the trajectory attractors of
this equation converge in a weak sense to the trajectory attractors of the limit Ginzburg-Landau equation
with an additional potential term. For this aim we use an approach from the papers and monographs of
V.V. Chepyzhov and M.I. Vishik concerning trajectory attractors of evolution equations. Also we apply
homogenization methods appeared at the end of the XX-th century. First, we apply the asymptotic methods
for formal construction of asymptotics, then, we verify the leading terms of asymptotic series by means
of the methods of functional analysis and integral estimates. Defining the appropriate axillary functional
spaces with weak topology, we derive the limit (homogenized) equation and prove the existence of trajectory
attractors for this equation. Then we formulate the main theorem and prove it with the help of axillary
lemmas.

Keywords: attractors, homogenization, Ginzburg-Landau equations, nonlinear equations, weak convergence,
perforated domain, strange term, porous medium.

Introduction

This work is connected with modelling of processes in perforated materials and porous media.
Asymptotic analysis of solutions to problems in porous media is sufficiently complicated, especially in
the case of a threshold value of sizes and a number of cavities with nontrivial Robin (Fourier) conditions
on their boundaries, i.e. in the case of a singular perturbation of problems. In this situation the limit
equation describing the effective behavior of the model, has a different structure if one compares it
with the given one. We investigate the situation when an additional potential term appears in the limit
Ginzburg-Landau equation and prove the Hausdorff convergence of attractors as the small parameter
tends to zero. Thus, we construct the limit attractor and prove the convergence of the attractors of the
given problem, to the attractor of the limit problem with an additional potential in the equation. Here
we investigate the asymptotic behavior of attractors to an initial boundary value problem for complex
Ginzburg-Landau equations in porous media. In many pure mathematical papers one can find the
asymptotic analysis of problems in porous media (see, for example, [1-7]). Interesting homogenization
results have been obtained for periodic, almost periodic and random structures. We want to mention
here the basic frameworks [8-11|, where one can find the detail bibliography.

About attractors see, for instance, [12-14| and the references in these monographs. Homogenization
of attractors were studied in [14-17] (see also [18-21]).

*Corresponding author.
E-mail: abylaikhan9407Q@gmail.com
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In this paper we present the proofs of weak convergence of the trajectory attractor 2. to the
Ginzburg-Landau equation in a perforated domain, as € — 0, to the trajectory attractor 2 of the
homogenized equation in some natural functional space. Here, the small parameter € characterizes the
linear size of cavities and the distance between them in porous medium. We prove the appearance of
a so called “strange term” (the potential term) in the limit equation (for example see works [1,2]).

1 Statement of the problem

We start by the definition of a perforated domain. Suppose Q C R% d > 2, is a smooth bounded
domain. Denote

1 1
Y. ={j €z : dist (ef, 00) > eVd}, O={¢:—5<g <5 i=1....d}

Considering a smooth function F(z,{) 1-periodic in &, which satisfies F(z,§) ccon > const > 0,
€

F(z,0) = =1, V¢F # 0 as £ € O\{0}, we define D = {z € ¢ (O +j) | F(z,¥) < 0}. The perforated
domain now is defined in the following way:

Q. =0\ | J D5

JEY,

Denote by w the set {¢ € R? | F(x,€) < 0}, and by S the set {¢ € R? | F(x,&) = 0}. The boundary
00 consists of 9 and the boundary of the holes S, C 2, S. = (9Q,) N Q.
We study the asymptotic behavior of attractors to the problem

Oue . :
= L+ ai)Au, + Rz, D) ue— (14 Bz, D) fucluc + g(a), @ € 0,
Oue
(1+ ai)a—i + eq(z, %)uE =0, x € Se,t>0, (1)
Uue = 0, x € 01,
ue = U(x), € Q,t=0,

where « is a real constant, the vector v is the outer unit vector to the boundary, u = uy + iug € C,
g(x) € CY(Q;C), a nonnegative 1-periodic in ¢ function g(x, &) belongs to C(; R?). Suppose that

—p1 < B(x,8) < B2, —R1 < R(x,£) < Ry (where Ry, Ry, 1,52 > 0), (2)

for z € Q, ¢ € R? and the functions R (z,¢) and B (x, &) can be averaged in Lo 4, (). The averages
are R(z) and B(z) respectively, i.e.,

/ R(z,&) p1(x)dx — / R(x)p1 (v)dz,
Q Q
| peo@@ar + [ Bayea
for any ¢i(x) € L1(Q2), where £ = L ase— 0+ .
€
We define the following spaces: H := Ly (2; C), He := Lo(Q; C), V := H}(;C), V. := H(Q; C; 09)

is a set of functions from H'(Q; C) with a zero trace on 99, and L, := L,(€;C), Ly, := L,(2; C).
These spaces have, respectively, the next norms

Mﬁz/wmwa mm:/thm,|mﬁ=/mem,
Q Qe Q
nvui:::J/ V() d, anip:==jng<xnpdx, nvnipe:=:/£ o(a)Pda.

€

12 Bulletin of the Karaganda University



Homogenization of Attractors to ...

Let us denote that dual spaces to V by V’ := H~1(Q;C) and, moreover, L, is the dual spaces of Ly,
where ¢ = 25, in analogous way V and L are the dual spaces of V¢ and Ly, .

As usually (see [14]) we investigate the behavior of weak solutions to initial boundary value problem
(1), i.e., the functions

ue(r,s) € LR H) N LY (R V) N LY (Ry; Ly)

which satisfy problem (1) in the sense of integral identity, i.e. for any function ¢ € C§°(R4; V. NLy,)
we have

//u dxdt+1+a1/ /vuewdxdt / / (( Ue—
<+,8(x ))\ue\2u6>)wdxdt+e/+oo/ a;— uewdadt / / x) dadt. (4)

Since uc(x,t) € Ly(0,M;Ly,), one can get R (2, L) ue(z,t) — (1+ B (2, L)1) |ue(a, t)Puc(z,t) €
Lyy3(0, M;Ly/3.). In addition, since uc(z,t) € La(0,M;Ve), we have (1 + ai)Auc(z,t) + g(z) €
L2(0, M;V!). Consequently, for any weak solution u.(x, s) to problem (1) we obtain

6”6(33’ t)
ot

Keeping in mind the Sobolev embedding theorem, we conclude Ly/3(0, M; Ly 3 ) + L2(0, M; Vi) c
Ly/3 (0, M;H_"). Here the space H." := H~"(2; C) and r = max {1, d/4}. Therefore, for an arbitrary
weak solution ue(x,t) of (1) we get %f’t) € Ly3(0, M;HZT).

Remark 1.1. Using the standard approach from [13], one can prove the existence of weak solution
u(z, ) to the problem (1) for every U € H, and fixed e, satisfying u(x,0) = U(z).

It is possible to prove the following basic Lemma similarly to Proposition 3 from [20].

Lemma 1.1. Suppose that uc(z,t) € LY*(Ry; V) N LY(Ry; Ly,) is a weak solution to (1). Then

(i) u € C(Ry; Ho);

(ii) the function ||ue(,t)||? is absolutely continuous on R and, moreover,

€ L4/3(07 M7 L4/3,6) + LQ(Oa Ma Vé)

1d 2 2 4 x 2
5370 + IV O+ 01, = | R () Jue )P+

+ e/SE q (x, %) |ue(x,t)|*do = /QE Re (g(x)ue(x,t)) dz,

for almost every t € R,.

We fix €. Bellow, where it is natural, we omit the index € in the notation of functional spaces. Now we
use the approach described in Section 2 to construct the trajectory attractor of (1), which has the form
(7) if weset By =L,NV, Eg=H", E=Hand A(u) = (1+ai)Au+R(-)u— (1 + B8()i) |[ul*u+g(-).

To define the trajectory space KT for (1), we use the general approaches of Section 2 and for every
[t1,12] € R we have the Banach spaces

Fiy g = La(t,t2;Lg) N La(t1,t2; V) N Loo(t1, t2; H { ‘ € Lyjs (tr1,to; H™ )}

with the following norm

ov
HUHftl,zz = HUHL4(t17t2;L4) + HUHLQ(tLtQ;V) + HUHLOO(QM;H) + E

Lysz(tyte;HT)
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Setting Dy, 1, = Lq (t1,t2; H™") we obtain Fy, 1, € Dy, 4, and for u(s) € Fy, 4, we have A(u(s)) €
Dy, t,- One considers now weak solutions to (1) as solutions of an equation in the general scheme of
Section 2.

Consider the spaces

0
Pt = LRy L) LRy V) B Ry N {0 | 5 € L) )

0
FI% = LRy L) 5 RV 1 SR HO N {0 | 5 € L@ |

We introduce the following notation. Let K be the set of all weak solutions to (1). For any U € H
there exists at least one trajectory u(-) € K} such that u(0) = U(z). Consequently, the space K to
(1) is not empty and is sufficiently large.

It is easy to see that K C F!°¢ and the space K is translation invariant, i.e., if u(s) € K}, then
u(h +s) € K for all h > 0. Hence, S(h)KT C K} for all h > 0.

We define metrics py, ¢, (-, -) in the spaces F;, 1, by means of the norms from Lo(t1,t2; H). We get

1/2

M
poar(u, v) = ( [ ute) - v(s)l!%ds> Vu(), () € For.

The topology @{fc in F ﬂfc (respectively G)le"i in }"éojﬁ) is generated by these metrics. Let us recall that
{op} C F© converges to v € FP¢ as k — oo in O if [jug(:) — V()M 20,0581y — 0 (K — o00) for
each M > 0. Bearing in mind (8), we conclude that the topology @lfr’c is metrizable. We consider this
topology in the trajectory space K of (1). Also it can be seen that the translation semigroup {S(t)}
acting on K, is continuous in this topology.

Using the scheme of Section 2, one can define bounded sets in the space K by means of the Banach
space fi. We naturally get

v

Fo = Li(Ry;Ly) N L5 (R4 ; V) N Lo (R4 H) N {v ) o € Lg/g(R+;Hr)}

and the set .7-"3 is a subspace of F lfc.

Consider the translation semigroup {S(¢)} on K, S(¢) : KF — KF, t > 0.

Suppose that K. is the kernel to (1), that consists of all weak complete solutions u(s), € R, to our
system of equations, bounded in

v

FO = L(R;Ly) N L5(R; V) N Loo (R; H) N {v o7 € L} 5(R; Hr)} :

Proposition 1.1. Problem (1) has the trajectory attractors 2l in the topological space @lfc. The
set 2, is uniformly (w.r.t. € € (0,1)) bounded in F2 and compact in ©'°¢. Moreover, 2, = I K, the
kernel K. is non-empty and uniformly (w.r.t. € € (0,1)) bounded in F°. Recall that the spaces % and
@lfr’c depend on e.

To prove this proposition we use the approach of the proof from [14]. To prove the existence of an
absorbing set (bounded in 7% and compact in ©%¢) one can use Lemma 1.1 similar to [14].

It is easy to verify, that 2. C By(R) for all € € (0,1). Here By(R) is a ball in F% with a sufficiently
large radius R. By means of Lemma 2.1 we have

Bo(R) € L¥“(Ry; H' ™), (5)
Bo(R) € C*“(R.;H ™), 0<d<1. (6)
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Formula (5) immediately follows, if we take By = H™", E = H'™9 E; = H' = V, and p; = 2,
po = 4/3, keeping in mind the compact embedding V € H'~°. Formula (6) follows from the compact
embedding H € H, if we take Eg = H*(D), E=H"% E; =H' =V, and py = 4/3.
Bearing in mind (5) and (6), the attraction to the constructed trajectory attractor can be strengthen.
Corollary 1.1. For any bounded in .Fﬂ’r set B C KT we get

diStL2(0’M;H1—5) (H(),MS(t)B, H07MICE) — 0 (t = o0),
diStC([QM];Hf&) (H()’MS(t)B, H07MICE) —0 (t — OO),

where M is a positive constant.
2 Trajectory attractors of evolution equations

This section is devoted to the construction of trajectory attractors to autonomous evolution equations.
Consider an autonomous evolution equation of the form

Frin A(u), t>0. (7)
Here A(-) : E1 — Ey is a nonlinear operator, Ey, Fy are Banach spaces and E; C Fy. As an example
one can consider A(u) = (1 + ai)Au+ R(-)u — (1 + B()i) [ul?u + g(-).

We study weak solutions u(s) to (7) as functions of parameter s € Ry as a whole. To be precise
we say that s =t denotes the time. The set of solutions of (7) is said to be a trajectory space Kt of
equation (7). Now, we describe the trajectory space K1 in detail.

Consider solutions u(s) of (7) defined on [t1,t2] C R. We consider solutions to problem (7) in
a Banach space F, 1,. The space Fy, ¢, is a set f(s),s € [t1,t2] satistying f(s) € E for almost all
s € [t1,t2], where E is a Banach space, satisfying E; C E C Ej.

For instance, F, 1, can be considered as the intersection spaces C([t1,t2]; E), or Ly(t1,t2; E), for p €
[1,00]. Suppose that Tl 1, Fr my C© Fty ot and [y 4, fll 7, ., < Cltaste, 1, ) fll7, ., Y € Frim
Here [t1,t2] C [11, 2] and II;, 4, denotes the restriction operator onto [tq, 2], constant C(t1,t2, 71, 72)
does not depend on f.

Suppose that S(h) for h € R denotes the translation operator S(h)f(s) = f(h+s). It is easy to see,
that if the argument s of f(-) belongs to the segment [t1, 2], then the argument s of S(h)f(-) belongs
to [t1 — h,to —h] for h € R. Suppose that the mapping S(h) is an isomorphism from Fy, ¢, to Fy, _p ¢,—n
and |S(R) fll 7, .y n = IfllFt12s V€ Fiyto- It is easy to see that this assumption is natural.

Suppose that if f(s) € Fy, +,, then A(f(s)) € Dy, 1,, where Dy, 4, is a Banach space, which is larger,
Firts € Dy, t,. The derivative %Sf) is a distribution with values in FEj, a{ € D'((t1,t2); Ep) and we
suppose that Dy, 1, C D'((t1,1t2); Ep) for all (¢1,t2) C R. A function u(s) € Fy, 4, is a solution of (7),
if %?(s) = A(u(s)) in the sense of D'((t1,t2); Ep).

Let us define the space Fi°¢ = {f(s), s € Ry | Uy, 1, f(s) € Fiy s, ¥ [t1,t2] C Ry} For instance,
if 7y, = C([t1,t2]; E), then Fi°© = C(Ry; E) and if Fy, 4, = Ly(t1, to; E), then Fi°¢ = Li*(R; E).

A function u(s) € Fi° is a solution of (7), if Iy, y,u(s) € F, ¢, and u(s) is a solution of (7) for
every [t1,t2] C R4.

Let Kt be a set of solutions to (7) from F°. Note, that KT in general is not the set of all solutions
from ]-"_lfc. The set KT consists on elements, which are trajectories and the set KT is the trajectory
space of the equation (7).

Suppose that the trajectory space K is translation invariant, i.e., if u(s) € Kt, then u(h+s) € KT
for every h > 0.

Consider the translation operators S(h) in ¢ : S(h)f(s) = f(s+h), h > 0. It is easy to see that
the map {S(h),h > 0} forms a semigroup in F1° : S(h1)S(ha) = S(h1 + ha) for hi,hy > 0 and in
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addition S(0) is the identity operator. Next step is to change the variable h into the time variable t.
The translation semigroup {S(t),t > 0} maps the trajectory space K to itself: S(¢)KT C KT for all
t>0.

We investigate attracting properties of the translation semigroup {S(¢)} acting on the trajectory
space Kt C F _lfc. Next step is to define a topology in the space ]:j_oc.

One can see, that metrics py, 4,(-,-) is defined on F3, 4, for every [t1,t2] C R. Suppose that

Pty to (Ht1,t2f7 Ht1,t2.g) S D(tl,t277'1,7'2)[771,72 (fa g) vf7g S ‘FT1,7'27 [tlatQ] g [7-177—2])

ptl—h,tg—h(s(h’)fv S(h)g) = pt1,t2(fa g) \v/fvg € ]:tl,t2? [tlytZ] C Ra h € R.

Now, we denote by ©y, s, metric spaces on Fy, 4,. For instance, py, 1, is metric associated with the norm
|- I, ., of Ft,,to- At the other hand, in application pt, +, generates the topology Oy, ¢, that is weaker
than the strong one of the 7, 4,.

The projective limit of the spaces Oy, 4, defines the topology @lfc in F¢, that is, by definition,
a sequence {fi(s)} C Fi tends to f(s) € Fi°¢ as k — oo in O if py, 4, (4 4o fi Mty 1o f) — 0 as
k — oo for all [t1,ts] C Ry. It is possible to show that the topology @lfc is metrizable. For this aim
we use, for example, the Frechet metric

—m Pom(f1, f2)
L+ pom(fi, f2)

pi(fr fo) =2

meN

(8)

The translation semigroup {S(¢)} is continuous in ©'. This statement follows from the definition
of @lfc.
We also define the following Banach space

FL={f(s) € FEL || fllz < +oo},

where the norm
£l 72 = sup [[To,1f(h + 8)[| 7.1
h>0

We remember that ff’r C Gifc. We need from our Banach space ]-"i only one fact It should define
bounded subsets in the trajectory space K. For constructing a trajectory attractor in KT, instead
of considering the corresponding uniform convergence topology of the Banach space ]:3_, we use much
weaker topology, i.e. the local convergence topology GIfc.

Assume that KT C F?, that is, every trajectory u(s) € KT of equation (7) has a finite norm. We
define an attracting set and a trajectory attractor of the translation semigroup {S(t)} acting on K*.

Definition 2.1. A set P C O is called an attracting set of the semigroup {S(¢)} acting on KT in
the topology @lfc if for any bounded in ]:3_ set B C KT the set P attracts S(t)B as t — +oo in the
topology ©%, i.e., for any e-neighbourhood O.(P) in ©%¢ there exists t; > 0 such that S(t)B C O(P)
for all ¢t > t;.

It is easy to see that the attracting property of P can be formulated equivalently: we have

diSt@mM (H07M5(t)87 HO,MP) — 0 (t — +OO)7

where distp(X,Y) := sup,¢cy distp(z,Y) = sup,cx infyey pam(z,y) is the Hausdorff semidistance
from a set X to a set Y in a metric space M. We remember that the Hausdorff semidistance is not
symmetric, for any B C KT bounded in ]-'j’_ and for each M > 0.

Definition 2.2 ([14]). A set 2 C KT is called the trajectory attractor of the translation semigroup
{S(t)} on KT in the topology ©%°, if
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(i) 2 is bounded in F¢ and compact in ©',
(ii) the set 2 is strictly invariant with respect to the semigroup: S(¢)2 = 2 for all ¢ > 0,
(iif) 2 is an attracting set for {S(¢)} on K in the topology ©¢, that is, for each M > 0 we have

diSt@(),M (H07MS(t)B, H07M91) —0 (t— +00).

Let us formulate the main assertion on the trajectory attractor for equation (7).

Theorem 2.1 ([13,14]). Assume that the trajectory space KT corresponding to equation (7) is
contained in .7-"_1;. Suppose that the translation semigroup {S(t)} has an attracting set P CK* which is
bounded in F¥ and compact in ©°. Then the translation semigroup {S(¢),t > 0} acting on Kt has
the trajectory attractor 2l C P. The set 2 is bounded in .7-"3_ and compact in @l_fc.

Let us describe in detail, i.e., in terms of complete trajectories of the equation, the structure of the
trajectory attractor 2 to equation (7). We study the equation (7) on the time axis

ou
Frie A(u), t € R. 9)

Note that the trajectory space KT of equation (9) on R, have been defined. We need this notion
on the entire R. If a function f(s), s € R, is defined on the entire time axis, then the translations
S(h)f(s) = f(s+ h) are also defined for negative h. A function u(s),s € R is a complete trajectory of
equation (9) if II u(s + h) € KT for all h € R. Here I} = Il o denotes the restriction operator to
R,.

We have ffC,F_If_, and @lfc. Let us define spaces F°¢, Fb, and ©!°¢ in the same way:

Floo = {f(s),s € R | My 1, f(5) € Fryy ¥ [t1,82] SRy FPi={f(s) € F| | fll o < 400},
where

[fll 7 := sup [To.1 f(h + 8)[| 7y, - (10)
heR

The topological space ©!°¢ coincides (as a set) with F°¢ and, by definition, fi(s) — f(s) (k — o0)
in ©1°¢ if Tl 4, fr(s) — gy 4, f(5) (k — 00) in Oy 4, for each [t1,t2] C R. Tt is easy to see that O is
a metric space as well as 95?0.

Definition 2.3. The kernel K in the space F° of equation (9) is the union of all complete trajectories
u(s), s € R, of equation (9) that are bounded in the space F? with respect to the norm (10), i.e.

Mo u(h+ s)||7, <Cu VhER.

Theorem 2.2. Assume that the hypotheses of Theorem holds. Then 24 = 11 I, the set K is compact
in ©%¢ and bounded in F°.

To prove this assertion one can use the approach from [14].

In various applications, to prove that a ball in ]-"3 is compact in @lfc the following lemma is useful.
Let Ey and F7 be Banach spaces such that F; C Ey. We consider the Banach spaces

WPLPO(O?M;EDEU) = {Qb(s),s e€o,M ’ w() € Lpl (OvM;El)? ¢/(> € LPO(OvM;EO)}7

Woo,po(oaM;EbEU) = {¢(S)?S S 07M ’ Qp() € Loo(OvMa E1)7 W() € LPO(O,M; EO)}»

(where p; > 1 and pg > 1) with norms

M 1/p1 M 1/po
ol = ([ Tl as) o+ ([T woimas)
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M 1/po
ol . o= esssup {[0()]1z, | s € [0, M]} + ( / ||w'<s>||%°0ds> .

Lemma 2.1 (Aubin-Lions-Simon, [22]). Assume that E; € E C Ey. Then the following embeddings
are compact:

Wi p0(0,T5 Ev, Ey) € Ly, (0,T; E), Weopo (0,15 Ev, Eg) € C([0,T]; E).
In this paper we investigate evolution equations and their trajectory attractors depending on a
small parameter € > 0.
Definition 2.4. We say that the trajectory attractors 2, converge to the trajectory attractor 2 as
€ — 0 in the topological space @lj_)c if for any neighborhood O(2() in @lfc there is an €; > 0 such that
2. C O®A) for any € < €1, that is, for each M > 0 we have

diste, ,, (Ilo,ar2e, o, a2A) — 0 (€ — 0).
3 Formal homogenization procedure

Let M; be a solution to a problem

AgMi (.Z‘,f) =0 in W,

M;(x, . 11
OMi(z, &) 8(13/6 §) =—-r; on S(x). (11)
Denote by (-) the integral over the set 0 Nw, and Q(z fs q(x, &) d

The limit problem has the form

([ ouy d L OMi(2,©)\ duo
o e g (< g >ax>

—R(x)uo <1 B(a)i) uol® uo + Q(@)uo = [ONw|g(z), z €, (12)
ug = 0, e 0, t>0,
up = U(z), xeQt=0.

\

It is easy to see that system (12) also has trajectory attractor 2 in the trajectory space Kj
corresponding to problem (12) and 24 = II; K, where K is the kernel of system (12) in .7:_?_.
The integral identity for problem (12) takes the form

ov ) OM;(z,§) \ Oug Ov
_/]R+/§2u0mdtda:+(1+a1)/R+/ Z<” 7, >8:1:18:c]dtd+
/R+/ z)ug — (14 B(x ))|u0|2u0—Q(a:)u0>vdtdx:/RJr/Q|Dﬂw]g(x)vdtda:

for any function v € C§°(R4; V N Ly).

Remark 3.1. Note that M;(z,&) are not defined in the whole 2. We can extend M;(z,£) into the
interior of the cavities retaining the regularity of these functions by means of the technique of the
symmetric extension, keeping the same notation for the extended functions.
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4 Auziliaries

We study the asymptotics of solution uc(x) as € — 0 to the next boundary-value problem

—(1+ ai)Aue = g(x) in

. 8“6 € o
o e o
ue =0 on Of).

Here n. is the internal normal to the boundary of cavities and g(x, ) is a sufficiently smooth 1-periodic
in ¢ function.

Definition 4.1. The function u. € H' (2, 98) is a solution of problem (13), if the following integral
identity

(1+ od) . Vue(x) Vo(z) dz + 6/56

q (x, %) ue(x)v(x)ds = /6 g(x)v(x)dx

holds true for any function v € H'(Q., 00).
Here H'(Q¢,09) is the closure of the set of functions belonging to C*°(Q°) and vanishing in a
neighborhood of 9Q, by the H'(Q¢) norm.

Here we derive the leading terms of the asymptotic expansion and, then, construct the homogranized
problem. For this aim we consider the solution u.(z) to (13) as an asymptotic series

ue(z) = up(z) + euy (a:, %) + 2uy <x, %) + Sug (x, %) +... (14)

Substituting expression (14) in equation (13) and bearing in mind the relation

0 x 0 10
S (2.2) = (&jcm,f) + 6354(“)) ‘ ,

=2
we get the formula
=IO A () = Agug(a) + e (Apun(a )| _, +2(Va,Vem(@,€) |+
1+ ai 9 52% ) ) g:%
1
2 (Ben(@O)|_, +¢ (Aaua(e.&) | _, +26(Va, Veur. ) | _,

+ (Bem(e, )| _, +¢ (s, ) |,

€ €

26 (Va, Veus(2,6) | _, +e(Beus(,&) | _, +... (15)

T

e=2

Similarily, substituting (14) into boundary conditions in (13), we get the relation

ou q(xz, % N q(z, 2
= 37/: e 1(+ cii) ue = (Vatio, ve) + € 1(+ ;i) uo + € (Vgur, ve) +
 (Fonleg )+ G (G o)
£1§:f7€ 1+ aid 1 z U2, Ye £2§:%7e
a (@, q(z,
-+ 631(_i_oii)Ul2 + 63 (Vmu37l/e) + 62 (V£U3}§:%7VE) + 641(_’_0661)“3 + .. » (16)

which means that it satisfies the boundary condition on S..
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The normal vector v depends on z and ¢ in Q.. Now, we consider x and § = ¢ as independent
variables, and then we represent v, in ). in the form

v, ) = 2w, 8)| _, +edl(w,8)|

€ e

where v is a normal vector to S(z) = {¢| F(x,&) = 0},
vl =1+ 0O(e).

Collecting all the terms of order ¢! in (15) and of order € in (16), we deduce the auxiliary problem

AgUl (x,f) =0 in W,
0 17
Wlr8) _ (g (up(@),i)  on S an
v
which we solve in the space of 1-periodic in ¢ functions and here = is a parameter, w := {£ €

T?| F(z,£) > 0}. This is the cell problem appearing in case of Neumann conditions on the boundary

of cavities. It is easy to see that the compatibility condition / (Vyuo(z),v(€)) do = 0 of (17) is
S(z
satisfied, and the solution of this problem is the first corrector in (14).

At the next step we collect all the terms of order € in (15) and of order €' in (16). This gives us

A§u2 ('T’ f) = - 19_5_1'()11 - AxUO(x) -2 (vfa vxul(J:? 5)) n w,
%i‘gjf) = —(Vawr(2,€),0) — (Veur (2,), 1) - (18)
— (Vauo(z),v) — a(z, &) up(x) on S(z).

1+a1

The 1-periodic in & solution of the latter problem is the second term of the internal asymptotic
expansion of u(z).

It is easy to see that for our analysis it is convenient to represent the solution u;(z,&) of problem
(17) in the following form:

ul(xaf) = (gradxuo(x)’ M(:C,f)) )

where 1-periodic vector—function M (z,&) = (Mi(z,£), ..., Mg(z,£)) is a solution to (11).
Now, (18) can be rewritten as follows

AgUg(az,f) - _19-?6)!1 2;1 (22;;08% 8M5(§“j7£)_
d
S S S g - 3 el )

20 Bulletin of the Karaganda University



Homogenization of Attractors to ...

Writing down the solvability condition in the last problem, we derive the equation:
g(z) 0?ug(z) OM;(z, &) Oug(z) O>M;(x, &)
A 2 + 2 d¢ =
L. (1 ai T Z e Z o005 )*©

d 82 X OM;(z,
:/Q < 2 MM"(JJ’@W + ?x@ @8 L
£ O > Z

Lj

2y, l,j:].
duo(z) OM;(x,6) , = Oug(x) ,  q(x.€)
+jz:1 oz, 9, Vj+i:1 oz, V+1+oa o(x) |do. (19)

From (19) by the Stokes formula we derive the equation

IR M(x, )\ duo(z) = /OMi(z, &)\ uo(x)
|Dﬂw\Axuo(a:)+i§::1< gty 2 +MZ:1< o)) T
Jug ()

g@) _ Q)
8.%1' ’

uls -
HENw T T

(20)

which is the limit equation in €. We denoted by < - > the integral over 0 Nw, and Q(z) =

fS(x (z,€) do. Moreover, U;(z fS x)< 8§ —|—1/Z() do.

It is not necessary to calculate Ui(x), since by the selfadjointness of the operators of the given
problems and the convergence of the corresponding belinear forms, we get that the G-limit operator
is necessary selfadjoint. Therefore, the limit equation (20) takes the form:

d i\ L (v
(rai) 30 o2 (5 + 22 200 4 pnae) = Qo) )

i1 Zj 863 817,
and, consequently,
ia<aM x§>> Z<82Mi<x,§>>
= 0 8f] = 8.7}]' 85] .

It is easy to see that <(5Zj + é ’£)> is a smooth positively defined matrix (see [9]).

The next statement is about the limit behavior of the solution to (13).
Theorem 4.1. Suppose that g(z) € C'(R?) and that g(x, £) is smooth enough nonnegative function.
Then, for any sufficiently small e problem (13) has the unique solution and the following convergence

luo — uellgr ) — 0

takes place, where ug is a solution of equation (21) with zero Dirichlet conditions on 9.
Remark 4.1. In fact, in the formulation of Theorem 4.1 the condition g(z,&) > 0 can be replaced
by the weaker condition Q(z) > 0

4.1 Preliminary Lemmas

Here we give some technical propositions, which we use in the further analysis. Some of these
propositions have been proved in [3,23]. We omit their proofs.
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Lemma 4.1. If the conditions of Theorem are satisfied, then the Friederichs type inequality

x
| 19ear e [ a o) s> Cullolfanon
is valid for any v € H(Qc, 99Q), where C; is independent of e.

Now we formulate a modified version of Lemma 5 from [23].

Lemma 4.2. If we suppose

b
||:| N w‘ ONw

Q) df—/s( 4l €) do =0

then the following inequality
1

q (az, %) v(z) do

< Coellvllgr(aq

Q(z)v(x) dx — e/

Se

holds for any v(z) € H (e, 09); the constant Cy is independent of e.
Proof. The proof of this assertion can be found in [24].

Lemma 4.3. 1f y, is a solution to

—(1+ ad)Aye = h¢(x) in Qe
~ OYe T B

(1+ ai) a0, + eq (:n, ;) Ye=0 on S,

Ye =10 on €,

where he(z) = g(z) for x € Q. and 0 otherwise, then

el 1 () < Cae.

The proposition, which is a modification of Lemma 5 from [23], formulated below.
Lemma 4.4. Suppose w®(z) € Loo(€2), and let 1€ belong to {z € Q|dist (z,0) < Cye}. Then the
following inequality

3
| o @), Vew(@)vie) de| < Cred oo ol

€

holds for any v(z) € H'(£,dQ); the constant Cy is independent of e.
Proof of the Theorem 4.1. The proof of this assertion can be found in [23].

5 The main assertion

Here formulate the main proposition concerning the Ginzburg-Landau equation.
Theorem 5.1. The following limit holds in the topological space @fﬁc

A —2A ase—0+. (22)

Moreover, B
Ke—Kase—0+ in 0 (23)

Remark 5.1. The functions belonging the sets 2 and K. are defined in the perforated domains 2.
But, all these functions can be extended insides the cavities remaining their norms in the spaces H, V,
and L, (without perforation) with the constants independent of the small parameter (the prolongation
of functions defined in perforated domains, see, for instance, in [10; Ch.VIII]). Hence, in Theorem 5.1,
we have all the distances in the spaces without perforation.
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Proof. 1t is easy to see that (23) implies (22). Hence, it is sufficient to prove (23), i.e., for every
neighborhood O(K) in ©!¢ there exists ¢; = €1(O) > 0, such that

K. Cc OK) for e<e. (24)

Assume that (24) is not true. Then there exists a neighborhood O’(K) in ©!°° a sequence ¢, —
+ (k — 00), and a sequence uc, () = uc, (s) € K¢, , such that

ue, ¢ O'(K) forall keN.

The function ue, (s),s € R is a solution to

”
8(7;? = (14 od)Aue, + R <:1:, i) Ue,, — <1 +8 (m, i) i> |Uek|2Uek tg(x), req,,
(1 ai) 88u;k * 6kq<x’ %>ue’“ =0, T € 8¢yt >0,
U, =0, x € 09,
U, = U(x), v 0, 0.

on the axis ¢t € R. To get the uniform in e estimate of the solution we use the following Lemmas (see
[25; Ch. III, §5| and [26] respectively).

By means of integral identity (4) and Lemma 1.1 we derive the estimate, the sequence {ue, (z,s)}
is bounded in F?, i.e.,

t+1 ) 1/2
[ter |70 = sup [[ue, (¢)[| + sup (/ IIUEk(S)II1d8> +
teR teR \Jt

1/4

t+1 A B Ou, 4/3 3/4
+ sup </t Huek(s)\L4d5> + sup </t Hat(S)HHTdS> < C forall ke N. (25)

teR teR

The constant C' is independent of e.

Consequently, there exists a subsequence {u¢ (z,5)} C {uc, (2, )}, such that uc, (z,s) = u(s) as k —
oo in ©¢, Here u(z,s) € F° and u(s) are the solution to (25) with the same constant C. Because
of (25) we get uc, (z,5) — u(x,s) (k — o) weakly in LY¢(R; V), weakly in LY¢ (R;Ly), *weakly in
L*(Ro: H) and 2550 940 () o0) weakly in LI¢5,  (R;H™"). We claim that u(z, s) € K.
We have ||ul| z» < C. Hence, we have to establish that u(x, s) is a weak solution to (12).

According to the auxiliary problem in the case § = 1 we have

(1+ad / / Vue, Vi dxdt + €y, / / uekd)dadt + / / x)drdt —

1+a1/ /Z<w OM;( m£)>auo(mt)a¢

= 0¢; Ox; Ox;

+/_A;/§2Q(x)uo(x,t)wdxdt+/_]‘;/gmew‘g(x)wdxdt

Oue —>@a — 0+.
ot ot ©F

dxdt—

as k — oo.

The differentiation is continuous in the space of generalized functions, also

Mathematics series. No.3(111)/2023 23



K.A. Bekmaganbetov, G.A. Chechkin et al.

Now, we prove that
R <x, j) Ue, (T,8) = R(z)u(z, s) (26)
k
and

(1 + 5 <:c, :) i) e, (7, 8) [Pue, (7, 8) = (1 + B(2)i) |u(z, s)|*u(z, s) (27)

as k — oo weakly in Li"/cgw (R; L4/3).

Fixing an arbitrary number M > 0, we consider the sequence {ue, (x, s)} bounded in Ly (—M, M;Ly)
(see (25)). Hence, the sequence {|ue,(z,s)[*ue, (z,s)} is bounded in Ly/3 (—M,M;Lyy3). Because
Oue, (z,s)

ot
suppose that uc, (z,s) = u(x,s) as k — oo strongly in Ly (—M, M;H) and hence

{ue, (z,5)} is bounded in Lo(—M,M;V) and is bounded in Ly/3 (=M, M;H™") we

Ue, (x,s) = u(z, s) ae. in (z,s) € Q x (=M, M).
It follows that
|te, (2, 8) e, (z,8) — |u(z, s)[*u(z, s) a.e. in (z,5) € Q x (=M, M). (28)
We have

14+ 6| =, 2 [te, (, s)|2uek (z,s) — (1 + ﬁ_(x)l) lu(z, s)[*u(z, s) =
(0 (=2))
_ <1 w ( k) i> (lue, (2 8) P, (2. 8) — [u(a, ) Pule, 5)) +
(108 (2 2)1) = 04 500 ) oo )Putes). (29)

€k

We show that both terms in the right-hand side of (29) tends to zero as k — oo weakly in
L4/3 (—M, M; L4/3)-

The sequence <1 + 4 (:z:, i) i) (Jtey, (m, 5)[Pue, (2, 8) — |u(z, 5)[*u(z, s)) converges to zero as k — oo

almost everywhere in (x,s) € Qx (=M, M) (see (28)) and is bounded in Ly /3 (=M, M;Ly3) (see (2)).

2

Consequently using Lemma 1.3 from [27] we get (1 + 5 <x, i) i) (|uey (. 8)|Pue, (z,8) — |u(z, s)Pu(z, s))

— 0 weakly in L3 (—M, M; L4/3) as k — oo.
The sequence ((1 + 5 (:r, i) i) -1+ B(w)1)) lu(z, s)[Pu(z, s) goes weakly in Ly 3 (—M, M;Ly/3)
to zero as k — o0, since by the assumption S (m, E) — B(z) *-weakly in Lo (—M, M;Ls) as k — oo
€

(see (3)) and |u(z,s)|*u(z, s) € Ly3 (—M, M;Lyy3).
We have proved (27). The convergence of (26) is proved similarly.
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Jlokaababl mepumoATHI KeyekTepi 6ap oprajsiapsaa I'macOypr-Jlapgay
TeHJIeyJ/IePiHiH aTTPAKTOPJAPbIH OpTAaINaJaay: KPUTUKAJIBIK, XKaF1ail

2KywmpicTa TeHzeyme KoHe IIeKapaJiblK, MapTTapblHaa Te3 Tepbenamernti mymrenepi 6ap ['mucbypr-Jlammay
TEHJIEYiH TeCiK 00JIbICTa KapaCTBIPBLIFaH. Byl TeHIey1iH TPAeKTOPUSIBIK aTTPAKTOPJIAPHI 9JICI3 MAFbIHAIA
«oram Mymieci» (oseyeri) 6ap opramasnanran ['uacOypr-Jlannay TeHIeyiHiH TPacKTOPHUSIIBIK, ATTPAKTOD-
JIapbIHA KYBIKTAUTHIHBL gstenaeneai. Om ymnin B.B. Yensrkosreiy yxome M.V, BummmkTin, 9BOTIOIASIIBIK
TeHEYIEPiH TPACKTOPUSLIBIK, ATTPAKTOPJIAPEI TYPAJIbl MAKAJIAJIaPhl MEH MOHOTpAUAIAPBIHbIH dicTeMec
kosimanbuirad. Conpmaii—ak, XX rachIpIblH COHBIHIA Haiija GoraH opraliasay dJicTepl HaiilajaHbUIFaH.
AJLIBIMEH aCUMITOTUKAJIBIK, SIICTEP/ Il aCUMITOTUKAHBI (DOPMAJIBILI KYPY YIIIH KOJJIAHBLIFAH, COJAH Keli-
iH aCHMITOTHKAJBIK, KaTapJIap/IblH Heri3ri Mymresepin OyHKITHOHAIBI TAJIIAY KOHE MHTErPaJIbl Oaraaay
9JIiICTEPIH KOJIJIaHA OTHIPHIN TaHaa raH. CollKeciHIe, KOMEKIII 9JICi3 TOMOJIOTUsIbI (PYHKIIMOHAJIBI KEHiC-
TIKTI aHBIKTA{ OTBIPBIN, MEKTI (OpPTAIIATAHFAH) TEHJECYl AJBIHFAH KOHE OCHI TEHJIEYIIIH TPACKTOPHUSLIBIK
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aTTpakTOpbl bap ekeHi Jpiesgenred. ComaH KeiiiH Heri3ri Teopema TYXKbIPBIMIAJFaH, OHbl KOMEKII JIeM-
MaJIap/iblH, KOMETriMeH J19J/IeJI/IeHTeH.
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YcpeaHenne aTrTpakTopoB ypaBHeHuii 'mu30ypra-Jlanmay B cpegax c
JIOKAJIbHO TIEPUOJINIECKNMHU NPENATCTBUAMMN: KPUTUYECKHIN CIydaii

Mg paccmarpuBaeMm ypauenune ['muzbypra-Jlangay ¢ ObICTPO OCHUJLUIMPYIONMMMA YI€HAMUA B ypaBHEHUU
¥ TPAHWYHBIX YCJIOBUAX B epdopupoBanHoit obiaactu. JlokaspiBaeM, 9TO TPAEKTOPHBIE ATTPAKTOPHI STOTO
ypaBHEHUS B CJ1aOOM CMBICJIE CXOSTCS K TPAEKTOPHBIM aTTPAKTOPaM yCPeaHeHHOro ypaBuenus ['uu3bypra-
Jlarznay co «CTpaHHBIM YiIeHOM» (IOTeHHHMAIoM). [IJIs 3TOro UCIo/Ib3yeM IOAX0/| U3 cTaTeil u MOHOrpadmit
B.B. YenbnkoBa u M.JM. Bummka 0 TpaeKTOPHBIX aTTPaKTOPaX IBOJIOIMUOHHBLIX ypaBHeHUi. Takke MbI
NIpUMEHsIEM MEeTO/IbI yCpeIHEeH s, TTogBuBINuecs B KoHie XX Beka. CHavdasa UCHOJIb3yeM aCUMITOTUICCKHE
MeTObI JijIsi (POPMAJIBHOIO MOCTPOEHUST ACUMIITOTHK, JIaJiee BbIBEPSEM IJIaBHBIE UJIEHBI ACUMIITOTHIECKUX
PSIIOB C TIOMOIIBIO METOIOB (DYHKITMOHAJIBHOTO aHAIN3a U HHTETPAIbHBIX OIeHOK. Ompeessis COOTBETCTBY-
IOIIe BCIOMOTaTe/bHbIE (DYHKIMOHAJIBHBIE IPOCTPAHCTBA CO CJIa0O0# TOMOJIOTHEH, BBIBOAUM IIPEIETbHOE
(ycpelHeHHOE) ypaBHEHHE U JIOKAa3bIBAEM CYyIECTBOBAHUE TPAEKTOPHOIO ATTPAKTOPA JJIsi 9TOrO ypaBHE-
HusA. 3aTeM (OPMyIUpPyeM OCHOBHYIO TEOPEMY U JOKA3bIBAEM €€ C MOMOIIBI0 BCIIOMOTATEIbHBIX JIEMM.

Kmouesvie caro6a: aTTpakTOphI, yCpeaHeHne, ypaBHeHus | nn3dypra-Jlannay, Hennneiinble ypaBHeHUs, Cla-
Gasi CXOIMMOCTB, epdOpUpOBaHHast 06JIACTb, «CTPAHHBIN YJIE€H», IOPUCTasl CPejia.
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On the time-optimal control problem for a heat equation

In previous works, we have considered some control problems for parabolic type equations, namely, control
problems for parabolic type equations were studied as boundary value problems of the first type, and the
weight function was expanded into a Fourier series by sines. In this paper, we consider boundary control
problem for a heat equation on the interval. In the part of the bound of the given domain it is given
value of a solution and it is required to find a control to get the average value of the solution. By the
mathematical-physics methods it is proved that like this control exists and the estimate of a minimal time
for achieving the given average temperature over some domain is found.

Keywords: heat equation, minimal time, admissible control, integral equation, initial-boundary value problem.

Introduction
Consider the heat equation
ou(z,t)  0*u(z,t)

5 = 9 (x,t) e Q={(z,t): 0 <z <, t>0}, (1)

with boundary value conditions
ug(0,t) = —p(t), wux(l,t) = 0, t>0, (2)

and an initial condition

u(z,0) = 0, 0<x<lI. (3)

Definition 1. A function p(t) is an admissible control if this function is piecewise smooth on ¢ > 0
and satisfies the conditions

pn(0) =0, |u(t) < M, where M = const > 0.

Consider the function p(z) € W2[0,1] satisfying the conditions

l
1
Y@ <0, 9@ 20, [pla)do=1 (1)
0
Let -
p(x)zzpk COS ——, T e (O,Z),
k=1
where l
2 k
o =2 / () cos T, k=12, (5)
0

*Corresponding author.
E-mail: f.n.dehqonov@mail.ru
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Problem H. Let 6 > 0 be a given constant. Problem H consists in looking for the minimal value
of T > 0 so that for t > 0 the solution u(x,t) of problem (1)—(3) with a control function u(t) exists
and for some Ty > T satisfies the equation

l
/p(a:)u(:v,t) de = 6, T<t<T. (6)
0

We recall that the time-optimal control for parabolic type equations was first investigated in [1]
and [2]. Recent results concerned with this problem were established in [3-12]. Some boundary control
problems for hyperbolic type equations are studied in [13]. The same result as in this article was seen
in detail in [5] case. Detailed information on the problems of optimal control for distributed parameter
systems is given in [14]| and in the monographs [15,16] and [17]. Close to this work, boundary control
problems for the pseudo-parabolic equation were studied in works [18,19].

Overall numerical optimization and optimal control have been studied in a great number of publications
such as [20]. The practical approaches to the optimal control of the heat equation are described in
publications such as [21].

Theorem 1. Let
P M

w2

12 0 72
To=—"tm1- 27}
’ W2n< fhPM>

Then a solution T,;, of the Problem H exists and the estimate T},,;, < Ty is valid.

0<O<

Set

1 Main integral equation

Let T > 0 and B be a Banach space. Set by C([0,7] — B) the Banach space of all continuous
mappings v : [0,7] — B with the norm

= t)|.
Jull = max flu(®)]

Now by symbol WN/%(Q) we denote the subspace of the Sobolev space Wi (€2) formed by functions
trace of which is equal to 92 zero. Note that since W () is closed and the sum of a series of functions
from W4 () converging in metric W4 (2) also in W, (Q) (see, [10]).

Definition 2. By the solution of the problem (1) - (3) we mean function u(x,t), expressed the form

(1 - =)?
2l

u(x, t) = p(t) —o(z,1),

where the function v(z,t) is a generalized solution from C([0,T] — Wzl(Q)) of the problem

(I-2)? 1
21 l

vi(x,t) — Ve, t) = p'(t)
with initial and boundary conditions

v.(0,t) = v, (I,t) =0, wv(z,0)=0, 0<z<I.
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Consequently, we get (see, [22,23])

t t
l 1 cos krz -
oz t) = 6mw—,{/uwww+ o [ ) s

0 k=1 0

Note that the class C([0,T] — W2 (£)) is a subset of the class W3 (Q) considered in the monograph
[24] in order to define a problem with homogeneous boundary conditions. So, the generalized solution
given above is also a generalized solution in the sense of monograph [24].

Proposition 1. Let u € W3 (Ry) and p(0) = 0. Then the function
1 - k
=7 / <1 +2 ;6_(“/”2@_5) cos 7lrw> w(s)ds (7)
0 —

is a solution of problem (1)—(3).

Proof. We write the function u(zx,t) again in the form

t t
l 1 2 cosEIE e
—f,u(t)—l-j /u(s) ds — — le /e (km /U7 (t=5) 1/ (5) ds.
0 0

Now we show that function v(x,t) belongs to the class C([0,T] — WQI (©)). For this, it is enough
to prove that the gradient of this function, taken in z € €2, continuously depends on ¢t € [0,7] in the
norm of the space Ly(2). According to Parseval’s equality, the norm of this gradient is

t
2
HUm(,t)H%Q(Q) = </€ kﬂ'/l /(8)d8> S
0

o0

1
<CIWIP Y 5 < Ol
k=1

Proposition 1 is proved.
From (7) and condition (6), we can write

l
o(t) / () (. t) do
0

l

t
/<;/p )dx + — Ze*(’”/l *(t=s) /p cosd:v) w(s)ds.
0

k=1 2

Then according to (4) and (5), we have

4 o0
= / (1 + Zpk 6_(k7r/l)2(t_8)> wu(s)ds.
0

k=1
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Set -
B(t)y=1+Y_ pre *m/V >0, (8)
k=1
Then we get the main integral equation

/B(t —s)u(s)ds =0(t), t>0.
0

Lemma 1. [6] Let g(y) > 0 and ¢'(y) < 0. Then the inequality holds

/g(y) sinydy >0, ye€[0,00), n=12,..
0

Proposition 2. For the coefficients {pi }ren defined by (5) the estimate

C
0 < Pk < ﬁa k:1727

is valid.

