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On the convergence of difference schemes of high accuracy for the
equation of ion-acoustic waves in a magnetized plasma

Multiparametric difference schemes of the finite element method of a high order of accuracy for the Sobolev-
type equation of the fourth-order in time are studied. In particular, the first boundary value problem for the
equation of ion-acoustic waves in a magnetized plasma is considered. A high-order accuracy of the scheme
is achieved due to the special discretization of time and space variables. The presence of parameters in
the scheme makes it possible to regularize the accuracy of the schemes and optimize the implementation
algorithm. An a priori estimate in a weak norm is obtained by the method of energy inequality. Based on
this estimate and the Bramble-Hilbert lemma, the convergence of the constructed algorithms in classes of
generalized solutions is proved. An algorithm for implementing the difference scheme is proposed.

Keywords: Sobolev type equation, difference schemes, finite difference method, finite element method,
stability, convergence, accuracy.

Introduction

As is known, the solution of complex applied problems requires the creation of more accurate
numerical algorithms or the improvement of existing ones. This is especially seen in the study of complex
non-stationary processes, for example, in boundary value problems for high-order partial differential
equations. The study of such equations began with the research works of S.L.. Sobolev. They are applied
in solving problems of geophysics, oceanology, atmospheric physics, physics of magnetically ordered
structures related to the propagation of waves in media with a strong dispersion, and many other
problems [1-3]. For example, the equation of ion-acoustic waves in a magnetized plasma [3]

2

0? (02 0 0?
< + wél) (A?’u - TBQU) +wp Frlatiy wgiw%i 5

70 \ o2 b o azz @, (1)

(z,t) € Qr = QU I, Q:{x\ $=(£1,x2,$3),0<$a<l,a:m},

refers to such equations. Here u = (x,t) is the motion velocity, Az = 9%u/0x? + 0%u/0z% + 0*u /03,
rd =T2/ (47r62n0) is the Debye radius, wp, = eBy/(Mc) is the ion gyrofrequency, wf,i = 4me?ng /M
is the Langmuir frequency for ions, M is the mass, c is the speed of light in vacuum, By is the external
constant magnetic field, ng is the unperturbed particle density, e is the absolute value of the electron
charge, T, is the temperature of the electrons. In addition, similar equations appear in the mathematical
modeling of internal waves in the ocean and atmosphere [4-6].

The study in [3]| is devoted to analytical methods for solving problems of this type, where the
problems of global and local solvability of initial-boundary value problems for linear and nonlinear
equations are considered. Numerical methods for solving equations unresolved with respect to the
time derivative are also considered. Non-stationary equations of the second order in time and pseudo-
parabolic equations are considered. Here and in [7], these equations are reduced by some substitution

*Corresponding author.
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On the convergence of difference schemes ...

to two equations (one contains differentiation with respect to time, the other - with respect to space
only); then, these equations are solved by the finite difference method on quasi-uniform grids. The
second order of approximation in both variables is proved.

The studies in [8,9] are devoted to numerical methods for solving initial-boundary value problems
for equation (1). In [8], a mathematical model of ion-acoustic waves in plasma is considered in an
external magnetic field. Issues of unique solvability of the Cauchy-Dirichlet problem are considered.
Based on the theoretical results, an algorithm was developed for the numerical solution of the problem
based on the modified Galerkin method. An implementation algorithm is given. A problem similar to
an optimal control problem for the mathematical model (1), was considered in 9], where an algorithm
for a numerical solution based on the modified Galerkin method and the Ritz method was developed.

In this article, the authors consider the issues of constructing and investigating difference schemes
of high accuracy of initial-boundary value problems for the non-stationary equation of ion-acoustic
waves in a magnetized plasma (1). First, we approximate the space variables, and the time variable is
stored in differential form. As a result, we obtain a system of ordinary differential equations of large
dimensions, solved by the difference scheme of the finite element method of the fourth-order accuracy.
To obtain an accuracy estimate, a special technique for obtaining a priori estimates was used since
the classical approach to studying the convergence of difference schemes based on the Taylor formula
places high demands on the smoothness of the sought-for solution. Therefore, a number of results have
recently been obtained on estimating the rate of convergence of difference schemes for equations of
mathematical physics based on the Bramble-Hilbert lemma [10]. Such studies for various stationary
and nonstationary problems were conducted in [11-15]|. The notation from [16] is used in this article.

1 Statement of the problem

Let us rewrite equation (1) in the following form:

o (Asu —rp*u) + o (W, + w2, ) Agu — wh,rp*u] + wi w, O%u = f(x,t), (2)
ot ot? 9x2
(x,t) € Q={x = (v1,22,23) : 0 <xp <, k=1,2,3}.
The initial and boundary conditions have the following form:

—u(x,t) =up,, v=0,3, r€Q=QUN, (3)
ot =0 ’

uw(z,t)]ygq =0, t € (0,T]. (4)

The existence and uniqueness of solutions to such problems are considered in [1-3].
In our case, we will assume that r% ¢ o(A) = ) is the set of eigenvalues of the homogeneous
Dirichlet problem for the Laplace operator in domain ).
Let us formulate a generalized statement of problem (2)—(4). Function u(x,t), which for each
€ (0,7T] belongs to H = {u EW3(Q), u=0, z € 9Q} is called the generalized solution to the
problem; it has derivative 2 at4 € W1(Q), and satisfies the following relations almost everywhere for all
€ (0,77:

4U 2u

as (ddtgt)719> + ay (ddtgt)719> +ay(u(t),9) = (f(£),9), (5)
k

(2;(0) - uo,mﬁ) =0, k=0,3, V¥(z) € H. (6)

Mathematics series. Ne 4(108),/2022 5
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Here

3
ai(u,v) = wgiw%i / (UgyVsy)dz, az(u,?) :/ [Z (w?gi —i—w%i)uxkﬁwk — w?girl_)?uz? dz,
Q o L=l

3
asz(u,¥) = / [Z Uz, V), — rD2u19] dx.

We denote |ul,, = \/am(u,u), m = 1,3, the energy seminorms in H, corresponding to bilinear

[¢]
forms a,y, (u, ¥). The energy space H4,,, generated by seminorm |u/,,, is equivalent to space H = W Q)
[17], therefore, the following estimates 0 < ay, (u,u) < Cp, |ull? , m = 1,3, are true, where O, are the
positive constants depending on w, rp.

2 Discretization in space

We discretize the problem in terms of space variables using the finite element method. Let Hy, C H

M
be the set of elements of the form 9, = 3. ;@ (2). Here {®,, = &,,(2)})_, is the basis of piecewise

m=1
polynomial functions that are a degree p polynomial on each finite element [18,19].

Let us give an example of a basis based on third degree polynomials. Let us introduce a partition
of domain ) into M = Nj * Ny * N3 parallelepipeds:

Qij = {0 = 1)hy < x1 <ihy, (j —1)he <2 < jho, (k—1)hg < a3 < khs},

i=1,N1, j=1,Ny, k=1,N3, hy=1s/Ns, s=1,2,3.

We choose a system of basis functions:

I
E
I
z
=~
I
z

Qi (z1, 22, 23) = @i(r1)p;(z2)pr(r3), @

where ¢;(z) is the basis function built on the basis of the Bs-spline [18|. In this case p = 3.
Let us put the semidiscrete problem for ¢ € [0,7] in correspondence with (5), (6):

4 2
as <d2?4(t)719h> + as (d Z:Q(ﬁ,'ﬁh) + a1 (up,9y) = (f(t), %), (7)
(ddug,h (0) — uo,mﬁh> =0,v=0,3,V9(x) € Hp. (8)

Problem (7), (8) corresponds to the following Cauchy problem:

d"up (t) N T un(t)

D
dt* dt?

(0) =upp, v=0,3. 9)

M
I,m=1>

Operators D, B, A operate from H}, to Hy. They correspond to stiffness matrices D = a3(¢;, om)
B = ag(gpl,gom)%n:l, A= al(gol,gpm)%n:l. Besides, ur, = Ppug(x), k = 0,3, where P, is the
projection operator P,H = Hy,.

The boundary conditions are approximated exactly.

6 Bulletin of the Karaganda University
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8 Discretization in time

Following [20], problem (9) is approximated by the finite element method. Its generalized solution
is defined as a continuous function u(t) € C?[0, T satisfying the following integral identity for arbitrary
function 9(t) € C%(tp, t1)

ty ty
. . . t
/ (Disd — Bid + Aud)de + [0~ Diid + B[ = / (. 9) dt, (10)
b
tp tp

where 0 <t <ty <T, i =du/dt, ii = d*u/dt?, & = d>u/dt>.
On the segment [0,7], we introduce uniform grid w, = {t, =n7, n=0,1,...; 7 > 0}. On each
of intervals (¢,,tn+1), we seek an approximate solution to problem (9) in the form of fifth degree

polynomials
t:ntn ntn—l-l nt-n nt-n—l-l n n+1 11
y(t) = w0 ()y" + o1 )y + @)™ + T (07" 4+ @b ()™ + 03 (1§, (11)
where y" = y(tn), y"' = y(tns1), ¥" = dy(tn)/dt, 5" = dy(tnq)/dt, §° = d*y(tn)/dt?,
Gl = Py(tag)/dt?, of(t) = —665 + 1561 4+ 66° — 1083 + 1, ¢ (t) = 6£° — 15¢* + 10€3,

Plot) = 7(=38 + 86 — 66 +¢), ¢y(t) = 7(=36" + 7€ — 4€7), ohy(t) = T3(=€>/2 + 3¢%/2
=38%/2+ €2/2), ¢hi(t) =7(/2 -1+ €7/2), €= (t—tn)/T.

Choosing weight functions (), in the form of linear combinations of interpolation functions and
substituting them into (10), we obtain the following parametric difference scheme

Dy — 2 Ayl%®) — D09 = oy,
Dy — Do3'%) + 72 Dijy = o, (12)
Dogi — Dpif ™ — nr? Ay(©®) = g,

where
tnt1 1
T 2
Dm - D —mTQB, m = 06,6777777 p1 = _8 / f(t)dt— 6/f tn‘i"f& dfv
tn 0
7 tn+1 7 2 1
T T
=1 / FOws @t = -1 / Fltn + 7€) 510 () + 5,09 (€],
tn 0
n+1 1
/ £(t) ﬁ(a,ﬂ n) 10/f tn + TE)] 3319 )+3419 d¢, v 8119;1) +8219é5)a
0
o) = (¢~ 1/2) 9 = 738" + 1554/2 =567 +€/2),51 =3 - 1207,50 = 14 - 840y,
93P = 5998 4 500 9P = r26(6—1)/2,95Y = r2€2(¢ — 1)?/4, 55 = 1400+ 15, 54 = 1400+ 140,

here o, B, v, 1 - are some constants.
The first initial condition is approximated exactly. The remaining initial conditions are approxima-
ted as in [16], by the fourth-order approximation, using the Taylor series and initial equations:

2 3

. T
9(0) = uo,1 + = (E — fD 1B> up,2 + EUOg + 24D [f(O) — AuO,g],

Mathematics series. Ne 4(108)/2022 7
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. 2 ™o . .
4(0) = up2 + Tug 3 + 5D 1[£(0) — Buga — Augo] + VA L£(0) — Biiga — Atig o).

It is easy to check that the scheme has the fourth order of approximation error on smooth solutions,
Le. 11 = O(14), o = O(t1), 3 = O(7?) if the following conditions are met

a—pB=1/12, n=1/12, (13)
7 is an arbitrary constant.

4 Estimation of accuracy in space
Theorem 1. Let u(z,t), %1; (2,t) € Lo{[0,T); W1 (Q) N W }. If the narrowing of space Hj, to a

separate finite element is a k degree polynomial, then for solving problem uy(t) € Hy, (9) approximating
problem (2)—(4), the following accuracy estimate holds

t
+f]
0

Proof. We integrate identity (5) over ¢ from t,, to t,+1 = t, + 7, and applying the integration-by-
parts formula, we obtain:

ou auh

0%y,
E(az, t) — o —(z,t)

x,t') — (z,t)
6t2 ot .

+ [|u(z,t) —up(z, t)||; + dt’'+

1

8uh

ou ,
St = S

av |,

dt < Mh* /||um )7y dt'+ /H (z,t)

k+1

vVt €[0,T]), M = M(rp, w) > 0.

tntl
Jas(i(0), ) — ax(i(0), ) + aa(ut), 0)] ()t +as(i (), D)™ = as (e), D))"
t" - (14)
an(i(t), 9) [ = / (f(8), 9)dt, VW(z) € Hi.
tn
Likewise, from (7) we obtain
tnt1
(as(in, n) — az(in, On) + ar (wn, V)| (Ddt+ as (i (£), 9n) 2+ = as (iin, On) t:“
tn
tnt1
+ an(itn, 97 = / (F(t), 9n)dt, YOn(x) € Hp.
tn
Choosing ¥ = ¥, € Hy, C H from (14) and subtracting both obtained identities, we have:
tnt1
[a?)(éh, 19h) - a2(7§h,19h) + al(zh,ﬁh)] (t)dt —|—a3('2'h,19h)‘§ —as (Zh779h) t:H + (15)
tn

+az(Z, V)" = 0, VI, (x) € Hy,

8 Bulletin of the Karaganda University



On the convergence of difference schemes ...

where zp, = u — up, e, = u —uy, &, = ur — up, ur = ur(x,t) is the solution interpolant u(z,t) in
[19]. Let us choose a test function

Ip(t) = — /gh(t')dt’ € Hy, t <s; 9(t) =0, t > s, O(t) = Ex(t), O(s) = Ip(s) = 0.

Then, with z;, = &, + ey, identity (15) can be written in the following form:

bttt
/ [as(éhfh) + as(&n, &) + a1 (Vn, 29h)] (t)dt + [az(£h,On) — az(Zn, On) + az(Zn, 9p)] |7 =
tn
tn+1
=— / [CLB(éhvéh> + az(ép, &n) + ar(en, Vp) | (t)dt.
tn

Hence, given the following relations:

.. 1d . . 1d . 1d
az(&n, &) = 5%613(&“ &)y a2(&n, &) = 5%612(&“ &n), a1(Vn, Up) = §£G1(19h, Up),

az(én, &) = %%(éh, &n) — as(én, &), az(én, &) = %az(eh, &) — as(en, &),

we obtain

tn+1 _
tn -

En(tns1) + 0.5a1 (0, 93) (tns1) + [az(En, On) — az(Zn, 95) + az(2n, 9p)]

= Ep(tn) + 0.5a1 (U1, ) (tn) — [as(én, En) (tns1) — as(én, &) (tn) + az(en, &) (tns1)—

—az(en, &n)(tn)] + / [GS(éhaéh)+a2(€haéh)+al(ehaﬁh)} (t)dt,

where Ej,(t) = 0.5]as(&nh, &n) + aa(&n, &r)]. Now let us sum this equation over n = 1,m — 1, where m
corresponds to the time point s = m7:

En(s) + 0.5a1 (0, 9p)(s) + [az(Fn, 0n) — az(Zn, On) + a2 (zn, 9p)] |5 =

= Ep(0) + 0.5a1 (9, 9)(0) — [az(én, €n) () — az(én, €)(0) + az(en, &) (s)—

~an(en&n)(O)]+ [laa(en ) + anlen, ) + ar(ens D)) (B0
0
Taking into account the properties of functions ¥ (t) and initial conditions 2;(0) = 2,(0) = Z4(0)
= Z3(0) =0, &,(0) =& (0) = &(0) = £,(0) =0, from (16) we obtain

tn+1

Ep(s) + 0.5a1 (9, 91)(0) = / [as(én, &n) + az(en, &) + a1(en, 95)](t)dt. (17)

tn

Mathematics series. Ne 4(108)/2022 9
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Let us introduce one more function
t
wp(t) = /gh(t’)dt’ € Hp, t <s;wp(t)=0,t>s.
0

Then, U5 (t) = wi(t) — wp(s) and from (17) we have the energy identity:
Ei(s) + 0.501 (wp, wi) () = / [as(éns én) + as(en, €n) + ar(en, wn(t) — wn(s)ldt.  (18)
0
Let us estimate the terms on the right-hand side of (18):

S S S

/a3 (én, &p)dt < 61/ az(En, &n)dt + 4;/ az(ép, ép)dt,

0 0 0

/ L A ; 17 ;

/az(eh,fh) t_€2/ az(&n, &n) t+4?2 az(en, ep)dt,

0 0 0
S S 1 S
/a1(€h7wh(t)—wh(8))dt§€3/ al(wh(t)awh(t))dt+553al(wh(3)>wh(5))+253/ a1(en, ep)dt.
0 0 0

Choosing £1 = &3 = 1/2, and 3 from condition & + 37 < 2, from (18) we have the following
estimate:

S

Ez@>+/ﬁaaéméz>+(m<5ushn<wdt+¢n<wh,whxs>s

. ’ . (19)

<M /[al(wh, wp)(t)dt + /[a3(éh7éh) + az(en; en) +ai(en, en)l(t)dt | ,
0 0
where M — const. Applying the Gronwall lemma for inequality (19), we obtain the error estimate
S
En(s) + / [a3(€n, En) + aa(Ens n) J(£)dt + ar(wn, wp)(s) <

0

s

< / [ag(éh, éh) =+ ag(eh, €h) =+ al(eh, €h)](t)dt,

0
It is evident that ko [|wp(s)||7 < a(wn,wr)(s) < ki wa(s)[5, alén, &) (s) = [€n(s)17, alénsEn)(s)
= Héh(s)

2
v alen, en)(s) = len(s)1?, a(én, €r)(s) = ||én(s)|1?, so for the error we have the final estimate:

o]+ ez + [ (ol + o] ae < ar [ frencon + pescon] . c2o)
0 0

The following estimates hold for solution u(z,t) € WET1(Q), vt € [0,T] [18], [19]:
len(lly < MA*|[a() s len(®)ly < MAJu®)]ljys-

Therefore, based on (20) and triangle inequality ||zp|| < |len|| + ||&n]|, the assertion of the theorem
holds.
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5 Estimation of accuracy in time

Let us now proceed to estimate the discretization error of problem (9) with respect to time. To
approximate problem (9), scheme (12) is used, and to estimate the accuracy with respect to time
variable, the Bramble-Hilbert lemma is used. Note that solution wuy(t) of the semidiscrete problem (9)
for each ¢ is an element of the discrete subspace up(t) € Hp,.

Let us denote subspace H;, of functions of argument ¢, which are Hermitian splines of the form
(11) on interval [t,,t,+1] , n = 0,1,2,.... Solution of scheme (12) is y(t) € H,. y(t) is an element of
subspace Hj, for each t simultaneously. Actually y(z,t) € H] = Hp ® H.

The following theorem holds.

Theorem 2. Let D* = D >0, B*= B >0, A* = A > 0. In addition, let the approximation
conditions (13) and stability conditions be met

D—pur*A>eD, Vee (0,1), p=max{a,B,7,1}. (21)

Then, for the solution of scheme (12) approximating the solution to problem (9) such that a (1) €
C'[0,T] , the following accuracy estimate holds

lin(t) — 9Ol + lun(t) — y(B)], /nuh I di+

d Up
/|Uh H1dt<M7 /H dt4 (t')

Proof. Difference scheme (12) corresponds to the weak statement

dt’, M — const.

03301, 7) = ax(30),92) + a2 (1,9 di a5 (50, 0" = aie) )|+
" tni1 (22)
+az(§(t), 0| = / (f(t),9;)dt, VO, (x) € H,

where y(t) is the Hermitian spline (11). Choosing ¥ = ¥, in (14) and subtracting the identity (22), we
have the following identity for error: ¢, (t) = wup(t) — y(¢):

tn+1
tn+1

|:a3(é:77 197) - a2(é77797) +a (C7—7Q97—):| (t)dt + a3 ('C”r(t)a 7) EZH - a3(57779T) . (23)
i " 23

. tn+1
+ao(Cr90)| T =0, V9, € HI.

Let us represent (;(t) as (- (t) = up(t) —y(t) = up(t) —uj(t)+uf(t)—y(t), where uj(¢) is interpolant
up(t), i.e. uj(t), as well as y(t), is the Hermitian spline, such that u}(t,) = up(tn), @7 (tn) = p(tn),
n = 0,1,.... The scheme error is (;(t) = & (t) + e-(t), where e, = up, — u}, & = uj —y. We choose

test function 9, (t) = — f&- t)ydt', t <s; 9.(t) =0, t>s. Then identity (23) can be written as:

tn+1

/ |:a3(é:‘r> gT) + CLQ(éTa g‘r) + a/l(?é”l'? 797-) dt + [a3(.é-q—> 197') - a3(é;‘ry 797—) + a2(é7—, 797)] i2+1 =

t’ll
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tnt1
= - / [a3(é7a£‘r) + a2(é7'a€‘r) + al(eﬁﬁr)]dt'
tn

Hence, given the following relations:

1d 1d 1d

GS(gT’ g‘r) = gaa?)(éﬁ S‘r)a ag(é.,-, 57') = §%a2(€ra é-T)a al(’léTa 797') = iﬁal(ﬁn 197')’
. d . . d :
a3(é7’7 gT) = aa?)(é‘m 57') - a3(é7—7 gT)? a2(é77 gT) = %CLQ(GT) g‘r) - a2(eTa 67')’

from the last identity we obtain
Er(tn+1) +0.5a1 (9, 97) (tnr1) + [a3(’<'_'7—’ 197) - a3(é¢: 197) + GQ(éT7 Vr)] izﬂ =

= Er(tn) +0.5a1 (9, 97)(tn) — [GS(éraé‘r)(thrl) - QS(éTaST)(tn) + az(er, &) (tnt1) — az(er, &) (tn)]+

tn+1

b [ foater) + aaer &) + anlen )] (ra
tn

where E.(t) = 0.5[az(&r, &) + az(&r, &-)]- Now let us sum this equation over n = 1,m — 1, where m
corresponds to the time point s = m7:

Ex(s) + 0.5a1 (97, 97)(s) + a3 ({7, 97) — as (G, 0r) + a2(Gr, 90)] [§ =

= ET(O) + 0.5(11(7975 197)(0) - [a3(é77 gT)(S) - a3(éTa 57)(0) + a2(€‘r> gT)(S) - (12(67., 57)(0)]—1_ (24)

+ / [a(6r. &)+ aner. &) + arer, )] (),
0

_Taking into account the properties of functions ¥ (¢) and initial conditions ((0) = ¢(0) = ¢-(0)
= (,(0) =0, &(0) =&-(0) = &(0) = £,.(0) =0, we obtain from (24)

tn+1

E.(s) + 0.5a1(9,,9,)(0) = / [ag(éﬂg;) + asler, &) + ai(er, 9,) | (t)dt. (25)

tn

We introduce one more function
t

wy(t) = /&(t’)dt’ € H,, t<s; wi(t)=0, t>s.
0
Then, ¥, (t) = w,(t) — w,(s) and finally, from (25) we have the energy identity:

s

E;(s) + 0.5a1 (wr, w;)(s) = /[ag(éT,gT) + az(er, &) + a1(er, wy(t) — we(s))](t)dt. (26)
0

Let us estimate the terms on the right-hand side of (26):

S S S

/G3(éq—,é7—)dt§€1/a3 (éT?éT)dt""Zél/ a3(é7'7é7')dta
0

0 0

12 Bulletin of the Karaganda University



On the convergence of difference schemes ...

S S

/a2(6‘r’£7’)dt§52/ a?(éTaéT)dt_’_ééz/ a2(6T76T)dt7
0

0 0

/ ay(er, wr(t) — wr(s))dt <
0

S S

§53/al(wT(t),wT(t))dt—}—ssgal(w.r(s),w.r(s))—|— ! /al(eT,eT)dt.

0 0

Choosing €1 = €2 = 1/2, and €3 from condition 5 +&37" < %, we have the following estimate from
(26):

S

Er(s) + / [afﬂ(éﬁé’) + a2(€n£7’)} (t)dt + ar(wr, wr)(s) <

0

S

<M /[al(wT, wT)(t)dt—f—/ laz(ér, é7) + az(er, er)+ar(er, e-)|(t)dt | ,
0 0

where M — const. Hence, applying the Gronwall lemma, we obtain the error estimate

Bo(s) + [ [aatenin) + aaer,€)] @t + axwr, wr)(s) <
0

/ CL3 €r,Er —|—CL2(€7—,€T)—|—CL1(€7—,€7—)]dt
0

Obviously, ko w-(s)ll; < a(wr,wr)(s) < kifw(s)llf, a(ér,&)(s) = & ()7 alér, &)(s)
= & 6)3, aler,er)(s) = ||eT(s)||f, a(ér,ér)(s) = HéT(s)H%, so, we have the final estimate for
the error:

S S

G w1+ [ e+ Jeol]a<ar | [ e eore) . e

0 0

Linear bounded functionals e, (t), é,(t) vanish on polynomials up to the third degree inclusive with
respect to variable t. Then, based on the Bramble-Hilbert lemma, the following estimate holds [10],

[13]:
2 S
He N dt’ =M d“h dt, | ||e-(t)]? dt < D75
T 1 dt4 ) I T 1 — T
0

Consequently, estimates (27), (28) imply the assertion of the theorem.

d4 u h
dt4

(28)
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6 On convergence of the scheme

Note that in the estimate of Theorem 2, the error depends on solution wuy(t) of the semidiscrete
problem (9), while it is desirable to have smoothness conditions for the solution of original problem
(2)—(4). To do this, we use the following estimate [18], [19]:

unllp = llu —w+unlly < lJully + lu = unlly, < llully + Chluli,, < Cllullyyy, k=0,1.

Constant C' does not depend on h.
Consequently, the estimate in Theorem 2 takes the following form

a6 lewi+ [ |
0

On the basis of Theorems 1 and 2, the following assertion holds.
Theorem 3. Let the conditions of Theorem 2 be satisfied. Then for the solution of scheme (12)
approximating the solution of problem (2)—(4) such that u(zx,t), %‘t‘(x t) € Lo { 0,T]; WEH(Q)

dt’.

£t Mdt<M7 /th/

. 2
&) +

ﬁVVQI(Q)}7 St (x,t) € C{[0,T] ; WH()}, the following accuracy estimate is true:

0%uy,

au (‘9 Up, / / /
H i @) = @)l t) — e )l + /H 5 (n:1) = St | '+
t 5 P t
+/ —u(x,t’) —ﬂ(x,t’) dt' < M { h* /Hu(gc,t')nﬁ+1 dt’ + / —(z,t) at’ | +
ot ot 1 k1
0 0

xt/

6t4 dt’ Ve [0,T],M = M(rp, w) > 0.

When choosing a degree k = 3 polynomial on each finite element in space, we have the third-order
accuracy in space steps h.

