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N. Adil, A.S. Berdyshev*
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Spectral properties of local and nonlocal problems for the
diffusion-wave equation of fractional order

The paper investigates the issues of solvability and spectral properties of local and nonlocal problems for
the fractional order diffusion-wave equation. The regular and strong solvability to problems stated in the
domains, both with characteristic and non-characteristic boundaries are proved. Unambiguous solvability
is established and theorems on the existence of eigenvalues or the Volterra property of the problems under
consideration are proved.

Keywords: diffusion-wave equations, fractional order equations, boundary value problems, strong solution,
Volterra property, eigenvalue.

1 Introduction

The theory of derivatives and integrals of non-integer (fractional) order, called fractional calculus, is
becoming increasingly important both for the development of modern mathematics and for applications
in various fields of natural science. Both ordinary and partial differential equations of fractional order
have been used over the past few decades to model many physical and chemical processes and in
engineering [1-7].

Fractional partial differential equations have become especially important for modeling the so-called
anomalous diffusion processes in nature and the theory of complex systems [1]. Such equations are also
associated with fractional Brownian motions, the continuous random walk in time (CTRW) method,
stable Levy distributions, etc. [2,7|. Fractional differential equations also make it possible to study the
long-term and nonlocal dependence of many anomalous processes.

Since the fractional order equation generalizes the integer order equation, as well as a relatively
small number of systematized analytical and numerical methods for such equations, make this direction
a priority in the general theory of differential equations.

The mathematical theory of fractional differential equations is more or less fully investigated
for ordinary equations [1|, whereas for partial differential equations it differs from the situation for
the equation of one variable. In the scientific literature, analogs of the initial data problem and
initial boundary value problems for the simplest partial differential equations of fractional order were
considered mainly. Methods for solving such problems are considered in [1, 8-10].

The issues of solvability of local and non-local problems for various fractional order equations are
considered in [11-16].

Spectral properties, including Volterra property and the existence of eigenvalues, for a mixed
fractional order equation, as far as we know, are almost not studied. Note that the solvability issues
and spectral properties of local and nonlocal problems for a mixed parabolic-hyperbolic equation of
the second and third orders are studied in [17-24].

*Corresponding author.
E-mail: berdyshev@mail.Tu
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Spectral properties of ...

The work is devoted to the study of the solvability and spectral properties of local and nonlocal
problems for the diffusion-wave equation of fractional order. The regular and strong solvability of the
tasks set in the domains with both characteristic and non-characteristic boundaries of the domain
is proved. The unambiguous solvability of the problem is established, theorems on the existence of
eigenvalues are proved, or the Volterra nature of the problems under consideration.

Consider equation

Lu(z,y) = f(z,9), (1)
where ( ) ( )
_ CDgxu z,y _uyy €r,Y), y>07
Lu(e,y) = { Ugz (T,Y) — Uyy(T,y), y <0, @
1 [ ug (t,y)
Dy 3 = ) 1.
0wt (z, ) I‘(l—a)/(a:—t)adt 0<a<
0

['(z) is Euler’s gamma-function, (2) is an integral-differential operator of fractional order « in the sense
of Caputo [1; 92|, f(z,y) is a given function.

2 Solvability and Volterra property of local and nonlocal problems for the diffusion-wave equation

Let Q@ = Qg U Q; U AB be a domain, where € is a rectangle ABByAy with vertices A (0,0),
B(1,0), By (1,1), Ap(0,1), ©; is a domain bounded by segments AB and smooth curve AD : y =
—y(x), 0 <z <, where 0,5 <1 <1; v(0) =0, l +~(I) =1, and characteristic BD : x —y = 1 of
equation (1), if I < 1 and y(I) = 0, if I = 1 (when D = B), located inside the characteristic triangle
O<z+y<z—y<Ll

With respect to the curve v (x), we suppose that v (z) is twice continuously differentiable function
and x £ 7 (x) are monotonically increasing functions, and 0 < +/(z) < 1, v(z) > 0, « > 0.

Problem M;jA. Find a solution to equation (1) satisfying conditions:

u(0,y) =0, 0 <y <1, (3)
u(z,1)=0, 0 <z <1, (4)
(ug — uy) |ap = 0. (5)

Definition 1. The regular solution to the problem M; A in the domain 2 will be called the function
u(z,y) € V, where

V = {u(az,y) cu(z,y) € C(Q)N C’l‘l(Q U AC), DG u(x,y), uyy(z,y) € C(Qo), u(z,y) € 02'2(Q1)},

satisfying the equation (1) in o U 21 and conditions (3)—(5).

In domain Qgconsider the following auxiliary problem:
Problem (. Find a solution to equation (1) for y > 0 satisfying conditions (3), (4) and

uz(2,0) —uy(x,0) =d(x), 0 <z <1, (6)

where 0(z) is a given function.

Lemma 1. Let be §(x) € C1[0,1]. Then for any function f(z,y) € C*(Qp) is a solution to problem
C allows a priori estimates.

D lue, )2, 0. + 2 / ey (E )12, 0y dt < C / 1) 20 i+ / Sdt|,  (7)
0 0 0

Mathematics series. Ne 2(110),/2023 5



N. Adil, A.S. Berdyshev

1
where || f(z,y) H%Z(OJ) = [ f*(x,y)dy. Hereinafter symbol will denote a positive constant that does not
0

depend on u(z,y), not necessarily the same.

Proof of Lemma 1. We multiply equation (1) for y > 0 by u(z,y) and integrating from 0 to 1 over
y and taking into account conditions (3),(4) after some transformations we have

1 1 1
/u:cyDOz dy+/u (z,y)dy + 7(x /f u(z,y)dy, (8)
0 0 0
where
7(z) = u(z,0), 0 <z <1, 9)
v(z) =uy(x,0), 0 <z <1. (10)

It is known [10], that
1

/uwy D u(x,y)dy > - /D()yc (z,y)dy.
0 0

By virtue of the last inequality, from (8), taking into account (6) and the notations (9), (10) we obtain

1 1
/ D (@, y)dy + 2 / W, y)dy + 2 (2)7 (@) < 2 / w(,y) (@, y)dy + 2r(2)8(x). (1)
0 0

Integrating (11) over ¢ from 0 to z, taking into account 7(0) = 0 and using known inequalities we have

x

D (e )y +2 [ et o), de+ 7@ < [ [Jut )l o + 15Dy + 72(0) + 670) .
0

0
(12)
In the left part of (12), omitting the first two terms and applying the Gronwall-Bellman inequality, we

will have .

/TQ(t)dt < C'/ [H“(tay)H%Q(og) + ”f(tvy)H%Q(og) +67(t) | dt.
0 0

Taking into account the last from (12) we have

D, Ml )17, 0,1 +2/!uy DT 00) < / lu(t, )17 50,1y + 1 E DI Ty 0,0) +62(1) | dt. (13)
0

Similarly as above, omitting the second term of the left part in (13) and applying Lemma 1 in [10] we
have

D5 M@0 < Ty / 17 )1 0.0

we have

J 1t o de < € [ 1701 0 + 50 dr (14
0 0

6 Bulletin of the Karaganda University



Spectral properties of ...

From (12)-(14) it is followed the validity of the a priori estimate (7). Lemma 1 is proved.

Now consider equation (1) in the domain ;. By virtue of the unambiguous solvability of the Cauchy
problem (1), (9), (10) for the wave equation, any regular solution of the B problem in the domain €
is represented as

u(eg) =5 |T© -+ - [vinyar| - [da [ n (15)
3

13 &1

where ¢ = z+y, n=xz—y, 4f1(&n)=f <£+77 & ’7) Due to the conditions imposed on the function

v (z), equation of the curve AD in characteristic variables £, n allows representation
§=A(), 0<n<1, and A(n) <.

In (15) satisfying condition (5) after some simple transformations we have

v(z) =71'(x) -2 / fig,x)dé, 0 <z <1, (16)
Azx)
The ratio (16) is the main functional relationship between 7 (z) and v () brought to the segment AB
from hyperbolic domain €.

Substituting obtained expression v (z) into (15), after some transformations we get presentation of
the solution u (§,7) in domain ;.

e / i / i (€rm) de. (1)
Alm)
Now in (7) assuming that 6(z) = 2 [ f1(£,z)d¢ it is not difficult to establish the validity of the

A(z)
following lemma.

Lemma 2. For any function f(z,y) € C*(Q), £(0,0) = 0 the solution to problem M;B allows a
priori estimate

xT

DG e ) By + [ Tt ) 0t < C | [ )Eyon de+ [ a [Irenfar. as)
0 0 3

0

Lemma 2 implies the validity of the following estimate

e, )l o) + ey @)y gy < CIF ) agey (19)

where L9(€2) is quadratically summable functions in 2.

Consider the following auxiliary problem C5. In domain € find a solution of equation (1), satisfying
conditions (3), (4) and (9).

The solution of equation (1), satisfying conditions (3), (4) and (9) in domain €y can be presented
in a form (8]

T 1

u(:l:,y) —/Ey1 (1’-.%'1,:1/,0) (.’I)l d.’IJl—f—/dl'l/E x_xhy?yl)f(xlvyl)dyla (20)
0

Mathematics series. Ne 2(110)/2023 7



N. Adil, A.S. Berdyshev

where
g1 +o0 _
z v ( =y 2\ s ly+y+20) a
Pl =" ¥ [og (Hmmgrl) g (a0
n=—o00
[e.@]
e}:g (t) = nz() WZBM is Wright type function [8]. Differentiating (20) over y we have
T T 1
Uy (ﬁay):/Eyly (x_IlayaO) (331 dl‘l—’_/ 1/Ey 55—9517?/,?/1)f($1ay1)dyl (21)
0 0

and using known formulas [8], [18] after some calculations, going to limit in (21) for y — 0 we have:

1

v(z)= _/m(m_xl)Tl(xl)dml+/d5131/Ey (z —21,0,91) f (z1,91) dyn, (22)
0

0

where

= -8 1,1-8 ‘27’L’ . 1 -B 9 -8 1,1-8 27’1, 9
3 el () e v S (). e
n=-—o0o

Note that (22) is the main functional rate between 7/ (z) and v (z), brought to the segment from
domain €.

Excluding from the functional relations (16) and (22) the function v (z), with respect to 7/ (z) we
obtain the equation

/m (x—t)7T'(t)dt =Q(z), 0 <z <1, (24)

where .
Q(r) =2 / fi€,x df-i-/dﬂ?l/Ey r —x1,0,91) f (w1, y1)dys. (25)

A(x) 0

Lemma 3. [8] Let be 0 < 6 < 1. Then for functions E(x,y,y1) and Ey(x,y,y1) the following
estimates take place

B(z,y,y1)| < CaP871 0<u <1, 0<y1<y<1, 0<0<1, (26)
By (z,y,1)] < CPIFD"L 0z <1, 0<y1<y<1, 0<O<1. (27)
The proof of Lemma 3 is carried out using the inequality

yp—ltcs—legg_(_ywt—T) < pr—wG—I . t6+0T_1, 0<6<1.

By virtue of Lemma 3 and v(z) € C?[0,1], f(z,y) € CY(Q), £(0,0) = 0 from (25) it is not difficult to
establish that

Q(z) € C'[0,1] and Q(0) = 0. (28)

Thus, by virtue of (23), the problem M;jA is equivalently (in the sense of unambiguous solvability)
reduced to a Volterra type integral equation of the second kind with a weak singularity (24). Therefore,

8 Bulletin of the Karaganda University



Spectral properties of ...

by virtue of (28), there is a unique solution of equation (24) from the class C* [0, 1] and it is representable
as

(@) = Qz)+ / R(z—1)Q)dt, (29)

where R (z) is the resolvent of the integral equation (24)

o0

x), mi(x) =m(x), mpy1 (z) = | my(xz —t)my (¢)dt.
2 1 +1 O/ 1

From (29) taking into account 7 (0) = 0, we have

T x

T(x) = /R1 (x —t)Q(t)dt, where Ry (x) =1+ / R () dt. (30)

0 0

Substituting (30) in (17) and (20), taking into account (25) after some transformations we have

(.’E y / Ml l’ yaxlvyl)f('rlayl)dxdya (31)

where
M1 (:C7y>$1’y1) =0 (':U - xl) [0( )MOI (:U yaxlayl) +0 (_ )Mll (x,y,xl,y1)] ) (32)

MOl ($,y7$1,y1) :H(yl) E(x_Ilayayl /dZ/Eyl -z, )Rl (Z_t)Ey (t_x1707y1)dt +
~U1 /Ey1 —t,4,0) Ry (t —m) dt,

3
M (z,y,z1,y1) =0 (01 /Rl y (t—2x1,0,91) dt+
0
)

450 (o) 86 —m) Ba (€ —m) + 6 (~y1)8.n—m) 0 (m — )86~ &),

Where§1:$1+y17 =1 —¥Y, §:$+y7 n=x-y, 9(y):1’ y>oand9(y):07y<0
Taking into account explicit types of functions

MOl (x7y7xl7yl) ) Mll ('r7y7$17y1)

it is not difficult to establish that in (32) all terms are bounded, with the exception of the first —
Moy (x,y,21,y1), in which by virtue of Lemma 3, the summand may not be limited E (z — x1,y,y1)-
Therefore, it is enough to show that

0(x—21)0(y1)0(y) E(z —21,y,51) € Lo (2 x Q).

By virtue of Lemma 3 from estimation (26) by direct calculation we have

16z — 21)E(x — 21, y, 91) 17, (0x0) < C{2+0)B[1+ (2+0)8]} .
Therefore, M (z,y,x1,y1) € La(2 x Q).

Mathematics series. Ne 2(110)/2023 9
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Lemma 4. If f(x,y) € La(Q), then Q(z) € Lo[0,1] and Q)17 01y < C I1£(2, )17, (q) -

Proof of Lemma 4 taking into account (25), (27) It is carried out by direct calculation using the
well-known Cauchy-Bunyakovsky inequality. From (29) we have

HT/ (ZU)HLQ(OJ) < CHQ(fU)HLQ(o,l) < CHf(x?y)HLQ(Q)' (33)

From (17) by virtue (33) by direct calculation it is not difficult to establish that

e, )l @y < C 1@ 9) | ygey (34)

where W (1) is S.L. Sobolev’s space. From (18) and (34) we have

Dg, H lul@, 917500y + S Ny (97500 @ + ul@, yllyr 0, <
T 9 ° T 1 9 9 (35)
<C bef(tay)HLg(O,l) + Ofdf{ LF(& o) dt+ [ f (@, )10 | -

Thus, summarizing the above statements, the following theorem is proved.

Theorem 1. For any function f(z,y) € C*(Q), f(A) = 0 there is a unique regular solution to the
problem M1 A (1), (3)-(5) and it is represented in the form (31) and satisfies the inequality (35). From
(35) or (19) and (34) it is followed the the validity of the estimate

[, )|, (o) + [ (@ 9) | Ly 0y + 1@ D) lwg 00y < ClFE W)L, @) (36)

Definition 2. The function u(z,y) € Lao(Q) is called a strong solution to problem M A, if there is
a sequence of functions {un(z,v)}, un(z,y) € V, satisfying conditions (3)—(5), such that

lun (@, ) = (@, ) |y = 00 | Ltun(@,y) — F(@,9) [y = 0 for n— o

Theorem 2. For any function f(x,y) € Lo(Q2) there is a unique strong solution u(zx,y) to the
problem M; A. This solution can be represented as (31) and satisfies the estimate (36).

The proof of Theorem 2 in the presence of a representation of the solution (31) and the estimate
(36) is proved in the same way as in [22-24].

By B; we denote a closure in space Lo(€2), of fractional differential operator given at the set of
functions V', satisfying conditions (3)—(5), with expression (2).

According to the definition of a strong solution to the problem M; A, u(x,y) is a strong solution to
the problem Mj A only and only then, when u(x,y) € D(B;), where D(Bj) is a definition domain of
operator Bj.

From theorem 2 it follows that operator Bj is closed and its definition domain is dense in La(€2);
there exists an inverse operator B it is defined in all Ly () and quite continuous.

In this regard, a natural question arises: is there an eigenvalue of the operator B ! and therefore
to the problem? The main result is the theorem on the absence of eigenvalues of the operator By L

Theorem 3. Integral operator

By f(z,y) =/ My (x,y, z1,y1) f (21, y1)dz1dys, (37)
o

where M (z,y,x1,y1) € L2(2 x Q) is Volterra in La(€2).

10 Bulletin of the Karaganda University
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Proof. To prove Theorem 3, we need to show that the operator By ! defined by formula (37) is
completely continuous and quasinilpotent. Since the complete continuity of this operator follows from

the fact that M (z,y,x1,y1) € La(2 x ), show that Bl_1 is quasinilpotent, i.e.

lim ||By

1
S [1BE, o) pa@) = 0

where B; " = Bl_1 [Bl_(n_l)} ,n=12..
From (37) by direct calculation, taking into account (32) is not difficult to obtain that

B "f(x,y) = // My (z,y, v1,91) f (21, y1)d21dys,
o

where
My (z,y, 21, 41) 2/ Mi(z,y, 22, y2) M(n 1) (22, y2, 21, y1)dwodzy, n=2.3...
Q
Lemma 5. For iterated kernels M, (z,y,z1,y1) there is an assessment
3\"t 1"
) N (7) (l‘ _ xl)n'y—l

M, < | =
| n(x7y>$17y1)| = <2 I‘(n’y)

9

where v = (2+6)5, N = Cd, C is coefficient from the assessment (26),

d= max ’($—$1)1_7M1(x,y,$1,y1) cif <L
(z,y)eQ
(:c1,y1)€Q

d= max ’Ml(x7y7x17y1)’7 Zf72 1.
(zy)eQ
(z1,y1)€Q

The proof of Lemma 5 we carry out by induction method over n.
For n = 1 the inequality
‘Ml(.’ll‘, Y, x1, yl)‘ < N(.’IJ - xl)’y_l

follows from representation (32) taking into account estimate (26).
Let be (40) valid for n = k — 1. Let ’s prove the validity of this formula for n = k.
Using inequality (40) for n =1 and n = k — 1 we have

|Mg(z,y,21,91)| = //Ml(%y,wz,yz)'M(k—1)($2>y2,$1y1)d932dyz <
Q

< //‘Ml(xuya 552792)‘ : ‘M(k—l)(x2ay2,$1ayl)|dﬁzd?/Q g
Q

2

1 3\ " I'"1(v)
< // O(x — z2)N(x — 22)7 " 0(x2 — 21) <> Nkili(xz — :vl)(kfl)vfldxgdyz <
Q

I'{(k = 1)1

3\ I 1(y) f - —1)y— _
= (2) Nkr[(k;-1)ﬂ/®‘”> Yag — 20)F D77y =

x1
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1

k—1 k—1 k-1 k
N @) Nkr[r(k: —(1))7 2 1/07 (1= o) o (3) Nk?(zm (& =),

0

which proves Lemma 5.
Using the consistently known Schwarz inequality and Lemma 5 from the representation (39) we
have

2
-n 2 —n 2
| B f(ﬂfay)HLQ(Q)://‘Bl f(z,y)] d:cdy:// / My (z,y, z1,91) f(x1, y1)dzrdy: | dedy <
o o Lo

<// /\Mn($,y7$1,y1)|2dfﬁ1dy1 /’f@?l,yl)fzdﬂcldyl dxdy <
0 o )

§ 2n F2n(7) 9
< (%) e Ve

1
. 3N\" 2\ _I'"(v)
12 o = (1) (4 2)

From the latter it is not difficult to establish equality (38). Theorem 3 is proved.

From here we get

Corollary 1. Problem Mj A is Volterra nature problem.

Corollary 2. For any complex number A the equation Biu(z,y)—Au(z,y) = f(z,y) is unambiguously
solvable at all f(z,y) € La(2).

Let now 7 is a domain bounded by segments AB and characteristics AC : z +y = 0, BC :
x —y = 1 of equation (1) and smooth curve AD : y = —y(z), 0 < & < I, where 0,5 < [ <
1;,v(0)=0,14+~()=1,if I <1and y(l) =0, if ] = 1 is located inside the characteristic triangle
O<z+y<Lz—y<l.

A generalization of the problem in the domain €2 is the following non-local problem for equation
(1), where in the hyperbolic part of the mixed domain, the non-local condition pointwise connects the
values of the tangent derivative of the desired solution on the characteristic AC with the derivatives
in the direction of the characteristic of the desired function on an arbitrary curve AD lying inside the
characteristic triangle, with the ends at the origin and on the characteristic BC' (at a point B).

Problem M;B. Find a solution of equation (1) satisfying the conditions (3), (4) and

[ue — uy] [fo (8)] + 1 (t) [ue —uy] [7 (1) =0, 0 <t <1, (41)

where 0 (t), (6* (t)) is an affix of the intersection point of the characteristic AC' (curve AD) with the
characteristic coming out of the point (¢,0), 0<t<1, u (¢) is a given function.

In the case when o = 1, the problem M;B coincides with nonlocal problem for mixed parabolic
and hyperbolic equation with non-characteristic line of type change. In this case, regular and strong
solvability issues and Volterra property of problem M;B are investigated in [21-24|. Note that the
problem M; B, when p(x) = 0 coincides with the problem of Tricomi for diffusion and wave equation,
and in the case when p(t) = oo coincides with the problem M A.

Similarly, as in the case of the problem Mj A, the concept of a regular and strong solution to the
problem is introduced. Applying the methodology of proofs of theorems 1-3, the following theorem is
proved.

Theorem 4. Let be p(t) € C10,1] and p(z) # —1, 0 < 2 < 1. Then :
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a) for any function f(x,y) € C1(Q), f(A) = 0 there is a unique regular solution to the problem
MiB (1), (3), (4), (41) and it is represented in the form (31) and satisfies the inequality (35);

b) for any function f(z,y) € L2(f2) there exists a unique strong solution u(z, y) to problem M; B.
This solution can be presented in the form (31) and satisfies estimate (36);

c¢) the problem M; B is Volterra nature problem.

8 Solvability and existence of eigenvalues of local and nonlocal problems for the diffusion-wave
equation

In domain €2 of considered section 2 we investigate the following problem: Problem MsA. Find a
solution of equation (1) satisfying the conditions

u |AAOUA()BO = 0 ) (42)

Uz + Uy |apuBD = 0. (43)

Definition 3. The regular solution to the problem MsA in the domain 2 will be called the function
u(z,y) € W, where W = {(:U,y) cu(z,y) €C(QANCH(QUADUBD), Dg u(z,y), uyy(x,y) € C(Qo),
u(z,y) € C*2(Q)}, satisfying equation (1) in Qo U 4 and conditions (42)—(43).

Definition 4. The function u(z,y) € Lo () is called a strong solution to the problem M>A, if there
exists {un (z,y)}, un(z,y) € W, satisfying conditions (42)—(43), such that [lun (2, y) — u(z, y)| 1) — 0,
[ Lun (2, y) = f(2,9)llg = 0, for n — oco.

Similarly, as in section 2, the regular solvability of the problem MsA.

Theorem 5. For any function f € Ly (€2) there is a unique strong solution u(x,y) to problem MyA.
This solution can be presented in the form

u(w,y) = //K(%y;%l,yl)f($1,y1)d$€1dy1, (44)
o

where K (x,y;x1,y1) € Lo ( x ), and satisfies estimate (36).
Similarly as in the problem Mj A, the solution to problem MsA in domain € we seek in the form
(15). Based on (43) from (15) we find
e(8)
v©=-7©-2 [ fiEmn, 0= (45)
£

where n = ¢ (£), 0 < & < &y, ¢ (&) = 1 is an equation of the curve AD in characteristic variables £, n
and ¢ (§) =1, §o <& <1 in the case when D # B and n = ¢ (&), 0 <& <1 when D = B.
Substituting the resulting expression v (£) into (15), we obtain

n w(&1)
u(x,y) =7(n)+ /d& / J1 (&1, 1) dny. (46)
3 n

The formula (45) gives an integro-differential relation between 7 (z) and v (x), brought to the
segment AB from hyperbolic part ;.
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Taking into account (22) and (45), it is not difficult to establish that the problem M>A is equivalent
to the following Volterra integral equation of the second kind

—/m(:L‘—t)T/(t)dt:‘I)(l‘), 0<z<1, (47)

w(z)
where ® (z) = -2 f Ji(x,m) dm — fdxle —x1,0,y1) f (w1, y1)dys.

Since m (z — t) is a kernel with a weak feature then there is a unique strong solution to equation
(47), and it is representable as

#(2) = D (2) + / Iz — 1) (1) dt, (48)
where I' (x) is a resolvent of equation (48):

ij , mi(x) =m(x), mjp (:E):/ml (x —t)m; (t)dt.

0

From (48), taking into account 7 (0) = 0, we have

T w(&1) T 1
T(r)=-2 [ d& Li(z—&) f(&,m)dn— [ dey | By (x—2,01) f(21,91) dyr,  (49)
jo] fof
where
I(x)=1+ (t)dt, Eq(z,y1) Ey (t,0,y1)I'1 (x —t) dt. (50)
[* -

Substituting (49) into (20) and (46), we obtain

x x (51)

u(x,y) =/d$1/E2 r—x1,9,%1) f (21, 91)dy1—2 /d§1 / By (z —&1,y) f1(§,m) dn, y > 0,
0 0 &1
(51)
U] w(&1) n w(&1)
:/d& / £ (€rm) dn1—2/d£1 / Ty (n— &) 1 (€0, m) din—
n 0 &1 (52)

3
1
/diEl/E1 n—x1,y1) f(z1,y1) dy1, y <O,
0

where
xT

EQ ($7y7y1) = E($7y7y1) - /Ey ($707y1)E1 (.’E - tv yl) dt.
0
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From (51) and (52) we get (44), where the kernel has the form

K (z,y;21,51) = 0 () {0(y1) 0 (x — 1) B2 (z —21,9,91) —
—0(—y1) 0 (x — &) Er (2 — &, y)} + 0 (—y) {=0(y1) 0 (n — 1) Ex (n — z1,51) +

) (53)
#00m) 306 - 90— €)0m —1) -0~ &)Ti(n-)| |
From (44), (51), (52) and properties of the solution to the first initial boundary value problem for
the diffusion equation [8], as in Theorem 2 it follows all statements of Theorem 5.
By By we denote a closure in Ly (€2) of the operator given on a set of functions from W, satisfying
conditions (42),(43), with expression (2).

Theorem 6. Let be v (x) # 0. Then there exists A € C such that equation Bou(z,y) = Au(z,y) has
non-trivial solution u(x,y) € W.
Proof. From theorem 5 it is followed, that By is inversible and B, !is an operator of Hilbert—Schmidst,

defined by the formula (44). Then By 2 = (By 1)2 kernel operator in Ly (2).

Therefore, for the operator By 2 we apply the result of V.B. Lidskii [25] on the coincidence of matrix
and spectral traces. It is also known that for the kernel operator, represented as the product of two
Hilbert-Schmidt operators, the Gaal formula [26] trace calculation takes place. Using formula of Gaal,
we calculate the matrix trace By 2

SpBy? = // dxd@// K (z,y;21,y1) K (21,9152, y) deidy;. (54)

Taking into account the representation (53) from (54), after simple transformations, we obtain

1 1 x plx—E&2)—x
SpBy% = [dx [ dy | Ei(2,y)déf e (z — &) — E1 (n2,y)dnz+
[ /
. 1 »(&) n w(&1)
+4/d€ / dn/d& / O(m—&ET1(m—&[T1(n—=&)—0(m—n)]dn=A+B.
0 3 13 n

We will show that A + B > 0. Indeed, taking into account (50) and ¢ (t) # t will take place A > 0, if

E, (t,0,y1) > 0. (55)

We represent the function Ey (¢,0,y1) in the form

12T 10 121 + 1 | 1,0 12(n +1) — 1]
E,(t,0,y1) = 5 Z {61,5 <_t +ep ]|

Due to the properties of the Wright function [8; 46] e1 B( z) > 0, z > 0, therefore, from the latter
we get the justice of inequality (55). Also, from (50) it easily follows that

Fi(n—=&)—0(m—n) >0,

therefore B > 0.
Thus, A+ B > 0, as an integral in the positive direction of a non-negative and identically non -
zero function. From here we get that SpB; 2 > 0. Further, applying the results of [25], we have
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DM (By?) =) A (By') >0,
k=1

o0
where Ag (BQ_ 2) are eigenvalues of operator By 2 It means that > /\% > 0, where )\ are eigenvalues

k=1"k

of the problem (1), (42) and (43). This implies the existence of the eigenvalues of the problem M;A
for the diffusion-wave equation of fractional order. Theorem 6 is proved.

In conclusion, we note that the most interesting is the fact that in problems M;A and MsA, in
the case when point D coincides with point B, the Volterra property or existence of the problems
eigenvalues depend on the derivative directions of the desired function given in the non-characteristic
curve of the hyperbolic part of the boundary.
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H. Ouin, A.C. Bepapimes

A6at amvimdazv Kasax, yammo nedazozukarviy yrusepcumemi, Aamamol, Kasaxeman;
Axnapammuolk oicone ecenmeyins, mernoN02uAlap uncmumymaot, Aamamo, Kaszaxeman

Beamniek perti muddy3nsaibIK-TOJKBIHIBIK TE€HAEY YIIiH JIOKAJIbIi
2KOHe JIOKAJIb/II €éMeC ecelTep/IiH CIeKTPJK Kacuerrepi

Makasmana 6emex perTi quddy3uAIbIK-TOTKBIHIBIK TEHIEY YIIiH JIOKAJIbI] KOHE JIOKAJIbII eMeC eCenTep-
JiH IIemiM/IiIik Mocesenepl MeH CHeKTPIIK KacueTTepi 3eprresred. CHIATTAybIII YKOHE CHIATTAYBIII eMeC
nmekapaJsapb 6ap 0b/bICTapAa KOWBLIFAH €CENTEPIH PEeryIsp »KoHe KYIITI mentiMairiri morennenai. Ecern-
TepiH Gipereit memnriMiiri gosesaeHin, MeHImIKTI MoHIep/iH 6ap ekeHiri nemece Bosbreppa Tumingeri
€ecell eKeHIIr TypaJjbl TeopeMaJjiap J2JIe/IIeHTeH.

Kiam cesdep: nuddy3usiyibIK-TOMKBIHIBIK TEHIEY, OOJIIEK PETTI TEHAEYIIEDP, MEKAPABbIK €CenTep, KYIITi
mremnrim, Bosibreppa Kacueri, MEHITIKTI MoH.

H. Aguin, A.C. Bepapimes

Kasaxckul nayuonarvhoili nedazozuveckuts yrusepcumem umenu Abas, Aamamo, Kazaxcman;
HUncmumym un@opMaGUOHHBIT U GBIHUCAUTIEADHHLT MeTHoA02Uul, Aamamo, Kazaxcman

CriekTpaJjibHbIE CBOMCTBA JIOKAJBHBIX W HEJOKAJbHBIX 3a1a4 JIJIs
andpy3nMOHHO-BOJTHOBOTO ypPaBHEHUA APOOHOIO IMOPSIKa

B crarbe ucciieioBaHbI BOIPOCH Pa3pENIMMOCTI U CHEKTPAJIbHBIE CBOMCTBA JIOKATBHBIX M HEJIOKAIBHBIX 3a-
nad s 1uddy3noHHO-BOJIHOBOIO ypaBHEHUs NpOoOHOro mopsiaka. Jloka3aHbl peryspHas U CHIbHAs pas-
PEIIIMOCTH IIOCTaBJIEHHBIX 3aad B 00JIACTSX, KAK C XapaKTEPUCTUIECKOH, TaK U C HEXapaKTEePUCTHIECKON
rpaHuneit o6acTy. YCTaHOBJIEHA OJHO3HAUYHAs PA3PEIINMOCTD 3a4ad, U JOKA3aHbl TEOPEMBI O CYIIECTBOBa-
HUAN COOCTBEHHBIX 3HAYMEHHI MO0 BOJBTEPPOBOCTH PACCMATPUBAEMBIX 331at.

Kmouesvie caosa: muddy3nOHHO-BOJIHOBOE YpaBHEHME, YPaBHEHUsT IPOOHOTO TOPSIKA, KPAaeBble 33 1a4M,
CUJIbHOE DellleHne, BOJIbLTEPPOBOCTb, COOCTBEHHOE 3HAYEHUE.
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Controllability and optimal speed-in-action of linear systems with
boundary conditions

The paper proposes a method for solving the problem of optimal performance for linear systems of ordinary
differential equations in the presence of phase and integral restrictions, when the initial and final states
of the system are elements of given convex closed sets, taking into account the control value restriction.
The presented work refers to the mathematical theory of optimal processes from L.S. Pontryagin and his
students and the theory of controllability of dynamic systems from R.E. Kalman. We study the problem of
optimal speed for linear systems with boundary conditions from given sets close to the presence of phase
and integral constraints, as well as constraints on the control value. A theory of the boundary value problem
has been created and a method for solving it based on the study of solvability and the construction of a
general solution to the Fredholm integral equation of the first kind has been developed. The main results
are the distribution of all controls’ sets, each subject of which transfers the trajectory of the system from
any initial state to any final state; reducing the initial boundary point to a special initial optimal control
problem; constructing a system of algorithms for the gamma-algorithm study on the derivation of problems
and rational execution with restrictions on the solution of the optimal speed’ problem with restrictions.

Keywords: optimal performance, integrity constraints, functional gradient, integral equation.

Introduction

Methods are proposed for constructing program and positional controls for processes described
by linear ordinary differential equations in the presence of boundary conditions, as well as phase
and integral constraints, taking into account constraints on controls. Two problems were solved: the
problem of a control existence and the problem of constructing a set of all controls that transfers the
trajectory of the system from any initial state to a given final state [1-2]. The proposed methods for
constructing programs and positional controls are based on the Fredholm integral equation of the first
kind. A necessary and sufficient condition for the existence of a solution to a linear integral equation is
obtained. A general solution is found for a class of Fredholm integral equations of the first kind [3-5].
It is shown that the boundary value problems of linear ordinary differential equations are reduced
to the original optimal control problems with a quadratic functional. Algorithms for constructing
minimizing sequences and estimating their convergence are given [6]. Algorithms for solving the optimal
performance problem based on solving the controllability problem are presented [7-8]. One of the
complex and unsolved problems of control theory is the existence of a solution to the boundary value
problem of optimal control in the presence of phase and integral constraints. To solve the problem of
the existence of a solution, it is necessary to create a general theory of controllability of dynamical
systems. This work is devoted to solving problems of controllability of complex dynamic systems with
boundary conditions and constraints [9]. It should be noted that in these works special cases of the
general problem of controllability and speed of dynamic systems without phase and integral constraints
were studied [10-12]. Actual and unsolved problems of controllability and optimal performance are:
obtaining necessary and sufficient conditions for the solvability of general problems of controllability
and performance; development of constructive methods for constructing solutions to general problems
of controllability and optimality of ordinary differential equations.
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1 Statement of the problem

Consider a controlled process described by a linear ordinary differential equation with an integral
and a control of the following form:

b
= A + B(tyu(t) + C(1) / Kt 7)o(r)dr + p(t), te T =t t], (1)

TEIQZ[a,b]

with boundary conditions
(x(tg) = xo) € So, (x(t1) =x1) € S1, So C R", S1 C R" (2)
as well as restrictions on control values
u(t) € U(t) = {u(-) € La(I1, R™) | u(t) € Uy(t) C La(I1, R™), a.e., t € I}, (3)

(1) € V(1) ={v(-) € La(I2, R™) | v(7) € Vi(T) C La(I2, R™), a.e., T € I2}. (4)

Here A(t), B(t), C(t), t € I are matrices of orders nxn, nxm, nxmj respectively, with piecewise
continuous elements; K(t,7) is a known matrix of order my x n; with elements from Lo, u(t) €
Ly(I2, R™) of a given function Sy C R™, S1 C R" of given convex closed sets, which defines restrictions
on the initial and final state of the phase variables U;(t) C La(I1, R™), Vi(T) C La(I2, R™) of given
convex closed sets. In particular, the sets

So={z0 € R" | |xzo — 71| <7}, So={x0€ R"|ci <wmp; <d;, i=1,n}

Si={z1 € R" ||z —71| <R}, Si={m1 €R"|G <z <d;,i=1n},

where Ty € R", 71 € R" are fixed vectors, r, R are given numbers, xg = (zo1, ... Ton) € R", x1 =
(711, ... ¥10) € R™, ¢;, di, G, d;, i = 1,n are fixed numbers.

There are sets

Uy =A{u(:) € Lo(I1, R™) | ||lu —u|| < r,ae.,t €1},

Ur = {u(-) € Lo(I1, R™) | ci(t) < wi(t) < Bi(t), ace., i =1,n, t € I},

Vi(r) ={v(:) € Lo(I1, R™) | |[v — ¥|| < R, a.e., T € I},

Vi(1) = {v(-) € Lo(I1, R™) | a;(7) < vi(1) < Bi(7), ace. i = 1,n, 7 € I},
where r > 0, R > 0 are given numbers, u(t) = (u1(t), ..., um(t)), v(7) = (V1(7), ..., vn, (7)), @i(t), Bi(t),
t € I, ai(7), Bi(T), T € Iy are given continuous functions.

There are the possible cases: 1) when the moments are fixed; 2) to is fixed, to find the smallest
value t1, t; > 0 when boundary value problem (1)—(4) has a solution. Boundary value problem (1)—(4)
in the second case is called the optimal performance problem.

Definition 1. Let the moments be fixed. The solution of the differential equation with subintegral
control (1) is called controllable at the time of control u.(t) € U(t), vi«(7) = V(7) which transfers the
trajectory of the equation (1) from point zg, (t) = x.(to) € Sp at time ¢y points to z1, (t) = z.(t1) € Si
time 7.

Definition 2. A quadruple (u(t), v«(7), xo,, x1,) € U(t) x V(1) x Sy x S is called correct if the
function z.(t) = z«(¢; to, To,, us, v«), t € I; that is a solution of differential equation (1) satisfies
condition (2). The set of all admissible quadruples is denoted by .
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2 Necessary and sufficient conditions for controllability

To solve problems (1)—(4), we consider the controllability problem of a linear system

Yy = A(t)y + B(t)wi(t) + C(t)wa(t) + u(t), t € I, (5)
y(to) = xo = x(to) € So, y(t1) = x1 = x(t1) € S, (6)
wl() S LQ(IQ,Rm), U)Q() S LQ(IQ,le). (7)

Theorem 1. The integral equation

t1

Kuw = /K(tg,t)w(t)dt _ B, tel=lttl (8)

to

have a solution for any fixed 8 € R™ if and only if the matrix
t1
C(to, t1) = /K(to,t)K*(to,t)dt (9)
to

of order n; X ny is positive definite, where (%) is the transposition sign.

Proof. Sufficiency. Let the matrix C(tg,t1) > 0. Let us show that integral equation (8) have a
solution for any 5 € R™. Let’s choose
w(t) = K*(to, t)C~ (to,11)B, t €1 = [to, t1].
Then

t1
Kw = /K(to,t)K*(to, t)dt C~(to,t1)B8 = B.
to

Thus, for C(tg,t1) > 0, integral equation (8) have at least one solution
w(t) = K*(to, t)C '(to,t1)8, t € I, B € R"

The sufficiency is proved.

Necessity. Let integral equation (8) have a solution for any fixed § € R™. Let’s prove that the
matrix C(to,t1) > 0. Since C(to,t1) > 0, then to prove C(tg,t1) > 0 it is necessary to show that the
matrix C(to,t1) is nonsingular.

Suppose, by contradiction, that the matrix C(to,t1) is singular. Then there is a vector ¢ € R",
¢ # 0 such that ¢*C(tg,t1)c = 0. Let’s define the function v(t) = K*(to,t)c, t € I, v(-) € Lao(I, R™).
Note that

t1 51
/17*(t)1‘)(t)dt _ o /K*(to, DK (o, )t - ¢ = ¢ Clt, 11)e = 0.
to to

Therefore, the function ©(t) = 0, ¢ € I. Since integral equation (8) have a solution for any 8 € R",
then, in particular, there exists function (7) such that w(-) € Ly(I, R™) and (8 = ¢)

/ K(to, ) (t)dt = c.
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Thus the identity

t1 t1
0= /v*(t)w(t)dt =c" /K(to, tw(t)dt = c*c
to to

is true. This contradicts the condition that ¢ # 0. The necessity is proved. The theorem is proved.

Theorem 2. The existence of a control wy () = wi« (), wa«(-) € La(l2, R™)x La(l2, R™) transferring
the trajectory of equation (5) from the starting point y(¢g) = xo € Sp to the point y(t1) = z1 € Sy it
is necessary and sufficient condition for the matrix

Wito.n) = | " (10, 1)BL (1) BHO* (to, )t (10)

the order n x n be positive defined, where B(t) = (B(t),C(t)). Linear control system (5)—(7) differs
from (1)—(3) in that the point, xg € Sy, 1 € S1. Let the matrix W (g, t;) determined by formula (8)
be positive defined. Then a control wy(-) = (wi(+), wos(+)) € La(lz, R™T™) transfers the trajectory
of equation (5) from point y.(to) = xo« € So to point y.(t1) = z1. € S, if and only if

wa(t) € Wi = {ws(-) € La(Ia, R™ ) wy(t) = pa(t) + M1 (t, Zox, T14) + N1(t)2(t1, i),

Zox € SO; T1x € Slv VP*() = (pl*(')a pQ*(')) € L2(127Rm+M1)}7 (11)

where
Al(ta L0« .7)1*) = Bf(t)q’*(tO»t)W_l(thtl)aa (12)

t1
a = @(tg,tl)xl* — Tox — / (I)(to,t),u,(t)dt, Nl(t) = —Bik(t)q)*(t(),t)Wﬁl(to,tl)@(to,tl),

to
p«(-) € La(Io, R™*™) (13)
and the function z(t) = z(¢,ps), t € I is a solution of the differential equation
z(t) = A(t)z + B1(t)p«(t), z(to) =0, t € I.
The solution of differential equation (5) corresponding to the controller, is determined by the formula
Y (t) = 2(t, pe) + A2(t, Tox, T14) + No(t)2(t1, ps), t € I,
where

)\2 (t7 LOx .’L‘l*) = (I)(ta to)W(t, tl)W_l(t()? tl)mO* + q)(ta lo, )W(ta tl) W_l(t()v tl)q)(t7 t0)$1*+
t t1
+/ (I)(t(), T)M(T)dT — ‘I’(t, to)W(to, t) W_l(to, tl) / ‘I’(to, t),u(t)dt, t e Il,
to to
Tox € Sp, T14 € SlNQ(t) = —‘I)(t,to)W(to,t)W_l(to,t1>(I)(t0,t1), tel.
Proof. Indeed, from (8) for K (to,t) = ®(to,t)B1(t) we have (10). Then

Clto, t1) :/K(tg,t)K*(to,t)dt:/@(to,t)Bl(t)B{(t)CI)*(to,t)dt:W(to,tl)
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for the existence of a solution to integral equation (10) it is necessary and sufficient that the matrix
W (to,t1) > 0, the control w1 (t), t € I is determined by the formula w(t) = v(t)+K*(to, t)C~(tg, t1)B—

K*(tg, t)C~ (o, 1) tflK(to,t)v(t)dt, t € I. Then (see (9))

wi (t) = v(t) + K*(to, t) W (to, t1)a — K*(to, t) W (g, t1) / K (to, t)v(t)dt =

— u(t) + B (to, )W L (to, 11)[®(te, t1)e1 — 0 — / B (to, 1)ja(t)dt] -
B () (o, )W (10, 11) / B(to, £) By (t)u(t)dt =

=v(t) + T (t)eo + Ta(t)er + i(t) + Mi(t)z(t1,v), t €1, Yv, v(-) € La(I,R™),
where matrices T1(t), To(t), Mi(t), t € I, are defined by relations (10),

t1

/(I)(to,t)Bl(t)U(t)dt = @(to,tl)z(tl,v),v(-) € LQ(I, Rm),

to

z(t,v), t € I,is asolution of differential equations (11)—(13). The set U; is generated when an arbitrary
function v(-) € La(I, R™) runs through all elements of the space La(I, R™). The theorem is proved.