Proof. From (5), we write

2 =l
Pk = 7

l

kmx 2 . kmx
/p( ) cos —— dx = T p(z) sin —
0

=0

l l
2 , - knx 2 . knx
~ p(x )Slnd:c——kﬂ_/ Sln—d$ 9)
0 0

By conditions (4) and Lemma 1 we obtain pg > 0. Then, from (9) we can write

l
2 2
Pk = —— p'(m)sinkﬂTxdaE— k2l2 o (x )coslmlr—x

=0

where p/(1) (—=1)F — p'(0) > 0.
Then we obtain

Proposition 2 is proved.
Proposition 3. A function B(t) defined by (8) is continuous on the half-line ¢ > 0.

Proof. Indeed, from (8) and Proposition 2 we obtain

1 < B(t) < 1—|—c0nstz —(km/1%
k=1

Proposition 3 is proved.
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2 Estimate for the Minimal Time

Consider the Volterra integral equation

¢
/B(t—s),u(s)ds =0, t>T,
0

where

B(t) = 1+ pp e *m/D% (10)
k=1

Proposition 4. For the function defined by Eq. (10) the following estimate
B(t) > ple—(ﬂ/l)zt

is valid.

Proof. Proof of the proposition comes from functional series defined by (10) is non-negative.
Proposition 4 is proved.
We introduce a function as follows

Qt) :/tB(t—s)ds:/tB(s) ds.
0 0

It is clear that physical meaning of this function Q(t) equals the average temperature of € in case
where the heater is acting unit load (see, [3,10]). We know that Q(0) = 0 and Q'(t) = B(t) > 0. Set

t—o00

Q" = lim Q(¢t) = /B(s)ds.
0

Proposition 5. Let 0 < § < MQ*. In that case there is T' > 0 and a real measurable function ()
and the equality

T
/B(T —s)u(s)ds =0 (11)
0

is valid.

Proof. Obviously, if we set p(t) = M then we obtain

/B(t —s)u(s)ds = M/B(t —s)ds = MQ(t),
0 0

6.

and since from (11) there exists 7' > 0 so that M Q(T)
Proposition 5 is proved.

Remark 1. We know that the value T found in Proposition 5 gives a solution to the problem.
Clearly, T is a root of the following equation

6

QT) = +- (12)
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Proposition 6. Let

M
0<6 <P (13)
Then there exists 7' > 0 and
2 0 7T2
T<—-——=Inl1l-
R n( prl? M >
and the Eq. (12) is fulfilled.
Proof. Now we use Proposition 4. As result, we can write
t t
1 — (/D>
Q(t) = /B(s) ds > m /e_(”/l)%ds =p 12 172. (14)
0 0
Consider the equation for the defining of Tp:
1—e @D ¢
P = 15

Then we have

From (14) and (15), we can write

0< < Q)

Obviously, there exists T, 0 < T' < Ty, which is a solution of Eq. (12).
Proposition 6 is proved.

Proposition 7. Let T' > 0 satisfies Eq. (12) and condition (13). Then there exist 77 > T" and the
measurable function p(t) so that |u(t)| < M and the equality

l
/ pla)u(e,t)de =0, T<t<T
0

is valid.

Proof. According to the following

/B(t —s)u(s)ds =6,
0

it is enough to prove that there exists a solution of the equation

/B(t—s),u(s)ds:f(t), 0<t<T, (16)
0

where
MQ(t), f0<t<T,
f(o) = { M@0,
0, HT <t <T

Solution (17) is piecewise smooth and, according to Eq. (12), is continuous.
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Set
M, fo<t<T,
pu(t) = . (18)
pi(t), if T <t<Ty,
where p1(t) is a solution of the following integral equation
T ¢
/B(t—s)Mds—i—/B(t—s),ul(s)ds:0, T<t<T. (19)
0 T
Then differentiating this equation we obtain
¢
BOw () + [ Bt - s)pals)ds = M(B(t ) - ). (20)

T

According to Proposition 2,

oo
B(0)=1+> pj < oo.
k=1

We know that the function B(t) is convergence function on given interval. Therefore, equation (20)
has a unique solution p1(t) for t > T, which is continuous function on t > T Besides,

and there exists T} > T so that
() <M, T<t<T.

We know that this function is the unique solution of equation (19). Hence, function (18) is piecewise
continuous and satisfies equation (16). Consequently, this function p(t), which has a jump at the point
t =T, is the required solution.

Proposition 7 is proved.

Proof of Theorem 1 follows from Propositions 6 and 7.

Conclusions

Note that in case where the temperature 6 is small enough, the value of T can be replaced by the
following one:

0
M
Hence, in this case the estimate of optimal time given by Theorem 1 is proportional to required

temperature 6 and inversely proportional to size of the rod [ and to the maximum output of heat
source M.

T, =
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npikerckast, B.A. Cosorrukos, H.H. Ypanbuesa. — M.: Hayka, 1967.

®.H. /IlexxoHos

Hamanzan memaekemmix ynueepcumems, Hamanean, Oszbexcman;
Kana Osbexcman yrusepcumemi, Tawrkenwm, O36excman

2KbL1yTeH/ieyi YIITiH OHTaJIbl YaKbIT MOCeJIeCi TypaJibl

ANABIHFBL KyMBICTapa TapabosaIblK, TUIITI TEHJEYIep YIIiH Keiibip 6ackapy ecenTepi KapacThIPBLIFaH.
fran mapabosafblK TUNTI TEHAEYTEPiH Oackapy ecemTepi OipiHmm THNOTI IIEKapaJIbIK €CeNTep pPeTiHIe
3epTrediin, caaMak GyHKIUsACH cunycrap OoiibiHina Pypbe KarapbiHa keHeiriagi. Makantajga uHTEpBAJI-
JAFbl XKBITY TEHJEY1 VIMiH MeKTi 6akblaay Moceseci 3epTTered. Opic meKapacblHbIH 6yJ1 6eJtiriame 6akbI-
JIayabIH MOHI OGepiireH »KoHe TeMIlepaTypaHbIH OpTAIlla MOHIH ajy YIIH 0acKapy 37eMeHTiH Taly KarKeT.
MaremaTukaIbIK-(OU3NKAJIBIK diCTep/ i KOJJaHa OTBIPBIN, MyHal 6akpLIay bl 6ap eKeH irl JosesieH/ 1
»KoHe Gesrijti 6ip aymakTa GepijireH opTallia TeMIepaTypara KeTy VIIIiH eH a3 YaKbITThIH 6aFachl TAOBLIIHL.

Kiam cesdep: XKbLTy TeHJeyi, €H a3 yaKbIT, pYKCAT eTiJireH Gakbliay, WHTErpaIbIK TeHJey, OacTalKbl-
ITEKAPAJIBIK, €CEIT.

@ .H. Jlexxonon

Hamanezanckuid 2ocydapecmeenrniii ynusepcumem, Hamarnean, Yszbexucman;
Vnusepcumem Hoswii Ysbexucman, Toawrenm, Ysbexucman

O 3aJa4de 6bICTpO,Z[eIL/’ICTBI/IH AJIZ YPpaBHEHHU:A TEIIJIOIIPOBOAHOCTHA

B mpeapiaynmx paborax Mbl pacCMOTPEIN HEKOTOPbBIE 331841 YIPABICHUS JJTsT yPABHEHUN apaboInaecKo-
ro TUIIa, & UMEHHO: 33/Ia9¥ YIIPABJIEHUS [JIs YPaBHEHNN apabOIMIecKOro TUIa U3yYaJnCh KaK KpaeBble
3a/1a9M [IepBOro THIA, a BecoBas (YHKIMs pasdiarajach B psag Pypbe mo cumycam. B macrosmeit pabore
paccMoTpeHa 3ajada TPAHUYHOrO YIIPABJICHUS IS YPAaBHEHUS TEIIOIPOBOIHOCTH Ha OTpe3ke. B wactm
rPaHUIBI JAHHON 00J/IACTH 33/aHO 3HAYEHHE PelleHus U TpeOyeTcs HAMTH yIpaBjeHHe, YTOOBI IOJIYYIUTH
CcpelHee 3HAUYEHWe pelreHusi. MeTrogamMu MaTeMaTUdecKol (DU3MKM JTOKA3aHO, UTO MOMOOHOE yIIpaB/IeHUe
CYIIECTBYET, U HAXOJUTCs OIEHKA MUHMMAJBLHOI'O BPEMEHU JIOCTUXKEHHS 3aJJaHHOM CpeIHEll TeMIIepaTypbl
110 HEKOTOPOii 00J1acTH.

Karouesvie caosa: ypaBHEHHE TEIIONPOBOIHOCTYA, MUHUMAJIbHOE BpPEMsI, JOIYCTUMOE yIIpPABJIEHUE, WHTE-
rpajbHble YDaBHEHUS], HAYaJIbHO-KPaeBas 33/1a4a.
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On a boundary-value problem in a bounded domain for a
time-fractional diffusion equation with the Prabhakar fractional
derivative

We aim to study a unique solvability of a boundary-value problem for a time-fractional diffusion equation
involving the Prabhakar fractional derivative in a Caputo sense in a bounded domain. We use the method
of separation of variables and in time-variable, we obtain the Cauchy problem for a fractional differential
equation with the Prabhakar derivative. Solution of this Cauchy problem we represent via Mittag-Leffler
type function of two variables. Using the new integral representation of this two-variable Mittag-Leffler type
function, we obtained the required estimate, which allows us to prove uniform convergence of the infinite
series form of the solution for the considered problem.

Keywords: Time-fractional diffusion equation, regularized Prabhakar fractional derivative, Mittag-Leffler
type functions.

Introduction and formulation of a problem

Application of Fractional Calculus in mathematical modeling of real-life processes became crucial
and appropriate mathematical tools have been developed [1-5].

A number of stochastic models for explaining anomalous diffusion have been introduced in literature
(see, for instance, [6-9]).

There are other applications of time-fractional diffusion, for example, in the image denoising model
[10].

Let us consider the following time-fractional diffusion equation

PcDg‘t’ﬁ’%éu(t, T) — Uz (t,z) = f(t,x) (1)

in a domain Q ={(¢t,z): 0 <z <1,0<t<T}. Here f(¢,x) is a given function and

PC 7/87 76 — P ’ _57_ 75 dm
Dy y(t) =TI ! Wy(t)

represents regularized Prabhakar fractional derivative [11| and

t
Prosady ) = / (t— LB [6(t — €] y(€)de, t > 0
0

represents Prabhakar fractional integral [12]. We note that above-given definitions are valid for o, 8,7, €
C such that ®(a) >0 and m — 1 < R(S) <m, m € N.
We formulate a boundary-value problem for Eq.(1) in the particular case (0 < 8 < 1) as follows:
Problem: To find a solution of Eq.(1) in €2, satisfying the following conditions:

*Corresponding author.
E-mail: erkinjon@gmail.com
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e regularity conditions: u(t,z) € C(Q), u(-,z) € C*,(0,T), u(t,-) € C%(0,1);

e initial condition: u(0,z) = ¢¥(x), 0 < x < 1;

e boundary conditions: u(t,0) = u(t,1) =0, 0 <t <T.

Here the function ¢(z) is a given function such that ¢(0) = ¢(1) = 0 and a class of functions C}’
is defined as follows:

Definition 1. [13] We say that f € C,la,b], if there is a real number p > p (1 > —1), such that
f(z) = (x—a)? fi(z) with f1 € C[a,b]. Similarly, we say that f € C}/*[a,b], if and only if fm e Cyla,b).
We would like to note related works, where the main objects are PDEs involving the above-

mentioned Prabhakar fractional derivative or some generalizations.
The following Cauchy problem for the time-fractional diffusion-wave equation

DZWJFV’_/\’mg(x,t) = Cgpe(x,t), x€R, t >0,
g9(x,0%) = d(),
gi(z, )]0+ =0, c €ER, ¥ >0, >0,0<y+v <2

was the subject of investigation in [11|. The authors used the Laplace-Fourier transform to find a
solution to this problem in an explicit form. The solution was represented via Prabhakar and Wright’s
functions.

The explicit solution of the Cauchy problem in ¢ > 0, z € R has been found for the following
time-fractional heat equations [14]:

DR u(,t) = Kuge (2, t)

Py,
and
CDZ:S:&u(:c,t) = Kugy(z,t),
where

: - d (1)
Dy o O = B, 00 wor i Eo(on-mworf 1)

d
C 9
Z:)L0+f() pl Hw0+dtf(t)

€(0,1), v €[0,1], v,w e R, p>0,

t
B s 10 = [(¢ =0 E7 e~ 91 )iy
0

is the Prabhakar fractional integral [12].
The following PDE involving the Prabhakar derivative

D;BMOJru(az, t) = a(x)ugg(x,t) + b(x)ug(x,t) + c(x)u(x, t) + d(x, t)

was investigated together with the appropriate initial conditions [15]. Using the Sumudu transform,
the authors have found an approximate solution to the proposed problem.

Authors in [16] studied the following time-fractional heat conduction equation with a heat absorption
term in spherical coordinates in the case of central symmetry [17]:

2
DTt = a <Trr(7“»t) + TTr(r,t)) —bT(r,t), t>0,0<r<R.

Imposing initial 7(r,0) = 0 and boundary T(R,t) = pt® (3 > 0) conditions and using the Laplace
transform, they found exact solutions for this problem.
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The distinctive side of the present problem is that we consider the boundary-value problem in a
bounded domain and use a method of separation of variables. We will get the solution to the problem
in an infinite series form represented by the new Mittag-Leffler type function of two variables. In the
next section, we provide the main result (a unique solvability of the problem) and corresponding proof
with details.

Main result

We search solution of the problem u(t,z) and the given function f(¢,z) as follows

u(t,z) = Z Un(t) sinnmx, (2)
n=0

f(t,z) =Y falt)sinnmz, (3)
n=0

where Uy, (t) are unknowns to be found and f,(¢) are the Fourier coefficients of the function f(t,z),
given as

1
fat)=2 [ f(t,x)sinnrz.
/

Substituting (2) and (3) into (1) and considering initial condition, we obtain the following Cauchy
problem:
{ PEDGITOUL () + (nm)2Un(t) = falt),
Un(o) = ¢n7

where 9, are the Fourier coefficients of the given function 1 (x), which are defined as follows

1

UV = 2/@[1@) sinnmz.

0

Let us first present some statements, required for the further stages. The first statement is devoted
to finding an explicit solution to the Cauchy problem for a fractional differential equation with the
regularized Prabhakar derivative.

Lemma 1. Let o, 8 € R, v,0,a0,a1,....am—1 € R, m =[] + 1, m -1 < g <m. If f(t) € CF,
then for any real number A the following Cauchy problem

{ PODE 0y () = Ay(t) = £(2)

- 4
y*(0) =ag, k=01, (4)

1

has a solution represented by

"t S 1,1,0 BV
t) = AT 5+k1" E Y, Y, L5 L,
v =5 5+ 5 wat i) 2<5+k+1757a;w171 )+ .
f 11,0 |\t —2)°
—|—F t— 2 ﬂ_lE < v, L L, a> da.
=27 {5 5 iy 11 ot — o)) T
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Here Es(-) is the Mittag-Leffler type function in two variables represented as

B, ( Y15 a1, 1372, 2 ’53) _
51,a3,ﬂ2,52,a4,53,53 ly
- ZZ 71 a1i+P17 ’72)0421 ! yj ) (6)
=0 =0 (61 + agi + B2)) ((52+a4i) F(53+,33j)

This function for the first time was mentioned in the work [18], but not studied at all.
Proof. In [19], the solution of the Cauchy problem (4) is represented in the following infinite series
form:

) _mfl agxk +§: > mzzla (L+d)y);  ACTDgIgos+G+)B+E .
T = F =0 j=0 k=0 T T(ai+ i+ DB+ E+1)

(7)

((L+14)7); N7 (¢ — z)ed+l+1DE-1
(

aj+ (i +1)8) fn(z)dz.

The double series in this formulae can be represented by the function defined in (6). Considering the
well-known definition of the Pochhammer symbol, namely,

I'(a+n)

@ =)

one can easily deduce (5) from (7) using (6) in the following particular case:
=701 =7, 51:1772:17 0[2:0, 61:/B+k+17 043:,8,

52:04752:%@4:’7753:1753:1-

The next statements are related to the estimation of the function (6), which is crucial for the proof
of the uniform convergence of infinite series. First, we present an integral representation of the function
(6) via known functions.

Lemma 2. Let R(d1) > R(y1) > 0. If ag = g and B2 = By, then the following integral representation
holds true:

E2< Y1, 0, Br; 2, a2 |$> _
61,0&3,52;52,044;(53,53 ‘y
1

= L 71—1 01—y1—1 pv2,02 o1 B
L(y1)T(61 — ) 0/5 —¢) Ea4 2( 23 )Eﬁ3,53 <y§ ) dg.

Here Eg, 5,(2) is two-parameter Mittag-Leffler function and

72,042 '72 azmz

044,52 — F a4m + 52)

Proof. On the right-hand side of (8) we use the series form of functions Erb,(z) and Ey, (z) and
will integrate term-by-term:

1 .
1 _ 72 ool :Ef Z = ygﬁl
Y1 1 51 —711—1 2
L(y)l(61 — ) 0/'5 Z I'(oui + 62) Z I'(B35 + 53

Jj=
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(o oo o] 1

_ ’}’2 aglx yj / ari+B1j+71—1 1— 51—’71—1d
L(m Zz:j [(oui + 62) I'(B3j + d3) ) ¢ 49 ¢

Using the definition of Beta-function and after some simplifications, we deduce the left-hand side of (8).
In particular, if v = 8 and @ = 1, we have

5 77 1;1,0 Az
B+k+1,8a7,v1,1 |62
1

! N - a
O NCEY E ) /5” "1 -¢PfthEo (Axﬁﬁ”) By (52%€) d.
0

It is known that
E'lngf(z) = E,,(2), E11(2) =
Hence, considering the fact that if A < 0, § <0, then

1By (MaPen)] < —C

< ey €S (O G ER),

one can get the following:

5 77 11,0 e\ |
P\BHk+18,07,71,1 |6 )] =

1
1 iy ek CICs
—rmr(mkﬂ—w/g = T e <

10y 1711 — )R rge = C1Cy —
SP(’Y)F(ﬁ-HH-l— /g d = (B+k—=7T(B+k) <

where C' is any positive real number.
Based on Lemma 1, we explicitly find U, (t) as follows

_ 248
— B 7> ’7/’17]-70 ‘ (’I’LT[') t
Un(®) = ¥n [1+t FE, <ﬁ+1 B,o57,7; 1,1 |6t -
£ 1;1,0 | — (nm)%(t — 2)P
t—Z’B_lE ( v, L3 L,
V)J( A VN R bt —z)n ) I
Since, in our case A = —(nm)? and assuming that § < 0, we can easily get when v = 3, a = 1 the

following estimates:
u(t,z)| <D [Crltbul + Col fa(®)]] < Co [9(@)l[5 + Co |l £ (£, )3

n=0

This will be enough for the uniform convergence of the series (2), but for the infinite series corresponding
to the function u., (¢, x) we need to impose more conditions to the given functions. Namely,

O*f(t, ) ‘
S oxr ||,
The following statement is valid:
Theorem 1. 1f ¢(x) € C1[0,1],%"(x) € L2(0,1) and f(-,x) € C1,[0,T], f:(t,-) € C[0,1], fox(t,") €
L5(0,1), then there exists a unique solution of the problem represented as (2).

ltae(t, )| < Cs || (x)|); + Ca
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Conclusion

In the bounded domain, we have considered a boundary problem for a sub-diffusion equation
involving regularized Prabhakar fractional order derivative. Presenting the solution of the corresponding
Cauchy problem via a two-variable Mittag-Leffler type function and using its new integral representation,
we have proved a unique solvability of the formulated boundary problem. We note that the same
approach can be done for the fractional wave equation. Moreover, various inverse problems can be
studied by applying obtained results.
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L @epeana memaexemmir ynueepcumemi, Pepearna, Os6excman;
2 B. . Pomanoscruti amuvindaev, Mamemamura urncmumymu, Tawxenm, O36excman

IIpabxakap 6eJnieK TyLIHJABICHI 0ap yaKbIT-OeJniek auddy3ns
TeH/leyl YIIiH MIeKTeJreH OOJIbICTaFbl IMeKapaJiblK, ecen OOMbIHIIIA

SBeprreyain Makcarsl mekresred obsbicra KamyTo marbiHaceiagarsr [Ipabxakap 6eJieK TybIHABICHIH KaM-
TUTBIH YaKbITTBIK-00JIIeK Iudy3usiblK, TeHIey YIIiH IeKapaJIbIK, ecelnTiH Oipereil IieniiMin 3eprrey.
ABHBIMATBLIADIBI 0OJTy OJIiCi KOJJAHBLIFAH YKOHE YaKbIT alHbIMAJbIChIHAA [Ipabxakap TYBIHIBICHI Gap
Gesmek auddepennmanabik, Tegaey yinin Komm ecebi anbmmran. Ocel Kommu ecebinin memiMi exi aiiHbI-
masel Murrar-Jlepduep Tunrti dynknmscel apkbuibl 6epinren. Ocbl eki aftabiMassl Murrtar-Jleddiep
TUITI (QYHKIUSIHBIH YKaHA WHTErPAJILI KOPIHICIH maiigaiaHa OTBIPBIN, KAPACTBIPBLIBIIT OTHIPFAH E€CENTiH
MIENIMiHIH IeKCi3 KaTap TYPiHiH OipKeJKi >KMHAKTBLILIFBIH JI9JIeJjIeyre MyMKIHIIK OepeTiHn KaxkeTTi bara
aJIbIHFaH.

Kiam ceadep: yaxpiT-60m1mex quddysust TeHaeyi, peryispusanusiianran [[pabxakap 66JIeK TybIHIBICHI,
Murtrar-Jledbdaep tunri dyukiusaaap.

Mathematics series. No.3(111)/2023 45



E.T. Karimov, A. Hasanov
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1 . .
Depeancruii 2ocydapcmeennuili yrpusepcumem, Pepeana, Yabexucman;
2 Unemumym mamemamuru umenu B.M. Pomanosckozo, Tawxenm, Ysbexucman

O06 oxHoit KpaeBoii 3a/1ade B OrpaHUYEHHOI 00/1aCT AJisd ypaBHEHUS
anddy3un gpodbHOro BpeMeHu ¢ ApobHoii mpomn3BoaHoil IIpabxakapa
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Harmeit nesibio siBisieTcst n3ydeHue OJHO3HAYHON Pa3pelIMMOCTH KPAaeBoil 3aadn jist ypaBHeHus 1uddy-
3un ¢ IPOOHBIM BpEMEHEM, BKJIFOUAIONIEro JpobHy 0 mpon3Boaayo [Ipabxakapa mo KamyTo B orpannaennoit
obutactu. Bocnosb3ayemcst MeTonoM pa3esieHus] IepeMEHHBIX U B IEPEMEHHON 110 BPEMEHH IOJIyIUM 3373~
ay Komu mjis ypaBaenust japobuoro guddepeniimana ¢ npouspoanoit Ilpabxakapa. Perenune sroit 3amatin
Kormu mpeacrasum gepes dyukmuio Tuna Murrtar-Jleddiepa ot aByx nepemennsbix. Vcnonb3ys HOBoe nH-
TerpaJjibHOe IpejicTaBiienne 31oit pyuknun tuna Murrar-Jleddiepa ¢ 1ByMs mepeMeHHBIMU, MBI TTOJTY YN
TpebyeMyIo OLIEHKY, KOTOpasl II03BOJISIET JI0KA3aTh PABHOMEDPHYIO CXOJUMOCTh PEIleHUs B BUEe OECKOHEYHO-
ro psifia It pacCCMaTpPUBAEMO 3aJa4n.

Kmouesvie caosa: ypasuernne nuddysun ¢ IpOOHBIM BPEMEHEM, PETYJIsIPU30BAHHAS JPOOHAS ITPOM3BOIHAS
IIpabxakapa, dpyukiuu Turna Murrar-Jleddepa.
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Geometry of strongly minimal hybrids of fragments of theoretical sets

In this article, strongly minimal geometries of fragment hybrids are considered. In this article, a new concept
was introduced as a family of Jonsson definable subsets of the semantic model of the Jonsson theory T,
denoted by JDef(Cr). The classes of the Robinson spectrum and the geometry of hybrids of central types
of a fixed RSp(A) are considered. Using the construction of a central type for theories from the Robinson
spectrum, we formulate and prove results for hybrids of Jonsson theories. A criterion for the uncountable
categoricity of a hereditary hybrid of Jonsson theories is proved in the language of central types. The
results obtained can be useful for continuing research on various Jonsson theories, in particular, for hybrids
of Jonsson theories.

Keywords: Jonsson theory, semantic model, fragment, hybrid of Jonsson theories, Jonsson set, theoretical
set, central type, pregeometry, Robinson theory, strongly minimal type.

Introduction

The current state of development of the conceptual and technical apparatus of model theory can be
described without exaggeration as a set of syntactic and semantic concepts related to the consideration
of most of the complete theories of first-order languages, on the other hand, due to the meager arsenal
of the capabilities of the technical apparatus, the subject of study of incomplete theories. A special
class of, generally speaking, incomplete theories is singled out in the study of Jonsson theories.

By virtue of the definition of the Jonsson theory, such a theory is, generally speaking, not complete.
In the class of its models, there can be infinite and finite models, and isomorphic embeddings will
also be used. Thus, we see that the transformation of certain results from complete theories to
Jonsson’s is complicated due to the different technical arsenal of the above theories. The reason
for this problem is the replacement of elementary embeddings by isomorphic embeddings and the
incompleteness of Jonsson theories. Thus, the universally homogeneous models that define the semantic
model of Jonsson’s theory are, generally speaking, not always saturated.

This fact clearly describes an example of group theory. The class of all groups has a Jonsson theory,
a semantic model that is not saturated. In this regard, this class does not have a model companion,
which makes it very difficult to apply the well-established technique of model companions to this class
when studying the property of the center of this class.

Thus, the study of Jonsson theories is an important task.

In the works of the following authors, such as B. Jonsson [1], M. Morley and R. Vaught [2]|, A.
Robinson [3], G. Cherlin [4], T.G. Mustafin [5], A.R. Yeshkeyev [6-8] gave a complete description of
Jonsson theories and their companions. We would like to acknowledge the following authors with their
publications, who played a great role in the study of this issue for Jonsson theories [9-12].

The notion of central type, which arises during signature enrichments, is one of the new concepts
in Jonsson theories [13]. Thus, within the framework of the model theory of Jonsson theories, new
relationships arise between classical concepts from the theory of models for complete theories.

*Corresponding author.
E-mail: mussinanazerke@gmail.com
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Also noteworthy is the emergence of a new method for constructing a Jonsson theory from two
Jonsson theories. This is obtained using the concept of a hybrid of Jonsson theories, which was first
defined in [14]. Various examples of algebraic objects and their constructions can be associated with
this concept. In subsequent papers [15,16], results were obtained related to hybrids of Jonsson theories,
which play an important role in model theory and in universal algebra.

The paper [17]| considered Jonsson theories and their many syntactic and semantic properties of
the first order in language enrichments that preserve the properties of Jonsson. Such Jonsson theories
are called hereditary [12].

One of the classical methods of model theory is the method of interpreting a well-studied theory into
a less-studied theory. Following the ideology of this method, a new method for studying Jonsson theories
was defined, namely: using the concepts of syntactic and semantic similarity of Jonsson theories, new
results were obtained in the framework of the classification of Jonsson theories.

1 Local properties of the geometry of strongly minimal sets

This article discusses the basic concepts of local properties of the geometry of strongly minimal sets
on theoretical subsets of some existentially closed model. By studying the combinatorial properties of
the pregeometry given on Jonsson sets, we have obtained results on relatively strongly minimal Jonsson
sets. Minimal structures, pregeometries and geometries of minimal structures were defined. And also,
for Jonsson theories, the concepts of dimension, independence and basis in Jonsson strongly minimal
structures were considered.

First, let’s define a hybrid of the first type and the second type.

Definition 1 ([14], p. 102). 1) Let T and 75 be some Jonsson theories of the countable language
L of the same signature o; C and Cs are their semantic models, respectively. In the case of common
signature of Jonsson theories 77, 75, let us call a hybrid of Jonsson theories 77 and 75 of the first type
the following theory T'hyg(Cy ¢ C2) if that theory is Jonsson in the language of signature o and denote
it by H(T1,T>), where the operation ¢ € {x,+,®} and C; ¢ Cy € Modo. Here X means cartesian
product, + means sum and @ means direct sum. Herewith, the algebraic construction (Cj ¢ Cs) is
called a semantic hybrid of the theories 17, 7T5.

2) If Ty and T are Jonsson theories of different signatures o7 and o9, then H(T},T2) = Thy3(C10C3)
will be called a hybrid of the second type, if that theory is Jonsson in the language of signature
o =01 Uoy where C10Cy € Modo.

Obviously that 1) is the particular case of 2).

Since the hybrid of two Jonsson theories is a Jonsson theory, in the case when this theory is perfect,
we will say for brevity — a perfect hybrid of two Jonsson theories. As the center of the hybrid H (77, T»),
we will mean the center of the Jonsson theory Thy3(C ¢ C2) and denote it by H* (11, T3).

Let us define the Morley rank for existentially definable subsets of the semantic model.

We want to assign to each Jonsson subset of X of the semantic model an ordinal (or perhaps —1
or oo ) - its Morley rank, denoted by 7.

Let T be a fragment of some Jonsson set, and it is a perfect Jonsson theory, C be a semantic model,
Z be a definable set of C.

Definition 2. 6] rar(Z) > 0, if and only if, Z is not empty; ra(Z) > A, if and only if, 73/ (Z) > «
for all @ < A (A is limit ordinal); r3/(Z) > a+ 1, if and only if, in Z there is an infinite family Z; of
pairwise disjoint 3-definable subsets such that ry;(Z;) > « for all i.

Then the Morley rank of the set Z is rp(Z) = sup{a | ri(2)} > «,
with the convention that ry/(Z) = —1 and ry(Z) = oo, if ry(Z) > « for all a (in last case, we
say that Z has no rank).
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Definition 3. [6] The Morley degree rp(Z) of a Jonsson set Z, having Morley rank «, is the
maximum length d of its decomposition Z = Z; U ... U Z,, into disjoint existentially definable subsets
of rank «a.

If the rank is 0, then the degree of an existentially defined subset is the number of its elements.
The Morley degree is also undefined if an existentially definable subset has no rank. In our case, we
study Jonsson minimal sets. Note that a strongly minimal set is a set of rank 1 and degree 1.

Consider the closure operator, which is defined by an algebraic closure in the model-theoretic sense.
A strongly minimal set that is equipped with the above closure operator is a pregeometry. A model of
a strongly minimal theory is defined up to isomorphism by its dimension as a pregeometry. Completely
categorical theories are controlled by a strongly minimal set; this remark is used in the proof of Morley’s
theorem. Boris Zilber considered the origin of pregeometry on vector spaces and algebraically closed
fields.

Consider an example of an algebraic closure in Jonsson’s strongly minimal theories, which is an
existentially complete perfect Jonsson’s theory in a countable language L.

If K is an algebraically closed field and Z C K, then acl(Z) is an algebraically closed subfield
generated by Z.

Consider the properties of the Jonsson algebraic closure that are true for any subset S of the
semantic model of the Jonsson theory T

Let M be some existentially closed submodel of the semantic model for a fixed theory in the
language L, and S C M be a Jonsson strongly minimal set.

Let S C M™ be an infinite V-definable set, where V C L is the set of existential formulas of a given
language.

Definition 4. |6] We say that S is Jonsson minimal in M if for any V-definable Y C S either Y is
finite or S\Y is finite.

Definition 5. [6] We say that S and ¢ are Jonsson strongly minimal if ¢ is Jonsson minimal in any
existentially closed extension N from M.

Definition 6. |6] We say that a theory T is Jonsson strongly minimal if the formula v = v is Jonsson
strongly minimal (that is, if M € ModErp, then M is Jonsson strongly minimal)

Consider aclg is an algebraic closure restricted to S.

For Z C S let aclg(Z) ={b€ S: bbe a Jonsson algebraic over Z}.

In our case, the properties of the [18] algebraic closure are true for the Jonsson algebraic closure of
any subset S of the semantic model of the theory.

Lemma 1. |6]

1 acl(acl(Z)) = acl(Z) 2 Z.

2 If Z C B, then acl(Z) C acl(B).

3 If z € acl(Z), then z € acl(Zy) for some finite Zy C Z.

Lemma 2 (Exchange). [6] Suppose that S C M is Jonsson strongly minimal, Z C S and z,b € S.
If z € acl(Z U {b})\acl(Z), then b € acl(Z U {z}).

The concept of linear independence in vector spaces is one of the important concepts of algebra,
and the concept of independence generalizes linear independence in vector spaces and in algebraically
closed fields. In turn, algebraic independence is defined in the Jonsson strongly minimal set we are
considering.

Let M € Mod Er, and S be a Jonsson strongly minimal set in M.

Definition 7. |6] We will call Z C S is Jonsson independently if a ¢ acl(Z\{z})) for all z € Z. If
C C S, we say that Z is Jonsson independent over S if z ¢ acl(C U (Z\{z})) for all z € Z.
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Definition 8. [6] We will call Z is a Jonsson basis for Y C S if Z C Y is Jonsson independent and
acl(Z) = acl(Y).

Note that any maximal Jonsson independent subset of Y is a Jonsson basis for Y.

Definition 9. [6] If Y C S, then the Jonsson dimension of the set Y is the cardinality of the Jonsson
basis for Y.

Let JdimY denote the Jonsson dimension of Y.

If S is uncountable, then J —dim(S) =| S |, since the language is countable and acl(A) is countable
for any countable Z C D.

A J-pregeometry (X, cl) is a subset X of the semantic model of some fixed Jonsson theory with
operator ¢l : P(X) — P(X) on the set of subsets X and if the following conditions are satisfied:

1) if AC X, then A C cl(A) and cl(cl(A)) = cl(A);

2)if AC B C X, then cl(A) C cl(B);

3) (exchange) A C X, a,b € X and a € cl(AU{b}), then a € cl(A), b € cl(AU{a});

4) (finite character) If A C X and a € cl(A), then there is a finite Ay C A, such that a € cl(Ay).

We say that A C X is closed, if cl(A) = A.

Since D is a Jonsson strongly minimal set, the Jonsson pregeometry is defined as follows cl(A) =
acl(A)N D for A C D (by Theorem 12 from [6] and Lemma 1).

Definition 10. 6] If (X,cl) is a Jonsson pregeometry, we will call A is Jonsson independent if
a ¢ cl(A\{a}) for all a € A, and B is a J-basis for Y if B C Y is J-independent and Y C acl(B).

If A C X, we also consider the localization c¢l4(B) = cl(AU B).

If (X,cl) is a J-predgeometry, then we will call Y C X is Jonsson independent over A, if YV is
Jonsson independent in (X, cla).

dim(Y/A) is the dimension of Y in the localization (X, cl4), dim(Y/A) is called the dimension of
Y over A.

Definition 11. [6] We will call a J-pregeometry (X, cl) is a J-geometry if cl(@) = & and cl({z}) =
{z} for any x € X.

For further study, we denote some important properties of pregeometry.
Definition 12. [6] Let (X, cl) be a J-predgeometry. We will call (X, ¢l) is trivial if cl(4) = U cl({a})

acA
for any A C X. We will call (X, cl) is modular if, for any finite-dimensional closed sets A, B C X,

holds Jdim(A U B) = Jdim(A) + Jdim(B) — Jdim(A N B).
(X, cl) is locally modular if (X, cl,) is modular for some a € X.

Theorem 1. 6] For a J-predgeometry (X, cl) the following are equivalent:

1 (X, cl) is modular;

2 if A C X is closed and non-empty, b € X, x € cl(A,b), then Ja € A, such that = € cl(a,b);

3 if A,B C X are closed and non-empty, z € cl(A, B), then Ja € A and 3b € B, such that
x € cl(a,b).

Proof. Similarly to the proof of Lemma 8.1.13 from [19].

2 Model-theoretical properties of the Robinson spectrum

This section is devoted to the study of the model-theoretic properties of the Robinson spectrum
of an arbitrary model of an arbitrary signature. The study of w-categorical universals by specialists in
model theory and universal algebra is well known ([20], § 5 of the appendix). In this section, we will
deal with Robinson theories. The Robinson theory is a special case of the Jonsson theory, namely the
Jonsson universal. To study the above theory, an algorithm for working with central types of a fixed
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spectrum was used. The elements of this spectrum are Jonsson universals. The result will be a central
type enriched with additional constants and a unary predicate. Thus, we have obtained a criterion for
the uncountable categoricity of the Robinson spectrum class in the language of central types.

In [21], Hrushovski E. defined Robinson theories of a theory as universal theories admitting a
quantifier separation. In the study of Robinson theories, quantifier-free types occupy the main place.
In our case, we are using central types.

Considering the structure of Jonsson sets, one can easily see that they have a very simple structure
in the sense of the Morley rank, i.e. elements from the set-theoretic difference (hole) of the closure and
the set have rank 0, i.e., they are all algebraic.

Another advantageous point for us in considering the concept of a Jonsson set is that we can obtain
some existentially closed models by closing the Jonsson set.

This fact is necessary for studying the Morley rank for an arbitrary fragment of the set under
consideration. Saturation for complete theories is a condition for the correctness of the definition of
the Morley rank. Imperfect Jonsson theories require saturation with existential types in the semantic
model. In the case of Jonsson sets, when studying elements from the set-theoretic difference, one can
consider V3-consequences that are true in the closures of the Jonsson set. Based on this, we can conclude
that the considered set of sentences will be Jonsson theory. In this section, strongly minimal Jonsson
sets have been considered and described. The basic concepts associated with the notion of strong
minimality for complete theories have been carried over to Jonsson theories. In particular, the notion
of strong minimality is considered for fixed formula subsets of the semantic model of the Jonsson theory.
In this case, the semantic model must be saturated in its power, i.e. the theory under consideration
must be perfect. As is known, Jonsson’s theory has a semantic model C' of sufficiently large power. The
semantic models of the perfect Jonsson theory are uniquely determined by their power. In our case,
we will consider Jonsson subsets.

Definition 13. [6] A Jonsson theory T is called Robinson theory if it is universally axiomatizable.

Let T be a Robinson theory, A be an arbitrary model of signature o. The Robinson spectrum of
the model A is the set:

RSp(A) = {T| T is Robinson theory in the language of signature o and A € Mod(T)}.

Consider RSp(A)/w the factor set of the Robinson spectrum of the model A with respect to <.
If T is an arbitrary Robinson theory in the language of signature o, then Ejr) = (J Ea is the class
Ae[T
of all existentially closed models of class [T] € RSp(A)/s. ”

Let A be an arbitrary model of signature o. Let |RSp(A)/s| = |K|, K be some index set. We
say that the class [T] € RSp(A)/s is a R-categorical if any theory A € [T] is a N-categorical and,
respectively, the class RSp(A)/w will be called a N-categorical if for each j € K the class [T]; is a
N-categorical.

Definition 14. |9] The set X is said to be Jonsson in the theory T if it satisfies the following
properties:

1) X is the YX-definable subset of C

2) dcl(X) is a support of some existentially closed submodel C.

Definition 15. |9] Let T be some Jonsson theory, C' is the semantic model of the theory T', X C C.
A set X is called theoretical set, if

1) X is Jonsson set, and let ¢(x) be the formula that defines the set X;

2) o(x) = Jyo(x,y) and let € be the universal closure of the formula ¢(x), i.e. 6 is the sentence
VaIyo(x,y) defines some Jonsson theory.
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Definition 16. [23] We say that all V3-consequences of an arbitrary theory create a Jonsson fragment
of this theory, if the deductive closure of these Y3-consequences is a Jonsson theory.

Definition 17. [23] We say that all V-consequences of an arbitrary theory create a Robinson fragment
of this theory, if the deductive closure of these V-consequences is a Robinson theory.

We say that a model M € Er is Jonsson minimal if for any definable X C M either X is finite or
M\ X is finite. We say that a theory T Jonsson strongly minimal, if every model M € Er is minimal. A
non-algebraic type containing a Jonsson strongly minimal formula is called Jonsson strongly minimal.

Theorem 2 (|22], p. 298). Let T' be universal theory, complete for existential sentences, having a
countably algebraically universal model. Then 7" has an algebraically prime model, which is (X, A)-
atomic.

Definition 18. A relational structure Cr =< C, (X;)icr > consists of a (non empty) set C, and a
family (X;)ier of subsets of | J,,~, CF., that is, for each i, X; is a subset of C7 for some n; > 1. We add
the extra condition that the diagonal of C% is one of the X;’s.

Each X; is called an basic subset of Cp.

Definition 19. Let Cr =< C, (X;)ier > be a semantic model of the Jonsson theory in pure predicate
language. We define the family of Jonsson definable subsets of the semantic model of the Jonsson theory
T, denoted by JDef(Cr). Def(Cr) is the smallest family of subsets of | J,,~, C} with the following
properties: -

e For every i € I, B; € JDef(Cr)

e JDef(Cr) is closed under finite boolean combinations, i.e. if M, N C C%, M, N are the Jonsson
sets. M,N € JDef(Cr), then M UN € JDef(Cr),M NN € JDef(Cr) and C}: \ M €
JDef(Cr).

e JDef(Cr) is closed under cartesian product, i.e. if M, N € JDef(Cr), M x N € JDef(Cr).

e JDef(Cr) is closed under projection, i.e. if M C C2*™, N € JDef(Cr), if m,(M) is the
projection of M on C}, m,(N) € JDef(Cr).

e JDef(Cr) is closed under specialization, i.e. if M € Def(Cr), M C Cit™* and if m € C} then

M(m) = {b e C%; (m,b) € M} € JDef(Cr).

e JDef(Cr) is closed under permutation of coordinates, i.e. if M € JDef(Cr),M C C}, if o is
any permutation of {1,...,n},

o(M) = {(ag(1), -+ G(n); (a1,..;an) € M} € JDef(Cr).

c: (P(Cr)) — P(Cr). P(Cr) ={AC Cr | Ae JDef(Cr)}. When T perfect Jonsson theory, then
T* is the model complete, p(x) € T follow that J(x), 1 (x) € X1 such that T* - Va(p(x) < ¥ (z)).

Definition 20. [17] An enrichment T is called admissible if the V-type (this means that the Vsubset
of the language L, and any formula from this type belongs to V) in this enrichment is definable within
the framework of Tr-stability, where I is the enrichment of the signature o.

Definition 21. |17] A Robinson theory T is called hereditary if, in any of its admissible enrichments,
any extension is a Robinson theory. The class [T] € RSp(A) /s will be called hereditary if each theory
A € [T] is hereditary.

Definition 22. [17] A model A is called the A-good algebraically prime model of the theory T if
A is a countable model of the theory T and for each model B of the theory T, each n € w and all
ag,...,an—1 € A, bo,...,bp_1 € Bif (A, ag,...,an—1) =a (B,bg,...,bn_1), then for each a, € A
there is some b, € B, such that (A4,aq,...,a,) =a (B,bo,...,by).
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Definition 23. [23] Let T} and Ty are Jonsson theory. We will say, that T} and T5 are J-syntactically
similar, if there is bijection f : E(T1) — E(T%) such that:

1) restriction f to E,(71) is isomorphism lattice E,(T1) and E,(T3), n < w;

2) f(Fvns1) =Fon +1f(p), ¢ € Ena(T),n < w;

3) flur = v2) = (v1 = v2)

Consider the general scheme for obtaining the central type for an arbitrary Robinson theory.

Let Cr be a semantic model of the theory 7', A C Cr. Let op = 0 UT', where I' = {P} U {c}.
Let T = Thy(Cr,a)eepcy) U Thy(Er) U{P(c)} U{"P C"}, where P(Cr) is an existentially closed
submodel of Cp, {"P C”} is an infinite set of sentences, demonstrating that P is an existentially closed
submodel of signature op. This means that P is a solution to the equation P(Crp) = M C Ep of
signature or. Due to the heredity of 7', the theory 7 is also a Jonsson theory. Consider all completions
of the theory T of signature op. Since the theory T is Jonsson’s, it has its own center, denoted by
T*. The above mentioned center is one of the completions of the 7' theory. When the signature or is
restricted to o U P, the constant ¢ does not belong to this signature. Therefore, we can replace this
constant with the variable x. After that, this theory will be a complete 1-type for the variable .

Let X7, X2 be the strongly minimal theoretical sets. Fr(X;) = Ty, Fr(Xg) = Ty are the Robinson
fragments. H(T1,T2) = Thy(Cp, x Cp,), c(X1) = My, cl(X2) = Ma; My, My € Ep. Fr(X;) =
Ay, Fr(Xs) = Ag. Ay, Ag are Jonsson syntactical similar. By virtue of Jonsson syntactical similarity
of this fact Thy(My) = T1,Thy(Ms) = Ty also Jonsson syntactical similar. T7, Ty are the Jonsson
strongly minimal theories. Then since T} is a Jonsson theory, it has its own center, let us denote it by
Ty , this center is one of the above completions of the theory Tj. Accordingly T is a Jonsson theory,
it has its own center, let us denote it by T2 , this center is one of the above completions of the theory
T5. In the theorem we consider the hybrid H (Tl, Tg) of the Jonsson theries 17, T5.

R; is every existential formula ¢(Z) consistent with 7" is implied by some A formula 6(Z) consistent
with T

Theorem 3. Let [T] be class from RSp(A) /s, complete for existential sentences, admitting R;. Let
11, T2 € [T']. Then the following conditions are equivalent:
H(Ty,T») has an algebraically prime model;
H(Ty,T») has (3, A)-atomic model;
H(Ty,T>) has (A, 3)-atomic model;
H(Th,T5) has a A good algebraically prime model;
5 H(Ty,T5) has a single algebraically prime model.

Proof. Let T1,Ty € [T satisfies the conditions of Theorem 3, then by virtue of the theorem 4.1
([22], p.309) the H (T}, T») also satisfies the conditions this theorem.

Theorem 4. Let [T] be hereditary class from RSp(A)/w, T1,T> € [T], then the following conditions
are equivalent:
1 any countable model from E 7 7,y has an algebralcally prime model extension in Ep 7 7,);

2 PC( D) is the strongly minimal type, where P is the central type of H(Ty,T).

Py )

Proof. (1)=(2). For convenience of the proof, we denote H(Ty,T») = T. Consider a semantic
model Ct of the class [T]. The Ct model is w-universal by virtue of the definitions of k-universality
and x-homogeneity. In our case, the power is uncountable. Therefore, consider a countable elementary
submodel D of the Ct model. The elementary submodel D is existentially closed since C is existentially
closed by virtue of (Lemma [23], p. 162). Therefore, the elementary submodel D is countably algebraically
universal. We apply the 2 theorem, according to which every theory A € T has an algebraically simple
model Ag. We define As,1 by induction, which is an algebraically simple extension of the As model and
Ay =U{A45| 6 < A}. Then let A = [J{As|§ < w1}. Suppose B = A and cardB = w;. Let us show that
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B ~ A, for this we decompose B into a chain {B;|d < w1} of countable models. Such a decomposition
is possible due to the fact that the A theory is Jonsson. We define the function ¢ : wq — wy and the
chain {fs : Ags = Bs | 0 < 0 < w} of isomorphisms by the formula induction on 4:

1) g0 =0 and fy : A9 — By;

2) gh = U{gd]6 < A} and fr = U{fsl0 < A}

3) fs+1 is equal to the union of the chain {fJ|y < p}, which is determined by induction on ~;

4) f§+1 = fs, f5/\+1 = U{’fg—i-lh <A}

5) suppose that fl'Y : Ag5+7 — Bsyq. If ng is a mapping onto, then p = . Otherwise, by virtue of
the algebraic primeness of Agsy, 41, we can extend f], to fgjll  Agsint1 — Bsya;

6) g(d +1) =gd+ p.