Let us verify the stability condition (21). We represent the operators of scheme (12) in the following
form

D=A+ Ay + A3 — TBQE, A= (w%i + ng)(Al + Ag + A3) — w%irng + wﬁiw%iAg,

where operators A > 0 correspond to stiffness matrices Ay = (bk(gol,gom))%n:l with bilinear form

bi(u,9) = [ (ug, Vg, ) dz. Condition (21) takes the following form
Q

(1 —¢)(A1 + As + A3 — TBZ)E > ,uTQ(w%i + wii)(Al + Ag + As) — w%irBQE + wﬁiw?giAg,
or with
HAl + Az + Az — TBQEH / H(wél + wzi)(Al + Az + A3) — w%iTE)2E + wﬁiw%iA;;H <1

we obtain 72 < %, where 0 < e < 1.

This condition is interesting because the time step is not related to the space step and is determined
by the scheme parameters. For the parameters of scheme (12), for example, for « = 1/10, § = 1/60,
v =1/40, n =1/12 we have p = 1/10. So finally 7 < /10(1 — ¢).
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7 Algorithm for implementing the scheme

Consider one of the possible algorithms for implementing scheme (12). We rewrite it in the following
form
miy + m12@2 + m13i:J =&,
ma1y + mazy +mazy = Pa, (29)
m31y + m32y + maszj = Ps.

Here
3

T T T
myp = —77514, mi2 = Dy, mi3 = —§D7 ma1 = D, mas = —§D7, mag = 07D,

7'3 T T3 . T ..
ma1 = —77514, m32 = Do, m33 = —§D5, O =791 + U;Ay + Dyy + §Dy,

3
T . . T . T .
¢z=mm+Dw+§Dw+nﬁD%®3=ﬂ%+ngﬂy+ﬂw+§Dw-

Assuming the mutual commutability of operators D, B and A, we exclude 3 from the system of
equations (29). As a result, we obtain the following system of equations

911y + 912,72 = 0y, (30)
9219 + 922y = Po,
where
g11 = Ma3mi1 — M131MmMa1, gi2 = M231M12 — 1M13M22, g21 = MM33mMi1 — 1M131Ma31,
g22 = M33mia — Mizmaa, P1 = moz®; — myzPy, Oy = m3z®; — my3P3.
Further, excluding ¢ from (30), we obtain
Cy=F (31)

where C' = ga2g11 — 912921, F' = 921‘i)1 - 912‘?2-
After determining ¢ from (31), we find y from one of equations (30), for example, from the first
equation

Chy = Fi,

where Cy = goag12, F1 = ggﬁn — g22911%- Then, the value ofﬁ is found from system (29), for example,
also from the first equation C’gg’} = Fy, where Cy = my3, Fo = &1 — m19 — mlggj.

As is known, problems (5), (6) were obtained as a result of approximation of space variables, so, the
matrices corresponding to operators D, B, A are ill-conditioned and sparse. Then, the conditionality
of matrix C also worsens. Therefore, the implementation of the scheme by directly solving equation (31)
is not desirable, so, in the numerical modeling of problems with specific data, it is better to factorize
operator C. In addition, operators D, B, A may turn out to be degenerate. Then, to eliminate the
problem of operator degeneracy, the regularization principle is applied, which allows applying the
spectrum of shift-operators: D=D+¢cE ) B=B+¢cE , A= A+c¢E for self-adjoint operators. Here,
€ > 0 is a small parameter setting the value of the spectrum of shift-operators. As a result, scheme
(12) is replaced by a regularized scheme with operators 15, B , A.
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8 Conclusions

A boundary value problem for the equation of ion-acoustic waves in a magnetized plasma was
considered. On the basis of the finite element method, parametric difference schemes of high-order
accuracy were constructed and investigated. A high-order accuracy of the scheme was achieved due to
the special discretization of time and space variables. In addition, the presence of parameters in the
scheme makes it possible to regularize the schemes in order to optimize the implementation algorithm
and the accuracy of the scheme. The corresponding a priori estimates were obtained and, on their basis,
theorems on the rate of convergence and accuracy of the constructed algorithms on the smoothness
of solutions to the original differential problem were proved under weak assumptions. An algorithm
for the implementation of these schemes was proposed. These schemes have certain advantages over
other schemes — they are two-layer schemes of high-order accuracy, except the solution itself, its
derivative (velocity) is determined with the same accuracy; using the interpolation representation
(11), if necessary, a solution can be obtained at any time. In addition, to achieve a certain accuracy, it
allows us to select large time steps, etc.

Based on these advantages, it is possible to study other boundary value problems, including nonlocal
boundary value problems. Besides, these results can be transferred to loaded equations with local and
nonlocal boundary conditions.
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M.M. Apunos!, 1I. Orebaes?, 2K.A. Hypyrtaes!

M. Yamxber amomodazs: Osbexcman yammows yrusepcumemi, Tawwkenm, O36excman;
2 Bepdax amwimdaen. Kapakasnax, memaexemmir yHusepcumems, Hywic, O36excman

MarauTTeJireH IJ1a3MaJarbl HOHABI-aKyCTUKAJIBIK TOJKBIHIAPIbIH

TeHJIeyl YIITiH »KOoFapbl AJIAIKTETl allbIpMaIIIbLIBIK, CXeMAaJIaPbIHbIH,

2KNHAKTBLJIbIT'bI TYPAJIbl

VakpiT GoiibiHIa TepTiHi perti CoboseB TUNTI TEHIEY YIIIH J9JIIr KOFAPhl aKbIPJIbI JIEMEHTTED 9IiCi-
HIH KeNmnapamMeTpJi afbIPbIMJIBIK, CXeMAJIAPhl 3ePTTEIreH. ATan afTKaH A, MATHUTTE/ITEeH [J1a3MaIarbl HOH-
JIbI-aKyCTUKAJIBIK, TOJIKBIHIAD/IbIH, TeHeyiHe apHaJFal OipiHii mekapaJblK ecen Kapacroipbuiran. Cxema-
HBIH >KOFapbl PETT] QI yakpIT [T€H KEHICTIK aifHbIMAJIbLIAPBIHBIH apHANDI JUCKPETH3AIUSCHIHBIH apKa-
CchIHITa KOJI KeTkizimemi. Cxemaa mapamMeTpiiepiiH OOybl CXeMaJlap/blH JOJIIITIH KOFAPFBI PETKE KeJi-
Tipyre >KoHe iCKe achIpy aJrOPUTMIH OHTAMIAHIALIPYFa MYMKIHJIK Gepesi. OJici3 HOpMaJarbl AIPUOPJIBIK,
OaraJiay HEpreTHKAaJbIK TEHCI3MIK oaiciMen asbiHaabl. Ocbl Garasayabis, koHe bpaMbi-I'uasbepT jieMma-
CBIHBIH HETI31H/e XKAINbIIAHFAH MIEITiM/Iep KJIACTAPBIH/IA KYPACTHIPBLIFAH aJITOPUTM/IEP/IIH Y KUHAKTHLIBIFBI
JIRJIEIIIEH Tl . ARBIPBIMIBIK, CXEMAHBI YKy3ere acblpy aJrOPUTMI YCHIHBLIFAH.

Kiam cesdep: CobGosieB TUNITI TeHJIEY, alibIPBIMIBIK, CXeMaJiap, aKbIPJIbl aflbIPBIMIAP 9J1iCi, aKbIPJIbI dJjIe-
MEHTTED 9iCi, TYPAKTBLIBIK, KUHAKTBLIBIK, JTOJITIK.
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M.M. Apwmnos!, JI. Yrebaes?, 2K.A. Hypysiaes!

! Hayuoranvnoui ynusepcumem Ysbexucmana umenu M. Yayebexa, Towsenm, Vabexucman;
2 Kapaxasnaxckud eocydapemsenmonl ynusepcumem umernu Bepdaza, Hyxye, Yabexucman

O CXOAMMOCTH PA3HOCTHBIX CXEeM MOBBINIEHHOI TOYHOCTU JJILL
YpaBHE€HNA MOHHO-3BYKOBbLIX BOJIH B 3aMarHn4eHHOol I1J1a3Me

HccnmenoBanbl MHOTOIIApaMETPUYECKNE PA3HOCTHBIE CXEMbI METO/a KOHEYUHBIX 3JIEMEHTOB BHICOKOT'O TTOPSIIKA
TOYHOCTH JIJIs1 yPABHEHHUsT COOOJIEBCKOTO THTIA, YETBEPTOTO MOPSIIKA IT0 BpeMeH!. B 9acTHOCTH, paCCMOTPEHBI
repBas KpaeBasd 33/1a4a JJIsi YPaBHEHUsI NOHHO-3BYKOBBIX BOJIH B 3aMarHWYeHHON 1s1a3Me. Bricoknmit mopsi-
JOK TOYHOCTHU CX€MBbI JOCTUTAETCS 38 CUeT CIIeIUaIbHON NUCKPETU3allUU BPEMEHHON U IPOCTPAHCTBEHHBIX
nepeMeHHbIX. Harmane mapaMeTpoB B CXeMe TIO3BOJISIET ITPOU3BECTH PETYJISPUIAINI0 TOTHOCTH CXEM, & TaK-
JK€ ONTHMMM3AIMIO ajropuTMa peaju3anuu. MeTomoM sHepreTmYecKnX HEPaBEHCTB IIOJIydeHa AIlpUOpPHAs
OIlCHKa B HEKOTOpPOIi caaboit nopme. Ha ocHoBe 910it onenku u jiemMmbl Bpambuia-I'uasbepra Jokasana cxo-
JUMOCTB ITOCTPOEHHBIX AJITOPUTMOB B Kjaccax 00OOIEHHbIX pemreHnii. [IpeokeH aaroputM peasn3anun
Pa3HOCTHOI CXEMBbI.

Karoueswie caosa: ypaBHEHHE CODOJIEBCKOIO THIIA, PA3HOCTHBIE CXEMBbI, METOJI, KOHEYHBIX Pa3HOCTEH, METO/
KOHEYHBIX JIEMEHTOB, YCTONYINBOCTD, CXOAUMOCTb, TOYHOCTb.
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Asymptotic estimations of the solution for a singularly perturbed
equation with unbounded boundary conditions

The paper studies a two-point boundary value problem with unbounded boundary conditions for a linear
singularly perturbed differential equation. Asymptotic estimates are given for a linearly independent system
of solutions of a homogeneous perturbed equation. Auxiliary, so-called boundary functions, the Cauchy
function are defined. For sufficiently small values of the parameter, estimates for the Cauchy function and
boundary functions are found. An algorithm for constructing the desired solution of the boundary value
problem has been developed. A theorem on the solvability of a solution to a boundary value problem
is proved. For sufficiently small values of the parameter, an asymptotic estimate for the solution of the
inhomogeneous boundary value problem is established. The initial conditions for the degenerate equation
are determined. The formula is determined; the phenomena of the initial jump are studied.

Keywords: two-point boundary value problem, initial jumps, degenerate problem, small parameter, initial
function, boundary functions.

Introduction

Researchers [1-14] have developed efficient asymptotic methods for singularly perturbed problems.
For sufficiently small values of the parameter, these methods make it possible to construct uniform
asymptotic approximations. However, for some singularly perturbed two-point boundary value problems
with initial jumps, the choice of an appropriate method for constructing asymptotic approximations
without a preliminary study turns out to be almost impossible. The first studies devoted to the
phenomena of initial jumps were the works of Vishik, Lyusternik [15] and Kasymov [16]. In [17-19] these
studies were summarized and continued. The jump phenomenon in many real problems of practice is
a significant component, which is taken into account when building a model of these processes. In this
case, the value of the jump is the condition for the perturbed problem to be replaced by a degenerate
problem. For example, a new justification for the Painlev paradox, the existence of contrast structures,
and the jump phenomenon were established by Neimark and Smirnova [20]. Asymptotic behavior,
jump phenomena of the solution of a general two-point perturbed boundary value problem with finite
boundary conditions were considered in [21-23]. In these papers, using the formula for solving a two-
point boundary value problem for sufficiently small values of the parameter, asymptotic estimates
are established, a theorem on the solvability of a solution to a two-point boundary value problem is
formulated and proved, and the phenomena of initial and boundary jumps are revealed.

1 Statement of the problem

The next natural continuation in this direction is the study of the asymptotic behavior of solutions
to perturbed two-point boundary value problems with unbounded boundary conditions. This work is
devoted to the consideration of such problems.

*Corresponding author.
E-mail: kuralaimm7@gmail.com
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Consider the following inhomogeneous differential equation:

Ly=cy +A(t)y +B(t)y +C(t)y = F(t) (1)

with unbounded boundary conditions of the form:
’ a9
y(0,e) = a1, y(0,¢e) = - y(1l,e) = a3 (2)

where € > 0 is a small positive parameter, ag # 0, a;, i = 1,2, 3 are known constants, A(t), B(t), C(t),
F(t) are functions defined on the interval [0, 1].

In this paper, based on the analytical representation of the solution to problem (1), (2), the existence
and uniqueness of the sought solution is proved.

Assume that the following conditions hold:

Cl) A(t), B(t),C(t), F(t) are sufficiently smooth functions defined on the interval [0,1];

C2) A(t) >y =const >0, 0<t <1,

=< _ |y10(0)  y20(0) .

) I = yio(1)  y20(1) =0

C4) Let a3 —l—% # 0.

2 The fundamental set of solutions to the homogeneous perturbed equation

Consider the following homogeneous equation associated with (1)

Ley(t,e)=ey + At)y + Bt)y +C(t)y =0, (3)

corresponding to the inhomogeneous equation (1). For the fundamental system of solutions to equation
(3), the following lemma [1] is valid.

Lemma 1. If conditions (C1) and (C2) are satisfied, then the fundamental set of solutions y;(t,¢),
i =1,2,3 of (3) in the interval 0 < ¢ < 1 has the following asymptotic representation as ¢ — 0:

y I (t,e)=y{ (1)+0(e), i=1,2, j=0,1,2,
t

: 1 1 : . (4)
ot e)=eap | - [ u@ds | w1+ 0. =012,
0

where u(t) = —A(t) <0, yio(t), i = 1,2, are solutions of the problem

Loyio(t) = At)yio + B()yio + C(t)yin =0, i=1,2, (5)
with initial conditions:

y0(0) =1, y19(0) =0, y20(0) =0, ya(0) =1,
Functions ys0(t) has the form
¢
yso(t) = (A(0)/A(t))exp /(B(SU)/A(fﬂ))dx 7# 0. (6)
0
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By applying asymptotic representation (4), for the Wy (¢, €), y2(t, €), y3(t, €)] with sufficiently small
e we get

t

W(t.e) = pean i/mwm:mamﬂwwmu+0@n¢m (7)
0

where W (t) is the Wronsky determinant of the fundamental system of solutions y;o(t), i=1,2,3 of
equations (5),(6), and W (t) # 0.

3 Constructing the initial and boundary functions

Also as in previous works [17, 18|, we introduce the initial function

W(t,s,e)

K(t,s,e):m,

(8)

determined from the next problem:

L.K(t,s,e) =0, K(s,s,6)=0, K,(s,8,¢)=0, K, (s,5,¢)=1, (9)

where W (t, s, ) is the determinant obtained from the Wronskian W (s,¢) by replacing the third row
with the fundamental set of solutions y (¢, ), y2(t,€), ys(t, €).

Obviously, the initial function K (¢, s,¢) satisfies equation (3) and initial conditions (9), where the
function K (t,s,e) does not depend on the choice of the solution fundamental set for equation (3).
Therefore, the initial function for equation (3) exists, it can be expressed by formula (8) and it is
determined by a unique form.

Let us consider the determinant

yll(oﬂa) y/g(o,é“) y;(O,a)
'](5) - y1(0,€) y2(07€) y3(07€) : (10)
yi(Le) wa(l,e) ws(l,e)

Due to asymptotic estimation (4), elements of determinant (10) has next form ¢ — 0:

¥ (0,6) =yl (0) + O(e), i =1,2, = 0,1, yi(1,¢) = yio(1) + O(e), i = 1,2, (11)

16(0,2) = o[l +O()), 45(0,2) = Zyso(O(O)[1 + O,

1
(1) =eap - [ ua)de | (1) + 0]
0

Then the determinant J(e) taking into account (11) has the following representation as £ — 0

J&) =~ p(0)7(1+ 0). (12)

Definition 1. The functions ®,(t, ), i = 1,2,3, are called boundary functions for boundary value
problem (1) and (2), if they satisfy homogeneous equation (3) and boundary conditions

(I>z('j)(07 g) = {

1, j=i—1,i=1,2,

. . . (13)
07 ]#Z_L 12172737 j:0717
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The following theorem is valid.

Theorem 1. If conditions (C1)—(C3) are satisfied, then the boundary functions ®;(t,¢), i = 1,2, 3,
on the interval |0,1] exist, unique and can be expressed by formula:

JZ' (t, 8)

(I)Z‘(t, E) = J(g) )

i=1,2,3, (14)

where J;(t,e), i = 1,2,3 is the determinant obtained from J(g) by replacing the i-th row with the
fundamental set of solutions yi(t,¢), ya(t,e), y3(t, ).

Proof. We seek the boundary functions ®;(t,¢), ¢ = 1,2,3 in the next form which satisfy the
condition (13) ‘ ‘ .
D;(t,e) = ciyi(t,e) + cyya(t, €) + cys(t,e), 1 =1,2,3. (15)

where ¢, cb, ¢ are unknown constants which are defined from the function (15), that function satisfies
boundary condition (13). Obviously, the function (15) depending on one variable ¢ satisfies the homogeneous
equation (3). By substituting (15) into (13), we obtain

25(0.¢) = 1, k=i—1,4i=1,2, 16)
0, k#i—1,i=1,23, k=0,1,

1, i=3,

®;(1,¢) = ciyi(1,e) + chya(l,€) + chys(1,e) = {0 1o

With a fixed value i system (16) has a linear algebraic system of equations for determining ¢, ¢, cé,
which determinant is J(g). Then, by means of (12) for a sufficiently small € the system (16) is uniquely
solvable. Solving (16), we have

Ji
J(e)’
where J;i is the algebraic complement of the determinant element J(g), at the intersection of the ¢ —th
row and k—th column. Substituting (17) into (16) and comparing the decomposition obtained with the
determinant decomposition J;(¢,&) by elements ¢ — th row, we get formula (14). Hereby, the functions
®;(t,e), i =1,2,3, defined by the formula (14) satisfy the equation (3) and boundary condition (13).
Consequently, functions ®;(t,e), ¢ = 1,2,3, are defined on the interval 0 < t < 1, are boundary
functions of the perturbed problem (1), (2). The theorem is proved.

i = i=1,2,3, (17)

Lemma 2. The initial function K(¢,s,e) and its derivatives by variable ¢ to the second order are
defined on the interval [0,1] at s < ¢ have following asymptotic representation as ¢ — 0:

t

@ (¢, s S ¢ v s 1_j7y30(t)ﬂj<t)ex 1 x)dx
KO(,0) = s | TP (15) 41 20 ey g/u( )d

s

W(s)+0 | e+ Texp

M| =

t
/ wa@yde | ||, j=0,1.2, (18)

where W (t, s) = Y10(s) yQO(S)) ‘

y10(t)  y20(t
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Proof . We expand W (t, s, ) by the elements of the third column:

w) (t,s,¢) = ys(s,e)Wis(t,s) — yé(s,E)ng(t, s) + y:gj) (t,5)W33(s,€), (19)

where the minors Wis(t,s) (i = 1,2,3) by virtue of (11) as € — 0 can be represented in the form
Wis(t,5,) = wio()y5) (1) — vao ()it (1) + O(e), (20)

Was(t,e) = W (t,5) + Oe),
Wss(s,e) = W(s) + O(e)
where W’ (t,s) is determinant obtained from the Wt,s after deleting second row to ygj )(t), y%) (t).
Then, taking into account estimates (20) and (4), from (19) for the function W) (t,s,e) we have
following representation as ¢ — 0

S

W(j)(t,s’s) - éexp (i /’u(x)dx) ygo(s),u(g) [—W(j)(t,5)+

0

i (1 [ e | 200890 o
- p(/ H “) () T

S

+0 (8 +e*exp (i/u(x)daz))] . (21)

Use (21) and (7) in (8) we obtain estimate (18). Lemma is proved.

Lemma 3. Under conditions (C1)-(C3), on the interval for the boundary functions ®;(¢,¢), i =
1,2, 3, the following asymptotic representation holds as ¢ — 0

oW (t,e) = jgj)(t) ~ eap (1 /tﬂ(x)dx) F, j§2)(0)+
’ J gl € T J

0
g2 1 /
+0 €+ —jeap B ,u(:l:)dm)), (22)
(5 (]
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t
2

€ 1
0 - - d i =0,1,2,
+0 | e+ —eap 5/#(66) z] ), J=01,
0

where j(j)( t) is the determinant obtained from J by replacing the i — th row with the fundamental set
of solutions ygj ) (1), y%) (t).

Proof. By spreading Ji(] ) (t, ) the element of the third column and taking into account the estimation (4),
we have

t

I0(0,2) = =~ iO(0) 700 + B0 e < [ wtonts | 70+
0

¢
; 1
+0 | e+e*Texp 8//QL(x)d:z: ,

0
; t
JQ(J) t,e) = ys30(0 { _JWemp i_/u(m)daz J+
0
t
+0 <€+E “Jexp i/,u(af)da: , (23)
0

I (42 = ~Zs0(0)u(0) |75 (1)

exp | —

Lot (1 /
Y30(0)(0) £ )

t
; 1
J(Q)( 0)+0 |e+eTexp E/u(ac)dx
0
Then, using (12) and (23) in (14), we get (22). Lemma is proved.

4 Constructing the solution of the boundary value problem

Theorem 2. If conditions (C1)—(C3) are satisfied then for sufficiently small € > 0 boundary value
problem (1), (2) on the interval |0,1] has a unique solution y(¢,¢), which can be presented in the
following form

y(t,e) = a1 (t,€) + %%(t,a) +az®s(t,e)—

m»—l

1
—®3(t,¢) /K (1,s,¢) (S)ds—l-/K(t,S,é‘)F(S)dS. (24)
0

Proof. We seek the solution y(t,e) of BVP (1), (2) in the form:

t
Y(he) = C1D1(E€) + Coba(t, €) + Cybs(h, 2) + i/K (t, 5,2) F(s)ds, (25)
0
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where C;, ¢ =1,2,3, are unknown constants. By directly substituting (25) in (1) we make sure that the
function y(t, ) is defined by formula (25) is a solution of equation (1). For determination C;, i = 1,2, 3,
we use (25) in (2). Then we will have:

1
1
01 = a, 0223, 03:(13—5/K(1,8,€)F(8)d5. (26)
0

Substituting found values (26) into (25), we obtain (24). From here and from that, the boundary
function ®;(t,e) does not depend on the choice of the fundamental solution system of equation (3) it
follows that solutions of the boundary value problem (1), (2) exist, are unique and are expressed by
formula (25). The theorem is proved.

Theorem 3. Under conditions (C1)—(C3), for the solution y(t, ) of the boundary value problem (1)
and (2) in the interval [0,1] the following asymptotic estimations hold uniformly by variable ¢ and as
e—=0

as | = -
y(t, e §[a1—— P ()| + |ag||Pa(t) ]|+
ly(t, )l < | u(o)” O] + |as|| 2 (1))
t
Haa) (exp (—78>> + max [F()], (27)
where C' > 0 are constants independent of ¢ and ¢, functions 61(t):jlj(t), 62(t)2j27(t) satisfy the
degenerate homogeneous equation
Ay + By +C1)g=0 (28)
and boundary conditions
®1(0) =1, &5(0) =0, (29)
D1(1) =0, &y(1)=1.

Proof . In (24) the expression L [ K(1,s,e)F(s)ds can be expressed in the next form

O

1 1
i/K(l,s,s)F(s)ds =— /K(l, s) i((j)) ds+O0(e) =
0 0
1
:/K@$$3%+WQ (30)
0
where the function B W(t.s)
K@Q:ﬁ%w (31)

is an initial function of equation (28), by means of (31) and by variable ¢ satisfies equation (28) and
initial conditions

K(s,s) =0,K(s,s) =1

and, the function K (, s) does not depend on the choice of the fundamental set of solution y10(t), y2o(t)
to equation (28). The function
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Ty(t) = J’f](t), k=1,2, (32)

satisfies the degenerate homogeneous equation (28) and the boundary conditions (29).
Consequently, functions (32) are boundary functions of the unknown degenerate problem. The
function ®,(t) does not depend on the choice of the fundamental set of solution yi0(t), y20(t) of

equation (28) too. From (24), and by means of (30),(18), (22), we have
() 1t 0
1(t / Yy3o(l
te)=ar 2 4 ay |- - Y30 33
y(t,e) = a1— 2 (5 0 p( v0(D(0) (33)
1 t F(s)
— (s — s
—a3 ) ds+/K(t,s)A(S)ds+O(8).
0 0

Hence, we obtain the desired estimate (27). The theorem is proved.

5 Constructing a solution of the unperturbed problem

Now we formulate a degenerate problem. Let’s consider the degenerate equation

Loy = A1)y + B()Y +C(t)y = F(t). (34)
In order to select the boundary conditions of the degenerate problem, we turn to the estimate (27).
In the first approximation, in these estimates, for the boundary functions of the degenerate problem,
there are constants a; — %, a3 Taking into account this consideration, we construct a solution to
equation (34) under the conditions:

mmzarjﬁﬁ,mn:a& (35)

Theorem 4. Under the conditions (C1)—(C4), the solution %(¢) of the boundary value problem (34),
(35) on the interval [0,1] is unique and can be presented in the following form

_ az = =
y(t) = <a1 - M(O)) Py (t) + azP2(t)—-

—<I>2 /Kls

where ®.(t), k = 1,2, K(t,s) are functions defined in (31), (32).

The proof of Theorem 3 is carried out similarly to the proof of Theorem 2.

t
) ds + / K(1 z (36)

6 About limit transition and initial jump

Theorem 5. Under the conditions (C1)—(C4), for a sufficiently small € > 0 the difference between
solution y(¢,e) of BVP (1), (2) and solution 7(¢) of problem (34), (35) on the interval [0,1] satisfies the
following inequality:

t

ly(t,e) —y(t)| < C | e+ exp i/,u(x)da: ) (37)
0
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Proof . We introduce a function u(t,e) = y(t,e) — y(t). The problem (1), (2) have the next form:

Leu(t,e) = —e7" (1), u(0,6) = 2 4/ (0,¢) =

1(0)

By applying Theorem 3 to boundary value problem (38), taking into account (37), we obtain the
following inequality:

% —7(0), u(1,e) = 0. (38)

t

1
ute) <C (eteap 2 [utaidn |,
0

which proves the estimation (38).
Thus, from Theorem 5 it follows that

limy(t,e) =7(t), 0 <t <1 (39)
e—0

Now we determine the magnitude of the initial jump. For this, we turn to the estimate (33). From
(33) taking into account (36), we obtain

a2
p(0)’

Based on (39) and (40), we conclude, that the solution y(t,e) of a singularly perturbed equation
(1) with unbounded boundary conditions (2) has the zero order of initial jump at point ¢ = 0, which
is one of the features of the studied problem.