8 Creating and solving controllability problems

Consider optimization problem (5)—(7), in the form of

t1
J(0) = / Foq(t),t)dt — inf, 0 € X C H,

to

where q(t) = (6(t), 2(t1,p)), p1(t) € L5(I1, R™) = {p1() € La(I1, ™)l o1l < p},

p2(t) € LE(I, R™) = {pa2(-) € Lao(I1, R™)]l|p2|| < p},
Fo((](t),t) = ’Fl(q(t)7t)|2 + |Fg(q(t),t)\2,F1(q(t),t) =wr—u

b
Fs(q(t),t) = wy —/ K(t,r)v(r)dr

Note that:

1) U(t), V(t), So, S1 are bounded convex closed sets, then X is a bounded convex closed set in
a reflexive Banach space H, where Lo(Iy, R™), L5(I;, R™) are bounded convex closed sets in the
Hilbert space Lo.

2) the functional J(6), 8 € X is bounded from below J(#) > 0, V0 € X. It is easy to see that the
quadratic functional J (), § € X is convex since z(t,ap + (1 — @)p) = az(t,p) + (1 — a)z(¢,p),Vp, D €
LA(I, R™T™1) o € [0, 1].

3) It is known that a bounded convex closed set X in the reflexive Banach space H is weakly
bicompact, and a continuous convex functional J(#), 6 € X is weakly semicontinuous from below.
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4) A weakly lower semicontinuous functional J(6), 8 € X on a weekly bicompact set reaches the
infimum on the set X, and hence the set.
X =0, X|J(0) =Jc = Gin)f(J(O) = ]gli)l(lJ(@)} # O where O is the empty set.
€ €

The partial derivative of the function Fy(q,t) are:
Foay (g, 1) = 2T5 (1) Fi(g, 1) + 2 T3 (8) Fa(g, 1),
Foa, (q,1) = 2TY () Fi(q, 1) + 215 (t) Fa(g, ),
Fozey) = 2N11(H) Fi(g, t) + 2 Nix () Fa(g, 1),

Fop, (q,t) =2 F1(q,t), Fop,(q,t) =2Fa(q,t), Foulq,t) = =2 F1(q(t),1).

Theorem 3. Let the matrix W (to,t1) be positively defined. Then the functional under the conditions
is continuously differentiable with respect to Frechet, the gradient

J(0) = (Ju(0), J(0), Jp, (0), Jp,(0), T, (0), I3, (0)) € H
at any point # € X is determined by the formula

J'(6) = ~Fouq(t), ),

t1

T =2 [ K¢yt dt+2/ / K*(t, 1)K (t, )o(7)drdt,

J(0) = 2F1(q.1) — B (0)0(0), J15(0) = 2F2(g,t) — C*(b(h), (14)
7,0 = | " Fonslal®), 1)t 11, (6) = / " Fuan(a(t), ),

where 9(t),t € I; is the solution of the coupled system
. t1
b= =AU, 6t =~ [ Forg, (alt)t)at (15)
to

Fox(t) (q(1),1) = 2N11 (1) F1(q(t), ) + 2 Nia () Fa(q(t), ), t € I,
function z(t) = z(t,p), t € I; solution of the differential equation (13).

In addition, the gradient satisfies J'(6), § € X the Lipschitz condition
HJ’(Ql) — J/<92)H < KH(91 — 92”, V01,92 e X. (16)

Proof. Let 6,0 + A0 € X, A0 = (Au, Av, Apy, Aps, Axgs, Ax1,). As in the proof of Theorem 3,
the functional increment can be represented as

AT =10 +80)~30) = [ (Au (O Fuulatt) + 510 Fops ) — B OV

to

+Apy(8)[Fopa(q, ) — C* ()¢ ()] + Azp(t) Foao (g, t) + Axy(t) Foe, (¢, ) pdi+
b
+/ Av*()Jydr + Ri 4+ Ry + Rs + Ry, (17)

where

t1
R1:/ \Awy — Av|2dt, Ry = / /KtTAv( Yt — Aws(t) 2,

to
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t1 t1
R3 = Az[Fozo(q + Ag,t) + Fozo (g, t)]dt, Ry = Axi[Foz, (¢ + Aq,t) — Fog (g, 1)]dt,
to to
|R| < c1l|AG]1%, Aq(t) = (AO(1), 2(t1,p))-
From (15)—(17) it follows that the Freschi derivative of functional (16) under conditions (15)—(17)

is determined by formula (14), where (t), t € I; is a solution of differential equation (15)—(17).
Let 81 = 0 + A6, 65 = 6. Then

21 (q + Ag, t) — 2Fi(q,t) — B*(t) Ay(t),
2F5(q + Aq,t) — 2F5(q, t) — C*(¢) Ad(2),

t1

/ " (Fosolq + A, 1) — Fouo (0, )]t / Foar (¢ + A, t) — Fog, (g, D)dt.

to to

|7'(61) = J'(62)] < L1|Aq(t)| + La| Adp(t)| + Lsl| Aq]l,

1760 = 7@ = [ " 160) — 6Pt < LAl + Ls / " Aot (18)
: :
Since
Ad = A" (OAG(), £ € T, Ab(tr) = - / [Fow (04 Aq,t) — Fosy (0, 0)d,
that

AY(t) = Ap(ty) + ! A*(t)AY(t), t € I,

t
t1 t1 t1
|AY(t)] < [Ap(t)] +A;knax/t |Ay(7)|dr < La/t ‘AQ(t)‘dt—i_A;knax/t |AY(T)|dT,

[Aq(@)]| < col|AG]], [Az(t, p)| < sl Ap]| + cal Apa]-

Then, applying the Gronwall lemma, we obtain

A (t)| < Lyetnat2)||AG). (19)

From (18), (19) follows estimate (16).
Based on the results of Theorem 3, we construct the sequences {6,,} = {un, vk, Pin, P2n, Ton, T1n} C
X by algorithm

Unt1 = Pulun — andy(0n)], vn1 = Pyl — anJy(vn)],

Pin+1 = PLZZ’ [pln - anJIgl (071)]7 Pon+1 = PLg [pZn - anJLQ (Qn)],
Ton+1 = Psy[Ton — O‘nJa/;()(en)L Tin+1 = Psy [T1n — an‘]:,cl(en)] )
n=0,1,2,..., 0<& <an< g, €1 >0,

(20)

where K > 0 is the Lipschitz constant of equation (14), in particular, e; = % in the case of ¢g = «, =
%. We get that U, V, Sy, S1 are bounded convex closed sets, P [+] is the projection of a point onto the

set €). Any point has a unique projection onto a convex closed set.
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Theorem 4. Let the matrix W (to,t1) > 0, the sequence {6, } be defined by the formula (20). Then:
1. the numeric sequence {J(6,)} is strictly decreasing;
2. ||6r, — Ont1]| = 0 when n — oo;
3. the sequence {#,,} C X is minimized: lim J(#,,) = J, = inf J(0);
n—00 0—X
4. the set X, = {0, € X|J(0,) = J. = eing(J(G) = gli?(J(H)} is not empty, the lower bound
— —
functional J (), 6 € X is reached on the set X;
5. the sequence {6, } C X converges weakly to the set X, unwﬁiku*, Unwgk;v*, p%wgkm*’ x()nwgkxg*,

weak
Tin — T1x &t 1 — 00, where (U, Vs, D1k, D2xy Lok, T1x) € X
6. the following convergence rate estimate is valid

0§J(9n)—J*§@n:1,2, ..., mgy = const > 0,
n

where J(6.) = Jy;
7. controllability problem (1)—(4) has a solution if and only if the value J(6,) = 0. In this case, the
solution of controllability problem (1)—(4) is the function

zo(t) = 2(t, ps) + Ai(t, Tow, T14) + No(t)2(t1,p4), t € I1.

If J(6,) > 0, then controllability problem (1)—(4) has no solution, x.(t), t € I; is the best necessary
solution to controllability problem (1)—(4).
Proof. From the property for the projection of a point onto a set, we have

<J(0), 0 —0p_1 >> 1 <0p—0,1,0—0,1, V0, 0cX. (21)

n

Since J'(0) € CH1(X), X is a convex set, the estimate is true

K
J(01) — J(6) >< J'(01), 61 — 03 > _5”91 — 0,2, VO, 6 € X. (22)
From (16) and (17) 0 = 6, 01 = 0,, 02 = 0,41, we get
1 K 1 K+2
J(On) — J1(Ony1) > (07 — 5) 16n, — Ops1]|* > &1[|0n — Onsa ]|, P Tl (23)

It follows from equality (23) that the numerical sequence {.J(6,)} is strictly decreasing, and also
because of the limited value of the functional at ||6,, — 0,,+1]] — 0 by n — oo. Thus, assertions 1) and
2) of the theorems are proved.

The functional J(0),0 € My is weakly lower semicontinuous on a weakly bicompact set X, then
the set is empty. The sequence {6,) C M. Then, due to the weakly bicompactness of the set My it

eak

follows that 6,,"“%"6,, n — oo, 8, € X,. Thus, statements 4), 5) of the theorem are proved.
For convex functional J(6) € C11(My), the following inequality holds

J(6n) — J(6,) << J'(6), O — 0, >=< J'(0,), On — Opi1 + Onyr — 0, >=
=< J(0p), On — Opny1 > — < J(0,),04 — 01 > .

Hence, taking into account the inequality for 8 € 0, we have

0 < J(0n) = Ju << J(0n),0n — Ong1 > —5= < On — Oni1, 0s — Onyr >=
=< Jl( n) — i(e* — 9n+1)70n — 6n+1 ><

< (0n) = 5= (0 = O )10 — Ona || <

< (T On)ll + 210« = Onrall = 100 — OngallcollOn — Oniall,

D> D

(24)
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where |0 — Op41|| < D, 1 < &5 co =sup [|J'(0n)]| + 52, D is the diameter of the set My. Since with
10n, — Ont1]] — 0, then n — oo that nILH;oJ(O”) = J, = J(0,). This means that the {6,,} C My sequence
reaches a minimum.

It follows from inequalities (23), (24) that J(0,)—J(0pi1) = an—ans1 > €1/|0n—0ni1ll?, an—ani1 >
col|0n — Ons1lls an = J(0n) — J = J(0,) — J(04). Then a,, > 0,ap, — apg1 > i—%a%,n =1,2,...,my > C(Qfl

The theorem is proved.

4 Solving a model problem

Consider a controlled process described by a differential equation with an integral equation of the
form

2
T =9, To =u +/ DT y(r)dr, te I, =(0,2], T € I = [1,2], (25)
1

(710(0), w20(0)) € So = {—1 < z10 < 1, 1 < w9 < 24,
(211(2), 221(2)) € S1 ={—-1 < x11(2) <1, =2 < x9;(0) < —1},
u(t) €U = {u(-) € La(I2, RY)| —1<wu(t) <1, ae. t €L},
v(t) € V ={v(-) € Lo(Iz, RY)|7 < v(r) < 27, ace.T € I} (26)
1. The necessary sufficient conditions satisfy controllability defined by the ratios:

a) Matrix W (0,2) = < 16/3 —4 ) > 0;

—4 4
b) us(t) = w14 (t) = pra(€)To(t) w0 + T (¢) 214 + p11(t) + N11(t)2(t1, ps), t € I,
0 = G-, 2 np = A B e =0,
3(t—1) (2-3t)

T 1 ), p1x(+) € La(I2, RY), zox € (104, T204) € So,

(T114, 214) € S1, ux(t) € U, vi(t) € V;
c) ff DTy (T)dT = wae(t) = pox(t) + To(t) s + T3(t) 14 + p12(t) + Nio(t)2(t1, ps),

o) — (%(t_ D, #)7 T(t) = (3(14— t) 3754—2), Nus(t) = (3(t4— b (2—4375))7

Tox € (fElO*, $20*) € S, T1x = («Tll*a x?l*) €Sy, p2*(‘) € L2(127 Rl)nul?(t) =0,
Sy = S10, S20, S10 = {x10 € RY| — 1 < 219 < 1, Sog = {z9p € RY1 < 299 < 2};
Sy = S11, So1, S11 = {x11(2) € RY| —1 < 211(2) < 1}, So1 = {221(2) € RY| — 2 < 291(2) < —1}.

2. Construction of a solution to the controllability problem. The desired controls u.(t) € U, v.(T) €
V, pre(t) € LY(I1, RY), pou(t) € LE(I1, RY), 2o« € So, 14 € S1, can be found when solving the optimal
control problem: minimize the functional

t1
J(u, v,p1,p2, 10, T20, T11, T21) = {Jwi(t) — u(t) |2 + |wa(t) / K(t, 1) dT| tdt — inf  (27)
to

under conditions

u(t) € U, v(1) € V, p1(t) € LE(I2, RY), pa(t) € Lo(I1, R), w10 € S0, 20 € Sa0, 11 € S11, T21 € Sat,
(28)
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w1 (t) = p1(t) + Tio(t)z10 + Too ()20 + T11(t) 11 + To1 ()21 + N11(t)2(t1,p), t € I,
wa(t) = pa(t) + Too(t)x10 + T30(t) 20 + Ta1(t)x11 + Tur (t)x21 + N12(t)z(t17p)7 tel,

3 3t—4 3t — 3t —2
Tio = Tho(t) = Z(t — 1), Ty =T (t) = T JTi =T (t) = T To1 =T (t) = 1

I

3 3t — 3(t—1 3t —2
Too = Too(t) = Z(t — 1), Tzo = Tso(t) = T T =Ts1(t) = ( 1 ), Ty =Tn(t) = 1
where a function z(t,p), t € I3 is a solution of the differential equation

Zi = Z2, ,2:2 :pl(t) —|—p2(t), 21(0) = 0, 22(0) = 0, te Il.

Let us calculate at 0 = (u, v,p1,p2, T10, T20, T11, T21)
under conditions (25)—(28):

a) Ju(0) = Fou(q.t) = —2(w1 — w), Fo(q,t) = |Fi(q. )" + | Fa(q, 1),

g = (0,2(2)) a gradient of functional (24)

2
Filg,t) = (w1 — u), Fa(qt) = ws — / () dr,
1

2 2 2
J(0) = -2 / DT (1) dt 4+ 2 / / (DT 1)y (1 g
0 0 1
J (0) = 2Fi(q,t) = B*(t)y(t), J,,(0) = 2F2(q,t) — C*(t)(t), t € I,

2 2
J.(0) = /0 2T10(t)Fy (.£) + 2T (1) Falg, D))dt, T, (6) = /0 2T (1) F1 (. £) + 2T (1) Falg, 1)) dt,

7. () = /0 T ()P (0,8) + 2T (1) Fal, )t T (8) — /0 9T (1) Fy (0. ) + 2Tao(t) ol D]t

b) partial derivative

3(t—1) 3(t—1)
4 4
FOz(tl) (Q7 t) = ; Fl(qa t) =
2—3t) 2—3t)
4 4

¢) coupled system

t1
U1 =0, o = —b1, ¥(2) = ( z;g; ) = / Fozey) (g (t) 1) dt.

d) minimizing sequences are:

Unp41 = PU[Un - anJ{L(en)]y Pn+1 = PV[vn - anJ{;(en)]u

Pin+1 = Przlpin — and}, (6n)], Pant1 = Prelpen — andy, (0n)],
x?(;rl PSIO [l'éoi O‘TLJ, 0( n)]7 m1210+1 PSQO [m%O; an‘]:fxgo (en)}
‘T?lJrl PSu [xll - 111( n)]’ l‘7210+1 PS21 [1‘21 J:fcgl (Qn)}
n—0,1,2,..., Oéngf

e) projections of a point onto sets

7, if vy — anJy(0n) < T3
Pylvg — and'v(0,)] = vp — and’y(0n, if 7 < vy —and’y(0,) < 27;
27, if vy, — anJ'y(0,) > 27;
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PLQ [pln - anJ’m (en)] = Pin — anJ’m (On), if len - anJ’m (‘gn)H <p,

PLg [p2n - anJ/m (en)] = P2n — anJ/pz (9n>7 if Hp2n - O‘n‘]/m (Hn)H <p,

p > 0 is quite large;

" —1, i 2\ =, (00) < —1;
PSlo[mlo - an‘],$10(9n)] = $gg) - O‘nt]/mlo(en)a if —1< iﬂ%) - O‘njlzm(en) < 1;
1, if x%) — and 5y, (0n) > 1;

1, if 2l — an ey (0n) < 1
Poyy[25) — and a0 (0) = & 282 — oy (0n), if 1 < Po [0 — v a0 (0) < 21
2, if P520 [55%) - an‘],wzo (en) > 2;

—1, it 2 =, (0,) < —1;
Psy, [257 = 0, (00)] = {20 — 0T 0y (00), i — 1< a2l — q 'y, (00) < 1
—2, if 2\ — ey, (0n) > —2;

—2, if 2 — 4Ty, (00) < —2:
PSzl[ng) - anJ/CE21 (Qn)] = 1'&711) - anJ/:rm (en)7 if —-2< mgll) - anjlml (en) <-I
—1,if 2l — anJ'g,, (0n) > —1.

f) limit points of minimizing sequences:

)weak

R (), vn(T)SF

k k
U (t E0a (), p1() S p1a(t), pa(t) S pas(t), t € I,

(n) * (n) * (n)
T19 — T100 Tog —* P20, P11

= T11y Ty T Top-
g) solvability of the controllability problem (22), (23):
1) if J(us, Vs, P1s, P2x, T1gs Tg, 51, €51 ) = 0, the solution of problem (21)-(23) is a function

z(t) = z(t, pe) + A&, 270, T30, 271, T51) + Na(t)z(t1, ps), t € I1;

2) if J (s, Ui, D1x, P24s Tgs T, 71, T51) > 0, then the controllability problem (22), (23) has no
solution. In this case, the function z.(t), t € I1, is a given approximation of the controllability problem.

5  Conclusion

The main results obtained in this work are: the choice of a set of program and positional controls
for the process described by a linear ordinary differential equation, in the absence of restrictions on
the values of the controls, by constructing a general solution of the Fredholm integral equation of the
first kind; determination of program and positional control, as well as solving problems of optimal
performance in the presence of restrictions on the control values and phase and integral restrictions;
reduction of the initial-boundary value problem with restrictions to a special initial-boundary value
problem of the optimal control and the construction of minimizing sequences and successive narrowing
of the area of admissible controls solution of the optimal performance problem.
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C. Aiicarammes, [.'T. Kepnebaii

Oa-Dapabu amvmdazv, Kasax yammork yrnusepcumemi, Aamamo, Kasaxeman

IMTekTik nraprrapbl 60ap CHI3BIKTHIK, 2KYiieJaep/aiH 0acKapbLIybl
2KoHEe OHTAMJIBI 9cepi

Maxkasaza dazaibik KoHe HHTEIPAJIIBIK, IEKTeyIep OOFaH Ke3e Kail quddepeHInaIblK TeHIeYTePIiH
CBI3BIKTBIK, YKYHeJiepi YIIiH OHTalIbI KbLIIAMIBIK, 9CEPIiH IIeITy 9/1iCi YChIHBLIFaH, MYH/Ia XKYieHiH b6acra-
KB >KOHE COHFBI KYili 0acKapy MOHIHIH IIEKTEYJIriH ecCKepe OTBIPHII, OEPIIreH IOHEC TYUBIK, >KUbIHIaP/IbIH
3JieMeHTTepl OOJbIN TabbLIaAbl. Y chiHbLIFal »KyMbic JI.C. TToHTpsSirud MeH OHBIH, IMOKIPTTEPiHIH, OHTANIBI
MIPOIECTEPiHIH, MATEMATHKAJBIK, Teopusichbina, coubiMeH Oipre P.E. Kanbmanuba quHaMuKaIbK Kyiteaepin
backapy TeopuschIHa *KaTaapl. Pa3aJiblK *KOHE MHTEIDAJIIBIK IIEKTeYJep, COHail-ak 6ackapy IIeKTeysepi
GoJtraH Ke3jie OepireH KUBIHIAP/IBIH MTEKTIK MapTTapbl 6ap CBI3BIKTHIK, XKYesIep VIITiH OHTAlIbl XKbLITaM-
nbIK ocepi 3eprreni. [TlekTik ecenTin TeOpusiChbl KYPbLIYBI KOHE OHbI IIIEINy 9JIici IIemiMIiIikTi 3eprrey,
Oipinmi Tunreri perosbM UHTErPAJJIBIK TEHJAEYIHIH >KaJIbl MIeNIiMiH Kypy Herisinge »kacajabl. Heris-
ri HOTHMZKeJep: XKYHMeHIH TPAaeKTOPUSCHIH Ke3 KeJIreH OACTAlKbl KYHIeH Ke3 KeJreH KAXKeTTi COHFBI Kyire
aybIca aJlaThIH 9pOip 31eMeHTTI OapJIbIK 6acKapy KUbIHAAPBIHAH OOJIII aj1y; aJbIHFaH OACKAPYIbIH KasKeTTi
2KOHE KETKIJIKTI MapTTapblHbIH 0ap OOJIybI; IIeKTeyJiepi 0ap OHTAMJIbI YKbLIIAM/IbIK 9CEPiHiH Mocesecin
MIENTYIiH aJrOPUTMI.

Kiam cesdep: oHTARIBI THIMAUIK, TOJBIFBIMEH HIEKTEY, (DYHKIMOHAJJIBI TPAJUEHT, HHTErPAJIJIBIK, TEHJIEY.

C. Aiicarammes, [.'T. Kopmebait

Kasaxcrull nayuonasvhoili yrnusepcumem umenu asv-Dapabu, Aamamu, Kazaxcman

Y1paBJIseMOCTbh U ONTUMAaJbHOE OBICTPOAeiicTBIe
JMHENHBIX CUCTEM C I'PAHUYHBIMU yCJIOBUSIMU

B craTbe mpejioxken MeTo;1 perenns 3aa91 OITUMAIBHON CKOPOCTH JIJIsI JIMHEAHBIX CUCTEM OOBIKHOBEHHBIX
nuddepeHnnaIbHBIX YPaBHEHU IPpU HAJIUIUU (Pa30BbIX U UHTEI'PAJBHBIX OrPAHUYEHU, KOT/1a HadYaIbHOe
¥ KOHEYHOE COCTOSHUS CUCTEMBI SBJISIIOTCA dJIeMEHTaMU 3aJaHHBIX BBIITYKJIBIX 3aMKHYTBHIX MHOYXKECTB C yUe-
TOM OT'PAHUYEHMSI KOHTPOJILHOTO 3HadYeHus. IIpeacrapientnas pabora OTHOCUTCS K MaTEeMAaTHIECKON TeOPUN
ontuMaJibHBIX mporeccos JI.C. [ToHTpsirnHa ¥ €ro y4eHUKOB U TEOPHUU YIIPABJISEMOCTH JUHAMUYECKUX CU-
crem P.E. Kanbpmana. VccnenoBara 3aada ONTHMAIBHON CKOPOCTH ISl TUHEMHBIX CUCTEM C I'DAHUIHBIMU
YCIOBUSIMU U3 33]AHHBIX MHOXKECTB, OJIM3KUX K HAJUINIO (PA30BBIX U NHTETPAJIHHBIX OTPAHUIECHUI, 8 TAKXKe
OrpaHUYEHMsI 110 YIIpaBJsionemMy 3Hadenuto. Co3maHa Teopusl FPAHUYHOM 3aa4i, U pa3paboTaH METOJ, ee
pellieHnst Ha OCHOBE MU3yYeHUsI PA3PEIUMOCTUA U MMOCTPOEHUs OOIIEro PEIeHus] HHTErPAILHOTO YPABHEHUST
®pearosbma 1mepBoro poja. OCHOBHBIME PE3yJIbTATAMU SABJISIIOTCS PACIIPEIETICHIe BCceX HaDOPOB 3JIEMEHTOB
YIIPaBJIEHUS], KAXKJIbIH CyObeKT KOTOPBIX IEPEBOJUT TPAEKTOPUIO CUCTEMBI U3 JIIOOOr0 HAYAJIBLHOTO COCTOSI-
HUS B JII0O0E€ KOHEYHOE COCTOSTHIE; CBEJIEHNE HAYaIbHON IPaHUIHON TOYKN K CHEIUaILHON NCXOAHON 3a1ade
ONTUMAJIBHOT'O YIIPaBJIEHUs; IIOCTPOEHNE CUCTEMBI &JITOPUTMOB IraMMa-aJrOpUTMa yUeHN:A O BBIBOJE 3alad 1
PallMOHAJIBHOM BBIIIOJIHEHUH C OTPDAHUYEHUAMHU PEIIeHUs] 33/1a91 OITUMAJIbHON CKOPOCTH C OI'PDAHUYEHUSAMU.

Kmouesvie caro6a: onTuMasbHast IPOU3BOAUTEIHHOCTD, OTPAHNIEHUST 1IEJIOCTHOCTH, (PYHKIIMOHAILHBIN Tpa-
JIMEHT, NUHTErpaJIbHOE YpaBHEHUE.
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On Some Non-local Boundary Value and Internal Boundary Value
Problems for the String Oscillation Equation

The work is devoted to the problem of setting new boundary and internal boundary value problems for
hyperbolic equations. The consideration of these settings is given on the example of a wave equation.
The research involves the d’Alembert method, the mean value theorem and the method of successive
approximations. The paper formulates and studies a number of non-local problems summarizing the classical
Goursat and Dardu tasks. Some of them are marginal, and the other part is internal-marginal, and in both
cases both characteristic and uncharacteristic displacements are considered. It should also be noted that
a number of problems discussed below arose as a special case in the construction of the theory of correct
problems for the model loaded equation of string oscillation.

Keywords: Wave equation, general solution, Cauchy problem, Goursat problem, Darboux problem, problem
with characteristic shift, problem with uncharacteristic displacement.

Introduction

Boundary value problems for partial differential equations with nonlocal conditions present a class
of problems solvability of which is important both for differential equations development and for their
applications. They can be used in mathematical modeling as well as in the theory of loaded equations
and coefficient inverse problems.

In 1969, in the work [1] A.M. Nakhushev proposed a number of problems of a new type, which
entered the mathematical literature under the name of problems with displacement. These tasks were
announced as part of the implementation of the problem of finding correctly posed problems for second-
order mixed-type equations with two independent variables, put forward in the 60s of the last century
by A.V. Bitsadze.

In accordance with the classification proposed by him in [2, 3], these problems, bounded by two
intersecting characteristics of a given hyperbolic equation and one characteristic line, are non-local and
with an edge offset. The bibliography of works devoted to regular local and nonlocal boundary value
problems for strictly hyperbolic equations is very extensive and is most fully given in the monograph
[4]. Let us note some of them that are closest to the problems discussed in this paper [1-11].

In this paper, a number of non-local problems generalizing the classical problems of Goursat and
Darboux are formulated and investigated. Some of them are marginal, and the other part is internally
marginal, and in both cases both characteristic and non-characteristic displacements are considered.
It should also be noted that a number of the problems discussed below arose as a special case when
constructing the theory of correct problems by analogy with [7]| for the model loaded string oscillation
equation.

*Corresponding author.
E-mail: attaev.anatoly@yandex.ru
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1 The main part

In this paper, the wave equation is considered as a model equation with second-order partial
derivatives of two independent variables  and y a hyperbolic equation

Ugg — Uyy = 0. (1)

Let 21 be a simply connected domain of the plane of a complex variable z = x + iy, bounded by
the characteristics AB, BC, CD and DA equation (1), coming out of the points, respectively A (0, 0),
B (%, %), C(1,0) and D (%, —%); AC = J. By Q5 we denote the area bounded by the characteristics
AB, BC and the segment AC of the straight line y = 0.

By the regular solution of the equation (1) we will understand any function u (z,y) € C (Qz) N

C?% (%), i = 1,2 satisfying equation (1).
2 Non-local problems with edge displacement

Problem 2.1. Find regular in the area €; decision u (z,y) equation (1), satisfying conditions

T x 142 -1 .
u(2,2>+a1(x)u< 7 3 >'yl(a;),:c€J,

u(t x)+a2(x)u<1+x 1”) — (@), wEJ,

27 2 2 72
where
a1 (0) - a1 (1) # a2 (0) - az (1), (2)
a1 (x) - ag (x) # 1,Vx € J, (3)

a; (2), vi(x) e C(J)NC*(J), i=1,2.

Based on the Asgeirsson principle for characteristic quadrilaterals with vertices respectively at point
z+1 z-1 Tz T 1 1
00 (5 5) 3 (3 3)
142 1—2 T T 1 1
(0’(’)’( > 3 )’<2’ ~3): (2’ 2>

it is easy to verify the equivalence of problem 2.1 to the following algebraic system

oG 5 v G5 =me-a@ o (55) -eo0]

ar (@) u (5, 5)+u (5.- 5) =@ -0 @) [ue—;) —u(0,0)],

which by virtue of (2), (3) is unambiguously and unconditionally solvable in the class C' (J) N C3 (J).
Therefore, problem 2.1 is reduced in an equivalent way to the Goursat problem with data on AB
and AD, which is known to be correct.
Problem 2.2. Find a regular ; solution u (z, y) of equation (1), the domain satisfying the

conditions . .
T X +x —x -
u(E, 2)—1—0q(:n)u< 5 >—71(;1:), xeJ,

and
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o(Z x>+a2(m)u(x+1,x_1) — o (z), e,

2 2 2 2
where
a1 (0) - a1 (1) # a2 (0) - a2 (1), (4)
l+ay () #0,1+ag(z)#0Vz e (5)

a; (z), 7 (z) € C(J)NC*(J), i=1,2.

Based on the Asgeirsson principle for characteristic quadrilaterals with vertices respectively at

points
T x z+1 -1 11
oz 1.0 -z
(2’2)’(’)’< 2 72 )’(2’2)

T x 142 1—=x 1 1
Lt 1 oz
<27 2)7( 70)7( 2 ) 2 )7 <27 2)

onvinced of the equivalence of problem 2.2 to the following two algebraic systems for finding

and

we are C
w (39w (3 —5) u (25, 25 and w (12, 152)
(2 g el ) =ne,
w3 3) —u(H 5 =u (3 3) —u(0)
and
65 B +oa ultie 1) )
(3.5 —u (2 5 =u (3. —3) ~u(1.0),

which, by virtue of conditions (4), (5) are uniquely solvable.

Therefore, problem 2.2 is reduced in an equivalent way, as in the case of problem 2.1, to the Goursat
problem.

Problem 2.3. Find a regular € solution u (z,y) of equation (1), in the domain of equation (1),
satisfying the conditions

w(55)rm@u(* 55150 = nw e )
u E,—g + s () u 1—w’1—w =y (x), z€J, (7)
2 2 2 2
where
l—a1(1—2) as(z) #0,2 € J, (8)

ai(x),'yi(x)EC(j)ﬂCQ(J), i=1,2.

Replacing in (6) everywhere x by 1 —z, to find u (%, —%) we obtain the following algebraic system

T T l—z 1—2x
1- <7a_7> ’ = 1- 9
(-2 u(f -5)+u (5515 ) =ma-o

u(5 —3) +az(@) (1;‘” 1;‘”) =2 ().
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Similarly, replacing in (7) z by 1 — z, to find u (%, %) we get

u(3 D) +a@e (5515 =n ).

og(l—x)u(%, :;:>+u<1;3:’_1;x> =y (l—x).

The last two systems are unconditionally and unambiguously solvable under the conditions (8).
Therefore, problem 2.3 is reduced equivalently, as in the case of problem 2.1, to the Goursat problem
Problem 2.4. Find regular in the area )y solution u (z,y) of equation (1), satisfying conditions

T T 2—z =z -
u<§, 2)+a1(x)u<2, 2) = (z), z€J,

r 2—x =z -
u(2,—2)+a2(x)u< 5 7—2>:’yg(az),z€J,
where a; (z), v (z) € C (J)NC%(J), i=1,2.

Based on Asgeirsson’s principle for characteristic quadrilaterals with vertices respectively at points
11 2—z x l—-2 11—z
(0)0)7<272>)<272>7< 9 y 9 )
1 1 2—x x l—2z 1—-2
(070)7 <27 _2>7< 2 ) _2>7< 2 ) 2 >7

we are convinced of the equivalence of problem 2.4 to the following algebraic system

and

(530 (555 - m@ [o(5) -woo),

22
u(G.-5) +ea (@) u<1;x 1;””) — o (&) — s (2) [u G—;) —u(0,0)}

Therefore, problem 2.4 is equivalently reduced to problem 2.3.

Problem 2.5. Find regular in the area {2y solution u (z,y) of equation (1), satisfying conditions
T x 2—x x =
u(g, §>+a1(x)u < 5 ,—2>—’yl(w), x € J,

T T 2—x «x -
U(Z’ 2)+a2(a:)u< 5 ,2>:72(:c), reJ,

where
a1 (0) # a2 (0), a1 (1) -z (1) # 1,
ar(x)-a1(1—2)# Las(z) - as(1—z)# 1V € J,
a; (), 7 () € C(J)NC*(J), i=1,2.

Using the same reasoning as in problem 2.4, we are convinced that problem 2.5 is equivalent to the
following algebraic system

o(E D) w1555 = nw @ o 1) —u00)

27 2
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() () =m0 [o 5. 3) oo,

which is apparently equivalently reduced to the next two algebraic systems

(0.0 ra ) n(5, 199 ) o) () —3) <u0. 0]
(120) w3 5) + (5 5 = (1 —2)—n (1= 2) [u (b —1) — u(0.0)]
and
{u(g,—g)+a2<x> (5% 554) = (@) —az (@) [u(3,3) —u (0, 0],
(1—2 z +u(15$,ﬂ)—w2(1—az)—a2( —x) u(é,Q) (0,0)}.

If the conditions (9) and (10) are met, the last two systems are unambiguously and unconditionally
solvable. Therefore, problem 2.5, as in the case of problem 2.1, is equivalently reduced to Goursat
problem.

3 Non-local problems with intra-boundary displacement

Problem 3.1. Find regular in the area € solution u (z,y) of equation (1), satisfying conditions

11 _
u(i,;>+au<2,2—x> =v(x), x € J,

u(x,0)=71(x), x €J, (11)

where .
o # 3 aly(l)—ar(l)] = (a2+a—1)7(0)—(1—a) ~(0), (12)
T(:U),v(m)EC(J_)ﬂCQ(J). (13)

Based on Asgeirsson’s principle for characteristic quadrilaterals with vertices respectively at points

T T 11 l-z 1-=2
(2’2)’<2’2‘$)’( 2 2 >a“d @0,

seeing the equivalence of problem 3.1 to the following algebraic system

()
u(gg)Jru(;;—x) :u<1;x,1;x>+u(a¢,0).

(1-—a)u (g §>+au<1;x,1;x>:7(x)—om(x). (14)

Changing everywhere x on 1 — x, from the last equation we get

From where

au(:; ;)+(1—a)u<1;x,1;$>:7(1—x)—a7(1—m). (15)
From the system (14), (15) we find that
u(25) = o (@) —ar ()] - o (1 - ) — a7 (1 - ). (16)
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Consequently, the solution of problem 3.1 is equivalently reduced to the problem of Darboux (11),
(16), the regular solution of which, when the conditions (12), (13) are met, exists only. Next, obtained
in the area 25 the solution can be naturally continued throughout €2;.

Problem 3.2. Find regular in the area {5 solution u (z,y) of equation (1), satisfying conditions
1|1 =
u(;,§)+au(2,2 >:'y(1:),a:€J,

u(z,0)=71(z), x € J.

— T

. . . 1 . .
By virtue of the Asgeirsson principle 0 < z* < 3 fair ratio

u2,2 u2,2x—ux, U 7 3 .

For a symmetric point with respect to zero, the following ratio is valid

u(g;*,x;)—i-u(;, % >:u(l—x*,0)+u(1_2x*,1_2x*>.
This suggests that the mean theorem, which is valid for all 2 € J we can only use it when
u(z,0) =u(l—=x,0).
Theorem 3.1. Let 7 (), v (z) € C (J) N C?(J) and the conditions are met
a#l,7(z)=7(1—2) Vo€ J. (17)

Then there is only one regular in the field (2o problem solving 3.2.

When the conditions (17) are met, it is sufficient to repeat the same reasoning and calculations as
in the study of problem 3.1 to prove the theorem 3.1.

Problem 3.3. Find a regular solution in the region of Q9 of the u (z,y) equation (1) satisfying the
conditions

272
u(z,0) =1 (z), z €J. (19)

u(? x)+ﬁu(;,;>:'y(x),x€j, (18)

Theorem 3.2. Let |B| <1, 7 (x), v (x) € C (J) N C?(J) and the condition is fulfilled

#0)+ m(é) — 4(0).

Then problem 3.3 is uniquely solvable, its solution is represented as

u(z,y) =T(wy)+ﬁ[f<1_x+y> T<H_y)] =@ —y)+y(z+y)-

2 2
_gg(_l)zﬂi M(?j - 1)2i+a: - y) _7<(2j - 1)2i+x+y)_
(=Y —zty (2j—1)i—x—y (20)
+ﬁf<2<35 -y ; +;<<2<2f >>
21 2t

_57<2(2j_ 1)2;11 —:L‘—I—y) -l—,BT(Q(Qj_ 1)2;11 —x—y)} ‘
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Proof. Tt is known that any regular solution of the equation (1) can be represented as

u(z,y) = flz —y) +g(z +y), (21)

where f(z), g(z) € C?(Q) N C(Q).
Satisfying (21) conditions (18), (19) for finding f(z) and g(z) we obtain the following system of
functional equations

f(@) =7(z) — g(z), (22)
g(x)—59<1;$)+59(1;x>—v(m)—ﬁ7<1;$>~ (23)

The solution of equation (23) under the condition || < 1 can be constructed by the iteration
method. Indeed

etc.
Continuing this process indefinitely, we get

o) =)~ o (257 )¢

+ii(—1)’ﬂi [V<W> —7<(2j_2?_m>+ (24)

=1 i
+/87_<2(2j _212-1_1_ 1 —i—a:) B 57'<2(2] _212,_3— 1-— :L'>:| .

It is easily verified that the series itself (24) the series obtained after differentiation converge
uniformly. Substituting (24) into (22) we find f(z) , and hence u(x,y) by formula (21).

It should be noted that formula (20) in the case of 8 = 0 coincides with the formula for solving the
Darboux problem.

Conclusion

In this paper, all problems are considered in the characteristic quadrilateral; therefore, the choice
of an inner manifold, the points of which are associated with the boundary manifold, is small. In the
case of sufficiently derived domains (for example, a rectangular noncharacteristic domain), a problem
arises both in the nonlocal condition itself and in the corresponding inner manifold. This method is of
particular interest for weakly hyperbolic equations.
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A X. ArTaes

PFA Kabapdun-Baakap evtavimu opmasvievinvy Koadanbais, Mamemamuka sHcone asmomammandopy uwHCmumymol,
Hanvuux, Peceti

Iimek TepOeJiciHiH TeHJeyl YIIiH Keiibip OeifioKaJl IMeTTIK »KoHe 1IKi
IIETTIK ecenTep

ZKywmpbicra kimaccukadblk ['ypca kone lapOy ecenrepin »KaJmbLIafiTeiH OGipkaTap Oeijiokas ecenrep Ty-
JKBIpBIMIAJIFal 2KoHe 3eprresred. Osap/abiy Keiibipeysepi merTik, ai ekinmi Gesiri imki nierTik GoJIbIn
TabBLIA Bl KOHE €Ki KaFmaii/ia Ja CUMaTTaMAaJIbIK, YKOHE CHAMIATTAMAJBIK, €MeC BIFBICYIAp KapaCThIPBIIFaH.
Conjaii-ak, MakaJsajia KapacTbIpblIFaH Oipkarap ecentep imek TepOesicCiHig MO/IeJIb/IK X KYKTEJIreH TeH eyl
VIIiH KOPPEKTiIl KOMBLIFAH eCenTep TEOPUSICHIH KYPY/Ia €PEKIIe Karqail peTiH/ie TybIHIaFaHbIH aTall OTKEH
2KOH.

Kiam cesdep: TONKBIHABIK, TeHAELY, Kaansl merriM, Komu ecebi, 'ypca ecebi, [lapOy ecebi, cumarraMaibik,
BIFBICY €CENTEeP], CUIIATTAMAJIBIK €MeC BIFBICY ecerTepi.
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A .X. ArTacs

HUnemumym npuraadnotd mamemamury u asmomamusayuu Kabapduno-Baskapckozo nayunozo yenmpa PAH,
Hanvuux, Poccus

O HEKOTOPbIX HEJIOKAJIbHBIX KPa€BblIX M BHYTPEHHHNX KPa€BbIX
3aJavax [AJId ypaBHEHUA KOJIeOaHUsI CTPYHBbI

B pabore chopmynupoBans! u nccaeqoBaHbl HEKOTOPBIE HEJIOKAJIbHBIE 331291, 0000IIAIONINE KIACCUIeCKNe
zazaqan ['ypca u [Tap6y. HacTb u3 HUX SIBJISIIOTCS KPAEBBIMU, a JIpyTasi — BHYTPEHHUMU KPAeBbIMU, [IPUYEM B
060UX CIIydasix PACCMOTPEHBI KaK XapaKTePUCTUIECKNe, TaK U HeXapaKkTepuctudeckue cMemtenusi. Ciemyer
TaKKe OTMETUTD, YTO PsiJl 33,1449, PACCMOTPEHHBIX B CTAThE, BOSHUKJIU KAK YACTHBIA CJIydail IIPU IIOCTPOEHUN
TEOPUM KOPPEKTHBIX 3aJ1a4 JJIsi MOJIEJILHOIO HAIPYKEHHOIO yPABHEHUs KOJIEOAHUs CTPYHBI.

Kmouesvie caosa: BOJHOBOE ypaBHeHme, obiree perenne, 3agada Komm, 3amada ['ypca, 3amada [lapOy,
3a/lava ¢ XapaKTEePUCTHIECKUM CMEIEHUEM, 3a/1a9a ¢ HEXapAKTePUCTUIECKUM CMEIICHUEM.
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On quasi-identities of finite modular lattices. 11

The existence of a finite identity basis for any finite lattice was established by R. McKenzie in 1970, but the
analogous statement for quasi-identities is incorrect. So, there is a finite lattice that does not have a finite
quasi-identity basis and, V.A. Gorbunov and D.M. Smirnov asked which finite lattices have finite quasi-
identity bases. In 1984 V.I. Tumanov conjectured that a proper quasivariety generated by a finite modular
lattice is not finitely based. He also found two conditions for quasivarieties which provide this conjecture.
We construct a finite modular lattice that does not satisfy Tumanov’s conditions but quasivariety generated
by this lattice is not finitely based.

Keywords: lattice, finite lattice, modular lattice, quasivariety, variety, quasi-identity, identity, finite basis of
quasi-identities, Tumanov’s conditions.

Introduction

In 1970 R. McKenzie [1] proved that any finite lattice has a finite basis of identities. However
the similar result for quasi-identities is not true. That is, there is a finite lattice that has no finite
basis of quasi-identities (V.P. Belkin [2]). The problem "Which finite lattices have finite basis of quasi-
identities?" was suggested by V.A. Gorbunov and D.M. Smirnov in [3]. V.I. Tumanov [4] found a
sufficient condition consisting of two parts under which a locally finite quasivariety of lattices has no
finite (independent) basis of quasi-identities. He also conjectured that a finite (modular) lattice has a
finite (independent) basis of quasi-identities if and only if a quasivariety generated by this lattice is
a variety. In general, the conjecture is not true. W. Dziobiak [5| found a finite lattice that generates
finitely axiomatizable proper quasivariety. We also would like to point out that Tumanov’s problem is
still unsolved for modular lattices.