By virtue of f = J{| fs | § < w1} A is mapped isomorphically to B. Now let’s apply the theorem 3.
B is an arbitrary model of the A theory. A is the only algebraic prime and existentially closed model.
By virtue of the condition and construction, it follows that Ea for each A € T has a unique model in
uncountable cardinality. This condition means that the semantic model Cr is saturated, i.e. the class
T will be perfect. Thus ModT* = Et. Therefore, the theory T* is w;-categorical. T* has a strongly
minimal formula according to the Lachlan-Baldwin theorem. Since we are dealing with a central type,
we get a non-principal type that contains the Jonsson strongly minimal formula. This implies that the
type is Jonsson strongly minimal.

(2) = (1). Due to the fact that Pf is a strongly minimal type, when passing to the signature or =
oUT, the type becomes T* theory. As mentioned above, the theory is the center of the class T, hence it
is complete. Let us show that T* is wy-categorical. By inductance, for any models A, B € ModT* there
are models A, B’ € Er and isomorphic embeddings f : A — A’, g: B — B’. Suppose |A'| = |B'| = w;.
If A% B, then A" 2 B’. Therefore, there exists p(z) € B(At) such that A’ = ¢(x) and B' | —¢(z).
Since in our case T is an inherited class, then T € RSp(A) /. Due to the universal axiomatizability of
this class and the fact that A’ € Mod(T*) as an existentially closed model is isomorphically embedded
into the semantic model C' of the class T. Since T* = Th(C') is complete, T* - Jzp(x) follows. Since A’
and B’ are Jonsson minimal, either ¢(A’) is finite or A"\ p(A’) is finite. Let ¢(A’) be finite, then there
exists a V3-proposition ¢ which shows that p(A’) is finite and T* F V3(p&)) hence B’ |= ¢(x) but
B' E (x)&—¢(x), but at the same time, since A’, B’ € Er, A’ =y3 B’, then we got a contradiction
with strongly minimality.

If the definable complement of the formula is finite in the model A’ under consideration, then the
proof is carried out in a similar way. Thus T is wy-categorical.

By virtue of Morley’s uncountable categoricity theorem, T* is wi-categorical, and hence this theory
is perfect. Then, by virtue of the Jonsson theory completeness criterion T* is a model complete theory
and ModT* = Ea for every A € T, i.e. ModT* = E(7). If T* is model complete, then any isomorphic
embedding is elementary. Since T* is a complete theory, by virtue of Morley’s theorem we obtain what
is required.
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M.T. Kaceimeroa, H.M. Mycuna

Axademur E.A. Bexemos amwvindazv. Kapazandv yrusepcumemi, Kapazanow, Kaszaxcman

KarTbl MUHIMAJIIBI THOPUATEPiHIH DparMeHTTePiHiH TeOPEeTUKAJIbIK
2KUbIHIAPbIHBbIH, I'€OMETPUSIChI

Makasa dparmMeHT rubpUATEPiHIH KATTHl MUHHMAJIIBI N€OMETPUJIAPBIH 3epTTeyre apHajran. ABropsiap
JDef(Cr) nen 6enrinenren «T HOHCOHABIK TEOPUTHBIH CEMAHTHKAJIBIK, MOJICJTIHIH, HOHCOHTBIK, AHBIKTAJIFAH
iK1 >KUBIHIaPBIHBIH, YIHIpi» JereH »KaHa TY»KbIpbIMJIaMa, eHri3reH. POOMHCOH CHEKTPiHiH KJiacTapbl YKOHE
6ekitiiren RSp(A) neHTpa bk THITEPiHIH THOPUATEPiHIH FeOMETPHCH KapacThIPbLIFal. POGHHCOH criek-
TPIHZErl TeopusIap YIIiH EHTPAJJIBIK, TUIITI KYPYAbl HaiJaIaHa OTBIPBIN, HOHCOHIBIK, T€OPUIAD IbIH, TH-
6puTepl VIiH HOTHIKEEP/ Ty KbIPLIM/IAIFAH YKOHE JpJIe/IeHreH. VIOHCOHIBIK, TeOPHSIIAPIBIH, MYPAJIbIK
rubpuIiHIH CaHAJIBIMCBI3 KATErOPHSIBIK, KPUTEPHiil NEeHTPAJIIBIK TUIITED TUTHJE JpJIesieHreH. AJbIHFaH
HOTH2KEJIeD HOHCOHIBIK dPTYPJIi Teopusiiap OOMBIHIIA, aTal alTKAHIA, HOHCOHIBIK, TEOPUIIAPALIH, THOPHI-
Tepi OOMBIHINA 3ePTTEY/IEP/Il XKAJTFACTBIPY VIIIH MMai aJibl 00Iybl MYMKIH.

Kiam ce3dep: MOHCOHIBIK, TEOPUSI, CEMAHTUKAJIBIK, MOJIE/b, (PpArMEHT, HOHCOHIBIK, TEOPUSLIAPILIH, THOPUI],
MOHCOH/IBIK, YKUBIH, TEOPETUKAJBIK, YKUBIH, IIEHTPAJIIbIK, THUII, AJIFAIIKbI T€OMETPHUsi, POOUHCOHIBIK, TEOPHSI,
KATTbl MUHUMAJIJIbI THII.

M.T. Kaceimerosa, H.M. Mycuna

Kapazandunckutl ynusepcumem umeny axademura E.A. Byxemosa, Kapazanda, Kaszaxcman

l'eomeTpus cuIbHO MUHUMAJIBbHBIX THOPUI0B (pparMeHTOB
TeOpPeTUYEeCKUX MHOYKECTB

Crarbsl MOCBSAIIEHA U3YUEHUIO CUJIBHO MUHUMAJBHBIX reoMeTpuii rubpuioB dpparmenTos. ABropamu GbLIO
BBEJICHO HOBOE€ IIOHATHE «CeMenCcTBO MOHCOHOBCKUX OlIpe/IeJIMMbIX IIOJIMHO2KECTB CEeMaHTHUYECKOMI MOJeJIN
toHCOHOBCKOM Teopum T'», oboznagaemoe uepes J Def(Cr). PaccMoTpensr Kiacehl pOGUHCOHOBCKOTO CIIEK-
Tpa U TeOMeTPHs THOPUIOB IIEHTPATIBHBIX TUIIOB (PUKCUPOBAHHOTO RSp(A). C mOMOIIBIO TIOCTPOEHUsI 1I€H-
TPaJIbHOT'O TUIla JIJILA TeOpHI’?‘I nus pO6I/IHCOHOBCKOFO CIIEKTpa d)OpMyJII/Ipy}OTCH n JTIOKa3bIBaXOTCsA pe3yJ/IbTaTbl
JJIsl THOPUIOB WOHCOHOBCKUX TEOPWil, B YACTHOCTHU, KPUTEPUH HECUETHON KATErOPUIHOCTH HACJIEICTBEHHO-
ro rubpuga HOHCOHOBCKUX TEOPUM Ha sI3bIKE IEHTPAJIbHBIX THUIOB. IlojydeHHbIE pe3yIbTaThl MOTYT OBITH
IIOJIE3HBI JIJI51 TIPOJIOJI2KEeHU A I/ICC.HGLLOB&HI/Iﬁ Pa3INIHBIX IOHCOHOBCKUX TEOpI/Ifl, B 9aCTHOCTH, JJIsA FI/I6pI/ILLOB
HOHCOHOBCKUX TEOPHIA.

Kmouesvie cao6a: HOHCOHOBCKAsI TEOPHSsI, CEMAHTUYECKas MOJE/b, (DparMeHT, ruOpu | HOHCOHOBCKUX TEO-
puii, HOHCOHOBCKOE MHOXKECTBO, TEOPETUIECKOE MHOXKECTBO, IEHTPAJIbLHBIA THII, IIPEAreOMEeTPHsl, POOUHCO-
HOBCKas TeOpUs, CHJIIbHO MUHUMAJIBbHBINA THII.
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Development of the fuzzy sets theory: weak operations and extension
principles

The paper considers the problems that arise when using the theory of fuzzy sets to solve applied problems.
Unlike stochastic methods, which are based on statistical data, fuzzy set theory methods make sense to
apply when statistical data are not available. In these cases, algorithms should be based on membership
functions formed by experts who are specialists in this field of knowledge. Ideally, complete information
about membership functions is required, but this is an impractical procedure. More often than not, even
the most experienced expert can determine only their carriers or separate sets of the a-cuts for unknown
fuzzy parameters of the system. Building complete membership functions of unknown fuzzy parameters
on this basis is risky and unreliable. Therefore, the paper proposes an extension of the fuzzy sets theory
axiomatics in order to introduce non-traditional (less demanding on the completeness of data on membership
functions) extension principles and operations on fuzzy sets. The so-called a-weak operations on fuzzy
sets are proposed, which are based on the use of separate sets of the a-cuts. It is also shown that all
classical theorems of Cantor sets theory apply in the extended axiomatic theory. New extension principles
of generalization have been introduced, which allow solving problems in conditions of significant uncertainty
of information.

Keywords: Cantor set, fuzzy set, function of belonging, set of a-cut, core of fuzzy set, a-weak operation.

Introduction

It is well known that the concept of a fuzzy set, proposed by L. Zadeh in 1965 [1]|, immediately
arouse great interest among mathematicians and scientists of other fields and stimulated the appearance
of a large number of works in this direction. Just two years later, Gauguin extended this concept to
L-fuzzy sets, and further introduced the interval fuzzy line, regular fuzzy numbers and fuzzy metric
spaces, fuzzy topological spaces, fuzzy relations and mappings, concepts and theorems of fuzzy algebra
[2-11]. All these works with slight variations are based on the well-known maximin extension principle
(MMPG) Zadeh [1], which fully satisfied the researchers. The mathematical apparatus of fuzzy set
theory (FST) began to be widely used both in physics [12,13] and in applied disciplines [14-18]. At the
same time, there are quite a few applied problems for which the use of the maximin extension principle
prevents their solution. The fact is that the application of MMPG requires complete information about
the membership functions of fuzzy defined parameters of the task, and this, unfortunately, is often the
almost impossible procedure. In these cases, even the most experienced expert can determine only
their cores or a-cuts for the unknown fuzzy parameters of the system. Building complete membership
functions of unknown fuzzy parameters on this basis is risky and unreliable.

Thus, it seems appropriate to expand the axiomatics of the fuzzy sets theory in order to introduce
non-traditional (less demanding on the completeness of data on membership functions) extension
principles and operations on fuzzy sets. In works [19,20], an unconventional class of so-called a-weak
operations on fuzzy sets was proposed for the first time, further, introducing new concepts, we will
follow these works.

*Corresponding author.
E-mail: vladimir.kucheruk@gmail.com
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Statement of the problem

All problems with uncertain parameters, which should be solved using fuzzy set theory methods,
can be divided into two classes:

1. Problems with non-numerical input parameters.

In these problems, each of the non-numerical parameters corresponds to a certain logical variable
(term), to which the expert assigns a membership function (performs fuzzification), then certain
procedures are carried out with the assigned membership functions, and the defuzzification procedure
is applied to the new membership functions obtained as a result. As a rule, the quality of these
calculations significantly depends on the knowledge of experts in the subject of research and on the
adequacy of fuzzification and defuzzification procedures.

2. Problems with non-numerical input parameters.

As arule, it is advisable to solve such problems using the methods of probability theory, but for this
the researcher must have a sufficient amount of reliable statistical data. If these data are not available,
or their number is very small, then it makes sense to apply the methods of fuzzy set theory. In this
case, the uncertain parameters are given by vague numbers, the membership functions of which are
formed by experts who are specialists in this field of knowledge.

The main problem of these methods is that even the most experienced expert can determine only
their cores or a-cuts for unknown fuzzy parameters of the system. Building complete membership
functions of unknown fuzzy parameters on this basis is risky and unreliable.

Therefore, the task of expanding the axiomatics of the fuzzy sets theory in order to introduce non-
traditional (less demanding on the completeness of data on membership functions) extension principles
and operations on fuzzy sets is actual. For this, the authors propose to introduce the so-called a-weak
operations on fuzzy sets, which are based on the use of a-cuts.

Research results

Let’s consider the basics of weak operations axiomatics. The a-cut set of the fuzzy set A defined
on the universum X is the usual Cantor set of elements x € X, for which the condition p;(z) > «
is fulfilled, where o > (0,1]. The limiting case of the a-cut set is the so-called core (or, otherwise,
the 0-cut) of the fuzzy set A, which is also a Cantor set of elements z € X for which the condition
pi(x) > 0 is fulfilled.

It is known that every operation on classical Cantor sets can be matched with many similar
operations on fuzzy sets. There is only one mandatory condition that each of these operations must
meet - they must reduce to the corresponding classical operation in the case of degeneracy of fuzzy
sets to classical Cantor sets.

Obviously, that weak operations on fuzzy sets must have the same properties as the analogical ones
on classical Cantor sets, that is the same theorems must be fair for them as for classical sets. Let’s
consider it on the example of the relation of loose inclusion. L. Zadeh defined this relation as: fuzzy set
A, which is defined on the universum X, if and only if includes fuzzy set B, defined on this universum,
when for all elements x € X the membership function g ;(x) is more or equal to the membership
function p 5

AQB@V:UEX(MA(:U)ZMB(@). (1)

From the fuzzy theory point of view, the membership function of the classical Cantor set A in X
looks like p4 : X — {0,1}, and for the set A we can write

A={(z,pa(z)) |V e X(x € A= pa(z) =1)}.
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The definition of relation of inclusion for classical sets A and B, expressed through their membership
function is formulated as: classical set A, defined on the universum X, if and only if includes classical
set B, defined at the same universum, when for all elements x € X, if up(x) = 1, then and pa(x) =1,
that is

ADBeVre X(up(z)=1= palz) =1). (2)

The definition, which lessens the demands to the membership functions p;(x) and pz(z) in
comparison with (1), doesn’t demand the condition p z5(x) > pg(x) to be carried out, and is based on
the sets of a-cuts of fuzzy set (which are the commom Cantor sets) and is suggested being called loose

[e% ~
a-weak inclusion (is marked D) and analogically can be formulated as (2): fuzzy set A, that defined on
the universum X, a-weakly includes fuzzy set B, defined on the same universum, if and only if when
for all elements x € X, if uz(x) > «, then and p;3(x) > o, or

flgB@VaceX(,uB(:n)Zaéug(:n)ZOz).

In boundary case, the relation which is based on the cores of fuzzy sets fl, B is offered to call just

0
loose weak inclusion or loose O-weak inclusion (is marked 2). Its definition can be formulated as: fuzzy
set A, defined on the universum X, if and only if 0-weakly includes fuzzy set B, defined on the same
universum, when for all elements x € X, if ugz > 0, then and 5 > 0, or

0 -
ADB&VreX (ug(x) >0= pyi()>0).
Let’s introduce the definition of the a-weak supplement operation. The traditional supplement of
the fuzzy set A in X is the accepted fuzzy set A is X, for which the following condition is carried out

Vre X (u~(:v) —1- m(@) .

A

For classical Cantor sets, the supplement of set A is considered to be the set A, that is
Vo € X (pa(z) =1 pg(z) =0). (3)

Analogically to (3) the definition of operation of a-weak supplement is offered to formulate as:
o

fuzzy set A in X is a-weak supplement of fuzzy set A in X if and only if, when for all elements z € X,
if p15(x) > «, then po(x) < a, and vice versa, that is
A

VxEX(,uA(x)Zoz(:)ua(m)<a>. (4)

A

It follows from (4) that

VxEX(uA(:):)<a<:>ug(x)Za>.
A

Analogically to the definition (4) for the operation of weak supplement (or 0-weak supplement) we
0

can write: fuzzy set A in X is a weak supplement of fuzzy set A in X if and only if, when for all the
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elements = € X, if pu;(x) > 0, then po(z) = 0, and vice versa, that is

A

Ve e X /u(a:)>()<:>u9($):0 . (5)

A

It follows from (5) that

Vee X | pi(z) =0 po(z) >0

A

The definition for the relation of a-weak equation between fuzzy sets A, B in X is formulated as:
fuzzy set A, defined on the universum X, a-weakly equal to fuzzy set B, defined on this universum, if
and only if, when for all the elements x € X, if 7 > 0, then and pa(z) = 0, and vice versa, that is

A
A%B(:)VxeX(,uB(x) >a e pi(z)>a).
For a weak equation (0-weak equation) we can write
flgéﬁwseX(uB(x) >0 pg(z) >0).

Let’s consider the definition for other main relations between fuzzy sets and operations on them.
It is suggested that a-weak combination of fuzzy sets A and B in X is the fuzzy set C = A U B in
X, if and only if, when for all elements x € X, if ps(2) > o then pz(x) > o or pz(x) > a, and vice
versa, that is
CN’%ASJB<:>V:BGX(#@(3:) >as pir)>aVug(z)>a).

~ ~ ~ ~ 0 =~
Analogically, weak (0-weak) association of fuzzy sets A and B in X is the fuzzy set C S AUBin
X if and only if, when for all elements 2 € X, if ps(z) > 0 then pz(x) > 0 or pg(x) > 0, and vice
versa, that is

~ ~ 0 =~
CgAUB@VxGX(,ué(x)>O<:>MA(:L')>O\/MB(x)>O).

At last, a-weak crossing of fuzzy sets A and B in X is the fuzzy set C £ A A B in X if and only
if, when for all elements = € X, if ux~(x) > «, then pz(x) > a and pz(r) > @, and vice versa, that is

C’%A%B@V:EEX(M(}(:B)Zaﬁ,ug(x)Za/\uB(:v)Za).

~ ~ ~ ~ 0 ~
Analogically, a weak (0-weak) crossing of fuzzy sets A and B in X is the fuzzy set C 2 AN Bin
X if and only if p1(x) > 0, when for all elements x € X, if then p ;(z) > 0 and ppz(z) > 0, and vice
versa, that is

~ ~ 0 =~
CgAﬂB<:>Vx€X(,uc~,(x)>O<:)MA(95)>O/\MB(90)>O).

The definition of the more complex operation of the Descartes multiplication of fuzzy sets is
suggested as follows: a-weak Descartes multiplication of the fuzzy sets A; in X is the fuzzy set

A= Al ; /12 ;‘é ; fln nX = X1 xXgx...... X, if and only if, when for all elements
= (x1,22,...,2,) € X, if pz(x) > a, then simultaneously IUAI(Z') > a, MA2($) > a, ...,uAn(:c) >«
and vice versa, that is

Agglgﬁzi...-“;.éjn@
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@9«“:(961,962,---,%)6)((#,4(90) >aspg (@) >2anpg (@) >al-Aug (z) Za).

Accordingly, weak (0-weak) Descartes multiplication of fuzzy sets A; in X is the fuzzy set AL

- 0 -~ 0 0 -

Al X Ag x ...--- x A, in X = X7 x Xog X ...... X, if and only if, when for all elements x =
(x1,72,...,2n) € X, if pg(x) > 0, then simultaneously pz (z) >0, pg (z) >0, ...,uz (z) >0, and
vice versa, that is

~0 ~ 0 ~ 0 0 -
A=A XAy x ...--- X A, &
@x:(xl,acg,...,a:n)eX(uA(:c)>0<:),LLA1(:I:)>0/\MA2(:1:)>0/\-~/\uAn(a:)>0>.

If we analyze all the above definitions of a-weak operations, we can come to the conclusion that
the results of a-weak operations are ambiguous. Unlike traditional operations on fuzzy sets, the result
of any a-weak operation is not a specific fuzzy set, but a set of fuzzy sets, each of which satisfies given
conditions. This ambiguity makes it possible to operate with fuzzy sets, the membership functions of
which are not completely specified or are specified imprecisely. Such functions are most often obtained
with the help of expert procedures.

It is obvious that a-weak operations on fuzzy sets should have the same properties as similar
operations on classical Cantor sets, that is, the same theorems as for classical sets should be valid for
them. Let’s formulate and prove analogical theorems for a-weak operations.

Theorems of idempotency.

Theorem 1. Operation of a-weak association is idempotent, that is

ACAL A

Proof. Let’s consider the fuzzy set C = A 0 A X. According to the definition of the operation of
a-weak association for an arbitrary element x € X, we can write p 5(z) > aVpi(z) > a & pi(r) > .
Since the logical operation is idempotent, that is V, then for an arbitrary element x € X, it will be
fair ps(z) > @V pz(x) > a, what had to be proved.

It follows from the theorem 1, that the operation of weak association of fuzzy sets is also idempotent,
that is

~ 0 ~ 0 =~
AUA=A.
By means of analogical considerations we can prove that the operations of a-weak and weak crossing

are idempotent as well, that is

A.

Dy
Do DR
s RN
o e
N

Theorems of distributivenes.
Theorem 2. Operations of a-weak crossing of fuzzy sets is distributive, that is

~ ~ O ~ o ~ X ~ o ~ X ~
Af(BOC)2(AAB)0(AAC).
. a0 /50 = g 7Y~ s 7Y~ 2 7 = o 54 & 3
Proof. Let’s consider C1 = BUC, D1 =ANC1,C2=ANDB,C3=ANC, D2=C2UC(C3.
According to the definitions of the a-weak association and crossing operations for an arbitrary element
x € X we can write

He (1) > a & pgle) > aV pa(@) > o (6)
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ppy (@) 2 a e pi(z) > o pe () > o (7)
o) = e pg(x) =2 aApp(z) > a (8)
teg(r) 2 a e pg(r) > a A pa(r) > a )
1po(T) 2 a & pey(r) 2 aVpg(r) > a. (10)

Having done the substitution of the equivalent expressions for the logical variables s (7) > «a,
Leo(x) > o and p54(x) > o from logical equations (6, 8, 9) into logical equations (7, 10) we obtain

pp () > ae pgi(z) > an (pg(e) > aVps(z) >a),

fip(@) > e (ni(x) > anps(@) >a)V (pilr) > aApa(z) > a).

Since logical operation A is distributive, that for an arbitrary element x € X we can claim, that
p51(x) > a < ppsy(x) > o, what had to be proved.
The operation of weak crossing of fuzzy sets is also distributive, that is

-0 /=0 =\ [+0=\0/~0
it (sbc) e (afe)b(ane),

By means of analogical considerations we can prove that operations of a-weak and weak association
are also distributive, that is

Theorems of involution.

Theorem 3: For any fuzzy set Ain X, the a-weak complement of its a-weak complement is a-weakly
equal to the fuzzy set A, that is

= A

:bz\Q\Q

(64 o
Proof. Let’s consider fuzzy sets B =A and C =B in X. According to the definition of a-weak
complement, for the arbitrary element x € X we can write puz(z) < a < pji(r) > o and pa(r) > a &
ps(x) < a. So, for an arbitrary element x € X the equivalency ps(z) > o < pz(x) > o will be fair,
what had to be proved.
It follows from Theorem 3, that for any of fuzzy sets A in X, the weak complement of its weak
complement is weakly equal to the fuzzy set A, that is

24

:BHO\O

Theorems de Morgan.

Theorem 4. a-weak complement of the a-weak association of the fuzzy sets A and B in X are
a-weakly equals to a-weak crossing of a-weak complement of these fuzzy sets, that is

(A
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a _a a
Proof. Let’s consider fuzzy sets C1 = A 0 B, and C2 2AAB and €3 2C1 in X. According to the
definitions of the corresponding operations, for the arbitrary element z € X we can write

pe (@) 2 a e pg(e) = aVpg(r) > a (11)
Hep(x) Z o pg(a) <aApp(e) < a (12)
He(@) 2 a e e (z) < a. (13)

Taking into consideration that s (z) > o < —ugs (z) > «, let’s do the substitution of the
equivalent expression for the logical variable yi5, () > « from logical equation (11) into logical equation
(13), and as a result we’ll obtain

(@) > a & = (uh(e) > a Vv pgle) > ). (14)

Since pz(z) < a < - (pz(z) > a) and pg(z) < a < = (pz(z) > a), the expression (12) we can
write as
Bea(2) > a e = (ug(2) > a) A= (up(@) > ). (15)

As it follows from the similar logical de Morgan’s law

~(13(@) = @V (o) 2 @) & - (13(2) = @) A= (up(e) 2 a),

and the expressions (14) and (15) we can write j55(2) > a < g, (7) > o, what had to be proved.
It follows from the theorem 4 that the weak complement of the weak association of fuzzy sets A
and B in X weakly equals to the weak crossing of the weak complement of these fuzzy sets, that is

0
0 0.0

(;1 U B) S AAB.

By means of similar considerations we can prove the fairness of the second de Morgan’ theorem for
a-weak and weak operations, namely

0,00
(AnB)2AUE.

Besides above mentioned theorems, in classical theory of sets there are also theorems characterizing
the operations between fuzzy sets and universum or empty set. Let’s check the reality of the similar
theorem for a-weak operations’ class.

Theorem 5. a-weak association of the fuzzy set A in X and the empty set @ a-weakly equals to
the fuzzy set A in X, that is

Abo2A

Proof. Let’s consider fuzzy set B = A 0 @ in X. According to the definition of a-weak association
operation, for the arbitrary element x € X we can write pg(r) > o & pz(r) > aV up(r) > o
Since the definition of an empty set @ pugp(x) = 0, then pz(z) > aV pp(x) = 0 < pz(x) > a. So,
pg(x) > a < ps(r) > o, what had to be proved.

Similarly, the weak association of fuzzy set A in X and the empty set @ are weakly equals to the
fuzzy set A in X, that is

~ 0 0 ~
AU =A.
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Theorem 6. a-weak crossing of the fuzzy set A in X and the empty set @ is a-weakly equal to the

empty set ©, that is
Ainoo.

Proof. Let’s consider the fuzzy set B < A A @ in X. According to the definition of the a-weak
crossing operation, for the arbitrary element € X we can write p5(x) > o & pz(x) > aApg(r) > .
As to the definition of the empty @, that u;(z) > a A pp(z) = 0 & pe(z) = 0. So, ps(r) > a &
to(x) = 0, what had to be proved.

Similarly, a weak crossing of the fuzzy set A in X and the empty set @ weakly equals the empty
set @, that is

~ 0 0
ANo=o.

Theorem 7. a-weak association of the fuzzy set A in X with the universum X a-weakly equals to

the universum X, that is
ADXLX.

Proof. Let’s consider the fuzzy set B = A U X in X. Acccording to the definition of the a-weak
association operation, for an arbitrary element € X we can write pg(z) > a & pji(x) > aVux(z) =
1. As to the definition of the universum for all of the x € X px(z) = 1, that pz(z) > aV px(z) =
1S pux(z) =1. S0, pg(x) > a & pux(r) = 1, what had to be proved.

Similarly, weak association of the fuzzy set A in X with the universum X weakly equal to the
universum X, that is

~ 0
Aux2x.

Theorem 8. a-weak crossing of the fuzzy set A in X with the universum X a-weakly equals the

fuzzy set A in X, that is
ANX LA

Proof. Let’s consider the fuzzy set B = A A X is X. According to the definition of the a-weak
crossing operation for an arbitrary element z € X, we can write ug(z) > a & pji(xr) > aApx(r) > .
As to the definition of universum, for all x € X ux =1, that p;(z) > aAux(z) =16 pi(x) > .
So, pz(r) > o & pz(r) > a, what had to be proved. Similarly, the weak crossing of the fuzzy set A
in X with universum X weakly equals the fuzzy set A in X, that is

~ 0 0o ~
ANX = A

Let’s consider the theorems characterizing a-weak operations between fuzzy sets and their a-weak
complement. There are theorems for the Cantor sets

AUA=X,

ANA=0.

In the traditional theory of fuzzy sets similar theorems are absent.
As for weak operations between fuzzy sets, the following theorem exists.

o

Theorem 9. Weak crossing of the fuzzy set A in X with its weak complement A in X weakly equals
the empty set @, that is

0
~ 0 ~0
ANA= Q.
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0
~ = ~ ~ 0 =~
Proof. Let’s consider fuzzy sets B SAand ¢ 2 AN B X. According to the definition of a-weak
crossing operation, for the arbitrary element x € X we can write

(@) > 0 & py(a) =0, (16)
pe(x) >0 pi(r) >0A pg(r) > 0. (17)

Having done the substitution of the equivalent expression for a logical variable 5 (x) > 0 from the
logical equation (16) into the logical equation (17) we get pua(z) >0 pz(r) > 0A pz(x) = 0.
Since pz(z) > 0A pz(x) = 0 < False, then ps(x) = 0, what had to be proved.

Let’s consider a-weak operations on binary fuzzy relations (BFR). Binary fuzzy relation ([1, X ) -
is a fuzzy set defined on the Descartes square X x X and for which the following is true:

Vo,y € X (pgi(z,y) €[0,1]).

Since BFR is a common fuzzy set and the only difference is that its elements are the ordered pairs
of the Descartes square of the universum X, then for BFR all introduced beforehand a-weak operations
occur (association, crossing, complement, difference etc). At the same time, for BFR one can introduce
additionally operations which are absent for ordinary fuzzy sets. Therefore there is an inverted relation,
its definition is in the traditional theory is written as:

(121_1, X) is the inverted relation to ([1, X) if andonly if, when

Va,y € X (pja(y, x) = pgil,y)) -

Following the principles of building the class of weak operations, for the a-weak inverted relation
we can write:

<f~11, X) 1s a — weak inverted relation to ([1, X) if and only i f, when

Vr,y € X (pja(y,2) > as pi(z,y) >0).
Accordingly,

0
([ll, X) 1s a — weak inverted relation to (fl, X) if and only if, when

Yo,y € X (pz(y,2) >0 < py(e,y) >0).
Let’s formulate the definition for a weak composition of fuzzy relations. Traditional maximin

composition of fuzzy relations is formulated as: fuzzy relation (/Nll oAy, X ) is a maximin composition

of fuzzy relations (1211, X) and (1212, X) as to the definition if and only if the, when

Vo,y € X (uglog2(rc,y) = Mgfgl)\gin(ml(x, ), b4, (2, y))) -

~ O
The definition for the a-weak composition can be written as: fuzzy relation <A1 6 Ag, X ) is the

a-weak composition of fuzzy relations (/11, X ) and ([12, X ) according to its definition if and only if,

when

Ve,ye X <MA10A2(93’?J) >ae Iz e X(ug, (2,2) > aApg (2,y) > a> ,a € (0,1]. (18)
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-~ 0 .
It follows from (18) that fuzzy relation <A1 S Ay, X ) is the a-weak composition of fuzzy relations

(fll, X) and (AQ,X) if and only if, when

Vr,y € X (,uAIOAQ(a:,y) >0& dz€ X(ug (w,2) >0Apg,(2,9) >0) ,a € (0,1].

Let’s proceed to the fuzzy sets reflections and the extension principles. As it is known the extension
principles is the way of defining the image of fuzzy set under crisp or fuzzy reflection. There can be
many such methods, but all of them must satisfy two conditions:

1. The image of any fuzzy set, regardless of the nature of the reflection, is also a fuzzy set.

2. Any extension principle should not contradict the definition of a clear representation of classical
Cantor sets.

The definition of the maximin of extension principle, the most widespread in the traditional theory
of fuzzy sets, for the crisp reflection of fuzzy sets can be formulated as follows: fuzzy set f (fl) inY is
the image of the fuzzy set A in X under crisp reflection f : X — Y according to the definition if and
only if, when

e (i = Mar ni@). (19)
where f~!(y) is the proimage of the element y € Y under crisp reflection f: X — Y.

Maximin of extension principle for fuzzy reflection of the fuzzy sets one can be written as: fuzzy
set f (A) in Y is the image of the fuzzy set A in X under fuzzy reflection f : X — Y according to the
definition if and only if, when

e ¥ (1zen ) = MazdinGu ). ngo.) ). (20)
where u FrXxY — (0,1] - membership function of fuzzy reflection f: X — Y.

Let’s formulate the extension principles for crisp and fuzzy reflections of fuzzy sets that are more
general than (19, 20) and less demanding on the completeness of data on membership functions.

The definition of a-weak extension principle for crisp reflections of fuzzy sets is formulated as: fuzzy
set f (A) in Y is the a-weak image of fuzzy set A in X under crisp reflection f: X — Y according to
the definition if and only if, when

Vyeyvy (uf(,a)(y) >ae Iz e fHy)(us(e) = a)) :

where f~1(y) is the proimage of the element y € Y under crisp reflection f: X — Y.

Accordingly, for the principle of weak extension for crisp reflections of fuzzy sets we can write: fuzzy
set f ([1) in Y is a weak image of fuzzy set A in X under crisp reflection f : X — Y according to the
definition if and only if, when

vy e Y (nynw) >0 3z e F @) al) > 0).

The definition of a-weak extension principle for fuzzy reflections of fuzzy sets can be written as:
fuzzy set f(A)in Y is the a-weak image of fuzzy set A in X under fuzzy reflection f : X — Y according
to the definition if and only if, when

Vyey (Mf(A)(y) >aedve X(pg(r) = o) App(z,y) = a) :

where [ X xY — (0,1] - membership function of fuzzy reflection f:X—Y.
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Accordingly, for the principle of weak extension for the fuzzy reflections of fuzzy sets we can write:
fuzzy set f(A) in Y is a weak image of fuzzy set A in X under fuzzy reflection f : X — Y according
to the definition if and only if, when

VyEY(uf(A)(y) >0 Jz e X(ui(z) >0)Aps(z,y) >0).

Conclusions

1. There is a large number of applied problems for which the use of the maximin extension principle
hinders their solution, since its application requires complete information about the membership
functions of vaguely defined parameters of the problem, and this is often a practically impossible
procedure. In these cases, even the highest-level expert can determine only cores or a-cuts for the
unknown fuzzy parameters of the system. Building complete membership functions of unknown fuzzy
parameters on this basis is risky and unreliable.

2. The axiomatics of the theory of fuzzy sets have been extended in order to introduce non-
traditional (less demanding on the completeness of data on membership functions) extension principles
and operations on fuzzy sets. The so-called a-weak operations on fuzzy sets are proposed, which are
based on the use of a-cuts.

3. The axiomatics of weak operations is constructed so that each of these operations reduces to the
corresponding classical operation in the case of degeneracy of fuzzy sets to classical Cantor sets.

4. For weak operations on fuzzy sets, the same theorems as for classical sets are valid, namely,
theorems of idempotency, distributivity, involution, de Morgan and others.

5. Weak operations are introduced not only for fuzzy sets, but also for binary fuzzy relations, which
made it possible to construct the principles of weak extension. All this makes it possible to use the
mathematical apparatus of fuzzy sets to solve problems in conditions of significant uncertainty of input
information.
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AHBIK eMec >KUbIHJAP TEOPULACHIHBIH, JaMYbI: 9JICI3 oHepalisijiap

2K9HE 2KaJINbljIay MPUHITAIITEPI

ZKymMmbIcTa KoJI1aHOa bl ecenTep/li IIeNTy YIIIiH aHbIK eMeC *KUBIHAP TEOPHUSCHIH NaliTaJaHy Ke3iH/e TybIH-
JAUTBHIH Moceserep KapacThipbuirad. CTaTUCTUKAJBIK, TEPEKTEPTe HEri3ereH CTOXaCTUKAJIBIK, 9/1iICTEP/IeH
aflBIPMAIIBLUIBIFBI, CTATUCTUKAJIBIK JIePEKTep OOoJIMaraH Ke3Je aHBIK eMeC KUBIHIAD TEeOPUSIChI dicTepiH
KOJIZJAHFaH 2KeH. ByJ1 rkarnaiiyiapzia ajJropuTMIep OChl OLIiM castachIHIAFbl MaMaHIap O0JIbII TaObIIATHIH
capalmbLIap YKacaraH THUICTUNK (DYHKIUSICBIHA Heri3enyi Kepek. EH JypbIChl, THICTITIK QyHKIMSIAPDI
TypaJbl TOJBIK aKlapar KaxKeT, Oipak OyJl IpaKTUKAJBIK Mporeaypa emec. Kebinece, TinTi eH ToxXipu-
Oesli MaMaH TeK OJIAP/bIH TachIMAJIIAyIILIIAPBIH HeMece Oenrici3 Oy/IBIHFBID »Kyiie mapamerpJsiepi YImiH
Q-JIeHreilinig, 0eJIeK YKUBIHTBLIKTAPbIH aHbIKTal ajagabl. Ocbl Herizme 6elrici3 aHbIK eMec HmapaMeTpPJIePIiH
TOJIBIK, THICTIIK DYHKIUSIAPBIH KYyPY TOyEKeJ i skoHe ceHiMmcis. COHIBIKTAH MAaKAJIala AHBIK €MEeC KUbIH-
Jlap TEOPUSICBHIHBIH aKCHOMATHUKACHIH KEHEHTY YCHIHBLIAAbI (THICTLIIK (DyHKIMAIAD TYPAIbl AePEKTEPIiH
TOJIBIKTBIFBIH TAJIAI €TIEATIH) YKAJITIBLIAY/IbIH KOHE AHBIK, €MeC >KUBIHIAPIAAFbI ONEPAIUIADIBIH, TTPUH-
nunTepin eHrisdy. Besek «-meHreisl »KublHmapAbl KOJIIaHyFa HETI3JEreH AHBIK e€MeC YKUBIHIAPIAFbl (-
9JICI3 JIell aTajaThiH amaJiiap yebiHbLIFaH. CoOHJIall-aK, KEHeHTIITeH aKCHOMATUKAJIBIK, Teopusiia KaHTop-
JIBIH, YKUBIHIAP TEOPUSICHIHBIH, OAPJIBIK, KJIACCUKAJBIK, TEOPEMAIAPBIH KOJIaHyFa OOJATHIHBI KOPCETLITEH.
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AxKnapaTThiH, MaHBI3IbI OEITICI3AIr XKaraaliblHIa MaCeIeIep Il MIeNlyre MyMKIHAIK OepeTiH >KaHa »KaJIIlbl-
Jilay TPUHITUIITEP] €Hri3Ii.

Kiam cesdep: KaHTOp KUBIHBI, aHBIK €MeC YKUBIH, THICTLTIK QYHKINS, Q-JTeHTeI XKUBIH, AaHBIK, €MeC YKUbIH-
JIbI KOJIJIAY, (--9JICI3 Omepariusi.

C. Kanps!, B. Kyxapuyk!, H. Konaparenko!, B. Kyuepyk?, II. Kymnakos?, JI. Kapa6exosa®

1 . . .
Bunnuykuti mayuorasvnslll mernuveckuld yrusepcumem, Bunnuya, Yrpauna;
2 Vmanckutl Hayuonarsrbdl yrusepcumem cadosodcmea, Ymars, Yrpauna;
3 Kapazandurckuti ynusepcumem umenu axademura B.A. Byxemosa, Kapazanda, Kaszazcman

PasBurne Teopum HeUYeTKUX MHOXKECTB: CJIabble onepamuyu 1
IPUHIINOBI 0000IITeHMSI

B pabore paccmorpenbl mpobsieMbl, BOSHUKAIOIIUE MIPYU UCIOJIB30BAHUU TEOPUM HEYETKUX MHOMKECTB JIJIsi
pelteHnsi TPUKJIAIHBIX 3a7ad. B oTiindme OT CTOXaCTHYECKUX METOJIOB, OCHOBAHHBIX HA CTATHUCTUIECKUX
JAQHHBIX, METO/bI TEOPUH HEUYETKUX MHOXKECTB I1€/1eCO00Pa3HO MPUMEHSATDH, KOI/Ia CTATUCTUIECKUE JTAHHBIE
HEJIOCTYIHBI. B 3THUX CiiydasX ajJrOpUTMBI JIOJIKHBI OCHOBBIBATBCST HA (DYHKIIUSAX MPUHAIJIEXKHOCTH, (DOp-
MHUPYEMBIX IKCIIEPTAMHU, SIBJISIONIMMUCS CIEINAIUCTAMI B JTaHHOIN obsiacTu 3HaHuil. B maease Tpebyercs
noJiHast nHGoOpMaIus 0 PYHKIUSX TPUHAIIEXKHOCTH, HO 9TO HEITpAKTUIHAs IIPoIeypa. Jarie Bcero gaxe
CaMBbIil ONBITHBIN CIEIUAIUCT MOYKET OIPEE/IUTh TOJTBKO X HOCUTENH WJIH OTAE/IbHBIE HAOOPHI (-YPOBHSI
JIJIsI HEU3BECTHBIX HEYETKUX [TapaMeTPOB cucTeMbl. IlocTpoenne Ha 9TOM OCHOBE MTOTHBIX (DYHKIWI TPUHA-
JIEYKHOCTH HEU3BECTHBIX HEUYETKHUX [TapaMeTPOB PUCKOBAHHO M HeHa 1e2KHO. [[oaTOMy B cTaThe Ipe/jI0sKeHbI
PACIIIPEHNE AKCHOMATHKHA TEOPUM HEIETKUX MHOXKECTB C HEJbIO BBEJICHUs HETPAIUIMOHHBIX (MEHEE Tpe-
6OBATEJILHBIX K [IOJHOTE JAHHBIX O (DYHKIMAX IPUHAIJIEXKHOCTH ) IPUHIMIOB 00O0IEHNsT ¥ ONePAIHii HAL
HEYEeTKUMH MHOXKECTBAMU, & TAKXKe TaK Ha3bIBaeMble (-CJIabble Ollepallii HaJ[ HEYEeTKHUMU MHOXKECTBAMU,
OCHOBAHHBIE HA WCIIOJIb30BAHUU OT/ETHHBIX MHOXKECTB (-ypoBHsI. Kpome TOro, mokazaHo, ITO BCE KJIac-
CHYecKrne TeOpeMbl TeOpUHM MHOXKeCcTB KaHTopa IpUMEHWMBI B PACIIMPEHHON aKCHOMATHYECKOH TeOopHu.
BBeienbl HOBBbIE IPUHITUIIBI 0606IIIEHNSI, TIO3BOJISIFOIINE PelllaTh 3aJa49i B YCJIOBUIX 3HAYUTE/HHONW HEOIpe-
JIeJIEHHOCTH WHMOOPMAIIHH.

Kmouesvie caosa: muokectBo KanTopa, HeYeTKOE MHOYXKECTBO, (DYHKIMSA TPUHAIEKHOCTH, MHOXKECTBO
Q-yPOBHSI, HOCUTEJIb HEYETKOIO MHOYKECTBA, (-Cjiabasi OIEepaIys.
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Some non-standard quasivarieties of lattices

The questions of the standardness of quasivarieties have been investigated by many authors. The problem
"Which finite lattices generate a standard topological prevariety?" was suggested by D.M. Clark, B.A. Davey,
M.G. Jackson and J.G. Pitkethly in 2008. We continue to study the standardness problem for one specific
finite modular lattice which does not satisfy all Tumanov’s conditions. We investigate the topological
quasivariety generated by this lattice and we prove that the researched quasivariety is not standard, as
well as is not finitely axiomatizable. We also show that there is an infinite number of lattices similar to the
lattice mentioned above.

Keywords: lattice, quasivariety, basis of quasi-identities, profinite algebra, topological quasivariety, profinite
quasivariety.

Introduction

The problems concerning finite axiomatizability and standardness of (quasi)varieties of algebras
are among the most researched and relevant topics in universal algebra.

According to R. McKenzie [1], each finite lattice has a finite identity basis. The analogous statement
for quasi-identities is incorrect. V.P. Belkin in [2] proved that there is a finite lattice which has no finite
quasi-identity basis. In this regard, the problem "Which finite lattices have finite quasi-identity bases"
was proposed by V.A. Gorbunov and D.M. Smirnov [3]|. A sufficient two-part condition under which a
locally finite quasivariety of lattices does not have a finite (independent) quasi-identity basis was found
by V.I. Tumanov [4].

In [5] the concept of a standard (topological) quasivariety was introduced, and the basic properties
were investigated and many examples of standard and non-standard quasivarieties were provided. The
standardness of algebras was further studied by D.M. Clark, B.A. Davey, R.S. Freese and M.G. Jackson
in [6], who established a general condition guaranteeing the standardness of a set of finite algebras.
In [7] sufficient conditions were found under which a quasivariety contains a continuum of non-standard
subquasivarieties. In [6] it was proved that any finite lattice generates a standard variety. However,
in [8] it was established that Belkin’s lattice generates non-standard quasivariety. These naturally arose
the problem "Which finite lattices generate standard topological quasivarieties?" that was suggested
by D.M. Clark, B.A. Davey, M.G. Jackson and J.G. Pitkethly in [8].

In [9,10] one specific lattice was studied and it was proved that this lattice has no finite basis of
quasi-identities [9] and generates non-standard quasivariety [10], respectively. The special feature of
this lattice is that it does not satisfy one of the two-part Tumanov’s condition (see Theorem 2).

In this paper we continue to study the standardness problem for one specific finite modular lattice.
This lattice does not satisfy all Tumanov’s conditions [4] and the quasivariety generated by this lattice
is not standard, as well as is not finitely based (Theorem 3). At the end we show that there is an
infinite number of lattices similar to this lattice (Theorem 4).

*Corresponding author.
E-mail: basheyeva3006Qgmail.com
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1 Basic concepts and preliminaries

We recall some basic definitions and results for quasivarieties that we will refer to. For more
information on the basic notions of general algebra and topology introduced below and used throughout
this paper, we refer to [11-13].

We assume that all classes of algebras the same fixed finite signature ¢ and abstract, unless we
specify otherwise. Also an algebra (A; o) and its carrier (its basic set) A will be identified and denoted
by the same way, namely A.

A class of algebras which is closed with respect to subalgebras, direct products (including the direct
product of an empty family), and ultraproducts is a quasivariety. In other words, a class of algebras
axiomatized by a set of quasi-identities is a quasivariety. A quasi-identity is a universal Horn sentence
with the non-empty positive part

(VZ)[p1(Z) = q1(Z) A+ A (@) = qu(T) — p(T) = q(7)],

where p,q, p1,q1,-..,Pn,qn are terms. A quasivariety closed with respect to homomorphisms is a
variety. In other words, a variety is a class of similar algebras axiomatized by a set of identities,
according to Birkhoff theorem [14]. An identity is a sentence of the form (Vz)[s(Z) =~ t(z)] for some
terms s(Z) and t(Z). A quasivariety K has a finite basis of quasi-identities (finitely axiomatizable) if
there is a finite set ¥ of quasi-identities such as K = Mod(X). Otherwise K has no finite basis of
quasi-identities.

By Q(K) (V(K)) we denote the smallest quasivariety (variety) containing a class K. Q(K) is called
finitely generated if K is a finite family of finite algebras. In case when K = { A} we write Q(A) instead
of Q({A}). By Maltsev-Vaught theorem [15], Q(K) = SPP,(K), where S, P and P,, are operators of
taking subalgebras, direct products and ultraproducts, respectively.

Let K be a quasivariety. A congruence « on algebra A is called a K-congruence provided A/« € K.
The set Conk A of all K-congruences of A forms an algebraic lattice with respect to inclusion C. An
algebra A € K is subdirectly K-irreducible if an intersection of any number of nontrivial K-congruences
is nontrivial. Since for any class R we have Q(R) = SPP,(R) = P;SP,(R), where P, is operator
of taking subdirect products, then for finitely generated quasivariety Q(A), every subdirectly Q(A)-
irreducible algebra is isomorphic to some subalgebra of A.

A finite algebra A with discrete topology generates a topological quasivariety consisting of all
topologically closed subalgebras of non-zero direct powers of A endowed with the product topology.
An algebra A is profinite with respect to quasivariety R if A is an inverse limit of finite algebras from R.
A topological quasivariety Q. (A) is standard if every Boolean topological algebra (compact, Hausdorf
and totally disconnected) with the algebraic reduct in Q(A) is profinite with respect to Q(A). In this
case, we say that algebra A generates a standard topological quasivariety. For more information on the
topological quasivarieties we refer to [6] and [8].