Thus, we conclude that the established algorithm for studying the solution of a boundary value
problem with unbounded boundary conditions allows us to investigate the asymptotic behavior of
the solution of a general boundary value problem with unlimited boundary conditions for higher
order linear equations. However, the proposed algorithm does not allow to construct the asymptotic
solution of substantially nonlinear boundary value problems with unbounded boundary conditions that
possess the phenomena of initial jumps. A natural direction for further research is the construction
linear asymptotic solution, and nonlinear singularly perturbed boundary problems with unbounded
boundary conditions possessing initial jumps. Therefore, the study of the asymptotic behavior and
the construction asymptotic solution of the singularly perturbed boundary problems with unbounded
boundary conditions that possess the phenomena of initial jumps are still relevant, of particular
theoretical interest and important in applications. The obtained results provide opportunities for
further research and development of the theory of boundary value problems for ordinary differential
equations with a small parameter at the highest derivatives. The constructed initial approximations
can be used when considering various problems of chemical kinetics.

lim (0, ¢) —5(0) = y(0.0) = . (40)

7  Conclusion

Thus, the initial and boundary functions for perturbed and unperturbed problems are introduced
and constructed, and their asymptotic estimations are found. Using these functions, we constructed
an analytical representation of the solution to a singularly perturbed boundary value problem (1), (2)
with unbounded boundary conditions. The unperturbed boundary value problem is formulated. The
difference between the solutions of the degenerate and initial boundary value problems is estimated
for sufficiently small € > 0, and thus it is proved that the solution of the perturbed problem tends to
solve the degenerate problem as the small parameter tends to zero. The growth of the derivative with
respect to a small parameter is established. The class of boundary problems with unbounded boundary
conditions with the phenomenon of initial jumps is distinguished.
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The obtained results give the opportunity for further research in the theory of singularly perturbed
boundary value problems, to reduce the boundary value problem (1), (2) to the Cauchy problem
with unbounded initial conditions, which in turn can be considered as the basis for constructing
the asymptotic expansions of some singularly perturbed boundary value problems with unbounded
boundary conditions.
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H. Araxan', K.C. Hypnencos?, K.T. Konricoaesal

LOn-DPapabu amwmdazse Kazax yammes ynusepcumemi, Aamamas, Kazaxcman;
2I. XKancyeipos amwmdaew Xemicy ynusepcumems, Taadwopean, Kasaxcman

CuHryngapJsl aybITKbIFaH auddepeHnnaiaablK, TeHaey YIIiH

meKTe/JIMereH mmeKapaJiblK IHapTTapbl 6ap eCGHTiH ACIMIITOTUKAJIBIK

30

OaraJjiaysiapbl

Maxkasaga CBIBBIKTHI CHHIYJISADJIBI ayBITKBIFaH auddepeHnuaaplK TeHAey VIIH IIeKTeJIMereH IIeKapa-
JIBIK, IIIAPTTAPhl 6ap eki HYKTesi MekapaJsblK, eCell 3epTTeareH. AybITKbIFaH OipTeKTi TeHAey IemiMaepinin
CBIBBIKTHI TOYEJICI3 2Kyifeci YIIIiH acUMIITOTHKAJBIK Oarasaysnap Oepinren. [lekapassik dynknusrap, Komn
GDYHKITUSICHI JIET aTAJIATHIH KOMEKII (DYHKIUsIap aHbIKTa Fad. [lapameTp/in xKeTKiTiKTI a3 MoHIEpi VImiH
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Komm dyskiusacel MeH mekapasiblk, GQyHKIUIaApAbIH Oarajiaysiapbl TaObLIFaH. 3€PTTEJETIH IIEKAPAJIBIK,
eCcelTiH KayKeTTi menriMiH Kypy ajaropuTMi KypacTelpeliasl. IllerTik ecenriy menriminig memiseringiri Ty-
pasel Teopema gpsengerai. [lapamerpain »KeTKiTIKTI a3 MoHAEP] YIMIH KAapaCTBIPBLIBIIT OTBHIPFaH OipTEKTI
eMec IIeKapaJibIK, eCEIITIH, MIeNIiMi YIIiH aCHMITOTUKAJIBIK, 6araay 6epiimi. ©3repriiren TeHaeyis 6acrar-
Kbl mapTrTapbl aHplKTaaran. PopmMya aHBIKTAIAbI, OACTAIKbI CEKipic KYOBLIBICHI 3€PTTEJIIEH.

Kiam cesdep: exi HyKTeJIl MeKapaJsbIK, ecern, 6acTalKbl CeKipic, aybITKbIFaH eCell, Kill napaMerp, 6acTanKb
bYHKIMS, MIeKapaJIblK, PYHKIUSIAP.

H. Araxan!, K.C. Hypneucos?, K.T. Konuc6aesa'

1 . .
Kasazxckul nayuonarvrvil yrusepcumem umeny aav-Papabu, Aamamo, Kasaxcman;
2 XKemmicycrutl yrusepcumem umeny M. XKancyeyposa, Taadvwopean, Kazaxcman

AcuMIToTnyeckue ONEeHKH pellleHUs CUHTYJISIPHO BO3MYIIEHHOM
KpaeBOi 3aJ1a4i C HEOrPAHUYEHHbIMU I'PAHUYHBIMU YCJIOBUSIMUA

B crarpe mccienoBana ByxTOdedHasl KpaeBas 33Jl1a4a C HEOIDAHWYEHHBIMU KPAEBBIMH YCJIOBHUAMU It
JINHEHOTO CHUHTYJISIPHO BO3MYIIEHHOTO JuddepeHnnaaIbHOr0 ypaBaenus. /[aHbl acCHMITOTHYeCKHE OIEeH-
KU JJIsl JIMHEHO HE3aBUCUMOI CUCTEMbl PEIIeHUil OJIHOPOJHOIO BO3MYINEHHOro ypaBHeHUs. OrpejiesieHbl
BCIIOMOTaTeJIbHbIE, TAK Ha3blBaeMble IpaHndHble pyaKImu, pyukius Kommnm. [Ipun moctaTouno Masbix 3HA-
YeHUAX TapaMeTpa HalIeHbl OleHKu s yHkiun Komm n rparngHbix yHKImit. Pazpaboran aaropurm
IIOCTPOEHUS MCKOMOTO DeIlleHrsl UCCIelyeMOoit KpaeBoil 3amaun. Jlokazana TeopemMa O pa3pemmMOCTH pPe-
IIeHus] KpaeBoil 3aja4un. 1Ipu JocTaTOYHO MAJIbIX 3HAYEHUSX IIapaMeTpa yCTAHOBJIEHA ACHMIITOTHYECKAs
OIIEHKA PEIEHNsT PACCMATPUBAEMOM HEOTHOPOIHOM KpaeBoit 3agaun. OmpeesieHbl HadaIbHbIE YCIOBUS JIJTsT
BBIPOKIAIONIerocst ypasuenus. Qopmysia onpesieeHa, n3ydeHbl ABICHNsT HAYAJIBHOTO CKAIKA.

Kmouesvie crosa: IByxTodedHasi KpaeBas 3aa4a, HadaJIbHbIE CKAYKH, BBIDOXKJEHHAA 3aJa4a, MAaJIbIi Ia-
paMeTp, HadaJIbHAsA (PYHKIMS, TPAHNIHBIE DYHKITAN.
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On the Correctness of Boundary Value Problems for the
Two-Dimensional Loaded Parabolic Equation

The paper studies the problems of the correctness of setting boundary value problems for a loaded parabolic
equation. The feature of the problems is that the order of the derivative in the loaded term is less than or
equal to the order of the differential part of the equation, and the load point moves according to a nonlinear
law. At the same time, the distinctive characteristic is that the line, on which the loaded term is set is at
the zero point. On the basis of the study the authors proved the theorems about correctness of the studied
boundary value problems.

Keywords: loaded differential equations, parabolic type equations, uniqueness, existence, boundary problem,
loading, perturbation.

Introduction

The steadily growing interest in the study of loaded differential equations is explained by the
expanding scope of their applications and the fact that loaded equations constitute a special class of
equations with their own specific problems. The main questions that arise in the theory of boundary
value problems for partial differential equations remain the same for boundary value problems for
loaded equations. However, the presence of a loaded operator does not always allow one to apply the
well-known theory of boundary value problems for loaded equations without changes. For example, the
question of the functional spaces correct choice for solving problems is relevant.

Loaded differential equations are differential equations containing values of the unknown function
and its derivatives at some fixed points of the domain or on some manifolds of nonzero measure.
General boundary value problems consisting of general boundary conditions and so-called differential
boundary equations (loaded differential equations) were studied by many researchers in the last century,
for example, the review article by Kraal [1] and the literature cited therein. Recently, there has been
renewed interest in the study of these kinds of problems, for instance, [2-6|. Because of their complexity,
numerical methods and, in particular, finite difference methods are mainly used to solve these general
boundary value problems [7-10].

Loaded differential equations also arise in applied mathematics, where mathematical problems are
modeled by simpler ones that are easier to solve. As such an example, let us mention the case of
the Fredholm integro-differential equations, where the integral term is replaced by an approximate
quadrature rule, leading to loaded differential equations [11]. Then these equations are solved directly
or, in most cases, they are discretized using various difference schemes for the derivatives, leading
to loaded difference equations or systems of loaded difference equations. This procedure has recently
been implemented to solve linear boundary value problems for first order integro-differential Fredholm
equations [12].

Boundary value problems for loaded differential equations, in some cases, are correct in natural
classes of functions, that is, in this case, the loaded term is interpreted as a weak perturbation. If

*Corresponding author.
E-mail: ramamur@maill.ru
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the uniqueness of the solution of the boundary value problem is violated, then the loading can be
interpreted as a strong perturbation. It turns out here that the character of the load is a perturbation
(weak or strong perturbation) [13-20].

1 Problem setting

In the domain
Q={(r,t),r>0,t>0}

consider the following problem:

ou 0*u 1-2B0u ok
E = w + r E - )\W I + f(T’, t) (1)
’LL(T’, 0) = 0; u<07 t) =0, (2)

where 0 < 3 < 1, A € R is a spectral parameter, f(r,t) € M(Q) is a given function,

0= (o [ [y i) o ()] e )

M(Q) = Loo(Q) N C(Q), M(0, 00) = Lo (0, 00) N C(0, 00).

€ M(0,00)

r=t%

The purpose is to determine for which integer values &k = 0,1, 2 and for which values @ >0, 0 < < 1
the problem (1)—(2) will be correct in other words have a unique solution.

2 Main part

Remark 1. Obviously, this problem at A = 0 has a unique solution due to the lack of a loaded term

= [ [ [remer [Hiet5] v (5] remwean

By means of this solution, we invert the differentiated part of the problem. In order to invert it, we

transfer the loaded term )\ng}j to the right-hand side and consider it temporarily known, we obtain
r=t%

o= [l | e ] s (s e ovo. o

o(r:?) // [Wﬁ p[‘Zitt§>]fﬂ(2<trff>>]'f(f’”dgd”'

In equality (3) we calculate the inner integral:
<[P [ 4 ¢
t —_ = — I e
ant-n= [ |5 |-iet] o ()|

Using the following substitution

where

r - C2t—T7) _2t—1)
mf—ﬁa §= , 7 d§ = ,

dn
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we obtain
rP r? > 21_5(t — 7')1_5 1 t—1T1 2(t — 1)
t—71) = N S S A _ 2\ 1 . dn =
Qr,t—7) 5 =7) eXp[ 4(t_7)]/0 e n eXp[ 3 n] (1) dn
r2 21_5(75—7')1_5 > t—7T o] ;4
_ _ _ -B —
- P [ 4(t — 7)} r2-26 /0 b { 2z } T lpm)dn =
o r2 21_5(75 — 7)1_5 . r2 25_1(15 — T)B_l 3 r2
= _— . X . —_—
i IO 7228 Plag=7 | T1@pz2 "\Tie—q
1 r? >
=7 /85 YR R
I'(B) < At —7)
where (3, z) is an incomplete gamma function.
Therefore, we are able to express Q(r,t — 7) in the following way:
1 r2 >
rt—T)= —— - ,— | .
Q=1 = 57557 (555
Then the integral representation of solution (3) takes the form
t 1 r2 oFu
u(r, t :)\/- (5, ) dr + fo(r,t 4
R A R Gy B R0 ()

it is apparent from (4) that in order to find a solution to problem (1)—(2), it is sufficient to find the
ok
W}: r:t“.

I. Let k = 0 then relation (4) takes the following form

value of the loaded term

7n2

b
u(r,t) = )\/0 TG v ([5’, 4(75_7')> (€, T)|emga AT + fo(r,1). (5)

Assuming r = t* in both parts of the equality (5) and introducing the notation po(t) = u(r,t)|,_a we
obtain the following integral equation with respect to the unknown function:

po(t) = A /0 Ko(t,7) - po(r)dr + fo(t),

where

2
Ko(t,7) = I‘(IB) gl (5» 4(15—7)) Jo(t) = fo(r,t)],—pa

which solution VA € R, Ya > 0, Vfo(t) € M(0,00) can be found by the method of successive
approximations. Here we take into account that Ko(¢,7) < 1, and is continuous V(¢,7), 0 < 7 < t.
This implies that problem (1)—(2) has a unique solution.

Theorem 1. For k = 0 and YA € R, Yo > 0, Vfo(t) € M(0,00) the boundary value problem (1)—(2)

has a unique solution.

IT. Let us assume that £ = 1. Then (5) takes the following form:

dr + fi(r,t).

g=ra
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du

In order to determine the loaded term o€ considering it is possible, we differentiate both parts of

£=te
this equality by the variable r and take following consideration r = t*. Yet it would be convenient to

calculate beforehand following:

5 (=)

. P(1ﬁ> ' [4@:j TJM ' 2<ti T [‘4@{ ﬂ] ‘_ )
1 1 t3Da 2
TT@) 2T = P [4@—7)}

By denoting u(t) = g—ﬁ . = t%, we obtain the following integral equation with respect to the unknown

function puq (t) t
wi(t) = A /0 Kr(t,7) - (r) + £1(0), (6)

where
1 1 t(Qﬁ—l)oc t?oc
r(g)22-1 (t—r)p P [‘4@ = r)] ’
0
fi(t) = g fi(r )|, —se -

If 0 < 8 < 1/2, then the kernel K (t,7) has a weak singularity Yo > 0, yet if 1/2 < 8 < 1, then in
order to have a unique solution the condition must be satisfied for the integral equation (6):

2-p
1-28

Ki(t,7) =

O<a<

Consequently, the theorem is valid.

Theorem 2. If k =1, then for 0 < 8 < 1/2 and VA € R, Ya > 0, Vfi(t) € M(0,00) the boundary
value problem (1)-(2) has a unique solution u(r,t) € M(Q). As for 1/2 < 8 < 1 in order for the
boundary value problem (1)—(2) to have a unique solution u(r,t) € M(Q2) the following condition must
be satisfied:

2-p
OI<ax< Y
Remark 2. Thus, for K = 0 and for £ = 1 under the conditions of Theorem 2 the loaded term
%Z in equation (1) of problem (1)—(2) can be interpreted as weak perturbation.

E=T1
ITI. Let us assume that & = 2. Then (5) takes the following form:

o= i () e

In order to determine the loaded term %

dr + fa(r,t). (7)

g=r

let us differentiate both parts of equality (7) twice

=T

with respect to the variable r and take following consideration r = t“. Yet it would be convenient to
calculate beforehand next expression:

0?2 r2 28 -1 r2h—2 r2
ot (*8’ 4<t—7>> | X [‘4@—7)]

~ PIE) (1)

r=t% r=t%

1 r28 r?
TPt O [‘4<t - ﬂ] -

1 (26-1 1 1 {20 2
TT) { 2T PelR(f —7)PH 2% <t—>6+} o [‘4@—)] |
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By denoting

0%
pa(t) = 92

=12,

T

we obtain the following integral equation with respect to the unknown function pa(t):

n(t) — A / Ka(t,7) - pa(r) = fa(t), (s)

where

sty — L 1 ¢2e8 28— 1 1 2
2(6,7) = T(B) 1228 (t— )1 2251 2Bz _ o+t [ P | Tqg— )|

2

Fat) = 53 folrs1)

r=t«

Let us study the kernel Ks(t,7) of this equation. Initially, we calculate the following integral:

[ronsr() Sr( ) o

Further, using the following equality:

MNa+1,z) = al'(a,x) + %7,

we obtain

t2o¢—1 1 t2a—1 1 41—6t1—ﬁ t?a—l
F(51’4> ‘1—6F<5’ 1 >+1—6 pati-p) P [ 1 ]

Hence it follows that

/ot Kalt.r) =T (5 | t%;) y

26—1 1 21
+2F<5>1—/3F<5’ 1 )‘

2&_ 1 41—5 (1—2a)(1—,3) t2a—1 - (10)
@ i-g 'exp[_ 1 ]_

B

r (6, tﬁ*l) 28— 1 28— 1 1 a1

- — . $(1=20)(1-8) _

- I'(B) [1 + 2(1— ,8)} 226-2(1 — B) () t exp [ } .

This implies that the inhomogeneous integral equation (8) has a unique solution V5 € (0,1) if the

condition « € (0, %) is satisfied.
Theorem 3. If k = 2, then for the condition 0 < o < 1/2 the boundary value problem (1)—(2) has
a unique solution u(r,t) € M () for VA € R, VB € (0,1), Vfa(t) € M(0,00).
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3 Conclusion

From (9)—(10) it follows that for 8 = 1/2,a > 1/2 we have the following equality:

t
%1_1}(1) ; Ky(t,7)dr = 1.

In summation, this implies that the Volterra type integral equation of the second kind (8) cannot be
solved by the method of successive approximations. Moreover, the corresponding homogeneous integral
equation for A > 1 will have nonzero solutions, thus the inhomogeneous integral equation has a non-
unique solution. Then from relation (3) it will follow that the boundary value problem (1)—(2) will be
incorrect, since it has a non-unique solution.

As noted in [21-24], the corresponding boundary problems may turn out to be Noetherians with
both positive and negative indices. Further investigations of boundary problems of type (1)-(2) for
different laws of motion of the load point will be continued.
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EKi eamemMal >KyKTeJreH napadoJablK TeHAEY YIIiH MIeKapaJIbIK
ecernTepiiH JypPbIC KONBLIYbI

Maxkasaa xKyKTeareH mapaboJiablK, TEHIEY YIMiH MeKapaJIbIK eCEIITep/Ii JYPhIC KOIOIBIH CYPaKTaphbl 3€PT-
TejireH. Ecenrepsin epekimesiri - >KyKTeJreH MyIIeJeri TYbIHIBIHBIH peTi TeHIeyaiH JuddepeHmaIbK
OestiriHiH peTiHeH Killi KoHe OFaH TeH, aJl )KYKTeMe HYKTeCi ChbI3BIKTHI eMec 3aH OOMBIHINA KO3FaIa bl. Byt
Karaii1a epeKIeIeHeTiH Oe/iri — KYKTEeJITeH TEPMUH KOPCETIITeH KAPaCTHIPBLIATHIH ChI3BIK, HOJIIIK HYK-
Tejie OpHAJIACKAH. 3epTTey HerisiHje aBTopJiap 3€PTTEJIETIH MeKaPAJIbIK, €CeITEeP/IiH, JIyPhIC KOMBbLIFAHIBIFbI
TypaJibl TeOpeMaJIap/Ibl JTOJIEIIe/T.

Kiam cosdep: xykrrenren nuddepeHInaiiblK TeHIeyIep, TapaboiablK, TUIITI TeHIey ep, bipereitiik, 6ap
60oJ1y, IIEKaPAJIbIK, €CeIl, XKYKTEME, aybITKY.
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O KOPPEKTHOCTU KPaeBbIX 3ada4 AJId JBYMEPHOI'O Harpy>k€eHHOI'O
Hapa60ﬂ1/1qec1<oro YpaBHEHUA

B crarpe umccienoBaHbl BOMPOCHI KOPPEKTHOCTH MOCTAHOBOK KPAaEBBIX 3aJ1ad JJIsl HANPYKEHHOrO mmapabo-
Judeckoro ypaBHeHusi. OCOOEHHOCTBIO 33189 SIBJISETCA TO, UTO MOPSIOK ITPOM3BOIHON B HATDPYKEHHOM
cJlaraeMOM MeHBIIE U PaBeH NMOPAAKY auddepeHnuaabHOl YJaCTH YPaBHEHU, U IIPU 9TOM TOYKa HATPY3KHU
JIBVDKETCsI 110 HEJIMHEHHOMY 3aKoHY. Kpome TOro, OTJIMYUTE/IbHON UepTOil SBJISETCS TO, YTO PacCMaTpH-
BaeMas JIMHUs, Ha KOTOPOM 3a/IaeTCs HATPYKEHHOEe CIaraeMoe, pacloJIOXKeHa B TOYKe HyJsib. Ha ocHoBe
HCCJIeJJOBaHUs aBTOPHI JOKA3aJINl TEOPEMBI O KOPPEKTHOCTH HCCJIELyEMbBIX KPA€eBBIX 33/1a4.

Karouesvie crosa: HarpyzkeHHble nuddepeHIalbHble yPaBHEHNS, YPABHEHUS 1apaO0INIeCKOro THIIA, €IIH-
CTBEHHOCTD, CYIIIECTBOBaHUE, FPAHUYHAS 33/la4a, HArPY3Ka, BO3MYIICHUE.
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The theorems about traces and extensions for functions from
Nikol’skii-Besov spaces with generalized mixed smoothness

The theory of embedding of spaces of differentiable functions studies important relations of differential
(smoothness) properties of functions in various metrics and has wide application in the theory of boundary
value problems of mathematical physics, approximation theory and other fields of mathematics.

In this article, we prove the theorems about traces and extensions for functions from Nikol’skii-Besov spaces
with generalized mixed smoothness and mixed metrics. The proofs of the obtained results is based on the
inequality of different dimensions for trigonometric polynomials in Lebesgue spaces with mixed metrics and
the embedding theorem of classical Nikol’skii-Besov spaces in the space of continuous functions.

Keywords: Nikol’skii-Besov spaces, generalized mixed smoothness, mixed metrics, a trace of function, an
extension of function.

Introduction

One of the first results related to the theory of embedding of spaces of differentiable functions
was a result of S.L. Sobolev [1]. This theory studies important relations of differential (smoothness)
properties of functions in various metrics. Further development of this theory is associated with new
classes of function spaces defined and studied in the works of S.M. Nikol’skii [2,3], O.V. Besov [4, 5],
P.I. Lizorkin [6], H. Triebel [7,8] and many others. The development of this research was determined
both by its internal problems and by its applications in the theory of boundary value problems of
mathematical physics and approximation theory [9]-[17].

This paper continues our investigations of Nikol’skii-Besov spaces with generalized mixed smoothness
and mixed metrics, which began in the works [18,19]. In this article, we prove theorems on traces and
continuations for functions from the above-mentioned spaces. The proof of these results is based on
applying the inequality of different dimensions for trigonometric polynomials in mixed-metric Lebesgue
spaces and the Nikol’skii-Besov classical spaces embedding theorem into the space of continuous
functions.

1 Definitions and auziliary results

Let d = (dy,...,d,) € N*, T4 = {x = (x1,...,%,) : x; € T% = [0,20)%,i = 1,...,n} and
f(x) = f(x1,...,%,) be measurable function on T9.

Let 1 < p = (p1,...,pn) < co. We say that the function f belongs to the Lebesgue space with
mixed metrics Lp(T9) if

pn/pnfl l/p"

p2/p1
1L,y = /T ...(/le]f(xl,.._,xnplcbq) ix, | <o

*Corresponding author.
E-mail: toleugazy-yQyandex.ru
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1/pi
In a case when p; = oo the expression (/ |f(x)|P dxi> means that ess sup |f(x;)].
T XiéTdi
Let us denote by

As(f,x) =Y e
)

kep(s
the trigonometric series of f ~ Y ) c7a axe'®*)a where (k,x)y = Z Z kjx% is the (modified) inner
i=1 j=1
product, p(s) = {k = (ki,...,k,) € Z9: [2%7!] < max K§| < 2%,i=1,...,n} and [a] is the

J= »'“7d7i

integer part of the number a.

Let o = (a1,...,a,) € R", 1 <q=(q1,...,qn) <0 and 1 < p = (p1,...,pn) < 0.

The anisotropic Nikol’skii-Besov space with generalized mixed smoothness and mixed metrics
Bp(T9) is a set of the series f ~ >} za axe’®¥)a such that

7 lgsme) = {2 218Dl yira |, < o0

n
where (a,s) = Z%Si is the inner product and |||, is the norm of a discrete Lebesgue space with
mixed metrics l;. '

Here Bp%(T9) is a version of spaces, which was introduced and studied in [20].

Remark 1. The anisotropic Nikol'skii-Besov space with generalized mixed smoothness Bp%(T9)
mentioned above is a hybrid structure of Nikol’skii-Besov space (concerning to variables included in
one multi-variable) [2,4] and spaces with dominant mixed derivative (concerning to variables included
in different multi-variables) [21,22]. In the isotropic case, when p and ¢ are scalars, analogs of these
spaces were studied by D.B. Bazarkhanov [23].

Let us denote by p = (p1,...,pm) for the multi-index p = (p1, .., Pm, Pmtls---»Pn)-

Lemma 1 (Inequality of different dimensions, [3]). Let Ty(x) be a trigonometric polynomial of
order not higher than s = (s1,...,Sm,Sm+1,---,Sn) by variables x = (X1,...,Xm,Xm+1,---,Xn)
and 1 < p = (P1,--+yPmsPm+1s---,Pn) < 00, then for an arbitrary fixed point (Xm+1,...,Xn) €
Tém+1 x ... x T4 the following inequality holds

n
d;/pi
1Ty Xty X)L pmay <€ [T 887 ITall g, cray
i=m-+1

where C' is a positive constant independent on s.
2 Main results

In this section, we prove the trace and continuation theorems for functions from Nikol’skii-Besov
spaces with generalized mixed smoothness and anisotropic Lorentz spaces are proved.

Theorem 1. Let 0 < oo = (1, ..., Qupy Oy -+, On) < 00, L <@ = (@1, @y Grt1s- -+ qn) < 00,
1 <p=1, -y PmrPmtl,---,Pn) < 00, then for a; = d;/p;, ¢i = 1 where i = m + 1,...,n the
following embedding holds

BY(TY) — B34 (TY).