The main goal of the paper is to present a finite modular lattice that has no finite basis of quasi-
identities and does not satisfy conditions of Tumanov’s theorem.

1 Basic concepts and preliminaries

We recall some basic definitions and results for quasivarieties that we will refer to. For more
information on the basic notions of universal algebra and lattice theory introduced below and used
throughout this paper, we refer to [6] and [7].

A quasivariety is a class of algebras that is closed with respect to subalgebras, direct products, and
ultraproducts. Equivalently, a quasivariety is the same thing as a class of algebras axiomatized by a
set of quasi-identities. A quasi-identity means a universal Horn sentence with the non-empty positive
part, that is of the form

(V) [p1(Z) = qu(Z) A -+ Apn(T) ~ ¢n(Z) = p(2) = q(2)],

*Corresponding author.
E-mail: sveta_ lutsak@moail.ru
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where p, q, p1,q1, - . ., Pn, gn, are terms. A variety is a quasivariety which is closed under homomorphisms.
According to Birkhoff’s theorem [§8|, a variety is a class of similar algebras axiomatized by a set of
identities, where by an identity we mean a sentence of the form (Vz)[s(Z) ~ t(Z)] for some terms s(Z)
and ().

By Q(K) (V(K)) we denote the smallest quasivariety (variety) containing a class K. If K is a
finite family of finite algebras then Q(K) is called finitely generated. In case when K = {A} we write
Q(A) instead of Q({A}). By Maltsev-Vaught theorem [9], Q(K) = SPP,(K), where S, P and P, are
operators of taking subalgebras, direct products and ultraproducts, respectively.

Let K be a quasivariety. A congruence a on an algebra A is called a K-congruence or relative
congruence provided A/a € K. The set Conk A of all K-congruences of A forms an algebraic lattice
with respect to inclusion C which is called a relative congruence lattice.

For a quasivariety K, an algebra A € K is said to be subdirectly K-irreducible if the least congruence
04 is completely meet irreducible in Cong A. By Birkhoff’s theorem for a quasivariety, every algebra of
a quasivariety K is a subdirect product of subdirectly K-irreducible algebras (|7,8]). By Ksr we denote
the class of all subdirectly K-irreducible algebras in K. Since Q(K) = SPP,(K) = P,SP,(K), where
P, is operator of taking subdirect products, we have Kg; € SP,(K). Thus, for finitely generated
quasivariety Q(A), every subdirectly Q(A)-irreducible algebra is isomorphic to some subalgebra of A.

The least K-congruence 6k (a,b) on an algebra A € K containing pair (a,b) € A x A is called
a principal K-congruence or a relative principal congruence. In case when K is a variety, relative
congruence 6k (a,b) is a usual principal congruence that we denote by 6(a, b).

Let (a] ={z € L |z <a} ([a) ={x € L |2z > a}) be a principal ideal (coideal) of a lattice L. A
pair (a,b) € L x L is called dividing (semi-dividing) if L = (a]U[b) and (a]N[b) = @ (L = (a] U [b) and
(@ Nb) # 2).

For any semi-dividing pair (a,b) of a lattice M we define a lattice
Ma—p = ({(2,0),(y,1) € M x 2|z € (al,y € [D)};V,A) <s M x 2,

where 2 = ({0,1};V, A) is a two element lattice.

Theorem 1. (Tumanov’s theorem [4])

Let M, N (N C M) be locally finite quasivarieties of lattices satisfying the following conditions:

a) in any finitely subdirectly M-irreducible lattice M € M\N there is a semi-dividing pair (a, b)
such that M,_; € N;

b) there exists a finite simple lattice P € IN which is not a proper homomorphic image of any
subdirectly N-irreducible lattice.

Then the quasivariety N has no coverings in the lattice of subquasivarieties of M. In particular, N
has no finite (independent) basis of quasi-identities provided M is finitely axiomatizable.

A subalgebra B of an algebra A is called properif B 22 A. We will use the following folklore criterion
of non-finite axiomatizability of quasivarieties (see [7]).

Lemma 1. A locally finite quasivariety K is not finitely axiomatizable if for any positive integer n
there is a finite algebra L, such that L, ¢ K and every proper subalgebra of L, belongs to K.

2  Main result

In this chapter we show that there are two locally finite quasivarieties of modular lattices N and
M, N C M, that do not satisfy conditions a) and b) of Tumanov’s theorem, however, N is not finitely
axiomatizable. Note that in our example we do not need to require that M be finitely axiomatizable.
We also note that the first example of a finite lattice that does not satisfy the condition b) and has no
finite basis of quasi-identities was provided in [10].
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A/

Figure 1. Lattices A" and A

Let A" and A are the modular lattices displayed in Figure 1. And let Q(A) and V(A) are quasivariety
and variety generated by A, respectively. Since every subdirectly Q(A)-irreducible lattice is a sublattice
of A, and A’ is simple, a homomorphic image of A and is not a sublattice of A we have pA’ €
V(A)\Q(A), that is Q(A) is a proper quasivariety. One can check that A’ has no semi-dividing pair.
Thus, the condition a) of Tumanov’s theorem does not hold on the quasivariety Q(A). It is easy to see
that M3 is a unique simple lattice in Q(A)gs and it is a homomorphic image of A. Hence, the condition
b) of Tumanov’s theorem is not valid for quasivarieties Q(A) and V(A). Thus, to establish our main
result we have to prove.

Theorem 2. Quasivariety Q(A) generated by the lattice A is not finitely based.

Proof. To prove the theorem we modify the proof of the second part of Theorem 3.4 from [11] (also
see [10]).

According to Lemma 1 we will construct an infinite set {L,, | n > 0} of finite modular lattices such
that L, € V(A)\Q(A) and every n-generated subalgebra of L,, belongs to Q(A).

Let S be a non-empty subset of a lattice L. Denote by (S) the sublattice of L generated by S.

We define a modular lattice L,, by induction:

n=0. Lo = Ms_3 and Lo = ({ag, by, co,a’,b°,c"}) (see Fig. 2).

n = 1. Ly is a modular lattice generated by LoU{ay, b1, c1,al, bt, c¢'} such that ({ay, b1, c1,al,bt, ct})
M3 3, and cg = at, a® ABY = o Vbl = cq V c; (see Fig. 3).

n > 1. L, is a modular lattice generated by the set L,_1 U {an,bn,cy,a™ b" "} such that
{an, by, Cnya™, b, c"}Y) =2 Mz 3, and ¢, = a™, a® Ab° = co V" = ¢ V ¢, (see Fig. 4).

Claim 1. For any n > 0, the lattice L,, does not belong to Q(A).

Proof. We prove by induction on n > 0.

n = 1. Assume that L; € Q(A). At first we note that Ms3 is a sublattice of Ly/0(a1,b1) and
Ly/0(ay,a' ADBY). Hence, (ag,bo) € Oqay(ar,b1) Nbqeay(a1,a’ Ab'). One can also see that any non-
trivial congruence contains (a1, b1) or (a1, a' Ab') or (ag, by). Therefore, intersection of any two different
non-trivial Q(A)-congruences contains (ag, bp). It means that L; is subdirectly Q(A)-irreducible. In
this event, L; is a sublattice of A because Q(A)sr € S(A). One can check that L; is not a sublattice
of A. Thus, L does not belong to Q(A). Also we have (ag, by) € 6 for any non-trivial § € Conga)L1.
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M3 3 M;3_3

Figure 2. Lattices M3, M3 3 and M3_3

n > 1. By induction, we have L, 1 ¢ Q(A) and (ag, by) € 0 for any non-trivial § € Conga)Ln—1-

Assume that L,, € Q(A). We note that Ms 3 is a sublattice of L, /6(a;, a’ Ab*), L,,—1 is a sublattice of
Ln/0(ai,bi) <s Ln—1x 2 and Ly, /0(a;,a’) = Ly_1, for all 0 < i < n. Hence, (a;,a") € Oga)(as,a’ Ab").
It means that any homomorphic image of L,, that belongs to Q(A) is a homomorphic image of L,
or some S <g L,_1x2or L, = L,/0(ag,bp).

Let 0 € CongayLn. If (a;,a’) € 0 then 6/6(a;,a’) € CongayLn/0(ai,a’) = CongayLn-1.
By induction, (ag/0(ai,a"),by/0(a;,a’)) € 0/0(a;,a"). Since the congruence classes agf(a;,a’) and
bof(a;, a’)) consist of one elements {ag} and {bg}, respectively, we get (ag, by) € 6.

If (ai,bi) € 0 then Ln/ﬁ(ai,bi) <g L,—1 x 2. Since L, < Ln/G(ai,bi) then Ln—l/(9 N L%_l) S
Q(A). By induction, (ap/(@ N L2 _|),bo/(@N L2 _})) € (6N L2 ;). By argument above, (ag,by) € 6.

Thus, we have that (ag, by) € 6 for each non-trivial Q(A)-congruence 6. It means that L, is relative
subdirectly irreducible. Hence, L, < A. Contradiction. Therefore, L,, ¢ Q(A).

Let L, be a sublattice of L, generated by the set {a;, b;, c;,a’,b*,¢' | 0 < i < n}. One can see that
L. = L,/0(ap,bp) and L, <s M3 5. Hence, L,, € Q(A).

Claim 2. Every proper sublattice of L,, belongs to Q(A).

Proof. 1t is enough to prove the claim for arbitrary maximal proper sublattices of L,,. Since L, is
generated by the set of double irreducible elements S = {ag, by, b°, c’, c,} U {b;,b° | 0 < i < n} then
every maximal proper sublattices L of L,, generated by S — {x} for some z € S, that is L = (S — {z}).

Suppose that = € {ag,bo,b’,c’}. Then the lattice ({ao, bo, co,a®,b°, c°} — {x})/0(co,a® A B°) is a
homomorphic image of L with the kernel o = 0(ay, ¢;,) and belongs to Q(A).

One can see that for 8 = 0(ag, bg) if 7 € {bY, "} and B = 9(b°, ) if = € {ap, b}, L/p is isomorphic
to L, or L, x 2 and both these lattices belong to Q(A). Thus, « and 5 are Q(A)-congruences. One
can check that a« N = 0. Hence L <; L/a x L/B. Therefore, L € Q(A).

Suppose that = € {b;,b' | 0 < i < n} U {c,}. For sake of brevity, we assume that = = b,. Let a =
6(co, cn—1). Then L/« is isomorphic to the sublattice S of Li generated by the set {ag, bo, cg,a®, ", c°,
ai,bi,b'}. Since the lattice P = ({ag, bo, co,a’, b%,c%, b, c'}) is a sublattice of A and S <, P x 22
we get S € Q(A). On the other hand, L/0(ag,by) is a sublattice of L, . Since L, € Q(A) then
L/0(ap,bp) € Q(A). One can see that a N B(ag, bp) = 0. Hence, L is a subdirect product of two lattices
from Q(A). Therefore, L € Q(A).

Thus, we obtain that L, ¢ Q(A) and every its proper sublattice belongs to Q(A). By Lemma 1,
the quasivariety generated by the lattice A is not finitely based.

From the proof of Theorem 2 we have more general result:

Theorem 8. Suppose that K is a locally finite quasivariety and
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Figure 3. Lattice Ly

a) M33 ¢ K,

b) every proper sublattice of L,, belongs to K,

¢) L, K for all n > 0.

Then the quasivariety K is not finitely axiomatizable.

Corollary 1. There is an infinite number of finite lattices which do not satisfy conditions of
Tumanov’s theorem and have no finite basis of quasi-identities.

Indeed, the lattice A completed by n atoms ey, ..., e, such that e;Ve; = agVbo, ¢ # j < n, satisfies
the conditions of Theorem 2.

We note that the variety lattice of a variety V(A) is finite because it contains a finite number
of subdirectly irreducible lattices by Johnson’s Lemma [12]. G. Gratzer and H. Lasker [13] shown
that the quasivariety lattice of a variety V(M3 3) is continuum. Since M33 € V(A) we have that the
quasivariety lattice of V(A) is continuum.

We would like to point out that V.I. Tumanov also provided that in his theorem the quasivariety
N has no independent basis. Our proof does not allow to prove that Q(A) has no independent basis
of quasi-identities. On the other hand, our proof holds on K that is not necessarily included in the
finitely axiomatizable locally finite quasivariety.
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Figure 4. Lattice L, n > 2
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A.O. Bameesa!, C.M. Jlynak?

LILH. Dymunes amovimdaess Eypasus yammu yrusepcumemi, Acmana, Kasaxemar;
2 . .
M. Koswvbaes amwvindazvs Coamycmir Kazaxcman ynwusepcumemsi, Ilemponasns, Kasarxcman

CoHFBI MOIYJISPJILIK, TOPJIAPALIH, KBa3uUTelle-TeHIIKTepi TypaJabl. 11

1970 xputel P. MakkeH3u Ke3 KeJITeH IMEKTI TOPALIH aKbIPJIbl HA3UCTI Tere-TeHJIKTePi GOTATHIHBIH T9JIe-
neni. Jlereamen, KBa3uTene-TeHIIKTEPre KATHICTHI Oy MastiMaeme mypbic emec. COHBIMEH, aKbIPJIbI 6a3uci
JKOK, KBa3UTeNe-TEHIIKTep IeH eKTi Topaap 6ap. B.A. T'opbynos nen JI.M. CMupHOB KeJjieci MocesieHi KO3Fa-
abl: «AKbIpsbl Gaszuci Gap KBasuTene-TEHIKTEPAEH TYyPaThiH KaHJal ImekTi Topjaap 6ap?». 1984 >KbLjibl
B.U. TymanoB miekTi MOAYISpJIbI TOPAAH TYBIH/IAFaH ©3/IK KBA3WKONOEHHEHIH aKBIPJIbI 0a3Wci KOK, fe-
ren 6osnkaM aiTThl. OJ1 COHIa-ak, 0Chl OOIKAMIBI KAMTAMACHI3 €TETIH KBA3UKOIOEHHEIeP/IiH €Ki MAapThIH
TanTbl. A 6i3 TyMaHOBTBIH IIAPTTAPBIH KAHAFATTAHIBIPMARTBIH MIEKTI MOJLYJISIPJIbI TOPIbI KYPaCThIPIBIK,
Gipak OyJI TOPZIaH TYBIHIAFAH KBAa3UKOIIOEHHEHIH aKbIPJIbl OA3UC] 2KOK.

Kiam cesdep: TOp, COHFBI TOp, MOIYJSIDJIBIK TOD, KBas3WKeNbeiiHe, KeIOeiiHe, KBa3WUTeIle-TEHIK, Tele-
TEHIK, KBa3UTEIle-TeH IIKTIH COHFBI 6a3uci, TyMaHOBTHIH IIAPTTAPHI.

A.O. Bameesa!, C.M. Jlynak?

1 o .
Espasutickuti Hayuorasvhoil yrusepcumem umenu JI.H. ymunsesa, Acmana, Kaszaxcman;
2 Cesepo-Kaszaxcmancruti yrueepcumem umenu M. Kozwbaesa, ITemponasaosck, Kaszaxcman

O kBa3uUTOXKIECTBAaX KOHEYHBIX MOIYJISPHBLIX perneTok. 11

B 1970 r. P. Makkensu mokaszaj, 9To Jirobasi KOHEUHAs PEIETKA WMeeT KOHEeUHBIH Gazuc ToxkmectB. Ogi-
HAaKO AHAJOTMYIHOE yTBEPXKJEHHE /I KBA3UTOXKJIECTB HeBepHO. VTak, CyIIeCTBYIOT KOHEYHBIE DEINeTKH,
KOTOpbIe HE MMEIOT KOHeYHOro Gaszmca kpasutoxkjaecTB. B.A. T'opbyrnos u JI.M. CMUDHOB O3BYYH/IU CJie-
ayrormiyo mpobieMy: «Kakme KOHEUHBIE DEIeTKN MMEIT KOHEUHBbIN Oasmc KBasuToxkaecTB?> B 1984 r.
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B.J. TymaHOB IPEIIIONOXKUI, YTO COOCTBEHHOE KBA3HMHOI00Opa3ue, OPOK IEHHOE KOHEYHON MOYIIsIPHOIT
PEIIeTKOil, He sIBjsieTcsl KoHedHO OasmpyeMbiM. OH Tak»ke HaIlles JBa YCJIOBHs I KBa3UMHOIo0Opas3nit,
KOTOpBIE MTOATBEPXKIAIOT 3Ty rurore3y. MBI »Ke IOCTpOM/IN KOHEIHYIO MOAYJISIDHYIO DENIeTKY, KOTopasl He
YJIOBJIETBODsieT ycjioBusAM TyMaHOBa, HO KBa3UMHOIrooOpa3ue, IIOPOXK/IEHHOE 9TOI PEIIeTKO, He sABJISAeTCs
KOHEYIHO 6a3MpyeMbIM.

Kmouesvie crosa: permeTka, KOHEIHAST PEIeTKa, MOIYJISPHAsT PelreTKa, KBa3uMHOroobpa3ne, MHOr00bpa-
31e, KBa3UTOXKJIECTBO, TOXKJIECTBO, KOHEYHBIN 0a31MC KBA3UTOXK/IECTB, ycJIoBus TyMaHOBA.

References

McKenzie, R. (1970). Equational bases for lattice theories. Mathematica Scandinavica, 27, 24-38.
Belkin, V.P. (1979). Quasi-identities of finite rings and lattices. Algebra and Logic, 17, 171-179.

Gorbunov, V.A., & Smirnov, D.M. (1979). Finite algebras and the general theory of quasivarieties.
Colloq. Mathem. Soc. Janos Bolyai. Finite Algebra and Multipli-valued Logic, 28, 325-332.

Tumanov, V.I. (1984). On finite lattices having no independent bases of quasi-identities. Math.
Notes, 36(4), 811-815. https://doi.org/10.1007/BF01139925

Dziobiak, W. (1989). Finitely generated congruence distributive quasivarieties of algebras. Fundamenta

Mathematicae, 133, 47-57.

Burris, S., & Sankappanavar, H.P. (1980). A Course in Universal Algebra. Springer New York.
Gorbunov, V.A. (1998). Algebraic theory of quasivarieties. Consultants Bureau New York.
Birkhoff, G. (1944). Subdirect union in universal algebra. Bull. Amer. Math. Soc., 50, 764-768.
Maltsev, A.L. (1973). Algebraic systems. Springer-Verlag Berlin Heidelberg.

Lutsak, S.M., Voronina, O.A., & Nurakhmetova, G.K. (2022). On quasi-identities of finite modular
lattices. Journal of Mathematics, Mechanics and Computer Science, 115(3), 49-57.
https://doi.org/10.26577/IMMCS.2022.v115.13.05

Basheyeva, A.O., Mustafa, M., & Nurakunov, A.M. (2020). Properties not retained by pointed
enrichments of finite lattices. Algebra Universalis, 81:56(4), 1-11. https://doi.org/10.1007 /s00012-
020-00692-4

Jonsson, B. (1967). Algebras whose congruence lattices are distributive. Mathematica Scandinavica,
21, 110-121.

Griatzer, G., & Lasker, H. (1979). The lattice of quasivarieties of lattices. Algebra Universalis, 9,
102-115.

Bulletin of the Karaganda University



DOI 10.31489,/2023M2/53-62
UDC 517.51

N.A. Bokayev!, A. Gogatishvili?, A.N. Abek!*

LL.N. Gumilyov Eurasian national university, Astana, Kazakhstan;
2 Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic
(E-mail: bokayev2011@yandex.ru, gogatish@math.cas.cz, azhar.abekova@gmail.com,)

Cones generated by a generalized fractional maximal function

The paper considers the space of generalized fractional-maximal function, constructed on the basis of

a rearrangement-invariant space. Two types of cones generated by a nonincreasing rearrangement of a

generalized fractional-maximal function and equipped with positive homogeneous functionals are constructed.
The question of embedding the space of generalized fractional-maximal function in a rearrangement-

invariant space is investigated. This question reduces to the embedding of the considered cone in the

corresponding rearrangement-invariant spaces. In addition, conditions for covering a cone generated by

generalized fractional-maximal function by the cone generated by generalized Riesz potentials are given.

Cones from non-increasing rearrangements of generalized potentials were previously considered in the works

of M. Goldman, E. Bakhtigareeva, G. Karshygina and others.

Keywords: rearrangement-invariant spaces, non-increasing rearrangements of functions, cones generated by
generalized fractional-maximal function, covering of cones.

Introduction

In this work two types of cones of non-negative monotonically non-increasing functions on the
positive semiaxis generated by generalized fractional maximal functions and equipped with corresponding
positively homogeneous functionals are introduced. We give the conditions on the function ®, under
which there are pointwise mutual covering of these cones.

In the work of Hakim D.I., Nakai E., Sawano Y. [1|, Kucukaslan A. [2]|, Mustafayev R., Bilgicli
N. [3], Gogatishvili A. [4] a generalized fractional-maximal functions of another type were defined, a
particular case of which is the classical fractional-maximal function.

It is known that the maximal function is a very important operator in the theory of functions.
With their help, many important issues of the theory of function and harmonic analysis are solved.
The generalized fractional-maximal functions are also closely related to the generalized Riesz potentials,
considered in the works of Goldman M.L. [5-7] (see also [8-10]).

The study of various properties of operators using a generalized fractional-maximal function is
sometimes easier than the study of such operators using a generalized potential.

In this paper, we aim to determine the cones of non-negative measurable functions generated by a
generalized fractional-maximal function and to investigate the properties of such cones.

1 Definitions, notation, and auziliary statements

Let (5,3, 1) be space with a measure. Here is ¥ is o-algebra of subsets of the set S, on which
is determined a non-negative o-finite, o-additive measure p. By Lo = Lo(S, %, ) denotes the set
of p-measurable real-valued functions f : S — R, and by Lar a subset of the set Ly consisting of
non-negative functions:

Ly ={f€Ly: f>0}

By L(')F (0, 00;J) we denote the set of all non-increasing functions belonging to Lg .

*Corresponding author.
E-mail: azhar.abekova@gmail.com
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Definition 1. [11] A mapping p : L — [0,00] is called a functional norm (short: FN), if the next
conditions are met for all f, g, f, € L, n € N:

(P1) p(f)=0= f =0, u— almost everywhere (briefly: pu— a.e.);

plaf)=ap(f), a >0; p(f+g) < p(f)+ p(g) (properties of the norm);

(P2) f<g, (u—ae.)=p(f) <plg) (monotony of the norm);
(P3) fut £ = plfa) = p(f)(n — 00) (the Fatou property);
(P4) 0<p(o) <oo= [ fdu<cop(f), f € Lg (Local integrability);

)

(P5) 0 < p(o) < oo = p(xe) < oo (finiteness of the FN for characteristic functions (x.) of sets
of finite measure).

Here f, 1 f means that f, < fni1, le fn=f (p-ae.).

Definition 2. Let p be a functional norm. The set of functions X = X(p) from Lo, for which
p(|f]) < oo is called a Banach function space (briefly: BFS), generated by the FN p. For f € X we
assume

1f1lx = p(I£1)-

Let Lo = Lo(R™) be the set of all Lebesgue measurable functions f : R* — C; Ly = Lo(R"™) be
the set of functions f € Ly, for which the non-increasing rearrangement of the f* is not identical to
infinity. Non-increasing rearrangement f* is defined by the equality:

frt) =infly € [0;00) 0 Apy) <1}, 1€ Ry = (0;00),

where
Ar(y) = pnf{z € R": |f(2)| >y}, ye€l0,00)

is the Lebesgue distribution function. It is known that f* is a non-negative, non-increasing and right-
continuous function on Ry ; f* is equimeasurable with |f], i.e.

p{t € Ry s f7(0) >yt = pn{z € R": [f(z)] >y},

here p is the Lebesgue measure (on R™ or on R, respectively, see [1]).

Let f# : R® — R™ denote a symmetric rearrangement of f, i.e. a radially symmetric non-negative
non-increasing right continuous function (as a function of r = |z|, z € R™) that is equimeasurable with
f. That is

t

Un

Sl=

FE) = £ o™ 1) = fF <( )

here v, is the volume of the n-dimensional unit ball.
The function f** : (0,00) — [0, 00] is defined as

)7 T7tE]R+7

t
=7 [ £ te Ry,
0

It is clear that f** is a non-increasing function on R .
Really, let t; < to, then

to t1 to
) = o 0/ £r(o)dr = 0/ row sy, [ e s
t1
< o [reir ey 20
to to
0
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Hence, we have

t1 t1 -
. 1 N to — 11 N 1 to —t1 . B
o) < ty Jrdr+ toty /f (rydr < <tz+ taty >/f (r)dr =
0 0 0
7
= fr(r)dr = f(t)
1
0

Definition 3. A functional norm p is said to be rearrangement-invariant if

7 <g = p(f) <plg)
Banach function space X = X(p), generated by a rearrangement invariant functional norm p will be
called a rearrangement invariant space (in short: RIS).

Ezample 1. Let S = R™, u = u, be the Lebesgue measure in R", 1 < p < oo; u € Lo(R™), 0 <
u < oo, (p-a.e.); u€ Lé"c(R"), % IS L;‘?C(R"), % + }% =1.
The space X = L, ,(R") with a norm fx = fr,, i.e.

1
1fllx = ( / IfUIpdu) 1< p<oss |fllx = o, p=oo
Rn

is a BFS. Associated space:
X =Ly 1 (R™).

Everywhere in this work, we denote rearrangement invariant space (in short: RIS) by £ = E (R”),

and by E' = E'(R") the associated rearrangement-invariant space and E = E(R.), E/ E'(Ry)
their Luxembourg representation, i.e. such RIS that

1Ale =117 Ngllz = lg™lz- (1)

Let € be a set of all nonnegative, finite on R, decreasing and right continuous functions:
Qo ={g: R+ = [0;00); gl g(t+0)=g(t), t€ R}

Definition 4. A function f : Ry — Ry is called quasi-decreasing and is denoted by f | (quasi-
increasing and is denoted by f 1) if there exists C' > 1, such that

f(tg) < Cf(tl) if t1 < tg

(f(tl) < Cf(tQ) if 1 < tg).

Throughout this work we will denote by C', C', Cy positive constants, generally speaking, different
in different places.
By the notation f(x) = g(x) we mean that there are constants C; > 0, Cy > 0 such that

Cif(t) < g(t) < Caf(t), tE€R,.

Definition 5. Let n € N and R € (0;00]. We say that a function ® : (0; R) — Ry belongs to the
class A, (R) if:

(1) @ is non-increasing and continuous on (0; R);

(2) the function ®(r)r" is quasi-increasing on (0, R).

For example, ®(t) =t € A,(0), 0 < a <n.
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Definition 6. [12] Let n € N and R € (0;00]. A function ® : (0; R) — Ry belongs to the class
By, (R) if the following conditions hold:

(1) @ is non-increasing and continuous on (0; R);

(2) there exists C' > 0 such that

T

/@(p)pn_ldp < Co(r)r", re(0,R). (2)
0

For example,

B(p) = p™ " € By(oo) (0 < a <n):  B(p) = znef € B.(R), R€ R,.

For @ € B),(R) the following estimate also holds

T

/(I)(p)p”_ldp >n to(r)r", r € (0, R).

0
Therefore ,
/ B(p)p" Ldp = ()™, 1 € (0, R), 3)
0
O e B(R)={0<D|; &(r)r". 1, r € (0,R)}. (4)

Definition 7. Let ® € A,,(c0). The generalized fractional-mazimal function Mg f is defined for the
function f € L} (R") by

loc

(Ma f)() = sup B(r) / F()ldy,

r>0
B(z,r)

where B(x, 7‘) is a ball with the center at the point z and radius r. That is, consider the operator Mg:
L} (R") — Lo(R™).

loc

In the case ®(r) = r*", a € (0;n) we obtain the classical fractional maximal function M, f:

(o)) = [ 1f)ldy

r>0
B(z,r)

We denote by Mg = MZ(R™) the set of the functions u, for which there is a function f € E(R")
such that

u(z) = (Mg f)(z),
ullpre = inf{llflle: f € E(R"), Mef=u} ()

such a space Mg will be called space of generalized fractional-maximal function.
Note that in the works of Goldman M.L., Bakhtigareeva E.G [4-5], the generalized Riesz potential
was considered using the convolution operator:

A: E(R") — Lo(R"),

Af(@) = (G o) =20 [ Gl =) f )y,
J
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where the kernel G(z) satisfies the conditions:
G(z) = @(|lz), =€ R", (6)
® € B,(o0); Jc€ Ry
The kernel of the classical Riesz potential has the form
G(z) =|z|*™", a € (0;n).

Note that, unlike the operator A the operator Mg is not linear.

Definition 8. Define S = {K(T')} for T' € (0, o] as a set of cones considering from measurable non-
negative functions on (0,7, equipped with positive homogeneous functionals py M) K (T) — [0,00)
with properties:

(1) he K(T), a=0=ah e K(T), pr(ah)=aprm(h);

(2) pr(r)(h) = 0= h =0 almost everywhere on (0, 7).

Definition 9. [5] Let K(T'), M(T) € S7. The cone K (T') covers the cone M(T') (notation: M(T") <
K(T)) if there exist Cyp = Cy(T') € Ry, and C1 = C1(T) € [0,00) with Cj(c0) = 0 such that for each
hi € M(T) there is hy € K(T) satisfying

pr(r)(h2) < Coprrery(h1), ha(t) < ha(t) + Crpn(ry(h), t € (0,T).
The equivalence of the cones means mutual covering;:
M(T)~ K(T) < M(T) < K(T) < M(T).

Let E is rearrangement-invariant space (briefly: RIS). We consider the following two cones of
decreasing rearrangements of generalized fractional maximal function equipped with homogeneous
functionals, respectively:

Ki=KMg :={he LT(Ry):h(t) =u*(t), t Ry, u € My},

prcy (h) = inf{[lull e - w € ME; u*(t) = h(t), t € Ry} (7)

Ko=KMR:={h:h(t)=u*(t), t € Ry, uc ME},
prcs(h) = inf{||ull e - w € ME; w*™(t) = h(t), t € Ry} (8)

This means that the cones K7 and K5 consist of non-increasing rearrangements of generalized fractional
maximal functions.

Note that in the works of Goldman M.L. [5], Bokayev N.A., Goldman M.L., Karshygina G.Zh.
[9-10] cones generated by generalized potentials are considered. They study the space of potentials
HY = HY(R"™) in n-dimensional Euclidean space:

HER") ={u=Gxf:f€ER")},
where E(R") is an rearrangement invariant space (RIS).
lullge = inf{||fllz: f € ER"); G * f = u},

M(T) = KME(T) = {h(t) = u*(t),t € (0;T),u € H},
pur)(h) = inf{|lullgo : v € Hg;u*(t) = h(t),t € (0;T)};
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M(T)= KMS(T) = {h(t) = u™*(t),t € (0;T) : u € HE},

pir(h) = inf{llull g : w € Hsu™(t) = h(t).t € (0:T)}.
In the following Theorem 1 [13] gives the estimate for a non-increasing rearrangement of a generalized

fractional maximal function (Mg f) by non-increasing rearrangement of the function f.

Theorem 1. Let ® € A, (c0). Then there exist a positive constant C, depending from n € N such
that

(Maf)'(t) < C sup sd(s"/™)f*(s), ¢ € (0,00),

t<s<oo

for every f € L (R™).

In the following theorem we give the compares of the cone generated by a generalized fractional-
maximal function and the cone generated by the generalized Riesz potential.

Theorem 2. Let ® € B,(c0) and kernel G(z) satisfies the condition (6). Then cone generated
by the generalized potential covers the cone generated by the generalized maximal function, i.e.
KMg < KM§.

Proof. Let h1 € K Mg’, then according to the definition of K Mg) there is a function u; € M, such
that hy(t) = uj(t). So there is a function f € E(R") such that

ui () = (Mg f1) (),

1f1llz < 2[udllpre-

Therefore
||U1HK1 < 4:0K1 (h1)>

| flle < Cprar(h).

Therefore, by Theorem 1 and taking into account the monotonicity of the function ® | and denoting

% 1/n
(1) = / @(55 ) e,

we have:

s

mt) = (Maf)'(t)<C sup B(s") / f*(r)dr =

t<s<oo
0
1 2sd§ s
— - s 1/ny | * <
tfllfoo0<ln2/ §>q)(‘9 )- [ s
s 0
y o) /
< . —_— . * <
C S ln2 : d§ /f (T)dr <
Zs gl/n
< - sup / / T)drd§ <
t<s<oo
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/f*(T)dT+

f*(T)dT'/(D(fl/n)dfgC- <¢(t)-/tf*(r)d7'+
¢ 0

IN

Q
\
”L
3
\

“’;

w(s)f*(f)d7> <O (G ) (1) = halt).

We put that
ho(t) = C - (G * f#)"(t),t € Ry.

Consequently hy(t) < ha(t). So
K, =KME < KM,

pary(ha) < C|fF e = Cllflle < 2Cpxa(h).

Theorem 2 is proved.

Lemma 1. The following covering takes place
K < K.
Proof. Let hi1 € K1. Then there is a function u; € Mg such that
hi(t) = ui(®), lwllae < 20K, (ha).

For u; € Mg we find f; € E(R") satisfying

wi(@) = (Mo f1)(z) = sup &(r / f(6)de,
r>0 B(ew)

11l ERny < 2[uallpe-

Hence hi(t) = (Mg f1)™(t) and (see (1), (2), (3)),

[l = 1l pers < 4om, (o).

By inequality
wi(t) < u'(t), tE R,

We set
hg(t) = UT*(t) € K.

Then we have hi(t) < ha(t). Moreover (see (8), (5), (4), (7))
pix(h2) = [urllare < [l f1llmn) < 4px; (ha)-

We proved K7 < K5. Lemma 1 is proved.
The following theorem shows that the embedding of the space of generalized fractional linear spaces
in the RIS X (R") is reduced to the embedding of the cone K1 = K1 M in the space of the RIS X (R.).
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Theorem 3. Let ® € By (00). The embedding
ME(R") < X(R") 9)
is equivalence to the next embedding
K1 ME(R,) > X(Ry), (10)
Proof. From embedding (9) it follows that there is a constant C; € R4 such that for any u € M
gy = Nullxqen) < Cullullagogan- (11)
For h € Ky = KlME;I> we find the function u € Mg such that u* = h and
[ullare @ny < 208, (h). (12)
From (11) and (12) it follows that h = u* € X (R,)
1hll g, < 2Cipm (h).

i.e. holds (10).
Conversely let the embedding (10) hold. For u € Mg (R") and h = u* € K; Mg (Ry) we get

HhH)E(R+) < COPK1(h)7
but pg, (h) < HUHME(R")’ so the last estimate is
lull x @) = vl 5@,y < Collullypgny,  Yu€ MER™).
That is MZ(R") < X (R™). Theorem 3 is proved.
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H.A. Bokaes!, A. Torarumsmm?, A.H. O6ex!

LI H. Dymunes amwimdaes. Eypasus yammows yrusepcumemi, Acmana, Kaszaxeman;
2Yegua Povim axademuacoinsr, Mamemamuka unemumymu, Ipaza, exus

Kannbuiagral 6eJIeKTi-MakcuMaJiabl PYHKITMSIMEH TYbIH/IaFaH
KOHYCTap

2KywmpicTa aybICTHIPMAJIBI-HHBAPUAHTTHIK, KEHICTIK HETI3iH/Ie XKAJIIbIIAHFAH OOJIIIEKTi-MaKCUMAJIIBI PYHK-
mus KEeHICTirl KapacToIpblirad. 2Kanbluianral OeJIeKTi-MakCuMaJ bl (DYHKITUSIHBIH, OCIEeATIH aJIMacThl-
PYBIMEH KYPBIJIFaH XKoHe OH OIpTeKTi (DyHKIUIIApMEH *KabIbIKTaIFaH KOHYCTapIblH €Ki Typi KYypacThIPbI-
sran. ZKannbutanran GeeKTi-MakKCuMa bl DYHKIUS KEHICTITIH aybICThIPMAJIbI-HHBAPUAHTTHIK, KEHICTIK-
Ke eHri3y moceJieci 3epTresi. by cypak KapacTbIpbLIATHIH KOHYCTBI COMKEC aybICThIPMAJIbI-UHBAPUAHTTHIK,
KeHicTiKTepre eHrizyre okesemni. COHbIMEH KaTap, *KaJIbLJIAHFAH OOJIEKTI-MaKCUMAJIbI (PYHKIMSA apKbl-
JIBI TYBIHJIaFaH KOHYCTHI >KaJIIbIJIaHFaH PUCC TOTEHINATBI aPKBLIbI TYBIHIAFaH KOHYCIEH Kaly mapTTapbl
Oepisiren. 2KaJmblLIanraH MOTEHIIAAJIAP/IBIH, OCIIENTIH aJIMACTBIPYJIapPbIHbIH, KOHycTapbl Oypbin M. osbi-
maH, D. Baxrturapeesa, I'. Kapmbiruna xkone 1.6. eHOEKTEPiHIE KAPACTHIPHLIFAH.

Kiam cesdep: aybICTBIpMAJIBI-UHBAPUAHTTHIK, KEHICTIKTED, (PYHKIMSHBIH, OCIIEHTIH aJIMaCThIPYIAPhI, YKaJl-
MBLTAHFAH OOJIIIEeKTi-MaKCUMAJIIbl DYHKIUSIAD aPKbLIbI TYBIHAAFAH KOHYCTAP, KOHYCTAP/IBIH, Ka0y/Iaphl.
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H.A. Bokaes', A. Torarnmsmwm?, A.H. A6ex!

1 Lo o
Espasutickut nayuonasvrol yrusepcumem umernu JI.H. lymunesa, Acmana, Kasaxcman;
2 Unemumym mamemamuru Axademuu nayx Jexuu, Hpaza, Yexua

Konycol, mopoxkeHHble 0000MIeHHO APOOHO-MaKCUMAaJIbLHOM
dyukiueii

B pabore paccMOTpeHO poCTpaHCTBO 0600IIEHHOM APOOHO-MaKCUMAIBLHON (DYHKITUN Ha OCHOBE IT€PECTaHOBOYHO-
WHBAPWAHTHOTO MPOCTPAHCTBA. 1l0CTPOEHBI /1Ba BUIa KOHYCOB, ITOPOXK/IEHHBIX HEBO3PACTAIOIIEH MepecTa-
HOBKO# 0DOOIIEHHON JIPOOHO-MAKCUMAJIbHON (DYHKIMEH U CHAOXKEHHBIX IOJIOYKUTETbHBIMUA OJTHOPOIHBIMU
dyukmonasamu. VccaeaoBaH BOIMPOC O BJIOYKEHUHW IMMPOCTPAHCTBA OOOOIEHHBIX JIPOOHO-MAKCUMAIbHBIX
GYHKIHUI B IepeCTAHOBOYHO-MHBAPUAHTHOE MPOCTPAHCTBO. DTOT BOIPOC CBOJUTCS K BJIOXKEHHUIO PACCMAT-
PUBAEMOr0 KOHYCA B COOTBETCTBYIOIINE IT€PECTAHOBOYHO-MHBAPHAHTHBIE IPOCTPAHCTBa. Kpome Toro, mpu-
BEJIEHBI YCJIOBUSI JIJIsI MTOKPBITHSI KOHYCA, MOPOXKIEHHOTO ODODOINEHHON IPOOHO-MaKCUMAJIBHON (DYyHKIUENT,
KOHYCOM, TIOPOXKJIEHHBIM 00001eHHbIM TToTeHImaoM Pucca. Konychl n3 HeBo3pacTamommux mepecTaHOBOK
0600IIIEHHBIX IOTEHIUAJIOB ObLIN n3y4deHbl panee B paborax M. lonbamana, 9. Baxrurapeesoii, I'. Kaprbi-
TUHON U APYyTHUX.

Karoueswie cro6a: 1epecTaHOBOYHO-NHBAPHAHTHBIE IIPOCTPAHCTBA, HEBO3PACTAIOIINE [I€PECTAHOBKH (DYHK-
Wi, KOHYCBI, TOPOXKIEHHBbIE 000OIMEHHBIMA JTPOOHO-MAKCUMATBHBIMU (DYHKITASIMUA, TOKPBITHE KOHYCOB.
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Boundary control problem for the heat transfer equation associated
with heating process of a rod

In this paper, we consider a boundary control problem for a parabolic equation in a segment. In the part of
the domain’s bound it is a given value of the solution and it is required to find controls to get the average
value of the solution. The given control problem is reduced to a system of Volterra integral equations of
the first kind. By the mathematical-physics methods it is proved that like this control functions exist over
some domain, the necessary estimates were found and obtained.

Keywords: Heat conduction equation, system of integral equations, initial-boundary value problem, Laplace
transform.

1 Introduction and statement of the Problem

Consider the following heat exchange process along the domain Q = {(z,t) : 0 < x <1, ¢t > 0}:

% = i(k(z)g:;), (z,t) € Q, (1)
with boundary value conditions
w(0,8) = pa(t), u(l,t) = pa(t), ¢>0, (2)
and an initial value condition
u(z,0) =0, 0<z<I (3)

Assume that the function k(z) € C*([0,1]) satisfies a condition
k(z) >0, 0<z<I.

Let M; > 0 be some given constants. We say that the functions x;(t) are an admissible control if
this functions are differentiable on the half-line ¢ > 0 and satisfies the following constraints

pi(0) =0, |u@) < M, j=1,2.

Consider the following eigenvalue problem

d dvg ()
2R = 4
T <l<:(:c) I ) + Mvp(z) =0, O0<zx<lI, (4)
with boundary value conditions
ve(0) =vp()) =0, 0<z<I. (5)

*Corresponding author.
E-mail: f.n.dehqonov@mail.ru
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It is well-known that this problem is self-adjoint in Ly (£2) and there exists a sequence of eigenvalues

{A\k} so that
)\1§)\2§...§>\k—>00, k — oo.

The corresponding eigenfunctions vy form a complete orthonormal system {vg(z)}ren in Lo(€2) and
these function belong to C(£2), where Q = Q U 99 (see, [1]).

Problem A. For the given functions 6;(t) Problem A consists in looking for the admissible controls
pj(t) such that the solution u(z,t) of initial-boundary value problem (1)-(3) exists and for all ¢ > 0
satisfies the equations

l
/vj(x) u(z,t)de =0;(t), j=1,2. (6)
0

We recall that the time-optimal control problem for partial differential equations of the parabolic
type was first investigated in [2] and [3]. More recent results concerned with this problem were
established in [4-13]. Detailed information on the optimal control problems for a distributed parameter
systems is given in [14] and in monographs [15,16] and [17].

General numerical optimization and optimal boundary control have been studied in a great number
of publications such as [18]. The practical approaches to optimal control of the heat equation are
described in publications like [19].

2 System of integral equations

Definition 1. By the solution of problem (1)—(3) we understand the function u(x,t) represented in
the form .
u,t) = pa(t) + Tlp2(t) — m @) = vlz, 1), (7)

where the function v(x,t) € C’gg(Q) NC(Q), v, € C(Q) is the solution to the problem:

= 5 () 52 ) 0+ 5 1sl0) = 01+ 1 (1) = et

with the boundary value conditions

and the initial value condition

Set
l l l
ay = /Uk(l')dl', b :/g;vk(x)dx, ck = / b ga:) vg(x)dx. (8)
0 0 0
Consequently,
v(z,t) = ka(az)x
k=1
[ g i (5)+ b i) = i (9] + e i s) = pa(s)) s, ©)

0
where ag, b, and ¢ are defined by (8).
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From (7) and (9), we get the solution of the problem (1)—(3) (see, [1]):

u(@,t) = m(t) + 7 7 [u2(t) Z'Uk:

x / e M) (g, 1 (5) + g b (5) — 1 (5)] + ek [ (5) — pa(s)]) ds.
0

We know that the eigenvalues Ay, of boundary value problem (4), (5) satisfies the following inequalities
M >0, k=1,2,..