We say that X is pointwise non-separable with respect to quasivariety R if the following condition
holds: There exist a,b € X, a # b, such that, for each n € N, each finite structure M € R and each
homomorphism ¢ : X;,, — M, we have p(a) = ¢(b).

The following theorem provides non-standardness of quasivariety.

Theorem 1.(Second inverse limit technique [8])

Let X = M{Xn | n € N} be a surjective inverse limit of finite structures, and let K be a
quasivariety. Assume that X € K is pointwise non-separable with respect to K and each substructure
of X,, that is generated by at most n elements belongs to K for all n € N. Then K is non-standard,
as well as is not finitely axiomatizable.

To formulate our main result (Theorem 3) we need some special preliminaries.
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Let (a] ={z € L |x <a} (Ja) ={z € L | x > a}) be a principal ideal (coideal) of a lattice L. A
pair (a,b) € L x L is called splitting (semi-splitting) if L = (a] U [b) and (a] N [b) = @ (L = (a] U [b)
and (a] N[b) # ).

For any semi-splitting pair (a,b) of a lattice M we define a lattice
Ma—p = ({(,0), (y,1) € M x 2|z € (a],y € [D)};V,A) <s M X 2,

where 2 = ({0,1}; V, A) is a two element lattice.

Theorem 2. (Tumanov’s theorem [4])

Let a locally finite quasivarieties of lattices M and N C M satisfy the following two conditions:

a) in any finitely subdirectly M-irreducible lattice M € M\N there is a semi-splitting pair (a,b)
such that M,_; € N;

b) there is a finite simple lattice P € N that is not a proper homomorphic image of any subdirectly
N-irreducible lattice.

Then the quasivariety N has no coverings in the lattice of subquasivarieties of M. In particular, N
has no finite (independent) basis of quasi-identities provided M is finitely axiomatizable.

A quasivariety is called proper if it is not variety. A subalgebra B of an algebra A is called proper
if B is not one-element (trivial) and B 2 A. For an algebra A and elements a,b € A, by 0(a,b) we
denote the least congruence on A containing pair (a,b).

2  Main result

Let A’ and A are the modular lattices displayed in Figure 1. And let Q(A) and V(A) are quasivariety
and variety generated by A, respectively. Since every subdirectly Q(A)-irreducible lattice is a sublattice
of A, and A’ is simple and a homomorphic image of A, and A’ is not a sublattice, then A’ € V(A)\Q(A),
that is Q(A) is a proper quasivariety. One can check that A’ has no semi-splitting pair. Thus, the
condition a) of Tumanov’s theorem does not hold on the quasivariety Q(A). It is easy to see that M3
is unique non-distributive simple lattice in Q(A)sr and it is a homomorphic image of A. Hence, the
condition b) of Tumanov’s theorem is not hold on quasivarieties Q(A) and V(A).

Al

Figure 1: Lattices A’ and A
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The main result of the paper is

Theorem 8. The topological quasivariety generated by the lattice A is not standard, as well as is
not finitely axiomatizable.

Proof of Theorem 3.

To prove the theorem we use Theorem 1. According to this theorem we will construct L = @{Ln |
n € N} a surjective inverse limit of the finite lattices such that every n-generated sublattice of L,
belongs to Q(A) and L is pointwise non-separable with respect to Q(A).

Let S be a non-empty subset of a lattice L. Denote by (S) the sublattice of L generated by S.

We define a modular lattice L,, by induction:

n = 0. LO = M3,3 and LO = <{a0, bg, Co, ao, bO, CO}> (Flg 2)

n = 1. Ly is a modular lattice generated by LoU{a1, b1, c1,al, bt, ¢t} such that ({a1, b1, c1,al, bt ct})
M3 3, and ¢ = a', a® ANB® = co Vbl = ¢cq V ¢ (Fig. 3).

n > 1. L, is a modular lattice generated by the set L,_1 U {an,bn,cy,a™ b" "} such that
{an, by, Cnya™ b, e}y =2 M3 3, and ¢, 1 = a”, a® Ab° = co V" = cq V ¢, (Fig. 4).

12

Ms3

M3 3 M3_3

)

Figure 2: Lattices M3, M3 3 and M3_3

Let L, be a sublattice of L, generated by the set {a;, b;, c;,a’,b',¢' | 0 < i < n}. One can see that
L, = L,/0(ag,bo) and L, <, M3 4. Hence, L, € Q(A).

Claim 1. Every proper sublattice of L,, belongs to Q(A).

Proof of Claim 1.

It is enough to prove the claim for arbitrary maximal proper sublattices of L,,. Since L,, is generated
by the set of double irreducible elements S = {ag, by, b°, c°, ¢, }U{b;,b* | 0 < i < n} then every maximal
proper sublattices L of L,, generated by S — {z} for some = € S, that is L = (S — {z}).

Suppose that = € {ag, bo, b°, c"}. Then the lattice ({ag, bo, b°, °}\{x})/0(co, a° Ab°) be a homomorphic
image of L with the kernel a = (a1, ¢,,) and belongs to Q(A).

One can see that for 8 = 0(ag, bo) if z € {b°,c°} and B = 6(b°, °) if = € {ap,bo}, L/B is isomorphic
to a sublattice of L, x 2 and belongs to Q(A). Thus, o and 3 are Q(A)-congruences. One can check
that N g =0. Hence L <; L/a x L/f3. Therefore, L € Q(A).

Suppose that z € {b;,b' | 0 < i < n} U {c,}. Without loss of generality, assume that x =
by. Let a = 0(cp,cp—1). Then L/« is isomorphic to the sublattice S of L; generated by the set
{ag, by, °, %, a1, by, b'}. Since the lattice P = ({ag, bo, b°, ¥, b', c'}) is a sublattice of A and S <, P x 22
we get S € Q(A). On the other hand, L/0(ag,bo) is a sublattice of L, . Since L, € Q(A) then
L/8(ap,bo) € Q(A). One can see that a N B(ag, bp) = 0. Hence, L is a subdirect product of two lattices
from Q(A). Therefore, L € Q(A).
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Figure 3: Lattice L

Let ¢pn—1 be a homomorphism from L,, to L,_; such that ker ¢, ,—1 = 6(a",b,), and ¢, , an
identity map for all » > 1 and m < n. And let ¢, = @mt1,m © - - © Pppn—1. It can be seen that
{Ln; Ynm, N} forms inverse family, where N is the linear ordered set of positive integers.

We denote L = lim{Ly, | n € N'} and show that L € Q(A).

Claim 2. The lattice L belongs to Q(A).

Proof of Claim 2.

Let a be a quasi-identity of the following form

&i<rpi(zo, ..., Tn—1) = ¢i(x0, ..., Tn—1) = p(T0, .-, Tn-1) = q(T0, ..., Tn_1).
Assume that « is valid on Q(A) and
L = pi(ag, ... an—1) = qi(ag,...,an—1) forall i<r,
for some ag,...,a,_1 € L. From the definition of inverse limit we have that L <g Hiel L;. Therefore
Ls E pi(ao(s), ... an—1(8)) = qi(ap(s),...,an—1(s)) forall i <r.

Each at most n generated subalgebra of Lg belongs to Q(A) for all s > n, by Claim 1. Hence « is true
in L for all s > n. And this in turn entails

Ls = plao(s),...,an—1(s)) = q(ao(s),...,an—1(s)).
Since a;(m) = @sm(ai(s)) for all 0 <i < n and m < s, we get
Ly, = plag(m),...,an—1(m)) = q(ap(m),...,an—1(m)) for all m < s.

So
L= p(ag,...,an—1) = q(ag,-..,an—1).
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Figure 4: Lattice L,, n > 2

Hence L = «, for every « that is valid on Q(A). This proves that L € Q(A).

Claim 3. The lattice L is point-wise separable with respect to Q(A).

Proof of Claim 3.

We obtain ¢y, m(ao) = ap and ¢y, m(bo) = by, by definition of ¢, ,—1. And a = (ao,...,a0,...),
b= (bg,...,bp,...) € L, by definition of inverse limit. Let o : L — M be a homomorphism, M € Q(A)
and M finite. There is n > 2 and homomorphism ¥,; : L, — M such that a = ¢, o s for some
surjective homomorphism ¢, : L — L,, (by universal property of inverse limit). It is not difficult to
see that any non-trivial homomorphic image of L,, is isomorphic to L,,, m < n, or contains M3 3 as a
sublattice. Since Ly,, M3 3 ¢ Q(A) and ¥p(Ly) < M € Q(A), then we obtain that ¢ (Ly,) is trivial.
That is () = const for all x € L,,. So we get a(a) = a(b).

Thus, the Claims 1-3 state that the conditions of Theorem 1 holds on Q(A). Therefore, the
quasivariety Q(A) generated by A is not standard, as well as not finitely axiomatizable.

Remark. In the paper [16] it has been proved that the quasivariety generated by the lattice A is
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not finitely based. We would like to point out that we presented the proof of the Claim 1 for the sake
of completeness of the proof of the main result. We also note that Claims 2 and 3 were proved by
arguments of [17].

We note that there is an infinite number of lattices similar to the lattice A. This is the context of
the following.

Theorem 4. Let L be a finite lattice such that Mz3 £ L, A < L and L, £ L for all n > 1.
Then the topological quasivariety generated by the lattice L is not standard, as well as is not finitely
axiomatizable.

Acknowledgments

The first and the fourth authors are funded by the Science Committee of the Ministry of Science
and Higher Education of the Republic of Kazakhstan (Grant No. AP09058390). The second author is
funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of
Kazakhstan (Grant No. AP13268735).

References

1 McKenzie R. Equational bases for lattice theories / R. McKenzie // Mathematica Scandinavica.
— 1970. — 27. — P. 24-38.

2 Belkin V.P. Quasi-identities of finite rings and lattices / V.P. Belkin // Algebra and Logic. —
1979. — 17. — P. 171-179.

3 Gorbunov V.A. Finite algebras and the general theory of quasivarieties / V.A. Gorbunov, D.M. Smir-
nov // Colloq. Mathem. Soc. Janos Bolyai. Finite Algebra and Multipli-valued Logic. — 1979. —
28. — P. 325-332.

4 Tumanov V.I. On finite lattices having no independent bases of quasi-identities / V.I. Tumanov
// Math. Notes. — 1984. — 36. — No. 4. — P. 811-815. https://doi.org/10.1007/BF01139925

5 Clark D.M. Standard topological quasivarieties / D.M. Clark, B.A. Davey, M. Haviar, J.G. Pitkethly,
M.R. Talukder // Houston J. Math. — 2003. — 29. — No. 4. — P. 859-887.

6 Clark D.M. Standard topological algebras: syntactic and principal congruences and profiniteness
/ D.M. Clark, B.A. Davey, R.S. Freese, M.G. Jackson // Algebra Universalis. — 2005. — 52. —
No. 2. — P. 343-376. https://doi.org/10.1007/s00012-004-1917-6

7 Kravchenko A.V. Structure of quasivariety lattices. IV. Nonstandard quasivarieties / A.V. Kravchenko,

A.M. Nurakunov, M.V. Schwidefsky // Siberian Math. J. — 2021. — 62. — No. 5. — P. 850-858.
https://doi.org/10.1134/S0037446621050074

8 Clark D.M. The axiomatizability of topological prevarieties / D.M. Clark, B.A. Davey, M.G. Jackson,
J.G. Pitkethly // Advances in Mathematics. — 2008. — 218. — No. 5. — P. 1604-1653.
https://doi.org/10.1016/j.aim.2008.03.020

9 Lutsak S.M. On quasi-identities of finite modular lattices / S.M. Lutsak, O.A. Voronina, G.K. Nur-
akhmetova // Journal of Mathematics, Mechanics and Computer Science. — 2022. — 115. — No. 3.
— P. 49-57. https://doi.org/10.26577/IMMCS.2022.v115.i3.05

10 Lutsak S.M. On some properties of quasivarieties generated by specific finite modular lattices
/ S.M. Lutsak, O.A. Voronina // Bulletin of L.N. Gumilyov ENU. Mathematics. Computer
Science. Mechanics series. — 2022. — 140. — No. 3. — P. 6-14. https://doi.org/10.32523/2616-
7182 /bulmathenu.2022/3.1

11 Kelley John L. General Topology / John L. Kelley. — New York: Springer-Verlag, 1975. — 298 p.

78 Bulletin of the Karaganda University



Some non-standard ...

12 Burris S. A Course in Universal Algebra / S. Burris, H.P. Sankappanavar. — New York: Springer,
1980. — 315 p.

13 Gorbunov V.A. Algebraic theory of quasivarieties / V.A. Gorbunov. — New York: Consultants
Bureau, 1998. — 368 p.

14 Birkhoff G. Subdirect union in universal algebra / G. Birkhoff // Bull. Amer. Math. Soc. — 1944.
— 50. — P. 764-768.

15 Maltsev A.I. Algebraic systems / A.I. Maltsev. — Berlin, Heidelberg: Springer-Verlag, 1973. —
392 p.

16 Basheyeva A.O. On quasi-identities of finite modular lattices. II / A.O. Basheyeva, S.M. Lutsak
// Bulletin of the Karaganda University. Mathematics series. — 2023. — No. 2(110). — P. 45-52.
https://doi.org/10.31489/2023M2/45-52

17 Basheyeva A.O. Properties not retained by pointed enrichments of finite lattices / A.O. Basheyeva,
M. Mustafa, A.M. Nurakunov // Algebra Universalis. — 2020. — 81:56. — No. 4. — P. 1-11.
https://doi.org/10.1007 /s00012-020-00692-4

C.M. Jlynak!, A.O. Bameesa?, A.M. Acanbexos®, O.A. Boponuna!

M. Kosuwbaes amvimdaev, Coamycmir Kazaxcman ynusepcumemi, Ilemponasa, Kasaxeman;
2J1.H. Dymuses amwindaen, Bypasua yammows yrusepcumemi, Acmana, Kaszakeman;
3KP YA Mamemamuxa uncmumymol, Biwukers, Koipevizcmar

Keitbip cTanmapTThl eMec TopJiapAbIH KBa3WKeIIoeliHeaepi

Ksazukenbeiinesnep/ i cTaHIapTTHLIBIK, Maceseepin kenreren aropJiap 3eprreai. 1. M. Knapk, B.A. JIsii-
Bu, M.I'. JI>xekcon »xkone /Dx.I". Ilurkerin «Kanmgait cOHFBI TOpJap CTAHIAPTTHI TOIMOJOTHUSIJIBIK, ITPEIKOTII-
GeitaeHi TyabIpaabi?» jeren moceseri 2008 »KbLIbl YCBIHABL TyMaHOBTBIH 6apPJIBbIK KarIaillapblH KaHAFaT-
TaHIBIPMANTHIH Oip HAKTHI MOJIYJ/IBIIK TOP/IBIH CTAHIAPTTHLIBIK, MOCEIECIH 3epTTEY 2KaTracThipbutran. Ocbl
TOpJIaH IMaiiia 60JIFaH TOIOJIOTHUSIBIK, KBA3SUKOIIOEHe 3ePTTEJIIeH XKOHe 3ePTTEJIETIH KBAa3UKOIOeiiHe CTaH-
JapTTHl €MeC, COHBIMEH KAaTap OpHHE aKCHOMAaTH3alusaaHOaiThIHbl jpsrengenred. CoHpai-ak »KOrapblia
aTaJIFaH TOPFa YKCAC TOPJIAPIBIH, MIEKCI3 CaHbl 0ap €KeHi KOPCEeTLIreH.

Kiam coesdep: Top, KBazukenbeitHe, KBA3UCOMKECTIKTEPIH 6a3uci, TPOMUHUTTIK aJredpa, TOTOJIOTHSIIBIK,
KBa3uKenbeiHe, NIpopUHUTTIK KBAa3UKOIIOEHHE.

C.M. JIynak!, A.O. Bameena?, A.M. Acanbexos®, O.A. Boponuna!

! Cesepo-Kasaxcmanckut yrusepcumem umeny M. Koswéaesa, Ilemponasaosck, Kazaxcman;
2 Bepasutickuti nayuonaivruiti ynueepcumem umenu JIH. Dymunesa, Acmana, Kazazeman;
3 Hnemumym mamemamuru HAH KP, Buwxex, Kupewscman

HeKOTopre HeCTaHJapTHbIEe KBa3I/IMHOI‘OO6pa3I/IH pemeTokK

Bormpocsr cranmaprHOocTH KBasuMHOroob6pasuil nccienoBaanch MuornMu apropamu. IIpobinema «Kakwne ko-
HEUHBbIE DPEIIeTKH IIOPOXKIAIOT CTAHJAPTHOE TOIOJIOTMYeCKOoe IpeaMHoroobpasme?s Oblaa IIpemjioKeHa
.M. Kuapkom, B.A. Isitu, M.I. Txxexkconom u JIxk.I'. ITurkerau B 2008 roxy. Mbl mposgoszkaemM n3ydaThb
npobJeMy CTaHJIAPTHOCTHU JUJIsi OJHON KOHKPETHOW KOHEYHON MOJYJISIDHOW pelleTKd, KOTopasl He YJIOBJIe-
TBOpsieT BceM ycioBusiM TymanoBa. lcciremyem Tomostorntueckoe KBa3UMHOr0oOpasne, IOPOXKICHHOE STOM
PEIeTKOo, U JOKa3bIBAeM, UYTO KCCJIELyeMOe KBA3MMHOroOOpa3ue He SBJISeTCH CTAHAAPTHBIM U KOHEYHO
akcuoMaTn3upyeMbIiM. Kpome Toro, rmokasbiBaeM, YTO CyLIeCTBYyeT HECKOHEYHOE YHCJIO PEIIeTOK, [10I00HBIX
YHOMSAHYTOH BBIIIE.

Kamouesvie caosa: penerka, KBasUMHOrooOpasue, 6a3uc KBa3UTOXKIAECTB, NPOMUHUTHAS aaredpa, TOIOJI0-
rU9ecKoe KBa3UMHOT000pa3ue, MpOMUHUTHOE KBA3UMHOTO00Opasne.

Mathematics series. No.3(111)/2023 79



S.M.

Lutsak, A.O. Basheyeva et al.

References

1 McKenzie, R. (1970). Equational bases for lattice theories. Mathematica Scandinavica, 27, 24-38.

10

11
12
13
14
15
16

17

80

Belkin, V.P. (1979). Quasi-identities of finite rings and lattices. Algebra and Logic, 17, 171-179.
Gorbunov, V.A., & Smirnov, D.M. (1979). Finite algebras and the general theory of quasivarieties.
Collog. Mathem. Soc. Janos Bolyai. Finite Algebra and Multipli-valued Logic, 28, 325-332.
Tumanov, V.I. (1984). On finite lattices having no independent bases of quasi-identities. Math.
Notes, 36(4), 811-815. https://doi.org/10.1007/BF01139925

Clark, D.M., Davey, B.A., Haviar, M., Pitkethly, J.G., & Talukder, M.R. (2003). Standard
topological quasivarieties. Houston J. Math., 29, 859-887.

Clark, D.M., Davey, B.A., Freese, R.S., & Jackson, M.G. (2005). Standard topological algebras:
syntactic and principal congruences and profiniteness. Algebra Universalis, 52(2), 343-376.
https://doi.org/10.1007/s00012-004-1917-6

Kravchenko, A.V., Nurakunov, A.M., & Schwidefsky, M.V. (2021). Structure of quasivariety
lattices. IV. Nonstandard quasivarieties. Siberian Math. J., 62(5), 850-858.
https://doi.org/10.1134/S0037446621050074

Clark, D.M., Davey, B.A., Jackson, M.G., & Pitkethly, J.G. (2008). The axiomatizability of
topological prevarieties. Advances in Mathematics, 218(5), 1604-1653.
https://doi.org/10.1016/j.aim.2008.03.020

Lutsak, S.M., Voronina, O.A., & Nurakhmetova, G.K. (2022). On quasi-identities of finite modular
lattices. Journal of Mathematics, Mechanics and Computer Science, 115(3), 49-57.
https://doi.org/10.26577/IMMCS.2022.v115.i3.05

Lutsak, S.M., & Voronina, O.A. (2022). On some properties of quasivarieties generated by
specific finite modular lattices. Bulletin of L.N. Gumilyov ENU. Mathematics. Computer Science.
Mechanics series, 140(3), 6-14. https://doi.org/10.32523/2616-7182/bulmathenu.2022/3.1
Kelley, John L. (1975). General Topology. Springer-Verlag New York.

Burris, S., & Sankappanavar, H.P. (1980). A Course in Universal Algebra. Springer New York.
Gorbunov, V.A. (1998). Algebraic theory of quasivarieties. Consultants Bureau New York.
Birkhoff, G. (1944). Subdirect union in universal algebra. Bull. Amer. Math. Soc., 50, 764-768.
Maltsev, A.L. (1973). Algebraic systems. Springer-Verlag Berlin Heidelberg.

Basheyeva, A.O., & Lutsak, S.M. (2023). On quasi-identities of finite modular lattices. II. Bulletin
of the Karaganda University. Mathematics Series, 2(110), 45-52.
https://doi.org/10.31489/2023M2/45-52

Basheyeva, A.O., Mustafa, M., & Nurakunov, A.M. (2020). Properties not retained by pointed
enrichments of finite lattices. Algebra Universalis, 81:56(4), 1-11. https://doi.org/10.1007 /s00012-
020-00692-4

Bulletin of the Karaganda University



DOI 10.31489/2023M3/81-90
UDC 510.67

N.D. Markhabatov*

L.N. Gumilyov Eurasian National University, Astana, Kazakhstan;
Kazakh-British Technical University Almaty, Kazakhstan
(E-mail: markhabatov@gmail.com,)

Ranks and approximations for families of cubic theories

In this paper, we study the rank characteristics for families of cubic theories, as well as new properties
of cubic theories as pseudofiniteness and smooth approximability. It is proved that in the family of cubic
theories, any theory is a theory of finite structure or is approximated by theories of finite structures. The
property of pseudofiniteness or smoothly approximability allows one to investigate finite objects instead of
complex infinite ones, or vice versa, to produce more complex ones from simple structures.
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approximated structure.

1 Introduction

Modern mathematical models, which are large relational structures (random graphs) and at the
same time time-dependent dynamic models, such as the growth of the Internet, social networks and
computer security, cannot be described and explored by infinite models in standard graph theory.
However, if a set of models is algorithmically well defined, then these sets exhibit general patterns that
are inherent in «almost all» models in the community. These general laws for well-defined systems can
be investigated using statistical and model-theoretic methods. From a model-theoretic point of view,
one can approach approximations [1], definability [2|, and interpretability [3].

The ranks and degrees for families of complete theories [4], similar to the Morley rank and degree
for a fixed theory, and the Cantor-Bendixson rank and degree, were introduced by S. Sudoplatov.
The problem arises of describing ranks and degrees for natural theory families. Ranks and degrees for
families of incomplete theories are examined in [5,6], for families of permutation theories - in [7], and
for families of all theories of arbitrary languages - in [§].

The [1] examines approximations of theories both in the general context and in relation to specific
natural theory families. The problem of describing the approximation forms of the natural theory
families arises.

This work is devoted to the description of the ranks and degrees of families of cubic theories, as
well as approximation by theories of finite cubic structures. Pseudofinite structures are mathematical
structures that resemble finite structures but are not actually finite. They are important in various
areas of mathematics, including model theory and algebraic geometry. Further study of pseudofinite
structures will continue to reveal new insights and applications in mathematics and beyond.

1.1  Preliminaries from cubic theories

Cubic structures are defined in [9], theoretical properties of the model are discussed and included in
the monograph [10], applications in discrete mathematics are presented [11]. The following necessary
terminology for cubic structures was taken from [9,11] without specifying it.

*Corresponding author.
E-mail: markhabatov@gmail.com
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Definition 1. An n-dimensional cube or an n-cube (where n € w) is a graph isomorphic to the graph
Q,, with universe {0, 1}" and such that any two vertices (d1,..., d,) and (d7,..., d,) are adjacent if
and only if these vertices differ by exactly one coordinate.

Let A be an infinite cardinal number. A A-dimensional cube or a A-cube is a graph isomorphic to
a graph I' = (X; R) that satisfies the following conditions:

(1) the universe X C {0; 1}* is generated from an arbitrary function f € X by the operator {f)
attaching, to the set {f}, all results of substitutions for any finite tuples (f (i1),..., f(im)) by tuples
(1_f(i1)a"'71_f(im));

(2) the relation R consists of edges connecting functions differing exactly in one coordinate.

The described graph Q = Q; with the universe (f) is a canonical representative for the class of
A-cubes.

Note that the canonical representative of the class of n-cubes (as well as the canonical representatives
of the class of A-cubes) are generated by any its function: {0,1}" = (f), where f € {0,1}". Therefore
the universes of canonical representatives Q¢ of n-cubes like A-cubes, will be denoted by (f).

Any graph I' = (X; R), where any connected component is a cube, is called a cubic structure. A
theory T of the graph language {R®} is cubic if T = Th(M) for some cubic structure M. In this
case, the structure M is called a cubic model of T.

The invariant of a theory T is the function
Invy : wU {0} —»w U {0},

satisfying the following conditions:

(1) for any natural n; Invp(n) is the number of connected components in any model of T, being
n-cubes, if that number is finite, and Invr(n) = oo if that number is infinite;

(2) Invr(co) = 0 if models of T do not contain infinite-dimensional cubes (i. e., the dimensions
of cubes are totally bounded), otherwise we set Invr(co) = 1.

The diameter d(T) of a cubic theory T is the maximal distance between elements in models of T, if
these distances are bounded, and we set d(T) = oo otherwise. The support (accordingly the co-support)
Supp(T)(Suppso(T)) of a theory T is the set {n € w|Invr (n) # 0}({n € w|Invr(n) = oo}).

If the diameter d(7T') is finite then there exists an upper estimate for dimensions of cubes, being
in models of T. It means that Supp(T) is finite, i. e., Invp(co) = 0. In this case the co-support is
non-empty.

If d(T) = oo then Invr(co) = 1. In this case the support Supp(T') can be either finite or infinite.

1.2 Preliminaries from model theory and approzimations of theories

Historically, pseudofinite fields were first introduced by J. Ax and S. Kochen [12] in the form of
non-principal ultraproducts of finite fields. Later, J. Ax in [13] connected the notion of pseudofiniteness
and the construction of ultraproducts. The class of pseudofinite fields was defined in the work of J. Ax
[13] and regardless of him in the work of Yu. Ershov [14] with an axiom system indicating this class.

In 1965 J. Ax [15] investigated fields F' having the property that every absolutely irreducible variety
over F' has an F-rational point. It was shown that the non-principal ultraproduct of finite fields has
such property. Yu. Ershov called such fields reqularly closed. The notion of pseudofiniteness is credited
to work in the 1968s by J. Ax [13]. He introduced the notion of pseudofiniteness to show the decidability
of the theory of all finite fields, i.e. there is an algorithm to decide whether a given statement is true
for all finite fields. It was proved that pseudofinite fields are exactly those infinite fields that have every
elementary property common to all finite fields, that is, pseudofinite fields are infinite models of the
theory of finite fields.
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In the early 1990s, E. Hrushovski resumed research in the field of pseudofinite structures in meeting
on Finite and Infinite Combinatorics in Sets and Logic [16], as well as in the joint works of E. Hrushovski
and G. Cherlin and the following definition first occurs in [17], subsequently in [18]:

Definition 2. Let ¥ be a language and M be a Y-structure. A Y-structure M is pseudofinite if
for each X-sentences ¢, M = ¢ implies that there is a finite My such that My = ¢. The theory
T = Th(M) of a pseudofinite structure M is called pseudofinite.

In the work [1] S. Sudoplatov defined approximations relative given family 7 of complete theories.

Definition 3. [1] Let T be a family of theories and T be a theory such that 7' ¢ 7. The theory T is
said to be T -approximated, or approximated by the family T, or a pseudo-T -theory, if for any formula
¢ € T there exists 7" € T for which ¢ € T".

If a theory T is T-approximated, then T is said to be an approzimating family for T', and theories
T'" € T are said to be approzimations for T. We put T, ={T € T | ¢ € T'}. Any set T is called the
p-neighbourhood, or simply a neighbourhood, for T. A family T is called e-minimal if for any sentence
w € X(T), Ty, is finite or T-, is finite.

Recall that the E-closure for a family 7 of complete theories is characterized by the following
proposition.

Proposition 1. [19] Let T be a family of complete theories of the language . Then Cly(T) =T for
a finite T, and for an infinite T, a theory T belongs to Clg(T) if and only if T is a complete theory
of the language ¥ and T € T, or T # T and for any formula ¢ the set T, is infinite.

_ We denote by T the class of all complete theories of relational languages, by ?fm the subclass of
T consisting of all theories with finite models, and by T, the class T\T .

Proposition 2. 1| For any theory T the following conditions are equivalent:
(1) T is pseudofinite;

(2) T is T fin-approximated;

(3) T € Cle(T fin)\T fin-

1.8 Preliminaries from ranks for families of theories

In [4], rank RS(-) is defined inductively for families of complete theories.

(1) The empty family 7 is assigned the rank RS(7) = —1.

(2) For finite nonempty families 7 set RS(7) = 0.

(3) For infinite families 7 we set RS(7) > 1.

(4) For the family 7 and the ordinal number we set « = 8+ 1 RS(T) > « if there are pairwise
inconsistent X(7) sets of ¢, n € w such that RS(7,,) > 8, n € w.

(5) If av is a limit ordinal, then RS(7) > « if RS(T) > 3 for each § < a.

(6) Let RS(T) = it RS(T) > aand RS(T) 2 o + 1.

(7) If RS(T') > a for any «, we set RS(T) = oc.

A family T is called e-totally transcendental, or totally transcendental, if RS(T) is an ordinal.

If T is e-totally transcendental, with RS(7) = « > 0, we define the degree ds(7) of T as the
maximal number of pairwise inconsistent sentences ¢; such that RS(7y,) = a.

Proposition 3. [4] T is e-minimal < RS(T) =1 and ds(T) =1

Definition 4. [4] A family 7T, with infinitely many accumulation points, is called a-minimal if for
any sentence ¢ € X(T'), T, or T-, has finitely many accumulation points.

Let o be an ordinal. A family 7 of rank « is called a-minimal if for any sentence ¢ € X(7),
RS(7,) < a or RS(7T-,) < c

Proposition 4. [4] (1) A family T is O-minimal < T is a singleton.
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(2) A family T is 1-minimal < T is e-minimal.
(3) A family T is 2-minimal < T is a-minimal.
(4) For any ordinal o a family T is a-minimal < RS(T) = « and ds(T') = 1.

2 Ranks for families of cubic theories

Consider a language ¥ composed of R®@ . Let Tou be the family of all cubic theories of X. Let T
be a cubic theory and Q = T'. For a cubic theory T we consider the above invariants and the following
possibilities:

2.1 Family of cubic theories with a bounded number of Invp(n)

If for each theory T from the subfamily 7 C T both diameters d(T") and Invr(n) are finite, and
also Invp(oco) = 0 or Supp(T) is finite, the subfamily 7 is finite, so RS(T) = 0, and the degree of
ds(T) is equal to the number of invariants. Let’s illustrate how the grades of families differ.

Ezxample 1. Now we consider a one-element family 7 = {77 }. If we consider ng-cubes with invariant
Invp, (ng) = m, then RS(T) = 0, ds(T) = 1. And if we work with ng-cubes and nj-cubes with
Invr, (ng) = m and Invp (ny) =1 for m # 1, then ds(7) = 2. For a finite number k, if we are dealing
with ng-cubes with the set of invariants {Invr, (ng), ..., Invy (ng)}, n; # nj, we still have RS(7T) =0
and degree ds(7T) =k + 1.

Ezample 2. Let us deal with the finite family 7 C 7.y consisting of theories T7,...,T,. If the
number of m;-cubes in each theory T; is equal to k, in other words, each theory has the same number
of m;-cubes, that is, Invy, (m;) = k with Invr,(m;) # Invr,(m;), i # j, then RS(T) = 0, ds(T) = n,
since T is represented as a disjoint union of finite subfamilies 7., = {T; € T|p; € T; is a sentence
describing m;-cubes }.

In the examples above, one can notice that the degree of the family depends on the number of
invariants. If for the theories considered in Example 2 we add the conditions that each theory has the
same number of invariants, let, for example, s, then ds(7) = n - s. And if for different sq,...,s,, in
each theory T; there are s; invariants, then ds(7) = > 1" | si.

For a family 7 C Ty such that Invp(oo) = 0 and Supp(T) is finite for every theory T € T, the
degree varies in a similar way.

Let us now consider infinite subfamilies 7 C 7.y of all cubic theories with a bounded number of
Invr(n) = oo and Invr(oo) = 0 for every T' € T. In this case, Supp(T) is infinite and the rank of the
family increases, and for the degree of the family, we consider the number of accumulation points.

For natural numbers n, m € w, with n # m, we denote by 7, the family of cubic theories from 7.,
with one arbitrary value Invr(n), where T' € T, and Invr(m) = 0.

Proposition 5. Each subfamily T, of 7.y is e-minimal.

Proof. By Proposition 3, it suffices to prove that RS(7,) = 1 and ds(7,) = 1. The family 7,
consists of theories T1,...,Ts with Invp(n) = ki, ki > 01 < i < s and the only theory To, with
Invr,_(n) = oo. The theory T, is the only accumulation point for 7,,, and the number of accumulation
points is equal to the degree of the family. We get RS(7,) = 1 and ds(7,) = 1, which implies an
e-minimality of 7.

Example 3. We are dealing with cubes of different sizes ng and n;. Then we get a countable number
of options (Invr(no), Invr(ni)). Thus there is a countable set of theories with ng-cubes and ni-cubes
forming the family 7’. Here every family with an infinite Invp(ng) or Invp(ny) has RS = 1, and
the only accumulation point with Invp(ng) = Invp(ny) = oo, has infinitely many ng cubes, infinitely
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many n1 cubes and RS(7’) = 2. Thus for the given family 7/ RS(7’) = 2 and ds(7’) = 1. Hence the
family is a-minimal.

Ezxample 4. If there exists a countable number of n;-cubes, i € w, with countable (Invr(ng),
Invp(ny),...,Invp(n;)) one can construct an a-minimal family 7 consisting of a countable number
of e-minimal subfamilies 7;, ¢ € w. According to the definition of a-minimality, the family 7 has
RS(T) = a, ds(T) =1 and is represented as Tp,_ .-

So by increasing the number of Invp(n) invariants and the dimension of the cubes, one can unlimited
increase rank to any natural number. If the set Invp(n) is countable, then the family 7 C 7.y of cubic
theories is e-totally transcendental and can contain e-minimal, a-minimal, a-minimal subfamilies.

Realizations of e-minimal, a-minimal, a-minimal subfamilies of the family 7., of all cubic theories
allow one to construct a subfamily 7 with a given countable rank and degree. According to the
definition of a-minimality, a family of 7 cubic theories with RS(T) = « and ds(7) = n can
be represented as a disjoint union of subfamilies Trnup(ko)s -+ -> Trnvp(k somewhat differently
Invr(ko), ..., Invr(kn—1), so every Trpy,(x,) is a-minimal.

nfl) ?

2.2 Family of cubic theories with an unbounded number of Invyp(n)

The next result shows that the family 7., of all cubic theories is not e-totally transcendental.
Theorem 1. RS(Tewp) = 00.

Proof. Repeating the arguments of [1; Proposition 4.4] and [8; Proposition 2.5| we can construct a
2-tree of sentences ¢, ©o, Y1, @o1, - - . indicating an infinite rank.

8 Approximations of cubic theories

The following theorem shows that any cubic theory is approximated by theories of finite cubic
structures.

Theorem 2. Any cubic theory T with an infinite model is pseudofinite.

Proof. Let Q be an infinite model of a cubic theory T'. Since for finite & and n, Invp(n) = k and
Invyp(oo) = 0, the cubic model Q is finite and consists of a finite number of finite connected components
(n-cubes), we will consider only the following cases:

Case 1. If Invp(n) = oo and Invp(oco) = 0 (that is, co-support is a singleton), then Q consists of
an infinite number of connected components of finite diameters. The Q model is approximated by the
disjoint union | |;,, Q; of models Q;, i € w which the connected components are n-cubes. Each such
n-cubes are pairwise isomorphic that implies the pseudofiniteness of T'.

Case 2. If for finite k and n € w, Invr(n) = k and Invr(co) = 1, then the theory 7' has models
Q = Q| |91, where Qp is a finite cubic model consisting of m < k connected components (n-cubes)
of finite diameters, Q1 is an infinite cubic model consisting of £ — m connected components of infinite
diameters. Since the components of the model Qg do not affect the pseudofiniteness, Q1 is approximated
by increasing the dimension, as well as the diameters of the connected components. Let Q) be a finite
model with k£ —m connected components which are n-cubes. Using Q} = Q, U Q) .47 > 2 in the limit,
we obtain the desired model Q;. The set of theories {Th(Q})|i € w} approximate the theory Th(Q1)
and theories {Th(Qy| ] Q})|i € w} approximate the T theory.

We can also grow connected components to get a pseudofinite model Q" with Invy(n) = oo and
Invp(oo) = 1, having components of both finite and infinite diameters.

Case 3. Let Invp(n) = oo and Invp(oo) = 1. Let the cubic model Q have only an infinite number
of connected components of infinite diameters. For the cubic model Q, it is true that Q = |_|Z.€w ;,

where Q) = Q4 U Q._,,i > 2. That is, first we take the finite model and increase the diameters of the
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connected components, we get a model with a finite number of connected components, each of which
is infinite-dimensional cubes, then, increasing the number of the connected components, we get the
desired model Q.

4 Futher direction

Recently, various methods similar to the “transfer principle” have been rapidly developing, where
one property of the structure or pieces of this structure is satisfied in all infinite structures or in another
algebraic structure. Such methods include smoothly approximable structures, holographic structures,
almost sure theory, and pseudofinite structures approximable by finite structures. Pseudofinite structures
in an explicit form after J. Ax were not studied for a long time. Until the 1990s, only a few results
on this topic were obtained, and the very first result is the result of B.I. Zilber [20] asserting that
w-categorical theory is not finitely axiomatizable. At the time, the property of being pseudofinite was
not considered particularly important or interesting, but the proof is based on pseudofiniteness.

One of the first results in the theory of classification of pseudofinite structures is the famous theorem
of G. Cherlin, L. Harrington and A. Lachlan [21], which generalizes Zilber’s theorem to the class of
w-stable w-categorical structures, stating that totally categorical theories (and in more generally, w-
categorical w-stable theories) are pseudofinite. They also proved that such structures are smoothly
approximated by finite structures.

Definition 5. [22] Let L be a countable language and let M be a countable and w-categorical L-
structure. L-structure M (or Th(M)) is said to be smoothly approzimable if there is an ascending
chain of finite substructures Ag € A; C ... € M such that Uiew A; = M and for every i, and for
every a,b € A; if tpp(a) = tpam(b), then there is an automorphism o of M such that o(a) = b and
o(A;) = A;, or equivalently, if it is the union of an w-chain of finite homogeneous substructures; or
equivalently, if any sentence in Th(M) is true of some finite homogeneous substructure of M.

A. Lachlan introduced the concept of smoothly approximable structures to change the direction
of analysis from finite to infinite, that is, to classify large finite structures that appear to be smooth
approxrimations to an infinite limit.

Smoothly approximated structures were first examined in generality in [22], subsequently in [23].
The model theory of smoothly approximable structures has been developed very much further by
G. Cherlin and E. Hrushovski [18]. The class of smoothly approximable structures is a class of w-
categorical supersimple structures of finite rank which properly contains the class of w-categorical
w-stable structures (so in particular the totally categorical structures).

Recall [24,25] that a countable model Q of a theory T is called a limit model if Q is represented as
the union of a countable elementary chain of models of the theory T that are prime over tuples, and
the model Q itself is not prime over any tuple. A theory T is called [-categorical if T has a unique (up
to isomorphism) limit model.

Homogeneity and [-categoricity, as well as the Morley rank for a fixed cubic theory, are studied in

[9,10].

Proposition 6. Any model O of the [-categorical cubic theory T is smoothly approximable by finite
cubic structures.

Proof. The limit model Q of [-categorical cubic theories T is represented as an ascending chain of
finite prime substructures Qp C Q) C ... € Q such that Q = (J;¢,, Q; and there is an automorphism
o of Q such that 0(Q}) = Q..
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Conclusions

In the paper the ranks and degrees for families of cubic theories are described. Several examples
of families of finite rank cubic theories are given. It is proved that any cubic theory with an infinite
model is pseudofinite.
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H.JI. MapxabaTtoB

JI.H. lymuaes amomdaev Eypasus yammuk yrusepcumemi, Acmana, Kazaxeman;
Kasax-Bpuman mexnurarok; ynusepcumemi, Aamamo, Kaszaxcman

Ky0ThIK Teopusaap/biH, yifipJjepi yImiH paHTijiep MeH
aIMITPOKCUMAIUAIIAPD

2KywmpicTa KyOTBIK Teopusijiap YidipJiepiHiH, paHI'THIK CHIIATTaMAJIAPBI, COHBIMEH KATapP MCEBI0AKBIPJIBI JKOHE
Teric anmpOKCUMAIIAAIAY CUSKTHI KyOTBIK TEOpUsIapIbIH KaHa KacueTTepi 3eprresren. KyOToiK Teopus-
Jlap YHipiHZeri Ke3 KeJIr€éH TeOpHUsl aKbIPJbl KYDPBLIBIM TEOPHUSCHI OOJIBIIT TaOBbIJIATHIHBI HEMeCe aKbIPJIbI
KYPBLIBIMIAPIBIH TEOPUJIAPBIMEH aIlllIPOKCUMAIUIIAHATHIHEI J1osesieH . [lceBaoaKbIpIbLIbIK, HeMece Te-
ric anmpoKCUMAIUsIaHy KACUeTi KypAeJi MeKCi3 KyPhIIbIMIAPIbIH OPHBIHA aKbIPJIbI O0BEKTIIEep/Ii 3epTTe-
yre HeMece KepiciHile KapalaiibIM KypPbLIBIMIapAaH KYP/iesli KyPbLIBIMIAPAbI TYAbIPYFa MYMKIHIIK Oepesi.

Kiam cesdep: Teopusiiap ammpoKCUMAIUSIIAPEI, Ky, KyOTHIK KYPBLIbIM, KYOTHIK TEOPHs, IICEBI0AKBIPJIbI
TEOPUsl, TETiC AIIPOKCUMAIUSAIAHATHIH KYPBLIBIM.
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H./I. Mapxabaros

FEspasutickuti nayuonasvrut yrHusepcumem umenu JI.H. 'ymunesa, Acmana, Kazaxcman;
Kasaxcmancko- Bpumancrkutl mexnuveckuti yrnusepcumem, Aamamoi, Kasaxcman

Panrm m annpokcumanmsa A ceMelicTB KyOmvYecKnX Teopwuii

B pabore m3ydensl paHroBble XapaKTEPUCTUKU CEMENCTB KyOMIECKHUX TEOPUil, a TaKKe HOBLIE CBOICTBA
KyOMYEeCKUX TeOpHuil, TaKhe KaK IICEeBJOKOHEYHOCTb U IJIaJKas allpPOKCUMHUPYyeMOCcThb. JlokazaHo, 4TO B
ceMeficTBe KyOMIeCKuX Teopuil jr00ast Teopusi SIBJISIETCS TeOprueil KOHEYHON CTPYKTYPbI HJIM AllIPOKCUMHU-
pyeTcs TeOpusiMA KOHEYHBIX CTPYKTYp. CBOMCTBO MCEBIOKOHEYHOCTH HJIN TVIQJIKON AIIPOKCUMUPYEMOCTH
II03BOJISIET HCCJIENOBATH KOHEYHBIE OOBEKTHI BMECTO CJIOXKHBIX OECKOHEYHBIX HJIM, HA0OOPOT, U3 IIPOCTHIX
CTPYKTYP NPOU3BOIAUTH OOJIEe CIIOXKHBIE.

Karoueswie caosa: anmpoKCHMamysl TeOpuu, KyO, KyOudeckasi CTPyKTypa, KyOudecKas TeOpHs, IICEBIIOKO-
HeYHas Teopus, IVIaJKO alllPOKCUMUpyeMasi CTPYKTypa.
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Solution of a two-dimensional parabolic model problem in a
degenerate angular domain

In this paper, the boundary value problem of heat conduction in a domain was considered, boundary of
which changes with time, as well as there is no the problem solution domain at the initial time, that is,
it degenerates into a point. To solve the problem, the method of heat potentials was used, which makes it
possible to reduce it to a singular Volterra type integral equations of the second kind. The peculiarity of
the obtained integral equation is that it fundamentally differs from the classical Volterra integral equations,
since the Picard method is not applicable to it and the corresponding homogeneous integral equation has
a nonzero solution.

Keywords: heat equation, boundary value problem, degenerate domain, Volterra singular integral equation,
regularization.

Introduction

Recently, in connection with the intensive development of modern contact technology and due to
the high speed of electrical devices, more reliable measurement of the temperature field of the contact
system has become relevant. And, no less important, it is necessary to study the dynamics of its
change over time. At the same time, the temperature field of high-current contacts must be studied
taking into account the change in the size of the contact area, which changes both due to the action
of electrodynamic forces and due to the melting of the contact material at high temperatures.

When the electrodes are opened on the contact surface, the melting temperature is reached and a
liquid metal bridge appears between them. As a result of further opening, this bridge is divided into
two parts and the contact material is transferred from one electrode to another, that is, bridge erosion
occurs, which can eventually disrupt their normal operation.

To solve this kind of heat conduction problems, it is necessary to use generalized heat potentials
and further reduce the original boundary value problem to singular Volterra type integral equations.
From a mathematical point of view, the peculiarity of the problems under consideration is that, firstly,
the domain in which solutions are sought has a moving boundary, and secondly, at the initial moment
of time, the contacts are in a closed state and the problem solution domain degenerates into a point
[1-14].

The problem considered in this paper is called a model one, since the case is studied when the
boundary of the domain in which the solution of the problem is sought moves according to the linear
law x = t. In the future, it is planned to study this problem in the case when the boundary of the
domain will change according to an arbitrary law x = ~(t), v(0) = 0.

*Corresponding author.
E-mail: kopbalina@mail.ru
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1 Statement of the boundary value problem

We consider the following two-dimensional boundary value problem in spatial variables in a cone

Q = {(m,y,t)| Vri+yi<t, t> 0,} with a lateral surface I' = {(a:,y,t)] Vaz+yi=t, t> 0} for

the equation
ou 5 (0% d%u 9, (1 Ou 1 Ou
8t_a<&ﬁ+8f>_a6 2 oy o M

with a boundary condition

u(x>yat)|F :g(x7y7t)7 (2)

where 0 < 8 < 1, g(z,y,t) is a given function. It is necessary to find a function u(zx,y,t) satisfying the
equation (1) in @ and the boundary condition (2).

Such boundary value problems in domains that change with time and degenerate into a point
arise, for example: when describing the heat transfer process in a moving medium velocity of which
is a function of the coordinates; in mathematical modeling of thermophysical processes in the electric
arc of high-current disconnecting devices, while taking into account the effect of contracting the axial
section of the arc into a contact spot in the cathode field. They are also relevant in the creation of new
technologies in metallurgy, the production of crystals, laser technologies, etc.