Proof. According to the inequality of different dimensions (Lemma 1) and Minkowski inequality,
we obtain
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19Xt ) | znoay =
H{Q(&S) 1As (F( o Xt - - Xn) ”Lp Td) <
< 2(a §) Z Z A5m+1 .. Sn ( § <
sn=0 Sm+1=0 ’]I‘d) l
q
o 1D I SR AN
sn=0 Sm+1=0 lq
S S A (Dl b <
sp=0 Sm+1=0 Ig
™
S Cl 2(a,s) Z 2(3ndn)/pn . Z 2(sm+1dm+1)/pm+1 ||AS ( )”Lp(Td) S
sn=0 Sm41=0

la
DD Sl (LI INT T |

22 q:qMWﬁmam%mﬂhzqwmmm,

here oy = d;/pi, i = 1 where i = m + 1

Let us show that the conditions o; = d;/p;, ¢; = 1 where i = m+1,...,n ensure that the following
property holds

(1,

Xy Mg, ) — (X, - X)) || 1d) = 0
d;
for o max |hy;| — 0, here |h;| = Z(h;i)% (i=m+1,...,n).
Indeed, let N € N and =

FN:{S:(sl,..., n) EZ": Hmaxl max |sé~|)§N},

i=1 I=Leeth
then
||f(x1,...,xm,hm+1,...,hn)—cp(xl,...,xm)HLF_)(Ta):
= f(x1,- s Xmy g1, -2 hy) — f(x, "vaov"'vO)HLf,(Ta) =
= If(x1, .., Xms hog1, .o ) — St (X1, -0y Xom, By, -2y )+
+5ry (fix1, oo Xm, g1, - hy) — Sep (f5xa, -0, Xm, 0,000, 0)+
+Sry (fix1,. oy Xm, 0,...,0) — f(X1,...,Xm,0,..., )HL (1d) <
< |f(x1y oy Xmy g, oo ) — Sy (FiXa, ooy X, Bty -+ - n)HLﬁ(Ta)-l-
—|—HSFN(f;X1,...,xm,hm+1,...,hn)—SFN(f;xl,...,xm,O,...,O)HLI_)(Ta)—l—
+[[Sry (fi X1y Xm, 0,...,0) — f(X1,...,Xm,0
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where Sty (f;X1,. .., Xm, Xm+1, - - - , X is the partial sum of the Fourier series of the function f(xy,...,
X, Xm-41s - - -, Xp ), corresponding to the hyperbolic cross I'y.

We will use Minkowski, different dimensions (Lemma 1) and Holder inequalities to estimate I; and
I3. For k=1 or k = 3 we have

I < sup || f(X1ye ey Xy X1y - - - X ) —
Xm+1s---:Xn
_SFN(f;Xl, ooy Xmy Xm41y - - ’X”)”L}—,(Ta) =
= sup || Y Ag(fix) <D swp [ As(fi%)l oy ra <

X X €T veey X
m—+1y--3Xn S¢FN m—+1s--In

a Lp(T9)

<Oy Y 2 @SS AL(f %) (ay <

s¢ly
Nl . H{2<a7§>}5¢1“1v

< A2 1Ay f
<Collf = SFN(f)Hng(Td) — 0 mpu N — oc.

<

lq/

Moreover, to estimate I, we use the fact that the trigonometric polynomial St (f; X1, ..., Xm, Xm41,
...,Xp) is a continuous function, then we receive

ISty (fs %1,y Xm, Bty .., ) _SFN(f;X]-""7Xm70""’0)||Ll3('I[‘a) —0

for ~max |h;| — 0.
1=m+1,...,n

This completes the proof.
Remark 2. In contrast to the trace theorem for functions from Nikol’skii-Besov spaces with do-

minating mixed derivative [21,22], proved for «; > d;/p; where i = m + 1,...,n, in Theorem 1, the
limiting case «; = d;/p; is considered under the condition ¢; = 1 for i = m + 1,...,n (this effect was
previously seen for example in [24,25]).

Theorem 2. Let 0 < oo = (@1, .+« y Qumy Q15+ -+, O) < 00, L < q = (q1y- -+ s Gy Gt 1s -+ - Q) < 00,
1<p= (1, --sPm>Pm+1,---,Pn) < 00. Then for oy = d;/p; and ¢; = 1, i = m+1,...,n, for the
function ¢(x1,...,%X;) € ng('ﬂ‘d) it is possible to construct a function f(x1,...,Xm, Xm+1,---,Xn)

having the following properties
f € Bp(TY);
171l ggocre) < C llellpoaray

(X1, X, 0,...,0) = (X1, .., X))

Proof. Let p € ng(Td). This function can be represented as a series converging to it in the sense
of Lf) (Td)

(X1, ey X)) = As(p(x1,...,Xm))

Nk

wi
Il
o

and

HgoHBga(Ta) = H{Q(a,g) |As (‘P)HL;—)(T‘_’)}HZ(—I'
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Let us choose the functions f;(x;) from the B;"iil(’]l"di), where «; = d;/p;, such that f;(0) = 1 for
i=m+1,...,n. Let us introduce a new function

f(X17---7Xm7Xm+17"'7 ZA le"'v m)) H ASq‘, (f’L(XZ)>
Consequently, for this function, we get

I Fllggacray = {29 18 @y o}, =

lq

=22 185 @huc}l, IT laen, = Collagaen

According to the condition f;(0) =1 for i =m +1,...,n we have

f(x1,e X, 0,...,0) = (X1, .., Xim).

Note that the conditions «; = d;/p; and ¢; = 1 for i = m + 1,...,n ensure the continuity of the
functions f;(x;). Therefore we obtain

I (X1y. ooy Xy X1y - - -5 Xn) — @(X1, .. ,xm)||Lﬁ(Ta) —
n
= SO(Xb axm)< H fl(xz)_1> é
i=m-+1 Lp(Ta)
< ||90(X17-"7 ||Lp(11‘d H fl Xz -1 =0
1=m-+1

here max |x;| — 0.
i=m+1,....,n

These arguments show that ¢ is the trace of the function f.

The proof is complete.

Remark 3. Note that the continuation operator constructed in the proof of Theorem 2 is linear.
We should note here that in the work of V.I. Burenkov and M.L. Goldman [26], where it is shown
that in the limiting case for classical anisotropic Nikol’skii-Besov spaces it is possible to construct only
a nonlinear continuation operator, but this effect is not observed for Nikol’skii-Besov spaces with a
dominant mixed derivative.
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1 .
M.B. Jlomonocos amuwindaev, Mackey memaexemms yrusepcumemi, Kasaxeman guauaav,, Acmana, Kasarxeman;

2 Mamemamuka oicomne Mamemamuraios modeavoey unemumymot, Aamamo, Kasaxcmar;
3 Axademurx E.A. Boxemos amuwmndaev. Kapaearndv ynusepcumemi, Kapaearndw, Kasaxcman

XaanbutaaraH apaJac Terictiriri 6ap Hukosbckuii-becoB
KEeHICTIKTepiHeri (pyHKnusaaap yIIiH i3/iep »KoHe KaJiracyJiap
TeopeMaJiapbl

HuddepennmanianaTbid QyHKIUAIAD KEHICTIKTEPIiHIH €HII3y TeopusiChl 9pTYpJii MeTprKaap/a dOyHKIHsI-
JIAPJIBIH, MAaHBI3IBI GailmanbicTapsl MeH GyHKIuanbiH, auddepernnaanpk, (TericTlik) Kacuerrepiniy ka-
THIHACTAPBIH 3ePTTEHi KoHE /e MaTeMaTUKAJbIK (PU3NKAHBIH IIEKTIK €CEelTep TEOPUSCHIH/IA, YKYBIKTAY
TEOPUSICHIH/A YKOHEe MaTeMaTHKAHBIH HacKa /a cajlajapblHa KeHIHEH KOJITaHbICKa ue. Makaitaga yKasbl-
JIaHFaH apaJjiac TericTiri xkoHe apajac merpukackl 6ap Hukonbckuit—becos keHicTikTepi QyHKIMATAPBIHBIH
i3/1epi MEH KaJIFaChl TypPaJIbl TEOPEMAJIAP JIRJIeJIeHreH. AJIBIHFAH HOTHXKEJIEPIIH JI9/Ie/Aeyl apaaac METPU-
kacol 6ap Jleber kenicTiKTepineri TPUrOHOMETPUSIIBIK, TIOJIMHOM/AD YIIiH 9P TYPJIi eJIImeM/ i TeHCi3TikTepin
2KoHe KaaccukayIblK, Hukombckuii—becoB keHicTikTepiniH, y3imiccid dyHKIUsSAIap KEHICTIriHE €Hy TeopeMa-
CBIH KOJIJIaHyFa HeTi3/IeJreH.

Kiam coe3dep: Hukosbcknii-BecoBThIH KeHICTIr, »KaJIIbLIAHFAH apaJiac TEriCTiK, apajgac MeTPHUKa, (OyHKIHsI-
HBIH, 131, QYHKIIUSHBIH YKAJIFACHL.
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K.A. Bexmaranberos'?, K.E. Kepsenes?, E. Toneyrazpr'+?

! Mockoscxuti zocydapemeeniondi ynusepcumem umernu, M.B. Jlomonomosa, Kazaxcmanckudl gusuan, Acmana,
Kasaxcman;
2 Huemumym mamemamury, u mamemamuseckozo modesuposanus KH MOH PK, Aamamo, Kazaxcman;
3 Kapazandunckuti ynusepcumem umenu axademure E.A. Byxemosa, Kapazanoda, Kazaxcman

Teopembl 0 ciiegax U NPOAOIXKEHUAX JJd (PYHKIINI U3 HPOCTPAHCTB
Hukonbckoro-BecoBa ¢ 0600I1IIeHHOI CMeNIaHHOM IJIaJIKOCThIO

Teopusa BmoxkeHust TPOCTPaHCTB AudDEPEHITUPYEMBbIX DYHKINI N3ydIaeT BayKHBIE CBSI3U M COOTHOITEHUST
nuddepennmanbubIX (IVIaIKOCTHBIX) CBOHCTB (DYHKIMI B PA3IMYHBIX METPUKAX M MMeeT IIMPOKOe IIPU-
MeHEHVe B TEOPUU KPAEBBIX 33/a9 MATEeMATHIECKON (PU3WKM, TEOPpUU TPUOIUKEHUN n JPYTUX pasesax
MaTeMaTUKU. B JaHHOW cTaTbe MbI JIOKA3bIBAEM TEOPEMBI O CJIEJAX U IPOJOJKEHUAX MJist (PyHKIMA 13
npocrpancTB Hukosnbckoro-BecoBa ¢ 0600IeHHO# CMENIaHHOM TVIAJIKOCTBIO U CO CMEIIAHHONW METPUKOIA.
JlokazaTebCTBa MOy YeHHBIX PE3y/IbTATOB OCHOBAHBI HAa MCIIOJIH30BAHUNM HEPABEHCTBA PA3HBIX M3MEPEHUIH
JJIsI TPUTOHOMETPUYIECKUX IOJIMHOMOB B IIpocTpancTBax Jlebera co cMmemnraHHOM METPUKOI U TeopeMme BJIO-
JKeHUsT KJIaCCHIeCcKux rpocrpancTB Hukosibckoro-BecoBa B IpOCTPaHCTBO HENPEPBIBHBIX (DYHKIHIA.

Karoueswie caosa: npocrpancrBa Hukosbekoro-Becosa, 060bmieHHasT CMeMIaHHas [VIAJKOCTb, CMEIIAHHAS
METPHUKa, CJell (PyHKINY, TPOAOIKEHNE (DYHKITAN.
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Inverse coefficient problem for differential equation in partial
derivatives of a fourth order in time with integral over-determination

Derivatives in time of higher order (more than two) arise in various fields such as acoustics, medical
ultrasound, viscoelasticity and thermoelasticity. The inverse problems for higher order derivatives in time
equations connected with recovery of the coefficient are scarce and need additional consideration. In this
article the inverse problem of determination is considered, which depends on time, lowest term coefficient in
differential equation in partial derivatives of fourth order in time with initial and boundary conditions from
an additional integral observation. Under some conditions of regularity, consistency and orthogonality of
data by using of the contraction principle the unique solvability of the solution of the coefficient identification
problem on a sufficiently small time interval has been proved.

Keywords: Inverse problems for PDEs, fourth order in time PDE, existence and uniqueness.

Introduction

Fourth order derivative in time arises in various fields. For instance, in the Taylor series expansion
of the Hubble law [1], in the study of chaotic hyper jerk systems [2] and in the kinematic performance
of long-dwell mechanisms of linkage type [3|. The fourth order in time equation, that is our motivation
point, was introduced and first studied by Dell’Oro and Pata [4]

Orrrr(2, T) + @Orrru(x, 7) + BO-ru(, T) — v A Orru(z, 7) — p A u(x, 7) =0,
where «, 3,7, p are real numbers. More recently, this model has attracted the attention of many authors
[5-9].

We consider an inverse problem of recovering the time-dependent lowest term in the fourth order
in time partial differential equation in the following type

Orrrrt(w,7) + Orrt(m, 7) — ADpru(w, 7) — Aulz, 7) = a(T)u(z,7) + f(z,7) (1)
subject to the initial conditions
U(ZL‘, 0) = 50(1')7 UT($7 0) = fl(x)a u‘r‘r(xv 0) = 52(1‘), UTTT(xa O) = 63(1;) (2)

and the boundary conditions
U(O, T) - uﬂ?(lv T) = 07 (3)

and the additional condition

*Corresponding author.
E-mail: ibrahim.tekinQalanya.edu.tr
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where Dy = {(z,7): 0 <z <1, 0 <7 <T} for some fixed T' > 0, f(x,7) is the force function, &(z),
i =0,1,2,3 are initial displacements, and E(7) is the extra integral measurement to obtain the solution
of the inverse problem.

The inverse coefficient problems for the first or second order in time (i.e. parabolic and hyperbolic
equations, respectively) PDEs are studied satisfactorily. The inverse problems of the parabolic and
hyperbolic PDEs investigated numerically and/or theoretically in [10-12] and [13, 14|, respectively.
The inverse problems of determining time or space dependent coefficients for the higher order in
time (more than 2) PDEs attract many scientists. The inverse problem of recovering the solely space
dependent and solely time dependent coefficients for the third order in time PDEs are studied by
[15,16], respectively. More recently, in [17] authors studied the inverse problem of determining time
dependent potential and time dependent force terms from the third order in time partial differential
equation theoretically and numerically by considering the critical parameter equal to zero.

Main purpose of this paper is the simultaneous identification of the time-dependent lowest coefficient
a(7), and u(x, 7), for the first time, from the equation (1), initial conditions (2), homogeneous boundary
conditions (3) and additional condition (4) under some regularity and consistency conditions.

The article is organized as following: in Section 2, we first present the eigenvalues and eigenfunctions
of the corresponding Sturm-Liouville spectral problem for equation (1), and two Banach spaces, which
are related to the eigenvalues and eigenfunctions of the auxiliary Sturm-Liouville spectral problem, are
introduced. Then, we transform the inverse problem into a system of Volterra integral equations by
using the eigenfunction expansion method. Under some consistency and regularity conditions on data,
the existence and uniqueness theorem of the solution of the inverse problem is proved via Banach fixed
point theorem for sufficiently small times.

1  Emistence and Uniqueness

In this section, we will set and prove the existence and uniqueness theorem of the solution of the
inverse initial-boundary value problem for the fourth order in time equation by using Banach fixed
point theorem.

The auxiliary spectral problem of the inverse problem (1)—(4) is

Y'(z)+ AY () =0, 0<x<1,

(5)
Y(0) = Y'(1) = 0.

The eigenvalues and corresponding eigenfunctions of these eigenvalues of the spectral problem (5) are
iy = (2”2—"'1#)2 and Y, (2) = v2sin(\/finz), n = 0,1,2, ..., respectively. The system of eigenfunctions
Y, (z) are biorthonormal on [0, 1], i.e.

1, m=n

/OlYn(x)Ym(x)d:z::{ 0 man

Also the system of eigenfunctions Yy, (z) = v/2sin(/finz), n = 0,1,2, ... forms a Riesz basis in L»[0, 1].

Definition 1. Let the pair of functions {u(z,7),a(r)} be from the class C%#(Dr) x C[0,T] and
satisfies the equation (1) and conditions (2)—(4). Then the pair {u(z,7),a(7)} is called the classical
solution of the inverse problem (1)—(4).

Now, let us introduce two Banach spaces that are connected with the eigenvalues and eigenfunctions
of the auxiliary spectral problem (5):
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Br = { Zun Yo (x) : u,(7) € C[0,T],

00 1/2
Jﬂw=<§mmwmwmww) <400y,

n=0

where uy, (T \[fo 7)sin(y/finz)dz, and Jr(u) = |lu(x, 7)[ g, is the norm of the function
u(z, 7).

II. E7 = Br x C|0,T] is a Banach space with the norm
lw (e, ) g = llw(@, Dl g, + a5
where w(z,7) = {u(x,7),a(7)} is a vector function.

These spaces are suitable to investigate the solution of the inverse problem (1)—(4).
After giving these preliminary results, we can set and prove the existence and uniqueness theorem
for the inverse problem (1)—(4):

Theorem 1. Let the assumptions

Ay &o(z) € CH0,1], §(2) € La[0,1], §(0) = §(1) =0,
Ay & (x) € CH0,1], &(7) € Lo[0,1], &(0) = £1(1) =0,
A &(z) € C0,1], §(x) € La[0,1], £(0) = &(1) =0,
Ay &3(x) € CH0,1], & (x) € Lo[0,1], £3(0) = &5(1) =0,

As E(1) € C*0,T), E(t) # 0 V7 € [0,T], ED(0) = fo &(z)de,i=0,1,2,3 and EO(r) = L E(7),

As f(x,7) € C(Dr), fo, fzw € C0,1], Y7 € [0,T], f(0,7) = fu(l,7) =0,

be satisfied, and A = (1 + p1,,)2 — 4p, > 0. Then, the inverse problem (1)—(4) has a unique solution for
small 7.

Proof. For arbitrary a(7) € C[0,T], to construct the formal solution of the inverse problem (1)—(4),
we will use the Fourier (Eigenfunction expansion) method. In accordance with this, let us consider

=3 (1) Ya(@), (6)
n=0

is a solution of the inverse problem (1)-(4), where Y, (z) = v2sin(\/inz), n = 0,1,2,... are the
eigenfunctions and p, = (@ﬂ'f ,n=0,1,2 ... are the eigenvalues of the corresponding spectral
problem.

Since u(z,7) is the formal solution of the inverse problem (1)-(4), we get the following Cauchy
problems with respect to u,(7) from the equation (1) and initial conditions (2);

ul) (1) (14 ) Ul (7) + pntin(7) = Fu(rs0,u),

(7)
UH(O) = £0n7 U{n(O) = glna un( ) €2n7 /H( ) = £3na n=0,1,2,...
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Here F,(7;a,u) = a() ()+fn(7), Un ( \ffo 7) sin(y/tnx)dz, fo(T \ffo 7) sin(y/inx)dx,

and &, = ffo &(z) sin( /) de, i = 0, 1,2,3,n = 0, 1,2,....
These Cauchy problems have the quartic characteristic polynomial

Py(k) = k' + (14 pn )k + pin.
If we convert this quartic equation to a quadratic equation by changing the variable s = k2, we obtain
Pa(s) = 82+ (L + pn)s + fin.

It is easy to see that A = (1+ pn)% — 4, = (un — 1)* and that is always positive. Then P»(s) = 0 has
two real roots
s1=—1, s = —pp.

Thus Py(k) = 0 has four complex conjugate roots
]ﬁ,g = :ti, k374 = iz\/,un.
Solving (7) by using the these roots of the characteristic polynomial, we obtain

tn, c08(T) — cos(\/finT) N MZ/Q sin(7) — sin(y/in7)

5071,
pin — 1 TN

p Sin(T) — sin(y /1, T)

un (1) = §int

+cos(7) — cos(y/IinT)

[ — 1 §2n M?/Q \//Tn €3n+
T VEnsin((T = s)) = sin(\/fa(T = 5))
+/O qu/z T F,(s;a,u)ds. (8)

Substitute the expression (8) into (6) to determine u(z, 7). Then we get

u(wﬂ_) :Zoo [,uncos(r) cos \/;an)€ 4 Mn mn(r) sin \//ET)g n

n=0 tn—1

12—/
cos(T)—cos(y/fnT) n sin(7)—sin(y/nT)
+Mn—,1‘u£2n + LD ,ui/Q*\/lTn\/lT Eant (9)

e ynsm«rﬁ?g %Mﬁ DE (s;a u)dS} n(T).

Let us derive the equation of a(7). If we integrate the equation (1) from x = 0 to x = 1 with respect
to z, and consider the additional condition (4), then we have:

EW(r) + E"(7) = fim(r +Z\/;Tn n(T) + un(T ))], (10)

where fint(T fo x, 7)dz. If we consider u, (7) which is defined in (8) and its second derivative into
the last equatlon we get

a(r) = 77 [ED() + B'(7) = font(7) + S50 /m (cos(y/imm)6on + S Te, +
(11)
+ cos(y/IinT)E2n + M&m + /s Fsm(\//Tn( —5))F,(s;a, u)ds)} .
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We convert the inverse problem (1)—(4) into the system of Volterra integral equations (9)—(10) with
respect to u(z, 7) and a(7) by considering

1
Un,(7) :/0 u(z, 7)Y (x)dx, n=0,1,2,...

is the solution of the system of differential equations (7). Analogously, we can prove that if {u(x, 7),a(7)}
is a solution of the inverse problem (1)—(4), then u,(7), n =0,1,2,...satisfy the system of differential
equations (7). For proof of this assertion please see [18]. From this assertion we can conclude that
proving the uniqueness of the solution of the inverse problem (1)—(4), it suffices to prove the uniqueness
of the solution of the system (9) and (11).

To prove the existence of a unique solution of the system (9) and (11) we need to rewrite this
system into operator form and to show that this operator a contraction operator. To this end let us
denote w(xz, 7) = [u(x, 7),a(r)]” is a 2 x 1 vector function and rewrite the system of equations (9) and
(11) in the following operator equation

w = I(w), (12)
where II(w) = [II1, Il]" and II; and I, are equal to the right hand sides of (9) and (11), respectively.

Using integration by parts under the assumptions (A;) — (Ag), we obtain following equalities

1

§0n = #%040717 fln = H%alm §2n = #%042717 €3n = H%CVSm fn(T> = Ewn(T)u

where wy,(7) = —\/ﬁfol foe(x, 7) sin(\/unz)de, oy = —\/§f01 & (x) sin(y/pnx)de, i = 0,1,2,3. Since
V2sin(,/finx) forms a biorthonormal system of functions on [0, 1], by using Bessel’s inequality we get

00 00

2 2 . 2 2
Z ‘am«’ < Hé.Z{IHLg[OJ] y L= 07 172737 Z |wn(7—)’ < Hfﬂﬂiﬂ('77—)HL2[0,l] : (13)
n=0 n=0

Before showing that ® is a contraction operator, let us find the estimates for the coefficients arising
in the operator equations (9) and (11):

fn €0S(T) — cos(\/tnT) fn + 1 1 ,11,731/2 sin(7) — sin(\/tnT) u;q’/Q +1 9
1 = 1 I 3/2 = 32 = dy,
cos(7) — cos(y/IinT) < 2 B[ Vn sin(7) — sin(\/in) Vi +1 4
= - = ns -~ - — ne
= 1 = 1 i = /i i = i
Since the sequences di,, i = 1,2, 3,4 are convergent, they are bounded. Consider that
dfl < m;, for each i = 1,2, 3,4, (14)

where m; are real constants.

Now we can show in two steps that II is a contraction operator by considering the assumptions
and estimates are given above.

I) First let us demonstrate that IT is a continuous map which maps the space Ep onto itself
continuously. That is to say, our aim is to show II;(z) € Br and Ilx(z) € C[0,T] for arbitrary w =
[u(z,7),a(r)]" such that u(z,7) € By, a(r) € C[0,T).

Let us start with showing that I (z) € Br, i.e. we need to verify

o0

1/2
Jr(In) = (Zmn |rn17n<r>uc[0,ﬂ>2> < +o0,

n=0
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where 3/2
tn, €OS(T) — cos(y/fnT) i sin( ) — sin(y/fnT)
Hn Mn — VHn
cos(T) — cos nT nSin(7) — sin nT
| cos(7) (VFnT) fin Sin(T) (u)&m+

fn — 1 fon TN
+ /OT L sin( (7 _;/)2> — sin(y/in(7 — 5)) Fy(s;a, u)ds.

Un = /HUn

After some manipulations under the assumptions (A;) — (4g), using the estimates (14) we obtain

o0

(Jr(1)* = (i (D) cpo.17)* <

n=0

2 2
<6Zmz+12\am\ Jr6m211223(0[37&2( |wn )\) + 67 [la(r HC[OT]Z(MnHun HC[OT) :

Since u(z, T) a(7) belong to the spaces By, and C0,T], respectively, the series at the right hand
side of (Jr(II1))? are convergent from the Bessel’s inequality (considering the estimates (13)). Jp(IT;)
is convergent (i.e. Jp(II}) < 400) because (Jp(II}))* is bounded above. Thus we can conclude that

I, (z) belongs to the space Br.

Now let us verify Ih(w) € C[0,T]. From the equation (10) we have

1

min_|E(7)
0<r<T

[z (w)] <

]E<4><T>] + B ()| + it (1) + D VA (Jun(7)] + |un<r>r)] :
n=0

Using the Cauchy-Schwartz inequality and the estimates are given in (13) and (14) we obtain

(2)| < 5By
B ) < e |,

(o) (St (Solan) }+ (S0 ) { (Sotenal?) 4

max [EW(r)| + max [E"(r)| + max |fone(7)] +

1/2

1/2
F(Solos?) v T (zn 0 <Oga§xT \wn<r>|)2> + T lla() 0.1 (foo (110 ||un<r>||c[o,ﬂ)2)
(15)

Considering the estimates (13) and > 7 un Y ;2 are convergent, the majorizing series (15) are
also convergent. According to Weierstrass M-test, ITo(z) is continuous and belongs to the space C[0, T].
Therefore, we show that II maps Er onto itself continuously.

IT) Since IT maps Ep onto itself continuously, let us show that IT is contraction mapping operator.
Assume that let w; and we be any two elements of Ep such that w;(z,7) = [u(i) (z,7),a® (T)]T,
i = 1,2. From the definition of the space Er, we have |[II(w1) — IX(ws)|| . = [[Il1(w1) — Il (w2)|| g, +
[ 1I2(w1) — 2 (w2)| o - For the convenience of this norm, let us consider the following differences:

[ﬁ(uq)——[h(wg)—-

= Ofo Tam sin(( i/)i’):jl:fi\/m“_s» (Fn(s al,ul) — Fyo(s;a?,u )) dsY, ()
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Il (wy) — Iz (w2) Z/o rsm V(T —5)) (Fn(s;al,ul) — Fn(s;a2,u2)) ds.