Indeed, since

4 (k(x)dvgim)) + ANpop(x) =0, 0<x<l,

then we have

e = O/I(Z(k(x)d“;i > O/Zk: )2z > 0. (10)

According to Jentsch’s theorem vy (z) > 0 (see, [20,21]). Then, from k(z) > 0 and the estimate
(10), we have
A1 > 0.

From condition (6) and the solution of the problem (1)—(3), we write

l
= / (m(t) + % [na(t) — m(ﬂ]) vj(@)de — ajpi(t) — by [pa(t) — pa ()4
0
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+ [ (aj N —bj N +¢;) e M)y (s)ds + [ (b Aj — ¢;) e ) pg(s)ds. (11)
/ /
Note that
1
/ <M1(t) + % [n2(t) — Ml(ﬂ]) vj(z)dr = ajpi(t) + by [pa(t) — pa (1)), (12)
0

where a; and b; are defined by (8).
As a result, from (11) and (12), we obtain

t
= /(aj )\j — bj )\j + Cj) e_Aj(t_s) ,ul(s)ds—i-
0

t
+/ (bjAj —cj)e A=) 11 (s)ds.
0

Let
Byj(t) = aje ™', By(t) = fie M, =12, (13)

where
aj:aj)\j—bj)\j—l—cj, Bj:bj)\j—cj. (14)

Then we get a system of the main integral equations
¢ ¢
/Blj(t — s) p1(s)ds +/B2j(t —5) po(s)ds = 0;(t), t>0, j=1,2. (15)
0 0

Denote by W (M) the set of functions § € WZ(—o0,+00), 6(t) = 0 for ¢t < 0 which satisfy the
condition

10llwz(r,) < Mo.

Theorem 1. There exists My > 0 such that for any functions 6; € W (M) the solution p;(t) of
system (15) exists and satisfies conditions

()] < My, j=1,2.
8 Proof of the Theorem 1

To solve system (15), we use the Laplace transform method. We introduce the notation

B = [P ustyd, p=atic, a>o
0

Then, we use the Laplace transform

00 t 00 t
5](17) = /e_pt dt/Blj(t—s)ul(s)ds+/e_pt dt/ng(t—s),u,g(s)ds =
0 0 0 0
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= Buj(p) fia(p) + Bz;(p) iz (p)- (16)
According to (13), we get

- s
Byr) = [ Byl de = S0 a7
s j
and -
Bor(p) — e P
2j(p) = [ Baj(t)e ™™ dt = s T L,2, (18)
; Y
where «;j, 3; are defined by (14).
Assume that the «;, 8; (j = 1,2) satisfies the following condition
a1 f2 — az f1 # 0.
Consequently, from system (16) and (17), (18), we can obtain
- Bi(Ma+p) ~ B2 (A +p) ~
= ——————"0s(p) — ——= 01 (p), 19
i (p) ag 1 — a1 B2 2(p) ag 1 — a1 PBa 1(p) (19)
e (o +p) (u +0)
~ a1 (A2 +p) oz (A1 +p) =~
= ————"0O(p) — —— 61(p)- 20
ria(p) a1 B2 —az B 2(p) ai B2 —ag B 1(p) (20)
Then, when a — 0 from (19) and (20), we obtain the following equalities
L Bt i) B2 (1 +6)
1{A2 T 1 = 2 (A1 T10 ~ . i
t)=— L gy (if) — S22 9, (i€) ) et 21
() 27 / <a2/31—0é1ﬂ2 2(i8) ag B —aq Bo 1(5)) $ (21)
and N
1 ar (A2 +i6) ~ . ag (A +i§) . > et
t) = — —————05(t) - ———=—01(¢ e'Stdg. 22
alt) 2 / <0415204251 2(#) a1 P2 —az B 1) : (22)

Lemma 1. Let 6(t) € W(My). Then for the image of the function 6(¢) the following inequality

+0o0
| BTt < C g,

is valid.
Proof. We calculate the Laplace transform of a function () as follows

(e}

5 . _(a+z‘§)t9 d 0 ei(aﬂg)t e 1 i —(a+i€)t o' (t) d
(CL+Z£)—/€ (t) t__(t)aﬁ—lfto—i_a—f—lf/e (t) t,
0 0
then we get
(a+i€) 8+ i€) / e~ (@O g1 (1) gt
0
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and for a — 0 we have
o0

i€ 0(i€) = / e €LY (t) dt.
0
Also, we can write the following equality

(i€)%6(i€) = [ e 10" (t) dt.
/

Then we have
/ 0GE)P (1 + €)2dE < Co|61l5y2n, -

Consequently, according to (23) we get the following estimate

2
/\ezs ¢1+§2d£—/'9’5 a+e) o

V1+e2

+oo~ , - 1/2 +o0 1/2
< [worarera) ([ Lad) <Clolwm,

—0o0
Lemma 1 is proved.
Proof of Theorem 1. Note that

N il = A+ E2 < (T4 X)) V1+E2

According to (21), (22) and Lemma 1, we obtain the estimates

1
mol <5 |
™

Ao + i€] |02 (i€) |de+

1
a261—04152‘

+1
2T

—00

azgl‘ A + €] 81 (i€) | dé <

1“2 /\/1+§2|9ﬂgyd§+ “1 /\/1+g2yel i€)|de <

C1C (14 X2) CoC (14 \)
< OO o sy + 2EE oy <
< C1C(1+ A2) Mo+ CoC (1+ A1) Mo = M,
27 27

and

1
(o) < 5- |
7T

Ao + €| |02 (i€) | de+

Q1 ‘
a1 B2 —ag B
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“+oo
1
+—

o [ i€ 61 (i€)]dg <

— 0o

1+)\2 /m|92’5§|df+ +)\1 /m’9125|d£<

C3C (1+ A2) CiC(1+ \p)
S 102]lwz(r,) + I — 101wzr,) <
< C3C (14 Ao) My + CiC (14 A1) My = My,
27 27
Theorem 1 is proved.
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®.H. /IexxoHos

Hamarzan memaekemmir ynusepcumems, Hamanzan, ©3bexcman

ChIPBIKTHI KBI3JILIPY ITPOIleCiHe OailjIaHbICTBI XKbLITY/IbI 06Ty
TeH/IeyiHiH ITeKapaJbIK MOHIH OaKbliaay ecebi

MakaJtazia mapabosiablK TEHJIEY YIIIH IeKapaJIbIk Obakblaay ecedi KapacTbipblraH. TeMiepaTypaHblH MOHI
OepinreH ayMaKThIH IMEKAPAJIBIK OOJTiTiHIe OeplIreH KoHe TEeMIIEPATYPAHbBIH OPTAIa MOHIH aJIy YIIiH OacKa-
py 3semenTTepin Taby Kaxker. Bepinren 6ackapy ecebi 6ipinmi Tunrti Bosabreppa mHTErpasibiK, TeHIEyIep
XKyiiecine keaTipiigi. MaremMaTukaHbIH (DU3UKAJBIK O/IICTEPIH KOJJIAHyY apKbLIbI 6eriii O6ip cajiajga ykcac
backapy QyHKIUSIAPBIHBIHE 6ap eKEH T JOJIEIIeH/ Il KOHe KAYKEeTTI Oaraiap aJIbIH/IbL.

Kiam cesdep: XKblryaaMacy TeHEYi, MHTErPAJIIbIK TeHIEyIep XKylieci, bacTanmkpl-1reKapasbIk, ecerr, Jlamrac
aJIMACTBIPY.

@ .H. Jlexxkonon

Hamanearcxuti 2ocydapemeennoili ynusepcumem, Hamanean, Y3bexucman

Ba,uaqa I'paHYHOI'o yYIIpaBJI€eHUA OJId YpPaBHEHHNA TeEIllJIOIIepeHocCa,

CBA3aHHOI'O C IIponeCcCoOM HarpeBa CTEepP2KH:A

B crarbe paccmorpena 3ajiada rpaHUYHOrO yIpPaBJIEHUs JJIsl TAPA0OJUIECKOr0 ypaBHEHUsI Ha OoTpe3ke. B
YaCcTU TPAHUIBI JAHHON 00JIACTH 3a/]aHO 3HAYEHWE PEIIeHUs], U TpeOyeTcsi HallTh yIpaBjeHue, YTOObI T0-
JIy9UTBH CpejHee 3HaUYeHUe peltenus. /lanHas 3amada ynpaBjeHus CBEJIEHa K CUCTEME MHTErPAJIbHBIX YPaB-
nenuit Bosbreppa nepsoro poga. MeroamMu mareMaTndecKoil GU3NKK JIOKA3AHO, 9TO MMOI00HBIE (DYHKINN
yIPaBJIEHUsT CyIIECTBYIOT B HEKOTOPOI 00JIaCTH, HAMIEHBI U TOJIYYeHbI HEOOXOIUMbIE OIEHKH.

Kmouesvie cao6a: ypaBHEHHE TEILIOMPOBOIHOCTH, CUCTEMAa WHTETPAIBHBIX YPABHEHUM, HAYAIHLHO-KPAaEBast
3a7ada, npeobpaszosanue Jlammaca.
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A fractionally loaded boundary value problem two-dimensional in the
spatial variable

In the paper, the boundary value problem for the loaded heat equation is solved, and the loaded term
is represented as the Riemann-Liouville derivative with respect to the time variable. The domain of the
unknown function is the cone. The order of the derivative in the loaded term is less than 1, and the load
moves along the lateral surface of the cone, that is in the domain of the desired function. The boundary
value problem is studied in the case of the isotropy property in an angular coordinate (case of axial
symmetry). The problem is reduced to the Volterra integral equation, which is solved by the method of the
Laplace integral transformation. It is also shown by direct verification that the resulting function satisfies
the boundary value problem.

Keywords: loaded boundary value problem, heat equation, isotropy, Volterra integral equation, Laplace
transformation.

Introduction

It is known [1]| that, as a rule, mathematical models of nonlocal physical and biological fractal
processes are based on loaded differential equations with fractional order partial derivatives. In mono-
graph [2], A.M. Nakhushev gave a detailed bibliography on loaded equations, including various applica-
tions of loaded equations as a method for studying problems in mathematical biology, mathematical
physics, mathematical modeling of nonlocal processes and phenomena, and continuum mechanics with
memory. In [3,4], a boundary value problem for a fractionally loaded one-dimensional heat equation
is considered. The load moves at a variable velocity. The conditions for the unique solvability of
the boundary value problem are established depending on the order of the fractional derivative. In
this paper, we study the solvability of a boundary value problem that is two-dimensional in the
spatial variable. In [5, 6], a boundary value problem for the heat equation is considered in a cone
in Lebesgue and Sobolev spaces. The BVP is reduced to a Volterra type integral equation of the
second kind, and the method of successive approximations is not applicable to it [5]. This fact follows
from the incompressibility property of the integral operator [7,8]. As a result, nonzero solutions of the
homogeneous equation arise |9, 10]. Singular integral operators defined in a bounded domain of the
hodograph plane are considered in [11]. In this paper, we show the unique solvability of the reduced
integral equation and the boundary value problem posed in a certain functional class.

The paper is organized as follows: in Section 1 we introduce some necessary definitions and
mathematical preliminaries of fractional calculus which will be needed in the forthcoming Section.
In Section 2, the statement of a fractionally loaded BVP of heat conduction is given. The loaded term
is represented as a fractional Riemann-Liouville derivative with respect to the time variable. Since
the boundary value problem is studied in the case of the isotropy property in the angular coordinate
(when passing to polar coordinates), the problem statement for this case is also given. In Section 3,

*Corresponding author.
E-mail: kamila.izhanova@alumni.nu.edu.kz
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the BVP is equivalently reduced to the Volterra integral equation, namely, to the generalized Abel
equation. Section 4 contains solving the integral equation (homogeneous and nonhomogeneous) using
the Laplace transform method. Further, the solution of the BVP in the case of axial symmetry is
obtained. Also in this Section it is shown that the obtained solution satisfies the BVP. Finally, Section
5 presents the main results of the paper, namely, theorems on the solvability of the integral equation
and the boundary value problem posed in Section 2.

Note that in this paper the order of the derivative in the loaded term is less than the order of the
differential part of the equation. In [12], the order of the derivative is greater than two, and the boundary
value problem was reduced to an integro-differential equation, which led to the non-uniqueness of the
problem’s solution.

Summing up the above analysis of studies, we can say that boundary value problems for loaded
differential equations are well-posed in a number of cases in natural classes of functions, i.e., in this
case, the loaded term is interpreted as a weak perturbation. In the case of violation of the uniqueness of
the solution to a boundary value problem, the loaded term can be considered as a strong perturbation
[13-15]. Everywhere linear equations are considered. An interesting method for studying semilinear
equations in the [16].

1 Preliminaries

Let us first recall some previously known concepts and results. The first one is the definition of the
Riemann—Liouville fractional derivative.

Definition 1 (|17]). Let f(t) € Li]a,b]. Then, the Riemann-Liouville derivative of the order g is
defined as follows

6 L drt o f(7) B
TDa,tf(t)Mdtn/a Wdr, B,a€Rn—1<pB<n. (1)
From formula (1) it follows that

DO f(8) = (), +Diyf(t) = f(t), neN.

We study a boundary value problem for the loaded heat equation, that is two-dimensional in the
spatial coordinate when the loaded term is represented in the form of a fractional derivative. The
considered problem is reduced to an integral equation by inverting the integral part.

It’s known [18] the function

2 g2
e = gz |~ 1o ()

is a fundamental solution to the equation

ou_at [ ou
ot r T@r’

where

o] (§)2n+u
I — _\2; _
v(2) ;n!F(n+y+1), 00 < 1 < 00

is the modified Bessel function.

It’s known ([18]; p. 76) that in the domain Q0 = {(r,t) |0 < 7 < 400; t > 0} the solution to the
boundary value problem of heat conduction
ow a0 ow
— = ——(r— F(r,t
ot  ror <T87“>+ (r,2),
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wli=0 = wo(r)

is defined by the formula

+00 t +oo
wnt)= [ Greu@ds+ [ [ G- e dgar )
0 0o Jo
The Green function G (z,&,t — 7) satisfies the relation
+o0
| cwer-na- (3)
0
Indeed,
+o0o 1 400 r2 _'_§2 T‘f
= — — I > —
0 G(Taé.vt)dg 202t 0 §exp< Aa2t ) 0 <2a2t> d§
1 r2 +o00 52 ré’
2%t p( 1 2t>/0 § oxp <_4a2t> 0 <2a2t) de
T 1
From [19] (formula 2.15.5 (4) when a« =2; v =0, ¢ = 228 P 4a2t) we have

+o00

1 TQ v+2
G('I",g,t)df = %exp —@ Al/ .

0

Since v = 0 => A2 = AY*2. Then we get equality (3).
We assume that the right side of the BVP’s equation vanishes at ¢ < 0 and belongs to the class

®(z,y;t) € Lo (A)NC(B), (4)
WhereA:{(:n,y,t)|x>O, —OO<y<+OO,tG[O,T}},B:{(CE,y,t)|$>O, —OO<y<—|—OO,tZO},
T — const > 0.

The classes in which the problem is studied are determined from the natural requirement for the
existence and convergence of improper integrals that arise in the study.

2 Problem setting
Problem 1. In a domain
G={(z,y;t)|Va?+y2 < t; t >0} (5)

we consider a boundary value problem, two-dimensional in the spatial variable for a fractionally loaded
heat equation:

2 8
ur = a“Au+ MprrDyu(z,y;t)} + O(z,y;t) (6)
o Vz2+y2=t/2
with the condition of solution’s boundedness:
lim u(x,y;t) =0, (7)
z2+y2—+o00

74 Bulletin of the Karaganda University



A fractionally loaded boundary value problem ...

and with the condition on the lateral surface of the cone:

et =gl ®)
\ Tety =t

where ®(z,y;t) is a given function belonging to the class (4), X is a complex parameter, RLDgtu(:U, y; t)
is the Riemann-Liouville derivative of the order 3, 0 < 8 < 1, i.e.

3 L 1 d [tu(z,y;T)
rRrDgu(z, yt) = 1“(1—,8)dt/0 Wdf (9)

Let’s move on to polar coordinates:
r=rcos¢;, y=rsing; 0 < ¢ < 2m; r>0.

Since the problem (6)—(8) is considered in the case of the isotropy property in the angular coordinate
¢ (case of axial symmetry), we obtain the following problem.
Problem 2. In a domain Qs = {(r,t) | 7 > 0; ¢ > 0} find a solution to the equation

ow a% 0 ; Ow(rt) 3
5= oo () + A { e Dhw (i)} L 0, (10)
that satisfies the conditions
rhﬁrgo w(r,t) =0, (11)
w(r,t)|r=t = g(t). (12)

Hear w(r,t) = u(r cos ¢; r sin ¢; t) is unknown function, F'(r,t) = ®(r cos¢; r sin ¢; t).

The temperature field is assumed to be axisymmetric, i.e., it is approximated by the functional
dependence of the temperature only on the value of r. Note that due to the axisymmetric nature of the
problem under consideration and the degeneracy of the definition domain (5) to a point at the initial
time, conditions (8) and (12) implies the matching condition at the cone top w|,—¢p = w|¢=o = ¢(0).

Now we have the following boundary value problem.

Problem 3. In a domain Qs = {(r,t) | 7 > 0; t > 0} find a solution to the equation (10) that
satisfies condition (11) and the initial condition

w(r,t)]i=0 = 9(0). (13)
3 Reducing the boundary value problem to an integral equation

We invert the differential part of problem (10), (11), (13) by formula (2):

400 t 400
wirnt)= [ Gre,t)g(0)de + A / / G(r, 6.t — Tyu(r) dedr + f(r1), (14)
0 0 0
where
p(t) = {rrDgu(ri }| . (15)
t “+o00o
f(rt) = /0 /0 G(&,r.t —7) F(€,7) dédr. (16)
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Taking into account equality (3), representation (14) can be rewritten in the form

w(r,t) = g(0) + )\/0 w(T)dr + f(r,t). (17)

Applying to (17) the operator of fractional differentiation according to formula (9), substituting
r = & into the resulting expression, by virtue of notation (15) on the left in (17) we obtain the function

p(t

~—

Since

(1 — B)pLDP /t (1)d —d/tl/T @i =L [ (e)/t‘”de—
R0 Jo T T Sy =P T )y Sy et T
¢ _ -8 ¢
Sy QEOUEE iy U
dt Jo 1-p o (t—0)°
then from (17) after the above procedure we obtain an integral equation
9(0) 4 A /lt (1)
=2 4B dr+ fi(t), 0<pB <1,
A S ) B A L A

where

fi1(t) = { reDGf (1)} (18)

_t
r=3

Thus, problem (10), (11), (13) is reduced to solving the Volterra integral equation of the second
kind, namely the generalized Abel equation:

() - mA— B) /0 (tﬂ(:))ﬂc“ = F(?@B)tﬁ thE), 0<p<l, 19)

where fi(t) is defined by formulas (18), (16).
4 Solving the integral equation

Solving the integral equation in the case of the homogeneous equation in BVP (6)-(8). Consider
the corresponding problem for ®(x,y,t) = 0 in equation (6), i.e. F(r,t) = 0 in equation (10). Then
integral equation (10) will take the form:

A / ") 9(0) -
t) — dr = =5, 20
"OTTTH b G- T B) .
where fi(t) is defined by formulas (18), (16).
Let ®(s) = L[u(t)] be the Laplace image of the function u(t). Applying the integral Laplace
transform to equation (20) we obtain:

AP(s)  ¢(0) 1
(I)(S) — 51_,8 = 817_67 Res > ’)\|1_B.
From here
__9(0) -
(I)(s)_sl—ﬁ_/\’ Res > |\|T-5. (21)
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Applying the inverse Laplace transform, taking into account formula 1.80 [20]

L tak‘*'ﬂ_lES%(:tata)} = (sf!j;aa)iﬂ; Res > |a|é,
where E, 4(2) is the Mittag-Leffler function, i.e.
00 Lk
Basl2) = kzzo T(ak +b)’
from (21) we get
ult) = (O P By g s (M), (22)

Due to the representation (17) of the solution to problem (10), (13) for F(r,t) = 0 in the domain
Qo, taking into account (22) we get

w(r,t) = g(0) + Ag(0) /OtT—BEl,B;lﬁ (Afl—ﬁ) dr.
Since [20] (formula 1.99)
/O ’ Eop M) dt = 2B, 01 (A2%); (b > 0),
then
w(r,t) = g(0) + Ag(0)t PE1_go_s <)\t1_5) . (23)
(23) is the solution to problem (10), (13) in the domain Q, since condition (12) takes the form

(13). Thus, the solution to problem (6)—(8) for ®(x,y,t) = 0 in the case of axial symmetry has the
form:

u(@,y;t) = 9(0) + Ag(0) t P Er gz (M'F), (24)

where 0 < # < 1.
Due to the formula

we have at b=1 and z = X\t!=#
MOE g (M) = Brgn (MW7) - 1.
Then (24) will take the form:
u(z,y,t) = g0 B (M), (25)
since E,1(2) = Eq(2).
It can be shown by direct verification that function (25) satisfies homogeneous equation (6) in the

case of axial symmetry.
The case of BVP (6)-(8) at 8 = 1/2 when ®(z,y,t) = 0.
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1
If 6 = B in BVP (6)—(8) then expression (9) can be rewritten as
1 1 d [tu(z,t,T)
D¢ t)=—=— | ——=—=dr.
RL Otu(x,y, ) ﬁdt/() \/ﬁ T
Let

u

= 9(0),
t=0

where

ot) =zt
\ zety =t

and ®(z,y,t) = 0.
Then the solution to BVP (6)—(8) has the form (see (24))

u(.y:t) = g(0)Ey (W)

when ®(z,y,t) = 0. Since [20] (formula 1.65)

(:I:z%) = e”erfc <$z%) ,

u(z,y;t) = g(O)e/\Qterfc (—)\225) )

E

D=

then

where 5 ;
2
erfc z = / e S d¢
VT Jo
is the complementary error function.

Solving the integral equation (19). Consider now equation (19). Let L[fi(t)] = Fi(s). Then, in the
space of Laplace images, equation (19) takes the form:

a(s) - 220~ IO o),

From hear

P(s) = 51(323, + Fi(s) + A

Fi(s)
sl=F — X\’

Applying the inverse Laplace transform, we get:

pu(t) = g(0)t"Ey_g1p (Atl_ﬁ) + 1)+ M) B _gap (Atl_ﬁ> : (26)

Then, taking into account function (26), representation (17) has the form:
t
w(r,t) = g(0) + A / (907 g5 (A7) dr + fo(r) ) dr+
0
t T
22 [ [ 1@ =0 B (e - 0)77) dodr + 1) =
0o Jo

= 9(0) + Ag(O) P B 55 5 (M) +

t
0

A /Ot Fi(r)dr + 22 /Ot fl(e)de/ (r—0)PE 515 (A(T - 9)1—5) dr + f(r,1)
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that is
w(r,t) = g(0) + Ag(0)t P Ey_g5_g (At1_5> + A/t fi(r)dr + X /t AO)I(0;)do + f(r,t), (27)
0 0
where
1(0;t) = /9 (T=0)PE 515 (A(T - 0)17[3) dr = (t=0)"""Ei-pa-p ()‘(t a 9)175) ‘

Then function (27) can be rewritten as:

¢
w(r,t) = g(0) + /\g(O)tl_BEl,g’g,fg ()\tl_f3> + )\/D fi(r)dr+

+ 22 /Ot(t — T)l—ﬂElfﬁ,Zf,B (/\(t — 7)1—ﬁ> fi(r)dr + f(r,t). (28)

Due to the formula

we have at b= 1 and z = \t! P
)\tliﬁEl—ﬁ;z_g ()\tlfﬁ> =Fi_3 (Atlfﬁ) —1.

Then function (28) takes the form:

w(r,t) = g(O) s (M'77) + A /O B (Mt =77 falm)dr + f(r0), (29)

where f1(7) and f(r,t) are defined by formulas (18) and (16), respectively. (29) is a solution to BVP
(10), (11), (13).

So, in the case of axial symmetry in the domain G, the function

u(@,y,t) = g(0)Ey_g (Atl—ﬁ) A /Ot Eis ()\(t . 7)1—5) fi(r)dr + f (\/sﬂ T2, t)

is a solution to BVP (6)-(8), where fi(7) and f(r,t) are defined by formulas (18) and (16), respectively,
and F(r,t) = ®(r cos ¢, r sin¢; t).

Checking that function (29) is a solution to BVP (10), (11), (13).

We first rewrite function (29) in the form (28). Since

d
7[ BB 595 (Atl—ﬁ)] =t B g1 5 (Atl—ﬁ) ,

dt
then

d ! 1 1

g ), =) s (Mt =7)'7) falr)dr =

— /Ot % (=1 Bz (Nt = 7)) | fa(r) dr =

= [ B (-1 ) A
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Then from (28) we have

%%5::Agant—ﬁﬁa_@l_ﬂ(Aﬂfﬁ)—+Af1@)+
t _ _ 6f('r,t)
2 - T B8 R — T 1-5 T)aT .
a2 0 ([ ow\ a9 [ 9f(rt)
T or <7“ar>— r or (at> 8D

By virtue of notation (15) and equality (26), we have

2

R Dpw(r,t)| = () = gt Bysis (M'77) + fi()+
+ )\/Ot(t — 1) P B g1 (M= 1)) falr)dr. (32)

Substituting (30)-(32) into equation (10) we get:

af(r,t) cﬁg (Taf(r,t)

ot - r Or or

>+me. (33)

By notation (16), we have

0 , o t p+oo
fg; .- é?t/o /0 Gt = T)F(€,7) dédr =

t +o00 _ oo
- / / WF (€, 7)ddr + G(&,7;0)F(€,0) dE;
0 0 0

. (ﬁgfﬂt < (//+oo (€ rt—T7)F (gf)mm7>.

It is known [21] that
1 1
I (z) ~ 1+0( -
0~ 7 (0 ()

when |arg z| < § and |z] = oco. Then lim;_,o G(§,7,t) = 0. Therefore, equality (33) takes the form:

/(/HmaGf”t D pe, ) (Kmn—/‘/+w ki TGf”t D) (e, 7)dedr + F(rt)

/t /+oo [36;(57;15 —7) B aja(rG(é,T‘,t - T))]F(f, T)dédT = F(r,t). (34)

T or
Since G(§,r,t) is the fundamental solution of the heat equation in polar coordinates, then

G a2 d(rG)

ot r Oor

=0(&—r)o(t),
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where 0 is the Dirac function. Then equality (34) takes the form:

+oo
/0 (& —1)i(t) = F(&, t)dE = F(r,t)

“+oo
/0 (& —r)F (& t)dE = F(r,t).

Hence, function (29) satisfies equation (10). Function (29) obviously satisfies condition (11) due to the
choice of classes for F'(r,t). Let us now show that function (29) satisfies condition (13). We have

w(r, Hli=o = (0) + lim £(r,) = (0)

due to equality (16).
So, function (29) is a solution to BVP (10), (11), (13).

5 Main results
Theorem 1. Equation (19) is uniquely solvable in the class u(t) € C([0;T]), for any function side
fi(t) € AC([0;T]), and the solution to equation (19) is determined by formula (26).

Theorem 2. Let conditions (4) and F(r,t) = ®(r cos¢, r sing; t) € Li(t € [0;T]) be satisfied for
the function ®(z,y;t), the function p(t) is defined by formula (26). Then in the class Ly (t € [0;T7)
the boundary value problem (6)—(8) for the case of axial symmetry has a unique solution defined by
formula

u(@,y,t) = g(0)Ey_g <)\t1_f3) +A /Ot Eis </\(t - 7)1—5) Filr)dr + f <\/x2 T2, t) :

where fi(7) and f(r,t) are defined by formulas (18) and (16), respectively.

Remark. Since equation (19) is a generalised Abel equation, its solution can be written as [22]

+ /Ot R(t — 1) fi(r)dr

d & )\(t—Tlﬁ)
B0 = i 2 T (- Ao

where

or

R(t) = %El,ﬁ (Atlfﬁ) .

After simple transformations, we get formula (26).
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M.T. Kocmakosa!, K.A. Mxanosal, JI.ZK. Kacbmosa?

1 .
Axademur E.A. Boxemos amuvndaev, Kapasandv ynusepcumemi, Koadanbaav, Mamemamuka uHCMuUmymo,
Kapazanow, Kasaxcman;
206iakac Caevirnos amuindaeo, Kapaeandw mernukasvs yrusepcumemi, Kapaeanow, Kasaxcman

KeHicTiKTIiK allHBIMAJIBIAAFBI €Kl eJIIIeM/Il OeJIMIeKTIK >KYKTeMeJIi
MIETTIK eceIl

7KyMpIcTa *KYKTeMesi »KBUIYOTKI3TIMTIK TeHJeyl YIIH INeTTIK ecell KaPaCTBIPBLIIBI, »KYKTEJINeH MYyIIe
VaKbIT alHBIMAJBICBIHA KATBICTHI Puman—JluyBuir Tysmasicel periage Oepinren. Benricis dyHKIusHBIH
aHBIKTAJIy OOJIBICHI KOHYC OoJIbIll TabbL1aabl. 2K YKTeIreH Myleeri TybIHIBIHBIE peTi 1-7eH Kimi, am »Kyk
KOHYCTBIH, Oyitip Geri GofibIMEH KO3Fasiabl *KoHE 13716l DYHKIUAHBIH aHBIKTAJIy OOJIBICHIHA >KATaJIbl.
Ilerrik ecen GypBINTHIK KOOPAMHATTAFBI M30TPONHs KAcHeTi (OChTIK CHMMETPHs KAFJIAibl) KarJaibiH-
na 3eprrengi. Ecen Bonbreppa mHTErpaamplK TeHAeyiHe KeaTipinai »kone Jlanaac nHTerpasbl TYpJeHIipy
ozicimen mrentini. AsbiHraH QYHKIUAHBIH MIETTIK ecenTep/ii KaHAFaTTaH/IbIPATHIHBI TiKeJIel TeKCepy apKpl-
JIBI KOPCEeTiJIIi.

Kiam cesdep: XKYKTeJTEH MIETTIK €Cell, KBIIYOTKI3TIMTIK TeH ey, u30Tponus, Boabreppa MHTErPAJIIBIK,
Terzeyi, Jlamtac Typaenaipyi.

M.T. Kocmaxkosa!, K.A. Mxanosa', JI.7K. Kacbmnosa?

! Kapazandumncrut yrusepcumem umenu axademura E.A. Byxemosa, Hnemumym npukiaoHot Mamemamur,
Kapazanda, Kasaxcman;
2 Kapazanduncrut mexnuveckutl yrusepcumem umenu Abwakaca Cazunosa, Kapazanda, Kazaxcman

JIpobHo-Harpy»keHHasi KpaeBasi 3aJia4da, AByMepHas I10
IPOCTPAHCTBEHHON ITepEeMEHHON

B pabore HaiijieHO pelieHne KpaeBoii 3a/1a49u JJIsi HAarPy>KEHHOI'0 YPaBHEHUST TEILIOPOBOJHOCTH, B KOTOPOM
Harpy»KeHHOe CJIaraeMoe IPeJICTABIEeHO B BUJEe MPOu3BoHON Pumana—/luyBuiiist mo BpeMeHHO! mepeMeH-
Hoit. O6IaCTb OIpeIeIEHUsT HEM3BECTHON (DYHKITUN — KOHYC. [1opsiToK TpOon3BOIHOM B HATPY2KEHHOM UJIEHE
MeHbIle 1,  HArpy3Ka JIBHKETCs 10 HOKOBOI ITOBEPXHOCTH KOHYCa, KOTOPBIN HAXOAUTCH B OOJIACTH OIIpe-
nesteHust uckomoit dyunknmn. Kpaesast 3a/iata nccietoBana B ciydae CBOMCTBA M30TPOIHOCTH II0 YIJIOBOM
KoopauHaTe (Corydaii oceBoit cummerpun). 3a1a9a CBeIeHa K MHTErPAJLHOMY yPABHEHUIO Bosibreppa, KOTo-
poe pelraercss METoJI0OM MHTerpajbHoro npeobpasosanus Jlannaca. HemocpepcrBennoit npoBepkoil Tak»ke
MMOKA3aHO, YTO MOJTyvIeHHass (PYHKIUS YIOBIETBOPSET OCTaBIEHHON 3a1a4e.

Karoweswie carosa: Harpy»KeHHasi KpaeBas 3aJiada, ypaBHEHHE TEIIONPOBOIHOCTH, W30TPOIHOCTb, HWHTE-
rpajbHOe ypaBHeHune BosbTeppa, nmpeobpasoBanue Jlammaca.
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On one approximate solution of a nonlocal boundary value problem
for the Benjamin-Bona-Mahony equation

The paper investigates a non-local boundary value problem for the Benjamin-Bona-Mahony equation.
This equation is a nonlinear pseudoparabolic equation of the third order with a mixed derivative. To find a
solution to this problem, an algorithm for finding an approximate solution is proposed. Sufficient conditions
for the feasibility and convergence of the proposed algorithm are established, as well as the existence of an
isolated solution of a non-local boundary value problem for a nonlinear equation. Estimates are obtained
between the exact and approximate solution of this problem.

Keywords: partial differential equation, Benjamin-Bona-Mahony equation, algorithm, approximate solution.

Introduction

The paper considers a nonlocal boundary value problem for a third-order nonlinear partial differential
equation or the Benjamin—-Bona—Mahony equation. The Benjamin-Bona—Mahony equation or the
regularized long-wavelength equation was studied in [1-4]. Modern studies on this topic can be found
in [5-13]. In this article, introducing a new function, a non-local boundary value problem for a third-
order nonlinear differential equation is reduced to a non-local boundary value problem for a hyperbolic
equation. The resulting problem with different conditions was investigated in [14-18]. Similarly to the
linear case [19-22|, sufficient conditions for the unique solvability of the problem under consideration
are established and an algorithm for finding an approximate solution is proposed.

1 Statement of the initial boundary problem

On Q = [0, X] x [0,Y] we consider a nonlocal boundary value problem for the nonlinear equation

Pw ow ow aiw

M:Fy+wa oz’ (x,y)EQ, (1)
w(z,0) = p(z), z€]|0,X], (2)
W) — a2 4 (), ye DY) Q
WOD _ o), yepo v, (@

where the functions v (y), 8(y) are continuously differentiable on [0, Y], the function ¢(x) is continuously
differentiable on [0, X], a(y) # 1.
Let C (2, R) be the set of functions w : 2 — R continuous on 2.

*Corresponding author.
E-mail: Orumbayevan@mail.ru
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A function u(z,y) € C(Q, R), with partial derivatives % e C(,R), %Z’y) e C(QR),

%&y) € C(,R), % € C(QR), %@’5) € C(Q, R) is called a solution to problem (1)—(4)

if it satisfies equation (1), for all (z,y) € €2, and boundary conditions (2)—(4).
To find a solution to problem (1)—(4), we introduce the functions

w(0,y) = Ay), w(z,y)=w(z,y) - Ay),

the original problem can be written as

Pw(x,y) _ Ouw(z,y) n OA(y)

0(z,y) | 00(z,)
0x20y Oy Ay

+[w(z,y) + Myl —p o
w(0,y) =0, =z e€]0,X],

w(z,0) +AM0) = p(x),  A(0) = ¢(0),

OA(y) w(X,y) OA(y)
= Y
S0 — )22 0B oy, yepy,
Ow(0,y)
gwihy) _ Y.
5 =W, yelY]
We introduce a new function v(z,y) = %ﬁ’y) then w(z,y) = [v(&,y)d¢ and the problem goes to

0
the equivalent problem

*v(z,y) i ov(&,y) OA(y) rv o(z v(x
My_o/ 1) e 4. 2 +[0/ (ay)dswy)] (2,9) + v(a, ), (5)
v(z,0) = ¢'(x), xe€[0,X], (6)
X
ON(y) a(y) w(y) _
5y~ 1 e O/v x,y)dx + 7 T—a() A(0) = (0), (7)
v(0,y) =0(y), y€l0,Y] (8)

Integrating both parts of equation (5) with respect to the variable z and taking into account
conditions (8) we get

avgz;,y) el(yHZ(j%(gy)dg +7+ [j“ (&1, y)dér + Ay )}v(f,y)ﬂtv(ﬁ,y))d&- 9)

0

Once again integrating over the variable y and using condition (6), we have [23]

v(z,y) Zw’(x)Jr/y(@’ //(% ) dede + 82( ) det
0 0
x £
/ (| / (€ + 3ol + vleo) ) de ) o
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In addition, from (12) it follows

+O/y<1_2 07 (2, m)da + - (2()77)>dn. (11)

2 Main result

Setting v(z,y) = ¢'(x), from (7) and (11) we define

X
Ny aly) : Yly)  aly) B P(y)
dy  1-ay) O/SO (w)de + 7= aly)  1-afy) P(X) = 2O+ 77 a(y)’
/ i b(n)
AO(y )+ LU 7 PR LU B P
0/ <1 0/ 1- a(n))
[( am P(n)
=60+ [ (201600 - (0] + 20 Yy

Using equation (9), with A(y) = A9 (y), we find

m%jw_y@+j(

0

v (z,y) =

-2
_.|_
O\@
Q
]
S

Taking the functions A9 (y), v()(z, ), numbers p; > 0, po > 0 we construct the sets

5(X9)0) = {a) € COYLR) s IN6) - 3O < 1

ﬂw%awmwz{Mawechamew—v@@ww<m4nwea}
mWMMZ{@%wW%%WGQ W@m—/mew&w@@ﬂ<m+m
0

HM%M—U@@ww<p%.

Denote by U(Ly, Ly, x, y) the collection <)\(0) (1), v (z,y), p1, pg) , or which the function f(z,y,w,v)

in G%(p1, p2) has continuous partial derivatives f/ (x,y,w,v), f(z,y,w,v) and

||f1/U(:U,y,w,v)|| < L17 ||f{,(33,y,w,v)\| < L2¢ L1>L2 — const.
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Based on the system {A(y), u(y), v(z,y)} we compose the triple {\(©)(y), £ (3),v© (z,y)}, which
we take as the initial approximation of problem (5)—(8) and build successive approximations according
to the following algorithm:

Step 1. Setting v(x,y) = vO(x,y), from (7) and (11) we determine %;(y) and \(D(y). Using
y
equation (9), with A(y) = A (y), we find o )?5 2.9) Next, we find v(! Nz,y) =¢'(2) + [ %}f’n)dn.
0

A3 (y)
Jy

Step 2. Taking v(z,y) = vV (z,y), from (7) and (11) we determine and A2 (y)), respectively.

y
Using equation (9), with A(y) = A (y), we find %&m’y). Let us find v (z,y) = ¢/ (x) —i—f %}f’mdn.

(2) (k)
Continuing the process, at the k-th step we obtain the system {mgy(y), /\gk) (x), 8”87%(/’2’), v( )(x t) }

The conditions of the following statement ensure the feasibility and convergence of the proposed
algorithm, as well as the solvability of problem (5)—(8).
Theorem, 1. Let there exist (A9 (y), v (z,y), p1, p2) € U(L1, Lo, z,y), where (z,7) € Q, (M(y),v(z,y)) €
SO (y), p1) x SO (z,y), p2) and following conditions are satisfied:
1) the function ¢(z) is continuously differentiable on [0, X],
2) the functions a(y), ¥ (y),0(y) are continuously differentiable on [0, Y], a(y) # 1,

)
3) q X(X_’_l,X(z_'_XYLl +XY fla (L2+1)Y> < 1’
4) 1717 < p1, u < p2,
h _0+X¢<1+ Y>+X i <1+ )
where o o [l (@) o ¢ @)l{ 1+ max o)
a = max |a(y)|], ¥ = max [[¢(y)]|, § = max |6(y)||, then the nonlocal problem (5)—(8) for

veo,Y) ’ velo,Y] ’ yeo,Y)
the nonlinear Benjamin-Bona-Mahony equation has a unique solution belonging to S(A©)(y), p1) x
S(v©(z,y), p2) and estimates are made:

g'o, D) (zy) - oW (z,y)| <Y Y do
i=k i=k+1

Xy? &
x(0 _ \(k) <@
a)|[A*(y) — A (y)ll_l_a >

Proof. From the zero step of the algorithm, the following estimates hold:

INO )| < 9(0) +

I

Y Hak(y)H< ¥

1—a’ oy ||~ 1—«
00 (2, y) 0
WY ey x4 x /
|2 <o x e (o] )+

T)Z) / /
Xy~ X x |0 (x <
+ 11—« xrer%(?:xx} ”SD (x)H xg&X} H ( )H B

X
< ! =
<0+ 1_a<1+ e [l¢'( )HY> +X max (@ )H(H e fle(v )H)

Y
00 0) - @)l < [ '
0
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From the first step of the algorithm, for v(z,y) = v(©® (z,y), the following inequalities follow

y X
2
W () — O < & // 0) o o XY
XD @) =A@l < 2 [ O n) — ¢ @)ldedy < 20 < i,
0 0

X
Ha)\“)(y) 3)\(0)@)“ o /‘@v(o)(fvay)H
_ < dx,
oy oy 11—«
W (,y) 00O @)
y oy -
P oA 8/\ ©)(y
g
0
z &
L / / 10O (61, y) — ¢ (€) | derde + Ly 2D ol / de+
0 0

L / 10O (€. y) — @ (€)]1de + / 10O (€, y) — ()]l dé <
0 0

< g max

O (z,y) ‘
(z,y)ER

oy

‘<qa.

Y
(1) (0)
v (x,n)  Ov (:E’n)"dn < /qun < p2.
on

0

lo® (2, ) — 0O (2, y)|| < / '
0

At the second step of the algorithm, for v(z,y) = v(V)(z,y), the following estimates hold:

y X
«o a XY?
N =230 < 5 [ 100 n) = o) dnay < 122 g,
0 0

‘ ov (l’,y) _ ov (CU,y) H < ¢ max ov (a;,y) _ v ( 7y) H < q2 max v (‘T7y) H < q20-,
Ay Ay @yeal| Oy 0y @yeall Oy
(2) (1)
0@ (2, ) — oD (2, )| /‘ v 85796,77) v 357 ,77)Hd77 < Yo

NP () = A0 )] < AP (y) = AV @) + 1INV (y) = XD ()] <

a XY? +aXY2<aXY2
S1-a 2 T4 124 2

(1+q)o < p1,

< (1+ max
<(+9 (z,y)€Q

v (z,y) W (z,y) H

vV (z,y) 0w (z,y)| _
dy Jy B

y oy
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O (z,y)

< (¢+¢°) max
Jy

(z,y)EN

H < g+ )0

[0® (2, y) = O (@, y)l| < [[vP (@, y) — oD (@, )| + [0V (@, y) = v (@, 9)| <YV (@* + g)o < pa.
At the (k + 1)—th step of the algorithm, for v(z,y) = v*)(z, %), the following estimates hold:
y

INED ()~ AB (g < 2 / / 10® (2, 5) — oD ()| ddl. (12)

-«

(k+1) (k)
AN D) o) | / da, (13)
Oy oy l—« 0y
(k+1) (k) (k) (k—1)
‘ o\ (a,y) v (l‘,y)H <o max |2V (@,y) W (x y)H’ (14)
3:[/ 8y (z,y)€Q 31/ ay
Yy
o (z ) o (z,n)
(k-+1) — % < U al
[o40a5) - Pl < [ 25 o an. (15)
0
y X k
2
IAETD () — A ()] S a//”y ¢ (x )||dxdn<7 Z ‘o < pr1,
0 0 =0
ane
[V (@, y) = oD (z, )| <Y d'o < pa.
=1

Thus, it follows from inequalities (12)—(15) and ¢ < 1 that the sequence {A\*) (y), v®) (z,y)} as k — oo,
converges to {\*(y),v*(z,y)} to the solution of problem (5)—(8) in S(A(y), p1) x SO (z,7), pa).
Let’s establish the inequalities

k+p—1 k+p
a XY? ) ,
]\A(k+p)(y)—)\(k)(y)||§1_a 5 Yo do, WP (zy) =By <Y Y dlo,
i=k i=k+1

as p — oo we obtain estimates a), b) of Theorem 1.