Passing in (1),(2) to cylindrical coordinates, in the domain @ = {(r,t)| 0 < r < t, t > 0}, we obtain
the following boundary value problem for the axisymmetric case:

ou 2'1—2ﬂ'8u+2 0%u

E:a r E G.W’O<ﬁ<17 (3)
u(r, t)‘r:O - gl(t)7 > 07 (4)
U(T', t)’r:t - 92(t>7 t>0. (5)

2 Representation of a solution of the boundary problem (3)—-(5) using heat potentials

The fundamental solution for the equation (3) is the function
1 8. 51_5 r2 4 &2 ré
G )= — . S TS s
(&t =) 222 t—r P [ 4a?(t — 7')] o <2a2(t - 7')) ’

where £ is a parameter, Ig(z) is the modified Bessel function of order 3. We will seek the solution of
the problem (3) — (5) as the sum of double layer heat potentials

B LoG(r &t — 1)
u(r,t)—/o —35

LOG(r &t — 1)
d _ N/ 7
&Jmﬁr+é 5

where p(t) and v(t) are potential densities to be determined.
Let’s transform the function (6), for this we calculate the derivative:

OG(rét—7) 1 Bl rt4¢ r¢ e
o e o ) e (s ) e ()

1 rf(1-2p) rt 42 ré
e a e o | am ) ()

v(T)dr, (6)
£=0
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where we have used the relation [15; 975]:

Iy(z) = Ip-1(2) — gfﬁ(z).
Next we find
OG(r,&,t — 1) B 1 28 1 2 .
N R ) e o LN () B {_4a2(t—7)] )
and
oG t—7)) _
o€ e

n 1 %1 -2p8) . r2 4 72 7 rT
N e e ).
202 (t—71)7P P a2t —7)| P \2a2(t— 1)
We transform the last equality as follows:

OG(r,&,t — 1)
23

E=r

where we introduced the notation

Ig-1,(2) = Ig-1(2) = Ip(2).
We substitute the obtained relations (7), (8) into the equality (6), and then we obtain the integral
representation of the solution for the equation (9):

72 1 72

+/0 (2a2)7+1 " 28(t —)f+1  pr(g) P [‘W(tﬂ

} (7, 9)

where .
t=Pea? u(t) € Loo(0,00).
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3 Reduction of the boundary value problem (3) — (5) to a singular Volterra type integral equation

We require that the function wu(r,t) defined by the equality (9) satisfy the boundary conditions
(4),(5), which will allow us to define the functions u(t) and v(t).

t 1 r2f 1 r2
! /0 2a2)P (- argg) P [_4a2(t—7)] ' ’/(T)dT] -

1 LR S L r? (r)d
=——— —.——.lim | ————exp|————| -v(r)dr =
(2a2)P1 25 " BL(B) »50 Jo (t— 7)ot P | T aa2(t — 1)
B N I 1 Lo
C||4a2(t—1) 7| (2a2t)8T1 28 BI(B)
. 0 20 (4a2)BHL . AL 2 _, r2
X}ﬂg% 2 r26+2 4222 'V(t_élcﬂz)dzz
a“t
1 11 4q?)P+1 > 2
= —— _(a) - lim eyt — r dz =
(2a2)8+1 26 BT(B) 4a? >0 )2 4a’z

4a2t

N N PSR R S NS Sy Lo
-5 50 | &2 = 53 5rc5 - TE) - 00 (1) = 01(0).

from here one of the sought-for densities v(t) is directly determined

v(t) = 2a*Bg(t).

Therefore, ,
u(r,t) =Yy (r,t) + gi(rt), (10)
i=1
where t rﬁTl_B(r -7) - (r—)? T rT
uy(r,t) :/0 ait— e 4al(t-m) . e 203(t-7) . Jg (2@2(15—7')> p(r)dr,

t 6+1 17/8 (7”*7')2 TT
rPtir - - rT
7t — - . 4a2(t—7) . 202(t—7) . [5 - d ,
ua(r,t) /0 1ai(i = )2 e e 8-1,3 <2a2(t—7'))'u(7—) T

Epf1-28) U e r
u3(7", t) _/0 m e 4d?(t—7) .o 2a2(t—7) 'IB <2a2(t_7-)> ,U(T)dT,

_ 11 1t r’
0= s 3 57 o S|

Remark 1. If g1(t) is bounded, then gy (r,t) is also bounded.
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Indeed,
1 1 1 t r26 2
1)< . t - . - |dr=
00 < 35 gy 901 | o |y |
72 H 1 11 >
- — .l = L .4ﬂ.a2ﬂ.|gl(t)|/ P e dr =
2(4 _ 28 98 r
‘ 4a?(t — 1) (2a2)8 28 T(pB) 4a22t

-~ )
= g ()] —— 27
g I

Now let us satisfy the boundary condition (5).

w(r,t)|,—, = lim u(r,t) = ga(t) = q1(t,t)+

r—t—0

n /t tB+1r1-8 t—T tT 7 tr n
———————exp|———|exp |—=———| I5— —
o l4at(t —7)2 P a2 D752 t—7) | PP\ 2a2(t — 1)

oy || o g 1 () o

As a result, we obtain the following integral equation for the unknown density u(t):
E(8(1—2p) t—7 tr tr
)= [ {2 e |- LI N A (S —
w01 [ G oo [ | oo =) 1 (e =) +
n th+ir1=8 o t—T . tT I tr n
———Sexp|——— | exp | —=———| I5- —_—
22t — )2 P | T a2 | P | 22t — )| PP\ 22t — 1)
tBr1-8 t—1T7 tT tT
- — I dr = F(t). 11
* 2a%(t — 1) P [ 4a? ] P [ 2a2%(t — T):| : <2a2(t — T)) } u(r)dr ®) (11)

F(t) = —2a%ga(t) + 2a2G1(t, 1).

We introduce the following notation

_ t _ t
' exp [W} p(t) = pa(t), t"Fexp [4@2

<|lgi(®)|, V(rt)eq.

where

] F(t) = Fi(t).
Then the last integral equation is transformed into the following equation:
¢
ia(®) ~ [ Nt (i = ), (12
0

kernel of which has the form:

and, moreover,
t(1—2p) tr tr
Nt =——exp |- | Iy [
1) =" eXp{ 2a2(t—7)} 6<2a2(t—7))+
P R T
2a2(t—7)2 V| 2a2(t—7)] P\ 2a2(t—7) )"

N67) = 5= = |~ ¥ (s —))

A feature of this integral equation follows from
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Remark 2. The kernel of the integral equation (11) satisfies the equality

t
1—
lim [ N(t,7)dr = 7ﬂ,
t—0 0 /8
moreover, Vt > 0, V3 € (0;1):
t 1— B t
/ Ny(t,7)dT = ——, lim/ Na(t,7)dr = 0.

Indeed,

o= {25 o i) (=)
t?

tT

tT 7 tT d . B B
g [z | v () = -
_/ (1—25)-12-z-e_z-lg(z)dz+/ e {Iy1(2) — Iy(2)} dz =
0 z 0
=(1-28) /OO % e Ig(2)dz + 1 = ||(2.15.4.3) [16;272] | =
0
—ﬁT[ 1+5]+1—5’
t t t tr tr
[ waerie = [ sy [ ) 1 () -
tr oy . to[e1 B
ot 1 g, 31 ¢
_M.ﬁ.r[ 1+52]_2a2ﬁg>0.

4 Solution of the characteristic integral equation

In order to find a solution of the integral equation (10), we first study the following characteristic
integral equation:

) - /0 Ni(t, 7Yy (F)dr = B(2). (13)

Remark 3. Remark (12) implies that for % < p <1, (O < % < 1) the integral equation (13) in
the class of essentially bounded functions has a unique solution that can be found by the method of
successive approximations.

By Remark 2 for 0 < 8 < % (% > 1) equation (13) is indeed characteristic for the equation (11).
Instead of the variables ¢, 7 we introduce new variables x, y:

=l m0=m(3)=w),  e0 =0 () =m0 (14)

Then the equation (13) reduces to the following integral equation with respect to the unknown
function us(y):
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() - [ M (y — 2)s()de = B (y), (15)

M-t-0 =2 o0 () 1 (=) *

Remark 4. If we find a solution to the equation (13), then we will obtain a solution to the equation
(11) by applying the equivalent regularization method to the solution of the characteristic equation
[17,18].

where

5 Solution of the homogeneous characteristic equation

The equation (15) differs fundamentally from the Volterra equations of the second kind, for which
the solution exists and is unique. The solution of the corresponding homogeneous equation

el - [ T M_(y — 2)n(a)dz = 0, (16)

in the general case may also be non-trivial. The eigenfunctions of the integral equation (16) are
determined by the roots of the following transcendental equation [18; 569] with respect to the parameter

p:
o o
M_(—p) = / M_(z)-eP*dz =1, Rep <0, (17)
0
since, by applying the Laplace transform to the equation (16), we obtain
3(p) - [1 = M_(=p)] =0, Rep<0. (18)

In order to find the image of the function ]TJ\_(—p) we use:
1) the formula (29.169) [19; 350]; )
2) the property: let f(¢) = f(p), then 1 f(t) = fpoo f(p)dp [20; 506|. Thus, we have

M- (=) =200 - 205 (V) 13 (Y2 )+

[ () () () ()

—00

To calculate the last integral, we use the formula (1.12.4.3) [16; 44]:

e (50) e (59) - (500 (50 -

a® ) o .
- H\/? = :Z/OOZ[KB—I(Z)IB—I(Z) — Kg(2)Ig(2)]dz =
— 2 [ee}
- (1 ! (6z21)> To-1(2)K g1 (2) = I’B—l(Z)K'ﬁ—l(Z)] =
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o0

— 22 [(1 + fj) I5(2)K 4(2) — I/B(Z)K/B(z)} =

v—P

= 72 [(1 e ;21)2> Is 1(2)Kz_1(2) —

e+ P @ Ko+ S o) OOF -
2 [(1 + fj) I5(2)K5(2) — {Iﬁ_l(z) - f]g(z)} {—Kﬁ_l(z) - fKﬁ(z)H OOF _

= [(2*+ (B—1)%) I3_1(2)Kp_1(2) + 2°15(2) K3(2) —

2 (8= DIs(2)Ks-1(2) + (8 = DIs(2)Kp(2) = (8 = V)P L1(:)Kp1(2)] [ Yoz —
- [(22 + BQ)Ig(z)Kﬁ(z) + zQIﬁ_l(z)Kg_l(z) +2815_1(2)Kp(z) —
~2B15(2) K 1(2) — BT (2)Kp(2)] Yoz =
= [Hls(2)K () - 2151 (VK2 | o, =
= [2205(2)K-1(2) = (215(:)Kp1(2) + 2151 () K ()] |5 =

(), ()

o0
= 2:15(2)K 5, (2)] - - -

where we used the following relations:

K'a(z) = ~K3a(2) - T K5(2),
K's1(2) = —Ks(2) + 21K (2),
Ia(z) = Is1(2) — C15(2),
Iya(2) = I5(2) + 22 1 (2)

Then the equation (17) will take the form:
21, <Cp) [(1 —28)Kj (Cp) — La_pKﬂ_l < v _pﬂ —0, Rep<O0,

where Kpg (@) is the Macdonald function.

Let’s assume that Iy ?) = 0. According to the definition of the Bessel function for the imaginary

a

argument Ig <@) = e‘gﬁijﬁ <@), where Jg (1\/jp> is the Bessel function — cylinder function of
the first kind. The function Jg(z) for any real § has an infinite set of real roots; for § > —1 all its
roots are real and equal iz = ag, 2z = —iag, ap € R, k € Z\{0} [21], i.e. in our case @ = qy,
where o € R. Hence pp = aza%, which contradicts the condition Rep < 0.

Thus, it is necessary to find the roots of the equation for 0 < g < %
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o o IR Y ) P s

It should be noted that for % < 8 < 1 this equation has no roots. This means that in the equation (18)
1- M—(_p) 7é 07

whence it follows that fz(p) = 0. That is, the homogeneous integral equation (16) has only a zero
solution in this case. For 0 < 8 < % the equation (19) has a unique real root py < 0, and the root
po = 0 corresponds to the case g = % And for 0 < B < % the root is pg < 0. This means that
the equation (16) for 0 < 8 < 3 has a non-zero solution ps(y) = CeP¥, py < 0. Then, returning to
the original variables (14), we obtain that the homogeneous integral equation corresponding to the
equation (13), for 0 < 3 < 3 has an eigenfunction

1 PO _ _t
t

M(O)(t):C’-tl—_B-e “4a?, pg <0, C = const.

Accordingly, for 8 = %, the eigenfunction has the form:

M(O)(t) — C’-i . e‘ﬁ7 C = const.

Vit

6 Solution of an inhomogeneous characteristic integral equation. Construction of the resolvent.

The equation (15) cannot be solved by directly applying the Laplace transform, since the convolution
theorem is not applicable here. Let’s apply the method of model solutions [18; 561]. Then the solution
of the equation (15) has the form

=5 [ +: %dp — 00+ o | +: B (—p)®r () dp.
where o e
Bi) = [ ey, B (p) = P Rep <o
M_(—p) =1+2I3 (Vjp> [(1 28)K <‘/?> VP (\/7’)] , Rep < 0.
If ]-{ii(—p) = R_(y), then the solution of the equation (15) has the form

W) = 0i0) + 5 [ Ry - (@) (20)
Y

To find the resolvent R_(y), we write its image in the following form:

(7)1 () PR (62) 0 s, ()

T (A e () e ()]

a

a

a

and use the following properties [19; 191]:
L If ¢(t) = @(p), then
1.
olat) = —p (£> , o> 0.
a’ \a
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1

2. If p(p) = ¢(t), then
o (Vp) = ENA
VP z and find the original expression

a

For convenience, we introduce the notation
1 —2Ig(2) [2Kpg-1(2) — (1 = 28)Kp(2)]
213(2) [2Kp-1(2) — (1 = 28)Kga(z)]

R*(z) =

According to [20; 519]:
= Az <X A(z oy
R*(Z) = Bézi = 2 B/((Z];)) ce kY,

where z; are zeros of the function
B(z) = 2Ig(2) [2Kp-1(2) — (1 = 28) Kp(2)] -
1) Let yg(z) = 2K3_1(2) — (1 — 28)K3(z) = 0. This equation, as noted earlier, has one root z for

2) Let Ig(z) = e‘gﬁiJ[g (iz) = 0. Therefore, iz = ay or z; = —iay, where oy, € R.
A
(ZO) CeTA0Y — R*_(y),

0<B<3.

Then

r 2) — A(Z) . = A(Zk) CeTERY — A(Zk) L2y

=56~ 2 B o Bl T B
where

B(z) = 2I3(2) [2Kp_1(2) — (1 — 28)K3(2)]
B'(z) = 215-1(2) [ Kp-1(2) — (1 — 28)Kp(2)] + 2(1 — 28)I5(2) Kp-1(2)+
+ <45(1;25) - 22) I5(2)Ks(2).
Thus, we obtain that for 0 < 8 < %:
e ?kY
B0 = 2 3T B () — (L= 29K )
2} ) (21)

0

+
2Iﬂ(ZO)K/3_1(Zo) [1 — ﬁz
1
2] '

70 =
215(20)Kp-1(20) |1~ 15528

1

We introduce the following notations:
2 (z) [ Ko (o) — (1 28) Kp(2p)]

Apk
From equality (21) we have
- — 2 o) 22 .
a 2VTY2 o) 0
2 o0 22
+ - Apo - / pe 0T gy
2\/my2 0
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Lemma 1. The resolvent R_(y) satisfies the estimate

A
R_(y) < —
(y) N
Proof.
2 oo 12 2
R_(y Z Aﬁk/ Te” 4y —iQa xdm—i-Aﬁ,O/ re 4y z0a zdl‘ <
Q\fy keZ\{0} 0
TS A+ ul
< 0—- + :
S B,k 8,0
2\/§ kezZ\{0}
Since |Ag | = C = const, we estimate the sum ‘Zkez\{o} Ag,k‘:
> Al =| X ) — (R
keZ\ {0} kez\fo) T BTIVER) IER A1k Bk

Kp(z) = B3P HD (i2);  Ip(z) = e 3P 5(02);
= 2 = —lQy; Z ) = tay;

Jp(=2) = ePmig(z);  HY(=2) = —e PTHP (2)

= 1
= (Jm(ak) wH Y, (an) + (1= 28)H ()|

am

1
eB=DmiJ5 1 (ap) [_ake*(ﬂfl)mﬂgl(ak) +(1— 26)6%1’]{?(%)]) =

| HV(2) = Js(2) +iNs(2);  HY(2) = Js(2) — iN(2) || _
Js(ar) =0
I i (677 <
— <
™ i (ards—1(o))? + (arNg—1(a))? + 200(1 = 28)N 5 () N (k) + (1 — 28) N ()
2 [ o N )
= == <
™ |2 (andpo1(ar))” + (o Ng-1(e))” ' T kz kHél_)l(ak)HLgQ_)l(Olk>
2| [~ d(ay,
< = / ) (@) %) = 1/(1.10.3.3) [16; 42] |
T\ ap - Hy” (o) - Hg” (o)
2| « H/(f_)l(oék) 1 Hg_)l(ozk) Hg—)l(o‘k
T r| 4 ) =5 2 -a Tr-arg—q =
Hﬁ—ly(ak) o Hﬁ_l Qg Hﬂ_l(ak) o
_1 (2) () ™
=3 ‘argHﬁ nen — argH (o) gg.
101
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Thus, we get

a2 a?(m +2C5)  CpM)
R (y) <——- A +|A < = ,C(l):const.
(v) NG ke;\:{o} sk + [Agol iy NG

2 2

a a“Tm
R Y gl iE
2\/‘@ kez\{0} 4\/‘@

Lemma is proved.

7 Solution of the characteristic equation

We found a solution of the equation
o) = [ My = )i = 0,0,
which for 0 < 8 < % has the form
pe(y) = ®1(y) + /yoo R_(z — y)®y(x)dx + CePoY.

Returning to the original variables, we write the solution of the characteristic equation (20) as
follows:

t
R_(t
w1 (t) = ®(t) —I—/ T<2’T)<I>(7')d7 +Cet.
0
For the convergence of the last integral it is necessary that

Bo(t) = = - B(t) € Loo(0, 00).

| =

Then we write the solution of the characteristic equation (20) as

pi(t) =t- Po(t) + /0lt R(t,7) - ®o(7)dT + Ce't,

where

R(t,7) < C-

S

\]

T

The last inequality follows from Lemma 1.

8  Solution of the initial integral equation. The Carleman-Vekua reqularization

Theorem 1. Initial integral equation (11) for any function t—Peta - F(t) € Loo(0,00) (0< B < 3)
has the unique solution in the class of functions

t
t_ﬁ exXp |:42
a

}u(t) € Lo (0, 00), <O<B< ;)

which can be found by the method of successive approximations.
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Proof. We rewrite the initial integral equation (11) as

/Nlt’T),ul( dT—F1 /NQtT,ul d (22)

Assuming the right-hand side of the equation (22) to be temporarily known, we write it in the following
form:

[1— Mpuz(t) =
t 1 1 [t~ F(7) C
— /0 M (t, 7)o (r)dr = EF(t) + t/o R(t,T) - . dr + ?e v (23)
where
1o (t) = %m(t),M(t,T) TN (t,7) / e Y& e

The following estimate for the kernel M (¢, 1)
Dy
Vi—T

holds. Thus, we show that equation (23) for each C' # 0 has a unique solution

M(t,7) < —i—bvg, 171, Dy = const

12 (t) = M2,part (t) + CMQ,hom(t)y

where ,
f2nom (t) = [1 = M) ulO(8), pa(t) = tPea? pu(t).

At the same time, if F'(t) = 0, then integral equation (23) has a solution ,ugo) t)=C-[1— M uO).
The theorem is proved.

9 Solution of the boundary value problem (3)—(5)

Theorem 2. If the conditions g1 (t) € Loo(0,00), t™Pga(t) € Loo(0,00) (0 < B < 3) are satisfied,
then the boundary value problem (3) — (5) has a solution u(r,t) € Loo(G).

Proof. From the integral representation (10) of the boundary value problem (3)—(5) we have

3
r,t) = Zui(n t)+ q1(r,t),

i=1

LpPrl=B(p ) (r—7)?
reT rT
.e T 4a2(t—71) . .e 2a2(t T <> T d7.7
/0 4@4 t—T 8 2@2(t—T) M( )

t T.B"rl 1— IB ('r2 7)2 2 rT
T 4a (t—7) . T 2a (t T) . -
/0 da*(t — 1) e - a1 <2a2(t - T)) ulr)dr,

t RY)
rP(1-28) —_=n s rT
‘[/‘ — - @ 7 . 4a2(t77) T 242 I - d
us(r 1) /0 2a%(t — )75 ¢ © f\2a2(t—7) uir)dr,

where

~ 1 11t r?
)= a3 5, e [—4@_)} )
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Let t—®¢ia - 1(t) € Loo(0,00). Let us find out for what values of a the solution of the problem u(r,t)
will satisfy the condition u(r,t) € Loo(G). First, we estimate the first term.

exp |~ 3y | < exp 1]

e I e try(e)de <
= 1 a“ - N =
2422 J, (# _’_5)2—64—(1 B

o pBlBte L pBl-Ba 3, 1
< T 442 . _EI __‘12'7'F ] 2 —
e / O S [ ]
1+«
B VAL S0 U & LV S
Cre 2 - 23 <t) = a2 ¢

Now we estimate the second term.

1T < O] = const Y(r,t) € Q.

t T6+1 1-3 ('r2 7)2 2 rT
t) = " 4a (t—7) . T 2a (t T) . I R — d —
ua(rt) /0 dat(t—1)? © - s <2a2(t—7))M(T) !

exp [—4gzzz>i)] < exp [-55] |

2a2t T) _6

Lo BB o gl-Ba
< Che™ 1a? - / - : —Hra e ¢ Ig_1 5(€)d€ <
0 (g2 +¢)

<

Bra—p
< Cye . L !

(67

o0 ot t .
/0 e tI5 1 5(€)dE < Cye 17 52 < (Cy=const, V(rt)e€Q.

2a

And, finally, we estimate the third term.

toy (1-2p) (r—r)? rT
t) = AP TR L e 20T . Ig| ———— dr =
us(r ) /0 2a2(t — )78 - - B <2a2(t — 7')) u(r)dr

_ | e [-rmtn ) < e ) |
w2 =& N
iz 700 —22;8)ta—6 /0 = i—)ﬁ”“ﬁ Ce€I,(¢) d <
< Cyeiz. 0 2625)”_5 /0 2 < 1()de = Cer . 2625)”_5 T [ ﬁHé } _
— Cge 0? - u_;:é)ﬁﬁ“a : (%)B < 03(1_25265)*/7? 717 1% < Oy = const,  V(r,t) € Q.

Hence it is clear that for a > 0 the solution of the problem u(r,t) € Loo(G).
The estimate for the fourth term follows from Remark 1. This implies the validity of the main
result, Theorem 2.

The results of this work will be used in solving a similar problem in a funnel-shaped degenerate
domain, that is, when the boundary of the domain changes according to the law r = ~(t), 7(0) = 0.
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Axademur E.A. Bexemos amuwvindazv. Kapazandv, yrusepcumemi, Kapazanow, Kaszaxcman

ByphINITHIK >KOMBLIATHIH 00JIBICTA MOAEJbAIK €Ki eJIIeMIi
napaboJIaIbIK €CeIITi Ielry

ZKywmpbicTa 1mekapachl yaKbITTBIH, ©3repyiMeH KO3FaJIaThIH KbIJIy OTKI3IIITIKTIH IIeKapaJiblK, ecebi 3epT-
TeJITeH, COHBIMEH KATap E€CEINTi ety OOJIBICHI YaKBITThIH, 0ACTAIKbI COTiH/E OOJIMANIBI, SIFHU HYKTEre aii-
Hamaapl. Bepinaren ecenTi menty yImiH KBTIy MOTEHIIMAIAAPHI OICI KOJIJAHBLIFAH, OYJI OHBI €KiHIM perTi
Bosbreppa THNITI CHHTYJISIPJIBIK, MHTEMPAJIIBIK, TEHIEYTE TYPJIEHIIpyre MyMKIHIIK 6epe/ti. AJTbIHFaH UHTe-
TPaJIIBIK, TEHJEYIH €peKINeiri — oJ KJIACCHKAJBIK, BobTeppa WMHTErpasiiblK, TeHIeyIepineH Tybereiti
epexIesene i, oiTkeni oran [ukap o/1ici KO IaHbLIMARIBI )KoHE COMKeC OipTEKTI MHTErpaJsiIblK, TeHICYIiH
HOJIJIIK eMec IentiMi 6ap.

Kiam ceadep: XKbLIy OTKIZIIIITIK TEHJEYI, IEKaAPAJBIK, €Cell, KONBIIAThIH 06JIbIC, BOJbTEeppaHbIH, CHHTY-
JISIPJIBIK, THTETPAJIIBIK, TEHJEY1, PEryJIsspu3aliusi.
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M. . Pamaszanos, H. K. I'yimemanos, C. C. Konbanuna

Kapazandunckutl yrusepcumem umeny axademura E.A. Byxemosa, Kapazanda, Kasaxcman

Pentenne moesibHOI AByMepHOIl mapadoimdecKoil 3a/1a9m B YTJIOBO
BbIpOXKgalomieiica objgacTn

B pabore ucciiesioBana xpaesasi 3ajiada TEIJIOMPOBOAHOCTH B 00JIACTH, I'PAHUIA KOTOPOH Ipeobpasyercs
C M3MEHEHWEeM BPEMEHH, a TaKKe O0JIACTDH PEeIIeHUs 3a7a9h OTCYTCTBYET B HAYAJIBHBII MOMEHT BPEMEHH,
TO €CTb BBIPOXKTAETC B TOUKY. Jlyis pelreHns: IOCTaBJIEHHOHN 33291 MCIIOJIb30BaH METOJI TEILJIOBBIX ITOTEH-
[IMAJIOB, YTO TIO3BOJISIET PEAYIIMPOBATH €€ K CHHIYJISPHOMY WHTEIPAJbHOMY ypaBHEHHUIO Tuiia BoJibreppa
BTOPOTrO pofa. OCOBEHHOCTH MOJIYI€HHOTO HHTETPAIBHOTO YPABHEHNUST 3aKII0YAETCST B TOM, 9TO OHO IIPUHIIN-
NUAJIbHO OTJIMYAETCs OT KJIACCUUEeCKUX MHTETrPaJIbHBIX ypaBHeHn! BosbTeppa, Tak Kak K HEMY HEIIPUMEHUM
meron Ilukapa u cooTBeTCTBYyIOIIEE OJHOPOIHOE NHTErPAJIbHOE YPAaBHEHNE UMEET HEHYJIEBOE PellleHue.

Karoueswie caosa: ypaBHEHNE TEILIOIPOBOIHOCTH, KpaeBast 33/1a1a, BEIPOXK JAIOIIASICA 00JIaCTh, CHHIYJISIPHOE
WHTErpaJibHOE ypaBHeHHE Boabreppa, peryaspu3aims.
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Bounded on the semi-axis multiperiodic solution of a linear
finite-hereditarity integro-differential equation of parabolic type

The question of the existence of a solution of linear integro-differential systems of parabolic type limited on
the semiaxis in a spatial variable and multiperiodic in time variables was considered. Sufficient conditions
of multiperiodic oscillations in time variables in a linear homogeneous equation with a boundary condition
and in a linear inhomogeneous equation were established. A linear homogeneous and inhomogeneous finite-
hereditarity integro-differential equation of convective-diffusion type were investigated.

Keywords: integro-differential, finite-hereditarity, convection, diffusion, parabolic type, differentiation operator,
Fourier series.

Problem statement

It is known [1,2] that many hereditary phenomena in biology and mechanics are described by various
types of integro-differential equations. If the state of a phenomenon at the moment 7 is determined by
the set of states at the moments of the interval (7 — e, 7], then such a phenomenon is called hereditary
with a finite hereditary period € > 0.

In the case of ¢ = 400, the state of the phenomenon at the moment 7 depends on its states at
moments in the interval (—oo, 7]. The hereditary of the phenomenon can also be related to the interval
(70, 7], where 79 is some constant.

When the heredity of the phenomenon is bounded by the period € > 0, then a linear phenomenon
with bounded hereditarity can be described by an integro-differential equation of the form

du(T)
dr

= A(T)u(r) + / K(7,s)u(s)ds + f(7). (1)

In the case of a quasilinear phenomenon of the heredity of the period € > 0 we obtain the equation

:A(T)u(T)+/K(T,s)u(s)ds—i-f T,U(T),/K(T,s)u(s)ds

In the linear (1) and quasi-linear equations the functions A(7), K(7,s) and f(7,u,7) are known.
Such equations, along with biological phenomena, describe the processes of elastic deformations,
electromagnetism, and other sections of the general dynamics related to the hereditary propagation of
thermal, magnetic, light, sound and other waves along the = axis. Propagations of this kind type can
also be of a diffusion nature. Propagations of this kind may have a diffusive character also. Then the
equation describing this phenomenon takes a form [3,4]:

u(z,7) o2 0u(x,7)

ST 22T — a(a, Tule, )+

*Corresponding author.
E-mail: gulsezim-88@mail.ru
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T

+ / b(x, T, s)u(x, s)ds + f (x,7,u(x, 7)) . (2)

T—E

In the case of multi-frequency waves and fluctuations, to study the processes, following [5-19], it
will be necessary to introduce a variable ¢t = (¢y, ..., t,,), varying on the vector field % = ¢ and one has
to consider the equation

O*u(z,t,
Pl t7)

D.u(z,t,T) 922
x

= a(z,t,7)u(x,t, 7)+

.
+ / b(x,t,7,t —cT + cs,s)u(x,t —cr + ¢s,s)ds + f (x,t, 7, u(z,t,7)) (3)
T—E

with differentiation operator

0 “ 0
D.= a + Z Cjaftj
j=1
in the direction of the vector ¢ = (ci, ..., ¢y,) With constant coordinates ¢; > 0, j = 1,m, and all the
input data of this equation are assumed to be periodic in time variables (¢,7) = (t1,...,tm,t0), to = T
period-vector (w, ) = (w1, ..., wm,wp), with incommensurable components wy = 6, w;, j =1, m.
Obviously, [5-16] along the ¢t = ¢(7 — 79) characteristics vector field operator D, of the equation
(3) turns into the equation (2), and its (w, )-periodic on (¢,7) € R™ x R solutions turn into almost
periodic 7 solutions of the latter at x € R.
Thus, the investigation of multiperiodic by (¢, 7) solutions of equation (3) of period (w,0) at x € R4
is of great importance in applied problems of the theory of fluctuations and oscillations.
Note that problem studies in such a formulation are not found in the scientific literature. The
research is carried out in the inductive order from the particular to general. In this connection, the
problem was studied for various linear cases of equations (3).

It is clear [17,18] that the problem under consideration and its methods of investigation are closely
related to some applied aspects of equations of mathematical physics of parabolic type and analytical
problems of the theory of multi-frequency oscillations.

The researchers’ interest in the problems for integro-differential equations, started at the end of the
XIX century, has not weakened to this day [19,20]. From various points of view, where the hereditary
terms of the equations are described by integrals of Volterra or Fredholm types, and the dynamics of
phenomena are characterized by ordinary or partial derivatives of unknowns, developing their theory
from equations to inclusions.

1 Multiperiodic zeros of the differentiation operator in the multiperiodic boundary condition
Applying the differentiation operator V. = D, — a286—;2 of the variables x € Ry = (0,400),
T=ty)€ R, t=(t1,...,tm) € R™ to the function v(z,t,7) we introduce the equation

Veu(z,t,7) =0. (4)

m
Here D, the differentiation operator for time variables (¢,7) of the form D, = % + > cjé%, co=1;
j=0
a = conts > 0; V. is the differentiation operator by (x,¢,7). The equation with one-dimensional time
28211]'
a =
0z2

t; of the form cj% — 0 has solution v;, depending on ~;,/c;r + ’yjza%j running waves with
J
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parameter ;, then the solution of equation (4) with multidimensional time (¢,7) can be represented
by the relations

3

2.2
O(ijﬂ%h**Vja tj) (5)
with arbitrary differentiable functions ¢, 5 and v;, j = 0, m vector variable t —cr = (t; — 17, ...,y —
emT), ¢ = (€1, ey Cm)-
Consequently, relation (5) represents zeros of the operator V. at x € R4, (t,7) € R™ X R.
In what follows we will deal with bounded zeros of the operator V.. Then by setting = to zero from
(5) we obtain the limit function

v(z,t,7) = a+ pe’

a? in: 'y]ztj 0
0(z,t,7)|g=0 = a4 fe =0T =vi(t,7) (6)
and for x — 400, in the case of Rey; < 0, we have
(2, t,7) | omtoo = @ =0T (£, 7). (7)

To ensure that the solution (5) for ¢; > 0, by virtue of (6) and (7), the functions «, S, 7; and along
with the condition Revy; < 0, the conditions Im~y; > Rev;, j = 0, m must be bounded.

The main problem is related to the establishment of sufficient conditions for the existence of (w, 0)-
periodic on (¢, 7) real-analytic at ¢t; € II, = {tj : i—’;ﬁmtj] < p}, j=0,m,wp =06, w=(w1,.., W),
p = const > 0, solutions of the equations in question. Therefore in this case we assume that the
boundary condition (6) is defined by the function

Ot +w,m+0) =0t 7) € AZY (7 x 1L,) . (8)

Here A;‘ff (HZ““ x II,) is a class of (w, #)-periodic rea-analytic at (t,7) € 17" x 11, and continuous on
closures ﬁzl X ﬁp functions, with wg = 0, w1, ..., w,, are rationally incommensurable positive constants,
p being the bandwidth II, of the interval 0 < p < 1.

From the condition (8) we have a Fourier series representation of the function v°(¢, 7):

27 fj kvt
WO(t,7) = Z vpe 170 Y J, (9)

kezmtl

where k = (ko, k1, ...,km), v = (V0, V1, ... Um), V5 = wj_l, j=0,m; 1)2 - are Fourier coefficients having

the properties 52 =Y . and satisfying the estimate

[of] < [[°lle" (10)
m
with the norm [[0°]| = sup [0°(t,7)| and |k| = > |k;].
7 <11, 7=0

Due to rational incommensurability of frequencies v; = w;l, j = 0,m parameters «, 3, v; become
constant, for the function depending on the difference ¢; — 7 to be w; and 6 = wy - periodic as by t;
and so by 7 it is necessary and sufficient. Assuming (8) with respect to (6) we find the solution (4),
(6) in the form of series

2 42t
v(x,t,T) = Z ve?=0 (11)
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with constant coefficients vj, and indicators ~;z, 7 = 0,m, k € AR
Obviously, (11) is a generalization of the function (5) to an infinite series, which represents the

solution of the equation (4) in general form.

Substituting (11) and (9) into the boundary conditions (6) formally we obtain v, = vY, yjzk(LQ =

2mikvj, 5 =0,m, k; = ZO, Zg_ is the set of non-negative integers.

Since we are interested in the solution bounded by x in R, we have
wvik; wvik;
fyjk_—<\/a]]+i\/a] ]>,j_0,m, kj:Z-Ot,- (12)

In the case of negative k; = —|k;| < 0 we have the equation 'kaa2 = 2milkjlv;, j=0,m, kj = Z_
to determine the indicators vj;. Hence we find vj, = £v/—1 27r|k 2mlkjlv; Vo= YT %V]lk 1\;%1 =
+ (_\/TW +Z~\/7er|kj>

a a

Hence, to ensure that the solution is bounded by x € R, we take the roots with a plus sign:

\/7T1/j|k‘j| ‘\/7Tl/j|k‘j|

L= | = k:=27_. 13
YVik a +1 a > J 07m7 9 ( )

Hence v, = £—"— at k; € Z_OF is the set of positive integers.

Thus, the roots (12) and (13) are mutually conjugate. Hence, combining these formulas we have

Vv |kl ezl

Yk 0 S1GNK; 0 y J , My, Ry 5 ( )

where this formula includes the case k; = 0, at which sign 0 = 0.
Substituting (14) into (11) we obtain the solution

v(z,t,7) = v8+

m

N/ Tvici| ks

+ Z v,gexp —Zja]' ]’x—l—i
0#£kczm+1 Jj=0

m
fivacilks
signk; E LM:L‘+27rkjyjtj . (15)
a
—

Obviously, the series (15) converges absolutely and uniformly at + € R, and (t,7) € R™ x R,
differentiable by z (a finite number of times), analyticity at (¢,7) is preserved. In support of this

m 1/2
claim, we use the evaluation (10) and Y |k;|'/2 < vm +1 (Z;ﬂ:l |k:j|> , which follows from the
§=0

Bunyakovskii-Schwartz inequality.
The solution (15) is multiperiodic at (t,7), bounded at (x,t,7) € Ry x ﬁ;n x II, and unique in the
class of bounded functions.

Theorem 1. The Problem (4), (6) under the condition (8) has at (x,t,7) € Ry x ﬁ'pn x II, the only
real-analytic (w, §)-periodic on (¢, 7) solution v(z,t,7) of the form (15) satisfying the

oz, t,7)| < /07, @ € By, (t,7) € Ty x T, (16)

with an arbitrary constant & from the interval 0 < § < p < 1, where ¥ = (m)is a constant,
independent of § and v°.
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The proof of all the positions of the theorem is given above. To complete it, it is necessary to verify
the validity of the estimate (16).
Indeed, from (15) we have the series

27 Z kjvit;
v(z,t,7) = Z vg(z)e =0 (17)

kezmtl

with coefficients

o Srviclk
vp(z) = viexp | — Z ijacM (14 isignk;) x| , (18)
j=0

which satisfy the inequalities

lon(2)| < g, ke 2™ (19)

The case of absence of ¢ is considered in [17; 201-202]. Then, by virtue of (10), from (19) it follows
that

[ow ()] < [[°]|e#H. (20)

Consequently, according to the properties of the Fourier coefficients of analytic functions [18; 108,
the function (17) with coefficients (18) satisfying the evaluation (20) is analytic and obeys the constraint
(16).

2 Multiperiodic solution of a linear diffusion equation with a multi-frequency oscillating source

Consider the equation

2PUELT) ot (21)

Here a = const > 0, the function f(z,t,7) is represented as a series

Veu(z,t,7) = Dou(z,t,7) —a

—Yx+2mi i kv t;
flx,t,7) Z fre = (22)

kezm+tl

with constants of v, > 0, fi, k = (ko, k1, ..., km) € Z™TL; v; = w;l, j =0, m with

[fil < 11 £[le=?H, (23)

where |[f|| = sup [f(z,t,7)].
R+><1'[ x1I,

The multiperiodic solution of the equation (21) will be sought in the form

u(,t,7) = Wi(t,7)e ™. (24)

kezm+l
Substituting (22) and (24) in (21) we obtain
27 in: kjl/jtj

Z [DWi(t, 7) — a®yiWi(t, 7)] e " = Z fre 770 e kT,
kezm+1 kEZ'm+1
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211 fl: k:jujtj
Hence we have equations D Wi (t,7) — a>viWy(t,7) = fre 9= , k € Z™! which have (w, 0)-
periodic by (t,7) solutions

7 2mi Y kjus(tj—c;T4css)+ayE(t—s)
Wi(t,T) = / fre 770 ds =
+oo
fk 27 Z kjvt; 1 2mi Z kjvjt;
= e =0 = ———fre 70 , (25)
ay, + by,

m
—a?y} +2mi Y kjvjc;
j=0

m
since conditions Ap = ag + ibg # 0, where ap = —a2*y£, by =21 Y kjvjcj, k € Z™+! are satisfied. By
j=0

substituting (25) into (24) we obtain solution

m
211 E kjl/jtj — VT
=0

u*(x,t,7) = Z #f e

: 26
ke gmaL ay, + by, F ( )

To ensure the convergence of the series (26), we assume that the strong incommensurability
condition is fulfilled v; = v;c;, j = 0, m of the form

bl =2 | Y k| = AR kI = ) lkgl >0 (27)
j=0 j=0

with constants A > 0 and [ > m+1, or the sequence a;, satisfies the condition of boundedness condition
of the form

lag| > 7, ke zm! (28)

with constant r > 0.
If one of the conditions (27) and (28), together with estimation (23) is satisfied, the series (26) will

converge absolutely and uniformly.
m

Thus we distinguish two kinds of running waves vx(z,t,7) = 27 Y. kjvt; — v, k € Z™FL for
§=0

which a) Ay = aj +ibg = 0 and b) Ap = ay +ib, # 0, k € Z™F L. In the case a) uy, = eVr(@T) will
turn out to be zeros of the operator V., and in the case b) V. uy # 0.

Note that a similar result can be obtained when the real function f(x,t,7) is defined for complex
values v = ay + 8k, Bx # 0.

So equation (21) under the conditions (22), (23) and under one of the conditions (27) and (28)
admit only (w, #)-periodic on (¢,7) solution (26) with values Ay = ay + iby # 0, k € Z™+1L,

In general, equation (21) has an infinite set of (w, #)-periodic solutions u(z,t,7) by (¢, 7), consisting
of the sum of the solutions v(z,t,7) of the homogeneous equations (4) with Ay = 0, k € Z™! and
the solution u*(x,t,7) of the nonhomogeneous equation (21) with Ay # 0, k € Z™H1L:

u(z,t,7) =v(x,t,7) +u(z,t,7), (29)

where v(z,t,7) is defined by the problem (4), (6), and u*(z,t,7) by the relation (26) and satisfies the
boundary condition
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u(0,t,7) = v(0,t,7) + u*(0,¢,7). (30)
The solution (29) of the boundary value problem (21), (30) is singular.

Theorem 2. Under the conditions (22), (23) and (27) or (28) the equations (21) has (w, )-periodic
solutions represented in the form (29) with terms (15) and (26).

If for some k% = (K3, kY, ..., kO,) we have Ay, = ay, + ibk, = 0, then we exclude the corresponding
k%-subject from relation (26) and introduce a function

aoT + oty + ...+ apt 2mi 32 KJvitj—y0n
uo(m,t,T) — 0 1 MM froe 370 ! (31)
oo + a1c1 + ...+ oy

with an arbitrary constant vector o = (v, vy, ..., ) satisfying equation
27 in: kQVjtj—’ykox
Vel (z,t,7) = froe =0 . (32)
Then, based on (31) and (32), the solution (26) can be represented in the form

m
f 27 Yy kjvit;—yrT
k =0

—— ¢
ay, + ibg,

Ut ) =0zt )+ Y

kO£kezZm+1

(33)

Theorem 3. If ago + ibgo = 0 and ay + ib, # 0 at k # k°, then under the conditions of Theorem 2,
equation (21) has a solution u(x,t,7) = v(z,t,7)+u*(x,t,7), where v(z,t,7) is defined by the formula
(6), and u*(z,t,7) by relation (33).

3 Multiperiodic solutions of a linear homogeneous integro-differential parabolic equations with finite
hereditarity

Consider (w, 8)-periodic by (¢,7) equation

0?u(x,t,7)
— 2 » Uy
ch(x,t,'r) = Dcu<l‘,t,7') —a T =

-
= a(x,t,7)u(z, t,7) + / b(x,t,7,t —cT + cs, s)u(x,t — et + cs, s)ds.
T—E€
This equation describes a multi-frequency phenomenon propagating along the semi-axis R 1) diffusion
with constant a? # 0, 2) linearly hereditary with finite period ¢ > 0 and kernel b = b(z,t,7,0,s), 3) at

each point = € R it is linearly related to the external environment by the coefficient a = a(z, ¢, 7) and
4) flows with speed D.u(z,t,7) defined by differentiation along the direction of vector field of operator
Do=2 4£5m ;-0
c or Jj=1"J0t;"
An important special case of the process is when its heredity and coupling to the external world
do not depend on x € R, . In this regard, we introduce into consideration the equation

Veu(z,t,7) = a(t, 7)u(z, t,7) + / b(t, 7,0, s)u(x,o,s)ds, (34)

T—E

where the matrices a(t,7) and b(t, 7,0, s) are real-analytic functions.
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m
Consider the null operator V., depending on m+ 1 running waves ) (v;x + 2mit;v;k;) of the form
7=0

op(z,t,7) = be2mi 2= tiviki T (35)
with constant coefficient b # 0 and parameter v; = v;(k;, v}, ¢j, a).

It’s obvious that vg(x,t,7) has the property

Vevp(x,t,7) =0,

vp(x,t — et 4+ ¢s,8) = b 1w (0, —er + es)vg(x, t, 7). (36)

Next, by replacing

U(JJ,t,T) = U(t,T)’Uk(l‘,t,T) (37)
equation (34) on the basis of (35), (36) is reduced to

D.U(t, 1) =a(t,7)U(t,T) + / b(t, T, 0,5)b " v,(0, 0, 5)U (0, s)ds.

T—E&

Under the conditions

a(t,7) € A7 (I x I0,), b(t,7,0,5) € A720 (17 x I, x II7 x II,) (38)

t,T t,7,0,8

it is possible to show the existence of a single solution Uy(t, T, 0,s) = Uk(t, 7,t — cT + cs, s), satisfying
the condition U(t, s,t,s) = E at 7 = s and Ug(t,7,0,5) € A‘;f;‘j;e (Hz1 x I, x TIj* % IT,).
Suppose that Uk (t, 7,0, s) satisfies the estimate

\Ui(t, 7.t — e + cs, s)| < Ae NT779) (39)

with constants A > 1 and A > 0 for any k € Z™*1. B
Then a solution of the form (37), which is bounded at z € Ry, ¢t € R™ and 7 > s and satisfies the
evaluation

lu(z, t,7)| < Ae T o (2,8, 7)| < ule” N T—8)Hnal (40)

with some constant u®, A > 0 and g > 0. Here g > 0 is defined on the estimation of the zero (35)
operator V..

Inequality (40) shows that under the condition (39) the homogeneous equation (34) has only a zero
bounded (w, #)-periodic solution on (¢, 7).

Theorem 4. Under the conditions (38) and (39), equation (34) has only zero (w, #)-periodic in (¢, 7)
solution.

4 Multiperiodic solution of a complete linear inhomogeneous integro-differential equation of parabolic
type

Let’s introduce the equation

Veu(z,t,7) = a(t,)u(z,t,7) + / b(t,T,0,s)u(z,o,s)ds+
—€

T
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m

+f(t, T)exp Z [vjx + 2mikjvits) | . (41)
=0

Here vj(x,t;) = v;x + 2mik;jv;t; are the travelling waves defined by the equation

Veexplvj(z,t;)] =0, j=0,m (42)

with unknown parameters «; and constants, v; = w; L k; € Z with the condition that z — +oo follows

expvj(z,t;) — 0. (43)
The functions a(t, 7), b(t,7,0,s) and f(t,7) are (w,8)-periodic by (¢,7) and (o, s), belong to the
class AP0 (T x T, x TI7 x I1,).

t,7,0,8
From the conditions (42) and (43) we have a2'yj2 = £2mikjvjcj, j = 0,m and ¢p = 1 at ty = 7.

27k ¢ 14 27k lvici 174 . .
Hence we have v; = i%%ﬁﬂ ki > 0; v = i%%, k; < 0. To satisfy the condition
(43) we choose v; as

_vrlklses isignk;). (44)

J a

Thus, by virtue of the latter relationship, the function

m
v(z,t,7) = exp | Y vj(w,t5) (45)
§=0
has the property
Veu(z,t,7) =0, z € Ry, (t,7) € R™ x R. (46)
It can be shown that
m
v(x,t —cr +cs,s) = v(z,t,T)exp | —2mi Z kjvi(t —s)| . (47)
j=0
Next, enter the replacement
u(z,t,7) = U(t, 7)v(z,t,7) (48)

into the equation (41) and due to (47) we obtain

D.U(t, T)v(z, t,7) + U(t,7)Vev(z, t,7) = alt, T)U(t, T)v(z, t,7)+

+/b(t,7’,0‘,8)61}p —QFiijVjCj(T—S) U(o,s)v(z,t,7)ds + f(t,7)v(x,t,T).
T—¢ J=0

Then, given (46), reducing by v(x,t,7) # 0 we have the equation

T

DU (t,7) =a(t,7)U(t,T) + / b(t,r,0,s)exp | —2mi Z kivici(t —s)| U(o,s)ds+ f(t, 7).  (49)
j=0

T—E

The solution U(t, 7,0, s) of the homogeneous equation corresponding to equation (49) with initial
condition U(t, s, t, s) = E satisfies the evaluation (40).
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Then it is easy to show that the inhomogeneous equation (49) admits a single (w, 6)-periodic by
(t,7) solution

U*(t,T):/U(t,T,t—cr—i-csl,sl)f(t—c7-+csl,sl)dsl. (50)

Then by substituting (50) in (48), we obtain a single bounded on z € R, (w, #)-periodic on (t,7)
solution

u*(z,t,7) = U*(t, 7)v(z,t,T) (51)
of equations (41).
Theorem 5. Let the functions a,b and f belong to the class 422« (Hm x I, x T x 11 »). Then

tTJS
under conditions (43), (44) and (40) equation (41) has a unique bounded in = € R (w, )-periodic on
(t,7) solution of the form (51) with factors (50) and (45).