After some manipulations in last equations under the assumptions (A;)—(Ag) and using the estimates
(13)—(14), we obtain

111 (21) — Ih(22)|| B, < V2myT [H 1)HC[0T Hu(l) - u(Z)’ B + Hu@)‘ B al) — a(Q)HC[OyT]] )
1H2(21) = 2 (22) || cpo,m <
< T (i 1) v [H <1>H H 1 >_u(2>‘ N Hu@)‘ e _a<2>H } ‘
0r<1f1t1<nT |E(t)] = in C[0,T] Br Br clo,T)

From the last inequalities it follows that

ITL(21) = H(22)l|p,, < O(T, 0™, u®) [|21 — 22|,

1/2
where C(T, oM, u®) = T(Hamucm + Hu@)HBT) (fm4+ o |E( ; (z;;‘;o #A) )
Since E(1) € C*0,T], E(r) # 0 Vr € [0,T], (>(T) € C[O,T], u®(z,7) € Br and my is

a finite constant, (Ha(l)HC[O,T] + HU(Q)HBT) <\fm4 + i |E( 31 (ZZOZO /’Ll’ﬂ>1/2> is bounded above.

Thus C(T,a™,u®) tends to zero as T — 0. In other WOI"db, for sufficiently small 7" we have 0 <
C(T, a, u(2)) < 1. This means that the operator II is a contraction mapping operator.

From the first and second steps, the operator Il is contraction mapping operator that is a continuous
and onto map on Ep. Then according to Banach fixed point theorem the solution of the operator
equation (12) exists and it is unique.

2 Conclusion

The paper considers the inverse problem of determining the time dependent lowest term coefficient
in fourth order in time partial differential equation with initial and boundary conditions from an
additional observation. The unique solvability of the solution of the inverse problem on a sufficiently
small time interval has been proved by using of the contraction principle. The proposed work is a
novel and has never been solved theoretically nor numerically before. Our results shed light on the
methodology for the existence and uniqueness of the inverse problem for the fourth order in time
PDEs in two dimensions.
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M./ Ix. Xynrynt, U. Texun?

1 .
Jorcazan ynusepcumemi, owcazan, Cayd Apabusco;
2 Anadoun Ketixybam amumdaen Aaarnva yrusepcumemi, Awmanvsa, Typrus

NuTerpaaapik TypaeHAIPyi 6ap yaKbIT OOUbIHINIA JiepOec TybIHIbLIbI
TOPTIiHII peTTi nuddepeHnTnaIabIK TeHAey YHIiH Ko3dpuiimeHTTi
Kepi ecebi

VYaxkpIT GofibIHIIA 2KOFAPBI PETT] (€K1/IEH KOII) TyBIHABLIAD AKYCTHKA, MEJAUIUHAJIBIK YIbTPaIbIOBICTA, TYTKBIP-
JIBIK, 7KOHE JKBITY CEPIIMILIIr CuaKTHI opTYpJIi cananapa maiina 6omamel. KosddunmenTti Kanmnbiaa Ker-
Tipyre OallIaHBICTBI YaKbIT OOWBIHINIA TEHJEyJIep/eri >Korapbl TYBIHJbLIAD YIIIH Kepi ecenrep a3 »KoHE
KOCBIMITIa, Kapaylbl KaxkeT eremi. Makasiama auddepeHnmnaablk TeHIeYIeri YaKbITKa TOYeJ Il Kilm Ko-
3 PUNMEHTKE KOCBIMIIIA WHTErpaJiibl OaKbLIay KYPrisil, yakbIT OOWBLIHINA OacCTalKbl YKOHE IIEKapaJIbIK
mapTrapbl 6ap TOPTIHII peTTi Jepbec TYBIHIALLIBI aHBIKTAyIbIH Kepi ecebi KapacThIpblaraH. ChIFBIMIAY
MPUHITATIH KOJIJAHA OTBIPHII, IIAPTTAP/IBIH PEryJISIPJIBIFLI, KapaMa-KAUIIbl OOJIMaybl KOHE OPTOTOHAJIIBI-
JIBIFBIHBIH, KeHOIp KarmaiiapbliHIa KOI(DOUIUEHTTEP 1] »KETKUTKTI a3 yaKbIT apaJblFbIHIa aHBIKTay eceOiH
HmIentyais 6ip MOHII MIENTiMIITIIr 19/1es I IeH /],

Kiam cesdep: nepbec TybIHIBLIBI qubdepeHITNAIBIK, TEHIEYIep YIIIiH Kepi ecenTep, YaKbIT OONBIHINA TOP-
TiHII peTTi Jepbec TYBIHABLIBL TuddepeHIInaIbIK TeHeyIep, 6ap OOTyhl JKOHE YKAJFBI3/IBIFHI.

M.Ix. Xynurynt, U. Texun?

1 .
Jorcasanckut ynusepcumem, owcasan, Caydoscras Apasus;
2 Viusepcumem Aaarmuu umeru Anadduna Ketivybama, Anmanva, Typuyus

Ob6parHaga koadduiineHTHaAsA 3aaa4a aJisd AuddepeHImaIbHOTO
ypaBHEHNsI B YaCTHBLIX IPOU3BOAHBIX YE€TBEPTOrO MOPIAIKA II0
BpPEeMEHH C MHTerpaJibHbIM Iepeonpeae/ieHueM

IIponsBo/Hble 110 BpeMeHH 60Jiee BBICOKOIO IOpsiiKa (GoJIblie BYX) BOSHUKAIOT B PA3JIMUHBIX 0OJIACTSX, Ta-
KPX KaK aKyCTHKa, MEIUIMHCKUH yIbTPa3BYK, BI3KOYIPYTOCTb U TePMOYIPYyroctb. OOpaTHbIe 3318491 JJIs
BBICIIIIX IIPOM3BOJIHBIX B YPABHEHUSX 110 BPEMEHM, CBsI3aHHBIE C BOCCTAHOBJIEHNEM K03(bduIeHTa, HEMHO-
TOYNCJIEHHBI X TPEOYIOT JIOMOJHUTEILHOIO paccMOTpeHust. B crarbe paccMoTpena obpaTHas 3a/ada OIpe-
JleJIEHUsI, 3aBUACSINAs OT BPeMeHH, Miiamrero koddgdunuenta B guddepeHnajlbHoM yPABHEHNN B YaCTHBIX
NIPOU3BOAHBIX YE€TBEPTOrO NOPAAKa 110 BPEMEHM C Ha4dabHBIMU M IDAHUYHBIMU YCJIOBUSAMH IO JOIOJIHU-
TEJILbHOMY HHTerpajibHOMY HabJoeHuio. [Ipr HEKOTOPBIX YCIOBHAX PErysIsipHOCTH, HEIPOTHBOPEYUBOCTH
U OPTOTOHAJIBHOCTHU JAHHBIX C UCIIOJB30BaHUEM IIPUHIUIA CXKATHA JT0KA3aHa OJHO3HAYHAA Pa3PEIIUMOCTDb
pellleHns 3aJavu OIpeieieHusI KO3 PUINEHTOB Ha JOCTATOYHO MaJIOM MHTEPBaJje BPEMEHHU.

Karouesvie crosa: obpatuble 3anaun qja YpUIl, YpUIl gyerBeproro nmopsika 1o BpeMeHH, CyIIeCTBOBAHHE
U eIUHCTBEHHOCTb.
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Systems of integral equations with a degenerate kernel and an
algorithm for their solution using the Maple program

In the mathematical literature, a scalar integral equation with a degenerate kernel is well described (see
below (1)), where all the written functions are scalar quantities). The authors are not aware of publications
where systems of integral equations of (1) type with kernels in the form of a product of matrices would
be considered in detail. It is usually said that the technique for solving such systems is easily transferred
from the scalar case to the vector one (for example, in the monograph A.L. Kalashnikov "Methods for the
approximate solution of integral equations of the second kind" (Nizhny Novgorod: Nizhny Novgorod State
University, 2017), a brief description of systems of equations with degenerate kernels is given, where the
role of degenerate kernels is played by products of scalar rather than matrix functions). However, as the
simplest examples show, the generalization of the ideas of the scalar case to the case of integral systems
with kernels in the form of a sum of products of matrix functions is rather unclear, although in this case
the idea of reducing an integral equation to an algebraic system is also used. At the same time, the process
of obtaining the conditions for the solvability of an integral system in the form of orthogonality conditions,
based on the conditions for the solvability of the corresponding algebraic system, as it seems to us, has
not been previously described. Bearing in mind the wide applications of the theory of integral equations in
applied problems, the authors considered it necessary to give a detailed scheme for solving integral systems
with degenerate kernels in the multidimensional case and to implement this scheme in the Maple program.
Note that only scalar integral equations are solved in Maple using the intsolve procedure. The authors
did not find a similar procedure for solving systems of integral equations, so they developed their own
procedure.

Keywords: integral operator, degenerate kernel, Maple program procedure, scalar integral equation.

1 Fredholm integral equations with a degenerate kernel
(general theory)

Consider the integral system

m T
y(t) = )\ZAj(t)/Bj(s)y(s)ds + h(t). (1)
Jj=1 0

Let the expressions A;(t) and Bj(s), forming the kernel of the integral operator in it be matrix functions
(their smoothness and dimensions are specified below). Just as in the one-dimensional case [1-4], such
systems can be reduced to algebraic systems using the following operations. Denote

T
w = [ Biws)ds, j = Tm @
0

*Corresponding author.
E-mail: bkalimbetov@mail.Tu
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Then instead of (1) we get the equality

m

y(t) =AY Aj(w; + h(t). 3)

j=1

Multiplying in turn equality (3) on the left by matrices Bi(t), ..., By (t) and integrating the resulting
equalities with respect to t € [0,T], we get

T T
/Bl t)dt = AZ /B w; + /Bi(t)h(t)dt, i=T1,m.
0 0
Using (2), we obtain the algebraic system of equations
m
wi =AY cyw; + H; (i =1T,m), (4)
j=1

T T
where indicated: ¢;; = [ B;(t)A;(t)dt, H; = [ B;(t)h(t)dt, i,j = 1,m. Now let us refine the conditions
0 0

on the matrices A;(t), B;(t),7 = 1,m. It is clear that these matrices must be integrable on the [0, T].
We assume that all their elements are continuous on the segment [0,7]. In addition, there must be
matrices A;Bj, BiA;j, >, B;A;, By, Bjh, so their sizes must be consistent for all ¢, j = 1, m. This can
be achieved if we take all matrices A;(t) of the same size n x p and all matrices Bj(t) of the same size
p X n, where p is any natural number. Then the vector w; will be a column of the size px 1, ¢;jis (p X p)-
matrix, Hjis (p x 1)-vector, i, j = 1,n. Introduce the vectors w = {w,...,wy}, H = {Hi,...,Hy}
of the size (pm) x 1 and the matrix

C11 C12 e Clm

C21 CcC22 ... Com
C =

Cml Cm2 ... Cmm

This matrix is square in size (mp) x (mp). Now system (4) can be written as follows:
w=ANw+ H<& (I — \C)w = H. (5)

For A = 0 system (5) has an obvious solution w = H, so we will assume that A # 0. In this case,
system (5) can be rewritten as

(uI = C)w = puH <u=i)- (6)

Now let’s establish a connection between system (6) and system (1). These systems are equivalent in
the following sense: if there exists the solution y = y(t) € C([0,T],C") of the system (1), then there
exists the corresponding solution

= {/TBl(s)y /TBm (s)ds}
0 0

of the system (6). Conversely, if there exists the solution w = {wi, ..., wy} € C™ of the system (6),
then there is the solution y(t) = XY "L, Aj(t)w; + h(t)of the original system (1).
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The last statement needs proof, but we will not carry it out. Let us find out in which case
different solutions of the system (6) generate different solutions of the integral system (1). So, let
w = {wy,...,wp} and © = {Wy,..., Wy} there be different solutions of the system (6). Then the
solutions y(t) and g(t) of the integral system (1), corresponding to them, will coincide, if

> A, = iAJ t)ab; @ZA wi) =0 (Vt € [0,T)). (7)

If we denote by Ag- ) the k-th column of the matrix Aj, and by w(k), (k) the k-th components of the
vectors w; and W; respectively, then identity (7) can be written in the form

m p
~(k
SN AP Y o) =0 (vt e [0,1)). (8)
Jj=1k=1
Since w # w, then at least one of the differences wik) — k)

;. — W is not equal to zero, therefore the identity
(8) means that the columns of the matrix

S) =A@, ... AP @ A @), .. AP @), AD®), . AP (1))

m

are linearly dependent on the segment [0,7]. Hence, if the columns of the matrix S(¢) are linearly
independent on the segment [0, 7], then it follows from the identity (8) that everything w(k) = ’J)J(k),
and therefore y(t) = y(¢). So, in the case of linear independence on the segment [0, 7] of the columns
of the matrix S(¢), the correspondence w — y(t) will be one-to-one (w <« y(t)), therefore, in this
case, we can replace the study of the solvability of the system (1) with the study of the solvability of
the algebraic system of equations (6) (or what is the same system (5)). Henceforth, we will assume
that the columns of the matriz S(t) are linearly independent on a segment [0, T]. Systems of type (6)
are well studied in linear algebra. It is known that if p = % is not an eigenvalue of the matrix C,
then the homogeneous system (u/ — C)w = 0 has only a trivial solution w = 0. This means that the
corresponding integral system (1) has a solution for any right side h(t) € C([0,T],C™), which can be
written as

ZA Jwj + h(t) (w={wi,...,wn}).

If p = % (A # 0) is an eigenvalue of the geometric multiplicity  of the matrix C, then the homogeneous
system (il — C)w = 0 has the basic system w®), ..., w(") of solutions, and its general solution can be
written as

w = aw® + ..+ aqw®,

where aj,...,q, are arbitrary constants. In this case, the conjugate homogeneous system (al —
C*)z = 0 also has a basic system 2 .. 2 of solutions, consisting of r vectors. In order for
the inhomogeneous system (6) to have a solution, it is necessary and sufficient that its right side be
orthogonal to all vectors of the basis system of solutions of the adjoint homogeneous system:

(MH, z(j)> =0< (H, z(j)> =0,7=1,r. 9)
In this case, the inhomogeneous system (6) has the following solution:

w=ow+..  +auw® 4+, (10)
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where a1, ..., a, are arbitrary constants, w = @ is a particular solution of the system (6) (or, what is
the same, of the system (5)). Let’s see which condition for the original integral system (1) is equivalent
to condition (9). For this, we write a homogeneous adjoint equation for (1):

j=1
< g(t) = AL By (t) [ Aj(s)i(s)ds. (11)
0
Denoting z; = fA* s)ds, j = 1,m, we rewrite system (11) as

§(t) = XD Bi(t)z. (12)
Multiplying both parts of (12) on the left by A¥(¢) and integrating over t € [0,T], we obtain

fA* )\Z] 1 fA* (t)dt)z; <

=z = )\Z;nzl diij,i = 1,m,

T
where indicated: d;; = [ Af(t)B}(t)dt, i,j = 1,m. It is easy to see that d;; = ¢}

2 where ¢;; are the

0
matrices involved in system (4). The matrix of the system (12;) has the form

* * *

€11 €1 " Gn1
* * *

Clg Ca2 "'° Cpo

c* = e e o
b

* * *

Cim Com 7 Cmm

therefore, the algebraic system corresponding to the homogeneous conjugate integral equation (11) will

be as follows: B B
z2=AC"2& (I - NC*)z =0
(13)

& (I~ )z =0(u=1% A #£0).

All solutions of the adjoint equation (11) are found from (12), where z = {z1,..., 21} is the solution
of the system (13). Orthogonality (9) means that (take into account that

T
H= {/ Bi(Hh(t)dt, ... ,/Bm(t)h(t)dt, 20 = {9200y
0

m T
0 Z/(h(t),B;“(t)zi(j))dt e
0

=1

m T
Z/ t)dt, z(]
0

i=1
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According to (12), we obtain from this that the orthogonality conditions (9) are equivalent to the
conditions

T
[, 59@na 0.5 =T (14)
0

where (M (t), ..., 7™ (t) is the basic system of solutions of the conjugate homogeneous integral system

(11). Thus, if p = %()\ # 0) is an eigenvalue of the geometric multiplicity r of the kernel of equation
(1), then for the solvability of the integral system (1) in the space C([0,7],C"), it is necessary and
sufficient that orthogonality conditions (14) hold. In this case, the general solution of the equation (1)
can be written as

y(t) = aryW() + .+ ary ) +3(0),
where i, ..., q, are arbitrary constants (the same as in (10)), M (¢),...,y")(t) is the basic system

of solutions of the corresponding homogeneous equation, and y(t) = A

K(t,s)y(s)ds (A = i) is a

particular solution of the inhomogeneous system (1).

2 Computational implementation of finding solutions to the integral system (1) with a degenerate
kernel

It was shown above that in order to obtain a solution to the integral system (1), it is necessary to
find vectors w = {wy, ..., wy, } from system (5) and substitute its components into formula (3). However,
despite the simplicity of this scheme, its implementation is associated with considerable computational
difficulties. Let’s list them:

T
1) calculation of integrals ¢;; = [ B;(t) Aj(t)dt (i,j =1,m) and compilation of matrices C' =
0

(cij), C* = (dij) of the size (mp) x (mp);
T
2) calculation of integrals H; = [ B; (t) h (t) dt (i = 1,m) and composing the vector H = {Hq, ..., Hy }
0

of the size (pm) x 1;

3) find the solution of the adjoint system (I — XC’*) z = 0;

4) verification of the orthogonality conditions (H, z(j)) =0 (j = 1,7m) , where 2 ... (™) are the
basic solutions of the adjoint system;

5) when the orthogonality conditions are met, the calculation of the solution w = wq, ..., wy, of the
algebraic system (I — A\C)w = H,

6) constructing the solution to the original integral system (1): y(t) = A>T, Aj(t)w; + h(t).

Overcoming these difficulties manually will take a long time, so there is a need to overcome them
with the help of some program on the computer. The intsolve program in Maple allows you to quickly
and efficiently solve scalar integral equations with a degenerate kernel [5-9]. We do not know an
analogue of such a program for systems of integral equations, so we considered it necessary to develop
it ourselves. For the sake of simplicity of presentation of such a program, consider the case of a second-

order system
1
Yy (t) o al (t) bl ( ) as (t) bg
{ z(t) ] _0/ [ a3 (t) bz (s) aa(t)bs
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(the unit in the upper limit of the integral is not essential here; it can be replaced by an arbitrary
number 7T'). There is no doubt that this system is a system with a degenerate kernel, but it is not so
easy to represent it in the form (1), i.e., to write the kernel as a sum of products of matrices A; (t) and
B; (s). Therefore, below we choose a way to represent the kernel as a sum of products of matrices with
separated variables, based on the expansion of any matrix in a standard basis:

a b 10 0 1 0 0 0 0
el Lo aleelo o]V 8] =a[5 V]
The easiest way to do this is with Maple. First, note that in Maple, indexes can be written both in

square brackets and directly in the usual form. For example, a with an index j can be written both in
. : 1
the form a; and in the form a[j]. If we denote by el and e2 unit vectors el = [ 0 ] , €2 = [ (1] ] ,

then this decomposition can be written as follows:

[i cﬂ_a-e[l].(e[l])%T+b-e[l]-(6[2])%T+C-6[2}-(6[1])%T+d'e[2]'(6[2])%T’

where %T is the sign of the transposition, the dot in the middle means the multiplication of a scalar
by a vector, and the dot below is the matrix multiplication of vectors. For example,

G -le ) D -]
Now the kernel of the integral operator in (15) can be written as
(@[] (@) - e[ (b0 (s) - 1)) + (@2l (1) -e[1]). (121 (5) - (e [2)™) +
+(al3)(t)-e2) . (6181 (s) - (D7) + (a4 (&) - e [2)). (B[4 (s) - (e[2)").

and system (15) itself in the form

(16)

u(s)ds+h(t),

s = (1] - [ ¢

represented as the sum of products of matrices with separated variables:
AL(t) = a[1] (£) - e [1]: B1(s) = b[1] (s) - (1) ; A2 () = a[2] (1) - ¢
B2(s) = b[2] (s) - (e [2))" ;A3 () = a [3] (t) - € [2]; B3 (s) = b[3] (s) - (e [1)"";
A () = al4] () - e[2]5 BA(s) = b[4] (s) - (e [2) .

} . In this notation, the kernel of the integral operator is

Let us rewrite system (16) in the form
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Enter numbers

1 1
| B1l(s).u(s)ds=wl, [ B2(s).u(s)ds=w2,
10 ’ (17)

of B3 (s).u(s)ds =w3, [ B4(s).u(s)ds = wd.
Then system (17) takes the form
u(t)=Al(t) - wl+ A2(t) - w2 + A3 (t) - w3 + A4 (t) -wd + h(t). (18)

We multiply this equality successively by matrices B1 (t), B2 (t), B3 (t), B4 (t) on the left and integrate
the results over ¢ € [0,1]; we get

wl = (({131 (t) Al (t)dt) cwl + <Of1B1(t) A2 (1) dt> w2+

1 1 1
+ (f B1(t) .A3(t) dt> cw3 + <f B1(t) .A4(t) dt) ~wd + [ B1(t).h(t)dt;
0 0 0

w2 = ({132 (t) Al (t)dt) wl + (({132 (t) A2 (t) dt> w2+

1 1 1
< [B2(t) .A3(t) dt) w3+ ( [B2(t) .A4(t) dt) cwd+ [ B2(t).h (1) dt;
0 0 0

1 1
w3 = <fB3 (t) .A1(t) dt> ~wl + <fB3 (t) .A2(t) dt) cw2+
’ ’ | (19)

1 1
+ (f B3(t) .A3(t) dt> cw3 + <f B3(t) .A4(t) dt) ~wd + [ B3(t).h(t)dt;
0 0 0

1 1
wi = ( ([ BA(t) AL () dt> cwl + < Oj BA(t) .A2(1) dt> .w21+

1 1
+ (f B4 (t) .A3(t) dt> cw3 + <f B4 (t) .A4(t) dt) ~wd + [ B4(t).h(t)dt.
0 0 0

Since the matrices A [i], B[j] are known and their product B [j].A[i] is a scalar quantity, then (19)
is a system of linear algebraic equations with respect to the unknowns wl, w2, w3, w4. Solving this
system in Maple and substituting the found unknowns in (18), we find the solution of the original
integral system (15).

Ezxample 1. Solve a system of integral equations

y(t) =

z (t)

1
6tsy (s) ds+ [ 3t?sz (s) ds+ %+ 1,
0

O LO— .

(34+1)(5s+3)y(s) ds+f(8t+5) s32(s) ds + 4t.
0

Solution. Enter the coefficients

ar (t) :=6t;b1 (t) :==t;a2 (t) :== 3% by (t) :=t;a3(t) := 3+ t;
by (t) =5t +3;a4(t) :=8t+5;bs(t) := t35m(t) ==t + 1;n(t) =4t

Enter vectors
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Enter matrices:

AL(t) == a1 (t) - e[1]; B1(s) == b[1] (s) - (e [1)*"; A2(t) == a[2] (t) - e[1];
B2(s) :=b[2] (s) - (e[2)""; A3 () == a[3] (t) - e [2]; B3 (s) := b[3] (5) - (e [1]))""
A4(t) = ald] (1) - e[2]; B4(s) = b[4] (s) - (e[2])"";

We compose and solve a system of equations for unknowns wl, w2, w3, w4

: ) Y 9 ?
wl = (fBl(t) Al (t)dt> ~wl + <fBl(t) .A2(t)dt> ~w2+
1 0 1 0 1
(fBl(t).AB(t)dt) ~w3 + (fBl(t).A4(t)dt> cwd+ [B1(t).h(t)dt
0 0
1

0
w2 = <fB2(t) Al (t)dt> ~wl 4 <le2(t) A2 (t)dt> cw2+
1 0 1 0 1
<fB2(t).A3(t)dt> ~w3 + <f32(t).A4(t)dt> cwd + [B2(t).h(t)dt
0

w3 leB()Al()

0

1
= ~wl+ | [ B3(t) )dt>-w2
0

1 1
+<fB3(t) A3 (t )dt) w3+ (fBB(t).A4(t)dt) cwd+ [ B3(t).h(t)dt
0 0

0
1 1
w4 = <f B4 (t).Al(t) dt> ~wl + <f B4(t).A2(t) dt> ~w2+
0 0
1 1 1
(f B4 (t).A3(¢) dt> ~w3 + <f B4 (t).A4(t) dt> cwd+ [B4(t).h(t)dt
0 0 0
Calculate the solution of the original integral system

u(t) =

Al (t) - wl+ A2(t) - w2 + A3 (t) - w3+ A4 (t) - wd + h(t)
Answer.

- ]

381 38
Verification. Let us introduce the obtained solutions:

) 602t2 80 P41 2 (1) : 832 4 265 265
=t — — z(t) i= ——=
Y 381 127 381 T 381"
Let us calculate the difference between the left and right parts of the original system
1 1
f6tsy (s) ds+ [3t?sz (s) ds+t>+1
y(@) | 0
z (1)

1 1
JB+t)(5s+3)y(s) ds+ [ (8t +5)s32(s) ds+ 4t
0 0

Got a vector { 8 ]

Thus, the solution to system (20) is the vector function
o] ] e g
z (t) 381 -l- 381 t

the second

Remark 1. We have considered the two-dimensional case of the integral system (20). It is clear that
the described algorithm obviously extends to any integral systems of type (20) of order higher than
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3 Systems of integro-differential equations with a degenerate kernel and their reduction to integral

systems
Systems of equations of the form
T
dy _ 0
i tyy + N | K(t,s)y(s)ds + h(t),y(0,e) = y°, t € [0,T], (21)
0

where y = {y1(t),...,yn(t)}is an unknown function, h(t) = {hi(t),...,h,(t)} is the known function
(inhomogeneity), A(t), K (t, s) are known matrices of size nx n, are called systems of integro-differential
equations of the Fredholm type (or simply integro-differential systems). They can be reduced to an
integrated system. It is done like this.

Let us assume that Y(¢) is the fundamental matrix of solutions of the differential system G = A(t)z.

T

Taking H(t) = X [ K(t,s)y(s)ds + h(t) for the inhomogeneity of the differential system dy/dt =
0

A(t)y + H(t), we find its “solution”

y(t) = YO+ A J YY1 K(Cs)y(s)ds)d +
. 0 0 (22)
+ [ YO HOMC
Denoting
holt) = Y (1)y +/Y h(¢)dC (23)

and changing the order of integration in the iterated integral (22), we have

T t
~) 0/ O/ Yt K(C, 8)dC)y(s)ds + ho(t). (24)

We have obtained an integral system (24) with a kernel

- / vt K(C, s)dC. (25)
0

It is easy to show that the system (24) is equivalent to the system (21). The following result is obtained.