Let’s prove uniqueness.

Let there be two solutions (\*(x),v*(z,%)), (N*(z),v**(z,y)) in S(AO)(2), p1) x S(v )( ,Y), p2)
of problem (10)—(14). Similar to relations (12)—(15) for the differences A**(y) — A\*(y), /\** X

oy
ov** , ov* , %
Y 65;3 v ”a(; v) v (z,y) — v*(x,y), for all (z,y) € Q, we get:

a

y X
kok *k a kok *
I3 =N < 2 [ [ 10 @ = o o) dado,
0 0

H ON™*(y) 9N (y)

X
R L / (. 9) o )
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|

0 (5,y)  0v*(z,p)
dy oy

dy oy

< ¢ max
(z,y)eR

)

™ (z,y)  Ov'(z,y) H

Yy
o7 (o) ool < [ | 2gE) 2 g,
0

Whence it follows that \**(z) = \*(z), v**(z,y) = v*(x,y). Theorem 1 is proved.
The function w® (z,y), k = 1,2, ..., is defined by the equality

T

w® (2, y) = / o) (€, y)de + 2B (y)
0

and denote by S(w®(z,y), p1 + p2) the set of continuously differentiable with respect to y and twice
with respect to x functions w : 0 — R satisfying the inequalities

T

(e, y) — / vO(&, y)de — AO ()] < p1 + po.
0

In view of the equivalence of problems (1)-(4) and (5)—(8), Theorem 1 implies.

Theorem 2. If the conditions of Theorem 1 are satisfied, then the sequence of functions w®*) (z,y),
k=1,2, ..., is contained in S(w(® (z,y), p1 + p2) converges to the unique solution w*(z,%) of problem
(1)~(4) in S(w®(z,y), p1 + p2) and the inequality

" a XW? XK, o
lo*(@,y) —w® @yl < 77— =5— D do+Y ) do.
i=k+1 i=k
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A.M. Manatr, H.T. OpymbaeBa

Axademur E.A. Boxemos amuwindazv, Kapazandv, yHusepcumemi,
Kondanbarve mamemamuka uncmumymaol, Kapazandw, Kaszaxcman

Benmxamna-Bon-MaxoHn TeHaeyi YIIiH O6eiljloKaJl IMeTTiK ecemTiH Oip
2KYBIK, IIeNTiMi >KaifbIHaa

2Kywmpicra Benmxkamun-bona-Maxonu temmeyi yiris Geilyiokas meTTikK ecerr 3eprreiai. KapacTblpbLIbII
OTBIDFaH TEHJIey apaJjiaC TYBIHIBLIBI VILHII PETTi CBI3BIKTBHIK €MeC IICEBIONapabosIaIbIK, TeHJIey OOJIbII
tabbrnaapl. Ocel ecenriy memiMin Taby YIIH KyBIK IIENIiMiH Taby aJrOPUTMI YCBIHBLIFAH. ¥ CBIHBLIFAH
AJTOPUTMHIH, OPBIHIAIYBI MEH YKUHAKTBLIBIFBIHBIH 2KETKITIKT] MapTTapbl ajdblH/Ibl, COH/IAN-aK, ChI3BIKTHIK,
eMec TeHJIey YIIMiH O6eiIoKaJ I MeTTiK ecebiHIH OKIIayIaHFaH menriMinig 6ap 60/1ybl TabbLran. KapacTeipbLi-
FaH €CEeIITiH JOJI 2KOHe XKYBIK, MIEMIiMi apachlHIarbl Oarajaysrapsl aJIbIHIbL.

Kiam cesdep: nepbec TybIHABLIBI qudHepeHuInaAIILIK, TeHaey, benmkamun-bona-Maxonu Tenmeyi, aaro-
PUTM, XKYBIK, IIEIIiM.

A.M. Mamnat, H.T. Opymbaera

Kapazandunckutl ynusepcumem umenyu axademura E.A. Byxemosa, Hncmumym npukaadnoli mamemamuku,
Kapaeanda, Kasaxcman

O06 omHOM NPUMOJIM>KEHHOM PeIlleHNH HeJIOKaJIbHOII KpaeBoil 3aga4n
AJiss ypaBHeHus Benmxkamvuna-Bona-MaxoHu

B pabore nccienoBana nHesokasibHasi KpaeBas 3ajada Juisd ypaBHeHusi Benjpkavmuna-Bona-Maxonu. Pac-
CMaTpUBaeMOe yPaBHEHUE SIBJISIETCS HEJIMHEMHBIM IICEBI0NAapPA0OINTIECKUM YPABHEHUEM TPETHEro MOPsIKa
CO CMeIIaHHON Ipom3BONHOM. [yl HaXOXKIEeHWsI pellleHus JaHHON 3aJlavuu IIPEJJIOZKEH aJrOPUTM IIOUCKA
NpUOJIMZKEHHOIO PEIeHNs. YCTaHOBJIEHBI JIOCTATOYHBIE YCJIOBUS OCYIIECTBHMOCTH M CXOIMMOCTH IIPEJIIO-
2KEHHOT'O aJITOPATMAa, a TaKXKe CYIIeCTBOBaHUE H30JMPOBAHHOIO DEIIeHHH HEJIOKAJbHOU KpaeBOil 3aladn
JJIs1 HeJINHEITHOTO ypaBHeHus:. [loryJeHbl OleHKN MeXK/1y TOYHBIM U NPUOIMZKEHHBIM PEIeHUsIMI PAcCMaT-
puBacMOi 3a0a491.

Kmouesvie caosa: muddepeHna bHbIE YPABHEHNsT B YaCTHBIX MTPOU3BOJHBIX, ypaBHeHUe bBenmxaMuHa-
Bona-Maxonu, aaropurm, npubJIMKEHHOE PEIeHre.
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Compactness of Commutators for Riesz Potential on Local
Morrey-type spaces

The paper considers Morrey-type local spaces from LMy, The main work is the proof of the commutator
compactness theorem for the Riesz potential [b, o] in local Morrey-type spaces from LM;)“G1 to LM;'JQQ.
We also give new sufficient conditions for the commutator to be bounded for the Riesz potential [b, I4]
in local Morrey-type spaces from LM;‘;} to LM;éz. In the proof of the commutator compactness theorem
for the Riesz potential, we essentially use the boundedness condition for the commutator for the Riesz
potential [b,I,] in local Morrey-type spaces LM, and use the sufficient conditions from the theorem of
precompactness of sets in local spaces of Morrey type LM,y. In the course of proving the commutator
compactness theorem for the Riesz potential, we prove lemmas for the commutator ball for the Riesz
potential [b, I]. Similar results were obtained for global Morrey-type spaces GMpy and for generalized
Morrey spaces M’ .

Keywords: Compactness, Commutators, Riesz Potential, Local Morrey-type spaces.

Introduction

First we give some definitions.

By 9(I) we denote the set of all measurable functions on I . The symbol 9" (I) stands for the
collection of all f € 9(I) which are non-negative on I , while 9+ (I; ) and 9™ (I;1) are used to denote
the subset of those functions which are non-increasing and non-decreasing on I , respectively. When
I = (0, 00), we write simply 9t*, 9+ and 9T instead of MT(I) , M+ (I;]) and M*(I;1), accordingly.
The family of all weight functions (also called just weights) on I , that is, locally integrable non-negative
functions on (0, c0), is given by W(I).

For p € (0,00) and w € 9MMT(I), we define the functional | - ||, on M(I), by

s o JU @), it p < oo
paw,I * ess Sup]|f(x)‘w(x)7 if p = 0.

If, in addition, w € W(I), then the weighted Lebesgue space LP(w,I) is given by
LP(w, I) = f € M) : || fllpw,r < o0,

and it is equipped with the quasi-norm || - ||w.7. When w =1 on I, we write simply LP(I) and || - ||,.1
instead of LP(w,I) and || - ||pw,1 , respectively.

Let 1 < p,§ < oo, w be a measurable non-negative function on (0,00). The Local Morrey-type
space LM = LM (R") is defined as the set of all functions f € LfDOC(R”) with finite quasi-norm

17 = [ 1m0 |

where B(t,r) the ball with center at the point ¢ and of radius r.

*Corresponding author.
E-mail: d.matin@mail.ru
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The space LM coincides with the known Morrey space M];\ at w(r) = r~*,0 = oo, where 0 <
A< %, which, in turn, for A = 0 coincides with the space L,(R"™).

Following the notation of |1,2|, we denote by €y the set of all functions which are non-negative,
measurable on (0,00), not equivalent to 0 and such that for some ¢ > 0

1w (r)[| Ly (t,00) < 00

Note that the space LM is non-trivial, that is consists not only of functions equivalent to 0 on R",
if and only if w € Q.
In this paper we consider the Riesz Potential in the following form

nf(@) = [ ,xf(yy@l_ady.
Rn

The Riesz Potential I, plays an important role in the harmonic analysis and theory of operators.
For a function b € L;,.(R™) by M, denote multiplier operator M,f = bf, where f is measurable
function. Then the commutator between I, and M, is defined by

ble) = b)) ),

n—o
|z — |

[b7 IOJ = Mplo — I My = /
Rn

The commutators for Riesz Potential were investigated [3-9].
It is said that the function b(x) € Loo(R™) belongs to the space BMO(R"), if

1
1B, = sup — / ba) — bo| de = sup M(b,Q) < o,
QCR" ‘Q| 5 QER”

where @Q - cube R™ and bg = ﬁ [ fly)dy.
R”

By VMO(R"™) we denote the BMO-closure C§°(R™), where C§°(R™) the set of all functions from
C*°(R™) with compact support. Through the x(A) denotes the characteristic function of the set
B C R™, and “A denotes the complement of A.

The main purpose of this work is to find sufficient conditions for the compactness of commutators
operators [b, I,] on the Local Morrey-type space LMy (R™).

We note that in the case of the Morrey space this question was investigated in [4]. The following
well-known theorem gives necessary and sufficient conditions for the boundedness and compactness for
[b, I,] on the Local Morrey-type spaces LMI%(R”).

1 Formulas and theorems

To formulate the following theorem on the boundedness of the Hardy operator in weighted Lebesgue
spaces, we introduce the notation.
Denote by

the Hardy operator.
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U.0):= [ utta

Vi(t) == /too v(t)dv.

Theorem 1. Let 0 < q,p < oo. Assume that u, v, w € W(0,00). Then inequality

L () llg,0,(0500) < €l il

p,w,(0;00) 7 f € DﬁT

with the best constant ¢ holds if and only if the following holds:
00 ;. 1
Af = supt>0(/ Ul(m)w(r)dr)aV, (1),
t

Ui(T)
Vi(7)

1 0
Al = supyoWa (75)(/ (
t

and in this case c =~ Aj + A].

Theorem 2. (see. [2]) Let 1 <p < g <o00,0< a= n(% — é), 0 < 0 < oo, (wy,ws) satisfy the
following condition

n

wa(r) <t—7|:r>p

Then the operator I, is bounded from LM ' (R") to LM (R™).

< Jwr ()2 t,00) - (1)
Lg(0,00)

It is well known that the boundedness of such operators on Morrey space LMIf‘@ (R) was considered
in [1,2].

The following theorem on sufficient conditions for the precompactness of sets on Local Morrey-type
and other spaces was proved in [10-14].

Theorem 3. (see. [13]) Suppose that 1 < p < 6 < 0o and w € Q9. Suppose that a subset S of
LM satisfies the following conditions:

sup £l ags, < 00, (2)
fes p

lim sup |-+ ) = £() | agy =0, (3)
u— fES P

= 0. (4)

lim sup Hch
B(0,r w
O Lary,

r—00 fES

Then S is a pre-compact set in LM (R).

1
:5—%,11)1,102699.

Theorem 4. Let 1 <p<g<oo,0<a<nandb€ BMO(R").1<p<?Z
Then the condition

Q=

Al = Supt>o(/too /TOO(1 + ln:)drw(T)dT);[/too u(t)dv] 7, (5)

Al = Supt>0W;(t)(/too(‘U/i((:§ )plU(T)dT)i < 0. (6)

Then the commutator [b, I,] is the boundedness operator from LMg' to LM7.
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Note that for the case of Morrey space LMZ;\H(O < A < 1) (ie, if w(r) = r=) this assertion was
proved earlier in [4], and in the case of A = 0 is - known Frechet-Kolmogorov theorem [15]. We note
that the pre-compactness some sets in Banach function spaces were investigated in [16]. Theorem 4 is
proved using theorem 5.4 from [17] and theorem 3.4 from [5].

Now we give theorem about the compactness of the operators [b, I,] on Local Morrey-type space
LM;‘@(R").
Theorem 5. Let 1 <p<g<oo,0<a<nandbe VMOR").1<p<Z, *:l—%,wl,ngQQ

P
satisfy the conditions (1), (5), (6). Then the commutator [b, 4] is a compact operator from LM to

LM;?.

To prove this theorem we need the following auxiliary assertions.

Lemma 1. Let n € N, 1 < p < 00, 1 < g < o0, O<a<n(1—%), B > 0. Then there
exists C' > 0, depending only on n,p, ¢, o, such that for some f € L,(B(0, 3)) satisfying the condition
suppf C B(0, ), and for some v > 23, t € R", r >0

H(Iaf)X“B(Oﬁ)HLq(B(t,T)) < Oy (mian{y,r}) e ”f”LpB(O,,B) : (7)

Proof. From the definition of the operator I,, we have

I— H(M) X50m || Ly (B

c
B(0,v)

1
q

= / / o OCcly dx <
|lx —
(t,r)NeB(0,y) R™
AN
< / / L)n—ady dz
|z —yl
(t,r)NeB(0,y) B(0.5)
It is clear that g < 3 for x € B(0,v),y € B(0, ) we have
_ =l =] |z|
—ul > _ > _ Lind ROV e AU L]
oyl o]~ ol 2] - p= 2 B 1 ®)
From this it follows that
q
n—o dx
I<2 —Taa |f(y)ldy <
||
¢B(0,7) B(0,8)

Q=

_1
< gn—a / n—a)atn=lg, | (v, ") ||f||Lp(B(0 B~
2

=9

1
n—o n 71—y n(l—1) a—-n(1-2
=7 (a)q—n) R ) PR

—C a—n(l—%) 9
=Ciy 112, (B(0,8)) - (9)

B =73 for x €° B(0,7),y € B(0, (), then using (8) we get |z —y| > %
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Next, we consider

Q=

[ < mogen /dx / F)ldy <
(t,r) B(0,8)

1 nyl—1
<27 (™) (0nB™)' 7 I f B0,y =

=y " || fll L, Bo.g) - (10)
From inequality (9) and (10) it follows (7), where C' = max{C1, Ca}.
Lemma 2. Let n € N, 1 <p<oo, 1 <qg<o0, 0< a<n(1—%), 8 > 0. Then there exists

C > 0, depending only on n,p, ¢, a such that for some f € L,(B(0,0)), b € Loo(R™), satisfying the
condition supp b C B(0, ), and for some v > 24, t € R", r > 0

a—n

1. ) Xm0l ey < OV (mind, 7)) 16l ey 1, 50,0 (1)

Proof. Let v > ,supp b C B(0, 3), for z €° B(0,7),b(x) = 0. Then

H[b7 I.] foﬂ

0NN Lg(B(tr))

Q=

q

_ / / (b(x) = b(y))f(y) iyl ar| <

n—«
|z — |

(tr)NeB(0,y) R™

1
/ / b(y)fgzy_)a ayl ax| < / / Ib(y)\\fézja\ dayl dr| <
lz =y |z —y|
(t,r)NeB(0,y) Rn (t,)NeB(0,y) B(0,8)

q

/ / dey dx Hb”Lg(Rn)S

(t,r)N°B(0,7) [B(0,5)

IA

Q=

IN

1

q
f(y
< / / yx|—(yyl|ady do | 10l zyqeny = || T g,

(t,r)NeB(0,y) R™

b ny -
LB 161l 2 ()
From this and from Lemma 1 we obtain the inequality (11).

Proof of Theorem 5. To the proof of Theorem 5 it is sufficient to show that the conditions (2)—(4)
of Theorem 3 are hold.

Let F be an arbitrary bounded subset of LM ' Since C2°(R™) is dense in VM O(R™) we only need
to prove that the set G' = {[b, []f : f € F,b € C°} is pre-compact in the GM;. By Theorem 3, we

only need to verify the conditions (2), (3) and (4) hold uniformly F for b € C2°}.
Suppose that

1 llzags < D.
p

Applying condition (1), we have

116; Lol fll pagee < C - [[bllx sup [|f]l e < C - Dbl < oo
P fer
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This implies that the condition (2) of Theorem 3 is hold.
Now we prove that condition (4) of Theorem 3 also is hold, i. e.

tim (1, ] s,

=00 LM}
It follows from Lemma 2. Indeed
{CEAFICHN B
_ HW) |2 %50, o oS

< OV bl ey 112, 505 sup sz(r) (min{y,r})»
>0,

Le(0,00) .
zeR"
When r < 1 < we have (min{’y,r})% =rp. By condition sz(r)r% Laliio0) < 00.
61,00
When v < t < r we have (min{~,r})? = ~r. By condition HwQ(T)HLe(O,t) < 00
Therefore
711_}11.1O H([ba Ia] f)XCB(OW) LM;:(;Q -

This implies the required condition (4).

Now we prove that condition (3) of Theorem 3 for the set [b, I,](f), f € F, is hold i.e. we show
that for any 0 < € < % and if |z| is sufficiently small depending only on &, then for every f € F.

(6 Lo+ 2)) = I Tl SOVl gagzp < C e

Let ¢ arbitrary number such that 0 < e < % For |z| € R™ we have, that

[fo L) f(x + 2) — [b, L] f(2) = / b +2) —bWIfW) ;- / o) bW/ W),

|z + 2z =y [z —y[nm

_ / [b(z +2) — b(y)]f(v) dy / [b(z) +b(x + 2) — b(z + 2) — b(y)]f ()

22—y =y W=
ettt
+R[ [b(= sz)_;,i(_xi]f(y) dy =
- R/ ) oo+ ) (2 W IO Yy [N,

- [ berdcder,

|z — gy a

fly) f(y) )
! / (!w—y!”‘a \x+z_y|n_a)[b< +2) = b(y)ldy+

1
lz—y[>|z[e=
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P ) CI W g 0 B SO

|z -y |z 42z —y[*e

-

le—y|<|zle* le—y|<|zle*
=J1+ Jo+ J3 — J4. (12)
Since b € CF'(R™), we have
b(7) — b(x + 2)| < [Vf(2)| - |2]| < Clz].

Then
1] < ClzlLa([f]) ().
By Theorem 5

1Tl Lagzz < Clel I La(f) lparip < Clel || f sy < CDlzl. (13)

For Jy we have that
(b +2) — b(y)) <2 || b oeZ C.

Therefore

el [ < ).

jr—y[>[2e®
Again by the of Theorem 1 we get
92 lgages < e | 1af) lppma S ce [ C- D

Consequently,

fly - [y _
R =R T Ay < 0L @)
o=yl <|zle? o=yl <zle?
Thus, we have
5 lgarea S €+ 2l I Tal) g < C e 2l | £ lpagm < €712l (14)
Similarly, using the estimate finally by

b(z +2) = b(y)| < Clz + 2z —yl,

we have
|Jy| <C / x4 2 —y| T b(y)|dy < CeHzl + 12 La (1 f]) (2 + 2).
lz—y|<es " (y)
Therefore
I Jallparee= € (e Mzl +120) || f lzarsy =< C- (e Mzl + Iz]). (15)

Here C' does not depend on z and ¢. Finally from (12)-(15) taking a |z| small enough we have
116, Ta(F)+ 2)) = b, Zal FOllgarez < 11l gagee + [l pages + sl pages + [ all gagez < C- D -
P P P P P

i.e. the set [b,1,|(f), f € F satisfies the condition (3) of Theorem 3. Then by Theorem 3, the set
[b, I,](f), f € F is precompact in the LM;)‘(’f. Which completes the proof of the theorem.
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JI.T. Maruu, T.B. Axakanos, A. Anuixanos

JI.H. lymuaes amovmdazv. Eypasus yammuk yrusepcumemi, Acmana, Kaszaxcman

JIokanpai Moppu tunrec KeHicriringe Pucc noreHmmuaJg
KOMMYTATOPbIHBbIH, KOMITAKTHLIBIFbI

Maxamama LMy, mokamsai Moppu tunTi kenicrikrepi KapacToipsurran. Herisri sxymsic LM 1’;‘2)1 -naH LM;?—
re peitinri jokaabai Moppu tunti kenicrikrepgeri [b, Io] Pucc morennmasb yimiH KOMMYTATOD/IBIH KOM-
HaKTBUIBIK, TeopeMachiH maueney. Conpaii-ak, Pucc morenimasnsl yuia koMmmyraTopapsiy, [b, Io] jgokasnbai
Moppu Tunri Kexicrikreperi LM:él—;[aH LM;(Z)2 IIEHEJINeH 1IN VIMH >KaHa »KEeTKUIKTI maprrap OepiireH.
Pucc moreHnmans yiiH KOMMYTATOD/IBIH, KOMIIAKTHUIBIK, TEOPEMACHIH JpJeseye Herisined, [b, In] Pucc
HOTEHIUAIbI YIIH KOMMYTaTopAbiH, LMy, nokanbai Moppu THNTI KeHICTIKTepiH/e MeKTe/IreH MmapThl, Co-
HBIMEH KaTap LM;,”Q Jokaabai Moppu TUNTI KEHICTIKTEPIHIET] XKUbIHIAPAbIH, KOMITAKTHLIBIK, TEOPEMAaCHIHBIH,
JKeTKIMKTI maprrapsl naiiajaHblIrad. Prucc moTeHnuasbl YIiH KOMMYTATOPBIH *KIHAKBUIBIK TeOpeMa-
coiH sputengiey Gapbicbiaaa (b, In] Pucc moreHnpasnsl yiiiH KOMMYTATOD MIAPBIHBIH, [IEHEINeH JIEMMAJIaphl
anbIKTasrad. OCbhIFaH yKCaC HOTUXKEJIEp GM;% ri1o6aJibabl Moppy THUNTI KEHICTIKTEp YIMH XKoHe M;” XKaJ-
neLaarad Moppy KeHIiCcTiri yImiH jie ajibIHFaH.

Kiam cesdep: KOMIAKTBLIBI, KOMMYyTaTOpJIap, Pucc norennuasst, Jokaabai Moppu Ttunti KeHicTikTep.

JI.'T. Marun, T.B. Axaxkanos, A. Auixanos

Espasutickuti nayuorasvhouli yrusepcumem umenu JI.H. lymuaesa, Acmana, Kasaxcman

KomimakTHOCTh KOMMYTATOPOB [Jis moTeHInada Pucca B JToKaJIbHBIX
nmpocTpaHcTBax Tuiia Moppu

B craTpe paccMOTpeHbI JIOKasIbHbIe TpocTpancTsa Tuna Moppu n3 LM ;. OcrHoBHoil paboToii sBjsieTcs 1o-
Ka3aTeJIbCTBO TEOPEMbI KOMIIAKTHOCTH KOMMYTATOPa s HoTeHImana Pucca [b, ] B JIOKaJIbHBIX IIPOCTPaH-
crBax Tuna Moppu us LM;"Q1 B LM;?. IIpuBenensr Takke HOBBIE TOCTATOYHBIE YCJIOBUS OTPAHUIEHHOCTH
KOMMyTaTopa Jist noreHnuana Pucca [b, I] B 10KanbHBIX IpocTpaHcTBax THla Moppu u3 LM;‘él B LM;(;?.
B nokazarenbcrBe TEOpEMBI KOMIIAKTHOCTH KOMMYTATOPa JIs IOTEeHInaIa Pucca cymecTBeHHO UCIOIb30-
BaHbI YCJIOBUE OTPAHMYEHHOCTH KOMMYTATOpa Jis noreHnuaina Pucca [b, Io] B JTOKAJIbHBIX IPOCTPAHCTBAX
tuna Moppu LMy, a Tak»e JI0CTATOYHbIE YCJIOBUS U3 TEOPEMbI IIPEIKOMIIAKTHOCTH MHOYXKECTB B JIOKAJ/Ib-
HBIX mpocTpancTBax Tuna Moppu LMyy. B Xome jokasaTe beTBa TeOPEMbl KOMIIAKTHOCTH KOMMYTATOPa
IS TOTeHIma a Pucca moaTBep:K/IeHbl JIEMMBI OIEHKHU IO IMapy KOMMYTATOpa JJis moTeHnuasna Pucca
[b, In]. AHajormdnbie pesysibrarel GbLIM IIOJIYYEHbI [UIsi TIOOAIBHBIX IPOCTpaHcTB Tuna Moppu GMyy u
[t 06001IeHHbIX HpocTparcTs Moppu M.

Karouesvie ca06a: KOMIAKTHOCTb, KOMMYTATOPBI, ITOTeHINA Pucca, jlokaJbHbIe TpocTpaHcTBa Tuna Mop-
pu.
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Numerical solution of differential — difference equations having an
interior layer using nonstandard finite differences

This paper addresses the solution of a differential-difference type equation having an interior layer behaviour.
A difference scheme is suggested to solve this equation using a non-standard finite difference method. Finite
differences are derived from the first and second order derivatives. Using these approximations, the given
equation is discretized. The discretized equation is solved using the algorithm for the tridiagonal system.
The method is examined for convergence. Numerical examples are illustrated to validate the method.
Maximum errors in the solution, in contrast to the other methods are organized to justify the method. The
layer behaviour in the solution of the examples is depicted in graphs.

Keywords: Differential-difference equation, Boundary layer, Nonstandard finite difference, Convergence.

Introduction

Differential equations are ones in which the time evolution of a state variable is inconsistently
dependent on a particular past. This means that the rate of change of a physical system is dependent
not only on its current state but also on its previous history. The layer behavior differential difference
equations have been extensively used in control theory for a number of years.

Subsequently, these equations play an important part in predator-prey models [1], population
dynamics [2] and models of the red blood cell system [3] and models of neuronal variability [4].
Bender and Orszag [5], Doolan et al. [6] just are a few of the authors who have produced papers
and books in recent years explaining various methods for solving differential-difference equations with
singular perturbations, El’sgol’ts and Norkin |7], Mickens [8], Driver [9], Kokotovic et al. [10], Miller
et al [11], O’Malley [12]| are the authors who have produced books explaining various methods for
solving delay differential equations and singularly perturbed differential-difference equations. In [13],
authors developed an asymptotic analysis for a class of singularly perturbed problems with negative and
positive shifts. In [14], the authors concentrate on problems with solutions that display layer behaviour
at either one of the boundaries or both of the boundaries. The Laplace transforms used to the analysis
of the layer equations produce new and interesting findings. The authors in [15] designed non-standard
fitted finite difference methods based on the methods given in El-Mistikawy—Werle exponential finite
difference scheme for differential-difference equations with negative and positive shifts. Rai and Sharma
[16] developed numerical schemes using some modifications in El-Mistikawy—Werle exponential finite
difference scheme. Sirisha et al. [17] devised a mixed difference scheme to solve the same problem.
Salama and Al-Amery [18] constructed a mixed asymptotic solution for SPDDE using the composite
expansion method. This work deals with constant shift arguments, which are independent of perturbation
parameter. Swamy et al. [19] constructed a computational method of order four to solve SPDDE with
mixed arguments. Bestehorn and Grigorieva |20] solved coupled nonlinear partial differential equations
and single diffusion equation with an additional nonlinear delay term. Kadalbajoo and Sharma [21]
solved a mathematical model arising from a model of neuronal variability and mathematical modelling
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for the determination of the expected time for generation of action potentials in nerve cells by random
synaptic inputs in dendrites. Kadalbajoo and Sharma [22]| exponentially fitted method based on finite
difference to solve boundary-value problem for a singularly perturbed differential-difference equation
with small shifts of mixed type.

The rest of the paper is organized as: In Section 1, problem description is given. In Section 2,
a maximum principle and some important properties of the exact solution and its derivatives are
established. The proposed numerical scheme is described in Section 3. Error estimate is derived in
Section 4. Section 5 presents numerical examples to support the theoretical findings. Finally, Section
6 concludes with a summary and discussion.

1 Description of the problem

Consider a differential-difference equation with layer behaviour consisting a small delay and advanced
terms of the form:

e (u) + P(u)2'(u) + Q(u)z(u = 0) + R(u)z(u) + V(u)z(u + n) = F(u), (1)
on (—1,1), with the boundary conditions

z(u)=¢(u), —1-0<u<-1,z(u)=vu) 1<u<l+n, (2)

where 0 < € < 1 is a perturbation parameter, P(u), Q(u), R(u), V(u), F(u), ¢(u) and y(u) are smooth
functions and 0 < § = o(e) is the delay or negative shift and 0 < n = o(e) is the advance or positive
shift parameter. If (P(u) —0Q(u)+nV (u)) > 0, the solution of problem (1) with conditions (2) exposes
layer at the left end of the interval and if (P(u) — 0Q(u) +nV (u)) < 0 then the layer at the right-end
of the interval. If P(u) = 0, the problem has either an oscillatory solution or two layers, depending on
whether Q(u) + R(u) 4+ V (u) is positive or negative.

Since the solution z(u) of problem (1) is sufficiently differentiable, the terms z(u —¢) and z(u — n)
can be expanded using Taylor series, then we have

52
2(u—90) = z(u) — §2'(u) + Ez”(u)7 (3)
2
2(ut ) = 2(u) + 02 (u) + 2" (u). (4)
Using formula (3) and formula (4) in problem (1), we get
C.2"(u) + a(u)2'(u) + b(uw)z(u) = F(u), -1 <u < 1. (5)

Problem (5) is a convection-diffusion problem. Here C, = (¢ + Q% + V%), a(u) = P(u) —6(u) +
+nV(u), bu) =Q(u)+ R(u)+ V(u). We solve problem (5) subject to the boundary constraints

2(=1) = o(=1), =(1) =~(1), (6)

where the solution of the problem (5) with conditions (6) is taken as the approximation to the solution
of the problem (1) with conditions (2). Let a(u) vanishes at some l; € (—1,1). Let N; = [Il; — £, 1; — ¢]
be a neighborhood of the turning point /; such that it does not contain any other turning point. Also,
it is assumed that

a’(l:)

la’ (u)| > ‘T' for u e N;.
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The transformation u = £~ 1(u — ;) reduces the study of the behaviour of z(u) near a given turning
point /; to the case when a(u) has only one zero located at v = 0. Thus, we consider problems (5) with
conditions (6) under the following hypothesis:

(i) a(u) € C?*[-1,1], F(u) and b(u) € C1[-1,1],

(ii) b(u) > bg > 0 on [—1,1], where by is a positive constant,

(iii) a(u) has simple zero at u = 0 and no other zeros in [-1,1],

(iv) ]a()\>](a | for —1 <u<1,

(v) = b(—o and (3,05 be positive constants such that 5; < 1 < S, and §; < |B| < Ss.

For a glven function g(u) € CF[—1,1], let ||g||x denote El o max |g‘| , where g' denote i

—1<u<1

derivative of g(u), Cs(u) = (5 + Q% + V%) C: is taken as constant part of C(u) when a(u) depends
on u.

2 Analytical results

Lemma 1. (Continuous maximum principle): Let ¢(u) be any sufficiently smooth function satisfying
P(—1) > 0 and ¥ (1) > 0. Then, Lip(u) >0 VYV u € (—1,1) implies that ¢(u) €0V w € [-1,1].

Proof. Let u* be such that ¢ (u*) = II[li{ll] Y (u). Let us assure that ¢(u*) < 0.
ue|—1,

Clearly u* ¢ (—1,1). Since u* is the point of minima therefore ¢'(u*) = 0 and " (u*) > 0 .
Now
Ly(u") = Co(u") + alu)2' (u") + b{u")2(u")
= C2"(u*) + b(u*)z(u*) <0,
which is contradiction. This follows ¥ (u*) > 0 and since u* is chosen arbitrarily therefore ¥ (u) > 0,
for v € [-1,1].
Lemma 2. Let z(u) be the solution of the problem (1) with the conditions (2) then

lello < Y10 4 (o)1 ).
Proof. Let us define
ot < MU (-1l ) + 2(0),
then we have
00 = W o) ) +2(-1) =
=Ml 4 a6 (1)) £ 6(-1) > 0
w0 = W (-1, b)) + 20 =
ZUyO+EMO¢(1HJ7UN)i7U)ZO-
Ly (u) = Co($* () + a(u) (W ()’ + b(u)($* (u)) =
C”b+ max(|é(~ )H%DD+LAM>=
mm(b" (-1 hV) + f(0)) =
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= (Ifllo % f(w) + b(u) max([¢(=1)], |(1)])) = 0 (since b(u) > by > 0).

Therefore, using maximum principle, we obtain 1 (1) > 0 for u € [—1, 1], which is the required bound
on the solution of the problem (1) with conditions (2). Lemma 3 provides bound on the solution of the
problem (5) with conditions (6). We now derive bounds on z(u) and its derivatives on a subinterval
[p, q] of [—1,1] which does not contain the turning point.

Lemma 3. Let z(u) be the solution to the problem (5) with conditions (6) and a(u),b(u), f(u) €
C9[-1,0], j > 0, are sufficiently smooth functions in [~1,1]. Then, there exit positive constant C' and
n such that |D'z| > C for w € [-1,1].

Proof. See in [23].

Theorem 1. Let z(u) be the solution to the problem (5) with conditions (6) and a(u),b(u), f(u) €
C7[-1,0), 7 > 0,]a(u)| > v (v is a positive constant) are sufficiently smooth functions in [—1,1]. Then,
there exit positive constant C' and n such that

|Diz| < C <1 + C’Eie(g;>> for i=1,2,..5+1, uwel[-1,0),
and
ID'2| < C <1 4ol U")> for i=1,2,..5+1, wel0,1].
Proof. See in [23].

8  Numerical scheme

In this section, we construct a numerical scheme based on EI-Mistikawy and Werle exponentially
fitted operator scheme to approximate the solution z(u) of problem (5). Let uniform partition of the
interval [—1,1] be given by u; = —1 4 ¢h for i = 0,1,2,...,n where h = % We construct the numerical
scheme as:

Lz = {CED+D—ZJ- +a(u)D" 2 + b(w)z(u) = F(u), j=1,2,3....n/21, -

C.D"D™zj +a(u)DVz; + b(u)z(u) = F(u), j=n/2,n/2+1,n/24+2,....n—1,

where 5
D™z = R e} —thfl’ D+zj AT ZJ, D+D_zj Y 223 + ijl,
?j

and

he (o) :

roll -1, j=12,3....n/2 -1,

¢? 3. (—a;h)
“ll—e = |, j=n/2,n/2+1,n/2+2,....n— L
J

The system of equations (7) can be written in tridiagonal form as:

5 a 25 . n
<¢2_ }‘Z)z‘] 1+ ( ¢)2 +b> <¢2> Z]"Fl fJ for ]:172737"‘77_17
J

26 aj € a; .oonn n
<¢2>Z] 1—|—<¢2 —}Z+bj>2j+<¢2+}i>2j+1:fj for 325,5—1—1,54—2,...,71—1.
J
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The above system of equations can be written as:

{Ajzj1+szj+Cjzj+1:fj, j=1,2,3,. ,g—l, -
Ajzj 1+ Bjzj +Cijzjpa=fj, j=5,5+1L,5+2,..,n—1
Here
Aj = %—?>,Bj:<f;+?+bj>,cj:<;? L fi=f, i=123,..,%-1,
=fi, j=5.5+1L,5+2,...,n—1

4 Convergence Analysis

In this section, we analyze the convergence of the difference scheme (8). The analysis will be done
on u € [—1,0] and similarly the same will be done on u € (0, 1].

Let us define operator L as:
{C 5+ a(u) B + b(w)z(u) = F(u),
Lz; =

€ qu?

C- L0 1 a(u) W) 1 p(u)z(u) = F(u),

The local truncation error of the discretization on [—1, 0] can be given as

— 2z + zj_1) 2j — 2j—1
LU —2)=e¢! +a;z — 6(’ZJ+1 J J a2 J _
( J J) 7 Wiad) [ (¢32) J h
ht ht (ajh) a;h? (a;jh?)
S R2ur 4 n_ 4% " J
=<y 5 MU+ Gy + gyt ><52>] My G ) ),
Using the truncated Taylor expansion of ﬁ = 2 + th , it follows that
J
—2¢ h3
sy — p2
L0 - 2) =1 { T @) - Lo ) + gy ) @ - )} +
4 6 4Gy 5[ 4
st { o &) - ot <§3>} o { S -6}, )
where & € (uj,uj41),% € 1,3 and & € (uj—1,u;). Using bounds on derivatives of z, for small h, we
have n
Li(Uj — zj) < Mh?* Vj = ()7 — 1.

In a similar way, we can prove that

Lo(Uj — zj) < Mh* Vj = 2( )n+ 1.
Theorem 2. Let U; be the numerical result of the difference scheme (8) along with the condition
(9) and z; is the solution to the problem (1) with condition (2), then a constant M is an independent

of €, h such that
— 2| < Mh2.

max |U;
1<j<n—+1
Proof. Using th triangular inequality |U; — u;| < |U; — 2;| + |2; — u;|, along with the truncation
error, the fundamental outcome was generated by a global error.
— zj| < MR2.

Therefore,
max |U;

1<j<n+1
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5  Numerical examples

Ezxample 1.
—e2"(u) +2(1 — 2u) 2’ (u) + 42(u) + 22(u — 8) + 2(u +n) = 0,

onu € (0,1) with z(u)=1on —<u<0, z(1)=1lonl<u<l+n.

Ezample 2.
—e2"(u) + 2(1 — 2u)2' (u) + 42(u) + 2z(u — §) + z(u+ 1) = 4(1 — 4u),
onwu€ (0,1) with z(u)=1on —6<u<0, 2(1)=1lonl<u<1l-+n.
6 Conclusion and discussions

We have discussed a numerical scheme with nonstandard finite differences for the solution of
singularly perturbed differential-difference equations with delay and advance shifts. The domain is
divided into two subintervals since the problem under consideration involves internal layer behavior.
We constructed numerical scheme in each subinterval to get the solution. The proposed numerical
method is analyzed for convergence.

In order to discuss the efficiency of the suggested scheme, some numerical experiments are carried
out. The maximum absolute error in the solution of examples is tabulated in the form of Tables 1-4
in comparison to the method given in [16]. The effect of small delay and advance on the interior layer
solution is shown by plotting the graphs (Figures 1-4). It is observed that when 7 is increasing for a
fixed delay the width of the interior layer decreases, whereas it increases when § increases for a fixed

n.
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Table 1
Maximum absolute errors in the solution of Example 1 for n =08 ¢, 6 = 0.6 x¢.
e\ N 32 64 128 256 512 1024
Present method:
1071 1.8346e-03  5.6862e-04 1.4517e-04 3.4370e-05 8.0119e-06 1.8466e-06
1072 7.3498e-04  2.1050e-04 5.8093e-05 1.6472e-05 4.1595e-06 1.0125e-06
1073 1.1163e-03  2.3226e-04  6.4850e-05 1.7021e-05 4.1640e-06 9.5162e-07
1074 1.0462e-03  2.3228e-04 6.4875e-05 1.7163e-05 4.4164e-06 1.1201e-06
1073 1.0384e-03  2.3228e-04 6.4876e-05 1.7164e-05 4.4165e-06 1.1202e-06
107° 1.0376e-03  2.3228e-04 6.4876e-05 1.7164e-05 4.4165e-06 1.1202e-06
1077 1.0376e-03  2.3228e-04  6.4876e-05 1.7164e-05 4.4165e-06 1.1202e-06
10—8 1.0376e-03  2.3228e-04  6.4876e-05 1.7164e-05 4.4165e-06 1.1202e-06
Results in [16]
1071 1.405e-03 4.13e-04 1.124e-04 2.936e-05 7.505e-06 1.897e-06
1072 3.763e-03 1.706e-03 6.567e-04 2.135e-04 6.170e-05 1.664e-05
1073 3.985e-03 1.966e-03 9.772e-04 4.849e-04 2.284e-04 9.256e-05
107* 4.005e-03 1.974e-03 9.813e-04 4.893e-04 2.443e-04 1.221e-04
107° 4.005e-03 1.974e-03 9.813e-04 4.893e-04 2.443e-04 1.221e-04
107° 4.007e-03 1.975e-03 9.817e-04 4.895e-04 2.444e-04 1.221e-04
1077 4.007e-03 1.975e-03 9.817e-04 4.895e-04 2.444e-04 1.221e-04
10—-8 4.007e-03 1.975e-03 9.817e-04 4.895e-04 2.444e-04 1.221e-04
Table 2
Maximum absolute errors in the solution of Example 1 for n =08 ¢, § =0.6 x .
e\ N 32 64 128 256 512 1024
Present method:
1071 4.3167e-03  1.0336e-04 2.4771e-05 6.3523e-06 1.6076e-06 4.0430e-07
1072 4.5589%-04  9.2210e-05 2.4224e-05 6.2238e-06 1.5747e-06  3.9598e-07
1073 3.2398e-04  8.9201e-05 1.5556e-05 2.0509e-06 1.5043e-06 3.7861e-07
1074 3.2274e-04  8.8905e-05  2.3206e-05  5.9299e-06 1.6799e-06 3.7677e-07
107° 3.2274e-04  8.8905e-05 2.3206e-05 5.9299e-06 1.6799e-06 3.7677e-07
1076 3.2261e-04  8.8872e-05 2.3197e-05 5.9276e-06 1.4987e-06 3.7676e-07
1077 3.2261e-04 8.8872e-05 2.3197e-05 5.9276e-06 1.4987e-06 3.7676e-07
10—-8 3.2261e-04  8.8872e-05 2.3197e-05 5.9276e-06 1.4987e-06 3.7676e-07
Results in [16]
1071 1.445e-03 4.246e-04 1.156e-04 3.019e-05 7.716e-06 1.951e-06
1072 3.779e-03 1.712e-03 6.589e-04 2.142e-04 6.188e-05 1.669e-05
1073 3.987¢-03 1.967e-03 9.776e-04 4.852e-04 2.285e-04 9.259¢-05
1074 4.005e-03 1.974e-03 9.813e-04 4.893e-04 2.443e-04 1.221e-04
107° 4.007e-03 1.975e-03 9.817e-04 4.895e-04 2.444e-04 1.221e-04
107° 4.007e-03 1.975e-03 9.817e-04 4.895e-04 2.444e-04 1.221e-04
1077 4.007e-03 1.975e-03 9.817e-04 4.895e-04 2.444e-04 1.221e-04
10-8 4.007e-03 1.975e-03 9.817e-04 4.895e-04 2.444e-04 1.221e-04
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Maximum absolute errors in the solution of Example 2 for n = 0.8 ¢, § = 0.6 * .