By the superposition method, the theorem can be generalised when the free term f(x,t, 7) equation
(41) can be represented as

m
flx, t,7) Z fe(t,T)exp Z Vi T+ 27rikj1/jtj] )
kezm+1 j=0

where v, is a constant from (44).
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2K.A. Caprabanos!, I'M. Aiitenosa?

b K. 2XKy6anos amumdaen Axkmebe enipaix yrusepcumemi, Axmebe, Kasaxcma;
2 M.Omewmicos amvindaen. Bamuic Kasaxeman ynusepcumemi, Opan, Kazaxcman

ITapabosablK TUOTI aKbIPJIbI-3PEeANTAPJIbI CHI3BIKThI
MHTEerpaJiabl-aud depeHnnanablK TeHAEYdiH >KapThLJIail ochTe
IIIEeKTeJIT€H KOIIIePUOAThI MIerriMi

ITapabosaiblK, TUITI CBI3BIKTHI MHTErPAJIIbI-Tud(MEPEHIINATIBIK, TEHIEYIED KYHEeCiHiH KEeHICTIK aifHbIMa-
JIBICHI OOMBIHIIA YKAPTHLIA OChTE MIEKTE/IT€H XKOHE YAKBIT affHBIMAJIBLIAPEI OOMBIHINE KOIIIIEPUOTHI IIIei-
MiHiH 6ap 6OJIybI XKOHIHJIE Cypak KapacTbipbliraH. [IlekapaJblK MAPTThI CHI3BIKTHI GIpTEKTI TEHJIEYIe K-
HE CBI3BIKTHI OIPTEKCI3 TEHIEY/Ie YaKbIT alfHBIMAJIBICHI OOMBIHINE, KOITEPUOATHI TEPOETICTEPIIH KETKITIKTI
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mapTTapbl aHbIKTaJ FaH. KOHBEKTUBTI-TuddY3UAIBI THIITI aKbIPJIbI-9PEIUTAPIBI HHTErPAJIIbI-1ud dhepeH-
[MAJIIBIK, ChI3BIKTHI OIPTEKTI YKoHE OIPTEKCi3 TEHJIey 3epTTeJIreH.

Kiam cesdep: narerpaab-auddepeHnnaaablK, aKbIPJIbl-9PeIuTapibl, KOHBEKTUBTI, 1uddy3usibl, mapa-
OosaJTbIK, TUIT, guddepeHnnaiabk, onepaTop, Pypbe KaTaphbl.

7K. A. Caprabanos!, I'. M. Ajirenosa?

L Axmiobuncruts pezuonanvnod yrusepcumem umenu K. XKybanosa, Axmobe, Kasaxeman;
2 .
3anadno-Kasaxcmanckul yrusepcumem umernu M. Ymemucosa, Ypaavck, Kazaxcman

OrpaHnmdeHHOE HA MOJIyOCH MHOTOINEPUOonIecKoe perlneHne JIMHEITHOTO
KOHEYHO-3pEeINTapHOTO UHTETpo-1ud pepeHImaapbHOoro ypaBHEeHUS
napaboJImiyecKoro TUura

Paccmorpen Bompoc o cylecTBOBaHHM OrPAHMYEHHOI'O HA IIOJIyOCH II0 IIPOCTPAHCTBEHHON NEPEMEHHOMN u
MHOTOTIEPUONIECKOTO TI0O BPEMEHHBIM TIEPEMEHHBIM PEeIleHUs JIMHEHHOM HHTerpo-auddepeHnuaabHOl Crc-
TeMbl TapabOINIEeCKOr0 THUIA. YCTAHOBJIEHBI JOCTATOYHBIE YCJIOBHUS MHOTOIEPHOANIECKUX KOJIEOAHMI 110
BPEMEHHBIM II€PDEMEHHBIM B JIMHEHHOM OJHODOJ/HOM YDaBHEHHHM C IDAHUYHBIM YCJIOBHEM U B JIMHEITHOM
HEO/HOPO/IHOM ypaBHeHHuH. VccienoBaHbl JIMHEHHOE OJHOPOIHOE W HEOIHOPOJHOE KOHEUYHO-IPEIUTAPHOE
nHTErpo-auddepeHnnaIbHOe YpaBHEHNT KOHBEKTUBHO-INMDPY3NOHHOTO THUIIA.

Karouesvie caosa: muTErpo-muddpepeHIimaibHoe, KOHEIHO-3PEIUTAPHOE, KOHBEKTUBHBIN, TUdY3UOHHBIIH,
mapabosimdeckuit Tut, quddepeHImaIbHbIN onepaTop, psam Pypbe.
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Criteria for the boundedness of a certain class of matrix operators
from [,, into [,

One of the main aims in the theory of matrices is to find necessary and sufficient conditions for the elements
of any matrix so that the corresponding matrix operator maps continuously from one normed space into
another one. Thus, it is very important to find the norm of the matrix operator, at least, to find upper and
lower estimates of it. This problem in Lebesgue spaces of sequences in the general case is still open. This
paper deals with the problem of boundedness of matrix operators from [, into lq,, for 1 < ¢ < p < 0o, and
we obtain necessary and sufficient conditions of this problem when matrix operators belong to the classes
OF satisfying weaker conditions than Oinarov’s condition.
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Introduction

Let 1 < p,q < o0, % + pl = 1. Let uw = {u;},v = {v;} be sequences of positive numbers, which will

be called the weight sequences. Let I, the space of all sequences f = {f;}3°; of real numbers such
1

that [|f]lp = (z Ivzf1|p> | <p<oo

=1
We consider the problem of boundedness for the following matrix operators

(A*f), Za”f],wl (1)

oo
=> aifi, j>1 (2)
i=j
from I, into lg,, where a;; > 0,7 > j > 1, i.e. the vaidity of the inequality

1A Fllgu < Cllfllpo, VF € Lpo. 3)

The matrix operators (1), (2) were studied in many papers in different sequence spaces. The almost
complete collection of these results is presented in the work by M. Stieglitz and H. Tietz [1]. There the
mappings of matrix operators are considered in 11 sequence spaces except its mapping from [, into
lqu- The remaining case is still an open problem.

When a;; = 1,7 > j > 1 operators (1), (2) coincide with the discrete Hardy operators, which have
been studied by many researchers, and main results were obtained in [2-7].

In the general case, the question is open on conditions on the entries of a matrix (a;;) that giving
boundedness of operators (1) and (2). For several classes of matrices, criteria for boundedness of the
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operators (1), (2) are known. One of the first studied classes was the class of operators matrices of
which satisfy the following discrete Oinarov’s condition: there exists d > 1 such that

1
p (aik + arj) < ai; < d(aik + ag;)

foralli >k >j>1 (see [8], [9]).

In 2012 in paper [10] the wide classes O;F, O,,;, n > 0 of matrices were presented, which defined by
conditions on a matrix (a;;) that are weaker than Oinarov’s condition, and the necessary and sufficient
conditions for boundedness of these operators for 1 < p < ¢ < oo were obtained, where their matrices
belonged to these classes. However, the problem of boundedness of operators (1) and (2) with matrix
from the classes O;F, O, , n > 1 for the case 1 < ¢ < p < oo is still open. But the first results for this
case - the criteria of boundedness for matrix operators from OF are found in [11], [12].

In the present paper, we find criteria of boundedness for operators (1), (2) from I, into lg,, where
their matrices belong to the class 02i when 1 < ¢ < p < o0.

Convention: The symbol M << K means that M < cK, where ¢ > 0 is a constant depending only
on unessential parameters. If M << K << M, then we write M ~ K.

We assume g; =0 when i <1 and A~ g; =g — gi-1, AT gi = gi — git1.

1 Preliminaries

Let’s give the definition of classes Of, Ogc.
Definition 1. Let (a;;) be a matrix which is non-negative and non-decreasing in the first index for

all i > j > 1. A matrix (a;;) belongs to the class Of, if there exist a non-negative matrix (aij’-o), a

number r; > 1 such that the estimates
L /10 1,0
- (aiz; + akj) S g ST (ai;’c + akj)
hold for all i > k > 5 > 1.
Definition 2. Let (a;;) be a matrix which is non-negative and non-increasing in the second index

for all i > j > 1. A matrix (a;j) belongs to the class O, if there exist a non-negative matrix (a?]’.l), a

number 7; > 1 such that the estimates

1 0,1 _ 0,1
E (aik + akj> <ay <71 (aik + akj)
hold for all ¢ > k> j > 1.

Definition 3. Let (a;;) be a matrix which is non-negative and non-decreasing in the first index for
all i > j > 1. A matrix (a;;) belongs to the class Oy, if there exist a non-negative matrices (a2"),

]
(a?]’-l), (al(-;-)), a number 73 > 1 such that (al(-;)) € Of,
L 120, 21 20 , 21 (1
E <ai,; + ayj, a,gj) + akj> < a;; <o (ai,; + a. afgj) + akj>
foralli >k >j>1.
Definition 4. Let (ai;) be a matrix which is non-negative and non-increasing in the second index
for all @ > j > 1. A matrix (a;;) belongs to the class Oy, if there exist non-negative matrices (a?f),
(aij’?), (ag;)) , a number 71 > 1 such that (agjl-)) €0y,
1 1 _ 1
g (aik + agl,ﬁ)al,lc’j2 + a,ﬂf) < a;; < T (aik + agk)a}cf + a%f)

foralli >k >j>1.
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Let us consider some examples of matrices that belong to the classes Of and Ogc.

Example 1. Let o > 0. Let {a;}5°, be a non-decreasing positive sequence and {b;}5°, be an arbitrary
positive sequence, such that a; > b;, i > j > 1. Then a;; = a( ). (ln ) € Of, when ¢ > 5 > 1.
Indeed, foralli > k> j52>1

1 _ a; G ¢ - a; ¢ ag “ 1,0 (1)

«
where allk0 = (ln ak) .
Example 2. Let {a;}5°, and {b;}°, satisfy the conditions from Example 1. Moreover, we assume
that {w;}92, is a non-negative sequence. Then a;; = : Z W (ln ) €Oy, i>j>1

Indeed, for all ¢ > k > 5 > 1 we have

_ 20 (1) (2)
=y + azk ak] + ak] )

[0
whereaé?z(ln%f) €Of zk: _Zws(ln )7 ka—Zws,Z>k>321.

«a v @
In the same way, one can show that al(-Jl-) = <1n Z—;) € O; and agj) = 2_: Ws (ln Z—;) € 05,
i>j >1,if {a;}32, is an arbitrary positive sequence and {b;}:2; is a non-decreasing positive sequence,

such that a; > b;, 71> j > 1.

Remark 1. As it is shown in [10] the matrices (a?]’.o), (a?j’-l), (a(l-)), (a%’-z), (ail]’?) can be considered
non-decreasing in ¢ and non-increasing in j.

Lemma A. |9] Let v > 0,1 <n < N < oo and let {hi} be a non-negative sequence. Then

k=n \i=n

) £ (5

k=n \i=k

Let us state the necessary assertions from [5], [11] in a convenient form.
Theorem A. Let 1 < q < p < oo. The inequality

i Zk:fa‘

k=1|j=1

<C (Z \fkvmp) R (6)

k=1
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holds if and only if

o foo \7O kN
F = Z Zu(j <Zv;p> v, ” < 00.

k=1 \j=k i=1

Moreover, F =~ C, where C' is the best constant in (6).
Theorem B. Let 1 < ¢ < p < oo and the matriz (a;j) belongs to the class O . Then inequality (3)
for operator (1) holds if and only if B = max{By, B1} < oo, where

p—q
_P_ p(g—1) “pq
[e%) [e%) p—q k p—q pa
_ 1,0\q, q —p’ —p’
By = g g (aj; ) E v; vy, ,
k=1 \j=k i=1
P—q
_q_ q(p—1) “pq
[e%) [e%) p—q k p—q pa
_ q p = q
Bi=|> |2 > aly; uf
k=1 \j=k i=1

Moreover, B =~ C, where C is the best constant in (3).

2  Main results

Our main results read.
Theorem 1. Let 1 < ¢ < p < oo and (a;;) € OF . Then operator (1) is bounded from I, into g, if
and only if M+ = maX{MIO, M2+,17 M;fz}, where

» p(g—1) %
o) 00 = i p—a
+ _ 2,0Nq, q —p’ —p’
My, = E : E :(asi )l v, Y; )
i=1 \s=i J=1
» p(g—1) %
0 o0 q p—q 7 o p—a 7 %
+ 2,1 q (1) -’ - (1) -’
My, = E E (asi ) ul E a;; v; A E a;; v; ,
i=1 \s=t J=1 J=1
» ) p(g—1) ‘ %
00 00 p—q 7 p—q 7
+ _ q p' —p' - PP
My, = E E ul E iV, A (aij) v;
i=1 \s=i j=1 j=1

Moreover, | AT ||py—squ = M, where | AT ||py—qu is the norm of operator AT from I, into lg,.

Our corresponding result for operator (2) reads as follows.

Theorem 2. Let 1 < g < p < oo and (a;j) € O, . Then operator (2) is bounded from I, into Iy, if
and only if M~ = max{Mg,, My, My, }, where

p p(g—1) Pq

e’} i p—q 00 P—q
- _ 0,2\q,,q —p’ —p’
Moo = Z Z(ais )ud Zvj Y )

i=1 \s=1 j=1
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» p(g—1) p;qq
e’} 7 q P—q e’} o p—q e’} o
- 1,2 q (1) —p’ + (1) —p’
M= | 3|20 (i) ut > (af) v; At (@) v !
i=1 \s=1 j=i j=i
p—q
b p(g—1) pq
o0 7 p—q p—q o0
- _ q + =P
Moy =| D | D ul Z%J AT D (ai)y;
i=1 \s=1 =i

Moreover, ||A™||py—qu = M™, where ||A7||py—qu is the norm of operator A~ from [, into .

Using the conjugacy of operators (1) and (2) from Theorem 1 and Theorem 2 we obtain the following
results.

Theorem 3. Let 1 < q < p < o0 and (a;;) € OF . Then operator (2) is bounded from I, into Iy, if
and only if M~ = max{MiO, My, My, }, where

q(p—1)

J
(e’e} [e’e} p—q 7 PrP—q
- 2,0Np’, —p’ q q
M;o = E : § :(asi )P v, E :“j Uu; )
Jj=1

i=1 \s=t

5
_.
|

[~

VR

(]2
—
S
» N
L
SN—
=S
4
@ |
’.d\

~_—
S

i
—
S
SR
N
_Q
<
2

S

i

_
o
—~
S
Se
N
(=}
<
[}

q(p—1) . -4 . Pyq

00 00 p—q
/
M., = 4 q,4 - q .4
2,2 = Z Z”s @5 A Z%“J

=1 \s=t

S
bS]
|
Q
~

Moreover, || A7 ||pv—qu = M~, where ||A™||py—qu is the norm of operator A~ from [, into ly,.
Theorem 4. Let 1 < ¢ < p < oo and (ai;) € O, . Then operator (1) is bounded from [, into lg, if
and only if MT = max{Man, MIQ, MIQ}, where

» p(g—1) Pq
0 7 p—q 00 P—q
S q q
Miz = | 2| 2 (0" > il
i=1 j=i
» p(g—1) %
00 % p—q 00 P—q 00
o (W\q, q + (Dyg,,a
12— E E Us E:(aji)uj A (aji)uj .
i=1 j=i j=i
» plg=1) %
00 7 p—q P—q
o= | 2o (2w Z * Z
M3, U aﬂ ] A aﬂ ]
i=1 \s=1

Moreover, | A" ||py—squ & M™, where ||AT||,y—qu is the norm of operator A from I, into ly,.
Since the proof of Theorem 2 is completely analogous to the proof of Theorem 1, we introduce the
proof of Theorem 1.
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Proof. Necessary. Let operator (1) be bounded from ,, into lgu, ||A™||pp—qu < 00, i.e. the following
inequality holds:
. q H 1
00 % q 00 P
> (St | o) < 1 (3o 07) g
i=1 \j=1 i=1

for all non-negative sequences f € I, in particular, for non-negative finite sequences f € l,,. By

applying (4), a relation a;, >> a?jo, 1> j > k > 1 from Definition 3 and using the Abel transform, we
obtain
~ q—1
DAL w ot O ot BRTES
=1 =1 j=1
J q—1 00 i q-1 00
2,0
>SS (z ) =3 (3n) D -
i=1 j=1 =1 j=1 s=1 =7
00 J n q—1 0o
2,0
Yo (Ta (X)) Dum
=1 n=1 = i=j
00 i n q—1 0o q—1 0o
2,0\g 2,0
=3 (Z fs) At L efm | + Jim, an (Z fs) D (@)l
j=1 \n=1 s=1 =7 i=N+1
00 7 q 0o N n q—1 00
2,0 . 2,0
> (0] & (Stmt) « gm (S0 (S0) ) 3wt
j=1 \s=1 i=j n=1 s=1 i=N+1
Due to the finiteness of f and afj’-o is non-increasing in j, we have
N n q—1 00
: 2,0
| 2 (Z fs) > (@)l =0
n=1 s=1 i=N+1

Then
q

oo J q oo
Z Zawf] ul >> Z (Z fs> AT Z(a%O)QU;}
j=1 \s=1

=1 = Z=j

Hence and from (7) it follows that

Q=

) J k. 00 o0 %
> (Z fs> AT (0 << A" lpv—qu (Z(fm)p> :

j=1 \s=1 i=j i=1

Then according to Theorem A, we get

_p_ - B
- P " p(pqiql) Pq
2,0 —p/ —p/
00 > || ATl py—squ >> Z ZA+ Z @5 )T <szp> ve” =
k=1 \j=k 1=J s=1
D p(g—1) %
) o0 P—q P—q ,
= 2,0yq,,4 -7 —p — vt
=12 (Z(“m )q“z‘> (Z Us p) U = Myo. (8)
k=1 \i=k s=1
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Inequality (7) holds if and only if the following dual inequality

4 W 1
) 9] , ) A\ ¢
Z Zaijgi ij_p << HA+Hpv—>qu (Z(giui—l)q ) (9)

j=1 \li=j =1

holds for all non-negative sequences g € [y ,-1, in particular, for non-negative finite sequences g €
ly 4—1- Using (5), a relation a;; << agj, k > i from Definition 3 and applying the Abel transform, we

qu
obtain ,
o] o] P p'-1
Z Zaijgi Uﬁ ~ Zzamgz (Z angs) U;pl >>
Jj=1 \i=j Jj=11i=j
p'—1 ) o) 00 p'—
235 (Y] 7 =X (2) >t -
=1 1i=3 =1 s=1

/

S e

00 00 00 p'—1 o) o 1 N , ,

n=N+1 s=n
oo oo oo oo p'-1 N

~ —p’ : p =7

~ ng Z% o)+ Jim D0 g | D N
; n=N+1 s=n

Due to the finiteness of g we have, that

/

00 00 - N , ,
A Z Yn (ZQS> ;a“?vj”j_p =0.

n=N+1 s=n

\\H

Since A~(S20_, a¥v;?) > 0, we assume w; = (A‘(ZJ 1 apjvj p/)) . Then

J=1"5"]
p/ ’
00 00 0o 00 p
2 : 2 : —p’ 2 : 2 : 4
aijg; v; >> Js w; -
j=1 \i=j i=1 \s=i

Hence and from (9) it follows
9] (9] P ) p () 7
> (Z gs> W | << A s (Zwiu;l)(I) - (10)
i=1 \s=i i=1

We pass to dual inequality (10), i.e

1
q

i=1

00 i q 00 %
Z (Z fs) “;1' << A% lpv—squ (Z (fiwz‘_l)p> , 0 f €l
s=1
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Then by applying Theorem A, we obtain

P—q
_p_ p(g—1)
[e%) [e%) p—q k p—q e
+ q P’ P —
00 > [|AT ||l pv—squ >> E E u; E wh wy, =
k=1 \j=k s=1
P p(g—1) %
o) o) r—q k ) r—q k
_ q — p' —p - p - _
= Z U; Z A Qi5V5 2 Z A Vs =
k=1 \j=k i=1 j=1 7=1
p(g=1) %
00 00 P k rP—q k
g g u? E a’ v7? A~ E o’ 7P = M, (11)
J kj~j kj~j 2,2
k=1 \j=k j=1 j=1

From Definition 3 it follows, that a;; >> a?,;la,%),i >k>j>1.Thenfori>k>j>1

2,1 (1 2,1 (1
ajj >> a; a,(cj) a;; a,(cj)ﬁ (12)

1, j<k<i
ek_{7 j— —/L7

where

0, k>1, k<j.

Let ¢ = {¢;}5°, be a sequence of non-negative numbers such that > "2, ¢; = 1. Multiplying both parts
of (12) to ¢ and summing up by k € N, we have

aj; >> Z afklagj Dk (13)

Then using (13) and changing the order of summation twice, we have

q

00 i 9—1
Zulq Zaijfj = Z Zaljf_] <Z azsfs) =
i=1 Jj=1

=1 7=1

-y (Sala 1 (z( fsasam) fs>

s=1

00 i k
- Zuf Prag Zakj (ZV’ a;; fs>

s=1

00 k
> Z Pk (Z ak] Z uga?kl (Z Pra; TS) fs) >>

i ¢—1
1 2,1 2,1
E iy E ufa; (Z %%’) or =
= =Kk

k=
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[e9) k
=3 Za,g.)fj hi, (14)

(2

00 ] q-1
where hy, = Y u‘?a?]’cl (E cpTa?f) ¢k From (7) and (14) it follows
i=k T=k

00 k q é [e's) %

1
§ : § :agcj)fj hy << |4 lpv=qu <§ (fivi)p> , 0 f € lpy.
k=1 j=1 =1

By applying Theorem B and taking into account (4), we get

ﬁ & a(p—1) %
. oS oS N P—q
1A o >> Bri= | 3| Dk | | D (@) i
k=1 \j=k i=1
. LA Ch NN o
Using that By < oo and Y~ (ay; )P v; ? is increasing in k, we have
i=1
- - ﬁ X q(p_—l)
0= aim Sh (Son]  (TEeype) s
T Noso k : J : ki i =
k=N j=k 1=1
ﬁ N a(p—1)
> lim i h ih Z(a(l))p/vfpl o
= Noeo k J : Ni) Vi :
k=N j=k i=1

Further, using this relation to the Abel transform in By, (5) and the following elementary estimate

b —a’ =~ b7 b—a), (15)
where b > a > 0,v > 0, we obtain
PrP—q
00 00 00 ﬁ k q(pp:ql) P
Dy —p'
Al == B [ 308 [ S0 (S0 (Zm,i})p o -
k=1 j=k s=j i=1
pr—g
o) o) 0o ﬁ k Q(pqul> pa
D\p —p'
[ () ) a (e -
k=1 \ j=k s=j =1

2
RS
M8
M8
QD‘
ik
1
o
VRS
M -
=,
S@
<.
N————
=
k]
x|
1V

k=1 \j=k i=1
P—q
- - ﬁ i o / P;Q:q) & " , Pq
1 o _ 1 A
(S (Sn) (Dur) e (e |
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where

q—1 ) q—1

oo (2
2,1) (2 1) B 2,1) (2,1)
fa; Z ora; e =D ui Y ey e | 2 e
, - p—

gk
Sa
I
¢
(]2

j=k j=k i=j i=k j=k
00 % 2.1) e
2,1
~ 2 ul| 2w
i=k j=k
o0
Therefore, due to Vo : > ¢ = 1, we have
k=1
AT llpvsqu >>
q ﬁ ) p;q_ql) K %
1 _ 1 /]
s [ (S0 (X0 (Sewar) o (S
k=1 \i=k s=1 s=1
Assume, that ¢; = 0;(m), m > 1, where
1, 5=
ojmy =4 1
0, j#m.
Then taking into account that afj’-l is non-increasing in j
AT lpo—squ >>
pP—q
%) S q ﬁ k L;qfql) k pq
2,1 1 ) _ 1 VA
>> sup Z Zuf Za 9;( <Z(a,(€s))p v5p> A (Z(a,is))p vsp> =
mzl\ 321 \i=k j=k s=1 s—1
p(g—1) =
(& (1) o - (1) :
- (D) (Do) s ()| e o
k=1 s=1 s=1
Thus, from (8), (11) and (16) it follows
M* = maX{MQanMz—flaMQfQ} << A" [lposqu < oo (17)

n
Sufficiency. Let Mt < 0o and 0 < f € . Z is the set of integer numbers. Let’s assume > = 0 when

k> n and a;; = 0 when i < j. o
For all 1 > 1 we define the following set of integer numbers:
Ti={keZ:(r2+1)" < (A7)},
where 75 is the constant from Definition 3 and we assume that k; = maxT;. Then
(ro + D)% < (ATf); < (ro + )%+ Vi e N. (18)

Let mj = 1 and M} = {i € N : k; = k1 = kp, }. Suppose that mg is such that sup M; + 1 = ma.
Obviously mg > mq and if the set M; is upper bounded, then mo < oo and mo—1 = max M7 = sup M.

Mathematics series. No.3(111)/2023 131



A.M. Temirkhanova, A.T. Beszhanova

Suppose that we have found numbers 1 = m; < ma < ... < mg < 00, s > 1, then we define ms;; by
msy1 = sup M + 1, where My = {i € N: k; = k. }.

Let Ng = {s € N: m4 < oo}. Further, we assume that k,,, = ns, s € Ny. From the definition of mg
and from (18) it follows that, for s € Ny

(rg +1)" < (AT f); < (ro + 1)"5+1,m3 <i<mgp—1 (19)
and N = UseNO [ms, mst1 — 1], where [mg, msy1) N [my, myyq) # 0.
By using (19), Definition 3 and ns_9+1 < ng— 1, which follows from the inequality ns_s < ns_1 <

ns, we can estimate the value (ro + 1)"s~1:

(7"2 =+ 1)”3_1 = (7“2 + 1)”3 — 7’2(7“2 + 1)7“_1 < (7"2 + 1)”5 — ’I"Q(’FQ =+ 1)”5724_1 <

mes_1—1

ms
S (A+f>ms - 712(14+f)m571_1 = Zamszf'& — T2 Z a’msflifi =
i=1 i=1
ms ms—1—1
= Z amsifi+ Z [amsi_TQG’msfl_li]fi <<
i=ms_1 i=1
ms m5,1—1
1
<< Z mifi + Z [rgafn(:m - 1+r2aznlm 171a£,11_1_1i]f¢ <<
T=Mgs_1 =1
ms—1—1 ms—1—1
<< Z amﬂfl—i—rgamsms 1 Z f2+r2amsm Z ams 1t (20)
1=ms—_1
Then taking into account (20), we get
msy1—1 msy1—1
1A 0G = 3 3 wlATHT< D (o )T B <
s€Ny i=mg s€Ny 1=mg
mg ms—1—1 ms—1—1 m5+1 1
1
S(r2+1)2q Z Z amsifl+r2 msms 1—1 Z f1+’r2 msms 1—1 Z agnzfl—lifi Z u <<
s€ENg \i=ms_1 =1 i1=ms
mg qm5+1 1 ms—1—1 qms+1_1
<< Z Z amsifi Z U + Z ( Ay gmg 1 — 1) < Z fl) Z u1q+
s€Ng \i=mgs_1 =My s€Ny i=1 i=mg
q ms—1—1 qms+1*1
IDSICHI H (b SRR S E
s€Ny =1 i=mg
= S22+ 520+ 52,1 (21)
By applying Hélder’s inequality twice and (5), we estimate S 2.
q
ms m9+1 1 ms P ms . ) p’ mgy1—1
Soo= D | D amafwwlt ) Y W< D )| | DD ah ot D0 ul<
sENg \i=ms_1 =M sENg \i=ms_1 i=ms_1 i=mg
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< Z Z (five)?

sENy i=ms_1

aq ’ )
<27 fllf Z Z V7"

o0
AT (za
i=1 =i

where

0 p—a p—q
= u ul a?
2,2 j mn n

Jj=t

Using the Abel transform, (5) and (15

q

), we have

pq o0 (o) o0
rp—a __ + q q
Myt =3 AT ul | Y o]
i=1 k=i ji=k

S

=1 k=1

P

“S(E) (Be)

Therefore

To estimate So, we assume

m(ms—l - 1) =

and we use Theorem A.

q

pP—q

o0
q
Z uj
j=k

S22 << (My)[If1I3,

Z 2,0
amsmsfl—l

s€Ng

%0 = Z (afﬁgms—l—l)q (msi_l fi>q

n=1
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p—q
D) q P
P=4 mgy1—1 mg+1—1 pP—q
q q
E w] u; <
1=ms Jj=t
a(p—1) %
p—q
= |l
n TL lpw
a(p—1)
4 a(p—1)
9 p—q
§ :am Un -
. a(p—1)
7 P—q
- P, —p ~
A ( E @V, ) =~
n=1
7
/
- P +
E a;,, MQ’2 < 00
n=1
(22)
qm5+1—1 q
) u;, t=mg1—1,
=My
1 7'é mgs_—1 — 1.
msy1—1 oo n q
q _
> ul=> (D fi] m<<
i=mg n=1 \i=1
p(g—1) %
p—q
/ /
—Pp q
Uy £ 13- (23)

() (2o
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o]

Taking into account Remark 1, we estimate > 7;:
i=n
oe] 90 ms+1_ m5+1_ q o0 20 q
Som= X (atn) X ouwi= XX (@) << 2 (a)
i=n smg_1—1>n 1=Mg smgs_1—1>n i=ms =n
Hence and from (23), we have
» p(g—1) %
o0 o 90 q H n ., r—q )
S0 << [ 2o (D (@) wt ) | X o | = (M) Al (24)
n=1 \i=n j=1

Now, by using Theorem B we estimate S 1.

q mg—1—1 qms+1_
o 2,1 1)
S= 3 (e ) ( S ) s
i=1

s€Ny i=ms

ms—1—1 qm5+1—1 q
1) 2,1 q_
<< Z < Z ame 1_]-Z Z aims_1—l ui -

sENy =1 1=Ms
00 k q

-y <Z oV fi) 0 < (max{Bo, B1})" I I, (25)
k=1 \i=1

ms+1—1
where O, = > > <ai’71ns_1_1)qu% when k =mgs_1 — 1 and 0 =0 when k #ms_1 — 1,

s€Ng n=ms

p—q
B p(g—1) Pq
[e’e) [e’e) pP—q k , p—q , pa
> I 1,0 —p —p
Bo= |2 Z(]k> 0; > Uk )
k=1 \j=k i=1
pP—gq
q (»—1) Bl
~ ~ P A o y / qppiq Pq
- 1 v
n- (0] (L) wr) e
k=1 \j=k i=1
) . s 1.0\, . £
Let’s evaluate the expression ajj, t; in By.
j=k
oo ms+1—1
1,0 ‘10 _ 1,0 a 2,1 4 _
Z ajk J Z amsfl_lk; Z anms—l_l un -

j=k sims—_1—1>k n=msg

ms+1_

S ()
- nms 1—1 a’msfl—lk Up,-

sims—1—1>k n=ms

In [10] it is shown that ai’}n lal 0 Lk << ai’g when n > mg_1 — 1>k > 1. Then
Z( ) 05 << Z( 0)
i=k
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Thus
p p(g—1) %
~ o o q H k / P /
By << Z (Z <ai’£) u%) (Z vi_p> v, " = M;fo < 0. (26)
k=1 \n=k i=1
By using the Abel transform, (5) and (15) we estimate the value Bj.
<4 a(p=1)
. P9 0 e e P k (1) p’ ) p=a
B =Y a3 0[S0 (af)" v _
P =k \j=i i=1
9 a(p=1)
0o 0o 00 p—a k o N\ P
S su(se) |a (Z (o) v;p> -
k=1 \ i=k j=i =1
p p(g—1)
s > p=a K (1) 4 / pma (1) p ’
= (e (X)) ) A (X () e (27)
k=1 \i=k i=1 i=1
Since
) met1—1 q [e'¢) q
Soi= 3 > () wh <D0 (aln)
i=k simg_1—1>k n=ms n==k
hence and from (27), it follows
p p(g—1) %
ad e q P=q k (1) P / p—a k (1) P ’
A 2,1 - - =
By << Z Z(ank) ud Z(aki) v; ¥ A Z(aki) v, P = M.
k=1 \n=k i=1 i=1

Thus, from (25), (26) and (28), we obtain
+ ot ) e
San << (max{ Mo, M1 1) I, -
Hence and from (21), (22), (24) we have
IAT Fllgu << max{Myo, M3y, M} f i, = M| £,

i.e. the operator A is bounded from [, into Iy, and takes place for the norm ||[AT||,p—qu << MT,
which with (17) gives us ||A"||pp—qu = M.
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A .M. Temupxanosa, A.T. Becxkanosa

JI.H. lymunes amundazo. Eypasus yammow yrusepcumemsi, Acmana, Kasaxcman

MarpunaJjblk oneparopJjap 0ip KJIacbIHbIH [y,-JaH [4,-Fa IIeHeJreHIiK
KpUTEepuiii

Marpunajiap TeOpUSICHIHBIH, HETi3T1 MiHAeTTepiHiH 6ipl MATPUIIAJILIK OHIEPATOPILIH, Oip HOPMAaJIbl KEHIiCTIK-
TeH 0acKa HOPMAJIbI KEHICTIKKe y3igicci3 Ty yImiH MaTpuiagap sJeMeHTTepiHe KAXKeTT] YKoHe YKeTKLTKTI
mapTTapbid aHbIKTay. COHBIMEH KATap MaTPUIAJIBIK OMEPATOPIbIH HOPMACHIH HEMECE OHBIH, JI9JI YKOFAPFbI
JK9He TOMEHT1 OarasiayblH Taby MaHBI3ABI. Byt ecemn »Kaumbl xKaFmaiiaa Jleber TizbekTep KEHICTITIHIE aIllbIK
ecen. Bepinren maxkaJiaga MaTPUIIAJIBIK, OIIEPATOPBIHBIH, [py-maH lgy-Fa 1 < ¢ < p < 0o GosraHia IIeHesIreH-
Jiri KapacThIPbLIFaH >K9He OYJI eCeNTiH KaXKeTTi »KoHe YKETKIJTIKTI MapTTapbl aJblH/Ibl, MYHIAFbl MaTPHUIA
OQi nuckperti OifHApOB KJIacbIHA THICTI.

Kiam cesdep: MaTpUIAJBIK OMEpaTop, TYHiHIEC OMepaTop, CaJMaKThl Ti30eK, MIEHEJTEHIIIK, CAJIMAKTHI
TeHcizaikrep, Jleber casmakTol Kenicriri, OiHAPOB MAPTHI, Xap/u ONepaTophl, Xap/au TeHCI3Iir, MaTpuIa.
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Espasutickut nayuonasvruld yrusepcumem umernu JI.H. lymunesa, Acmana, Kaszaxrcman

Kpurepuii orpaHn4eHHOCTI HEKOTOPOIr'o KJIacca MaTPUYIHbBIX
OIIepaTOPOB U3 [y, B [y,

OpHOM U3 OCHOBHBIX 33189 TEOPUU MATPUIL ABJISETCS HAXOXKIEHNE HEOOXOMUMBIX U JOCTATOYHBIX YCJIOBHI
IJIs1 9JIEMEHTOB MaTPHUIlbl, IPU KOTOPBIX MAaTPUIHBIN OIlepaTOp HEIPEPBIBHO AEUCTBYET U3 OAHOT'O HOPMUPO-
BAHHOTO IPOCTPAHCTBA B Apyroe. [Ipu 3ToM oveHb BaXKHO HAWTH 3HAYEHUE HOPMBI MATPUIHOTO OIIEPATOPA,
B KpaiiHeM ciydae, 3a(pMKCHPOBATh TOYHbLIE BEPXHHWE M HHUXKHHUE OLEHKM. JTa 3ajada B JI€OErOBBIX IIPO-
CTPAHCTBAX IOCJIeJ0BATELHOCTEN B 00IIIEM CJIydae OCTaeTcsl OTKPBITON. B crarbe paccMorpeHa mpobiiema
OI'PAHUYECHHOCTH MaTPHUYHBIX OIIEPaTOPOB U3 lpv B lqu mpu 1 < ¢ < p < 0O U HOJYIEHBI HEOOXOMMbIE U
JIOCTATOYHbIE YCJIOBUA 3TOHN 3a4a4M, KOT/Jla MaTPUYHbIE OIIePATOPHI ITPUHA/IJIEXKAT KJIacCaM OQi, YIOBJIETBO-
pstroruM 6oJtee ciabbIM yCaoBUsM, YeM yciiosue OitHapoBsa.

Karoueswie €A06a: MATPUUIHBIA OLEPATOP, COIPS?KEHHBIN OIIEpaTOp, BECOBasl IOCJIEI0BATEILHOCTD, Orpa-
HUYEHHOCTh, BECOBBIE HEPABEHCTBA, BECOBOE MpOCTpaHCTBO Jlebera, ycmoBue Oitnaposa, omeparop Xapiau,
HEPaBEHCTBO Xap/id, MaTPHUIA.
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On the Fourier transform of functions from a Lorentz space Ls;
with a mixed metric

The classical inequalities of Bochkarev play a very important role in harmonic analysis. The meaning of
these inequalities lies in the connection between the metric characteristics of functions and the summability
of their Fourier coefficients. One of the most important directions of harmonic analysis is the theory of
Fourier series. His interest in this direction is explained by his applications in various departments of
modern mathematics and applied sciences, as well as the availability of many unsolved problems. One
of these problems is the study of the interrelationships of the integral properties of functions and the
properties of the sum of its coefficients. The solution of these problems was dedicated to the efforts of many
mathematicians. And further research in this area are important and interesting problems and can give
new, unexpected effects. In the article we receive a two-dimensional analog of the Bochkarev type theorem
for the Fourier transform.

Keywords: Lorentz Space, Hausdorff-Young-Riesz theorem, Bochkarev’s theorem, Cauchy-Bunyakovsky
inequality, Helder’s inequality.

Introduction

This article is devoted to the Hardy-Littlewood inequalities for an anisotropic Lorentz space. This
inequalities characterize the connection between the Fourier coefficients and integral properties of the
function. The study of relationship between the integrality of a function and the summability of its
Fourier coefficients has been the subject of many papers. There are well-known classical results in this
direction, such as Parseval, Bessel, Riesz, Hardy-Littlewood, Palley, Stein [1,2], also modern works
[3-11] and others. However, the Hausdorff-Young-Riesz theorem does not extend to the spaces Lg ., if
r# 2.

In 1997 Bochkarev S.V. [12] established that, in contrast to the spaces Ly, 1 <p < 2,1 <r < oo,
in the Lorentz space L, 2 < r < oo the direct analogue of the Hausdorff - Young - Riesz theorem is
not satisfied. And he derived upper bounds for the Fourier coefficients of functions from Lo, replacing
the Hausdorff-Young-Riesz theorem and proved that for some class of multiplicative systems these
estimates are unstrengthened.

Theorem (S.V. Bochkarev). Let {¢y,},-; be an orthonormal system of complex-valued functions on
[07 1]7

léull < M, n=1,2,..

and let f € Lo,, 2 <17 <oo. Then the inequality

1

n
sup — — >k < Clfllz,,.
neN [n|2 log(n +1)27r 7= 7
oo

holds, where a,, are the Fourier coefficients of the system {¢,} .

*Corresponding author.
E-mail: makpal9136@mail.Tu
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In 2015 an analogue of Bochkarev’s theorem was received for the Fourier transform of a function
from the space L ,(R).

Theorem A [13]. Let Ry = {A = U A;, where A; are segments in R}, then for any functions
feLly, (R), 2<r<oo the following mequalzty holds:

1
sup sup . / F(&)de| < 23] £,
N>8AC§RN ‘A‘2log2(1+N )2

The aim of this article is to obtain a two-dimensional analog of the Bochkarev type theorem for
the Fourier transform. To do this, we need to introduce the following definitions:

Definition 1 [14]. Let p = (p1,p2), T = (r1,72) and satisfy the following conditions: 0 < p < oo,
0 < 7 < 0o. The Lorentz Space L;7[0,1]? with a mixed metric is defined as the set of all measurable
functions defined on [0,1]2, for which the norms are finite:

1 1 *2\ T "2

L L " dty dts
17025 = M1 N2y ey = / 5 / (tflf*l(tl,») . .
0 0 1 2

t2
in the case 0 < 7 < oo, and

1 1

12500 = supt gt fTR (s o)
t1

in the case ¥ = oo.
Definition 2 [15]. Let f € Ly (IR?). Its two-dimensional Fourier transform is defined by the following
formula:

f(&1,6) = / /f($1,$2)62”i(mlgl+m2£2)d9€1d$2-
Main results

To prove the main theorem, it is necessary to prove an auxiliary lemma:
Lemma. Let % <q,q2 <2and f e Lq—j(RQ). Then for any measurable sets A; and Ag of finite
measure in Ry the inequality

swp sup [ [|f(6.)]dadea <

A1CRy A2CR
1CRy A2 N|A1|CI1’A2|‘12 Ay Ay

<c (z(qq_l)) (@) (2((1‘12_1)) ) 1fllz,
holds.

Proof. We consider the following inequality

/ / f(&1,&)d61ds| =

1 Az
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(/ / f(wy, m9)e 2™ 1017282 gy day | dEydEn| <
1 A2

< | Ay]| Ay / / (@1, w2)|dardes = | Ay As] 1., (1)

—00 —O0

and from the Cauchy-Bunyakovsky inequality and from the Plancherel theorem we have:

//f(flyﬁz)dfld& SENEE (A// 51,52 dgldgg 5 —

1A2 1A2
5
1 1
SYNHIVNE // (w1, 22)) daydes | = | Ay Aal3 | £,
1 Az

Consider representation (2) f = foo + fo1 + fio + fi1 constructed like the following.
Let 0 < 71,72 <00, Xa,, (1’1) be a set characteristic function €2g,.

Quy = {(z1,22) : [f (21, 22)] > f7 (71, 22)} U €ay,
where ey, is a measurable subset {(z1,x2) : | f(z1,22)| = f* (71, 22)} such that:
w1 (Qgy) = 71.
This set is always available, since for a fixed zo
p{(z1, w2) « | f (21, 2)| > [ (71, 32)} < 7,

p{(w1, x2) | f(a1,22)| > f*(71,22)}.
Denote by gp and ¢; the functions

go(z1,22) = f(21,22) X0, (T1),

g1(x1,22) = f(x1,22) — go(x1, 22).

In turn, each function gy, g1 can be represented as

go = foo + fo1, 91 = fio + f11-

Let
Wo = {x2 € (0,00) : [lgo(-s z2) |z, > (llgo(-,22)l|L,) ™ (72)} U eo,
where
eo C {z2 € (0,00) : |lgo(-sx2)||lz, = ([lgo (-, z2)[[£,)** (72)}, p2(Wo) = 72,
and
Wi ={z2 € (0,00) : [|g1(-;2) [, > (l91(-s 22)[[1,) ™ (72)} Ve,
where

e1 C{x2 € (0,00) : [[g1(-s 22)l[, = (l91 (-, 22)||Lo) s p2(Wh) = 7.
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Then
foo(x1, 22) = go(1, z2)Xwy (22), for(x1,22) = go(x1,22) — foo(z1,22),

fio(z1, 22) = g1(x1, x2)xw, (z1), fii(zr,z2) = g1(z1, 22) — fio(z1, x2).

Thus representation is constructed

[ = foo+ for + fio + f11.

Then for an arbitrary 7 = (11, 72) € (0,00)?%, we get

JNECAAE

1 Aa

<|[ [inter @i+ | [ [ in.guade|+

1A2 1A2

4 / / Fro(6r, €2)d1des)| + / / (€, E2)derdes| = I+ I + I + I,

1A2 1A2

For I; we use inequality (1) and get the following estimate

L < |A1||A2|M1M2//|f00(1‘1,$2)|d$1d$2-
00

Now let us estimate I

2 3
I, < |Ag|2 (A/ (A for(&1,62)der | déa | <

1
+o0 400 2

§|A2|% ////fm x1,x2)e 2m1£1x2£2d$1d$2dfl & | <

1 —O00 —00

2
S’A2|% (A//fm x1, x0)e TS dy dEy | e T8y, | dEy

Applying Plancherel theorem, we get

2 3
—+o00 —+o00
I, < |A2\% / //f01(331,$2)6_2“ix151dﬂ71d§1 dzoy | =
e N
1
+00 +00 2 2
=|A2|% ///f01($1,$2)€_zmzlﬁd$1d§1 dra | <
—o0 |4 —oo
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9 1/2

+o0
<C\Al|’x42|2 /( | for(z1, @2)|dzq | dao

Let’s estimate I3

—

Iy = //f1o(§1,§2)d€1d§2 =

1 As

“+00 400

= /// /f10($1,$2)€_2m$151$2£2d$1d$2d§1d§2 <

1 Ay —00 —00

—+o00| 400

/// /flO 1, x2)e 2 dyy | dEy eI T282 ey g <

Ay Ay —o0

—+o0| +00

SC|AQ|// /f10(5517f02)62mm1§1dw1d§1 dzxs.
Ay — 00

Using Cauchy-Bunyakovsky inequality, we obtain

NI

+oo| +0oo 2
I3 §C|A2\|A1!% / / /flO(fEla132)6_2m$1§1d$1d£1 dxo <
Al — OO o
1
+oo +oo 2\ 2

§C|A2|‘A1|;/ / /flo(ibl,1'2)6_27rm1§1d1'1d£1 dl‘z.

—oo \A; Foo

Using Plancherel theorem, we get the following

+o0 +oo 2 %
1
13 < C’A2||A1|2 / /flo(:El,iL'Q)dl'l d:L'Q.

Applying for Iy Cauchy-Bunyakovsky inequality and Plancherel equality, we get the following estimate

L=| [ [ Futee)ides] < 1402 (A/ [ edade| B

1A2 1A2
—+00 +00 5
= |A;|Y/?|Ag)'/? //|f11(a:1,m2)|2dx1da:2

Substituting the obtained estimates into relation (3), we have
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“+00 400
// (&1,&2)d61d | < A4 \AQI/ /\foo x1, x2)|dxdrs+
1 Ag —00 —00
1
+oo [/ 400 2 2
+|A1]|Ag|2 / /Ifo1(m1,:rz)|dx1 dry | +
1
“+oo [/ +oo b)
1
+1A2||A1|2/ /Iflo(xl,m2)|2dx1 dat
1
+00 +00 2
1 1
+‘A1’§‘A2’5 //’f11($17x2)|2d$1d1'2
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*2
[ [ iteede, <A1A2/(/f*l .- dtl) dty+
L As N
[e’e) [e'e) *2 2 %
saals | [ [rrendn ) | a| o+
0 T to
*9 %
H&H&/“ /*whWﬁl iyt
to
1
o0 [ele] *9 2
+A1]2|As)2 / /(f*l(tl,-))thl dty | =
T2 71 to

=J1+ Jo+ J3 + J4.