Lemma 1. If Y(t) is a fundamental matrix of solutions of a homogeneous system Z = A(t)z (it is
assumed that it exists on a segment [0,77]), then the integro-differential system (21) is equivalent to
the integral Fredholm type:

1
Y1) = / G(t, )y(s)ds + ho(t), (26)
0

¢
where ho(t) = Y (#)y° + [Y7H({)h(¢)d(, and the kernel G(t, s) has the form (25).
0

For equations (26) of the Fredholm type, statements about solvability look rather complicated.
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Theorem 1. Let in the system (21) the matrices A(t) € C([0,T],C"*"),K(t,s) € C(0 < s,t <
< T,C™™),h(t) € C([0,T],C™). Then the following statements are true:

a) if A is not a characteristic value of the kernel (25), then the integro-differential system (21) is
solvable for any right-hand side h(t) and, moreover, uniquely; in this case, its solution is given by the
formula

T
y(t) = ho(t) + A / RA(t, 5)ho(s)ds,
0

whereR)(t, s) is the resolvent of the kernel (25), ho(t) is the function (23);
b) if A is the characteristic value of the kernel (25) of rank r, then system (21) is solvable in the space
Cl([0,T],C") if and only if the inhomogeneity (23) is orthogonal to all solutions of the homogeneous

adjoint system z( f s)ds, i.e.
0

T
/ (ho(t), 29 (8))dt = 0, j = T,7,
0

where z(l)(t), ..., 2" is the basic system of solutions of the homogeneous adjoint system. In this case,
the solution of the integro-differential system (21) is given by the formula

t) = > ajy () + §),
j=1

T
where y(M(¢), ..., y("(¢) is the basic system of solutions of the homogeneous system, y(t) = A [ G(¢, s)y(s)ds,
0

y(t) is a particular solution of the integral system (26), and «ay, ..., @, are arbitrary constants.
Now let the kernel in the original equation (21) be degenerate, i.e.

m

K(t,s) = Y Aj(t)Bj(s), (27)

where all A;(t) are matrices of the size n x p, and all Bj(s) are matrices of the size p x n, j = 1,m
(we assume that the columns of the matrix S(t) = (Ai1(¢),..., Am(t)) are linearly independent on the
segment [0, 7). Then the kernel of equation (26) will have the form

YWY QK. 8)dC =
0 (28)

R0 (fY () Bis) = S, (01555,

where denoted: ®;( f y-1 (¢)d¢,j = 1,m. Hence, the degenerate kernel (27) of the

original integro—dlfferentlal system (21) generates the degenerate kernel (28) of the integral system
(24), equivalent to it, therefore, to construct a solution to system (24), we can apply the procedure
developed above. We will show how this is done using the Maple program in the following example.
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Example 2. Let’s try to get the solution of the system

$y<t>:—y<t>+ja1<t>b1<> (s) ds+fa2 by () 2 (s) ds +m (1),
%za) —2z<t>+£‘ (t)bs (5)y (5) ds+fa4 Vb () 2 (s) ds +n (1)
y(0) =a,z(0) =0,

where, for the sake of simplicity, the following data are taken:
al (t) =t;a2(t) =t%a3(t) =2t;a4 (t) =t + 1;01 (t) =3 t;
b2(t) =2t%03(t) =t;04(t) =t —1;m(t) =2t;n(t) =t%a=1; b= 3.

Solution.*
restart:
with(linalg):

Enter the coeflicients:

al (t) :=t;a2(t) :=t%a3(t) =2t a4 (t) =t + 1;b1(t) =3 ¢t;
b2(t) :=2t%b3(t) :=t;04(t) =t —1;m(t) :=2t;n(t) :=t*a:=1; b:=

Enter kernel:

(al (&) - e[1)). (b1 (5) - (1)) + (a2 (8) - e 1)) (b2 () - (e [2)"
+(a3(6) - e[2)). (83 (s) - (1)) + (ad (1) - e [2)). (b4 (s) -

®
9
N
ﬁv
S
—

Enter vectors:

o [24].

o= [£4]

Then the integro-differential system (29) takes the form:

ma 1) U = -1 0 U a -e 1 s)- (e AT u(s S
pUkt], w00 o o | @@ el (b)) ) d
+(a2(t)-el1]). [ <b2 () - (e [2])%T) u(s)ds
01
+(a3(t)-el2]). [ (b3 (s)- (e [1])%T) u(s)ds
01
+(ad(t) - e[2]) Of (b4 (s)- (e [2])%T) w(s)ds+h(t);
Enter matrices:
AL(t) :=al () e[1]; BL(s) = bl (s) - (e [1)*"; A2(t) == a2 (t) - e [1];
B2(s) := b2(s) - (e[2)"; A3 (¢) := a3 (¢) - € [2]; B3 (s) 1= b3 (s) - (e [1))"";
Ad(t) == ad (t) - e[2]; BA(s) = b4 (s) - (e[2)"";

* Maple does not put punctuation marks.
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Then the IDE system (29) can be rewritten as:

map (dif f, u(t),t) = [ _(1)
+A2(t).

FAL(L).

O P

We find the fundamental decision matrix:

B4(s).u(s)ds+ h(t);

1
B2 (s) .u(s)ds + A3(t). of B3 (s).u(s)ds

dsotve ({35000 = (0. 5 (0 =220} )

Change the inhomogeneity:

h1(t):=Y (¢). [ Z } +map (int,Y (t).Y " () .h(z

Enter matrices:

F1(t) :=map (int,Y (¢t).Y ' (z).Al (z), 2 =
F2(t) :=map (int,Y (t).Y ! (z).A2 (z) 2 =
F3(t) :=map (int,Y (t).Y ' (2).A3(z) 2z =
FA(t) :=map (int,Y (t).Y ! (z).A4 (z) 2 =

1
Denote wj = [ Bj(s).y(s) ds,j =1,4:

0
Then the equivalent integral system can be written as:

w(t)=F1(t) - wl+ F2(t) - w2+ F3(t) - w3+ F4(t) - wd+ hl(t):

Multiply this equation on the left sequentially by the matrices B1(t),B2(t),B3(t),B4(t)
integrate the results obtained over ¢ € [0, 1] . We obtain the system of algebraic equations:

int,wl - B1(t).F

1(t) +w2-B1(t).F2(t)

eql :=wl =map | +w3- Bl() F3(t) +wd- B1(t).F4(t)
+B1(t).hl(t),t=0.1
int,wl-B2(t).F1(t) +w2- B2(t).F2(t)
eq2 :=w2=map | +w3- BZ() F3(t) +wd- B2(t) .F4(t)
+B2(t).h1(t),t =0.1
int,wl- B3 (t).F1(t) +w2-B3(t).F2(t)
eq3:=w3=map | +w3- B3() F3(t) +wd- B3(t).F4(t)
+B3(t).h1(t),t =0.1

int,wl - B4(t).F1(t) +w2-B4(t
eqd : wd =map | +w3- B4()F

+BA(t).h

Let’s solve this system:

L(t),

)
3(t) +w4 B4 (t) .F4(t)
t=

F2(t)

solve ([eql, eq2, eq3, eq4] , {wl, w2, w3, w4}) :
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and activate the found solutions with the assignment operator (:=).
We write down the solution of the original integro-differential system (29):

F1(t) - wl+F2(t) - w2+ F3(t) - w3+ F4(t) -wd + hl(t);

9 (394416e~1e~2410800e "1 —139299e~2—10975) (ett—el+1)e

y(t) = =55 9864c T 218664c T —3561c 2—1831
1 (739476ete=2—105660e ! —154209e~2+17035) (e!t? —2ett+2et —2)e~* (30)
10 9864¢—Te—2+8664e— 1 —3561e— 2—1831 +

e+ (2eft — 2! +2) e

3 (394416eTe~2+10800e 1 —139299e~2—10975) (2te?! —e2!41)e~ 2t
2(t) = —45 9864 e~ 218664e 135612 — 1831
1 (98208e~te™2+457696e 1 —26187e~2—11719) (2te?! el —1)e~2t
40 9864e—Te—28664e_ I —3561le— 21831

The verification is carried out by substituting the solution into the difference between the left and right
parts of the system (29):

v ] [~y +2
0 ]| 2
].(()fl?)sy(s)ds)—%{tg].(({l%%(s)ds)

(Lo
(—I—[gt}(oflsy(s) ds>+[t£1].<g‘(s—1)z(s) ds)

simplify _s)ymbolic 8
Remark 2. When entering data in a Maple file, take into account that exponents and signs of

differentials are entered as operators.

In conclusion, we note that the developed procedure, with some modifications, will be used to study
linear and nonlinear singularly perturbed systems of integral and integro-differential equations with
rapidly oscillating coefficients and inhomogeneities [10-14].

Consequently, functions (30) satisfy system (29).
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O3zrentesieHTreH sAPOChl 0ap MHTErPAJIABIK TEHJeyJaep XKylieci >KoHe
osapabl Maple 6armapjiaMacbIMeH IMENTy aJropuTMi

Maremarukamblk, o7ebrerTepe ©3rellesleHIeH SIPOChl 6ap CKaJIsIPJIBIK WUHTEIDAJIIBIK TEHJEYJIED *KAKChI
cunarrasran (Temerge (1) KapaHbI3, MyHa GAPJIBIK KA3bLIFAaH (DYHKIUSIAD CKAIAp Niamasap). ABTop-
JIlapra MaTPHUIAJIAPIABIH KebelTinaici Typingeri siaponapst 6ap (1) TunTi MHTErpasgbIK TeHAEYIep XKyiiec
erKei-TerKeityii KapacThIPbLIATHIH *KapusiJIaHbIMIap 6esricis. Oierre MyH Al 2Kyitesep/i ey saicremeci
CKAJIAD JKaFJaii/IaH BEKTOPJIBIK, YKaFIaiiFa OHAl aybICTBIPBLIAIBI Aen aiTbuianpt (Mmbrcasst, A.J1. Kamammn-
KOBTBIH "MeTopl NpUGIMKEHHOTO PEIlleHnsl NHTErPaIbHbIX ypaBHenuil Broporo poga" (Hukuwmit Hosro-
pox: HHI'Y, 2017) MoHOrpadusChbIHa ©3relleIeHIeH sAPOJIbl TeHIEYJIeD XKy HeCIHIH KBICKAIIIa CUIIATTAMACHI
GepinreH, MyH/Ia ©3TeIle/IEHTeH sITPOHBIH, POJIIH MATPUIAIBIK, (DYHKIIAIIIAP €MEC, CKAJISIPIIBIK, (DYHKITUSIIAp-
JbIH KebeiTinmici arkapaapl gesinren). Asaiiza, KapamaibiM MBICAJIIAP KOPCETKEHIEH, MATPUIAIBIK, (DyHK-
IUSTaPAbIH KON TiHAICiHIH KOCBIHBICH TYPIHAETI SPOJIBI HHTETPAJIIBIK XK Yiiesep KarJaiibIHa CKAJISIPIIBIK,
JKAFIAfIbIH UesIapblH »KaJnblaay OipramMa TYCIHIKCI3, JereHMeH OyJl Kargaiifa WHTErPaJIbIK KyHeHi
ajrebpaJIblK, TEHJEYJIep XKyHecine KeaTipy mieschbl KOJJIaHbuiaabl. COHbIMEH Karap, CoiKec aJrebpasibik,
JKYWeHIH HIemmiMIiIiK IapTTapblHa CyiieHe OTBIPHIII, OPTOrOHAJIBLIBIK, IIAPTTAPBl TYPIHAETI HHTErPAJIIbIK
KYHMeHiH IMenMIiIiK mapTrapblH ajay Tporeci OypbIiH cumarraaMarad. Kosmaubasbl ecenTep/eri nwHTe-
rPaJIAbIK, TEHJEYIeP TEOPHUSICHIHBIH, KeH KOJIIAHBLIYbIH €CKePe OTBIPBIN, aBTOPJIAD KOMOJIIEeMIl Karaaiga
AJPOJIAPhI ©3relIe/IeHNeH NHTErPAJIIBIK, YKYyHeaep i eIy iH ersKei-Terkeilyii cxeMachlH 0epy/Ii »KoHe Oy
cxemanbl Maple 6armapiiaMacbiHIa eHTi3yAl KaxKeT gen caHaabl. Maple 6armapiiaMachblHIa TEK CKAJISIPIIBIK,
MHTErPAJIBIK TEHIEYIEp intsolve mponesypachl apKbLIbl MIENIJIETIHIH eCKepini3. ABTOpJIap UHTErpasIbIK,
TeHJEeyIep XKYHWeCiH IeNy il yKCac MPOIelyPAChIH TAIIA/Ibl, COHIBIKTAH OJIap ©3J/IePiHIH MPOIELy PAChIH
2KaCAIBL.
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CucreMbl MHTErPAJbHBIX YPAaBHEHUI C BBIPOXKJIEHHBIM SAPOM U
aJITOPUTM MX PellleHnd C MOMOIIbIo ITporpaMmMbl Maple

B maremaTmveckoil jmTeparype XOPOIIO OIHMCAHO CKAJsSPHOE WHTErpPajibHOe yDaBHEHUE C BBIPOXKIEHHDBIM
anapoum (cm. amke (1), Tae Bee 3anucanabie hyHKIMN ABISAIOTCA CKAJSPHBIMA BeJUIUHAMY ). ABTOpaM HEW3-
BECTHBI IIyOJIMKAIIMN, B KOTOPBIX MOJPOOHO PACCMATPUBAJIUCH ObI CUCTEMbI MHTETPAJIbHBIX YPABHEHUI TUIIA
(1) ¢ spavu B Buze pousseeHusi MaTpul. OGBIYHO FOBOPST, YTO TEXHUKA PEIIEHUs] TAKUX CHCTEM JIE'KO
MIEPEBOJINTCS CO CKAJIAPHOTO CJIydas Ha BEKTOPHBIHA (Hampumep, B monorpadgun A.JI. Kamammukosa «Me-
TOJbI IIPUOJIMKEHHOTO DEIIeHNs] UHTEIPAJIbHBIX ypaBHEHH Broporo poias (Hwmxuwit Hosropox: HHI'Y,
2017). /TaHo KpaTKoe OIMCAHHE CHCTeM YDABHEHHIl ¢ BBIPOXKJEHHBIMH siAPDAMM, [JIe POJIb BBIPOXKIEHHBIX
SA7Iep UTPAIOT MTPOU3BEIECHNs CKAJAPHBIX, 8 He MATPUIHbIX dyHKIwmii). OIHAKO, KAK MOKA3BIBAIOT IIPOCTEMH-
e npruMepsbl, 0600IIeHne WJIell CKaJISIPHOTO CJlydasi Ha CJIydail [EeJOYUCIEHHBIX CUCTEM C si[DAMU B BHJIE
CYyMMBI IIDOU3BEJCHIH MaTPUI-(PYHKIMI BeCbMa HEsICHO, XOTsI B 9TOM CJIydae UCHOJIb3yeTCs UJIesl CBEICHUS
WHTErpaJia ypaBHEHUS K ajrebpamdeckoil cucreme. B To ke BpeMsi mpOIECC MOTyYeHUs YCIOBUU paspe-
IIUMOCTH HWHTEIPAJIbHON CHCTEMBI B BUJIE YCJIOBUN OPTOrOHAJBHOCTH HA OCHOBE YCJIOBWIl Pa3perIMMOCTU
COOTBETCTBYIOIIEH aJirebpandecKoil CUCTeMbI, KaK HaM KajKeTCsl, paHee He OIMCBHIBAJICS. Y YUThIBasl IIHPO-
KO€ TIpUMEHEHNe TeOPUN WHTETPAJbHBIX YPABHEHUN B MPUKJIAIHBIX 331a9aX, aBTOPBI COWIN HEOOXOMMMBIM
[IPUBECTH MOJAPOOHYIO CXEMY PEIIeHHs] NHTEIPAJILHBIX CUCTEM C BBIPOXKJCHHBIMU sIJIDAMH B MHOTOMEPHOM
cydae M peajin30BaTh 3Ty cxeMmy B nporpamme Maple. O6parure Bunmanue, aro B Maple ¢ momoripio mpo-
ey phl intsolve pemaroTes: TOIbKO CKAJISPHBIE MHTErPAJIbHbIE yPaBHEeHUs . ABTOPBI HE HAIILIM AHAJIOTUIHON
METOJIMKH PEIleHUs CUCTEM MHTErPaIbHBIX yPABHEHUI, I09TOMY pa3paboTaiu COOCTBEHHYIO METOIUKY.

Kmouesvie crosa: HHTETPAIbHBIN OMEPATOP, BEIPOXKIEHHOE SIIPO, IpOrpaMMHast mporeaypa Maple, ckassip-
HOe MHTerpaJibHOe ypaBHEHHe.
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Analytical and numerical research based on one modified refined
bending theory

In the article, an analytical and numerical study based on one modified refined bending theory is presented.
By the finite difference method, a general numerical calculation algorithm is developed. The solution
obtained by the proposed method is compared with the results of known solutions, namely, with the solution
of the classical theory, the exact solution, the solution in trigonometric series, as well as with experimental
data. Comparison of the results obtained by the method given in the article with the solutions determined
by other methods shows sufficient accuracy, which indicates the reliability of the proposed method based
on one option of the modified refined bending theory. Classical theory is not applicable to such problems
under consideration.

Keywords: modified refined bending theory, finite difference method, lagrange variational principle, differential
operator, discretization of a system of equations

Introduction

The rapid development of scientific and technological progress requires the creation and implemen-
tation of new progressive materials and structures with predetermined properties. These requirements
are fully met by composite materials, in particular, multilayer composites, which have a wide range of
performance properties that cannot be achieved using traditional materials.

The use of multilayer composite materials in modern apparatuses and devices required taking into
account their structural features, the physical and mechanical properties of the materials used, the
number, structure and arrangement of layers for the composite material in mathematical research, as
well as the creation of new methods that refine existing theories for the mathematical calculation of
the stress-strain state of such structures.

In multilayer composite structures, the layers are made of such a material and these layers are
arranged so as to endow the structure with a number of predetermined positive properties. At the same
time, the materials are selected in such a way that, in an optimal combination, they give a qualitatively
new type of construction. Or, in other words, in multilayer composite structures, the layers are arranged
so that, under operational conditions, the structure better corresponds to its functional purpose.

The technical, mathematical and mechanical properties of structures made of multilayer inhomo-
geneous materials differ significantly in the thickness of their packages. Therefore, the features study
for the operation of structures made of multilayer inhomogeneous materials in the thickness of their
package by use refined theories is important in the mathematical study and the design of new innovative
lightweight structures made of multilayer materials. Bending theories clarifying mathematical and
technical theory should take into account the most important operational characteristics of multilayer

*Corresponding author.
E-mail: esenbaevagulsima@mail.Tu
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composites, such as strain in the orthogonal direction to the layers, interaction of layers, strength,
high resistance to fracture, etc. Each construction of a new multilayer composite that provides an
increase in technical characteristics, as a rule, requires the development of new calculation methods
based primarily on analytical mathematical research, and later on the numerical implementation of
this research and its practical application.

One of the elements for multilayer composite spatial systems is a rectangular plate, which has
numerous independent applications. An example of a rectangular plate, clamped with one edge, is
a vertical panel, and an example of a plate, elastically clamped with three edges, is the wall of a
rectangular reservoir. It should be noted that multilayer plates are a very extensive type of plates
and are more often used in many fields of science and technology. The plate can be applied as an
independent structure or can be part of the used lamellar system. For example, in the construction
plates have all kinds of applications in the form of floorings and wall panels, reinforced concrete slabs to
cover industrial and residential buildings, slabs for the foundations of massive structures, etc. Therefore,
knowledge of the theory for rectangular plates bending and of classical methods for calculating them
is necessary for a modern scientist.

Many analytical and numerical calculation methods are used to study the problems of plate
bending [1-12]. An exact solution in analytical form for such problems is possible only in some
particular cases for the geometrical type of the plate, the load and the conditions for its fixation
on the supports, therefore, for practical applications, numerical, but sufficiently accurate methods for
solving the considered problem are of special importance.

When considering the plate bending problems, the finite difference method is the most interesting
because of connection with their possible numerical implementation in software package.

1 Initial positions and hypotheses

We consider a rectangular plate made of a multilayer composite material. The sides of the plate
are equal to a and b, the thickness of the plate equals h. The study of the deformation of the plate is
carried out in a rectangular coordinate system x1, x2, x3 = z. The number of layers is arbitrary. The
layers of the plate are orthotropic. Orthotropic materials are more difficult to analyze than isotropic
materials, because their properties depend on the direction, so we place the directions of the Oz and
Oz axes on the axes of the orthotropy of the layers. There is a coordinate plane at an arbitrary height
of the plate section. The axes Oz and Oxs lie on this coordinate plane.

The total number of layers in the plate is denoted by n. We number the layers as usual, starting
from the bottom edge of the plate. The number of an arbitrary layer of the plate is denoted by k. The
layer number in the coordinate plane is denoted by m. The totality of all n layers of the plate is called
a package of layers.

In the general case, let’s assume that the layers of the package have different thicknesses and
different stiffness, the mechanical properties of which do not change in their thickness [13]. We suppose
that the number of layers and their placement in the package are arbitrary.

During the transition from layer to layer we assume that static conditions

E k-1 E k-1
0j3 =0;3 » 033 =033
and kinematic conditions
uf =uft (i=1,2,3)

1

are fulfilled, where Ufj (i,7 = 1,2,3) are stresses, u¥ (i = 1,2,3) are displacements of the k-th layer.
This corresponds to the operation of their layers without slipping and tearing.

Let a normal load g(x1,x2) act on the upper surface of the plate. The normal load q(z1, z2) varies
according to an arbitrary law. The positive direction of the normal load coincides with the direction

of the normal axis x3 = z.
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On the plate surface, the boundary conditions take the form
oy = qlz1,22), ofy=0, oj3=0, i=12 j=123.
The conditions of the deformation continuity for the coordinate surface have the form [13]
Xiil — X12, = 0,

€11,12 — 2€12,12 + €22.11 = 0

where ¢; ; is strains, x;;, is the shear function of the coordinate surface.
As the main assumptions for constructing a new refined model of the stress-strain state for a layered
plate of an asymmetric structure with orthotropic layers, we accept the following system of hypotheses

2
k k
z3 = 23¢ 3(2)x,i 033 = _Zn:’,z‘(Z)X,iia uy =W (1)
i=1

where Gf?) is the shear modulus of the material, ¥, n are distribution functions for the k-th layer of the
package, W and x are the sought deflection function and the sought shift function of the coordinate
surface, depending on the coordinates x1 and xo. The distribution functions depend on the z coordinate.

Hypotheses (1) are derived from the hypotheses made by Prof. A.Sh. Bozhenov [1]|, with the
exception of those components that are not of great importance in calculating the stress-strain state
of the plate. Hypotheses (1) guarantee the joint operation of layers without separation from each
other and displacement, as well as conditions on the plate surfaces and determine the nonlinear law
of variation of transverse shear stresses and normal transverse stresses in the plate thickness. It is
assumed that normal displacements are equal to deflections.

For the distribution function in expressions (1), we have the following formulas

1 i z bj—01 .
ubs(2) = g ) — @3], nbi) = [ A’fdwz / Aldz,
i3 bp—1—01 _1—01
z b;j—d1 ) z
nki(2) = / Bkzdz+z / Blzdz, () = / Ghly()dz +CE, (2)
br—1—91 _1—61 br—1—01

where 97 is the distance from the coordinate plane to the bottom edge of the plate, and the constants

have the form
bj—0d1 ) )
ch - Z / Gl (2)d=

Here and in what follows, the notation introduced in [1] is adopted. For the components in formulas
(2), we have the following expressions

Af :05{31 (1+Vu)+G 2} Bk _05Bk(1+y )+G127 szz :Ef:l/(l)ca

x _ oy E_ E k1 kY. k
o; = 7777 vy = (1 - V12V21) ) Bz3 = (V3z + Vle3l)V0a
Li

where Ef is the modulus of elasticity and l/fj is the Poisson modulus for the k-th layer of the plate
[13].
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2 Analytical research

Based on the hypotheses (1) we have adopted, we carry out an analytical study of the stress-strain
state for the layer package. First, we present the relationships that we use to derive the calculation
formulas for stresses and strains.

We have the relations of Hooke’s law

k _ pk k k Kk 1 k k _ ok k k _ ok k
o = Bjiej; + 2Bisegs + Bisegs, o1y = 2Gsely, 053 = 2Gises. (3)

Inverse expressions of Hooke’s law have the form

k k
ko Lk Vi k_ Vi3 k
i Ek%‘ Ekffu Ek033a
j I 3

k k
koL ko Vsik Vs ok
33 Ek 33 Ef 11 Eg 225

3
1 1
kE _ k k
2e53 = ok Oi3, 2€7p aF 012
i3 12
The Cauchy relationships are the following formulas
kE_ .k k _ .k k kE _ .k k E _ .k
€i; = Ui, 2€79 =Ujg+Uyj. 2€3=1ujg+U3z;, €33=7uss. (4)

We determine the transverse shear strain e&(z1,z9,2) from Hooke’s law (3) by substituting the
hypothesis expression for transverse tangential stresses (1)

k
2efs = Ylax.i. (5)
We find normal transverse strains ek (1, 22, 2) from the last Cauchy relation taking into account (1)

Integrating the third Cauchy relation (4) with respect to z, as well as using the relations (1) and
(5), we obtain formulas for calculating tangential displacements

M=y —2W, + %bf,z'x,i, (7)

u

where u; are tangential displacements and W; are the sought deflection functions of the coordinate
surface, depending on the coordinates x; and xo. Normal displacements are considered equal to
deflections.

From the conditions for the joint work of the layers of the package
uf = ub1(i =1,2,3)
and conditions on the layer located in the coordinate surface
ui"(z1,22,0) = u(z1, 22)
we find the distribution function wf in the form of the following expression

bj —o1

i z i k-1 . bm—1—01 m—1

— J m

(o / Vi 3dz + Z/ i,3d% +/ Vizdz — Z /
bp_1—01 j=1 bj_1—01 0 j=1 b

bj751 .
J
i’3dz.

j—1—01

Mathematics series. Ne 4(108)/2022 79



A.T. Kasimov, G.A. Yessenbayeva et al.

Tangential deformations are found from the first Cauchy relations (4), substituting expressions for
tangential displacements (7) into them. As a result, tangential strains are expressed by the following
formulas

et =€ — Wi+ ¢le,11,
€5y = 22 — 2W 22 + Y X 22, (8)
b = €91 — 2W o1 + 0.5(w§ + wlf)x,m-

Taking into account formulas (1) and expressions for tangential strains (8), the stresses of the
generalized Hooke’s law (3) are found by the formulas [13]

2
oty = Bii(en — Wi +9ixn) + Bia(eaz — 2Waa + ¢5x.22) — Bl > 1hiX.iis
=1

2
085y = Bl (22 — 2Wa2 + ¥ x,22) + Bia(e11 — 2Woan + ¢ x.11) — Bl > mhiX.ais
=1

oty = 2G%, 222 + 0.5(F + ¥) x 12 — 2 W)

Based on formulas for calculating displacements (1), (7) and strains (5), (6), (8) it is possible to
determine the components of the stress-strain state of the plate at an arbitrary point of the k-th layer.

Using the Lagrange variational principle and the relationships derived taking into account hypotheses
(1), we obtain a system of equations for bending plates made of multilayer composite material with
orthotropic layers. We notice that the number and arrangement of layers is arbitrary. Then we introduce
force functions into the system of equations and obtain this system of equations in a mixed form

AF¢+ ATW — (D3g — Alg)x =0,
Nlgp+ (D35 — AB)W + (A7 — Ay — Alg)x = —4, (9)
Nsgo + (A2g — A2)W + (AB) — A3y — Aps)x =0.