Table 3

e\ N

32

64

128

256

512

1024

Present method:

1071
1072
1073
1074
107°
10~°
1077
10—8

2.3261e-03
3.1095e-03
3.1095e-03
3.1571e-03
3.1569e-03
3.1569e-03
3.1569e-03
3.1569e-03

Results in [16]

1071
1072
1073
1074
107°
10~°
1077
10—8

1.817e-02
4.874e-02
5.148e-02
5.171e-02
5.174e-02
5.174e-02
5.174e-02
5.174e-02

1.2337e-03
8.9149e-04
8.9149e-04
9.8441e-04
9.8441e-04
9.8441e-04
9.8441e-04
9.8441e-04

5.352e-03
2.212e-02
2.551e-02
2.562e-02
2.563e-02
2.563e-02
2.563e-02
2.563e-02

4.3756e-04
2.2287e-04
2.2287e-04
2.7495e-04
2.7495e-04
2.7495e-04
2.7495e-04
2.7495e-04

1.459e-03
8.512e-03
1.27e-02
1.275e-02
1.276e-02
1.276e-02
1.276e-02
1.276e-02

1.3150e-04
5.3497e-05
5.3497e-05
7.2740e-05
7.2741e-05
7.2741e-05
7.2741e-05
7.2741e-05

3.814e-04
2.773e-03
6.302e-03
6.360e-03
6.363e-03
6.363e-03
6.363e-03
6.363e-03

3.6255e-05
1.2954e-05
1.2954e-05
1.8717e-05
1.8717e-05
1.8717e-05
1.8717e-05
1.8717e-05

9.752e-05
8.017e-04
2.968e-03
3.176e-03
3.178e-03
3.178e-03
3.178e-03
3.178e-03

9.6086e-06
3.5879e-06
3.5879e-06
4.7473e-06
4.7475e-06
4.7475e-06
4.7475e-06
4.7475e-06

2.466¢-05
2.163e-04
1.203e-03
1.587e-03
1.588e-03
1.588e-03
1.588e-03
1.588e-03

Maximum absolute errors in the solution of Example 2 for n =0.8x¢, § = 0.6 x .

e\N 32 64

128

256

512

1024

Present method:

107!
1072
1073
1074
1075
106
107
10—8

3.1747e-03  1.5835e-03
3.1047e-03  8.9098e-04
3.1584e-03  9.8424e-04
3.1571e-03  9.8440e-04
3.1569e-03  9.8441e-04
3.1569e-03  9.8441e-04
3.1569e-03  9.8441e-04
3.1569e-03  9.8441e-04

Results in [16]

107!
1072
1073
1074
107°
106
1077
10—8

1.843e-02 5.462e-03
4.855e-02 2.206e-02
5.145e-02 2.556e-02
5.171e-02 2.562e-02
5.171e-02 2.562e-02
5.171e-02 2.562e-02
5.171e-02 2.562e-02
5.171e-02 2.562e-02

5.6153e-04
2.2250e-04
2.7479e-04
2.7494e-04
2.7495e-04
2.7495e-04
2.7495e-04
2.7495e-04

1.494e-03
8.515e-03
1.269e-02
1.275e-02
1.275e-02
1.275e-02
1.275e-02
1.275e-02

1.7120e-04
5.3391e-05
7.2123e-05
7.2738e-05
7.2741e-05
7.2741e-05
7.2741e-05
7.2741e-05

3.913e-04
2.775e-03
6.298e-03
6.360e-03
6.360e-03
6.360e-03
6.360e-03
6.360e-03

7.0667e-05
1.3766e-05
1.7645e-05
1.8717e-05
1.8717e-05
1.8717e-05
1.8717e-05
1.8717e-05

1.002e-04
8.036e-04
2.967e-03
3.176e-03
3.178e-03
3.178e-03
3.178e-03
3.178e-03

1.3083e-05
3.9585e-06
4.0325e-06
4.7472e-06
4.7475e-06
4.7475e-06
4.7475e-06
4.7475e-06

4.202e-05
2.168e-04
1.203e-03
1.587e-03
1.588e-03
1.588e-03
1.588e-03
1.588e-03
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Fig 2. Layer profile in Example 1 ¢ = 272, § = 0.5¢.
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P. Omxkap, M. Jlany, K. ®aneenypa

Vhusepcumemmin, 2viavim Koaredorci; Ocmarnus yrusepcumemsi, Xatidapabad, Yrndicman

Imki Kabarbl 6ap muddepeHINnaAJIbIK-aAbIPBIMIBIK TeHAeYJIePIi
CTaHJAPTThI €MeC IEeKTi albIpbIMIaPAbl KOJIAAHBIII CAHABIK IHeIly

Maxkasnasa imki kKabaTThIH opekeTi 6ap auddepeHnnaabK-aibIPbIMIBIK, TUIITI TEHIEYIH IIentiMi KapacThi-
pbUIFaH. Byl TeHaeye cTaHIapTTHL eMec MIEKTI aflbIPBIM/IBIK 9/1iCi apKBIJIBI IIENIyTe apHAJIFAH ailbIPBIMIAD
cxemach! yebiabuFaH. [1lekTi aitbipeivaap GipiHin »KoHe eKiHIN peTTi TYBIHAbIIapIaH aJabiHFal. OChl KybI-
KTayaapabl mafifjajiaHa OTBIPBIN, OyJI TeHaey AuckperTtenreH. JIMckperTesreH TEHIEY YII AUATOHAJIBIIBIK,
JKYHeHIH aJIrOPUTMI apKbLIbI IIENIJINeH. OIIC *KUHAKTBLIBIKKA TEKCepiaeai. OicTi Tekcepy VIIiH CaHIbIK
mbIcasaap kearipiaren. [lemimmeri Mmakcumasiapl Katemep 6acka dIicTepre KaparaHIa 9iCTI HETi3Aey VImiH
YABIMIACTBIPBIIFAH. MbIcaamap/ibl Menryaeri KaOaTThIH dpeKeTi rpaduKTep/ie KOPCETIIreH.

Kiam cesdep: nuddepeHnmaIbIK-aibIPBIMILIK, TEHEY1, MeKapasblK KabaT, CTaHIAPTTHI eMeC IIeKTi aii-
BIPBIM, YKUHAKTBLIBIK,

P. Omxkap, M. Jlany, K. ®aneenpa

Vhusepcumemcruti xoaredotc nayku; Yrusepcumem Ocmaruu, Xatidapabad, Undus

Ymncaennoe penienne anuddepeHnaibHO-PAa3HOCTHBIX YPaBHEHUII C
BHYTPEHHUM CJIOEM C MCIIOJIb30BAaHMEM HECTAH/IAPTHBIX KOHEYHBIX
pa3HoCTel

B craThe paccmorpeno perenne ypapHeHUs TudHEPEHITNATBEHO-PA3HOCTHOTO THUITA, UMEIOIIETO TOBEIEHNE
BHYTpeHHero cyiosi. 1Ipemiozkena pa3sHOCTHAST CXeMa PEIIEHHs 9TOr0 YPABHEHUS € MCIIOJIb30BAHNEM HECTAH-
JIaPTHOI'O METOJ[a KOHEYHBIX pas3HocTeii. KoHedHble pA3HOCTH MOy Y€HbI U3 IPOM3BOHBIX [IEPBOIO U BTOPO-
ro nopsijika. Vcrmoas3yst 3Tu Npub/INyKeHUsl, TaHHOe YpaBHEHME JTUCKPEeTU3upyercst. /(ucKkpeTnsnpoBanHoe
YPaBHEHUE PEIAaeTCs C MMOMOIIBIO AJTOPUTMA IS TPEXIUATOHAJIBHON cucTeMbl. MeToa mpoBepsieTcs Ha
CXOJIMMOCTb. JlJIsi IIPOBEPKYU MeTO/[a IPOMJIJIIOCTPUPOBAHBI YUCJIEHHbIE TpUMephl. MakcuMmasibable omubKu
B pEIIeHUH, B OTJIUYME OT JPYTUX METOJOB, OPraHU30BaHbI JJjisi 000CHOBaHUsT MeTona. lloBenenue ciost B
pellleHnn MPpUMepoB U300parkeHo Ha rpaduKax.

Kmouesvie caosa: muddepeHmaibHO-pa3HOCTHOE YPaBHEHNe, TIOIPAHNIHBIN CJIOi, HECTaHIapTHAST KOHEU-
Hasl Pa3HOCTh, CXOIUMOCTb.
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A family of definite integrals involving Legendre’s polynomials

The main objective of this article is to provide the analytical solutions (not previously found and not
available in the literature) of some problems related with definite integrals integrands of which are the
products of the derivatives of Legendre’s polynomials of first kind having different order, with the help of
some derivatives of Legendre’s polynomials of first kind P, (z), Rodrigues formula, Leibnitz’s generalized
rule for successive integration by parts and certain values of successive differential coefficients of (2% — 1)"
at x = £1.

Keywords: Legendre polynomials; Rodrigues formula; Leibnitz generalized rule for successive integration
by parts; Murphy formula for Legendre polynomial.

1 Motivation and objectives

Legendre polynomials are studied in most science and engineering mathematics courses, mainly in
those courses focused on differential equations or special functions. Legendre polynomials, also known
as spherical harmonics or zonal harmonics, were first introduced in 1782 by Adrien-Marie Legendre.
Legendre polynomials are used in several areas in physics and mathematics. For example, Legendre and
Associate Legendre polynomials are widely used in the determination of wave functions of electrons in
the orbits of an atom [1,2] and in the determination of potential functions in the spherically symmetric
geometry [3]. In 1784, the significant of Legendre polynomials is sensed when the attraction of spheroids
and ellipsoids was studying by A. Legendre. They may arise from solutions of Legendre ODE, such as
the analog ODEs in spherical polar coordinates and the famous Helmholtz equation.

The main aim of this work is to fill up the gap in the existing literature on definite integrals
integrands of which are the product of the derivatives of two families of classical Legendre’s polynomials
of first kind, by adding certain definite integrals in the incomplete list, as shown in the following possible
combinations of definite integrals:

First combination of definite integrals:

+1
Already Solved / P (z)Pp,(z)dz (1)
-1
+1
Unsolved/ P, (z)P,,/ (z)dx (2)
-1
+1
Unsolved/ P, (z)P,," (z)dx (3)
-1
+1
Unsolved/ P, (2)Py" (z)dz (4)
-1

*Corresponding author.
E-mail: malikshakir77/@gmail.com
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+1
Already Solved/ P, (z)P,(z)dz (5)
-1
+1
Unsolved/ P, (z)P,/(x)dx (6)
-1
+1
Unsolved/ P, (z)P,” (z)dx (7)
-1
+1
Unsolved/ P, (z)P,)” (z)dz (8)
—1
Second combination of definite integrals:
+1
Unsolved/ P,/ (2)Py, (z)dx 9)
-1
+1
Already Solved/ P,/ ()P (z)dz (10)
-1
+1
Unsolved/ P,/ ()P (z)dz (11)
-1
+1
Unsolved/ P,/ ()P, (z)dz (12)
-1
+1
Repeated with (6)/ P,/ (2)Py,(z)dx (13)
-1
+1
Already Solved/ P,/ (z)P,/ (x)dz (14)
-1
+1
Unsolved/ P,/ ()P, (z)dz (15)
-1
+1
Unsolved/ P,/ ()P, (z)dz (16)
-1
Third combination of definite integrals:
+1
Unsolved/ P,  (2)Py, (z)dx (17)
-1
+1
Unsolved/ P, ()P (z)dz (18)
-1
+1
Already Solved/ P, ()P (z)dz (19)
-1
+1
Unsolved/ P, ()P, (z)dx (20)
-1
+1
Repeated with (7)/ P, ()P, (z)dx (21)
-1
+1
Repeated with (15)/ P, ()P, (z)dz (22)
-1
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+1
Already Solved/ P, ()P, (z)dx (23)
-1
+1
Unsolved/ P, (2)P," (z)dx (24)
-1
Fourth combination of definite integrals:
Unsolved Pn’” m(z)dz (25)
-1
+1
Unsolved/ P, ()P (z)dx (26)
1

+1
Unsolved P ()P (z)dx (27)

-1

Unsolved/ 2 ()P (x)dx (28)

Repeated with (8)/ P, " (2)Py(z)dx (29)
-1
+1
Repeated with (16)/ P, (z)P,)/ (z)dx (30)
-1
+1
Repeated with (24)/ P, ()P, (x)dz (31)
-1
+1
Unsolved/ P, (z)P," (z)dx (32)
-1

Now there are twenty-six non-repeated combinations of the product of derivatives of two Legendre’s
polynomials. Out of twenty-six integrals only six integrals are solved. Now we have to solve remaining
twenty integrals solutions of which are not available in the literature of special functions.

For the sake of convenience we shall use the following notations and other results:

Suppose D*! {F(z)} = dcf,; {F(2)}, D" {F(2)} = fm {F(2)}, D7 {F(2)} = 5 {F(2)} = [{F(2)} da,
D™ {F(z)} = o= {F(x /// .m - times.. // {F(z)} dz dz dz..m- times ..dz dz.

Some derivatives of Legendre’s polynomials of first kind P,,(z), using Rodrigues formula [4; p.162, Eq.(7)]:

1 dr

_ (2 1\n
Pn(@) = 2np! dx™ (@ = 1",
D{P =P, _ L am™ s n"
{Pn(2)} = n(fﬂ)—mw(f - 1",
1 dn+2

D? {Py(x)} = Py () =

onnl dgnt2 T
1 dn+3

D*{Py(2)} = P," (z) = Il den 3T

where n is zero and positive integer.
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Leibnitz’s (also Leibniz) generalized rule for successive integration by parts:

I= / U(z).T(z)dz = / U.Tdx

I=(-D)°{DU}{D7'T} + (-1)' {D'U}{D*T} +
+(-1)*{D*U}{D*T} + (-1)*{D’U} {D'T} +
Foee e, + (-1 {D'U}{D~'T} +

+(—1)7+1 / {DJ‘HU} {D_J_lT} dz + constant of integration. (34)

d2n($2 _ l)n

T = D?"(2? —1)" = (2n)!

{Factorial of any negative integer }71 = 0.

Our present investigation is motivated by the work collected in beautiful monographs of [5-14]. The
article is organized as follows. In Section 2, we present some values of successive differential coefficients
of (z2 —1)" at = £1. In Section 3, we mention six known definite integrals. In Section 4, we establish
twenty new definite integrals. In Section 5, we have given the derivation of these new definite integrals.

2 Some successive differential coefficients of (z? —1)" at x = *1

ey = Lo e &

[D"(z* = 1)7]__, =2"r! (36)

(D" (2= 1)7]___ =2"r(-1)" (37)

(D @ =) = W (38)

(D2 1y = (—1)2’“7“!?"(2 + DD (39)

D2 1], 27rl(r + 1)(r8+ 2)r(r — 1) (40)

Do y] = 27l(r + 1)(r +82)r(r —1)(=1)" (41)
(DR 1] 2rl(r +1)(r + 2)(28+ 3)r(r — 1)(r - 2) 2)
D — 1y = (=1)271(r + D)(r + 2)(r + 3)r(r — 1)(r — 2)(=1)" (43)

p==1 48
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_ 2rlr+ 1)(r+2)(r+3)(r+4)r(r —1)(r —2)(r — 3)

(D@ = 1),y 551 (44)
[DT+4(952 1y = 2"rl(r + 1) (r +2)(r + 3)(r —1?—)8427“(1“ —1)(r—=2)(r—3)(-1)" (45)
[D7’+5(3:2—1)’”] _ 2rlr+ D)(r+2)(r+3)(r+4)(r+5)r(r—1)(r —2)(r —3)(r — 4) (46)

z=1 3840

4502 _ 1y (=027 (r + D(r +2)(r +3)(r +4)(r + 5)r(r = D(r = 2)(r = 3)(r = 4)(=1)"
D5 -1y, =
w==1 3840
(47)
With the help of Rodrigues formula and derivatives of the hypergeometric forms (Murphy formula
[4; p.166, Egs.(2) and (3)]) of Legendre’s polynomials P,(x), we can derive successive differential
coefficients of (22 — 1)" at x = £1.

3 Siz known definite integrals

+1
Integral(1). / P, ()P (z)dx =0, if ' m #n. (48)
~1
+1 5 2
Integral(5). {Pp(z)} da = il (49)
—1

The integrals (1) or (48) and (5) or (49) were derived by A. M. Legendre in the years 1784 and 1789
respectively ([15; p.281]; see also[16; p.277, Eqn’s (13) and (14)]).
Integral(10). When m and n are positive integers and m > n > 1, then

+1 nin
/1 P,/ ()P (2)dz = (2“) (14 (—1ymeny (50)

Special case of the integral (50)

/H P/ ()P () — {0 if (m + n)is an odd integer and m >n > 1,

1 n(n+1) if (m+n) is an even integer and m >n > 1.

Integral(14). When m and n are positive integers and m = n in equation (50), then

+1
1 {P,)(2)}? dz = n(n +1). (51)

The integrals (10) or (50) and (14) or (51) were asked in examination of Clare College London,
Cambridge University (1898)[17; p.170, Q.N.11];[18; p.309, e.g.(3)].
Integral(19). When m and n are positive integers such that m > n > 2, then

/H P, ()P (z)dz = _(nt2 {1+ (=)™} {3m(m +1) —n(n+ 1)+ 6}. (52)
1" " (n — 2)(48)
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Special case of the integral (52)

+1
/ P, ()P, (z)dz
-1

0 if (m 4 n) is an odd integer and
m>n> 2,

n(nﬂ)(gf)(n_l) {83m(m+1) —n(n+1)+6} if (m+n)is an even integer and
m>n > 2.

Integral(23). When m and n are positive integers and m = n in equation (52), then

T{Pn”(m)}Z dr= PED 1y 1a) (53)

. (n—2)1(12)

The integrals (19) or (52) and (23) or (53) were asked in examination of Mathematical Tripos,
Cambridge University (1897) [15; p.308, Q.N.2|; [18; p.309, e.g.(4)]. But the solutions of (52) and
(53) are not available in the literature of special functions.

Remark: We have verified the definite integrals of Legendre’s polynomials (48), (49), (50), (51),
(52) and (53) numerically by using Mathematica software.

4 Twenty unsolved and new definite integrals

Integral(2). When m and n are positive integers such that m > n, then

+1
/ P, (z)P,,/ (z)dz = {1 — (=1)™*"}. (54)

-1

Special case of the integral (54)

if (m+n) is an even integer and m > n.

/+1 P (2)P,/ (x)ds — {2 if (m + n) is an odd integer and m > n,
—1

Integral(6). When m and n are positive integers such that m = n in equation (54), then

+1
/ P, (z)P,/(z)dx = 0.

-1

Integral(3). When m and n are positive integers such that m > n, then

+1 _1\m+n
/1 P ()P (2)d = L 21) Y im(m 4+ 1) — n(n + 1)) (55)

Special case of the integral (55)

0 if (m 4+ n) is an odd integer and
+1 >
[ Pa@Pa @)de = e |
~1 m(m+1) —n(n+1) if (m+n) is an even integer and
m > n.
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Integral(7). When m and n are positive integers such that m = n in equation (55), then
+1
/ P, (z)P," (x)dz = 0.
-1
Integral(4). When m and n are positive integers such that m > n, then

+1 _ (_1\ym+tn
-1

x{m(m+1)(m+2)(m—1)—2nn+1)m(m+1)+nn+1)(n+2)(n—1)}. (56)
Special case of the integral (56)

+1
/ P, (2)P" (z)dx

-1
${m(m+1)(m +2)(m —1)—
=2n(n+ 1)m(m + 1)+
+nn+1)(n+2)(n—1)} if (m+n) is an odd integer and m > n,

0 if (m 4+ n) is an even integer and m > n.

Integral(8). When m and n are positive integers such that m = n in equation (56), then

+1
/ P,y (2)P," (z)dz = 0.
1

Integral(9). When m and n are positive integers such that m > n, then

+1
/_ P@Pu)ds =0, (57)

Repeated Integral(18). When m and n are positive integers such that m = n in equation (57), then

+1
/1 P,/ (2)Pp(z)dx = 0.

Integral(11). When m and n are positive integers such that m > n, then

+1 nn
/_1 P,/ (z)P,,” (z)dz = (;1) {1— (=)™} 2m(m+1)— (n+2)(n—1)}. (58)

Special case of the integral(58)

+1
/_1 P,/ (z)P," (z)dz

_ {n(njl) {2m(m+1) — (n+2)(n—1)} if (m+n) is an odd integer and m > n,

0 if (m+mn) is an even integer and m > n.

Integral(15). When m and n are positive integers such that m = n in equation (58), then

+1
/ P,/ ()P, (z)dz = 0.
1
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Integral(12). When m and n are positive integers such that m > n, then

1 / " o n(”"‘ 1) m+n
/1 P, ()P, (x)dx—T{l—F(—l) Y

x{3m(m+1)(m+2)(m—1)—3(n+2)(n—1)mm+1)+(n+2)(n+3)(n—1)(n—2)}. (59)
Special case of the integral (59)

+1
/ P,/ ()P (z)dz

1

0

25t {3m(m + 1)(m + 2)(m — 1)~

—3(n+2)(n — )ym(m + 1)+
+(n+2)(n+3)(n—1)(n—2)}

if (m 4+ n) is an odd integer and m > n,

if (m+n)is an even integer and m > n.

Integral(16). When m and n are positive integers such that m = n in equation (59), then

+ ’ " . (n + 3)! - n
/_1 P, ()P, (x)dx = =Nk > 3.

Integral(17). When m and n are positive integers such that m > n, then

+1
/ P/ @Pu@)s =0, (60)

Repeated Integral(21). When m and n are positive integers such that m = n in equation (60), then

+1
/ P,/ ()P, (z)dx = 0.

1

Integral(18). When m and n are positive integers and m > n > 2, then

i //$ /a? T = (n+2)' _(_1\ymtn
/1 P (#)Pr(x)d = s {1 (2171 (61)

Special case of the integral (61)

/+1 P ()P () {(71(7_1;)2,)(11) if (m + n) is an odd integer and m >n > 2,
n ()P (z)dx = :
-1 0

if (m+n) is an even integer and m >n > 2.
Repeated Integral(22). When m and n are positive integers such that m = n in equation (61), then
+1
/ P, ()P, (x)dz = 0.
-1
Integral(20). When m and n are positive integers such that m > n > 2, then

+ n !
/ P ()P (a)de = (n(_ ;)!284) {1 - (=1)™") x

x{6m(m+1)(m+2)(m—1)—4(n+3)(n—2)m(m+ 1)+ (n+3)(n+4)(n —2)(n—3)}. (62)
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Special case of the integral(62)

+1
/ P, ()P, (z)dx

-1

(ol {6m(m + 1)(m + 2)(m — 1)—
—4(n+3)(n —2)m(m + 1)+
)+ m+3)(n+4)(n—-2)(n—3)} if (m 4+ n) is an odd integer and
B m>mn2> 2,
0 if (m+mn) is an even integer and
m>n > 2.

\

Integral(24). When m and n are positive integers such that m = n in equation (62), then

+1
/ P, ()P, (z)dz = 0.
-1

Integral(25). When m and n are positive integers such that m > n, then

+1
/ P (2)Pon () = 0.
—1

(63)

Repeated Integral(29). When m and n are positive integers such that m = n in equation (63), then

+1
/ P, (2)Pp(z)dx = 0.
-1

Integral(26). When m and n are positive integers and m > n > 3, then

1 " / o (n+3)! _1\ym+n
/_1 P, ()P, (:U)dﬂc—i(n_?))!(%){l%—( 1yl

Special case of the integral (64)

(n+3)!

moien i (m+n) is an even integer and m >n > 3.

/+1 P, () Py (2)dar = {0 if (m + n) is an odd integer and m > n > 3,
-1

(64)

Repeated Integral(30). When m and n are positive integers such that m = n in equation (64), then

1 " / . (n + 3)! n
/_ CP@P (e = i = s

Integral(27). When m and n are positive integers and m > n > 3, then

1 " 1" o (n+3 m+n
/1 P, @)y (@) = S s {1 = (1)) fdm{m + 1) = (0 +4)(n = 3),

Special case of the integral (65)

+1
/ P, ()P (z)dx

-1
(n+3)!

(n—3)1(192) *
=49 x{dm(m+1)—(n+4)(n—3)} if (m+n)is an odd integer and m > n > 3,
0 if (m +n) is an even integer and m >n > 3.

(65)
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Repeated Integral(31). When m and n are positive integers such that m = n in equation (65), then

+1
/ P, ()P, (z)dz = 0.
-1

Integral(28). When m and n are positive integers such that m > n > 3, then

+1 n !
/_1 Pn"'(x)Pm"’(x)dx — (n E 3‘)"!(?;)840) {1 + (71)m+n} %

x{10m(m+1)(m+2)(m—1) =5(n+4)(n—3)m(m+1)+ (n+4)(n+5)(n—3)(n—4)}. (66)

Special case of the integral(66)

+1
/ Pn”/(a:)Pm”/(x)dw

-1

0 if (m 4+ n) is an odd integer and
m>n>3,
_ ey % {10m(m + 1)(m + 2)(m — 1)—
—5(n+4)(n —3)m(m+ 1)+
+(n+4)(n+5)(n—3)(n—4)} if (m+mn) is an even integer and
m>n>3

Integral(32). When m and n are positive integers such that m = n in equation (66), then

(n+3)!

+1
{Pn’”(a:)}2dx —
1

Remark: We have verified the definite integrals from (54) to (67) of Legendre’s polynomials numerically
by using Mathematica software.

§ Derivation of new definite integrals of section 4
Here, in this section we shall provide the detailed and systematic derivation of any one integral.

Derivation of integral (66):
Consider the integral when m >n > 3

+1
I= {2m+"(m!)(n!)}/_1 P, ()P, (z)dz. (68)

Using the equation (33), we have
+1
I = Dn+3(1‘2 _ 1)an+3(x2 _ 1)mdl’.
-1

Taking U = D""3(22 —1)", T = D™3(22 — 1)™ and using the Leibnitz integration formula (34) (with
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suitable value of J =n —4), we get

I = (71)0 {Dn+3( }{Dm+2(x2 1)m} +

+(=1)'{D"(2? } {D"(2® —1)"} +

+(_1)2 {Dn+5 }{Dm(l‘2 1)m} 4+

+(_1)3 {Dn+6( }{Dm 1(1,2 1)m}+

e +
+1

I = |:(_1)0 {Dn+3(l,2 }{Dm+2(x2 1)m} +

+(=D' {DrH }{Dm“(oﬂ D™} +

+(=1)" {D"*5 "D~ 1))+

+(=1)? { D" (2? }{Dm Ha? =)™} +

S T T TP PTPPRR +
+1

I=|(-D)%{D"@® - 1)"} { D" (2> — 1)} +

+(_ I{Dn+4 2 n} {Dm—i-l 2 1)m}+

+(_1) {Dn-l-ﬁ( }{Dm 1 1)m}+

L RO PPRPPOPPPRR +

+(_1)n74 {D2n71(m2 . 1)n} {Dmfn+6(x2 _ 1)m} +
_|_( l)n 3(2“) {Dm n+5( 2 1)m} +17 (69)

-1

= [upper limit of right-hand side expression of (69) at x = 1] —
—[lower limit of right-hand side expression of (69) at z = —1].

The values of fourth line to last line of right-hand side expression of (69) will be zero at = +1 because
(m—1), (m—2),....{m — (n — 5)} are less than m, in view of the equation (35).

I = (_1)0 {Dn+3($2 o 1)n} {Dm+2(1’2 o 1)m} + (_1)1 {Dn+4(l‘2 o 1)n} {Dm—&-l(xQ o 1)m} +
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+1
(12 {DM (a2 — 1)) { D7 (a2 — 1)7%}] | (70)

Now using the results [see equations (36), (37), (38), (39), (40), (41), (42), (43), (44), (45), (46) and
(47)] (with suitable values of p and ) in the equation (70), we get

(10)2"n!In(n+1)(n+2)(n+3)(n — 1)(n — 2) 2"mIm(m + 1)(m + 2)(m — 1)
= [{ 480 } { 8 }_

(5)2"nInn+1)(n+2)(n+3)(n+4)(n—1)(n—2)(n—3) | [2™m!m(m+1)
- { 1920 } { } "

2
+{2nn!n(n+1)(n+2)(n+3)(n+4)(n+5)(n—1)(n—2)(n—3)(n—4) (2" ]_

3840

- [ { (10)(=1)2"n!n(n + 1)(n + 2)(n + 3)(n — 1)(n — 2)(=1)" } y
480

8
B { (5)2"nInn+ 1) (n+2)(n+3)(n+4)(n—1)(n —2)(n — 3)(—1)”} "
1920

X { (=1)2™mlm(m + 1)(—1)m} .

. {2mm!m(m +1)(m +2)(m — 1)(—1>m} _

2

N { (=1)2"nIn(n+1)(n+2)(n+3)(n+4)(n+5)(n —1)(n — 2)(n — 3)(n — 4)(—1)”} y
3840

x {2mm!(—1)m}],

X

3840
x[10m(m + 1)(m + 2)(m — 1) + 10m(m + 1)(m + 2)(m — 1)(=1)""" = 5(n + 4)(n — 3)m(m + 1)—
—5(n+4)(n—3)m(m-+1)(=1)" "+ (n+4)(n+5)(n—3)(n—4)+ (n+4)(n+5)(n—3)(n—4)(=1)™"],

(2™ mlnln(n +1)(n + 2)(n + 3)(n — 1)(n — 2)
= { 3840 } %

x[10m(m + 1)(m + 2)(m — {1 + (=)™} = 5(n 4+ 4)(n — 3)m(m + 1){1 + (=1)™T"}+
+(n+4)(n+5)(n—3)(n— {1+ (—1)™"}],

I {2m+”m!n!n(n +1)(n+2)(n+3)(n—1)(n—2) }

(
)

(n+3)(n+2)(n+1)n(n —1)(n —2)(n —
3840 (n — 3)!

I ={2™ "mlnl} { 3)! } {1+ (-1)""}x

x[10m(m+1)(m+2)(m—1) =5(n+4)(n—3)m(m+1)+ (n+4)(n+5)(n —3)(n—4)]. (71)

Finally, cancelling the factor {2"t"mln!} in the equations (68) and (71), we obtain the integral (66).
Similarly, we can derive the remaining integrals.
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Conclusion

Here in this paper, we obtain some definite integrals related with the product of the derivatives
of Legendre’s polynomials of first kind of different order, by using the derivatives of Legendre’s
polynomials of first kind P, (x), Rodrigues formula, Leibnitz’s generalized rule for successive integration
by parts and some values of successive differential coefficients of (22 — 1)" at x = £1.

We conclude our present investigation by observing that, we can evaluate the following integral
i _+11 %Pm(x)} {%Pn(x)} dz by taking positive integral values of r and s, in analogous manner. The
classical Legendre polynomials P, (z) form a sequence of orthogonal polynomials with many historical
applications. Their use continues in recent times in applications such as beam theory [19], phone
segmentation [20], neural networks [21] and signal processing [22]; see also the recent works [23-25]

dealing extensively with the methodology and techniques based on Legendre polynomials.
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M.N. Kypermu, C.X. Manuk, /1. Axma

orcamusa-Muanus-Ucaamus (Opmanvik, yrusepcumem), Horo-leau, Yrdicmar

Kypambmga Jlexkanap kenmyinesiepi 6ap aHbIKTaJFaH WHTErpaJjaap

e o
YUipi

MakaJiaHblH Herisri MakcaTbl-aHBIKTAJFaH HHTErpajapMeH OaillaHblcThl Keibip ecemrepai (6ypbiH Ta-
ObLIMaraH JKoHe oJeOueTTe YKapusIaHOAFaH) aHAJIUTUKAJIBIK, YKOJIMEH IIenry. AHBIKTAIFAH WHTETPasIbIH
WHTErpaJl aCTBIHIAFBI OpHETi op Typsi perti Gipiami TekTi Jlekanap MOJMHOMIAPBIHBIH TYBIHIBLIAPBI-
HBIH KebeiTinmici 6osbin Tabbliaabl, 6yn perre P (x) 6ipinmi rekti JIexKaHAp MOJMHOMIAPBIHBIH Keibip
TybIAbLTApE], Poxpurec dopmynanaps, Jeibmunrin Tis6exrenren mudbdepenmuanipik, (x2 — 1)7, x = +1
KO3 durmeHTTepiHiy 6oikTepi MeH Keitbip MoHIepi OoilibiHITa Ti30€KTEn MHTErpaayFa apHAJFaH YKaJ-
NIBLTAHFAH epeXKeci KOJITaHbLIa IbL.

Kiam cosdep: Jlesxkanap kenmyiesiepi, Ponpurec (hopmystacer, 6ipTiHgern 6eikTen naTerpaaiay yuis JIeio-
HUIITIH YKaJITbUIAHFaH epexeci, Jlexkanap kenmyteci yinia Mepdu dopmyacsr.
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M.U. Kypemm, C.X. Mayuk, /1. Axma

Iorcamus-Munaua-Ucaamua (Lenmparorodi ynusepcumem), Horo-Zleau, Hnous

CeMmelicTBO oIlpeae/IeHHbIX NHTErpaJjioB, COAEPXKAIINX MHOTIOYJIEHbI
Jlexxanapa

OcHOBHA 11€JIb HACTOSIIEH CTATHH — JIATh AHAJIMTUIECKUE pelleHns (paHnee He HANIEHHDbIE U HE OIlyBJInKO-
BaHHBIE B JINTEPATYPE) HEKOTOPBIX 33124, CBA3AHHBIX C OLPEIEIEHHBIMU HHTErPaIaMHy, TOABIHTErPAIbHbI-
MU BBIPAXKEHUSIMU KOTOPBIX SIBJITFOTCS TIPOU3BEEHNsT ITPOU3BOIHBIX MOJMHOMOB JlexkaHipa mepBoro posa
PA3HOrO NOPSIJIKA, C IOMOIIBIO HEKOTOPBIX IIPOU3BOIHBIX TOJUHOMOB Jlexxanapa mepsoro poga Pr(x), dop-
mysbl Ponpureca, o6o6iiennoro npasmiia JlefiGHuna J1jisi 0Cae10BaTeIbHON0 NHTETPUPOBAHUS IO IACTIM
U HEKOTOPBIX 3HAMEHMH MOCIe0BaTeNbHbX Auddepennnatbapx kosbdunmenros (22 — 1)” mpr z = +1.

Kmouesvie caosa: mommuomsr Jlexxanmpa, dopmynra Pompureca, o6obientnoe npasuio Jleibuumna st mo-
CJIeIOBATEILHOIO MHTEIPUPOBAHUS 110 YacTsaM, (popmyia Mepdu st mHOrowieHa Jlexkanapa.
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Boundary value problems of integrodifferential equations under
boundary conditions taking into account physical nonlinearity

When solving integrodifferential equations under boundary conditions, taking into account physical nonli-
nearity, a broad class of boundary-value problems of oscillations arises associated with various boundary
conditions at the edges of a flat element. When taking into account non-stationary external influences, the
main parameters is the frequency of natural vibrations of a flat component, taking into account temperature,
prestressing, and other factors. The study of such problems, taking into account complicating factors,
reduces to solving rather complex problems. The difficulty of solving these problems is due to both the
type of equations and the variety. We analyze the results of previous works on the boundary problems of
vibrations of plane elements. Possible boundary conditions at the edges of a flat element and the necessary
initial conditions for solving particular problems of self-oscillation and forced vibrations, and other problems
are considered. The set of equations, boundaries, and initial conditions make it possible to formulate and
solve various boundary value problems of vibrations for a flat element. The oscillation equations for a flat
element in the form of a plate given in this paper contain viscoelastic operators that describe the viscous
behavior of the materials of a flat component. In studying oscillations and wave processes, it is advisable
to take the kernels of viscoelastic operators regularly, since only such operators describe instantaneous
elasticity and then viscous flow.

Keywords: physical nonlinearity, plates, oscillations, boundary value problems, wave process, isotropic
plates, integrodifferential equation, approximate equation, nonlinear operators.

Introduction

When solving integrodifferential equations under boundary conditions, taking into account physical
nonlinearity, a broad class of boundary-value problems of oscillations arises associated with various
boundary conditions at the edges of a flat element. When taking into account non-stationary external
influences, the main parameters is the frequency of natural vibrations of a flat element, taking into
account temperature, prestressing, and other factors. The study of such problems, taking into account
complicating factors, reduces to solving rather complex problems. The difficulty of solving these
problems is due to both the type of equations and the variety. Let us systematize the results of previous
works on boundary value problems of oscillations of flat elements. Possible boundary conditions at the
edges of a flat element and initial conditions necessary for solving particular problems of natural
and forced vibrations, and other problems are considered. The set of equations, boundary, and initial
conditions make it possible to formulate and solve various boundary value problems of vibrations
for a flat element. Integrodifferential equations with regular kernels are known to be equivalent to
partial differential equations. For other approximate equations of oscillations of a plane element, these
equations for regular nuclei can also be reduced to partial differential equations, which will be shown
below.

*Corresponding author.
E-mail: medeubaev65@mail.ru
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The assumed mathematical approach allows us to consider problems in a nonlinear setting when the
nonlinearity is physical. The necessary theoretical information on the substantiation of the nonlinear
dependence law o;; ~ ¢€;; for a viscoelastic isotropic body was presented in other papers.

1 General staging

For simplicity, we will consider a flat structure in the form of a plate and a base in the plane (z, z) or
when external forces do not depend on the y coordinate. In this case, displacements u;, w; are non-zero,
and displacement v; = 0, i.e. absent. We assume that vibrations of a plate lying on a deformable base
can be caused both by external forces on the surface of the plate and by disturbances propagating from
the side of the base. In addition, we will assume that along the boundaries of the contact of the plate
with the base, these contacts are ideal, i.e. there is no friction. Let us consider the case when the base
material is isotropic and the dependence of stresses on strains is linear, i.e. Boltzmann-type relations
hold [1-3]:

o) = La(e)) + 20(e$),

2 . L,
Ufj) :M2<€£]))7 (Z,j:$,Z,Z7é])
Let us assume that the dependences of stresses on deformations for a plate are cubic.

o) = 3K R+ ax(VESD (€]} + 26 ROLEDD — ) - [+ anVeP w1, ()

1 1 DA, (D2 70 g .
oy = LRV L+ arg GV (0], G # jsi = 20 = 1,2),
where e(!) is the average volumetric strain. (wél) 2) is the square strain intensity, i.e.

12
NAE

(2 w2 2wz Lel

zz rxr ZZ 2 Tz

(5% =

X(()l),’y(() ) are the elongation and shear functions, respectively, which are expressed by the formulas:

X(()I) =1 —I—F(gl)(fé)ﬂé(%() 2 )=1+Fj (w(1)2), j( )(0) = 0.

In this case, the functions Fo(l) and Fl(l) are expanded in a power series

Z Q- n+1),
Z " )y2(nt1)

R(()l) and R( are linear integral operators of Voltaire type

RO = ¢(t) - / Fuo(t — €)C(€)de,
0
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Kél) and Ggl) are non-linear viscoelastic operators.

t t
KD (02) = (2 //F”t—&t—@mo@mwm,
0 0

t
G@w95=¢9”i/ﬂ”@—8%m@M§
0

Constants K7 and 1 are equal
2
Ky =X+ sp1;G1 =

3
The vibration equations for a plate as a viscoelastic layer have the form: [4].
4 82u 0u
KO pM) = (1) 1 (1) 1 KR )
82 0%u
X gmas O () = o1
2 2
1, Lo pm) 27 W W 1), 45 g0
<K1RO + 3G1R > 97202 + G1R 92 + K1R0 + 3G1R X
82111 0w
X 21 + F( )(Ulawl) = Pliatgla
where Fl(l), F2(1) are non-linear operators.
0
F1(1)(U1,w1) = 3K1X(() )R( : { [E(I)Kél)(&()m)} } +
Ox
+w{@RmaK52£%41 } 0 RO DGO )
Ox 0z
9

P, ) = xR0 {2 i) Lo

9z
9 0
+70 {GlRlaZ (e — et (v } + 790G RO =[0G ()]

Boundary conditions: at z = h.

f(l (m t)v g:z) =0

at z = —h.

ol =050l = 0;08) = 0,01 = wn.

The initial conditions are zero, i.e. u; = % =w = % =0,att=0.

(4)

(5)

Thus, the boundary-value problem of the vibration of isotropic plates lying on a deformable
foundation, taking into account the physical nonlinearity of stresses from deformation, is reduced

to solving integrodifferential equations (2) under boundary and initial conditions (4)—(5).

Let us consider the oscillation equations taking into account the physical nonlinearity of stresses

due to deformations [5].
Relations (1) hold for the plate material.
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We will look for the displacements of the u and v plates in the form of a series with respect to

parameter «.
(z,2,t) E a"up(x, 2, t),

w(z, z,t) Zawnxzt (6)

In this case, the parameter a will be con51dered small, i.e. the nonlinearity is considered weak. We
restrict ourselves to the first two terms in the series (6). Then for ugp,wy and uj,w; we have the

equations:
0%u 0%u 9*w 0%u
Ly < 0> + My <O> + (L1 + My) (O> =p1 0» (7)

0z2 022 0z0z Oty

82u0 8211)0 8271)0 8211)0
e (g0 ) o (5 )+ () =

5? 5 o’ i
Ly < “1> + My <UI> + (L1 + M) < wl) + Fi(uo, w0) = pr

Ox? 022 0x0z Oty
02 0? 0? 0?
(L1 + My) <8xglz> + My (8;;1) + Ly (a:;l> + Fo(uo, wo) = p1 8;21’ (8)

where Ll = KlR(()l) = %GlR(l);Ml == GlR(l).

That problem was reduced to systems of two linear problems.

Problem (7) under boundary conditions (4) and (5) was solved in the second chapter in a three-
dimensional formulation, so we will consider it solved. For example, the exact equations for the
longitudinal-transverse oscillation of a plate lying on a deformable base in the first or linear approximations
in a flat setting have the form:

My (UD) 4+ Moy (W) + Mgy (UD) + My (WD) = ML,
1
D1y (UD) + Doy (W) 4 Dy (UM) + Dy (WD) = 0,

— K1y (UD) = Kooy (W) + Ky (UM) + Koy (WD) = 0,

where the operators M;,), Kj(n), Djn) are expressed from a system of general equations describing
the longitudinal-transverse oscillation of a plate of constant thickness located in a deformable medium
under the surface obtained in [5-7].

In particular, for the main part of the transverse displacement W) in the classical approximation
we have the equation

a*w
ozt

oY
ot20x2

82W0( ) h2
+ —

P T [PHINTT 4 3M) = dpy(3 = 2M L)

+8(1 — MyLY)

_l’_

+PW = & (a,1),

where the operator P is equal to
s o  h? 03 03
P=— — M Ly 4——| 5.
2hp1{6t+ 2 {pl( L) g - ataﬂH
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For equations (8), the boundary conditions have the form:
at z=h, ol =0; o) =0, 9)
at z = —h, o)) = R(wn); ofl) =0, (10)
where the operator R is found after the invocation of the operator

(8% + k* 4 ¢%)% — 4oafa(k* + ¢*)

a2(B2 - k2 — ¢?)
for k,q,p (k and ¢ are the parameters of the Fourier transform, p is the parameter of the Laplace
transform) [8].

Ry =

(1) _

It should be noted that from the boundary conditions (9), namely 0,7 =0 w; = wy at z = —h we
have eliminated the base parameters, and R is the base reaction.

Thus, we have the problem (5) of vibrations of an isotropic plate under boundary conditions (9)
and (10) taking into account the physical nonlinearity of stress versus strain [9,10].