Now we estimate each term. To estimate J; we use Helder’s inequality

27T a \
’Al ]A2|/t§2t 2 (/thltfl f*l(tl")tl) tz <
1 2

0 to

1
oo [e'%s) *2 3
2 1 2
<A_%(/ﬁ(/03wm»)“ﬁ “ﬂ x
1 to
0 0 to
X / t
0
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[N
=

) d o0 d 2
a4 dty o b2
= |Au]|A2[ll fllz, 5 /tllt1 /t22t2 -
0 0
q/ % q/ % ¢
~ Aullaellsleg (2)° (%) nF it

1
q 42 P
= A A 2 b q2.
|Av[[A2|[| Fllz, 5 (2(q1 _ 1)> <2(q2 - 1)> T

To estimate the term Jo we also use Helder’s inequality

NI

1
o) 1 *9 2 2
1
T N R RIS I T
2 0 to
1
S 1 1 ! w2\ 2 B
= = = dt todt
| [ e | [l rwa ] ) B
t to
T2 0 to
00 | T1 ) 9 d *2 d 2
= = t t
<tafladt | for | [(rmwn) T 2]
t1 to
2 0 to
00 ) 1 d d 1/2
1-= t t
X /tg 2 /t 1 72 =
t1 to
T2 0
1 1
Toza\ [ 7%\ d )"
. 1 T 012 aq 1
= el s | 6 52 ) () <t1 )t
T2 0
1_1
Since g2 < 2, the second integral is estimated in terms of 7, . So
/Ny L 11
1 ql 2 7 55— =
Jo < [AL[|A2|2 ([ fllL, <2> e
1 o\ ok il
o s q1 a2
— Al (57 ) 7
Now we estimate J3
1
T2 o0 *9 2
h::AﬂﬂAﬂ/1 (/ P )2 || ds =
0 t
1
%) 9 *92 2
L L -+ t1dt todt
1A1|2|A2|/t2 S (g rmen) i) e
t1 212
T1 to 2
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We use Helder’s inequality

[
3
3
*
V)

N|—=

L 11 -1 L L 2 dty dts
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T1<t1 <00

1
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It remains to estimate the last integral

T [ 00 *2 %
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1
* 2
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Choosing 71 = ~~4—4— and 7 =~~~/ we get
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1 1

| -1

T a L q2 2 1

X [ ————— Ay|n = Aglez 4
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1 q1
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We get the following inequality:

1

1 1 q («n_%) Q2 (fm )
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SIS

or

f&, €)d1de| <
V417 Aol \Aﬂ "4 A,

< (325) (@) =y @) 1£lls,

Taking the least upper bound over all A; C Ry and Ay C Ry, we obtain the assertion of the lemma,
that is,
wp sup [ []f(6.)]dadee <

ARy A2y | Ay 75| A5 ] ]

1 1

<c (2(;1_1)) (@) (2(;2_1)) ) 11z,

where |A| is the number of elements in A.
Theorem. Let @y my (21, 22) = @y (21) - Ymy (22), m1,m1 € N be an orthonormal bounded system
of functions. Then, for any f € LZF(RQ), where 2 < rq, 79 < 00 the inequality holds:

1
sup sup + X

1 1
iz 128 Ay 3| As| 2 (logy (| Au| + 1)) 71 (logy(|As| +1))2

A{CN AgCN

D=

T

S

< [ [|iene)]ddea < £,

Ay Ao
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Proof. Let |Ay],|A2| > 8. Then for any (g1, ¢2) such that 1 < q1,¢2 <2 and f € L35 the following
estimate is true

1fllz,s < Iflles MME, 0 (4)
11,1 1 _1_1 .
where =3t =37 Now we consider
/ =
1 1 Tl Tl d i d 9
t1 to
U, ., = ti ey — | =
o= | [ [ ) &
0 \o
1 - -
I R G N e B A R F P
= tl 2 — =
131 to
0 0
1 1
rt rl 1 1
_ 1 ' 1 ’ ( 2q1 )r/l < 2q2 >"é
1 1 1 1 2 — 2 —
1GoD) W@y o) \eoe

According to the previous inequality, we obtain

1

1

21 \"7 [ 2q2 \ 7
< otz .
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1 A~
MZZV(&’&WW&S
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Taking into account (4), we get the following inequality
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2 \7 [ 2
g1 \n q2
><< — > ' ( ) £l s, -
2—q 2—qo

Taking into account the arbitrariness of parameters ¢; and ¢o, we set

Applying Lemma 1, we get
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1 1
logo [A1] logg [Ag]
1 1
<4M X

B 11 11
2(2 o3 |A1|> 2(2 Tog; |A2\)

1

1
x (log [A1])™r (logy [A2]) ™2 || f]|L, .-

Considering | 41|, |A2| > 8, we get the following estimate

1
| A1]2| Az (logy |A1])
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% (logs 14z 7§

[NIE

Taking the least upper bound over all Ay and As from N, we get

1
sup  sup X

1 1 i_ L
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A1 Az

Conclusions

The results obtained in this study specifically the Bochkarev-type inequality in a space of a mixed
metric, allow us to effectively address problems concerning Fourier series multipliers [16-18|.
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H.T. Tneyxanosa, I"K. Mycabaesa, M. Manapb6ex

JI.H. lymuses amomdazv. Eypasus yammuk yrusepcumemi, Acmana, Kaszaxcman

Apanac merpukabl Ls; JlopeHi| keHicriringeri Pypbe
b yHKIUSATIAPBIHBIH, TYPJIECHAIPYJ/IepPil >Kalijibl

TapMoHUKAIBIK TaIIayIa KIACCUKAIBIK, BouKkapeB TeHCI3IIKTepl ©Te MaHBI3IbI POJT ATKAPaabl. By TeHCci3mik-
Tepaig MoHI OYHKIUAIADIBIH METPUKAJBIK CHIATTAMaJjapbl MeH oiapAblH Pypbe KoddbuUImEeHTTEPiHIH
KOCBIHJIBICBI apaChIHIaFbl OAMIaHBICTA YKATHIP. | ApMOHUKAJIBIK, TAJIIAYIbIH MAHBI3Ibl OAFBITTAPBIHBIH, Oipi
®ypbe KaTapaapblHbIH Teopuschl. OHBIH 6yJT cajlara JereH KbI3BIFYIIBUIBIFBI Ka3ipri MaTeMaTnKa MeH KOJI-
TaHOAJIbI FBIIBIMIAPBIH OPTYPJIl casiaJapblHIa KOJIAAHBLIYBIHA, COH/IA-aK KOITEreH IIeNIMEreH Mocee-
Jiepfiil 60stybiHa GaitmanbicThl. OChl MaKcaTTapAbIH Oipi (DYHKIUSHBIH HHTEMPAJIILIK, KACMETTEPI MEH OHBIH
KO3 PUIMEHTTEPIHIH KOCBIHIBICHIHBIH, KACUETTEP] apachblHIarbl OaiflIaHbICTRL 3epTTey. Konreren marema-
TUKTEP/IiH, eHOEKTepi OChI ecenTep/Ii Menryre apHaJsabl. By casagarsl opi Kapalrbl 3epTTeyiep MaHbI3/IbI
JK9HE KBI3BIKTHI 3epTTey OOJIbIN TabbLIa bl XKoHe KaHa, KYTIEreH HOTHXKeJepre oKelyl MyMKin. Makasaga
®ypbe Typiienyi yimia Boukapes TunTi TeOpeMaHBIH €Ki OJIIIIEM Tl aHAJIOTHI AJIBIHFAH.

Kiam coesdep: Jlopenn kenicriri, Xaycaopd—dur—Puc reopemacsl, Boukapes reopemacsi, Komu-ByHsikoBckumii
TeHci3mairi, Xeabaep TeHCI3iri.
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H.T. Tneyxanosa, ['"K. Mycabaesa, M. Manapoek

Espasutickuti nayuonasvhouli yrusepcumem umenu JI.H. lymusesa, Acmana, Kasaxcman

O npeobpaszoBanuu @ypbe dyHkiuit B npocrpancrse Jlopenna Ly -

CO CMEIIaHHON MeTPUKOu

Kitaccuueckue nepasencrsa BoukapeBa Urpaior oYeHb BaXKHYIO POJIb B TapMOHUYECKOM aHaJm3e. CMbICI
9TUX HEPABEHCTB 3aKJ/IIOYAETCs] B CBSI3M MEXKJY METPUYECKUME XapaKTEePUCTUKAMU (DYHKIUNA U CyMMU-
pyemoctbio ux Kod(pdunmentoB Oypre. OmHuM 13 BaKHEUINX HAIPABICHUN TapPMOHUYECKOTO AHAIU3A
siBJisiercst Teopusi psanoB Pypoe. Ero maTepec K 3T1OMy HAIPABIEHUIO OObSICHSETCS €r0 MPUJIOKEHUSIMHA B
Pa3IUYHBIX pa3esiax COBPEMEHHOM MaTeMaTUKY U TPUKJIAJHBIX HAYK, & TAKXKE HAJIMINEM MHOTUX HEPeIleH-
HBIX mpobsiem. OMHOM U3 TAKUX 33149 SIBJISIETCS N3y IE€HNE B3ANMOCBSI3€l MHTErPATbHBIX CBONCTB (DYHKITUN
¥ CBOMCTB CYMMBI ee KoaddurmenToB. Pertennio 3Tux 3a/1a4 ObLIN MOCBSIIEHbl YCUIN MHOIUX MaTeMaTH-
KOB. Ul masnbHeifIre uccjieIoBaHusl B 9TOI 00JIACTHU SIBJISTFOTCS BAXKHBIMU U UHTEPECHBIMU 38JIJa9aMU U MOTYT
MPUBHECTH HOBBIE, HEOXKUJIAHHBIE 3P DEKThI. B maHHO cTaThbe MBI TTOJIydaeM JBYMEPHBIH aHAJOT TEOPEMBbI
Tura Boukapesa i1 npeobpazoBanus Pypbe.

Kmoueswie caosa: mpoctpanctso Jlopenrna, Teopema Xaycmopda-FOura-Pucca, Treopema Boukapesa, Hepa-
BencTBo Kommu-BynsikoBckoro, HepaBencTBo ['esbjiepa.

References

Berg, 1., & Lefstrem, 1. (1980). Interpoliatsionnye prostranstva [Interpolation spaces|. Moscow:
Mir [in Russian|.
Stein, E.M. (1956). Interpolation of linear operators. Trans. Amer. Math. Soc., 83(2), 482-492.

3 Nursultanov, E.D. (2000). O koeffitsientakh kratnykh riadov Fure [On the coefficients of multiple

10

150

Fourier series|. Izvestiia Rossiiskoi akademii nauk. Seriia matematicheskaia — News of Russian
Academy of Sciences, Mathematical Series, 64 (1), 117-121 [in Russian].

Nursultanov, E.D. (1998). Setevye prostranstva i neravenstva tipa Khardi-Littlvuda [Network
spaces and Hardy-Littlewood-type inequalities|. Matematicheskii sbornik — Math. Collection,
189(3), 83-102 [in Russian]|.

Nursultanov, E.D. (1998). Interpolation properties of some anisotropic spaces and Hardy-Littlewood
type inequalities. Fast J. Approx., 4(2), 277-290.

Kopezhanova, A., Nursultanov, E., & Persson, L.E. (2010). Relations between summability of

the Fourier coefficients in regular systems and functions from some Lorentz type spaces. Proc.
A. Razmadze Math. Inst., 152, 73-88.

Zhantakbaeva, A.M., & Nursultanov, E.D. (2013). O summiruemosti koeffitsientov Fure funktsii
iz prostranstva Lorentsa [On the summability of the Fourier coefficients of functions from the
Lorentz space|. Matematicheskii zhurnal — Mathematical journal, 13, 1(47), 83-89.
Zhantakbayeva, A.M., Dyachenko, M.I., & Nursultanov, E.D. (2013). Hardy-Littlewood type
theorems. Eurasian Mathematical Journal, 4(2), 140-143.

Kopezhanova, A.N., & Persson, L.E. (2010). On summability of the Fourier coefficients in bounded
orthonormal systems for functions from some Lorentz type spaces. Furasian Mathematical Journal,
1(2), 76-85.

Diachenko, M.I. (2013). Ob odnom klasse metodov summirovaniia kratnykh riadov Fure [On

a class of summation methods for multiple Fourier series|. Matematicheskii sbornik — Math.
Collection, 204(3), 3-18 [in Russian]|.

Bulletin of the Karaganda University



On the Fourier transform of ...

11

12

13

14

15

16

17

18

Diachenko, M.I.; & Nursultanov, E.D. (2009). Teorema Khardi-Littlvuda dlia trigonometricheskikh
riadov s a-monotonnymi koeffitsientami [Hardy-Littlewood theorem for trigonometric series with

a-monotone coefficients|. Matematicheskii sbornik — Math. Collection, 200(11), 45-60 |[in Russian]|.
Bochkarev, S.V. (1997). Teorema Khausdorfa-Yunga-Rissa v prostranstvakh Lorentsa i multipli-

kativnye neravenstva [Hausdorff-Young-Riesz theorem in Lorentz spaces and multiplicative inequa-
lities|. Trudy MIRAN — MIRAN treatise, 219, 103-114 |in Russian].

Musabaeva, G.K. (2014). Neravenstvo tipa Bochkareva |Bochkarev type inequalities|. Vestnik

Kazakhskogo natsionalnogo universiteta. Seriia Matematika, mekhanika, informatika — Bulletin

of Kazakh National University. Series Mathematics, Mechanics, Computer Science, 82(3), 12-18

[in Russian].

Mussabayeva, G.K., & Tleukhanova, N.T. (2015). Bochkarev inequality for the Fourier transform

of functions in the Lorentz spaces. Eurasian mathematical journal, 6(1), 76-84.

Mussabayeva, G.K. (2013). On the Hardy and Littlewood inequality in the Lorentz space La,-.

PrePrint CRM, 157, 1-14.

Tleukhanova, N.T., & Bakhyt, A. (2020). The problem of trigonometric Fourier series multipliers

of classes in A, ; spaces. Bulletin of the Karaganda university. Mathematics series, 4(100), 17-25.

Tleukhanova, N.T., & Bashirova, A.N. (2021). O multiplikatorakh riadov Fure po sisteme Khaara

[On multipliers of Fourier series in the Haar system|. Matematicheskie zametki — Mathematical

Notes, 6(106), 940-947 [in Russian].

Tleukhanova, N.T., & Bakhyt, A. (2021). On trigonometric Fourier series multipliers in A,

spaces. Furasian mathematical journal, 1(12), 103-106.

Mathematics series. No.3(111)/2023 151



DOI 10.31489/2023M3/152-164
UDC 510.67

O.1. Ulbrikht*, N.V. Popova

Karaganda University of the name of academician E.A. Buketov,
Institute of Applied Mathematics, Karaganda, Kazakhstan
(E-mail: ulbrikht@mail.ru, dandn@masil.ru)

A fragment of a theoretical set and its strongly minimal central type

The paper defines a new class of algebras, the theory of which is a special case of Jonsson theories. This
class applies to both varieties and Jonsson theories. The main results of this article are the following two
results. In this article, an answer is obtained to the question of the equivalence of existential closure and
algebraic closure of the model of the cosemantic class of a fixed spectrum of a Robinson hereditary variety.
A criterion for strong minimality is obtained in the framework of the study of central types of central classes
and fragments of a fixed spectrum.

Keywords: Jonsson theory, existentially closed model, algebraically closed model, cosemanticness, Robinson
spectrum, Robinson hereditary variety, central type, Jonsson fragment, theoretical set, strongly minimal
type.

Introduction

This article belongs to a fairly well-known topic in the field of model theory. Namely, this topic is
related to the classification of theories regarding such an important concept as categoricity. As it is well
known, only 4 combinations are possible with respect to the concept of categoricity: total categoricity;
w-categoricity and not wi-categoricity; wi-categoricity and not w-categoricity; nowhere categoricity.
The notion of strong minimality is closely related to the notion of wi-categoricity, that is, in all four
combinations of the above concept of categoricity, the concept of strong minimality is either present or
absent. Thus, the study of the strong minimality property is important in classifying complete theories.

The topic studied in this article is related to the study of Jonsson theories and their classes of models
[1-6]. In papers earlier than this paper, the main methods used to study Jonsson theories [1,5,7,8| were
considered. One of the methods for studying complete theories is to enrich the signature with symbols
that allow one to obtain new information about the models of the old signature and their theories in
the language of these symbols. In the works [9-11], related to the enrichment of Jonsson theories, the
notion of a central type was introduced on the basis of the notion of heredity of Jonsson theory. The
concept of heredity is closely related to the concept of the stability of the center of the Jonsson theory
and the Jonsson stability of the Jonsson theory itself. As is well known, the best description among
Jonsson theories lends itself to the study of perfect Jonsson theories due to the existence of a model
companion of such theories. The concept of stability is closely related to the concept of categoricity,
which plays an important role in the theory of classification of complete theories and, accordingly,
incomplete theories. Due to the fact that the concept of heredity of Jonsson theory still does not
have a complete description, this topic is relevant and modern in the framework of the study of the
enrichment of Jonsson theories.

Jonsson theories, in their essence, are, generally speaking, incomplete theories. That is, the technical
apparatus of the study of Jonsson theories, in comparison with complete theories, is less adapted to
the transfer and adaptation of the concepts and achievements of complete theories.

*Corresponding author.
E-mail: ulbrikht@mail.ru

152 Bulletin of the Karaganda University



A fragment of a theoretical set ...

A valuable concept for operating on the properties of elements and subsets of a semantic model is
the Jonsson set, that is, a definable set with the help of some existential formula, the definable closure
of which defines some existentially closed submodel of the considered semantic model. An interesting
and important special case of the Jonsson set is the notion of a theoretical set. In fact, within the
framework of the study of the Jonsson set, we get a “new and special” Jonsson theory, the axioms of
which are directly related to the given Jonsson set.

Until now, an unresolved problem is a problem of characterization of the concept heredity of Jonsson
theory. The relevance of this problem is confirmed by the following important counterexample: the
elementary theory of an algebraically closed field ceases to be Jonsson after enrichment with an unary
predicate. In this regard, the study of the model-theoretic properties of central types in predicate
enrichment is an important model-theoretic task for describing hereditary Jonsson theories.

The concepts of central type and Jonsson spectrum were first introduced by Yeshkeyev A.R.,
respectively, in [12, 13]. With the help of these concepts, complete descriptions of Jonsson Abelian
groups [13] and Jonsson modules [14] with respect to the concept of cosemanticness were obtained,
thereby starting a new study in the framework of model-theoretic algebra. Later, the study of the
model-theoretic properties of these concepts was continued in the works [9,11,14-18].

Note that another method of studying Jonsson’s theories is to study these theories using the
concepts of syntactic and semantic similarities. In the papers [19-21|, using these concepts, some
results were obtained in the framework of the study of Jonsson theories and their centers, as well as
definable subsets of the semantic model.

1 Basic necessary concepts and preliminaries

Let us give the main definitions of the concepts of model-theoretic concepts that you need to know
in order to understand and be able to work in the framework of studying Jonsson theories and their
classes of models. The following definitions and their model-theoretic properties are generators for that
part of model theory that studies the basic properties of definable subsets of the semantic model of
various fixed Jonsson theories.

Definition 1. |22; 80] A theory T is called a Jonsson theory if

1) theory T has an infinite model;

2) theory T is inductive, i.e. T is equivalent to the set of V3-sentences;

3) theory T has the joint embedding property (JEP), i.e. any two models A, B of the theory T
are isomorphically embedded in some model C' of the theory T

4) theory T has the amalgamation property (AP), i.e. if for any A, B, C' |= T such that f; : A — B,
fo : A — C are isomorphic embeddings, there are D |= T and isomorphic embeddings g1 : B — D,
go : C'— D, such that g1 f1 = go fo.

Examples of Jonsson theories are the theories of well-known classical algebras such as groups,
Abelian groups, Boolean algebras, linear orders, fields of fixed characteristic, and polygons.

Note that Jonsson theories, generally speaking, are not complete.

Definition 2. [23] Let k > 7. A model M of the theory T is called k-universal for T, if each model
of the theory T of cardinality strictly less than x is isomorphically embeddable into M.

Definition 3. [23] Let k > 7. A model M of the theory T is called k-homogeneous for T', if for any
two models A and A; of the theory T', which are submodels of M, cardinality is strictly less than &,
and isomorphism f : A — A;, for each extension B of the model A, that is a submodel of M and the
model of the theory T of cardinality is strictly less than x there exists an extension Bj of the model
Aq, which is a submodel of M, and the isomorphism ¢ : B — Bj, continuing f.

A homogeneous-universal model for T is called a k-homogeneous-universal model for T of cardinality
K, where Kk > T.
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The following concept is crucial when working with Jonsson theories.

Definition 4. |23] Let T be a Jonsson theory. A model C of the theory 7" is called a semantic model
if it is 77-homogeneous and 7T -universal simultaneously.

A semantic model plays an important role as a semantic invariant. Such a model always exists for
any Jonsson theory.
The next important fact shows that any Jonsson theory is determined by its semantic model.

Fact 1. [23] Every Jonsson theory T has a xT-homogeneous-universal model of cardinality 2.
Conversely, if T is inductive, has an infinite model, and has a 7-homogeneous-universal model, then
T is a Jonsson theory.

Theorem 1. |23] Let T' be a Jonsson theory. Two k-homogeneous-universal for 7" models A and B
are elementarily equivalent.

Definition 5. |1; 161| Let Cr be a semantic model of the Jonsson theory 7. Then the elementary
theory Th(Cr) of the model Cr is called the center of T" and is denoted by T*.

The following result makes it possible to describe a special subclass of Jonsson theories that have
a model companion.

Fact 2. 23] Let T be the Jonsson theory. If T* is model complete and x > 7, then k-homogeneous
universal models of T are k-saturated; if 7% is not model complete, no semantic model of T is 77 -

saturated.

It follows from the Fact 2 and the mutual model compatibility of the Jonsson theory T and its
center T™ that T™ is a model companion of the theory 7.

Further in our article, the language will be countable, which means that 7 = w and kK > w or Kk > w.
From the Fact 2 for the notion of the perfectness of the Jonsson theory x must be greater than 7.

Definition 6. [24] Let £ > 7. Jonsson theory T is perfect if its semantic model is 7T -saturated.

Thus, from the Fact 2 and the Definition 6 we can conclude that a perfect Jonsson theory is a
Jonsson theory that has a model companion and it is equal to its center.

Recall that a model M of theory T is existentially closed in T if every existential sentence ¢ of Ly,
which holds in some model of T extending M holds in M.

The notion of an existentially closed model is a generalization of the notion of an algebraically

closed field.
Lemma 1. |24] The semantic model Cr of the Jonsson theory T is T-existentially closed.

Proposition 1. [22; 97] If T is inductive theory, then every model of theory T can be extended to
an existentially closed model.

Let us denote by E7 the class of all existentially closed models of the theory T
Theorem 2. |24] If the Jonsson theory T is perfect, then Ep = Mod(T™*), where T* = Th(Cr).

Definition 7. [25] Let A € ¥, where ¥ is a universal class in a countable language L(X). Then A
is algebraically closed if A has no proper algebraic extensions. An extension B of A is an algebraic
closure of A if B is an algebraically closed algebraic extension of A.

The ability to compare complete theories is an important tool in classifying these theories. Mustafin
T.G. a method of syntactic and semantic similarity was proposed for the classification of complete
theories and their monster models [26]. Let us give the main definitions related to these concepts.

Let T' be complete theory then F(T') =, _ ., Fn(T), where F,,(T') is Boolean algebra of formulas
with n free variables.

n<w
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Definition 8. [26] Let T; and T be complete theories. We will say that T} and T5 are syntactically
similar (73 5 T5) if exists bijection f: F(T}) — F(T%) such that:

1) restriction f to F,(77) is isomorphism of Boolean algebras F,,(17) and F,,(T%), n < w;

2) f(Fvns10) = Fvns1f(9), ¢ € Fp1(T), n < w;

3) f(v1 =12) = (v1 = v2).

Definition 9. [26] 1) (A, T, M) is called the pure triple, where A is not empty, I is the permutation
group of A and M is the family of subsets of A such that from M € M follows that g(M) € M for
every g € I'.

2) If (A1,T'1, M1) and (Ay,T'9, My) are pure triples and ¢ : A} — Ay is a bijection then % is an
isomorphism if:

(i) Ta = {ygp~' 1 g € T1 };
(ii) Mo = {¢(E) NS M1}.

Definition 10. |26] The pure triple (C, Aut(C), Sub(C)) is called the semantic triple of complete

theory T', where C' is the universe of Monster model C of theory T', Aut(C) is the automorphism group

of C, Sub(C) is a class of all subsets of C' each of which is a carrier of the corresponding elementary
submodel of C.

Definition 11. [26] Complete theories T and T5 are semantically similar if and only if their semantic
triples are isomorphic.

Proposition 2. [26] If T7 and T, are syntactically similar, then 77 and 75 semantically similar. The
converse implication fails.

In what follows, we will denote the syntactic and semantic similarities of the complete theories T}
S .
and Ty as Ty <1 Ty and T} Dsd T5, respectively.
Let us recall the definition of semantic property.

Definition 12. [26] A property (or a notion) of theories (or models, or elements of models) is called
semantic if and only if it is invariant relative to semantic similarity.

For example from [26] it is known that:

The ability to compare complete theories with the help of syntactic and semantic similarity was
useful in describing the most important properties of the theory of stability in the study of complete
theories. The following result confirms the importance of syntactic and, accordingly, semantic similarity
of complete theories.

Proposition 3. |26] The following properties and notions are semantic:
(1) type;

(2) forking;

(3) A-stability;
(4) Lascar rank;

(5) Strong type;

(6) Morley sequence;

(7) Orthogonality, regularity of types;
(8) I(Ny,T") — the spectrum function.

The following definition was introduced Yeshkeyev A.R. in the frame of Jonsson theories study [24].
Let T be an arbitrary Jonsson theory, then E(T) = (U,,.,, En(T'), where E,(T) is a lattice of 3-
formulas with n free variables, T is a center of Jonsson theory T', i.e. T* = Th(C), where C is semantic

model of Jonsson theory T" in the sense of [23].
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Definition 13. |24] Let T and T are arbitrary Jonsson theories. We say that T} and T, are Jonsson

syntactically similar (7} i T5) if it exists a bijection f : E(Ty) — E(T3) such that:

1) the restriction of f to E,(7T1) is an isomorphism of lattices E,(T1) and E,(T2), n < w;

2) f(Font10) = Fons1 f(9), ¢ € Enia(T), n < w;

3) f(v1 =v2) = (v1 = v2).

In particular, a criterion was obtained that connects fixed Jonsson theories and their centers, which
are complete theories. Thus, a connection is found between the concepts of syntactic and semantic
similarity of complete theories and the corresponding similarities of fixed Jonsson theories.

Theorem 3. [24] Let Ty and T, are J-complete perfect Jonsson theories, then following conditions
are equivalent:
S
1) T1 X TQ;
S
2) Tf =< T3
One of the important and useful concepts of model theory is the formulaic definability of fixed
subsets of the models under consideration. In particular, when studying complete theories, there are
axiomatic approaches to such subsets [27]. In this article, when passing to fixed subsets of the semantic
model of a fixed Jonsson theory, the concept of special definable formulaic subsets of the semantic
model is used. These concepts were defined by Yeshkeyev A.R. [28], where he defined the concept of
the Jonsson set and its particular case, the theoretical set. This approach is a generalization of the
well-known concept of a basis in linear algebra.

Definition 14. [28| Let T' be some Jonsson theory in a fixed language and C7 is its semantic model.
A subset X C C7 is called a Jonsson set in the theory T, if it satisfies the following properties:

1) the set X is a 3-definable subset of Cr (this means that there is a 3-formula, the solution of
which in the Cp is the set X);

2) cl(X) = M, M € Ep, where cl is some closure operator defining a pregeometry [29; 289 over C
(for example ¢l = acl or cl = dcl).

Further in our article it is assumed that acl = dcl.

Consider a countable language L, a complete for existential sentences perfect Jonsson theory T in
the language L and its semantic model Cr. Let X be a Jonsson set in T and M be an existentially
closed submodel of the semantic model Cr, where dcl(X) = M. Then let Thy3(M) = Fr(X), where
Fr(X) is the Jonsson fragment of the Jonsson set X.

Definition 14. A set X is called a theoretical set, if X is Jonsson set, ¢(C) = X and the universal
closure of the formula ¢(z) defines some finitely axiomatizable Jonsson theory.

The concept of strong minimality, both for sets and for theories, has played an important role in
the description of uncountably categorical complete theories [32]. Recall the definition of a strongly
minimal type.

Let M be a structure of language L. A subset X of M is called minimal if it is definable (with
parameters in M), infinite, and if for any definable (with parameters in M) subset Y of M either
XNY or X \Y is finite. A formula ¢(x) (in L(M)) is strongly minimal if it defines a minimal set
in all elementary extensions of M. A non-algebraic type is strongly minimal if it contains a strongly
minimal formula.

2  Main results

Definition 15. A Jonsson theory T is called Robinson theory if it is universally axiomatizable.

Definition 16. [10] An enrichment T is called admissible if the V-type (this means that V C Lg
and any formula from this type belongs to V) in this enrichment is definable within the framework of
Tr-stability, where I' is the enrichment of the signature o.
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Definition 17. [10] A Robinson theory T is called hereditary if in any of its admissible enrichments
any extension is a Robinson theory.

Let T be a Robinson theory, A be an arbitrary model of signature ¢. The Robinson spectrum of
the model A is the set:

RSp(A) = {T| T is Robinson theory in the language of signature o and A € Mod(T)}.

Definition 18 (T.G. Mustafin [1]). We say that the Jonsson theory 77 is cosemantic to the Jonsson
theory Tb (T} <1 T3), if Cr, = Cr,, where Cr; is the semantic model of the theory T;, i = 1, 2.

It is easy to see that the cosemantic relation on a set of Jonsson theories is an equivalence relation.
Since the Robinsonian theory is a special case of the Jonsson theory, then we can consider the RSp(A) /i
factor set of the Robinson spectrum of the model A with respect to .

And one can define the Robinson spectrum RSp(K) of the class K structures for arbitrary signature
by analog with the Robinson spectrum RSp(A):

RSp(K) ={T | T is a Robinson theory in the language K C Mod(T)}.

We can note that if A € K then RSp(A) D RSp(K).

Let [T] € RSp(K) /s, then Ejp) = J Ea is the class of all existentially closed models of class [T].

A€[T]

We will call a class [T'] € RSp(K)/w perfect if every theory A € [T is perfect.

We will call the class [T] € RSp(K)/w hereditary if each theory A € [T] is hereditary.

In what follows, we will work with a special class of K structures called a variety.

Recall that identities are formulas of the form (Vzy,...x,)p(z1,...2y), where o(x1,...2,) is an
atomic formula of signature o.

Definition 19. [30] A class K of systems of signature o is called a variety if there exists a collection
F of identities of signature o such that K consists of those and only those systems of signature ¢ in
which all formulas from F'. The collection F' is called the defining collection of the variety.

Note that every variety is an axiomatizable class of algebras.

Examples of varieties are the classes of all semigroups, all groups, Abelian groups, Boolean rings,
nilpotent groups of steps < s.

Let us formulate the following the well-known classical result:

Theorem 4 (Birkhoff [30], p. 337). For a non-empty class K of algebraic systems to be a variety, it
is necessary and sufficient that the following conditions be satisfied:

1) the Cartesian product of an arbitrary sequence of K-systems is a K-system;

2) any subsystem of an arbitrary K-system is a K-system;

3) any homomorphic image of an arbitrary K-system is a K-system;
i.e. it is necessary and sufficient that the class K be hereditary, multiplicatively, and homomorphically
closed.

Definition 20. A class of structures Kp of signature o will be called a Robinson class if Thy(Kg)
is a Robinson theory.

Definition 21. We will call a variety K Robinson hereditary if every Robinson class Kr C K is a
subvariety of the class K.

In [25] the question was formulated about the coincidence of the concepts of algebraic closure and
existential closure in classes of models of a fixed variety. This question in this context is relevant to
universal algebra. The concepts of algebraic closure and existential closure in the theory of models have
an independent meaning, since the theory, generally speaking, may not be connected with the concept
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of variety. In this paper, the following result gives a positive answer to the above Forrest question
in the framework of studying the cosemanticness classes of a fixed Robinson spectrum of a Robinson
hereditary variety.

Theorem 5. Let K be a Robinson hereditary variety, [T] € RSp(K) /s is perfect class, then for any
algebraically closed model A € Mod|[T] it follows that A € Ejp).

Proof. Suppose the opposite. Let there exist a model A € Mod([T]) such that A is algebraically
closed, but A ¢ Ej7|. Then there exists a sentence § = 37—¢(7) and a model B € Mod([T1]) such that
B D Aand B =6, but A¥ 6. Then A = 0, that is, A = VZe(Z). Since any theory A € [T, A is
Robinson theory, then according Proposition 1, there exists B' € Ej) such that A — B, B — C,
where C' is a semantic model of the class [T']. Since class [T] is perfect, then C' = —6. On the other
hand, if B € E), then B =y3 B’ and B’ |= 0. If B ¢ Ejy), then there exists B” € Ejp), such that
B — B" and B"” — C. In both cases we have C' |= 0. We got a contradiction. So our assumption was
wrong, therefore, A € Ejp).

The idea of a central type allows one to study classes of models of the center of hereditary Jonsson
theory in an enriched language. In this context, in the considered enrichment, we use a one-place
predicate and some constant symbols, and one constant symbol is fixed in terms of the location of the
interpretation of this constant relative to an existentially closed submodel of a fixed semantic model,
which is an interpretation of a one-place predicate symbol. Taking into account the fact that in the
pregeometry that specifies the closure of the set of types under consideration, the definable closure and
algebraic closure of which are equal to each other, it allows avoiding collisions of non-preservation of
the notion of Jonsson property in this enrichment.

Consider the general scheme for obtaining the central type for a hereditary cosemanticness class of
Robinson theories [6].

Let A be an arbitrary model of signature o, [T] € RSp(A) /s be a hereditary class, Cr be semantic
model of class [T]. For each theory A € [T, consider its enrichment A in language of signature
or = o UT, where I' = { P} U {c}, obtained as follows:

A = Thy(Cpr), )acp(cy U Th(Ea) U {P(e)} U {"P €7},

where {"P C”} is an infinite set of sentences expressing the fact that the interpretation of the symbol
P is an existentially closed submodel in the language of the signature or. That is, the interpretation of
the symbol P is a solution to_the equation P(C[T}) = M C Ea in the language or. Due to the heredity
of the theory A, the theory A is a Robinson theory. Collecting all such theories A, we obtain the class
[T] of Robinson theories. The center [T]* = Th(Cyzy) of class [T] is one of the completions for each
theory A € [T)]. Restricting the signature or to o U {P}, due to the laws of first-order logic, since the
constant ¢ does not already belong to this signature, we can replace this constant with the variable .

Then the theory [T]* will be a complete 1-type for the variable zz. We will call this type the central
type of the class [T] in the above enrichment and denote it P[Cﬂ.

In work [6] was obtained criterion of uncountable categoricity for the hereditary Jonsson theory in
the language of central types.

Theorem 6. [6] Let [T] be hereditary class from RSp(A)/w, then the following conditions are
equivalent:
1) any countable model from Em has an algebraically prime model extension in Em;

2) P[CT} is the strongly minimal type, where P[Cﬂ is the central type of [T].

To prove the main result, we need a well-known fact:
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Theorem 7 (Morley [31]). A theory T is wj-categorical if and only if any of its countable models
has a simple proper elementary extension.

Obviously, we can use Morley’s uncountable categoricity theorem in connection with the existence of
an algebraically simple model extension for the central type in the framework of the following theorem.
This means the following: the central type obtained by enriching the corresponding hereditary Robinson
theory is exactly the center of the enriched Jonsson theory. If we replace the variable x with a constant
that defines the central type, then we get a complete theory, which is model complete due to the
perfection of the enriched Jonsson theory of this center. Thus, due to the model completeness, an
algebraically simple model extension will also be a simple model extension, which allows us to consider
this center as an wy-categorical theory, in which there is a strongly minimal formula, by virtue of the
above Morley theorem.

Theorem 8. Let K be a Robinson hereditary variety, [T'] € RSp(K) /s be hereditary class, X C Cp
be a theoretical set defined by some strongly minimal 3-formula ¢(x), A is some J-complete finitely
axiomatizable Jonsson theory defined by Vze(x), then the following conditions are equivalent :

S S
1) AXFr(X)xT;

2) the central type P[CT] of class [T] is strongly minimal.

Proof. If A i Fr(X) i T, then by Theorem 3 A* & Fr*(X) T But then, according to
Proposition 3, these theories preserve the Morley rank, and, accordingly, the wi-categoricity, which
is expressed in terms of the Morley rank. Thus, we have obtained that the theories A*, Fr*(X) and
[T]* are wi-categorical, i.e. all semantic models of these theories are saturated, hence the theories A,
Fr(X) and T are perfect. This means that the class [T] is also perfect.

Note that in Theorem 6 item 1) is equivalent to the fact that the class [T is wi-categorical (this
follows from Morley’s theorem), and therefore perfect. Then, from Theorem 6 it follows that the central

type P[CT] of the class [T is strongly minimal.
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O.1. Vneopuxt, H.B. Ilonosa

Axademur E.A. Boxemos amuvndaev, Kapazando, yrusepcumems, Kasaxcman;
Kondanbasve mamemamura unemumymao, Kapazanoo, Kaszaxcman

TeOpeTI/IKa.TIbIK 2KNBbIHHDBIH CbpaI‘MeHTi 2KoHe€ OHBbIH KaTTbl MUMHMNMaJIAbI

HEeHTPAJJABIK THUILi

2Kympicra asrebpaJsiapbiH )KaHa KJIaChl AaHBIKTAJIFAH, OHBIH, TEOPUSIIaPhl HOHCOHIBIK, TEOPUAIAPIBIH, 1epbec
2Karaaibl 00JIbIT TabbLIaIbl. By Kitace kenTypJrijikrepre e, HOHCOHIBIK TeOpUsIapra Jga KOJIIAHBLIAIbI.
Ocbl MakaJTaHBbIH HETI3r HOTHKeJIepl Kejleci eKi HoTuzKe OOJIBI TabbLIa bl. ABTOpPJIAp POOMHCOH MYPAJIBIK,
KOIITYPJILITiHIE OEKITiINeH CIIEKTPIHIH KOCEMaHTTBLIBIK, KJIACBIHBIH, MOJEIHIH, 9K3UCTEHIIAAJI bl TYHBIKTA~
JIYbI MEH aJIreOpaJIbIK, TYWBIKTAJIYbIHBIH, 9KBUBAJEHTTLIIN TypaJibl CypaKKa »Kayall aJibiHFaH. [leHTpasaibiK
KJIACTAP/IbIH, [IEHTPAJIJIBIK, TUIITEPIH YKOHE OEKITLINeH CIEKTPIiH (DparMeHTTEPIH 3ePTTey asiChIHIA KATThI
MUHUMAJIIBIIBIK, KDUTEPUili aJIbIHIbI.

Kiam ceadep: HOHCOHIBIK, TEOPUsI, IK3UCTEHIIUAIIIIBI TYNBIK, MOJIEIb, AJINeOPAJIBIK, TYHBIK MOJIEIb, KOCEMAHT-
TBIJIBIK, POOMHCOH CIEKTPi, POOMHCOH MYPAaJIbIK KONITYPJILJIri, MeHTPAJIIbIK, THUII, HOHCOHIBIK (ParMeHT,
TEOPETUKAJIBIK, 2KUBIH, KATTHl MUHUMAJIJIBIK, THII.
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O.1. Vmeopuxt, H.B. ITonosa

Kapazandunckut yrnusepcumem umeny axademura E.A. Byxemosa,
Hnemumym npuraadnot mamemamuxu, Kapazanda, Kaszaxcman

dparMeHT TEOPETUYIECKOTO0 MHOXKECTBA M €r0 CUJIbHO MUHUMAJIbHBII
EHTPAJIbHbIA TUII

B pabore onpesenén HOBBIM Kjacc aaredp, TeOpusi KOTOPBIX SIBJISIETCS YACTHBIM CJIyIaeM HOHCOHOBCKHX
Teopuii. /JJaHHBIN KJIACC OTHOCUTCA U K MHOTOOOPA3UIM, U K MOHCOHOBCKMM TeopusiM. OCHOBHBIMU PE3YJIb-
TaTaMU HACTOMAIIEN CTATBbU SIBJISIOTCA CJIEIYIONINE JIBa: aBTOPAMHU IIOJIy4YeHBI OTBET HAa BOIPOC 00 IKBU-
BaJICHTHOCTH K3WCTEHINAJIBbHON 3aMKHYTOCTH M aJIrebpanmvecKoil 3aMKHYTOCTH MOJIEIN KJIACCa KOCEMaH-
TUYIHOCTU (PUKCUPOBAHHOTO CIEKTPa POOMHCOHOBCKH HACJIEICTBEHHOTO MHOTOOODA3Us, a TAKXKe KPUTEPHUit
CHJIbHOYM MUHUMAJIBHOCTH B PAMKaX HU3Y4eHHs IIeHTPAJIbHBIX THUIIOB IIEHTPAJIbHBIX KJIACCOB U (DPArMeHTOB
(UKCUPOBAHHOTO CIEKTPA.

Karouesvie crosa: HOHCOHOBCKAs TEOPHsl, SK3UCTEHIMAIBHO 3aMKHYyTas MOJENb, aJredOpandecKu 3aMKHY-
Tasi MOJEJIb, KOCEMaHTUIHOCTD, POONHCOHOBCKHII CIIEKTD, POOMHCOHOBCKH HACJEJACTBEHHOE MHOroobpaswue,
[EHTPAJILHBIN THII, HOHCOHOBCKUM (DPArMeHT, TEOPETUIECKOEe MHOXKECTBO, CUJIBHO MUHUMAJIbHBINA THII.
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On categoricity questions for universal unars and undirected graphs
under semantic Jonsson quasivariety

The article is devoted to the study of semantic Jonsson quasivarieties of universal unars and undirected
graphs. The first section of the article consists of basic necessary concepts from Jonsson model theory.
The following two sections are results of using new notions of semantic Jonsson quasivariety of Robinson
unars JCy and semantic Jonsson quasivariety of Robinson undirected graphs JCg, its elementary theory
and semantic model. In order to prove two main results of the paper, Robinson spectra RSp(JCy) and
RSp(JCe) and their partition onto equivalence classes [A]y and [A]s by cosemanticness relation were
considered. The main results are presented in the form of theorems 11 and 13 and imply following useful
corollaries: countably categorical Robinson theories of unars are totally categorical; countably categorical
Robinson theories of undirected graphs are totally categorical. The obtained results can be useful for
continuation of the various Jonsson algebras’ research, particularly semantic Jonsson quasivariety of S-acts
over cyclic monoid.

Keywords: Jonsson theory, unar, graph, undirected graph, universal theory, Robinson theory, quasivariety,
semantic Jonsson quasivariety, Jonsson spectrum, Robinson spectrum, cosemanticness, categoricity, countable
categoricity.

Introduction

This paper and focuses on the study of model-theoretic properties of well-known and sufficiently
simple classes in the sense of the signature of algebras, namely unars and undirected graphs. One can
note that this paper is a continuation of works [1-4].

At one time, the famous mathematician-logician H.J. Keisler, in his review article "Fundamentals
of Model Theory" in the four-volume monograph "Reference Book on Mathematical Logic" (edited by
J. Barwise), defined the basic concepts and directions of the development of model theory. H.J. Keisler
identified two historical trends in the development of model theory. They are called "western" and
"eastern" model theory. This division is due to the fact that A. Tarski lived on the west coast from
1940, and A. Robinson lived on the east coast from 1967 until his premature death in 1975. This
distinction has long lost its geographical significance, but it is useful from a mathematical point of
view.

"Western" model theory develops in the traditions of Skulem and A. Tarski. It was mostly motivated
by problems in number theory, calculus and set theory, it uses all the formulas of first-order logic.

"Eastern" model theory develops in the traditions of A.I. Mal’tsev and A. Robinson. It was
motivated by problems in abstract algebra, where the formulas of theories usually have at most two
blocks of quantifiers. It emphasizes a set of quantifier-free and existential formulas.

Jonsson theories as an object of research were first considered in the works of Jonsson [5] and Morley,
Voot [6]. In the mid-80s of the twentieth century, the works of T.G. Mustafin identified a new direction
in the study of Jonsson theories. In particular, he defined a natural subclass of Jonsson theories, which
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he called perfect. The main method of his research was the following: the study of the properties
of arbitrary Jonsson theories by transferring the properties of the central completion of this Jonsson
theory. In the early 90s of the twentieth century A.R. Yeshkeyev obtained a criterion for the perfection
of the Jonsson theory [7]. In particular, there was obtained a complete description of the Jonsson
universal unars in the works [2,3] by A.R. Yeshkeyev, T.G. Mustafin, as well as the relationship between
the theory of unars and their center in the language of stability. On the other hand, one of the weak
points in the study of Jonsson theories within the framework of the method proposed by T.G. Mustafin
was the presence of an additional axiom about the existence of a strongly inaccesible cardinal to the
axioms of Zermelo-Frenkel set theory in the definition of a semantic model. It should be noted that
during the talk of R.M. Ospanov at the "5th Kazakh-French colloquium on model theory well-known
experts in the field of model theory Ye.A. Palyutin and B. Poizat pointed out the need to change this
definition. The realization of this remark was the output of the work of Ye.T. Mustafin [8|, in which
he redefines the concept of k-homogeneity and semantic model. Accordingly, the modified definition of
the perfection of the Jonsson theory appeared in |9], in which the main results obtained earlier in [10]
were re-demonstrated within the framework of the new definition.

The results discussed here relate in their content to the "eastern" model theory. Various properties
of unars from the perspective of "western" model theory (the case when the complete theory of some
unar is considered) were obtained in the works of Yu.E. Shishmarev [11], A.N. Ryaskin [12].

The notion of countable categoricity in "western" model theory distinguishes probably the narrowest
class of theories, and it is well studied. In the case of "eastern" model theory (meaning studies of
Jonsson theories), it should be noted that Vought theorem on the relationship between completeness
and categoricity of the theory does not hold, since Jonsson theories, generally speaking, are not complete
and have finite models. The following question of Ye.A. Palyutin is well-known: is there an w-categorical
universal K that is not wi-categorical? If this question is projected into the framework of research on
the Jonsson theories, then one can notice some interesting connections between the Jonsson theory
itself and its center appear.

In this regard, A.R. Yeshkeyev [13]| obtained the following results:

Theorem 1. If the Jonsson theory T is w-categorical, then T is perfect.

Theorem 2. If the Jonsson theory T is k-categorical, then the #-companion of the theory T is
k-categorical, where k > w.

Theorem 3. In the case of a negative answer to question of Ye.A. Palyutin for a Jonsson theory that
satisfies the conditions of the question, the center of the Jonsson theory cannot be finitely axiomatized.

There is considered a class of existentially closed models of an arbitrary universal theory in the
work of A. Pillai [14], and for this class he develops a forking theory with a suitable concept of the
simplicity of the theory. S. Shelah [15], E. Hrushovski [16] studied classes of existentially closed models
of Robinson theory. A theory is called a Robinson theory if it is universal and admits AP and JEP.
From here it is easy to see that any Robinson theory is a special case of the Jonsson theory. And
if we take into account that unars and undirected graphs are Jonsson universals, then obtaining a
description of their existentially closed models within the framework of the above topic is an urgent
task. This article discusses the description of an existentially closed model of a countably categorical
universal of unars, as well as undirected graphs.

All definitions that were not given in the current article can be extracted from |7,17-27].

1 Necessary concepts of Jonsson model theory

Let us recall the conditions, that should be satisfied in order for a theory to be Jonsson.

Definition 1. |5] A theory T is said to be Jonsson, if:
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1) T has at least one infinite model,
2) T is V3-axiomatising;

3) T has JEP property;

4) T has AP property.

For example, the following theories are Jonsson: unars, graphs and their various subclasses, groups,
abelian groups, Boolean algebras, linear order, fields of characteristic p (p is a prime number or zero),
ordered fields. In addition to these natural examples and rather broad classes of algebras, we may also
notice that for an arbitrary theory T its scolemization and morleization are also examples of Jonsson
theories.

V-axiomatizing Jonsson theory is called the Robinson theory.