This system describes the bending of a multilayer plate with an asymmetric thickness structure with
orthotropic layers.

The system of resolving equations of a layered plate is presented in a transformed form in [1].

The general order of the system of equations (9) is equal to twelve. The system of equations (9)
takes into account the transverse shear and the interaction of layers. The functions of the coordinate
plane, namely the force function ¢, the deflection function W and the shear function y are the sought
functions in the system of equations (9).

There are differential operators in the system of equations (9). A is a second order differential
operator, and A? is a fourth order differential operator. These differential operators have the following
form

NG = AT('“),1111 + Az(“'),um + Ag("'),mzz’
Dg=Bi (o) 1y + B3 () 5o, (10)

where A% (j =1,2,3) and B} (i = 1,2) are coefficients in equations (10). These coefficients depend on
the stiffness of the package layers.

For different values of f and g, the coefficients of the operators take different values, which are
shown in Table 1 [14]. When solving the system of equations (9), one should take into account the
boundary conditions for fixing the edges of the plate with respect to the force function, the deflection
function, and the shear function [12].
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3 Numerical calculation

Using the finite difference method, the system of equations (9) and the boundary conditions of
the plate were discretized. |3, 15]. The exclusion of unknown functions of the system of equations (9)
outside the grid area of the plate is made in a matrix form.

An algorithm for numerical calculating the bending of multilayer composite plates with orthotropic
layers, where the number of layers, their structure and arrangement are arbitrary, was developed by the
finite difference method. This algorithm is implemented by a software package on a PC. This software
package consists of a head program and several subroutines when using the FortRUN programming
language.

The flowchart of the head program is divided into several blocks. Each block is autonomous and
designed to perform specific functions. For the convenience of performing calculations, all magnitudes
with dimensions are determined in a dimensionless form [12].

Below we describe the functions for these blocks of the flowchart of the head program.

In the first block, all the initial data and parameters of the task are introduced. In the second
block, the stiffness characteristics are set for a multilayer composite plate with orthotropic layers. In
the third block, systems of equilibrium equations for the plate under consideration are compiled and
then solved. In the fourth block, the stress-strain state of the multilayer plate is calculated.

Conclusion

Using hypotheses (1), Lagrange’s variational principle, the system of equations of the twelfth order
is obtained. This system of equations describes the bending for a multilayer plate of an asymmetric
structure in thickness with orthotropic layers. Three functions of the coordinate surface are unknown:
the function of forces, the function deflection and the function shear.

The boundary conditions consist of two groups of relations. The first group of boundary conditions
is similar in form to the conditions of the classical theory of plate bending and describes the boundary
conditions for the coordinate plane of the plate [12|. The second group of equations simulates the type
of deformation of the end surface for the plate and assumes the presence of various types of diaphragms
at the end of the multilayer plate. The combination of the conditions from the two groups makes it
possible to obtain various design features on the contour of the plate, i.e. it allows you to vary the
boundary conditions on the edges of the plate.

In Table 2 [14], the solutions calculated by the method described above are checked against the
results of solutions determined by known methods, namely, with the solution of the classical theory,
the exact solution, the solution in trigonometric series, and the error of the solutions is calculated. In
Table 3 [14], a comparison of the obtained solution with experimental data for three-layer plates with
different plate parameters is presented.

Comparison of the obtained solution by the finite difference method with solutions determined
using known methods, as well as with experimental data, shows a sufficiently acceptable accuracy in
solving such problems and indicates the reliability of the proposed relations. It is impossible to apply
classical theory for the problems under consideration.

It should be noted that when calculating the multilayer plates with orthotropic layers by analytical
methods in the most general formulation: with arbitrary boundary conditions (including elastic),
different types of load, complex shapes and different sizes of plates, different thickness of layers and
different elastic characteristics, etc., we have to face with great mathematical difficulties, and in most
cases to obtain an analytical solution of the problem under consideration is not possible. Such problems
can be solved by applying a very efficient finite difference method, which gives a sufficiently high
accuracy of solutions.
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1 Kasmymuwimyodaew. Kapazande. ynusepcumemi, Kapaeandw, Kazaxcman

Bip moandukanusianral HaKTbIJIAHFAH Uy TeOpUsCHl HETi3iHae
AHAJIUTUKAJBIK YKOHE CaHJbIK 3epTTey

Maxkanana 6ip MogudUKaIUsIIaHFAH HAKTBIIAHFAH Wiy TEOPHUsIChI HETI3IH/Ie aHAJTUTUKAJIBIK, }KOHE CAHJIbIK,
3epTTeyJiep KYPriziaren. AKbIP/Ibl afibIPMAIIBUILIKTAD OICI HEri3iH/e CAHJIBIK, €CENTEYIH YKAJIbl AJIN0-
puTMmi >KacayraH. Y CBIHBLIFAH djlicTeMe OOMBbIHINA aJIbIHFAH IIeIiM Oesrisi meniMaep/Iin, HoTHKeTepIMeH,
aTan alTKaH/1a, KJACCUKAJBIK TEOPHUSHBIH IIENIMIMeH, oJ1 IIEHIIMMEH, TPUTOHOMETPUSIBIK, KaTapJap-
JAFBI MIEMIIMMEH, COHBIMEH KATap YKCIIEPUMEHTTIK MOJIIMETTEPMEH CAJBICTHIPhLIAIbI. Makaraaa KepceTii-
IPeH OJIiCIIeH aJIbIHFaH HOTHKeJep/li O0acka o/licTepMeH aHbIKTAJFaH IIENIiMIePMEH CAJIBICTBIPY >KETKIIIKTI
JOAIIKTI Kepcereni. by uinynin MmoaudukanusianFaH HAKThIIAHFAH TEOPUSICHIHBIH, 61p HYCKACHI HETri3iHjie
YCBIHBIIIFAH 9JIICTiH ceHIMIITITiH mosemnaeiiai. KapacThIpbIIbIT OTBIPDFAH €CenTep YIMH KIACCUKAIBIK, TEOPUST
KOJIJTAaHBLIMAMTBI.

Kiam ceadep: mopudukanusianral HaKTbIAHFAH Uiy TEOPUSICHI, aKBIPJIbI aiibIpMAIIBLILIKTAP dici, Jlar-
paHXK BapHUALMSLIBIK, IPUHITAI, TU(MOEPEHITHAIBIK, OIIEPATOP, TEHIEYIEP KYMECIH TUCKPEeTU3aINIIAY.

A.T. Kacumos!, I A. Ecenbaena?, B.A. Kacimvos?, [A. Ecenbaesa’, O. Xa6umomnma?

! Kapacanduncruti mexnumneckuti ynusepcumem umenu A. Cazunosa, Kapazanda, Kasaxcman;
2 Kapazanduncrutd ynusepcumem umenu axademura E.A. Byxemosa, Kapazanda, Kasaxcman;
SHUIT «Taparwms, Kapazanda, Kazaxcman;

4 Kapazanduncrud yrusepcumem Kasnompebceorsa, Kapazanda, Kaszaxcman

AnarmTyeckoe n YNCJIEHHOE HCCJIeJOBaHNEe HAa OCHOBE OJHOI
MOAUPUITMIPOBAHHON yTOUYHEHHOI Teopuu m3rmnda

B crarbe npoBesieHO aHAIUTUYECKOE M YUCJIEHHOE HCCJIeJOBAHWE HA OCHOBE OMHOM MOuUIMpPOBaAHHON
yTOUYHEHHOI Teopun m3rnba. Ha ocHOBe MeTO/1a KOHEIHBIX PA3HOCTEH pa3paboTaH OOIIHI aJTOPUTM IUCIEH-
HOro pacuera. [loydentoe o mpeyIo2KeHHON METOIMKE PEIIeHIe COTIOCTABIIEHO C PE3YIbTATAMHU H3BECTHBIX
pelleHnii, a UMEHHO C PelIeHNeM KJIACCUYECKON TEOPUH, C TOYHBIM PeIlleHHEM, C PElIeHNeM B TPUTOHOMET-
PUYECKHX Psax, a TaKyKe C SKCIePUMEHTAIbHBIMU JaHHbIME. CpaBHEHME DPe3yJIbTATOB, MOJYIEHHBIX II0
JAHHOM B CTaThe METOIUKE, C PEIIEHUSIMY, OIIPEIEJIEHHBIMU JIPYTUMHI METOJAaMU, IIOKa3bIBAeT JOCTATOYHYIO
TOYHOCTB, 9YTO CBUJIETEJIBCTBYET O JIOCTOBEPHOCTHU IIPE/jIaraeMOil METOJMKHN Ha OCHOBE OJTHOI'O BapHaHTa
MOIUMUITMPOBAHHON yTOYHEHHOM Teopun n3ruba. Kiaaccudaeckas: Teopusi Jijisi pACCMATPUBAEMBIX 3a1a9 HE
IIPUMEHUMA.

Karouesvie crosa: MomuduiimpoBannas yTOYHEHHAs TEOPHs N3rHOa, METO KOHEUYHBIX PA3HOCTEe, BapHAIlH-
oHHBII npuHnun Jlarpamxka, nuddepeHIuaIbHbIi OllepaTop, JUCKPETU3AIMS CUCTEMBI YPaBHEHHUIA.
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On the approximation of solutions of one singular differential
equation on the axis

In this paper we study the problem of the best approximation by linear methods of solutions to one
Triebel-type equation. This problem was solved by using estimates of the linear widths of the unit ball
in corresponding spaces of differentiable functions. According to the definition, linear widths give the best
estimates for the approximation of compact sets in a given normed space by linear methods which are
implemented through finite-dimensional operators. The problem includes answers to the questions about
the solvability of the studied equation, the construction of the corresponding weighted space of differentiable
functions, the development of a method for estimating linear widths of compact sets in weighted polynomial
Sobolev space. In this work, conditions are obtained under which the considered operator has a bounded
inverse. The weighted Sobolev space corresponding to the posed problem is determined. Upper estimates are
obtained for the counting function for a sequence of linear widths, which correspond to the posed problem.
One example is constructed in which two-sided estimates of linear widths are given. The method for solving
this problem can be applied to the numerical solution of non-standard ordinary differential equations on
an infinite axis.

Keywords: differential equations, Triebel equations, approximation of sets by linear methods, widths of sets,
weighted Sobolev spaces.

1 Introduction and Main results

In this paper, we consider the problem of the best linear approximations of solutions to the equation

Ty = —po(2)y" + q1(2)y" + (qo(x) + pg(x))yo = f (1)

with the right side in the Hilbert space Ly(I), T' is an operator satisfying conditions from the Triebel
class U, ,(I,po) (v > p+2, p > 0), where I = [0,00), on +o0, i.e. [1]: pp > 1 and ¢; (i = 0,1) are
functions infinitely differentiable in I such that

i) lim po(z) = oo,

i) [ (@)] < O(p5 (@), k = 0.1,...

i) ¢ () = o(p4 (), ¢\ (@) = o(pY T/ FE (1)) for z — 00 (k =0,1,2,...).

To solve the problem, we used a modified method of localization of estimates for the widths of
compact sets in weighted spaces of differentiable functions [1; 104], [2-7], as well as coercive estimates
for differential operators [8,9]. The method of local estimates developed in this paper on intervals of
adjustable variable length can be used in the theory of numerical solutions of a certain class of singular
differential equations on an infinite axis. All results presented in this paper are new.

We denote Vz(“?u) (I) the completion of the class C§°(I) of functions infinitely differentiable and
finite in I with respect to the norm

1
9 /p

p
|3 V2 (D] = Z/)pé’“y(’“)) dr| ,1<p<oo,
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where I, = 271((2 — k)v + kp) for k =0,1,2. Let V = V22(u V)(I).

If
%y%@M”@M=%<1, (2)
suplay (@) pf " (2) = 5 < oo,

then for the minimal operator
Toy =Ty, y € Cg°(1),

the following inequality holds
[Toy; La(D] < (24 8) llylly -

Therefore, the operator Ty has a closed extension

fy =Ty, ye D(T) = ‘/22,(u,u) - LQ(I)

We defined the operator T’ “Tin (1), where the norm ||T|| <2+ 5.

Let y; be a sequence of functions y; € C§°(I) fundamental in the norm ||-||;,. Then each of the
sequences {aryj(r)}, {y]m} (ar = ply, 7 = 0,1,2) are fundamental in Ly(I). Therefore, y = limy; in
Ly(I) has finite a.e. in I derivatives y'(z), y”(z), and |ly||,, < oo.

Theorem 1. Let condition (2) be satisfied and

sty | () @)+ @] ) = <1, )
1
(1=PBo)(1=p1)

Then the operator T in (1) has an inverse 7!. Therefore

Cu,v =

177 < (4)
Let F={y eV :|Ty;La(I)|| <1}. From (4) it follows that
Fcf{yeV:|ylly <ct, c=cup

Let C be a bounded set in a Banach space X, containing 0, {(C, X) be the class of all continuous
linear operators U : X — X of dimension < k and such that C C D(U). The value

M(C. X)) = inf —A
#(C, X) ueﬂhxyiﬁ@”w | x

is called the linear k-width of C in X [10; 16].
The widths A;x(C, X) are related to the problem of the best (linear) method for approximating the
set C in X.

Let V(N C, X)) = > 1 (number of widths A\, (C, X) > ). In this paper, we obtain an estimate
AR (C,X)>A
(from above) for the counting function N'(\; F, Lo(I)).

Let © be a (Lebesgue) measurable set in R. Here and below BX is the unit ball of space X, L, ()
is the space of functions f in Q with the seminorm || f; Ly,(Q)|| = ([q [f(2)[ dac)l/p < 00, Lpioc(1)
is the space of all functions f in I such that f € L,(G) for any compact G C I, L} (I) = L], (I)
is the class of non-negative locally summable (weight) functions f in I for which Lebesgue measure
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[{z >t: f(z) >0} >0forallt>0.Let pv €L} (I),p>0,pt =1/p € Line(I), § € (0,1). Assume
that
S(s) (@, h;v) = inf / vdt, A =[x,z + h],

{e}s
A\e

where infimum is taken over the set {e}s of all closed e C A with measure |e| < 6 |A| = dh,

1/2

My (@, h; p,v) = h /P_l (S(o) (. s v)) /2.

A

Let h(-) be a finite positive function in I. The function A(-) is called the length function in I (with
respect to the pair (p,v)), if

Ms) (@, h(z); p,v) 2 1, (z € I). (5)
We set
hs)(z; p,v) = sup {h >0: Ms)(z,h;p,v) < 1} ) (6)
Proposition 1. a) If
0 < hg)(z; p,v) < 00, (7)
then
Mis) (@, hsy (@3 p,v) pyv) = 1. (8)

b) If p = pgt', v = (go + pk)?, then
h) () = hs) (5 p,v) < o0 (x> 0).

Remark 1. The equality (8) implies the realization of condition (5). Then every finite positive
function hs)(x; p,v) is the length function with respect to the pair (p, v).

Remark 2. If h(-) is a length function with respect to the pair (p,v), then 0 < ks (x; p,v) < h(x),
(x >0).

We introduce a maximal operator with respect to the interval basis associated with the length
function h(-) in I. Let

B=|J{A=[0.B):y<a<B<y+h(y} B, ={A=B:zcA}.

y=>0

We define a maximal operator with respect to basis B [11; 43].

M*f(z,h()) = sup @ / F@®)dt, | € Lioe(D)-
A

A€eB,

Let
M) f(z) = M* f(z, hs)(+)),

1/2

Koy () = (his) (1)) / g Wdt| A= [rx+ ()
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Theorem 2. Let
lim K)(z) =0(0 <46 <1/2).

T—r00

There is ¢(6) > 1, such that

NOGE L) < @72 [ (0%

G(c=1N)

where

L o\1/4
G(A) ={z>0:h(v) (M(a)po 2“) > A2y,

c=4c(d)c(u,v).

Example 1. Consider the equation
Ty=—@B+a)'y" +q(@)y + (@) + B +2)*)y = f 9)

under the following conditions: ¢; € C*°(I) (i = 0, 1) satisfy conditions iii) with respect to po(x) = 3+,
and also

sup lqo(x)|(34+2)™" = B < 3/4,

sup 1 ()| (3 + @)1 = 5 < 172,

1
§<,u<2<1/—,u.

Then £; < % and, by virtue of Theorem 1, for the operator T in (9) there exists 7! with the norm

|77 < (1= Bo)(1 = Br)) " < 4- g - 10.

Therefore, the solution set of the equation (9) with the right side f € La(I) is contained in the ball
10BV.
Let ¢, = (3"4)Y/2, u = (403(10/\*1))1/2. By virtue of Theorem 2 we have

N (cA;10BV, Lo(I)) = N(107ed; BV; Ly(I)) <

< cu(1071A) 2 / (B +2) " 2dx < ¢, (1071 X) 71/ /x_”/zdm - (10)
G(10-1)) 0

]- vV— v
:72_M(3“+6(10*1A)*1)( nR

Let cA = A\, (10BV, Ly(I)). By (10) for any solution y of the equation (9) with f € BLa(I) we have

inf — Uy Lo(D)|| < A, (10BV: Ly(I)) < rn~ 20" 55
Ueuir(lLQ(I))”y y; Lo (I)|| < A ( i La(I)) < kn wrv)

where Kk = 160@3“(%)27/(242—;1).
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2 Proof of main results

Proof of Theorem 1. Let ap(z) = qo(x) + pf(2), a1(x) = q1(z), az(x) = pj(x).
1. Let y € C§°(I). In this case

[e.o]

o = [ | (Vaalaiy) + (s + ) /o + af)s?| de =
0

00 , 2 00 00
= az(z)y’ + My de + [ w(z)y*de > | w(z)y’de,
[ [/ S e [tz |

where w(z) = ag(x) — (ay(x) + a1(x))?/4az(z). By conditions (2) and (3) we get
ao(x) = p”(x)(1 + qo(x)p™" () = (1 = o)y,

(ay(x) + a1 (x))? 1 N 2 .
iao(a:)agl(ac) = 2(1 — fo) [<(’00) <$)) + (Q1($))2] p~ Wt < gy

where
nf w(z) 2 1 - fo,
1Ty; Lo(D)]] = (1 = B1) [ly; Lo(I)]] - (11)

It follows from (11) that the operator
Toy =Ty, y € C5- (1),
has a bounded inverse operator Ty * ¢ D(T; ') C La(I). Wherein
1757 < o (12)

The estimate (4) follows from (12).

2. Let y € V22(u

2

vy {y;} be a sequence from C§°(I) converging to y in Vs ) Since

1Ty — Tyj; La(D| <22+ B) ly = wslly, (G =1).

By (11) we get
ITy; Lo} = Tim [Ty5; La(D)]| 2 Gl s LoD

Therefore, there exists an inverse operator T~! and the estimate (4) takes place.

Proof of Proposition 1. Let the function hs(; p,v) in (6) satisfies the condition (7).

a) There is a sequence h; > 0 (j € N) converging to h = hs(z), such that M s(x, hj; p,v) < 1. Let
Aj = [z,x + hj]. Passing to the limit (for j — o0o) in the estimate

z+h
2 [ o tagsis o hip,) < M (ot + 13 [ ol [ ude,
A A x+hy

leads to inequality
M5y (z, hes) (3 p,v); pyv) < 1
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On the other hand, there is a sequence h; > h, M) (z, hY; p,v) > 1. Let A} = [z, x + h] with measure
le|] < doh

(h;)g/p_ldg / vdé > 1. (13)

Al Al\e

Passing to the limit in (13) (for j — o) leads to the estimates

w [ e [ odg =1,

(A) A\e
M) (z, hes (5 p,v)) = 1.
b) The assertion follows from the estimates

x+h
(1= 0 < S (o i pi) < [ Ve

T

Let

z+h 1/2

Koy(aship) =192 | [ o7

xT

Lemma 1. Let M5 (x,h; p,v) > 1. There is ¢(d) > 1, such that for all y € C§°(I)

1/2 1/2

z+h z+h

[ i) < @K mtipo) | [ 0@+ @b (14)

xT

The proof of Lemma 1 is essentially a repetition of the main lemma in [2].
Let on intervals A C I (1 < p < o0) the following equality holds

ly; W(A)|| = ||y La(A) || + 119" y; La(A)]] -

Let W (A) be the space C*°(A) with the norm W(A). W = W2

5 () denote the completion of the class
C§°(I) in the norm |ly; W (I)]|. It is easy to see that

Kg)(x) = Kg)(x, hig)(x); o) < (1—8) 72, (15)

Indeed, taking h = hs)(z), A = [z, 2 + h], from (8) we derive

1/2 —-1/2

wl forag) = |me [o] <la-am

{e}s
A A\e

which inplies (15).

Lemma 2. The following estimate is true

ly: La(D| < e(6)

Ui W3 (1)

) Ly e C(I). (16)
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Proof. Let suppy C [£o,&1], 0 < & < &1 < 0o. Let us show that

inf  hy(z) > > 0.
ke, "0 27

If hs(xz) <1 (z € [£0,&1]), then by (8)

&1+1 —1/2

hs(z) > / P2V de€ =b>0.
o

We take v = min{1,b}. From (17) it follows that [£,&1] C U?:l A(zj) (N < o00), where z1 = &,
Tjt1 = xj + his(z;), A(x;) = [75,2541). Using the estimates (14) and (15), we derive the inequality

(16) namely:
1/2

N
ly; LoDl < | S / ly|? de gc(a)Hy;W;(W)(I)H.
j=1

T A(g)
Lemma 3. The following statements are true: a)

0 < h(z,\) = sup{h > 0; K(5)(x, h; pg“) <A} < oo (x>0),

h(a:,)\) < h(5)(m), if K(5)(SU) > ),

K((S) (.%',?L(.’L’, )‘)7 pzﬂ) = A
b) on each A = A(z; \) = [z, + h(z, A)] the counting function
N BW(A), Ly(A)) < 1.

Proof. a) The estimates 0 < h(z, \) < oo follow from the limit equalities

lim K h; = lim K, h; = 0.
hi>I(I)1+ (5)(565 apO) 07 hl—>nolo (5)(.’17, apO) &)

The statement (18) is trivial. Equality (19) is proved as equality (8).

b) Let Upy(t) = y(z) + 1/ (z)(t — x), y € W(A). The operator U, € 4Us(BW (A), Ly(A)), because

dim U, < 2 and the norm

Use the Taylor formula with integral remainder

Usy L2(B) | < (B2 4 |BF2) (ly(@)| + |y (@)]) = b < ox.

1/2
; 2 /

1/2 1
lo- v @ | = | [|[-ov'@ae| at| <Ry | [og2ag| | [l ae
A A A

AT A

Therefore, estimate (20) holds.

<A
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Lemma 4. Let K5 (x) — 0 for x — oo. Let

A, = {[%ﬁj + hisy(z5), if Kg)(z) < A, G=1.2,.) 21 =0.

[.Tj, i+ TL(.TJ', )\)), if K((;) (:c]) > A,
There are estimates

NEXBWI) < S N BW(A,), La(A)), (21)

JiK (s (@5)>A

where ¢ = ¢(6) is the constant from Lemma 1.

Proof. Let K(5)(7;) < A. By (14)
n; = N(C)\; BW(A]), LQ(AJ)) =0.

Let A = {j € N: K(s5)(zj) > A}. Since K(35)(z) — 0 for ¥ — oo, then A C {1,2,...,m}, where m € N
suffices big. If n; > 0 (j € A), then for all n > n;

inf sup —Uy; La(Aj)]| < e
Uest,, (BW(A,),La(A ))yeBW(A)”y y; La(4;)]]

Therefore, for an arbitrarily small 7 > 0 there is an operator U; € . (BW (A;), L2(4A;)), for which

sup ||y — Ujy; La(Aj)|| < (1 +n)eA. (22)
yGBW(A]')

Let x; be the characteristic function of the interval [x;, x;+h(x;, X)), Ay = {j € A :nj; > 0}. Operator

Uy—ZX] ), y € La(Ie),
JEA
has finite dimension
JEAL

Moreover, for any y € BW it follows from Lemma 1 and (22) that

/Iy Uy|? d:v—Z/liy nyldw+2/ly|d:v<

JEAA, JEALA,
<Y (N WA+ D (@) Iy WAHI? < (2+ned)?lyllf < (2+m)A)% (23)
JeAL JEA4

The passage to the limit in (23) leads to the following estimates:
ly = Uy; La(D)[| < 2¢A, y € BW,

An(BW, Lo(I)) < 2¢X, if n> ) nj,
JEA4

NQ@cX BW,Ly(1)) < Y mj= > N(ehBW(A), La(A)).