With this formulation of the problem, we have a linear problem (8) under boundary conditions (9)
and (10), and in the left parts of equation (8), there are nonlinear terms Fi(ug,wp) and Fb(ug,wo)
depending on displacements ug, wy and having the form (3). Representing displacements u1,w; as

o0

sinkx
ug —/ ~coska }dk/ulo exp (pt)dt
0

l

o0

coskx
w1y —/ sinka }dk/wlo exp (pt)dt
0 l

for quantities ujg, w1 from equations (8) we obtain ordinary differential equations

d2u10 2 2 dwm
Mo 2 [p1p” + k”Ligluio — k[L1o + Mio] = Fio(uo, wo) (11)
d>w du
L10?210 — [p1p” + k> Myolwig — k[L1o + Mlo]T;O = Fyo(uo, wo),

where Fp and Fyy are Fourier and Laplace-transformed nonlinear functions F (ug, wp), F(ug, wp).

O }dk [ Freap oty

—coskx
0 l

coskzx
Fy —/ sinka dk/Fg exp (pt)dp.
0 l

General solutions of equations (11) are sought in the form

1

uto = k[ A1ch(a2) + Bush(az)] + 6 [4ach(82) + Bash(52)] =~z

z z

1
[ F@shiate = old + st [ FOshl(3 - o) de

0 0
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wio = —a[Aysh(az) + Bich(az)] — k[Assh(82) + Bach(52)] +

/ F)chlalz =1 — g — o

k(L1io+Mio) dF20 1 d’°Fig B
where F(z) = S T TR ~Rlal wrkar = I Flo.

w

In this case, function F(z) is considered to be given, and the integrals [ ch[y(z —&)]d¢ and
0

[ shy(z = £)] d¢ can be expanded into power series.
0

Expanding the expressions for ujg and wig into power series in coordinate z and introducing the
main parts of the displacement according to the formulas [11]:

Uro = kA1 + BAg; Ul = kBia+ 2By

Wi = 024, — kA W = —aB, — kB,

and reversing k and p we get:

e (1) 2n
_ (n) _ (1) oW, m | Z
" nzo { - Na0u| U+ a@u 5+ B } @ "
+Z - —D 0n| UW 4 D@ 2 AP 4 B e
Ten| Y1 Pen 5.2 2n+1 (2n+ 1)!’
RS 0o, 190, [\ _ ., 9% W, p@) 27
L ;}{[ €Al Q”] ox [A g2 n| Wi+ Fan (2n +1)!
= 50 0w 0p o T, g@ | 2
+7;) lQn o +[ 2 T \9 lQn] + 2n+1 Wa
where
F(l)_F l32_k2 +'”+a2n(52+k2)_2k262n
2 k(B2 — oz2) k(6?2 — a?)
2 2(n+1) _ (32 2\ 22n
B2, —F B — 4. 2P (85 + k)8
n 52(ﬁ2 _ a2) BZ(BQ _ a2)
o 9 p@)

3 1 4
F2(n) = &FZn)/ZZO; F2(n)+1 82 2n+1/Z=0'
Then from the boundary conditions (9) and (10) we obtain a system of four equations for
Uy, UV, w and w.
1 1 1,3
M, (U1) + Mé(n)(Wl( )+ Mé(n)(Ul( D)+ Mgy (WD) = My (Fsn™)

3(n)

R) R)! 1
pi () + DS W) + DY ) + D! >)<W<”> 50 ><F£2,F§nll>
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K (U1) = K (W) o K50 (UF) - Ky (W) = =K (Fi), (12)
where the operators M;(n), Kj’,(n) Dj(.ﬁz), j = 1,5 have the form:
o0 1 52 " h2n
- S (- B)a-ue ]} 2
n=0
& 1 32 1 hQn
Bl (- Z)oro-t
n=0
o0 1 n h2n+1
My = 2 { (22" D1@utn + ]} s
n=0
, x () 82 (n) h2n+1
= 2—IQ, —_
o) go{A ( o219 TN )} G+ 1)

o (2n) 2n+1
;o I OL 3)_h
[ h2n+1

2n +1)!

h2n+1

{
by = i {20 @ia+ 1+ g’} T

62 h2n
[(AS) T ) DiQu+ XY )” (2n)]

o 2 2n
_ m _ 9 AR
o = (4 5 P f g

n=0
o0 (2n+1) h2n
oy = S —F h (4)
5(n) — ~ { F2n+1 (2 + 1) + F2n+1 (277,)' }

[e8) 2 2n (2n+1)
(R) _ (n) 1 9 h e, 9|
Digny = 2_ { [(1 T —a (AQ aﬂ) Q"] ey T [Ctki Q”ax] @n+1)!

R _ o 0 m] h*" m 0 her D
Damy =D { [Ct <A2 - a> @t (1 —e)dy } e TRIMT 929 G

2n+1 (2n)

(m] P B o]

n) - { 2)\ 'D1Qn + Al } (2n +1)! R [ DlQn@x] (2n)!}
(2n+1) 2n
(R) _ )| P (n) (1) h
Dy = {[ ( 3 D1Qn + A" )} CIES P? A DlQ”] (Qn)!}
(RY (4) (1), h*" (3 R
Ds(n) - ;0 {[RFQn—I—l — ] (2n)! —(1+R)Fy, (2n+1)!

The system of equations (12) are the equations of the longitudinal-transverse oscillation of a plate
in a non-linear formulation, lying on a deformable foundation in the first approximation.
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2  Conclusions

Thus, the boundary-value problem of plate oscillations, taking into account the physical nonlinearity
of stresses, is reduced to solving integrodifferential equations, under given boundary and initial conditions.

A general formulation of the boundary value problem of vibrations of isotropic plates in a nonlinear
formulation, lying on a deformable foundation, is given. To solve specific problems, instead of exact
equations, it is advisable to use approximate ones, which include one or another finite order in
derivatives: such approximate equations can be easily obtained from exact equations, limited to a
finite number of first terms. If the nonlinear dependence on the stress intensity does not depend, i.e.
parameter vy = 0, the obtained results are greatly simplified. Of theoretical and applied interest is the
problem of the effects of a normal load on the surface of an elastic plate lying on an absolutely rigid
half-space with ideal contact between them. As above, it is assumed that the dependencies of stresses
on strains are non-linear (physical non-linearity).

Due to the ideality of the contact, the desired displacements of the points of the plate are symmetrical
with respect to displacement u and antisymmetric with respect to displacement v.
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A.ZK. Ceitrmyparos!, H.K. Meney6aes?, T.T. Koxxomos?, B.P. Mener6exos®

L Koproim Ama amwvmdaess Kwsvinopda ynusepcumemi, Kusviopda, Kasaxcman;
2 Axademurx E.A. Boxemos amuwindaen. Kapaeandw yrnusepcumemi, Kapaeanow, Kasaxcmar;
3 Hcxax Paszaxoe amwmoaes. Koipewid memaekemmis mernukaisy yrusepcumemi, Diwxex, Kvipevizcman;
4 Asamammor, asuayua axademuacs, Aamamo, Kasaxeman

Pu3nkKaJIbIK 0eiiChI3bIKTHI HETI31HAeri ImeKapaJblK, HIapTTapIarbl
MHTerpaJablK-anddepeHnnaJIbIK TeHAey/JIePIiH IeTTiK ecenrTepi

OusnkaIbIK 6efCHI3BIKTHI HETi31H 1€, MTeKapaJIbIK, apTTapia HHTErPAJIbIK- UMD depeHIaIbIK TeHIEYIep-
Ml 1rernty Ke3iHe Ka3blK JIEMEHTTIH, MMeTTEPIHIeri opTypJii MeKapasblK IIapTTapMeH OailIaHBICTBI Tep-
OeicTepIiH IETTIK ecenTepiHiH KeH KJachl TybIHAaiabl. CTalIMOHAPIBI €MEeC CBIPTKBI 9CEPJIEPl eCelKe
aJIFaHia, TEMIIEPATYpaHbl, ajJblH ajla KepHEyl »kKoHe 6acka (paKTOpJap/ bl €CKEPE OTBIPHII, *KA3bIK, JJIe-
MEHTTiH Tabufu TepbericTepiniy Kultiri Heri3ri mapamMeTpJep/is Heridrici 60abn TabblIaabl. Kypmeri dak-
TOPJIAPIBI ECKEPE OTHIPHII, MYHal IpobieMaIap bl 3ePTTEY OTe KYyP/IesIi MoceJIesIep/Ii ey KOJIbIHA 9Ke-
seni. By ecenrrepai mrernyis KUBIHABIFBI TEHIEYJIEPIH TYyPiHe »KoHe opTYpJIiiirine 6aisranbicTol. 2Ka3bIk
3JIEMEHTTED TepOesiCTepiHiH MeKapaJIbK, ecenrepi OOMBIHITA AJIIBIHFBI 2KACAJIFAH KYMBICTAPIBIH HOTHKE-
Jiepi Tasmanrad. 2Ka3bIK 9JIEMEHTTIH IeTTepiHaeri MyMKiH 60JIaThIH MIEKAPAJIBIK, [IAPTTAP MEH MEHIIIKTI
JKoHEe MoXKOypJii TepbesticTepil mepbec ecenmTepiH IIenryre KaykKeTTi HGacTankpl MIapTTap KoHe 0acka Ja
ecernTep KapacThIPbLIAAbl. ByJl TeHIEeyIep KUBIHBI, EKAPAIBIK, }KoHE OACTANKBI IIAPTTAD YKA3BIK JIEMEHT
yIIiH TepbesicTep/iil 9pTYpJI MIeKapaJblK, eCeTePiH KypacThIpyFa »KoHe Iienryre MyMKiHik 6epemi. Ocbl
JKYMBICTa, GepijireH IuracTUHa TYPIHJEri »Ka3bIK, 9JIEMEHTTIH TepbesicTepiHiy, TeHeyiepl KaJlllakK JIEMEHT
MAaTepPUAJTaPBIHBIH TYTKBIPJIBIK, OPEKETIH CUMATTANTHIH TYTKBIP CEPIIM/II OIepaTopIapabl KAMTHIHL. Tep-
OeJjlicrep MEH TOJIKBIHJIBIK ITPOIECTEP/Il 3ePTTEY/Ie TYTKBIP CEPITM/II OlTlepaTopIap/IblH siIpOJIapbiH XKYiei
Typ/ie KabbLIJaraH »KOH, OfTKEeHI TE€K OCBIHJAl ollepaTopsap Je3/iK CepHiM/iIiKTi, comaH KeiliH TYTKbIp
AFBIH/bI CUTIATTANIBI.

Kiam cesdep: dpusnkaibik 6eHChI3HIK, IJIaCTHHAJIAP, TepOeIic, MeKapablK, eCenTep, TOJKBIHIBIK, IPOIECC,
M30TPONTHI KAJIAKIIAIAD, MHTErPAJIBIK-TU(DdEPEHINAIIBIK, TEHIEY, KYBIKTBIK TEHJIEY, ChI3BIKTBHIK, eMeC
omepaTopJiap.
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A.ZK. Ceitrmyparos!, H.K. Meaey6aes?, T.T. Koxxomos?, B.P. Mener6exos*
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2 Kapaeanduncruti yrusepcumem umenu axademura E.A. Byxemosa, Kapazanda, Kasaxeman;

3 Kuipewacruti zocydapemeenmoiti mexnuveckud ynueepcumem umenu Hexaxa Paszsaxosa, Buwker, Kopzozcman;
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4 .
Axademus epasicdanckoti asuayuu, Aamamo, Kazaxcman

KpaeBble 3aaun mHTErpo—andpepeHnnaabHbIX YPaBHEHU ITpH
TPAHUYHBIX YCJOBHUAX C yIeTOM (PU3MIECKOl HEJIMHEMHOCTN

IIpu pemennu naTErpo-auddepeHnnaIbHbIX yPABHEHUN TPU IPAHUYHBIX YCJIOBUSX C YIETOM (DU3UIECKON
HEJIMHEHOCTY BO3HUKAET IMUPOKUN KJIACC KPAEBBIX 3aJ1a4d KOJeOAHU, CBA3aHHBIX C PA3JIMIHBIMU TPAHUYI-
HBIMH yCJIOBUSIMH Ha KpasgX IJIOCKOTO 3JjieMeHTa. lIpn ydeTe HecTarmoHApHBIX BHEIIHUX BO3EHCTBHII OC-
HOBHBIM U3 IVIABHBIX [1aPAMETPOB SIBJISIETCS 9aCTOTa COOCTBEHHBIX KOJIEOaHUI IIJIOCKOrO 9JIEMEHTa, C YIeTOM
TEeMIIEPATYPhI, IPEIBAPUTETLHON HAIPS2KEHHOCTH U APYTUX (hakTopoB. VcciremoBanne Takux 3a71a4, ¢ ydae-
TOM YCJIOXKHSIONUX (DAKTOPOB, CBOIUTCH K PEIIEHHUIO JOCTATOYHO CJIOXKHBIX 33/1a4. T'PY/IHOCTH penreHust
JIAHHBIX 3324 00yCJIOBJICHA KaK TUIIOM yPaBHEHMIA, TaK U pa3HoobpasueM. [Ipoanasn3npoBaHbl pe3yIbTaTel
MPEABIAYIAX paboT O KPAEBBIM 3aJadaM KOIeOaHUs IIOCKUX JIEMEHTOB. PaccMOTpEeHbI BO3MOXKHBIE TPa-
HUYHbBIE YCJIOBUS HA KPasiX IIJIOCKOT'O JIEMEHTa U HeOOXOIMMbIe HaYAJ/IbHbIE YCJIOBUS JJIsI PENIeHNs YaCTHBIX
3a/1a9 COOCTBEHHBIX U BBIHYKJEHHBIX Kojiebanuii u apyrue 3a1adn. COBOKYIIHOCTb YPaBHEHU, 'PDAHUIHBIX
¥ HAYAJIBHBIX YCJIOBUH MO3BOJISIOT (DOPMYIUPOBATE U PEIIATh PA3INIHbIE KPACBBIE 33149l KOJICOAHMS JIJTsT
ILIOCKOTO 3jieMeHTa. lIpuBenenHble B JaHHOW paboTe ypaBHEHH: KOJIeOaHUS IIJIOCKOTO dJIEMEHTa B BHU/IE
IVIACTUHKU COJIEPZKaT BS3KOYIIPYTHE OIEepPaTOPbI, ONMUCHIBAIONINE BA3KOE IOBEJeHUEe MaTEePHAJIOB IIJIOCKOI'O
asremenTa. 1lpu mcciaenoBannm KosebaHUsT M BOJIHOBBIX IIPOIECCOB $i/Ipa BI3KOYIPYTHX OIEPATOPOB IIieJie-
CO00Opa3HO OPaTh PEryasapHBIMU, TaAK KAK TOJHKO TAKHe OIIePATOPHI OIMCHIBAIOT MTHOBEHHYIO yIPYTOCTh, a
3aTeM BA3KOe TedeHue.

Karouesvie crosa: dbusmdeckas HEIMHEHHOCTD, IIJTACTUHKH, KOJIeOaHNsI, KPAeBble 3314, BOJTHOBOMH IIPOIIECC,
M30TPONHBIE IJIACTUHKYU, WHTErpo-auddepeHnmuaibHoe ypaBHeHe, TPUO/INKEHHbIE YPpaBHEHNSs, HEJIMHEl-
HbBIE OIIEPATOPHI.
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Generalized Hankel shifts and
exact Jackson—Stechkin inequalities in Lo

In this paper, we have solved several extremal problems of the best mean-square approximation of functions
f on the semiaxis with a power-law weight. In the Hilbert space L? with a power-law weight t2*7* we obtain
Jackson—Stechkin type inequalities between the value of the E,(f)-best approximation of a function f(t)
by partial Hankel integrals of an order not higher than o over the Bessel functions of the first kind and the
k-th order generalized modulus of smoothnes wy(B" f,t), where B is a second—order differential operator.

Keywords: best approximation, generalized modulus of smoothness of m-th order, Hilbert space.
Introduction
At present, there is a number of meaningful papers [1-3| devoted to the theory of approximation of

a function from Ls[0, 27]. Let o > —%. For p = 2 by Lo, we denote the space consisting of measurable
functions f on [0, 00), for which the norm is finite

1z = ( JE Qdua@))‘l’ |

x2a+1

T 20T (a + 1)

where

dpte () dzx.

Consider the Hankel transform defined for the function f:

ha(f)(A) = /0 T2 () o (@A) f(r)de, A€ (0,00),

where J,(z) is the Bessel function of the first kind of an order a > —3, I'(z) is the gamma-function.
In particular, for a = % and o = —% the Hankel transforms turn into the sine transform and the
cosine Fourier transform, respectively:

R = \/Z | r@sin(aad.
R\ = ﬂ | s cosiaarde,

since the formulas J% = \/gsinm and J 1= \/gcosx hold.

*Corresponding author.
E-mail: Tileubaev@mail.ru
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For a function f € Lo, the expansion into the Hankel integral [4], is valid:

Ha () = /0 " F(@)da (Mt dpala),

and

= | B Oia Ao ().
Let T'> 0 and we denote by St (f,x) the partial Hankel integral of a function f € Lo, i.e.
/ Ho(f)(NjaAz)dpa(N),  z € (0,00).

For functions f,g € L, , the generalized Plancherel’s theorem holds [5]

(f.9) = (f.9),

where (f, g) fo dua is the scalar product of f and g.
In the space Lp,a COnbldeI‘ the generalized shift operator of functions f(x) [6]

(T"f)(x) = e ) /“ F(Va? + h? = 2zh cos ) (sin ) **de.

For a function f € Lo, A} f(x) finite differences of the k-th order with a step h > 0 are defined as
follows (see [7]):
Apf(x) = (I = T")(x), Ajf(x) = (I = T") f(2),k > 1.

The value

0o . 2
Wk(f,8)2p0 = sup |A}f(@) 20 = sup {/ (1 —ja(Ah))%\Ha(f)(A)|2d/~ta(>\)} (01)
0<h<§ o<h<s LJo
will be called the generalized modulus of smoothness of the k-th order of a functionf € Lo ,,. We
denote by M(v,2,a),v > 0 the set of all functions @, (z) satisfying the following conditions (see |7]):

1. @, (x) is an even entire function of exponential type v;

2. Q,(z) belongs to the class Lo, .

The best approximation of a function f € Lg,, from the class M(c,2,a),v > 0 is defined as
follows:

Eo(f)2ue = f{[|f — Qollop, : Qo € M(0,2,0)} = {/ Iﬁa(f)(k)\zdua(k)} : (02)
et 2 2 1d
o+
B =B = dt2 + ot dt

be a differential Bessel operator. We denote by j,(At) the normalized Bessel function

. 2°T (o + 1) Jo (AE)
a(At) = .

Ja(At) )

The function j,(v/At) is a solution to the problem

@ n 20+ 1 dy
dt? t dt

+ Ay =0,
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y(0) =1,9'(0) = 0.
In [8], when solving problems of the theory approximations in the space Lj,, associated with
finding the exact constants in the Jackson—Stechkin inequality

-
EU(f) < wr(f7 ;)
it is considered the following extreme characteristic:

Eq(f)
wr(f, %)

In this article, we want to get the exact constant in Jackson’s inequality

Korms= sup{ fe Lg(Rm)} .
—2r re T
Eo(f) < Ko™"w.(B f,;)
for the functions f € W3 (B). For the goal, we introduce an extremal approximate characteristic of

the following form
- E
:U,’I‘,m,lhs(@? h) = sup h U(f) S
Fews,. (B) ( "t b (BT Y, t)go(t)dt)

(03)

where r,m e N, 0 <p <2, h>0, 0 >0, p(t) > 0 is an arbitrary integrable, not equivalent to zero
on the segment [0, h], weight function and W3 , (B),r = 1,2, ... is a Sobolev space, constructed by the
differential operator B, i.e.

W3, (B)={f € Loy, : Bfe€Loyu,,j=12..r}.

Note that values Zg pmp.s(@, h) for different values of the parameters therein and specific weight
functions were examined by Chernykh, Taykov, Yudin, Esmaganbetov, Ivanov, Babenko, Shalaev,
Vakarchuk, Shabozov, Tukhliev and many others (see., e.g., [6-11] and the literature cited therein).

In the case of approximation of 27-periodic function from Lo by the subspace of trigonometric
polynomials of an order (n — 1) in the metric Ly, similar problems were solved in [9] by Taikov, in [10]
by M. Esmaganbetov, and in [11| by Sh.Shabozov and K. Tukhliev.

The extension of this question to the case of the best mean-square approximation by entire functions
of exponential o > 0 type in space Lo with a power-law weight was carried out in [8] by A.G. Babenko
and in [12| by D. V. Gorbachev, in [5] by V.I. Ivanov.

1 Auziliary results

Lemma 1. Let go+1,1 be the smallest positive zero of the function jo41(t). Let 0 > 0 and t €
(0,4281) " > —1. Then

sup (1 —jao(oh)) =1 — jo(ot).
0<h<t

Proof of Lemma 1. Since
Jat1(1),0 <t < o0

y t
Ja(t) = T3a+ D)

(see [5]), then from jo41(0) > 0 and ja+1(ga+1,1) = 0 we obtain for all ¢ € [0, gay1,1] values (1 —
Ja(t)) = mjaﬂ(t) > 0. It follows that the function 1 — j, () increases on [0, ¢o+1,1]. Hence, for all

t € (0,¢a+1,1] we have

sup (1 - ja(h)> =1 _ja<t)'
0<h<t
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Therefore, for all ¢ € (0, 21] we get

sup (1 —ja(oh)) =1 — ja(ot). (1)
0<h<t

Lemma 1 is proved.

Lemma 2. Let go+1,1 be the first positive zero of the function jo41(t), h € (0, q"‘f%], a > —% and
o> 0. Let
h
W(y) =y [ (- awt)dh ye G, where G={yio<y<oc),
0
Then .
min {U(y) : y € G} = 047‘/ (1= ju(o))?dt.
0
Proof of Lemma 2. Since j. (t) = —ﬁjaﬂ(t), 0 <z < o0, then for y € G we have
h h b
W(p) =4y [ daat) iyt [ (0= ) ar (2)
0 0
Since it is not difficult to verify by direct verification that the equality is true
10 10
2 (1= ja t%):f—<1—'a t2k> 3
Jai (= dalw)™) = S50 (0 = dalw)™) 3)
where ¢,y are non-zero, then from (2) by virtue of equality (3) we have
h h o
V() =y [4r | a=atwae [ eg (- datwn)®) dt} . (4)
0 0

Applying the method of integration by parts to calculate the second integral in the right-hand side of
(4), we conclude

h
Wiy =y [(M - 1) /0 (1 jalyt)?dt + h(1 — ja<yh>>2k] . (5)

Since [jo(u)| < 1,Vu > 0 (see [8], formula (21)) and (1), then by virtue of (5), we have ¥'(y) > 0 for
all y > 0. Lemma is proved.

2 Main results

The main results of this work are the following theorems.
Theorem 1. For any function f € W3, (B) for any h > 0, the following estimate holds:

1

( 2B ) e dt) 2
o2 (Jo' (1 = jalot))?:d

Proof of Theorem 1. Let f € W3, (B). Then from Parseval’s equality, we have

ECT(f)Z;Ufa <

N[

o0

(B o, > / (1= aA)EN | Ha (F) V) Pdpta(N).

oz
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Integrating both sides of this inequality variable ¢ over the range ¢ = 0 and t = h, we obtain

h h o)
/O WA (B f, )t > /O ( / (1—ja(At))%A“lﬁa(f)(A)IQdua(A)> dt =

= [T ([ "X () deda ) (6)

From (6) by virtue of lemma 2, we have

h h SIS
/ GBS D)ot > o / (1 jalot)®dt / o) (V) Pdpia(V).
0

0 o

It follows that
0 wk(BTf t)2,0 At

[Ho(F)N)Pdpa(N) < : (7)
/0 oir fo (1 — jo(ot))kdt
Further, given the following equality
Hf - SO'(f? x)‘|2aﬂa = Eo'(f)Qaﬂa
in view of the inequality (7) we get
B’I"
B < b Do
fo (1 — jo(ot))kdt
Theorem 1 is proved.
Theorem 2. For any function f € Wy (B) for any h > 0, the following estimate holds:
QTEU 1
sup g (f)&ua _ ] (8)

1 1
T D) h . bl
FEWnea® ([ 2B, aadt)” (Jo (1= Galot))2hdt)?
Proof of Theorem 2. Let f € W3, (B). Arguing in the same way as in Theorem 1, for f € W3 , (B)
we have 2
EoDrwe 1
.

( o Wi(BTf,t)2 ,uadt) (foh(l _ja(Ut))det>§

Hence we get
2r
sup g Ea(f)2zﬂa < 1

1= L
FWea ) ([ (Br £, s 0dt)® ([0 = jalot)*dt)?

To obtain a lower estimate, we construct the function fe € W3, (B) so that it satisfies the inequality:

(9)

O-QTEU(f)Q,,U‘a > UzTEU(fﬁ)Q,,U‘a
- 1
h 1
(fo w,%(Bf‘f67 t)?,uadt) :

To do this, we use function f. € W3, (B) constructed by Babenko in [9] and such that

1
. A7 if o< |A| <o +e,
Ha<fe><A>={’ | A

0, otherwise.

sup
FEWS 1o (B) ( o wk(B fit)2, uadt>

[NIES
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Relations (2) and using the properties of the Hankel transform (see [7]) imply the equality

o+e€

By (f)2pa = / Ha ()N dpa(V) = / Fal £ P dalN) = gorr
Therefore
Es(fe)2,a = m- (10)
In virtue of the equality (01) and using the properties of the Hankel transform (see [7], [4])
Ho(B' f)(A) = N Ha(f)(A)
we write: .
W (B" fet)20 = / N Ha(f) NP (L = ja(A8) dua(N) <
4r . 2k €
< (o467 (1= jallo+€)t)) T (at1) (11)

Integrating both parts of the inequality (11), we have

{/Oh w,%(B"fg,t)det}é <(o+e* m {/Oh(l — Ja((o + e)t)det}% : (12)

Using (10), (12) we write

" Eo(fo)2 > o™ . (13)

(foh wi (BT fe, t)2,uadt); o 6)2T{foh(1 — Ja((o + e)t))%dt}%

Since fo € W3, (B), then from (13) and from left side of equality (8) we obtain

¥ Eo(fope o
sup T = oy (R : okt
Wi ) ([ (Br o t)anat) (P U A= dallo - gn)dtys

(14)

Obviously, the left side of inequality (14) does not depend on €, and the expression located on its
right side is the function of € (with fixed values of other parameters). Since the left side of inequality
(14) does not depend on ¢, then calculating the supremum with respect to € from its right side, we
write

2TE0 QTEU € 1
sup 0" Eo (f)2,0 > o EoJ)2pe _.(15)
(g 5 h . 5
FEWS 1o (B) ( o Wi(B"f, )2,uadt) ( o Wi(B" fe,t)2, uadt)2 (fo (1 —]a(at))%dt>2

[N

Comparing the upper estimate (9) and the lower estimate (15), we obtain the required equality.
Theorem 2 is proved.
Theorem 3. Let mn eN, reZ,, 0<p<2, h>0,a> f%. Then the following estimate is valid

2'rE 1
Sup g (f) 7}/4(1

. - (16)
W ) (B s gat) Ly (L= dalot)rar}
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Proof of Theorem 3. Let 0 < p < 2, then, arguing as in the previous theorem, we have

B 0, > [ NN = )P () i),

Raising both sides of this inequality by the power p/2, integrating the variable ¢ over the range ¢t = 0
and t = h we obtain

(/ s, t>2,uadt); > { / ' ([ 3= a1 ()P ) dt}; 1

Applying the inverse Minkowski inequality for g < 1, we have

I> /:O Ho(H) V)2 (/ AP (1 )\t))kpdt>2d,ua()\) . (17)

Then from inequality (17) and in view of Lemma 2, we obtain

rs o { [Pt m) ([ o) -

= 07 Eo(f)2,a (/Oh(l - ja(Ut))’“pdtf : (18)

So combining (17) and (18), we get

</0h A1 ) dt>; >0 Er (£ </0h(1 - jaw))kpdt);

Hence it follows that for all f € W3 Ha(B ) the inequality holds

2r
0% Eg(f)2,0 1
o n . < -

( o Wi(B"f,t)2, uadt)g (fgh(l —ja(at))kpdt>”

For all f € W3, (B), we have

N

27‘E 1
sup g O'(f)2nua < . (19)

W58 (B, gt} Ly (1= dalot) s

Thus, the upper estimate is proved.
To obtain a lower estimate, we construct a function f. € Wy Lo (B) so that the inequality is fulfilled:

27‘ 2r
sup Ey(f)2 2, pa > o EU(fE)Q,Ma
feWs ., (B) { 0 wk(B f t)Qltadt} { 0 Wk(B f57 )Q,uadt}

To do this, we use function f. € W3 , (B) constructed by Babenko in [8] and such that

1
. A7 if o< |A| <o +e,
Ha<fe><A>={’ | A

0, otherwise.

(20)

3=

148 Bulletin of the Karaganda University



Generalized Hankel shifts ...

Raising both sides of the inequality (11) by the power £ and integrating the variable ¢ over the range
t=0tot=h, we have

{ hw‘Z(Brfe,t)z,#adt}; <0+ [rres i) "1 gal(o+ e>t>’ﬂpdt}‘1’ @
Using (21), (10) we write

2 Eo(fe) 2, ta - o2 |
( o Wi(B" fe,t)2 ,,mdt) T 0+ O — jal(o + e)t))krdt}

(22)

In view of the fact that the function fe belongs to the class W3 . (B) and from the right-hand side of
equality (16) and by virtue of the inequality (22), (20) we obtaln

27’E 2r
Sup o U(f)Q),U‘a > 4 - (23)

WL ) (B £, )0t 0+ O dal(o )t

Obviously, the left side of inequality (23) does not depend on €, and the expression located on its right
side is the function of e (with fixed values of other parameters). Since the left side of inequality (23)
does not depend on ¢, then calculating the supremum with respect to e from its right side, we write

2r
sup g Eo'(f)QnU'Of > 1 . (24)

T = ] T
W51 B) ([0 (B ) r) A5 L ) )

Comparing the upper estimate (19) and the lower estimate (24), we obtain the required equality. The
theorem 3 is proved.

Theorem 4. Let mn e Ny re Z,, 0 <p <2, h>0, a> —% and ¢(t) > 0 be a measurable
function on the interval (0, h). Then the inequality

<A<

-1 -1
{fy(yr'rnqp, (807 h)} S Eo"r‘rr%p7 (807 h) S { lnf /Y)\rm,p7 (@7 h)}
holds, where

1
p

h
maleh) = (327 [0 = dulo)metir) . Az o
Proof of Theorem 4. Let 0 < p < 2 then, arguing as in the previous theorem, we have
2B F o > | N1 = ju (M) L (F) () Pt (A
wp(B [, 1)2,0 = (1 = Ja(A) [ Ha(f) (M) "dpa(N).

Raising both sides of this inequality by the power p/2 and multiplying them by a function ¢(t) and
integrating the variable ¢ over the range t = 0 to t = h we get

(f ' wi(sz,M(t)dt); > { / ' (73 = a0 P @(t)dt} 1

Sl
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Applying the inverse Minkowski inequality for £ < 1 and by virtue of Lemma 2 we obtain

1
2

0o h %
124 [T 0Pl ( / A”p(l—jaut))’f%(t)dt) -

1

~{ [T 1O {1 i m) 2

> Eo(f)2,ua L nf kL 1 (i, h). (26)

So combining (25) and (26) we get

o nf Ykt (@00):

N v
</0 wi(Br,t)Q,ua‘P(t)dt> 2 Eo(f)2,na

Therefore, according the definition of quantity (03), by previous inequality we obtain an upper bound

for the extremal characteristics E, , ; 1 (¢, h), namely

(27)

= Es(f)2,p0 1
Sk (011) = fews . () TS F 1 (@, h)’
e { 0 wk (B f’ ) 2,pa (P(t)dt} P o<A<oo AT k,p,

To obtain a lower estimate, we construct the function fo € W3, (B) so that the inequality would
be fulfilled:
Eo ()20 Eo(f)2,a
Sorkp (9 1) = S Tk T > AL . (28)
FEWS ){ o Wh(BTf, )20 (t)dt}p { o Wh(B" fe, )2uag0(t)dt}p

To do this, we use function f. € Wy , (B) constructed by Babenko in [9] and such that

1
N IA|7972 if o< |A\ <o+e,
Ha(fe)(A) = {

0, otherwise.

Raising both sides of the inequality (11) by the power £, multiplying them by the weight function ¢(t),
and integrating the variable ¢ over the range ¢t = 0 to t = h, we have

{ hwi(B’”fe,wQ,Mso(t)dt}; <o+ 0" gy L 0 el + e>t>’“pso<t>dt}; @)

Using (29) and (10) we write

Ecr(fe)lua > 1 .
(Rl (B et ptrt) @+ = Jallo+ ) 2ol

(30)

In view of the fact that the function f belongs to the class W3 , (B), by virtue of inequality (30) and
relation (03), (28) we obtain

sup o (/)20 > L . (31)

WL ) (B g p(0yit)” 0+ O U= dal(o + )Pp(e)it)
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Obviously, the left side of the inequality (31) does not depend on €, and the expression located on
its right side is the function of e (with fixed values of other parameters). Since the left side of inequality
(31) does not depend on ¢, then calculating the supremum with respect to € from its right side, we
write

2r
Sup g EU(f)ZMO‘ > 1

> . (52)
WS 8 (R p(Brf, te)” Ly (= dalot)P (0t}

0 “k
Comparing the upper estimate (27) and the lower estimate (32), we obtain the required equality.
Theorem 4 is proved.

Let us find: what differential properties the weight function ¢ must possess in order that the
following equality holds

%r,r,k,p,% (p,h) = Ugig\lioo ’VA,r,k,p,% (¢, h).

The following statement gives an answer to this question.
Theorem 5. Let o(t) be a non-negative continuously differentiable function on the interval [0, h]. If
for some p € (0,2], r € Nany ¢t € [0,h], o> —%, o satisfies the differential inequality

(2rp = (1) = t'(t) 2 0,
then for all o € (0,00) and 0 < h < 22211 we have
inf {w,m,p%(% h):o <A< oo} = Vo dorp, 2 (92 1)
and there is a relation

-1
Ea7k77‘7p1% ((70, h) = (fya,k,r,p, 1 (()07 h)) °

P

Proof of Theorem 5. Since

esnstiot) = {0 [l ja(/\t))kpw(t)dt};

P

it is sufficient to prove that under the above assumptions on ¢(t) and the function

h
n(y) = y””/o (1 — jalyt)Peo(t)dt

is strictly increasing on the interval G = {y : y > o}. Since

h h
rp— : T d ;
0 (y) = 2rpy®’” 1/0 (1= jalyt)"o(t)dt + y* ”/O ' Ja(yt))Pe(t)dt, (33)
then, using the obvious identity
d . k td . k
— (1= jalyt)* = == (1 = jalyt))*? 4
dy( Ja(yt)) ydt( Ja(yt)) (34)

from (33) and taking into account (34) we have

h h d
) = 20 [ =)o+ 7S G et
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Applying the method of integration by parts when calculating the second integral, we come to the
conclusion

h
' (y) = y*? <(1 — ja(yh))*he(h) +/0 (1 Jalyt)*?[(2rp — V(1) + W'(t)]dt> - (39)
Since |jo(y)| < 1 for all y € [0,00), then by virtue of the

(2rp — )p(t) — te'(t) > 0,

taking into account the conditions p € (0,2],7 € N from (35) we have 7'(y) > 0, for y > 0. Whence
follows inf {n(y) : 0 <y < oo} = n(o), which is equivalent to equality

inf {w7k7r,p%(¢, h):o <A< oo} = Yo dorp, 2 (95 10).
Then by virtue of the double inequality from Theorem 4, we obtain the required equality. Theorem 5
is proved.

4 Approzimation in L*(R™)

The exact inequality and its various generalizations have been the subject of study for many
specialists in the last 50 years. Some historical information on the Jackson—Stechkin inequalities in
L?(R™) can be found in [5,8,13-18].

Let L? = L?(R™) be the Hilbert space of complex functions on R™ with a scalar product and norm

(fr9) = [ [fo)gl@)de, |f=~/(ff)

Rm
The Fourier transform of the function f € L? is defined by this formula,

1

7im-yd
@ S (x)e z,

fly) =

where z -y =", x; - y; is the scalar product of vectors z and y of R™.
The function f can be decomposed through its Fourier transform f as:

1

W . f(y)em'ydy- (36)

flx) =
For the Fourier transform in L? space, the Plancherell formula applies

(f.9)=(f.9), f.gel®

Let us denote by W, the class of exponential spherical integer functions o > 0 belonging to the space.
The class W, of integer functions consists of integer functions ¢ € L? such that the support supp § of

Fourier transform lies in a Euclidean ball Bym = {x €ER™: x| =+/(z,z) < U} of a radius o > 0 and

with a center at the origin of the space R™. The best approximation of the function f of L? by the
class W, is

Aof =inf{[|f —gl: g€ W5}.
The spherical shift with a step h is the operator Sj acting according to the rule

S0(0) = g [ Fla+heye,
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where S™! is a unit Euclidean sphere in R™, |S™~!| is its surface area. Let I be an identical operator,
k is a positive number. Following H.P. Rustamov’s operator (I — Shf)g (see [17]), will be called a
difference operator of order k with step h and will be denoted by Aﬁ:

e k
s =31 () st

1=0
and the k-order continuity module of the function f € L?(S™~!) will be the function of the variable
T>0:

wr(f, 1) = sup{HAﬁfH :0<h < T}.
Denote by K, (7,k,m), 7 > 0,k > 1,m = 2,3, ... the exact constant K the Jackson—Stechkin inequality
in L2(sm~1)
Ao(f) < Kwg(f,7), f € L (S™71),

let’s put

A(f) 2/agm—1
wi(f,7) SRR )}

Using the Plancherell formula, it is easy to see that the value of the best approximation for the function
f € L?(S™1) is expressed by
A2f = / y)[2dy.
ly|>o

It is known ([19], [13; 176]) that the S}, spherical shift operator with step h > 0 acts on the function
ey(z) = Y as follows:

Ky(1,k,m) = sup {

1 ; )

ey

EN

Vg = jmz (hlyl)ey (). (37)

Applying k times to both parts of equality (36) the spherical shift operator and using relation (37) we
have

1) = s [\ G (D) F)e ey (39)

From the definition of the difference operator by virtue of (38) we obtain

w\?s-

Aj f(x) =/ (1= jumz (Rly))2 f(y)e Vdy. (39)
R™

Hence, by virtue of the Plancherell formula from (39) we have
IAEFIE = [ (0= g2 ()7 0) Pl

5 The Jackson-Stechkin Theorem in L?(R™)

Theorem 6. Let k > 1,0 > 0. Then for any function f € L?(S™~1) it holds:

| ( Jo °© E B f,t)jm_z(ct)t™" 1dt>
As(f) < ;

< Jo © jm=2(ot)tm™= 1dt>
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where gm—2 , is the first positive zero of the function jm—2(t).
2 2
Proof of Theorem 6. For any function f € L?(R™) and by the equality

A,(f) = { / | rf<y>|2dy}
y|>o

and applying the Holder inequality we have

o0

A0 = [Tz oldy = [T 1P gz (ol)dy =
= [P @I ua )y -

<A (o7 [T iR apa )" (40)

Since the equality holds
BB 1.0 = [ IR0 = oz o))y

then from (40) we have

A0 = [ 1) i by < 47 F (o™ Fuf (B71,1). (1)

By multiplying both parts of the inequality (41) by the Babenko weight function (see [8]) v(t) =
eI V(t), t€ Ry, o> 1, a="72 where

'm— t 5 O < t < fo.1
V(t) = Jmz2(ot) o
0, t> 2,
I'a+1) T 2
Thf(z) = —t ) 2+ h?—2zh o
nf(zx) Jia T 1/2) /0 f(Wax xh cos @) (sing)“*de

and integrating them over ¢ to zero to ga,1 = gm-2 ; We obtain
2 3

2901 2901

2 v — ’ i 2.m—2 v
a2yt [T [T 1R gty <

0

2901
_4ar - 2—
<ok As
0

EIN)

2
(fwi (B"f, t)o(t)dt, (42)
where Gm—2 is the smallest root of the function j m_2 (t). Since in [8] the inequality

2901
o

Jm—2 (tly|)v(t)dt < 0, for all |y| > 1 (43)
0

has been proved, so from (42) and (43), we obtain

A2(f) / o(t)dt < o~ F A2 wh (BT £, t)u(t)dt.

0 0
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Then, applying the properties of the generalized shift operator T, f (see [6-8]) we have
2401 )
s ot wf (BT s (ot
Ag (f) S ar 2qa,1 *
0'? fo 7 jrn 2 (Ut)tm ldt

It follows that

(S

2401 2
(fo 7 wr(B"f, )ym 2 (ot)t™™ 1dt>

A (f) <

[MIES

( Jo 7 jm—z(cot)tm ldt)

Theorem 6 is proved.
Corollary 1. Let k € Ry, k> 1, goq1 > 0,0 > 0, = mT_2 Then for any function f € L?(R™) the

inequality holds

Aglf) < o (B f, Pt

where ¢q,1 is the smallest root of the function j(t).
Proof of Corollary 1. Let’s first show that the functionality of the

| (1

Jk‘(fa C_Ia,l -

i

VS

k% B"f,)jm Q(Ut)tm_ldt>

o (1

is smaller than wyg(f, 2({%1) Indeed, it follows from the monotonicity of wg(f,t) that

m2 (o)t 1dt>

fzqa1 % Brf, ) g(at)tm_ldt>
2qa,1) _ ( 0 < o T (BT f, 2‘1“1) (44)

g - 2QQ 1 E g
( Jo © jm=2(ot)t™- 1dt>

From Theorem 4 and by virtue of (44) we have

Ji(f,

Ve

s (at)tm—ldt>
1) < I g Bty < g (Bry, 2y,

a,l 5 g g
<f0 jm 2 Ut)tm 1dt>

Remark. Earlier in [5,8,12] similar results were obtained. The proof of Corollary 1 of Theorem 6
given here is new, i.e. it differs from the proofs of the theorems of A.G. Babenko [8], D.V. Gorbachev
[12] and V.I. Ivanov [5]. The obtained result, which is a consequence of Theorem 6, coincides with
the exact result of A.G. Babenko [8] at k£ > 1. In the works [20-22] , direct theorems of the theory of
approximation were proved without refining the coefficients
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T.E. Tineybaen

JI.H. lymuaes amwvmdazv. Eypasus yammuk yrusepcumemi, Acmana, Kaszaxcman

Lo meTpukacblHAAFbI 1271 JI2keKcoH—CTedKNH TEeHCI3AiKTepi >KoHe
KaJmblLIanFraH ['aHKe diH bIFbICTBIPYbI

2Kywmpbicra f GyHKIUSICHIHBIH €H YKaKChl OPTAIla KBa/IPATTHIK, XKYbIKTaybl OOMBIHIIA, JopexKei cajMarsl 6ap
JKAPTHI OCHTE GipHeIe SKCTpeMa bl ecentep menriren. ['mibbept kemicriringe Ly camvarsr 129! mopeskeci
6ostaThiH, f GyHKIUACHIHBIHE Beccenbain 6ipinmi TekTi dyHKIMAIApH! OONBIHITIA KYPBLIFAH 0-pPEeTTi Aepbec
Tamkes MHTErpajIapbIMEH €H KAKChl XKybIKTaybl Fo(f) »KoHe k-perti y3miKCi3AIKTIH »KaJIbUIaHFAH MO-
aymi wg f(B") f,t) apaceragarer J>kekcon—CTEIKMH TUITI TEHCI3IKTEP aJIbIHFAH, MYHJIAFbl B-eKiHmi perTi

nuddepeHInaIBIK, OIIEPaTOP.