By virtue of theorem of Morley and Vaught [6] an arbitrary Jonsson theory T has T-universal,
T-homogeneous model € in some inaccessible cardinality. Let us consider elementary theory Th(<).
We denote it as 7%, i.e. T* = Th(C).

The next definitions belong to T.G. Mustafin.

Definition 2. [7] 1) Let T be a Jonsson theory. A model €7 of power 2|71 is called to be a semantic
model of the theory T if €r is a |T|*-homogeneous |T'|*-universal model of the theory T

2) The elementary theory of a semantic model of the Jonsson theory T is called the central
completion or center of this theory. The center is denoted by T%, i.e. Th(C) = T".

In the "west" model theory, when isomorphic embedding in the definitions of universal and homogeneous
model changes to elementary embedding, and also the definition of the homogeneous model changes,
then the following theorem is true:

Theorem 4. |7] A system 2 is saturated iff it is homogeneous and universal.

Unfortunately, in the "east" model theory T-universal, T-homogeneous model does not have to be
saturated model. The following notions are required for proofing the main theorems of this paper.

Definition 3. |7] Jonsson theory T is called perfect theory, if its semantic model € is saturated.

Theorem 5. |7] Let T be arbitrary Jonsson theory, then the following conditions are equivalent:
1) Theory T is perfect,
2) T* is model completion of theory T

The following criterium is nedded for clarification of constructing semantic Jonsson quasivariety.
Theorem 6. |7] T is Jonsson iff it has a semantic model €.

Since we will work with Robinson theories of unars and undirected graphs, let us recall the definition
of universal.

Definition 4. |2| If T' = Ty, then T is said to be universal.

The next two notions of k-categorical Jonsson theory and existentially closed model of theory T
are nedded for obtaining main theorems of this paper.

Definition 5. [7] Let k > w. Jonsson theory T is called k-categorical, if any two models of power &
of theory T' are isomorphic to each other.

Definition 6. |7] Model A of theory T is called existentially closed model of theory T, if for any
model B of theory T such that A C B, for any 3 - formula 3xp(z,7y), for any @ from A (I(a)) = (I(g))
from B | Jxp(z,a) follows that A = Jxp(z,a)

We will denote a class of existentially closed models of theory T as Er.
Since the current research is connected with consideration of Robinson spectrum for classes of
algebras, let us give the following conditions of Jonsson theories cosemanticness.
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Definition 7. [7] Let T1 and T be Jonsson theories, €7, and €p, be their semantic models,
respectively. 71 and T are said to be cosemantic Jonsson theories (denoted by 71 1 T3), if €5, = Cp,.

Theorem 7. |7] Let Ty and T» be Jonsson theories, €7, and €, be their semantic models, respectively.
Then the next conditions are equivalent:

1) €T1 ] QTQ;
2) Cp, =5 Cpy;
3) ¢, =Cp,.

Let K be a class of models of fixed signature ¢. Then we can consider Jonsson spectrum for K|
which can be defined as follows.

Definition 8. |28] A set JSp(K) of Jonsson theories of signature o, where
JSp(K) ={T |T is Jonsson theory and K C Mod(T)},

is called the Jonsson spectrum for class K.

Hence, in the particular case, when the Jonsson theory is V-axiomatising we get the concept of the
Robinson theory, respectively, the notion of the Jonsson spectrum allows us to consider the Robinson
spectrum.

Definition 9. [4] A set RSp(K) of Robinson theories of signature o, where
RSp(K) ={T |T is Robinson theory and VA € K, A =T},

is called the Robinson spectrum for class K.

Based on theorem 7, we can consider the cosemanticity relation on Jonsson spectrum JSp(K) and
obtain a partition of JSp(K) onto equivalence classes. we get a factor-set, denoted as JSp(K) /. The
factor-set RSp(K) /g will be obtained correspondingly.

Let K be a class of quasivariety in the sense of [29] of first-order language L, Ly C L, where Ly is
the set of sentences of language L. Let us consider the elementary theory Th(K) of such class K. By
adding to Th(K) V3 sentences of language L, that are not contained in the Th(K), we can consider
the set of Jonsson theories J(Th(K)) defined as follows.

Denotation 1. [4] A set J(Th(K)) = {A | A — Jonsson theory, A = Th(K) U {¢'}}, where
' € V3(Lo) and ¢* ¢ Th(K), i € {0,1}, Th(K) is elementary theory of class of quasivariety K,
V3(Lo) is a set of all V3 sentences of language L.

Let us consider the set of such semantic models and denote it as JC.
Denotation 2. [4] A set JC = {€a | A € J(Th(K)),Ca is semantic model of A}.

We will call the set JC semantic Jonsson quasivariety of class K if its elementary theory T'h(JC)
is Jonsson theory.

2 Countable categoricity of semantic Jonsson quasivarieties of universal unars

Let 2 be some unar, i.e. the model of signature o = {f}, where f is a unary functional symbol. Let
fOz) =z, " Y z) = f(f*(z)), n € w. Elements a,b € 2 are called 2A-connected in X if there exist
natural numbers m and n such that (f™(a) = (b)) and f°(a) = f™(a), fO(b),..., f*(b) € X.

A set X C 2 is called 2A-connected if any two elements from X are 2A-connected. A subsystem
B C 2 carrier of which is the maximal 2(-connected subset of carrier 2 is called a component in 2. If
B is a component in system 2, then the set {a € B : A |= (f"(a) = a) for some n € w is called a cycle
of component. By K(a,2l) we denote the restriction of 2 to the set {b € A : A = (f"(b) = a) for some
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n € w} and we call it the root of the element a in the unar 2, while the element a is called the vertex
of the root K(a, ).

We will write down the special connections between the elements of the unar in the form of 3-
formulas:

1) the property of the elements to be at "the beginning of the cycle":

Df(2) = 0"(2)&Ty-0ly)&f(y) = 2, where B"(2) = (F2(2) = 2)&(f(2) £ 2)..(f*1(2) # 2):

2) "z has no less than k different immediate representatives":

O(z) = 3wy, oy Ik (Nigjeami # 1) AN f(2) = )5

3) "there are exactly k different elements between = and the beginning of the cycle":

V() = 323y 3y (Nigj<a Wi # yj) A FH(2) = yi AN F(00) # F(Wia) A RG(2) A flyk) = 2)-

By virtue of works [2,4] we can use the conclusion that V-axiomatisability of elemantary theory of
unars, Thy(Y) is the Robinson theory of unars.

Thus, we consider a set JCy = {€a, | Ay € J(Th(K)),Ca,is a semantic model Ay} of signature
oy =< f >, where Ay is a Robinson theory of unars, f is unary functional symbol. Such JCy defines
semantic Jonsson quasivariety of Robinson unars as in [4].

We are using the definition of the Robinson spectrum of the set JCy [4].

Definition 10. [4] A set RSp(JCy) of Robinson theories of signature oy, where
RSp(JCy) = {Ay |Ag is Robinson theory of unars and V€, € JCy, €, = Ay},

is called the Robinson spectrum for class JCy, where JCy is semantic Jonsson quasivariety of Robinson
unars.

Further we obtain a factor-set, denoted as RSp(JCy) /s« and consisted of equivalence classes parted
by cosemanticness relation [Ay] € RSp(JCy) -

Remark 1. Everywhere in this section [Ag] denotes an equivalence class of Robinson theories of
unars parted by cosemanticness relation on Robinson spectrum RSp(JCy). €a, denotes semantic
model and Ea, denotes a class of existentially closed models of class [Ay].

Further we obtained two useful theorems, concerning the equivalence class [Ag] of Robinson theories
of unars parted by cosemanticness relation on Robinson spectrum RSp(JCy).
We will use the denotations from [2-4].

Theorem 8. Let [Ay] be a class of Robinson theories of unars, [A{] its center. Then

1) [A{] is model completion of [A(];

2) [A{] allows quantifier elimination (i.e. submodel complete);

3) [Af] is w-stable.

Proof. 1) Let € be semantic model of [Ag]. Then [Af] = T'h(€). Let € be saturated model of [A§].
We can assume that €* C €. It easy to understand that if @ € €*, then tp% (a, @) = tp%(a, @) = x(a).
Hence C%(a) ~ C% (a), whene C*(b) by definition is {c € 2 : In,k < w f*(c) = f¥(b)}. The quantity
of pairwise isomorpic components is uniquely defined by char[Ag]. Hence €* ~ €. It means that [A]
is perfect Jonsson theory and [Af] is its model completion.

2) follows from 1) and Robinson theorem |[3].

3) Let H be arbitrary subunar of €. From lemma 5 [2| we have

|SC(H)| < (1+w?) + (1 +w) + |H|, because
[{f(a) :ae -0 <1+w?
Hp(a,H) :a €€} <1+w,
[{enter(a, H) : a € €}| < |H|.

From this, if |H| <, then |S®(H)| < w.
The theorem is proven.
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Theorem 9. 1) The quantity of pairwise different [Ay] classes of Robinson theories of unars is equal
to 2%.

2) The quantity of pairwise different maximal [Ay] classes of primitive Robinson theories is equal
to 2¢.

3) The quantity of pairwise different maximal [A] classes of Robinson theories of unars is equal to w.
Moreover, these are precisely the classes of theories, that have following characteristics: m, {mom 1 <
m<wh{mhm 1 <n,m < w}, where

Ty Q={w},v(m) =0 Vm < w, p(w) =1, = o0;

) 0,if k#Fm,

oo, if k=m;

mom : Q2 ={(0,m)},v(m) pu(0,m) =0,e =0;

WMﬂQ:ﬂQm%ﬂmm»WM:{Qﬁk#m
’ Lif k= m,
Lif k<n—1,
p(k,m) =< oo,if k=n—-1, e=0.
0,if k=n,

4) Maximal V-complete [Ag] classes of Robinson theories of unars is the only class, that has
characterstic 7.

Proof. 1) It is easy to note that the quantity of pairwise different characteristics is equal to 2¢.
By theorem 3 [4] the quantity of [Ag] classes of Robinson theories of unars is equal to 2¢.

2) Let [Ay], = (Th(€s))y where €, is semantic model of class of Robinson theories of unars of
characteristic 7. Obviously [Ag] is V-complete primitive. By lemma 1 [3] [Ag]’ is class of Robinson
theories of unars. By Proposition 3 [3] [Ay ] is maximal class of primitive Robinson theories. If 71 # 2,
then [Ay | # [Ay ], since ([Ay, |)v # ([Ag, ])v, hence, the quantity of maximal [Ay] classes of
primitive Robinson theories is equal to 2¢.

3) Let us consider partial order on set of all characteristics in following form. Let m; = (i, v4, 4, € ),
i = 1,2. Then suppose m < w2 < Q1 C Qy & Vm < w(vi(m)) < 1a(m)) & Va € Qi(u(a) <
p2(a)) & e1 C ea. From definition of class [Agy  in the proof for theorem 3 [4] it easy to see that

[Au]ﬂ ) [Aﬂ]wz & m < .

Case 1. € = o0.

Among such characteristics the minimal is the only characteristic .

Case 2. € = 0.

In this case w ¢ Q and |©2] < w. By condition 10) from definition of characteristic [3] either
30 <k <w (v(k) = o0), either 3(k,1) € Q, (u(k,l)) = o).

Case 2.1. 31 <k <w (v(k)) = 00)).

Among such characteristics the minimal are characteristics mpm,1 <n <w,1 <m < w.

Case2.2. N1 <k<w,1<l<w (uk,1)=o0).

In the set of such characteristics the minimal are characteristics 7, m,1 <n <w,1 <m < w.

4) Note that the class [Au]ﬂ, that has characteristic m, is complete, in particular V-complete.
Therefore it is maximal among classes of Robinson theories of unars. Classes [Ay, ,0 < n <
w,1 < m < w are not V-complete, since [Ail]n,m U3z, ..., Tt (AM<icj<ms1 (@i # x5)) and [Ail]n,m U
V1, ..oy i1 (Vi<icj<m+1(x; = x;)) are consistent. The theorem is proven.

By consideration of theorems 9 and 10, we can obtain the following result:

Theorem 10. Let [Ag] be a class of w-categorical Robinson theories of unars. Then the following

conditions are equivalent:
1) A € Ep,, where 2 is a model of class [Ag];
2) 2 is disjoint union of components with cycles of the same length.
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Proof. The proof of this theorem is based on the following theorem, three facts and three lemmas.

Theorem 11. [30] In order for the algebraic system 2 to be some w-categorical universal, it is
necessary and sufficient that the following conditions will be satisfied:

1) A is locally finite;

2) there is a function g : w — w such that for every a € 2 and for every finite subset X C 2 the
type tp(a, X,2l) is realized in every subsystem B C 2 that contains X and has a power > g(|X]|).

Fact 1. [13] If the Jonsson theory T' is w - categorical, then T is perfect.

Fact 2. [30] Let T be a Jonsson theory. Then the following conditions are equivalent:

1) T is perfect;

9) E(T) = ModT*;

3) T* is a model companion of the theory 7.

Fact 3. [31] Let T be V3-complete Jonsson theory. Then the following conditions are equivalent:

1) T is w-categorical;

2) T* is w-categorical.

We get as a consequence of these facts (1 - 3) that, since [Ag] is w-categorical, [Ay] is an equivalence
class of perfect Robinson theories, and Ea, = Mod(Ay)) is w-categorical universal. Thus, if A € Ea,
then 2 € Mod(Aj)). Consequently, 2 satisfies the conditions of E.A. Palyutin criterion (Theorem 11).

By virtue of these arguments, it is sufficient to prove the following lemmas to prove Theorem 10.

Lemma 1. Let 2 € w-categorical Jonsson universal, z € 2. Then 3n, k w : f*(z) = f*(z).

Proof. By virtue of E.A. Palyutin criterion, 2 is locally finite. Now suppose that Vn,k € w :
f™(z) # f¥(x). This means that there is a set Y = {y1, %2, ..., Yn, ...} C A, where f(y;) = yir1, and
yi # yj if © # j, where i € {1,2,...}. But then an element, for example y;, generates an infinite
(countable) set Y. And this contradicts the local finiteness of unar 2.

Lemma 2. Let 2 € w-categorical Jonsson universal. Then for any element a € 2, the root K (a,2)
is finite.

Proof. Let us assume the opposite. Let there be an element a € 2 such that the root K(a,?) is
infinite. Then there are two possible cases:

1) Ui(z) : k € w is realized in unar 2A;

2) Ok(z) : k € w is realized in unar 2.

By virtue of the Palyutin criterion, there exists a function ¢ : w — w such that for any n € w,
for any subunar B [3] of an unar 2 with a power of at least ¢(n), for any type p € S7(b) (b € B)
from the fact that 2 = p(a), it follows that there exists a b € B such that A = p(b). Let ¢(0) = s.
Then according to the criterion for any subunar B of a unar 2l with a power of at least s for any type
p€SI(b) (be B) A pla) = 3be B:2AE pb)(ie. any type of element of unar 2 is realized in B).

1) Consider the chain I'. Let I'y be a subchain I" with a cycle, and the number of elements in I'y is
equal to s.

It has the form:

A type containing the formula Ws_,1(x) cannot be implemented in I's (i.e., there are exactly
s —n + 1 different elements between x and the beginning of the cycle).
2) Consider a subset where the number of elements of the preimages with a cycle is s:
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It is clear that no finite unar realizes the set of formulas {Of(x) : k € w}. We get a contradiction.

Lemma 3. Let 2 € w-categorical Jonsson universal. Then:
1) each element of 2 enters some cycle;
2) all cycles of unar 2 have the same length.

Proof. By virtue of the previous lemmas, each component of the unar 2l is finite and has the form
D, " K, where D,, is a cycle of length n, a is an element of the cycle, K is the finite root of a.

Din

Let b € K and b # a. b is not included in any cycle. Then there exists k such that f¥(b) = a
and f*(b) # a for s < k. Consider the formula Jy(f*(y) = a&icr f'(y) # a)&f¥(a) = a&&eicr f'(a) #
a,k > 1. It is clear that in the infinite subunar A" C 2, obtained by combining only the elements
included in some cycles, this formula is not realized. Which contradicts condition 2) of the criterion.
Thus point 1) of the lemma is proved.

2) Let us assume the opposite: there are at least two cycles of different lengths. Then there are two
possible cases:

2.1) For some n there is a finite number of cycles of length n. Then for some ny (with a non-empty
set of cycles of length ng), we remove all cycles of length ngy from unar 2. We get an infinite subunar
in which the formula "0 (z) = 2&&;<n, f!(x) # x is not realized.

2.2) (Negation of the first case) Let ng be a number for which there is an infinite set of length ng
in 2. By assumption, there is at least one cycle k # ngy in 2. Remove all cycles of length & from 2. We
get an infinite subunar in which the formula f*(z) = x&&;<xf*(x) = Z is not realized.

There is obtained a contradiction to condition 2) of the criterion in each of the two cases.

Let us prove sufficiency. If unar 2 is a disjunctive union of an infinite number of components that
are a cycle of the same length, then 2l is w-categorical universal.

We will show the satisfaction of points 1) and 2) of the criterion.

1) Consider a finite subset of {aj,...,a,} C 2. Each of the elements generates a cycle of length n.
Therefore, a subsystem generated by a finite subset of {a1, ..., a,} contains no more than nk elements.

2) Find the function g, the existence of which is required by the criterion. Consider a finite subset
of elements Xy = {aq,...,ax} C 2. It is not difficult to understand that the total number of different
types over X does not exceed the number n(k + 1). Then any submodel contains cycles "connected"
with elements from X}, and one cycle independent of them realizes all n(k + 1) types. Therefore, g(k)
will be equal to n(k + 1).

In connection with the above question by Ye.A. Palyutin, from the description of the existentially
closed unar model (Theorem 11.), it can be noted that

Corollary 1. Countably categorical Robinson theories of unars are totally categorical.
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8 Countable categoricity of semantic Jonsson quasivarieties of undirected graphs

® graph is further understood as an algebraic system of the signature < R >, where R is binary
symmetric relation, i.e. an undirected graph. Further, the elements of the graph are called vertices,
and pairs < z,y > such that R(z,y) are called edges. A graph set of edges of which is empty is
called a quite disconnected graph. A path in graph G is an alternating sequence of vertices and edges:
Tiy < Ty, Tig1 >, Tigl, < Titl,Tito >,.... A path is called a chain if all its edges are different, and a
simple chain if all vertices (and therefore edges) are different. A graph & is called connected if any pair
of its vertices is connected by a simple chain. A graph is called acyclic if there are no cycles in it. A tree
is a connected acyclic graph. The maximal connected subgraph of a graph & is called a connectivity
component, or simply a graph component. A subgraph of a graph & is a graph in which all vertices
and edges belong to &. The degree of a vertex in a graph & is the number of edges incident to this
vertex. A vertex of degree [ is called a pendant (or end point) vertex.

Countably categorical graphs were studied in [32]. The main result of this work is the following
theorem:

Theorem 12. Let & be an arbitrary countable graph in which each component contains a finite
number of cycles. Then & is w-categorical if and only if & is bounded and a finite number of I-types
is realized in it.

By virtue of works [3,4| we can use the conclusion that V-axiomatisability of elemantary theory of
graphs, Thy(®) is the Robinson theory of graphs.

Thus, we consider a set JCp = {€p,, | As € J(Th(K)),Ca, is a semantic model Ag} of signature
< R >, where Ag is a Robinson theory of unars, R is binary symmetric relation. Such JCg defines
semantic Jonsson quasivariety of Robinson undirected graphs as in [4].

We are using the definition of the Robinson spectrum of the set JCg as in [4].

Definition 11. A set RSp(JCg) of Robinson theories of signature < R >, where
RSp(JCg) = {As |Ag is Robinson theory of graphs and V€a, € JCg,Ca, = As},

is called the Robinson spectrum for class JCg, where JCg is semantic Jonsson quasivariety of Robinson
undirected graphs.

Further we obtain a factor-set, denoted as RSp(JCg) /s« and consisted of equivalence classes parted
by cosemanticness relation [Ag] € RSp(JCeg) /sc-

Remark 2. Everywhere in this section [Ag] denotes an equivalence class of Robinson theories of
undirected graphs parted by cosemanticness relation on Robinson spectrum RSp(JCg). €a,, denotes
semantic model and Ex, denotes a class of existentially closed models of class [Ag].

Let us compare theorem 12 with the following theorem.

Theorem 13. Let [Ag] be a class of w-categorical Robinson theories of undirected graphs. Then the
following conditions are equivalent:

1) B € Ea,, where B is a model of class [Ag];

2) B is infinite quite disconnected graph.

Proof. To prove this theorem, the same scheme is used as in the proof of Theorem 10 of the
previous paragraph, i.e. it is enough for us to prove the following lemmas.

Lemma 4. The following conditions are equivalent:
1) & is a countably categorical universal graph;
2) & is infinite quite disconnected graph.
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Let us prove the necessity.

Let us assume the opposite. Suppose that there is a pair < x,y > in graph & such that zRy.

The following statement is known: If & is a countably categorical universal graph, then from the
fact that & has an infinite number of disconnected components follows that & is quite disconnected.

Thus, & consists of a finite number of components, but then, due to the infinity of the graph &,
there must be at least one infinite component. Possible cases:

1. There is a bound for the lengths of the chains.

2. There are chains of any given length.

Consider the first case.

Let us take an arbitrary point a from this component. Consider the set of all paths passing through
a. The set of all points included in these paths coincides with the component, therefore, is infinite.
Since the lengths of the paths are limited, an infinite number of paths pass through a. The ends of
these paths are pendant vertices:

Consider a subgraph I' consisting only of these pendant vertices.

Obviously, if there are a € & and b € & such that R(a,b), then the type tp(a,b/D) is not realized
in I'. Which contradicts the criterion of Ye.A. Palyutin.

Consider the second case. To do this, we will prove the following lemma.

Lemma 5. Let [Ag] be a class of w-categorical Robinson theories of undirected graphs. If & |= [Ag]
and without cycles, then there are no infinite chains in &.

Proof. Let {z;}icw be a chain. Consider the subgraph {z;}icw\{Z3k }xew, which has the form:

We select a disconnected subgraph I' in the chain, then the type tp(a,b/2) is not realized in I". By
virtue of infinity, I" contradicts universal categoricity (Palyutin criterion).

The lemma is proved.

Let I' be a connected component, Br be a set of pendant vertices.

Lemma 6. Br is an infinite set.

Proof. Suppose the opposite: Br is finite. Since the component is infinite, and the set of Br is
finite, therefore, there is an infinite set E of I vertices that are not pendant. Let E = {ej, ez, ...}. But
I' is a connected component, which means that the set of non-pendant vertices forms an infinite chain,
which contradicts the last Lemma 5.

So, we have obtained that if a graph & has a pair < z,y > such that xRy, then the graph does not
satisfy the assumption condition of Lemma 4 on the countably categorical universality of the graph.
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Therefore, if the graph & is a countably categorical universal graph, then & is a quite disconnected
graph.

Let us prove sufficiency.

If the graph & is an infinite quite disconnected graph, then & is a countably categorical universal
graph.

Let us show the satisfaction of the conditions:

1) universality and 2) categoricity.

1) The universality of the class of quite disconnected graphs follows from the fact that it is
axiomatized by the universal formula VaVy—R(z,y).

2) Take two subgraphs I'1, I'y such that |I'j| = |I'3] . The set-theoretic mapping of I'y to I's gives
us an isomorphism of I'y and I's as graphs. The theorem is proved.

Just as in the case of unars with respect to the question of Palyutin, from the description of an
existentially closed graph, the following obviously takes place

Corollary 2. Countably categorical Robinson theories of graphs are totally categorical.
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Axademux E.A. Boxemos amundazv, Kapazande, yrusepcumemsi, Kasaxcman;
Koadanbasv, mamemamuxa uncmumymor, Kapaeando, Kasaxceman

CeMaHTUKAJIBIK, HTOHCOH/IBIK, KBa3UKOIITYPJILJIIK asChblHAa YHUBEPCAJI
yHapJap MeH OarbITTaJMaraH rpadrap yHIiH KaTeropusJIbIK,
MaceJiesiep TypaJibl

Maxkasia yHuBepcaabpl yHapaap MeH OarbITTaJIMaraH IpPadTap/IblH CEMAHTHUKAJBIK, HOHCOHIBIK, KBA3UKOII-
TYPJILTIKTEPiH 3epTTeyre apHaaran. Makaianbig Oipinimi 6e/1iMi HOHCOHIBIK MOJIEIbIED TEOPUSICHIHBIH, HETi3-
ri KaxkeTTi YFeIMAApbiHaH Typajabl. Keseci exi GesiMie pOOMHCOHIBIK, YHAPJIAPIBIH, CEMaHTUKABIK HOH-
COHJBIK, KBa3WKOITYPJLIKTEPIHIH jy »KOHE POOMHCOHIBIK, OArbITTAJIMAFaH TpadTapIblH CEeMAHTHKAJIBIK,
WOHCOHIBIK, KBa3uKONTYpJlIiKTepinid JCe, OHBIH 3JIEMEHTAp TEOPUSICHI MEH CEeMAHTUKAJIBIK MOIEJIHIH
JKaHa YFBIMIAPBIH KOJIIaHyIbIH HOTUXKejepi 6epiiren. MakaslaHbIH €Ki HEri3ri HOTHXKECIH JIpJieey VINiH
RSp(JCy) xone RSp(JCes) pOGMHCOHIBIK CHEKTPIIEP] 2KOHE OJIAPJIBIH, KOCEMAHTTBI KATBIHAC APKBLIbI [A]y
)koHe [A]es 9KBHBAJEHTTIK Kjacrapra Gesinyi KapacTopbuiabl. Herisri mornkesnep 11 xone 13 Teopema-
Jlap PEeTiHJe YCBIHBLIFaH K9HE KeJeci HaiJajbl cagapsap TYBIHIAUIb: YHAPJIAPIAbIH CAHAJJIBIMIILI KaTe-
TOPUSIIBIK, POOMHCOH/IBIK, TEOPUSIJIADBI TOTAJIBI KATETOPUSIIBIK; OAFbITTaIMAraH IpadTapIbIH CAHATIBIMIbI
KaTeropusiJIbIK, POOMHCOH/IBIK, TEOPUSIIAPbI TOTAJIBI KATErOPUSIIBIK,. AJIBIHFAH HOTHUXKEJIep d9PTYpJli HOHCOH-
JIBIK, aIreOpaiapbl, aTall alTKAH/Ia [IUKJII MOHOWI, APKBLIBI AHBIKTAJFAH TOJUTOHIAPIBIH, CEMAHTUKAJIBIK,
MOHCOH/IBIK, KBA3UKONTYPJILIIKTEPA] 3€PTTEY/Il KAJFACTBIPY VIIMIH Haliaaabl O0Iybl MYMKIH.

Kiam ce3dep: HOHCOHIBIK TeOpusi, yHAPJIAp, rpadrap, barbITTaaMaral rpadTap, YHUBEPCAJIBI TEOPHS, PO-
OMHCOHIBIK TEOPUSsl, KBa3UKOIITYPJIIK, CEMAHTUKAJILIK HOHCOHIBIK, KBA3UKOITYPJIIIK, HOHCOHIBIK, CIIEKT

JIBIK, ; Y ; K JIBIK, Y ; JTBIK, )
POOUHCOH/IBIK, CIIEKTP, KOCEMAHTTBLIBIK, KATErOPUSIIbIK, CAHAJIBIMJIbI KATEIOPUSIJIbIK.

A.P. Emkees, A.P. dpymmra, C.M. Amanbekos

Kapazandunckut yrnusepcumem umeny axademura E.A. Byxemosa,
Hrnemumym npurasadnotc mamemamuru, Kapazanda, Kazaxcman

O KaTeropm4YHOCTU YHUBEPCAJIbHBIX YHAPOB 1 HEOPUEHTUPOBAHHBIX
rpadoB C MO3UNNHN CEMAaHTUIECKOTO TOHCOHOBCKOTO
KBa3WMMHOTO00pa3us

CraTbsl IOCBAIIEHA U3YI€HUIO CEMAHTUIECKIX HOHCOHOBCKIX KBa3WMHOT0O0OPa3uil YHUBEPCAJILHBIX YHAPOB
¥ HeOpHEeHTUPOBaHHBIX rpadoB. [lepBriil pasnen crarbu COCTOUT U3 H6A30BBIX HEOOXOIMMBIX MOHATHNA W3
MOHCOHOBCKOM Teopuu Mogedieii. Ciieyronme 1Ba—3T0 pe3yIbTaThbl UCIIOIb30BAHUS HOBBIX IIOHSTHI CEMaH-
THIEeCKOr0 HOHCOHOBCKOI'O KBa3MMHOI000pa3ust poduHcoHOBCKHUX yHApoB JCy U ceMaHTHIeCKOro HOHCOHOB-
CKOr0 KBa3MMHOI000pa3us pOOMHCOHOBCKUX HeopueHTHpoBaHHBIX IpadoB JCg, ux sjeMeHTapHONl Teopun
U CeMaHTHUYIeCKO! Mojenu. [yt Toro 4robbl JoKa3aTh IVIABHBIE PE3YJIBTATHI CTATHU, ObLIM PACCMOTPEHBI
poburconosckue cuektpsl RSp(JCy) nu RSp(JCs) u ux pasbueHue Ha KIacchl SKBUBaJeHTHOCTH [A]y n
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[A]s € TOMOIIBIO OTHOIIEHUSI KOCEMAHTUYHOCTH. BBLIN MPOAHAJIN3UPOBAHBI OCOOEHHOCTH TAKUX KJIACCOB
sxeusasenTHOCTH [A] € RSp(JCyr). OcHOBHBIE pe3ysbraThl IIpeJCTaBieHbl B Buje TeopeM 11 u 13 u Bie-
KyT 3a cODOM CJIeIyIOIue IMOJIE3HbIE CJIEJICTBUs: CIETHO KATErOpWYHBbIE POOMHCOHOBCKHE TEOPHUH YHAPOB
— TOTAJILHO KATErOPUYHbBIE; CIETHO KATETOPUIHbIE POOMHCOHOBCKHE TEOPHUH HEOPUEHTUPOBAHHBIX IpadoB
— TOTaJIbHO KaTeropudvHble. llosyvuennble pe3yapTarsl MOIYT OBITH [TOJIE3HBI B IIPOIOJI?KEHUN HCCIEI0Ba-
HUS PA3JIMIHBIX HOHCOHOBCKUX ajaredp, B YACTHOCTH, CEMAHTUIECKOTO HOHCOHOBCKOTO KBA3WMMHOTO00ODA3Mst
IIOJIUTOHOB Ha/l IUKJINYECKUM MOHOHIOM.

Karouesvie crosa: TOHCOHOBCKAsI TeOpHs, YHAD, rpad, HEOPUEHTHUPOBAHHBIM I'pad, yHUBEPCaIbHAs TEOPUH,
POOMHCOHOBCKasI TEOPHsl, KBA3NMHOroobpasue, CeMaHTHIeCKOe HOHCOHOBCKOE KBa3MMHOroobpasne, HOHCO-
HOBCKWIi CITEKTP, POOMHCOHOBCKUN CHEKTP, KOCEMAHTUIHOCTH, KATETOPUIHOCTD, CIETHAST KATETOPUIHOCTb.
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On the function approximation by trigonometric polynomials and the
properties of families of function classes over harmonic intervals

The article is devoted to research on approximation theory. When approximating functions by trigonometric
polynomials, the spectrum is chosen from various sets. In this paper, the spectrum consists of harmonic
intervals. Devices, various processes, perception of the senses have a limited range. In the mathematical
modeling of numerous practical problems and in the further study of such mathematical models, it is
sufficient to find a solution in this range. It is possible to study such models to some extent with the help of
harmonic intervals. To prove the main theorem, an auxiliary lemma was proved, and elements of the theory
of approximations with respect to harmonic intervals were used. For the constructed families of function
classes associated with the best approximations by trigonometric polynomials with a spectrum of harmonic
intervals, their relationship with classical Besov spaces is shown.

Keywords: harmonic interval, spectrum, the best approximation of a function by trigonometric polynomials
with a spectrum of harmonic intervals, Dirichlet kernel, family of function classes.

Introduction

In recent decades, the penetration of ideas and methods of the approximation theory into various
branches of mathematical science has been observed. According to a certain rule, the approximation
of a function is understood as the replacement of one function by another, close to the original in
one sense or another. In the study of periodic functions, trigonometric polynomials occupy a central
position as approximating objects. The fundamental results in this theory were obtained in classical
works [1, 2|. Further development of the theory is connected with the works of [3, 4] and with the
works of other mathematicians. The results obtained are also described in detail in books [5, 6] and
others.

When choosing an approximating functions, the spectrum is essential. The spectrum of approximating
functions can have the most diverse configuration and consist of the most diverse sets. For example,
the spectrum can be a hyperbolic cross [7, 8] or the spectrum is a ball [9], etc.

Devices, various processes, perception of the human senses have a limited finite range. In the
mathematical modeling of numerous practical and applied problems and in the subsequent study of
the compiled mathematical models, it is enough to find a solution in this range. The study of such
models [10, 11] can be carried out to some extent using harmonic intervals.

Harmonic intervals are defined as sets I}Y [12] of a special form, where the parameter characterizes
the specified limited range to some extent. The definitions of harmonic segments and harmonic intervals
were given by E.D. Nursultanov in [13, 14]. These sets built according to a certain rule, and their
accompanying elements have found wide application in harmonic analysis.

The lemma and the main theorem are presented in the second section. The theorem is proved
using an auxiliary lemma and using the properties of harmonic intervals and the mathematical objects
associated with them.

*Corresponding author.
E-mail: esenbaevagulsima@mail.Tu
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As an auxiliary problem, families of function classes {B; a.N }N connected by the best approximations
over harmonic intervals are introduced. Section 3 is based on the study of the properties of these families
of function classes {B; q N} . The constructed families of function classes are related to the classical

bh N

Besov spaces, and this is shown in the third section.
1 Definitions and auziliary results

Definition 1. [12| If k,v,d, N € N, k < N, then the sets of the following types

d
Ilf:v’d: U ([—k’,k]—i—QVN),
v=—d
N = G ([=k, k] + 2vN) = fj (m+2vN :m € [—k, k])

are called harmonic segment and harmonic interval in Z, respectively.
Let Tév be the set of trigonometric polynomials in the harmonic interval, defined by the formula
[12]

S
TN:{Za,,~ei”x:aV:0 ifygél,iv,seN}.
v=—s
We have

B (1) = it |71l
k

where E,]CV (f)p is the best approximation over the harmonic interval I év of the function f € L,[0, 2),
1 < p < oo by trigonometric polynomials from T,ﬁv of order less than or equal to k [12].
If f e Ly0,27m), 1 < p < 0o, then we will consider the following sums as partial sums of the Fourier

series of the function f over the harmonic segment [ ,iv 4 and the harmonic interval I ,iv , respectively [12]

SN = ae SN =Y a4 e

VEI,iV’d VEIIéV

Lemma 1. Let the functions f and g belong to the space Lox[0,27), where k € N. If the functions
f and g satisfy the condition

27

then we have an inequality of the form

27 i 2 i
(/ (|f|2’“+|g|2’“)da:) <k</ !f+g|2’“dx> .
0 0

Lemma 2. [14] Let B = [—k, k] be a segment in Z. k,d,h € N, k < h. {Ig,’d} be a sequence of

harmonic segments in Z, converging to a harmonic integral I g, and

(e o]

Ip=J (B+vh).

V=—0
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If feLy0,2m),1<p<00, ) eyl e™?® is its Fourier series, then the sequence of partial sums
of the Fourier series of the function f over the harmonic segment

SEN(f) =D av- et

llelg’d

converges in L,[0,27) as d — oo to the function

h—1
s =3 31 (a+ 2 ) 0u (57).

v=0

where

is the Dirichlet kernel corresponding to the segment B from Z, and its Fourier series will be the function
Zuelg ay - e

Theorem 1. [15] Let f € Lp[0,27), 1 < p < 0o, m € N, SN(f) be the partial sum of the Fourier
series and EN(f) be the best approximation of the function f over the harmonic interval IV, then the
following correspondence is fulfilled

ENPp ~|1F = SnHl

p

Let 1 < p,qg <oo,r>0,fe Ly0,2m). Let’s construct a family of function classes {B; q'N}N

satisfying the condition

AN = {f:Hf\B;’q.N <oo}, N eN,

where

171

x :
o= (Tt )

k=1
2 Properties of partial sums of the Fourier series over harmonic intervals

Lemma 3. Let f be a function from the space Lo [0,27), where k € N. 3 a,, - €™ is its Fourier
series, d € N, (m+ 1)k < d — 1.

o

L=1Iy = :L_J ([0,m] + vd),
o O {frer 5] )
= O (b [5]) )

are harmonic intervals in Z; S% (f) and S¢_, (f) are partial sums of the Fourier series of the function

[5]

f(z) over harmonic intervals I¢ and T [d@ x respectively, then the inequality holds
k

Jsm ], = #lst )l
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Proof. We introduce the following notation

u(z) = Z an - €M% v(z) = Z an - €.

nely nels

The functions u(x) and v(z) are partial sums of the Fourier series of the function f(z) over harmonic
intervals I1 and Is, respectively, and therefore belongs to the space Lox[0, 27).

Let’s prove that
2
/ uF - ofdr =0
0

[(Sae) (T ar=o

nel; nels

or

Taking into account the values of the integral fozw e dx when n = 0 and n # 0 we conclude that
the last condition will be satisfied if there are no identical numbers among the numbers n € I; and
n € Iz when raising the partial sums ) ; an - e and > onel, On - €™ to the power of k.

Note that when u(x) is raised to the power of k, the numbers n fall into the set, which is a harmonic
interval, which we denote by Iy and

e}

L= J (0,mk] + vd).

V=—00

Indeed, by definition, we have

L+ DL+ .. .+1,= {nl +no+..np, n; €1;, n=1,2, T‘}

)
Ly=L+..+1= {nl +no+..ng, €, n=12, k}
—_——
k
Since n; € Iy, then n; = l; + vd, where [; € [0,m|, v € Z, i = 1, ..., k. Therefore,
k k
S =3 et v
i=1 i=1
Thus,

vd < an < mk + vd.
i=1

It means that Zle n; € Ij.
Applying the same reasoning, we get that the numbers n, when the partial sum v(x) is raised to
the power k, fall into the harmonic interval I, and

L= |J {[(m+1k, d—1] +wvd}.

V=—0o

It is obvious that
LNy =9.
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This equality ensures the fulfilment of the condition (1) for u(x) and v(z). The fulfilment of this
condition guarantees the application of Lemma 1, namely

ok % 2 2% 2% % 2m 2% %
{/ ’u‘ dw} <{/ (‘u} —I—M >dl‘} <{/ }u—l—v‘ d:z:} ,
0 0 0
1
2k
271
|

1
2k 2k o 2k
an - " dx <k / E an - e dx
0

neld, nGI‘E

or

d d
< .
s, < * st )],
Lemma 3 is proved.

Theorem 2. Let f € Lp[0,27m), 1 <p <00, > ,cpa - e™® be its trigonometric Fourier series, then

the following inequality

7 (2)

p

H 2N—-1

oy X f(x+Z>Dm<Z>H <=5

is true, where D,,(y) is Dirichlet kernel corresponding to the segment[—m;m], C' is a constant that
depends only on the parameter p.
Proof. According to Lemma 2, we have

Hf - £V2§1f<x+ 7)) H ~[lr - s

_ iz _ % _
> w2 T ae HSQ%(f)‘p

veZNIY » veQl »
where QN 41 are harmonic intervals in Z, and
o0
= U {[—N, —-m—1]U[m+1, N] —|—21/N}.
V=—00

Then we have

p

. -5

m+1
Since SQN+1( f — Sm) is a partial sum of the Fourier series of the function
f=5Sn(f) = Z a, - €T
vEZ\[—m, m)]

then, by the theorem [14] on the boundedness of partial sums of Fourier series over the harmonic
interval, we obtain the necessary inequality

P

_ HSQN (/ — Sn)

m—+1

Hf—sﬁm

< ch — 5()
P P
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Thereby, Theorem 2 is proved.
Note 1. According to Theorem 1 and Lemma 9.3 [16] the relation (2) can be presented in the
equivalent form

EN(f)p < En(f)p,

3 Properties of the family of function classes {B;,q_N}N

Definition 2. [12] Let two classes of functions A" and BY depending on the parameter N be given.
We will say that the class of functions A" is embedded in the class of functions BV and denote it by
AN < BN if the following conditions are satisfied:

1) AN c BY,

2) there is a parameter C such that for any f € AV the relation

£l < ClI#|]aw

is true, moreover, the parameter C' does not depend on f and N.
Definition 3. [15] Function classes { AV}  and {BN} n» Where V € N, are equivalent

£ [Lax ~ 1l s
if there are parameters C;, Cy such that for any f € AV there is a correspondence
Cll fllpw < 1w < Coll £l g

moreover, the parameters C1, Co do not depend on f and V.
In this case, the families of function classes {AN } y and {BN } y coincide, namely

{A%y ={B"}y-

Theorem 3 relates families of function classes {B’" }N to classical Besov spaces [17].

p,q-N
Theorem 3. Let N € N, 1 < p, ¢ < 0o, r > 0 then the following relationship is performed

ﬂ b

Proof By definition, we have

f
5,
Since the following inequality
S
(EA P
holds for any N € N then we obtain the accordance

<|l|

=Wl 4y <l

This correspondence follows from the last inequality

ﬂ
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From other side, for a partial sum Som (), where m € N, we get the ratio

H52m(f)‘

Bj, = HSQm(f)’ B;7q’2m < C(pa QaT)

< C(p,q,r)

Clp,q,r HfH

p a,N

Further, from the last relation, according to the Banach-Steinhaus theorem [18|, we obtain the desired
inequality

or

Clp,q.r HfH

p q, N

m p,q,N PJI'

Thus, Theorem 3 is proved.

10

11
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IA. Ecenbaesa', O.H. Ec6aes?, H.K. Crzapikosal, M.A. Cmupnosal

1 .
Axademur E.A. Boxemos amuwindazv, Kapazandv yrusepcumemi, Kapasanowv, Kaszaxcman;
2 Hasapbaes Susamrepnir mexmebi, Acmana, Kazaxeman

D yHKIUAIAPIbI TPUTOHOMETPUSAJIBIK, KOIIMYIIIEJeD apKbLIbl XKYBIKTAY
2K9He TapMOHUSIJIBIK, MHTEPBAJJIAPFa KATBICTHI PYHKITAIIAPD
KJIACTAPbIHBIH, VifipJepiHiH KacueTTepi TypaJibl

MakaJjia KybIKTay TEOPHUsICHl CaJIAChIHJIAFbl 3€pTTeyJepre apHaJFaH. | PUrOHOMETPUSJIBIK KOIIMYIIeIep
apKBLIBI DYHKIUSIIAP/IBI XKYBIKTaY KE3IHIe CIIEKTP dPTYPJIi KUBIHIAPIAH TAHIAIAIbI. Byl 2KYMBICTa CIIEKTD
rapMOHUKAJIBIK, MHTEpBAJIapAaH Typaabl. KypblLirbLiap, opTypJii porecTep, ce3iMaepai KadbLIiay MyIie-
JIepi ImeKTey I ayKbIMra ne. KernrereH mpakTUKAJIBIK, €CelITepli MaTeMaTUKAJIBIK, MOJIE/Ib/IeY Ke3iHe YKOHe
OepinreH MaTeMaTUKAJIBIK, MOJEIBIEPl OJaH opi 3epTTey Ke3iHAe OChIHal Irana3oHIa IIeInM Taby KeT-
Kinikri. MyHgai Mogenbaepdi 3eprrey 6esrii Oip gopeskejie rapMOHUKAJIBIK, HHTEPBaJIIap/IblH, KOMeriMeH
MYMKiH Gostagel. Herisri TeopemaHbl mpJiefjiey VIIiH KOMEKIMI JIEeMMa JTOJIEIIEHl »KOHE TapMOHUKAJIBIK,
WHTEpBaJIap OONBIHINA XKYBIKTaY TEOPUSICHIHBIH, JIEMEHTTEP] KOMIAHBLIALI. [ apMOHUKAIBIK, HHTEPBAJIIAD-
JIBIH CITEKTPi 6ap TPUTOHOMETPUSJIBIK, KOIIMYIIEiKTepMeH (DYyHKITUSHBIH, €H, XKaKChl KYbIKTaybIMeH Oaitia-
HBICKAH (QYHKIMSIIAP KIACTAPBIHBIY KYPBbLUIFaH YiHipi YIIiH OJIapblH KJIaCCHKAJIBIK BecoB keHicTikrepi MeH
GallyTAaHBICHI KOPCETLITEH.

Kiam ce3dep: rapMOHUKAJIBIK MHTEPBAJ, CIIEKTDP, FADMOHUKAJIBIK NHTEPBAJJAPIbIH, CIIEKTPI 6ap TPUrOHO-
MeTPHSJIBIK, KOIIMYIIIeJIiKTepMeH (DyHKIUSHBIH €H »KaKChl XKyBbIKTaybl, Jlupuxiie e3eri, GyHKIMs Kiracrapbl-
HBIH, YHipi.
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I'A. Ecen6aesa!, A.H. Ecbaes?, H.K. Crzapikosal, M.A. Cymprosa!l

! Kapazanduncxuti ynusepcumem umenu axademuxa E.A. Byxemoea, Kapazanda, Kazaxcman;
2 Hasapbaes Hrumearexmyarvras wroaa, Acmana, Kasazeman

O npubanmxenuu yHKINN TPUTOHOMETPUIECKAMH MOJIMHOMAMU U
CBOIiCTBax ceMeiicTB KJiaccoB (PyHKIUT MO TApMOHUYIECKUM
WHTepBaJiaM

Crarbs OCBAIIEHA UCCIIEI0BAHUIO 110 Teopun npubsvkennii. [Ipu npubnamkennn GyHKIUI TPUrOHOMETPH-
YEeCKUMU MTOJIMHOMAMHU CIIEKTP BBIOMPAETCS M3 PA3JIMIHBIX MHOXKeCTB. B paboTe CIIeKTp COCTOUT U3 rapMo-
HUYEeCKUX WHTEPBaJOB. [Ipubophl, pazimaabie MPOIECChl, BOCIPUITAE OPTaHOB UyBCTB WMEIOT OTPAHUYEH-
HBI nuana3oH. [Ipu MareMaTryecKOM MOJIEINPOBAHUN MHOTOYMCJIEHHBIX IIPAKTUYECKUX 3329 U JaJIbHeli-
€M UCCJIEJOBAHUM TAKUX MATEMATUYECKUX MOJIEJIEN JOCTATOYHO HANTH pellleHne B 3aJaHHOM JIMalla30He.
IIpoBenenne nccmemoBanmii TAKUX MOJE/IE BO3MOXKHO B HEKOTOPOIl CTEMEHM C MOMOIIBI0 TapMOHUYECKUAX
uHTepBasoB. s noka3aTeabCTBa OCHOBHON T€OPEMBbI ObLIa IPUBE/IEHA BCIIOMOTIaTeIbHAS JIEMMA U UCIOJIb-
30BaJIUCh JIEMEHTHI TEOPUU NMPUOJIMZKEHUN 110 TAPMOHUIECKUM WHTepBaJiaM. [Ijisi TOCTPOEHHBIX CEMENCTB
KJIacCOB (DYHKITH, CBSIBAHHBIX C HAWIYUIIAME TPUOINKEHUSIMA TPUTOHOMETPUIECKUMU TOJUHOMAMHI CO
CIIEKTPOM U3 FapMOHMYECKUX WHTEPBAJIOB, [IOKA3aHa UX CBA3b C KJIACCUYECKMMHM IIpocTpaHcTBaMu Becosa.

Karoueswie cao6a: TapMOHUYIECKHIT MHTEPBAJI, CIEKTD, HAMJIydllee NpubKkenne byHKIUNT TPUTOHOMETPH-
YECKUMHU ITOJIMHOMAMU CO CIEKTPOM U3 FapMOHUYECKUX HHTEPBAJIOB, A1po Jlupuxie, ceMeilcTBO KJIaccoB

byHKIHII.
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