Kiam coesdep: eH KaKChI )KYBIKTAY, Y3LIICCI3 K MOYJTi, M-PETTI *KAJIbIJIAHFAH, TEriCTIK MOMIYJIi, THIBO6EPT
KeHicTiri.

T.E. Tuneybaen

Espasutickuti nayuorasvhoili yrusepcumem umenu JI.H. lymuaesa, Acmana, Kasaxcman

O06ob6miennbie capuru I'aHke st 1 TOYHbIe HEPABEHCTBA
Jxxekcona—CrteukuHa B Lo

B pabote permeno HECKOTBKO IKCTPEMAJIBHBIX 3329 O HAWIYYIIEM CPEIHEKBAIPATUICCKOM TPUOIIHKEHUN
dbyHKINM f Ha IOJIYOCH O CTEleHHBIM BecoM. B rumsbeproBoM mpocrpascTse Lo co cremeHHbIM Becom 271
MOJTy YeHbI HepaBeHCTBa Tuna J[>kekcona—Creaknna Mexx 1y Bequanuoit B, (f) — Hamrydnero npubamkenust
byHKINN f YaCTHIHBIMA HHTErpajgaMu [ 'aHKes s TOpsiAKa He Bblie o o GYHKIIM Becceist mepBoro poaa u
060BIIEHHBIM MOJLYJIEM HEPEPBIBHOCTH k-ro nopsaka wi f (B f,t), rne B — nuddepeHimanbHblii oneparop
BTOPOTO MOPSIIKA.

Kmouesvie caroea: HantydInee mpubIHKeHne, 0000IEHHBIA MOJIY/Ib TJIAIKOCTH M-TO MOPsi/iKa, THILOEPTOBO
MIPOCTPaHCTBO.
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On weighted integrability of the sum of series with monotone
coefficients with respect to multiplicative systems

In this paper, we consider the questions about the weighted integrability of the sum of series with respect
to multiplicative systems with monotone coefficients. Conditions are obtained for weight functions that
ensure that the sum of such series belongs to the weighted Lebesgue space. The main theorems are proved
without the condition that the generator sequence is bounded; in particular, it can be unbounded. In the
case of boundedness of the generator sequence, the proved theorems imply an analogue of the well-known
Hardy-Littlewood theorem on trigonometric series with monotone coefficients.

Keywords: multiplicative systems, decomposition, weighted integrability, sum of series, generator sequence,
monotone coefficients, Hardy-Littlewood theorem, Lebesgue space.

Introduction

In the theory of trigonometric series, the Hardy-Littlewood theorem on series with monotone
coefficients is known [1, 2]: in order to the series Y ; a,, cosnx, where a, | 0 at n — oo, was the Fourier
series of some function f(x) € Ly[0,27], 1 < p < 00, is necessary and sufficient to >_°° | ahnP~? < oco.

An analogue of this theorem for the Walsh system was proved by Moricz F. [3], for multiplicative
systems with bounded generating sequences p (1 < sup,, p, < ¢) was proved by Timan M.F., Tukhliev K.
[4].

The weighted integrability of the trigonometric series’ sum with generalized monotone coefficients
was studied in the works of Tikhonov S.Yu., Dyachenko M.I. [5, 6] and others. Weighted integrability
for the sum of series with respect to multiplicative systems is considered in the works of Volosivecs
S.S., Fadeev R.N. [7, 8], Bokayev N.A., Mukanov Zh.B. [9].

In this paper, we consider weight functions with other conditions.

1 Notation and Preliminaries

In this paper we consider series with monotone coefficients on multiplicative systems. We investigate
the problem: under what conditions imposed on the weight function and the coefficients of the series, the
sum of this series will belong to the space L, with weight. Let us give a definition of the multiplicative
systems.

Definition 1. Let {py}32, is a sequence of natural numbers p;, > 2, k € N, supp, = N < oo. By
k

definition let us put
mo =1, mp =pip2---pn, n €N.

Then every point x € [0,1) has a decomposition
L
xzzia xkEZﬂ[Oapk)a (1)

mg

*Corresponding author.
E-mail: mentur60@mail.Tu
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where Z is the set of integers. Decomposition (1) is uniquely defined if for z = n/my, take a decomposition
with a finite number of nonzero zy. If n € Zy :={0,1,2,...} is represented as

oo
n = Zajmj_l, a; € ZN1[0,p;),
j=1

then for the numbers = € [0,1) we put by definition

o
n(T) = exp | 2w i} nely.
77/}() D D ) +
j=1

It is known that the system {¢,,}52, called the Price system, is an orthonormalized system that
is complete in L1(0,1) (see [10] or [11]). If all pg = 2, then {t,}°°, coincides with Walsh system in
the Paley numbering.

Let LP(G), G:=[0,1), 1 <p < oo, be a Lebesgue space with a norm

1l = ( /| \f(x)\”dw>p, Il = esssup | 1(2)

Definition 2. Let p(x) be a non-negative measurable function on [1,00). We say that ¢(z) satisfies
condition By, if for all z > 1

)

T
where C' is a positive number independent of .

For example, the function ¢(t) = t* (o < 1) satisfies condition Bj.

To prove the main results, we need the following auxiliary assertions.

Lemma A. (Potapov M.K. [12]). If ap, b, >0 (n=1,2, ...), 1 <p<ocoand Y > by =ynbn,
then

Z bm (Z an) < Cp Z bm (am’Ym)p .
n=1

m=1 m=1

Lemma B. (Simonyan A.S. [13,14]) Let 1 < p < oo, ;1)4—
_p/

L =1, f(z) € L0,1], f(z) >0 and

function [p(z)] 7 satisfies condition By,

Fa) = /0 " Fba.
/o1 o <i) (Fg(cx))pdf <Cp /01 P <i> 2 (z) dx.

n—1
Dn(x) =Y tp(x), n=1,2, ..,
k=0

Then

denote the Dirichlet kernel of the system {,,(z)}.
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Lemma C. (see [10] or [11]) For any k € N and z € [0, 1) the Dirichlet kernels have the following

properties:
Dmk — { k [ ’

%
0, ifxz¢]|o, @

- E|~
X

3

The Dirichlet kernel D,,(x) satisfies the estimate

q(x
W < sup 1Dj,, ()] < 20(a) g
I<Pn+1

where ¢(x) is the function introduced in [15]:

o) =" s, ()

Pn(z)+1

where n(x) is the number of the last zero in the initial series of the decomposition of the element
x € [0,1], I(z) is the value of the first nonzero coordinate of this decomposition.

Lemma 1. Let S, (z) = Z’;é app (), (n=0,1,2,...) ar { 0 at k — oo. Then for any
1 1
T < |:mu+1’ my |
my—1
|STL (.1‘)| < Z Ak + Qm,, * TMy41-
k=0

my+41 7 omy

Proof of Lemma 1. Let x € [ L i} , 0 <v < oo. Considering, |¢y (z)| = 1, we have

v—1 n—1
1Sn (2)] < ar+ > arty (x).
k=0 k=v
Applying the Abel transformation for the second sum, by inequality (3) we have
W, @k (2)| =[50, AaeDiss (@) + an1 Dy (&) = am, D, ()] <

< (@) |Sh2, Ak + ano + am, | < 20,0 (2),

1 1
my+1’ My

but for the function ¢ (z) at x € { ] , an estimate

my+1
<
¢(z) = —
holds (see (4)).
Consequently,
my—1
S0 (@) < D an + am,, M1

k=0

Lemma 1 is proved.
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2  Main Results

The following theorems about integrability with weight of the series’ sum with monotone coefficients
are valid.

Theorem 1. Let 1 < p < oo, %+I%:1

fl) =20tk (x), arl0atk— oo

and let ¢ (x) is a non-negative measurable function on [1, co). Then
191t o (L) € L, (0, 1) and

myp—1 p 1/mn 1
Z ( Z ay + amnanrl) / P (x) dr < oo, (5)

1/mn+1

then ¢ (3) f (z) € Lp (0, 1).
20 If the function o7 (z) satisfies the condition By and ¢ (1) f(2) € Ly (0, 1), supp, = K < o0,

then

Theorem 2. Let 1 < p < o0

fl) =20 antn (x), arl0atk— oo

and let ¢ () be a non-negative measurable function on [1, co). Then
19 If function ¢P (x) satisfies condition By and

l/mn 1
Zamn- whn [ (5) o< ©

1/mny1

then ¢ (1) f (z) € L, (0, 1).
20, If o (z) satisfies condition B; and ¢ (1) f () € Ly (0, 1), then

1/mp 1
Zamn+l mp /1/mn+1 F <$> dr < 0. (7)
In the case supp, = k < oo theorem 1 is equivalent to the following theorem:
Theorem 8. Let 1 < p < oo, %—F]%:L

fl@) =32 garte (), apl0atk— oo

and let ¢ () be a non-negative measurable function on [1, o), supp, = N < co. Then
n

19 If the function ¢P (z) satisfies condition By and

o P
Zaﬁ-np/ (px( )dac<oo

n=1 n

then ¢ (2) f (z) € L, (0, 1).
20 If o7 (z) it satisfies the condition By and ¢ (1) f () € Ly (0, 1), then it takes place (6).
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From this theorem in the case of the Walsh system follow the corresponding results of A.S. Simonyan [13].
Remark. If the weight function ¢ (x) has the form op(z) = z, then in this case ¢P(z) and =7 (x)
satisfy condition B; at —I% <a< % and condition (7) has the form

o0
E af - P < oo
n=1

Proof of Theorem 1. 1°. By Lemma 1 and condition (5) we have

( ) G )= /m” P (3) @<

2(

. /mn D 1
a + Qm,, - Mp41 1/ ¥ ; dr < oo,

Mp41

mp—1

k=0
that is

F@ e (5) e

o (1> f@) €Ly (0,1) and ¢ (i) cL(0, 1).

X

20 Let

By Gelder’s inequality

1 1 1 1/p Lo 1/p’
Ju@ias([o(5) rora) ([ (5)a) " <
0 0 T 0 T

Consequently, f(z) e L(0,1) and ax = ak (f).

Let F (z) = [y |f ()| dt. By (2) from Lemma C we get
mp—1 mp—1 1 1 mn—1
Yoath=> [ r@@d= [ fu Y G-
k=0 k=0 0 0 k=0

= [ 1@ D @)= mn/ol/mnf(x) o <mF (o).

where F (z) = [ |f (x)] dz.
From here using the monotonicity of the sequence {ax} and Lemma B, we obtain

[ele} mn+1_1 p ]-/ o0 p ]-/
S8 w) e ()X frar )] o (5) e

n=0 \ k=0 Mip—1 n=0 M1

<CZ/:; <1)<F(x>dx<6’/ <> ()| dz < oo.

Theorem 1 is proved.
Proof of Theorem 2. 1°. We denote

Mn41 D t
bn:/ £ ot

2
Mn t
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S ([ 700) ([ %) s
T = (/: 9022('5)(#) . </7:"+1 “0;(’5) dt>_1.

The function ¢ (x) satisfies the condition By, therefore

Mut1 P -1 Myt1 00 LD (¢
%:1+</m ‘ptodt) /m </x ‘th()dt>da:<

my 41 D -1 my41 D
<1+01</ g0(>dt> / PE) 10 < O,

my my T

Then

where

Using the Lemma A we have

0o mnp—1 p 00 n—1 [Mmry1—1 p 00
S () =5n S5 )| <o u mn
n=1 k=0 n=1 k=0 j=my n=1

consequently,

o] mp—1

Z(Z ak+amn'mn+1> - b, <C’Zap . n+1 n < 00.

n=0 k=0

Hence, on the basis of the first point of Theorem 1 follows the first point of Theorem 2.
20, Due to the monotonicity of the sequence a,

Mpp1—1 Pt P ( Mnt+1 P
S8 w) [ e St [

=1 k=0 mn mn

Therefore, the statement of Theorem 2 follows from Theorem 1.

Theorem 2 is proved.

Proof of Theorem 3. Sufficiency. By the monotonicity of the sequence {ay,} and by the condition
supp, = N < 0o, we have

o0 n-+
PP

g abmn /

n=1 n

oo Mnt+1—1

-3 > w/ =

n=0 k=mn

m"“ 1 Mng1 P
P ()
= Z Tmypyn Z / mn+1 ' n+2/ 2 dx >
k=mn mn
> C o m d
= Pzamn : n+1 L.
n=1 7n n+1

Therefore, from the condition of point 19 of Theorem 3 it follows the condition of point 19 of the
Theorem 2. Therefore f (z)¢ (1) € L, (0, 1).

On the other hand, also due to monotonicity of the sequence {a,,} and boundedness of the sequence
{pn}, we have

oo Mpt+1—1

S Y e [

n=0 k=mn,

0 n-+
PP

S aln /

n=1 n
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00 mnt1—l iy, 00 1/
p” (x) M 1
< Z ., 'mﬁ+1 Z / 22 dr = Cp Z afnnﬂ 'mfwrl/l ©P <t dt.
n=0 k=mn k n=0 /mn+1

Therefore, from the point 20 of Theorem 3 follows the condition of point 2° of Theorem 2. From this
follows the necessity of the Theorem 3.
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Koaddurimenrrepi MOHOTOH/IbI MYJIBTUMIJINKATUBTIK Kyiiejiep
OolibIHITIA KaTapJap/IblH, KOCHIH/IBICHIHBIH, CAJIMAaKThl MHTETPaJIJaHy bl
TYypPAaJIbl

2Kywmpicra koaddunmenTTepi MOHOTOHIBI MYJIBTUILINKATUABTI 2KYiiesep OOUBIHINA KYPBLIFAH KaTapjap KO-
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TTap agbiaFaH. Herisri Teopemasap kacayinbl Ti30eriHe IMEeHeITeHIiK MapT KONbIIMAaFaHIa JoJICIICHET];
aTar affTKaH1a, 0J1 IeHeIMereH 60J1ybl MyMKiH. 2Kacaymibl Ti30eri meHe reH/Iir XKaraaibIHia J12J1e/ I IeHNeH
TeopeMaJjiap MOHOTOHIbI KO3 puimeHTTepi 6ap TPUNOHOMETPUSIIBIK, KaTapjap 6oiibiHIima Genriai Xapam-
JIuTiBy TeopeMachIHBIH aHAJIOTBIH OLITIpesi.
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06 NMHTEerpupyemMoctTu ¢ BeCOM CyMMBbI pAJ0B C MOHOTOHHBIMUA
KOSCI)CI)I/II_II/IGHTa.MI/I 10 MYJIbTUIIVNINKATUNBHBIM CHUCTEMaM

B pabote paccMOTpeHBI BOIIPOCHI O BECOBOM MHTETPUPYEMOCTH CYMMBI PSIJIOB IO MYJIBTHILTUKATUBHBIM CH-
creMaM C MOHOTOHHBIMHU Kodddurnmerntamu. [lomyuensr ycaoBus Ha BecoBble DYHKITHH, 00ECIIEINBAIOINE
[IPUHA/JIE?KHOCTH CyMMbI TAKUX PsIJI0B BeCOBOMY mpocTpancTBy JleGera. OCHOBHbBIE TEOPEMBI JOKA3aHbI 6€3
YCJIOBHSI OTPAaHUIEHHOCTH 0Opa3yIoIeil TOC/IeI0BATEILHOCTH, B YACTHOCTH, OHA MOXKET ObITh HEOTPAHUYIEH-
HOit. B ciygae orpanmdeHHOCTH 06PA3yIOIIEH MOCIEI0BATEIFHOCTH U3 JIOKA3AHHBIX TEOPEM CJIEIYeT aHAJIOT
MU3BECTHOI TeopeMbl Xapau—J/InTiiBya 0 TPUIOHOMETPUYECKUX PsijiaX ¢ MOHOTOHHBIMH KO3 dUImeHTamu.

Karouesvie cr06a: MyIbTUILIMKATUBHBIE CUCTEMBI, Pa3JIOYKEHNE, BECOBasi UHTETPUPYEMOCTb, CYMMAa PsiJIOB,
obpa3syrolasi MoC/IeI0BaTEeIbHOCT, MOHOTOHHBIE KO3(DMUIMEHTRI, TeopeMa Xapau-JIlutiByma, mpocTpan-
cTBo Jlebera.
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On Robinson spectrum of the semantic Jonsson quasivariety of unars

Given article is devoted to the study of semantic Jonsson quasivariety of universal unars of signature
containing only unary functional symbol. The first section of the article consists of basic necessary concepts.
There were defined new notions of semantic Jonsson quasivariety of Robinson unars JCy, its elementary
theory and semantic model. In order to prove the main result of the article, there were considered Robinson
spectrum RSp(JCy) and its partition onto equivalence classes [A] by cosemanticness relation. The characteristic
features of such equivalence classes [A] € RSp(JCy) were analysed. The main result is the following theorem

of the existence of: characteristic for every class [A] the meaning of which is Robinson theories of unars; class

[A] for any arbitrary characteristic; criteria of equivalence of two classes [A]1, [A]2. The obtained results
can be useful for continuation of the various Jonsson algebras’ research, particularly semantic Jonsson
quasivariety of S-acts over cyclic monoid.

Keywords: Jonsson theory, unars, universal theory, Robinson theory, quasivariety, semantic Jonsson quasivariety,
Jonsson spectrum, Robinson spectrum, equivalence class, cosemanticness.

Introduction

The study of model-theoretic relations of classical algebras and their syntactic properties from the
Jonsson theories consideration, which are, generally speaking, incomplete, allows one to describe quite
broad classes of theories. The article is a continuation of the work [1]. The authors of this article
aimed at deepening of the universal unar’s semantic model’s characteristic study and strengthening
the existing result by considering new and more general notion of semantic Jonsson quasivariety, and
also by defining the notion of Robinson spectrum and its equivalence classes for unars.

The first section of the article gives the required notions of Jonsson theories, particularly Jonsson
spectrum and its related notions. The second is devoted to the definitions connected with Jonsson
universal unars and their semantic model’s characteristic. The main section contains the definition
of arbitrary characteristic and the main theorem on cosemanticness classes of factor-set RSp(JC) u,
obtained during research conduction. All necessary base definitions can be found in [2], definitions and
notions concerning Jonsson theories in [3-18].

All definitions that were not given in the current article can be extracted from [3].

1 Semantic Jonsson quasivariety

One of the important definitions, used by the authors of given article, is the definition of Jonsson
theory. Let us recall the conditions, that should be satisfied in order for a theory to be Jonsson.

Definition 1. [3;80] A theory T is said to be Jonsson, if:
1) T has at least one infinite model,

2) T is V3-axiomatising;

3) T has JEP property;

4) T has AP property.

*Corresponding author.
E-mail: linka14221@mail.ru
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V-axiomatizing Jonsson theory is called the Robinson theory.
Let us recall some necessary notions from Jonsson model theory.

Theorem 1. [3;155] T is Jonsson iff it has a semantic model €.
The definition of Jonsson theory’s semantic model.

Definition 2. [3;155] Let T be a Jonsson theory. A model €7 of power 2/71 is called to be a semantic
model of the theory T if €7 is a |T'|"-homogeneous |T'|*-universal model of the theory 7T

The next definition was introduced by T.G. Mustafin.

Definition 3. [3;161] The elementary theory of a semantic model of the Jonsson theory T is called
the center of this theory. The center is denoted by 7%, i.e. Th(C') = T™*.

Since the current research is connected with consideration of Robinson spectrum for classes of
algebras, let us give the following conditions of Jonsson theories’ cosemanticness.

Definition 4. [3;40] Let T7 and T be Jonsson theories, T} and T be their centres, respectively. T}
and Ty are said to be cosemantic Jonsson theories (denoted by T > T3), if T = Ty

Theorem 2. [3;176] Let T1 and T» be Jonsson theories, €7, and €p, be their semantic models,
respectively. Then the next conditions are equivalent:

1) €T1 > Q:TQ;
2) ¢ =5 Cpy;
3) ¢, =Cq,.

Let K be a class of models of fixed signature ¢. Then we can consider Jonsson spectrum for K,
which can be defined as follows.

Definition 5. [5] A set JSp(K) of Jonsson theories of signature o, where
JSp(K) ={T | T is Jonsson theory and K C Mod(T)}

is called the Jonsson spectrum for class K.

Hence, in the particular case, when the Jonsson theory is V-axiomatising we get the concept of the
Robinson theory, respectively, the notion of the Jonsson spectrum allows us to consider the Robinson
spectrum.

Definition 6. A set RSp(K) of Robinson theories of signature o, where
RSp(K) ={T | T is Robinson theory and VA € K, A =T}

is called the Robinson spectrum for class K.

Definition 4 states, that two Jonsson theories are cosemantic (77 >t T3), if their centres are equal.
It is easy to check, that such cosematicness relation, given on a set of Jonsson theories, will be an
equivalence relation. The proof of this fact one can find in detail in [4]. Hence, based on theorem 2, we
can consider the cosemanticity relation on Jonsson spectrum JSp(K) and obtain a partition of JSp(K)
onto equivalence classes. We get a factor-set, denoted as JSp(K) /n. The factor-set RSp(K) g will be
obtained correspondingly.

According to A.I. Malcev [2], quasivarieties of algebras are the classes of algebras, that can be set
by means of collection of quasi-identities (conditional identities). Quasi-identities are V-formulas, and
quasivarieties are presented as particular types of universally axiomatising classes of algebras. A class
R of algebraic system is called a quasivariety if there is such collection of quasi-identities of signature o
that this algebraic system consists of those and only those systems of signature o, in which all formulas
from o are true [2].
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We want to define semantic Jonsson quasivariety as follows. Let K be a class of quasivariety in the
sense of [2] of first-order language L, Ly C L, where Ly is the set of sentences of language L. Let us
consider the elementary theory Th(K) of such class K. By adding to Th(K) V3 sentences of language
L, that are not contained in the Th(K'), we can consider the set of Jonsson theories J(Th(K)) defined
as follows.

Denotation 1. A set J(Th(K)) = {A | A—Jonsson theory, A = Th(K)U{¢'}}, where ¢ € V3(Lo)
and @' ¢ Th(K) for some i € {0,1}, Th(K) is elementary theory of class of quasivariety K, V3(Lg) is
a set of all V3 sentences of language L.

According to theorem 1 the theory is Jonsson iff it has a semantic model. Hence every Jonsson
theory A € J(Th(K)) has its own semantic model €a. Let us consider the set of such semantic models
and denote it as JC.

Denotation 2. A set JC ={€a | A € J(Th(K)),€a is semantic model of A}.

We will call the set JC semantic Jonsson quasivariety of class K if its elementary theory T'h(JC)
is Jonsson theory.

2 Robinson spectrum of semantic Jonsson quasivariety of Robinson unars

We will consider some basic definitions, denotations, properties of arbitrary Jonsson universals,
necessary for proofing the main result of the article.

Denotation 3. [1] 1) If ' is collection or type of the sentences, then Tt is following set of formulas

{peT : {pel: Tk p}Fv};
2) V is II; U X1, that is V is a collection of all universal and existential formulas.

Here, in the second item, II; denotes universal formulas, > denotes existential ones.

Definition 7. [1] 1) If T' = Ty, then T¥ is said to be universal;
2) If T = Ty, then the theory T is called primitive.

Thus, by the universal we call a set of all universal conclusions of Jonsson theory 7. The next
proposition plays an important role in the proof of the obtained main theorem of the article.

Proposition 1. [1] Let Ty, T be Jonsson universals. Then the following conditions are equivalent:

1) T1 = TQ;
2) €p ~ Cpy;
3) Ty =15

Cr, and €7, are semantic models of Jonsson theories 77,75 respectively. Each model U of Jonsson
theory of unars 7" is an unar. Consequently, the following fact is true.

Lemma 1. [1] For any unar U the following is satisfied
UET < U embeds in €.

The following definitions are necessary for the construction of semantic model of cosemanticness
classes of Robinson spectrum for semantic Jonsson quasivariety of Robinson unars.

Definition 8. [1] 1) If A C €,a € €, then [A, a] denotes sub-unar, generated by subset AU {a}.

2) We will write tp%,(a, A) = tp% (b, A) if there is such isomorphism ¢ : [A,a] ~ [A,b], that
o(c) =c¢,Ve € A, and ¢(a) = b.

Definition 9. [1] 1) If H is sub-unar €, f"(a) = h € H, f*(a) ¢ H for all k < n, then the element
h will be called input element from a in H, and number n will be called the distance from a to H.
In this case we will use denotation h = input(a, H),n = p(a, H). We will write p(a, H) = oo, if
f™(a) ¢ H,¥n < w.
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w,if f*(a k(a),vn w
2)X(a):{ Jif f(a) # f*(a),Vn < k <

<n,m >, if <n,m >=min{<n,m >: f*(a) = f"T™(a)}.

Definition 10. [1] If a € €, then

k(a) [{be€: f(b) =a}l

Definition 11. [1] A set {a1, ..., an} of elements € will be called m-loop, if a; # a;, f(a;) = a;41 for
all 1 <i<j<mand f(ap) = a.

The next definition determines the characteristic of semantic model of Robinson unar’s Jonsson
theory.

Definition 12. [1] A fourset (92, v, u,e) will be called a characteristic € and denoted as char(¢), if

Q= {x(a):a €},

v w\ {0} - wU{oco} such that Vm > 0,

) k,if the quantity m —loops in € is equal to k < w,

v(m) = {oo,otherwise;

p:Q — wU{oo} such that if & € Q and a € x(a), then u(a) = k(a), if k(a) < w and p(a) = oo,
if k(a) = |€];

o {O,if H{a € €: x(a) =w}| =0,

00, otherwise.
The next lemma gives some useful specification to the definition of above-mentioned fourset.

Lemma 2. [1] If char(€) = (Q, v, u, ), then

1°. @ #Q C{w} U (w x w);

2°. (n,m) € Q&0 <k <n=(k;m)eQ,

3°. v(m) >0« (0,m) €

4°. weN e =00

5. 19 =w=we

6°. (n,m) e Q= ((n+1,m) ¢ Q< u*(n,m)=0;

7°. w ¢ Q& <w=3Im<wrv(m)=o00)VIn<w,m<w((nm)e Q&u(n,m) = co);
8. 10 = w = {u(w) > k,if 3k,1 <.w(/~c = maz{p(n,m) € Q,n+m >1});

w(w) = oo, otherwise.

8 Main result

The theory Thy(U) of all universal sentences, true in U is the Jonsson theory. This statement was
proven in the work [1]. By virtue of V-axiomatisability of elemantary theory of unars, Thy(U) is the
Robinson theory of unars.

Thus, we use the denotation 2 of semantic Jonsson quasivariety of class K and consider a set JCyr =
{€a | A € J(Th(K)), €A is a semantic model A} of signature oy =< f >, where A is a Robinson
theory of unars, f is unary functional symbol. Such JCy; defines semantic Jonsson quasivariety of
Robinson unars.
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Figure 1. Semantic Jonsson quasivariety of Robinson unars JCy

We can see on the figure 1, that 1, 2, 3 are €a,, €a,, €a,, which are semantic models of [Aq], [As],
[As] respectively. The semantic models consist of unars of length 0, 1, 2 and so on.
Let us define the Robinson spectrum of the set JCy as follows.

Definition 13. A set RSp(JCy) of Robinson theories of signature oy, where
RSp(JCy) = {A |A is Robinson theory of unars and V€a € JCy, €a = A}

is called the Robinson spectrum for class JCy7, where JCy; is semantic Jonsson quasivariety of Robinson
unars.
Further we can consider the notion of cosemanticness relation on Robinson spectrum RSp(JCy)

and get the partition RSp(JCy) on equivalence classes. As a result we obtain a factor-set, denoted as
RSp(JCy) /sq and consisted of equivalence classes parted by cosemanticness relation [A] € RSp(JCy ) /-

Remark 1. Everywhere in this section [A] denotes an equivalence class of Robinson theories of
unars parted by cosemanticness relation on Robinson spectrum RSp(JCy), €[] denotes this class’s
semantic model.

According to theorem 2 and definition 6 we can deduce the conclusion, that char(€a)) defines
similarly to char(€) from definition 12 for every semantic model €5 of every class [A].

Definition 14. As a characteristic Char([A]) we will understand Char(€(a)).

Lemma 3. For classes [A1], [Az] of Robinson theories of unars the following conditions are equivalent:

1) [Aq] is equivalent to [As];

2) Char([A1]) = Char([Ag)).

Proof. 1) = 2) According to the theorem 2 if two classes are equivalent, then their semantic models
will be equal to each other. Therefore, the characteristics of those models will also be equal to each

other.
2) = 1) follows from the fact that Char(€a]) defines the semantic models €[5} up to isomorphism.

Hence €j5), > €[5}, , according to proposition 1.

Definition 15. [1] An arbitrary fourset (**,v** p**,e**) will be called a characteristic if the
following conditions are satisfied:

1) @ # Q" C{wlU(w xw);

2) v w\ {0} > wU{o0};

3) O — wU {oo};

4) e =0 or " = o0;
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1) 190 = w = wlw) > k,if 3k, 1 < w(k = max{u(n,m): (n,m) € X* n+m >1});
u(w) = oo, otherwise;

12) p**(w) > 0.
Lemma 4. Char(€a)) is characteristic.
Proof. Follows immediately from lemma 2.

Theorem 3 (Main theorem). 1) Every class [A] has a characteristic.
2) For any characteristic 7 there is a class [A], that has characteristic 7.
3) Two classes [A1], [Ag] are equivalent iff their characteristics are equal.

Proof. Items 1) and 3) are proven in lemmas 2 and 3 respectively.

2) Let us consider given arbitrary characteristic m = (Q**, v**, u**,e**). We need to define class
[A], that is the equivalence class of Robinson theories of unars parted by cosemanticness relation on
Robinson spectrum RSp(JCyr) of characteristic m. Let us start from the denotation of collection of
universal sentences of unars’ language

Qhmm = Y (f(x) = f77(@) A (&o<icjentmf (@) # (@) = Yy, oo Ut (AL F () = (2) —
&1<ici<kr1¥i = Yj)-

Qk,n,m expresses "x(z) = (n,m) = k(z) < k”.

Py is Var, o,z (NS (P (@) = 2 A AL P (@0) # 20)] = &i<icictitpap e o [ (1) =
().

P,,, states that the quantity of m-loops is no more then I

Ry, is Va—(z = f™(x) AN e # fi(2)).

R,, expresses the absence of m-loops.

®,, is Vo (f™(z) # x). No comments needed here.

E is Vavyr, o, Yot (N F(00) = 2 = Vi<icj<r1¥i = Uj).

F, & Vo e O (p™*(a) <r) e Va(k(z) <r).

By is V2(Ao<icj<m f() # () = YY1, oy Yrst (N F (i) = T = Vicicj<ri1¥i = Yj)-

E,., states that if x is not an elemnt of s-loop for all s < m, then K(z) <r.

If |9 < wand w ¢ Q**, then D§is Vx V(n,m)eQ** (V0§i<j§n+m_1fi($) #* f](SU) A f(z) =
).

In this case D & Va(x(z) € Q).

Let us move on to definition of [A];.

Case 1. €™ = o0.

By the condition 5) of definition 15 it is equivalent to w € Q**. By the condition 12) p**(w) > 0.

Case 1.1. Q" \ {w} # @.

Case 1.1.1. p**(w) = oc.

Let Oges yox yos be {Qrpm : (n,m) € X*\ {whk = p*(n,m)} U{Pm:0<m<wl<1 =
v**(m) <w}U{Rpy : 0 <m < w,v*™*(m) =0}.

We suppose [A]r = Qgux s e

Case 1.1.2. p™(w) =7 < w.

Let [A]ﬂ— = GQ**W**#** U {FT}

Case 1.2. Q" = {w}.

Case 1.2.1. p™(w) = o0
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By definition [A]; = {®, : 0 < m < w}.

Case 1.2.2. p**(w) = .

By definition [A]; = {®,, : 0 < m <w} U{F,}.

Case 2. ™ = 0.

Note, that in this case by conditions 5) and 8) w ¢ Q** and |Q2**| < w. Let us suppose [A], =
{Qinm : (n,m) € O k=p"*(n,m)}U{Ppm:0<m<wl<1l=v"m)<w}U{D§}. Itis not
hard to check, that in every case [A], is the equivalence class of Robinson theories of unars parted
by cosemanticness relation on Robinson spectrum RSp(JCy) and Char(€s) ) = 7. The theorem is
proven.
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A.P. Emikees, A.P. dpymmuna, C.M. Amanbexkos, M.T. KaceimeroBa

Axademur E.A. Boxemos amuwindazv, Kapazandv yrusepcumemi, Koadanbaiv, Mamemamura uHCmumymot,
Kapaearndo, Kasaxcman

YHapJaapablH CEMaHTUKAJBIK, MOHCOHIBIK, KBAa3UKOIITYPJIJIIKTEPiHIH,
POOMHCOH/IBIK, CIIEKTPI

Maxkasia curHaTypacbl TeK 6ip OpPBIHIBI (DYHKIIMOHAJIBIK, CUMBOJIJIAH TYPATHIH, YHUBEPCAJIbI YHAPJAp-
JIBIH, CEMaHTHKAJIBIK, HOHCOHIBIK, KBa3UKOIITYPJIIIKTEPIH 3epTTeyTre apHasran. Makamanbry Oipinmi 6estimi
Herisri kaxerri yreivaapaan typajsl. Conbiven karap JCpy pOOHMHCOHIBIK yHAPJIAPILIH, CEMAHTUKAJIBIK,
MOHCOH/IBIK, KBA3UKOITYPJILIIKTEPIHIH, OHBIH 3JIEMEHTAPJIBLI TEOPUSICHI MEH CEMAHTHKAJIBIK MOJIE/HIH, KaHa
Tycimikrepi anbikTaanpl. Makananbg merisri motuxkecin monenney ymia RSp(JCy) poGHMHCOHIBIK CIIEKTD
JKOHE OHBIH KOCEMAHTTHI KATBIHAC aPKBLIbI [A] 9KBUBAJIEHTTIK KiacTapra Gesiinyi KapacToipburrad. MyHaii
[A] € RSp(JCy) sKBHUBAJEHTTIK KJIACTAp/bIH CHIATTAMAJBIK epeKileaikrepi Tasgasrad. Moni yHapiap-
JIBIH, POOUHCOHJIBIK, TEOPUSIAPEI GOTAThIH opbip [A] ymin Ke3meficok cnnaTTaMaHbIH; Ke3 KEJITeH Ke37eHCOK
cunarrama yuin [A] kiaacobiy; exi [A]q, [A]2 KIacTapblHBIH 9KBUBAJIEHTTIIK KpuTepuitinin 6ap 6oy Teo-
peMachl Herisri HoTuzKe GOJTBIN TabbLIa bl AJIBIHFAH HOTUXKEIEP 9PTYPJIi HOHCOHIBIK aarebpasiap/ibl, aTall
afTKaHa, UKJAI MOHOWJ APKBIIbI aHBIKTAJFAH IOJIMTOHIADIBIH, CEMAHTUKAJBIK, HOHCOHIBIK KBa3UKOII-
TYPJIUIIKTEPl 3epTTey/Il KAJIFACTBIPY YIIH Hai a6l 00yl MYMKIH.

Kiam ce3dep: IOHCOHIBIK TEODPHsl, YHAPJAP, YHUBEPCAJIbI T€OPHs, POOMHCOH/IBIK TEOPHSs, KBA3UKOIITYD-
JIUTIK, CEMAaHTUKAJIBIK, HOHCOH/IBIK, KBA3UKOIITYPJIIK, HOHCOH/IBIK, CIEKTD, POOMHCOHIBIK, CIIEKTD, SKBUBA-
JIEHTTIK KJIaCC, KOCEMaHTTBLIBIK.
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A.P. Emkees, A.P. dpymmuanra, C.M. Amanbekor, M.T. KaceimeroBa

Kapazanduncrkut ynusepcumem umenu axademuka E.A. Byxemosa, Hncmumym npukaadnol mamemamuru,
Kapaeanda, Kasaxcman

PobuncoHoBCcKMii CIIEKTP CEMAaHTUYECKOTO MIOHCOHOBCKOTO
KBa3MMHOT000pa3us YHAPOB

CTaThs TOCBAIIEHA U3YyYEeHUIO CEMAHTUIECKOTO HOHCOHOBCKOTO KBA3UMHOTOOOPA3HWsl YHUBEPCATHHBIX YHa-
POB CHUTHATYPBI, COJeprKallleil e IMHCTBEeHHbINH (DYHKIIMOHAJIBHBIN cruMBoJI. [lepBblit pa3mges crarbu COCTOUT
13 6a30BBIX HEOOXOIWMBIX TIOHSATHIA. BBLLIN ONpejieleHbl HOBBbIE MOHATHS CEMaHTHYECKOTO HOHCOHOBCKOTO
KBa3UMHOT00Opa3ust po6GUHCOHOBCKMX yHapoB JCy, ero ajeMeHTapHOH TeOpUW W CeMaHTHYIECKOH Moje-
g, Jljist Toro 9Tobbl OKA3aTh TVIABHBINA PE3yJIbTAT CTATHU, OBLIM PACCMOTPEHBI POOMHCOHOBCKUM CIIEKTD
RSp(JCy) u ero pasbueHne Ha KJIACCHl 9KBUBAJCHTHOCTU [A] ¢ IOMOIIBIO OTHOIIEHUS KOCEMAHTHIHOCTH.
IIpoanaM3upoBaHbl XapaKTEPHbIE OCODEHHOCTH TAKUX KJIaccoB skBuBasnentHocreil [A] € RSp(JCy). Oc-
HOBHBIM DE3YJIBTATOM SIBJISIETCS CJIEJYIONIAs TEOpeMa O CyIIEeCTBOBAHWU: IPOU3BOJBHONW XapaKTEPUCTUKU
JUIs Kaxkaoro [A], 3HaUeHHe KOTOPOro-poOHHCOHOBCKHE TEOPUH YHAPOB; Kiacc [A] st 060l Ipon3Boiib-
HOI XapaKTEPUCTUKW; KPUTEPHH SKBUBAJIECHTHOCTH KJaccoB |[Alr, [A]s. Ilomyvennbie pe3yapbTaThl MOTYT
OBITH TIOJIE3HBI B MTPOJIOJI?KEHUH HCCJIEJOBAHNS PA3JINIHBIX HOHCOHOBCKUX ajredp, B YACTHOCTH, CEMAHTH-
YECKOTO HOHCOHOBCKOTO KBA3UMHOTOOOPA3Usl MMOJUTOHOB HaJl IIMKJIMIECKIM MOHOUIOM.

Karouesvie crosa: TIOHCOHOBCKAs TeOpHUsd, YHAPDI, YHUBEPCAJIbHAS T€OPHsI, POONHCOHOBCKAs TEOPUs, KBA3H-
MHOroo0pa3sue, CeMaHTUIeCKOe HOHCOHOBCKOE KBa3MMHOroo0pas3ne, HIOHCOHOBCKUH CIIEKTD, POOGMHCOHOBCKUM
CITEKTP, KJIACC SKBUBAJEHTHOCTH, KOCEMAHTHIHOCTb.
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IN MEMORIAM OF SCIENTIST

In memory of the talented mathematician, our comrade and friend
Krasnov Yakov Alexandrovich (1951-2023)

Krasnov Yakov Alexandrovich was born on March 28, 1951 in
Aktyubinsk town, Kazakh SSR, in a family of doctors — Alexander
Grigoryevich (subsequently, a personal pensioner of republican signifi-
cance) and Lyudmila Samoilovna Krasnova. In 1968 Yakov graduated
secondary school No. 2 in Aktyubinsk and in the same year entered
the Mechanics and Mathematics Faculty, Mathematics department of
the Moscow State University named after M.V. Lomonosov, which
graduated in 1973.

In 1973 he started to work as lecturer of the Math department at
the Ust-Kamenegorsk Road-Construction Institute. In 1975 he became
postgraduate student of the Institute of Mathematics and Mechanics
of the Academy of Sciences of the Kazakh SSR. In 1978 he successfully completed his postgraduate
studies and in the same year, under the supervising of a Corresponding Member of the Academy
of Sciences E.I. Kim he successfully defended his Candidate thesis of the Physics and Mathematics
Sciences “Solution of the problems of the theory of heat conduction and potential with nonlinear
boundary conditions of a special type and their applications” on the specialization 01.01.02 “Differential
equations, dynamical systems and optimal control”.

After defending his dissertation, he continued research as a Researcher at the (headed by E.I. Kim)
laboratory of Equations of Mathematical Physics of the Institute of Mathematics and Mechanics
(IMM). In 1981, he was certified as a Senior Researcher. In this time, he was already the author
of 15 published scientific papers.

During his work at the IMM of the Academy of Sciences of the Kazakh SSR, Ya.A. Krasnov
carried out a number of important scientific researches in the field of the qualitative theory of partial
differential equations, which have practical application in the construction of electrical apparatus and
in other areas of science and technology. In particular, he obtained solutions to a number of nonlinear
boundary problems of the theory of heat conduction and potential, in a form suitable for engineering
calculations.

Under his and E.I. Kim’s supervising R.N. Kantaeva prepared and succesfully defended the PhD
dissertation “Potential Method in Boundary Value Problems with a Moving Boundary for a System of
Equations of a Parabolic Type” (01.01.02).

In addition to scientific work, Ya.A. Krasnov also performed various complimentary assignments
and duties: he was the editor of the institute’s wall newspaper, worked at the Small Academy of School
pupils, took part in the design of thematic stands, posters.

In the collective of the Institute, Yakov Alexandrovich was distinguished by a cheerful and responsive
character, and he was a respected person.
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In 1991, the family of Yakov Aleksandrovich together with his parents went to Israel and settled in
Tel Aviv, in the Ramat Gan region. In Israel, he was hired in a renowned university Bar Ilana to the
position of a researcher at the Department of Mathematics, where he continued his scientific activities,
and also taught the courses:

— Numerical analysis,

— Calculus of variations,

— Ordinary differential equations.

The themes of his scientific works were:

Elements of a spectral theory in non associative algebras,

Application of the stability theory to homogeneous of ODEs,

The operator analytic functions theory,

Symmetries of the Dirac equation,

Numerical methods for free boundary value problem,

Theory of non-conformal finite element method preserving harmonic moments,
Geometrically optimal space-time motion algorithms.

Unfortunately, in recent years, he was diagnosed with heart problems, which eventually led to his
untimely death in May 2023.

Numerous friends and colleagues who worked with him remember him as a talented scientist, a
respected and responsible emploeee, a kind and sympathetic person, and a wonderful family man.

Yakov Aleksandrovich Krasnov is the author and co-author of numerous scientific articles, the most
significant of which are listed below:

10

11

12

13

The solution of nonlinear moving boundary value problems in the theory of heat conduction and potential and
their applications. Ph.D. thesis, 1978.

Solution of a class of nonlinear boundary value problems. (Russian) Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.-Mat.
1978, no. 1, 73-76.

The potential of the electromagnetic fields of the system of spherical discs. in "Theoretically and Applied Problems
of Mathematics and Mechanics", vol. II, 1979.

Roots of polynomials with real coefficients. (Russian) Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.Mat. 1980, no. 1,
83-84, (with Ten, V.D.).

A class of nonlinear problems of heat conduction. (Russian) Partial differential equations, 83-86, 250, "Nauka"
Sibirsk. Otdel., Novosibirsk, 1980 (with Kim, E.I.; Kharin, S.N.).
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