JeAL JiKo(z;)>A
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Proof of Theorem 2. It follows from (19), (21)

1/2
N(2eX; BW, Ly(I)) < A~ 1/22[ (25, b5 00| (24)

JEA

where A = {j € N : K5/9)(z5) > A}, 7Lj = E(acj,)\) and A; = [zj;2; + hj) (j € A) do not intersect.
Since A} = [zj;2; + hj/2) € By (5/2) for all t € A, then

[ g < My 1), t € A (25)
A
Therefore
1/4
1/4
(K G ) = by | 13 / g | <2 [ (M) e
A
J

and by (24) and embedding BV C BW we have

1/4
N (2eX; BV, Ly(I)) < 2\~ WZ/( Gmee ) de. (26)
J

Let A = [z, +h) (h>0), Es(A) = {e:e=2C [z,2+h] and |¢| < 6h}. With 0 < § < 1/2
Es(A) C Eys(A), (27)

and for t € [z, 2+ h/2], Ay = [t,t + h/2)
{es=ent,t+h/2), e € Bs(A)} C Eas(A,). (28)

(27) and (28) allow us to show (using simple reasoning) that

hs) (@) = his/2) (@), (29)
M) f(x) = M 91 f(2), (30)
h((;)(t) > h(5/2)(x)/2, ift e [:L‘,x + h/Q} (31)
Now from (25), (29)—(31) we deduce that
A% C G(N/2), (32)
namely that for all t € A’ we have
1/2
. 2 1 _ _
(k) (Migoy™ )" = 30 [ 11 [ oi?iae | =
A

Since F' C aBV C aBW, a = ¢, then by (26) and (32)

op\ /4
NOF L) <25 [ (M) e

G(X\/ac)
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A. C. Kaceim, JI. K. Kycaunora

JI.H. lymunes amvindaev, Eypasus yammuwr ynusepcumems, Acmana, Kaszaxeman
Bip cuaryngapasl auddepeHImaablK TeHAeyd1H MelTiMIePiHiH
AIIINIPOKCUMallusAChI TyPpPaJibl

Maxkanana Tpuben tunti mauddepeHuaaIblK, TeHACY/IiH MeMiMIePiH ChI3bIKTBIK, diICTEPMEH €H YKaKChI
JXKyBIKTay Moceseci 3eprresi. Byn ecenrep nuddepeHnpaniaHaTbiH MYHKIUSIAPIBIH COWKEC KEHICTIK-
Tepineri 6ipJIik MapbIHLIH, KOJIJIEHEH ChI3bIFBIH Oarajiay apKbLIbl eI Ii. AHbBIKTaMara ColKec, KOJIeHEeH
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CBI3BIK, OEpiIreH HOpMaJlaHFaH KEHICTIKTeri KOMIAKT >KUbIHIAP/bl ChI3bIKTHIK aKbIPJIBIOJIIIEM/II OIlepaTop-
Jlap apKbLIbI 2)KY3€re aChIPBLIATHIH ChI3BIKTHIK, 9/TICTEPMEH YKy BIKTAY/IbIH, €H *KaKChl Oarasiaybia Oepei. Tar-
CBIPMaJIa 3€PTTEJIETIH TeHIEY/IiH, MIEMIeTIHIIr Typasl, coiikec nuddepeHInaiIaHaThIH OYHKITHSIIAD/IbIH
caJIMaKThl KEHICTIrH Kypy, Co60/eB CaIMaKThI TTOJTMHOMUAJIIBI KEHICTIMHAETT KOMIIAKT *KUBIHIAPIBIH KOJI-
JIeHEH, CI3BIFBIH OaFaJiay YIIMH 9/IiCTEMECIH KYPY TYPaJIbl Mocesiesiep KAMTBLIIBL. Byl >KyMbICTa KapaCThIPHI-
JIFAH OTIEPATOPIBIH IIEKTEITeH KePi omepaTopbl OOIYAbIH MapTTAPbl AJIbIHIbI. KOWBLIFaH Maceere Coikec
CoboJieB camMaKThl KEHICTIT aHBIKTAJIIbI, KOJIJIEHEH, ChI3bIK, Ti30eri VIl caHay (pyHKIMSCBIHBIH, *KOFapPFbI
Garasiaynapbl agbiHAbl. COHBIMEH KAaTap, KOJIJIEHEH CHI3BIKTBIH €Ki *KaKThl Oarajiaysiapbl OepiireH MbIcas
KYPaCTBIPBLIABI. Bys ecenTiH mmmenty 9miciH mekci3 ocbTe CTAHAAPTTHI eMec KoiMTi auddepeHnaabik,
TeHJIeyIeP/Ii CAHJIBIK TYPJE IIeIly YIINH KOJIJIaHyFa 00JIa/bl.

Kiam cesdep: nuddepeHnmaaablk TeHaeyaIep, 1pubes TeHJeynepi, KUbIHIAPABI ChI3BIKTHIK, OJIiCTEpMEH
KYBIKTAY, KOJIAeHeH KubHAap, Co00IeBTiH caIMaKThl KEHICTiKTEpi.

A.C. Kaceim, JI.K. Kycannosa

Espasuiickutl nayuonarvotul yrusepcumem umeny JI.H. lymunesa, Acmana, Kazaxcman

OO6 ammrpokcuMaIi perieHnii 0JHOTO0 CUHTYJIAPHOTO
anddepeHImaIbHOr0 ypaBHEeHsT HAa OCH

B crarbe nccrenoBana 3aada 0 HAWIydIeM IPUOJIVMXKEHUN JINHEHHBIMY METOJIAMY PEIIeHUl OIHOTO yPaB-
HeHnusi Tuna Tpubessi. Dra 3a7a4a perajgach ¢ MOMOIIBIO ONEHOK JIMHEHHBIX TOMEPEYHUKOB €IUHUYHOTO
mapa B COOTBETCTBYIOIIAX MPOCTpPAaHCTBaX muddeperupyembrx GyHKImii. COracHO OMpeIeTeHuto, Jin-
HEeHbIEe MONEPEeYHUKH JAI0T HAMJIYUIINE OEHKHU AlIIPOKCUMAIMY KOMIIAKTOB B 3aJ[AHHOM HOPMHUPOBAHHOM
MIPOCTPAHCTBE JIMHEHHBIMU METOJAMU, PEAJTM3YEMBIMH YepE3 KOHEUHOMEPHBIE ONIEPATOPHI. 3a/a4ua BKIIF0Ya-
€T OTBETHI Ha BOIIPOCHI O PA3PEIUMOCTH U3YIaeMOT0O YPaBHEHUs, TOCTPOEHNE COOTBETCTBYIOIIETO BECOBOTO
nmpocTpaHcTBa JuddepeHIupyeMbiXx (QYHKIMH, pa3pabOTKy MEeTOAa JJisi OIEHKH JIMHEHHBIX MOIIePEeIHUKOB
KOMIIAKTOB B BECOBOM ITOJIMHOMHUAJILHOM TpocTpancTBe CoboseBa. B pabore mosydeHbl yCJIOBUsI, TIPU KO-
TOPBIX PACCMATPUBAEMBII OIIEPATOP CTAHOBHUTCS OIPAHUYEHHO O0OpaTHBIM. OIpeesieHO BECOBOE TPOCTPAH-
crBo CoboJieBa, COOTBETCTBYIOIIEE IOCTABICHHOM 3a1a4e. [losrydeHbl BepXHUE OLEHKY CYnuTaoneil pyHKIun
JIJIsI TIOCJIEIOBATETLHOCTH JIMHEWHBIX MOIMEPEYHIKOB, COOTBETCTBYIOIIUX TOCTaBJIeHHON pobieme. [TocTpo-
€H OJIMH TIPUMeEP, B KOTOPOM JIaHbI JIBYyCTOPDOHHHUE OIEHKHU JTUHEHHBIX MMONIEPEIHUKOB. MeTo T pertenns 3Toi
3a/1a91 MOXKET OBbITh IIPUMEHEH K YUCJIEHHOMY DENICHUIO HECTAHIAPTHBIX OOBIKHOBEHHBIX Jud depeHIualib-
HBIX ypaBHeHUI Ha GECKOHEYHOI OCH.

Kmouesvie crosa: muddepeHinaabable YpaBHEHNs, ypaBHEHUs 1 prubesist, ammpoKCUMAIsi MHOYKECTB JIU-
HEHHBIMHU METOJAaMU, IIOIEPEYHNKN MHOXKECTB, BecoBble pocTpancrBa Cobosesa.
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On the non-uniqueness of the solution to a boundary value problem
of heat conduction with a load in the form of a fractional derivative

The paper deals with the second boundary value problem for the loaded heat equation in the first quadrant.
The loaded term contains a fractional derivative in the Caputo sense of an order o, 2 < a < 3. The
boundary value problem is reduced to an integro-differential equation with a difference kernel by inverting
the differential part. It is proved that a homogeneous integro-differential equation has at least one non-zero
solution. It is shown that the solution of the homogeneous boundary value problem corresponding to the
original boundary value problem is not unique, and the load acts as a strong perturbation of the boundary
value problem.

Keywords: second boundary value problem, loaded equation, Caputo fractional derivative, non-unique
solvability, strong perturbation.

Introduction

Loaded differential equations today have a wide practical application in many areas of natural
science. Moreover, loaded equations are a special class of equations that require separate consideration.
In addition, loaded equations can act as one of the ways to introduce generalized solutions of wide
classes of partial differential equations and as an effective method for finding approximate solutions to
boundary value problems for differential equations. A significant contribution to the development of
the theory of loaded equations was made by the work of A.M. Nakhushev [1] (and his other works),
where definitions of loaded differential, loaded integro-differential, loaded functional equations and their
numerous applications are given. In papers [2-5], the theory of loaded equations was further developed.
[3] considers boundary value problems for a loaded differential operator, which are interpreted as
perturbations of the corresponding differential operators. It is shown that the loaded part is a weak or
strong perturbation, depending on the derivative order in the loaded term, as well as on the manifold
on which the trace of the BVP solution is given.

There are many books devoted to fractional analysis today [6-21]. In recent years, an intensive
study of loaded differential equations has been carried out, associated with various applied problems
of mechanics, biology, ecology and chemistry, modeled using loaded equations. To date, many books
have been devoted to fractional analysis (various applications in physics, mechanics, and simulation)
[7], [14-20]. Among the variety of works, the monograph [6], covering a huge range of ideas. Monograph
presents classical and modern results in the theory of fractional analysis, and gives their applications
to integral and differential equations and function theory.

From a mathematical point of view, it is interesting to study the boundary value problems for the
heat equation with a fractional load, when the loaded term is considered in the form of a fractional
derivative or a fractional integral. In [21, 22] the load moves with a constant velocity, namely, it moves
along the line z = t. The loaded term contains a fractional derivative in the Riemann-Liouville sense.
The boundary value problem was reduced to the Volterra integral equation with a kernel containing a
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generalized hypergeometric series. The integral equation has a nonempty spectrum for certain values
of the fractional derivative order and for the spectral parameter.

We also note that the boundary value problems of heat conduction and the Volterra integral
equations arising in their study with singularities in the kernel, similar to the singularities in this
paper, were considered in |23, 24].

In [25-28] fractionally loaded boundary value problems of heat conduction are investigated, the
loaded term is represented in the form of the fractional derivative. The derivative order in the loaded
term is less than the order of the differential part. In [25, 26] the loaded term is represented in the form
of the Caputo fractional derivative with respect to the spatial variable. In [25], it is proved that there
is continuity on the right in the order of the fractional derivative. There is no continuity on the left. In
[26] there is continuity in the order of the derivative in the loaded term of the problem. In [27, 28], the
loaded term has the form of a fractional Riemann-Liouville derivative with respect to the time variable.
The kernel of the resulting integral equation contains a special function, for example, a generalized
hypergeometric function in [25] or the Wright function in [27]|. Conditions for the unique solvability of
the integral equation are established by estimating the integral kernel. It is shown that the existence
and uniqueness of solutions to the integral equation depends on the order of the fractional derivative
in the loaded term.

In [29] the first boundary value problem for essentially loaded equation of heat conduction is
considered. It is shown that if the point of load is fixed, then the stated boundary problem is uniquely
solvable.

In this paper, the second boundary value problem for the loaded heat equation is considered in
the domain @ = {(z,t) |z >0, ¢>0}. The load is presented as a Caputo fractional derivative.
The fractional derivative is greater than the order of the differential part of the BVP. The boundary
value problem is reduced to an integro-differential equation by representing the problem solution in
terms of the Green’s function. Solvability of the integro-differential equation depends on the fractional
derivative order in the loaded term of the BVP. The integro-differential equation has an eigenfunction.
The solution of the stated boundary problem is determined by the solution of the obtained integro-
differential equation in explicit form. Since the uniqueness of the BVP solution is violated, in this case
the load can be interpreted as a strong perturbation the BVP.

The article is structured as follows. Section 1 includes some necessary concepts, definitions, auxiliary
assertions, and preliminary assumptions about the classes of the BVP solution and the data included
in the problem under study. In Section 2, we set the BVP that we are going to solve. In Section 3, the
problem is reduced to an integro-differential equation with a difference kernel. In Section 4 we solve the
resulting integro-differential equation by Laplace integral transform method. We write out the solution
of the resulting equation in explicit form and formulate the corresponding results on the non-uniqueness
of the solution to the BVP and the solution to the associated integro-differential equation.

1 Preliminaries

We first give some definitions and useful information.
Definition 1 ([6]). Let f(t) € Li[a,b]. Then, the Riemann-Liouville derivative of the order f is
defined as follows

§ ey LAt ) _
TDa,tf(t)_F(n_IB) dt”/a (t—T)ﬁ*"Hdﬂ B,ae R, n—1<f<n. (1)

Definition 2. Let f(t) € AC™[a,b] (i.e. f*~D(t) is an absolutely continuous function). Then, the
Caputo derivative of the order 3 is defined as follows

t o pn)
D2 f(t) = 15)/(tf (7) dr: B, a€R, n—1< B <n, (2)

_ T)ﬂ—n—‘rl
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From formula (1) it follows that

DO f() = f(t), DI f(t)=f™(t), neN.

We study a BVP for the loaded heat equation, when the loaded term is represented in the form
of a fractional derivative. To study the formulated boundary problem, we need a formula for inverting
the differential part of the equation.

It’s known [30; 57| that in the domain @ = {(z,t) |2 >0, ¢ > 0} the following boundary value
problem of heat conduction

Ut = azuxx +F (:Uat) >

U‘t:o :f<l'), Uy ’xzo :g(l'),

has the solution u(z,t) described by the formula

u(m,t)—/OOOG(a:,f,t) f(ﬁ)d§—a/0 G(z, 0, t —7)g(T)dr+
+/O /OOOG(x,é,t—T)F(g,T)dﬁdT, 3)

_ )2 T 2
e N R )}

The following equality holds true for the Green function G (x,&,t)

where

/OOOG(:c,f,t)dle. (4)

It follows from the definitions that for the existence of a derivative of f(¢) in the sense of Riemann-
Liouville (1) it is sufficient that f(¢) belongs to the class of summable functions, for the existence
of a derivative in the sense of Caputo (2) it is sufficient that the n — 1st derivative of the function
f(t) be an absolutely continuous function, where n-1 is the integer part of the derivative order, i.e.
f(t) € AC"[a,b] and there is the next relation formula for these derivatives

n—1 (k) a
D! f(t) = ,Df, !f(t) Sy @ g

— k!
So we assume that the solution u(x,t) belongs to the class
u(z,t) € AC3 (t €[0,T)), (5)
The right side of the BVP equation vanishes at ¢t < 0 and belongs to the class
f(z,1) € Lo (A)NC(B), (6)

where A = {(z,t) |z >0, t € [0,T]}, B={(x,t)|x >0, t >0}, T — const > 0, also we assume

fi(x,t) :/0 /OOOG(x,f,t —7) f (€, 7)dédr € AC3 (t € [0,T)). (7)

The classes in which the problem is studied are determined from the natural requirement for the
existence and convergence of improper integrals that arise in the study.

100 Bulletin of the Karaganda University



On the non-uniqueness of the solution ...

2 Statement of the fractionally loaded BVP of heat conduction
In a domain @ = {(z,t) : « > 0,t > 0} we consider a BVP

- Uzzx A C-Da 7t = 7t ) 8
we = o + M oDl 0 f| = f0) ®)
u(z,0) =0, wuy(0,t) =0, (9)
where A is a complex parameter,
1 t Ur3(z,7)
D§, ,t) = ——d
Otu(l‘ ) F(3 _ 6) /(; (t _ T)Q—Q T

is Caputo derivative (2) of an order o, 2 < a < 3, y(¢) is a continuous increasing function, y(0) = 0 or
v(t) is a positive const.

The solution of the problem and the right side of the equation belong to the classes (5) and (6),
respectively.

8 Reducing the problem to a Volterra integro-differential equation of the second kind

Lemma 1. Boundary value problem (8)—(9) is reduced to a Volterra integro-differential equation of
the second kind.
Proof. We invert the differential part of problem (8)—(9) by formula (3):
G(z, &t — 7)dédT+

u(x,t) = =\ /t /OO {CDgtu(x’t)} z=(1)

// Gz, &t —71) f (& 1)dEdr.

Taking into account relation (4) and introducing the notation

(2,1) // (2,61 — 7) f (£, 7) dE dr,

we get the following representation of the solution to problem (8)—(9):

:ct——)\/ Pdr + il 1), (10)

where

ult) = {Dpu(a, ) | . (11)

From representation (10) we take the derivative of the order 2 < av < 3 with respect to the variables
t on both sides and put x = (¢). On the left side, we get the function p (t). We also introduce the
notation according to formula (11).

Then BVP (8)-(9) is reduced to the integro-differential equation:

t) + A/Ot Ko (t,7) @' (r)dr = fo(t), (12)
with conditions (0) = i/(0) = 0, where
Ko (t,7) = 5o (i_ mTE (13)
and
falt) = { DG 0} (14)

Lemma 1 on reducing the BVP to an integro-differential equation is proved.
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4 Study of the integro-differential equation. Main result

Lemma 2. The homogeneous integro-differential equation (12) has a non-trivial solution.
Proof. We denote the Laplace transforms of p(t) and fa(t) as

i) = Liu(t)] = /0 Y erutdt, Ta) = LI ()]

Since

L{ 1 }:F(ii—a)’

ta72 p3fa

then applying Laplace transform to equation (12) with the condition p(0) = 1/(0) = 0, we get

R = (19

Consider equation (15) for fa(p) = 0.

u(p)(1 4+ p* 1) =o. (16)

Let’s solve the equation:
L+ xpt=o0. (17)

For A € C and 2 < a < 3. Then @ — 1 is a real number. Let’s consider cases.
I a € Q. In case for a € @, there can be finite number p1, pa, ..., p, are solutions to equation (17).
Then nonzero solutions to (16) are

px(p) = Crd(p — pr),

here d(x) is the delta function, Cy = const; py are solutions of equation (17), k = 1,...,n, n is a
denominator of the rational number v — 1. Here and below, the numbers are in the left half-plane of
the complex plane, i.e. Re, pp < 0.

1. a € Q. Applying the inverse Laplace transform to the last equation, we get

1 o+i00
pi(t) = Cp=— §(p — pr)eP'dp = CyePr.
2mi T—100

Integral is taken along the line Rep = ¢ and is considered in the form of the main value. That’s
why, if p = py are the solutions of equation (17), then eigenfunctions of equation (12) have the following
form

pk(t) = Cre". (18)

Remark 1. The power of the complex number z with rational power zn is defined as:
= (W2)™.

II. v € R but a € Q. Then a — 1 is an irrational number
Remark 2. Power of the complex number z with real irrational index of power 0 < s < a — 1 is
defined as the limit

s . Qn
z° = lim z8n;
n—oo

Qp
— =,

Bn
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here a,, and f3,, are sequences of natural numbers.

Based on Remark 2 we can claim that equation (17) has at least one solution py for A € C' and
2<a<3.

Then equation (12) has at least one eigenfunction (18). The number of eigenfunctions depends on
the values of parameters o and .

Now let’s find a solution of nonhomogeneous equation (12) (f2(t) # 0).

Equation (15) can be rewritten:

- - pa_l -
= —A— . 1
W) = Folo) ~ A W) (19)
Now we apply the inverse Laplace transform to equation (19)
3 pa—l 1 /6+ioo A(p)
L H— | = — ————dp=R)(t 20
{1 + )\pal} 2700 J5_ino 1+ Ape—1 P At @), (20)

here A(p) = p*~tePt.

The integral in (20) is considered as the main value and the integration is taken along the contour
which doesn’t include py on the left side. Then the solution of equation (12) can be written as: the
solution of equation (12)

u(O) = 2(0)+ - Cet = [ Ryt = mia ol (21)
& 0

here pj, are the roots of equation (17), Cj are arbitrary constants and Ry(t; «) is defined as in (20).
The zeros of the denominator of the integral function in (20) are the numbers py, so that A(py)) # 0.
Therefore n N .

Pk

"€Sp=pi. -1 a2 ZiNa—1)
k 1+ Ap? & (o —1)py % Ma—1)

Then (21) can be rewritten as

a—1

u(t) = 20+ 3 Crent =3 P et py(rya (22)
k k 0

Thus, the following theorem has been proved.

Theorem. Integro-differential equation (12) with kernel and right side defined by the formulas (13)
(2 < a < 3) and (14), respectively, has a solution defined by the formula (22), moreover, the
corresponding homogeneous equation (12) (when fo(t) = 0) has a nonzero solution

ult) =y e,
k

where here pj, are the roots of equation (17) and Re py < 0.
Conclusion

So function (22) is the solution of equation (12). Then the solution of BVP (8)—(9) has the form
of (10)

w(@ 1) = —A /D w(r)dr + fi(z, t),

where the function f;(x,t) is defined by the formula (7).
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In such a way it can be claimed that term with a load in equation for BVP (8)—(9) is considered a
strong perturbation, since according to (22) and (10) the homogeneous BVP (8)—(9) (when f(z,t) = 0)
has non-zero solutions in the form of:

u(z,t) =Y i(epkt -1),

T Dk

here pj, are solutions of equation (17) and Repy < 0.
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Axademur E.A.Borxemos amwndazwr Kapazanov ynusepcumemi, Kapazandwv, Kaszaxcman

Beamniek TybIHABICHI TYPIHIET >KYKTeMeMeH >KbIJTy ©TKI3TimITiKTIiH,
eKapaJibIK, ecebiH 1mernnyaiH Oipereit eMecTiri TypaJbl

Bipiumii kBajipanTTa 66JIIIEKTIK->KYKTEJIreH XKBITyOTKI3MIITIK TeHAeyi VIITiH eKiHII MeTTIK ecell KapacThl-
pelarad. 2Kykreme Kocbuirbimbl 2 < « < 3 perti KamyTo Gesmex Tywraabichl peringe Oepinren. IllerTik
ecern quddEPEHITHAIBIK, OOJITH aybICTHIPY APKBLIBI AffbIpMa 636K Ti HHTErpo-auddhepeHITHAIIBIK, TEeHIeyTe
keJrtipizieni. BiprekTi maTerpo-mauddepeHmanibK, TeHIeyAiH KeM Jierenje 0ip HOJIIK eMmec menriMi 6ap
eKeHi Jpsesaenai. BiprekTi mexkapaJiblk ecenTiy mrenriMi Gipereit emec, aj XKYKTeMe IIeKapaJIbIK, eCeITiH
KaTThI ayBITKYbI OOJIBIT TaOBLIATBIHBI KOPCETIITEH.

Kiam ce3dep: ekiHI METTIK ecem, KYKTeJreH TeHaey, KamyTo GeJsImeKTiK TYBIHIBICH, KO MaFbIHAJIBI
MIEeNTTM, KATThI aybITKY.

M.T. Kocmaxkosa, K.A. Nxanosa, A.H. Xam3eera

Kapazandunckutl yrusepcumem umeny axademura E.A. Byxemosa, Kapazanda, Kaszaxcman

O HeeIMHCTBEHHOCTU peIleHns KPaeBoil 3a/ja9l TEMJIOITPOBOJHOCTHU C
Harpy3Kkoii B Bu/ie JIPOOHOI ITPOU3BOHOIM

B craTpe paccmoTpena Bropast KpaeBasi 33/1a4a /I HArPY?KEHHOT'O YPaBHEHUS TENJIONPOBOIHOCTH B II€p-
BOM KBaJipanTe. Harpy»keHHoe ciraraemMoe COZEp:KUT JPOOHYIO MPOM3BOAHYIO B cMbIcie KamyTo mopsiika
2 < a < 3. KpaeBas 3a7a4ya CBOAUTCS K UHTErpO-audHepeHITNaIbHOMY YPABHEHUIO C PA3HOCTHBIM SIPOM
n3MmeHenus auddepeHnuabHoil yacTu. Jloka3aHo, 9To OJHOPOIHOE UHTErpo-IuddepeHnuaIbHOe ypaBHe-
HPe nMeeT XOoTs ObI O/THO HeHyseBoe pereHue. [TokazaHo, 9T0 pemreHne OHOPOIHOM KPaeBOi 3a/1a9H, COOT-
BETCTBYIOITE MCXOTHOI KPAEBOil 3aja1e, HEeIMHCTBEHHO, & HATPY3Ka BBICTYIAET KAK CHILHOE BO3MYIIEHNE
KpaeBo#l 3aj1a4u.

Karouesvie crosa: BTOpas KpaeBasd 3a1a4a, HarpyKeHHOe ypaBHeHUe, JpobHas npousBogHas KamyTo, Heom-
HO3HaYHAas PA3PEIIUMOCTD, CUJILHOE BO3MYIICHUE.
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On bounded solutions of linear systems of differential equations with
unbounded coefficients

This paper deals with a problem of finding a bounded solution of a system of nonhomogeneous linear
differential equations with an unbounded matrix of coefficients on a finite interval. The right-hand side of
the equation belongs to a space of continuous functions bounded with some weight; the weight function is
chosen taking into account the behavior of the coefficient matrix. The problem is studied using a modified
version of the parameterization method with non-uniform partitioning. Necessary and sufficient conditions
of well-posedness of the problem are obtained in terms of a bilaterally infinite matrix of special structure.

Keywords: ordinary differential equation, singular boundary-value problem, well-posedness, parameterization
method, bounded solution, linear system, unbounded coefficients.

In various branches of applied mathematics there arise problems leading to systems of ordinary
differential equations involving singularities or defined on an infinite interval. Numerous works [1-
12] have been studied the existence of bounded solutions of such problems. In [6], the boundedness
condition for a solution at a singular point is replaced by an equivalent relation in a neighborhood of this
point, namely, the equation of a stable initial manifold generated in the neighborhood of the singular
point by the total set of bounded solutions of the system. In [8], the existence and approximation of a
bounded (on the whole axis) solution of a linear ordinary differential equation are investigated by using
the parameterization method. In this paper, we apply the parameterization method with non-uniform
partition of the interval (0, T) to the linear differential equation

d
T =AWMa+f(), TeR", te(0,1), (1)
where A(t) and f(t) are continuous on (0,T), |[A(t)|| = max ) |a;;(t)| = a(t). We assume that the

7=1
function a(t) is continuous on (0,7") and satisfies the following conditions:

T/2 T
/ a(t)dt = oo, ti%&oa(t) = 00, / a(t)dt = oo, t—1>1:IFn—0a(t) = 00.
0 T/2

_ We introduce the following spaces:
C((0,T),R™) is the space of functions z : (0,7) — R™ that are continuous and bounded on (0,7),
equipped with the norm

zllv = sup |lz(t)[];
te(0,T)

*Corresponding author.
E-mail: ruteshoval @gmail.com
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C~'1/a((0, T),R™) is the space of functions f : (0,7) — R™ that are continuous and bounded on (0,7)
with the weight 1/a(t), equipped with the norm

1flla = sup)llf(t)a(t)ll;

te(0,T

m,, is the space bounded bilaterally infinite sequences A; € R™ with the norm

Mz = 11C- - Ars Argas ) ll2 = sup [ Al 7 € Z
T

L(my,) is the space of all bounded linear operators mapping m,, into itself, equipped with the induced

norm.
oo

Let us choose a number # > 0 and make the partition (0,7) = | [tr—1,%r) by the points t,,
r=—00
t,
r € Z, defined as follows: to = T/2, [ «(t)dt =0.

tr—1
Let h(6) be the bilaterally infinite sequence of the partition step-sizes h, = ¢, — {1, 7 € R. We
denote by z,(t) the restriction of a function z(¢) € C((0,7),R") to the r-th subinterval and introduce
one more space my,(h) of bounded bilaterally infinite sequences of functions x,.(t), r € Z, that are

continuous and bounded on [t,_1,t,), equipped with the norm

lzftllls = I - 2 (), 2ppa(t), .. ) [ls =sup  sup  [lz,(t)]-
T tE[tr—1,tr)

Definition 1. We call Problem 1, the problem of finding a bounded on (0,7") solution of Eq. (1)
with f(t) € Cl/a((oa T)an)

The existence of a solution z(t) € C((0,T),R™) of Problem 1, is equivalent to the existence of a
solution z[t] € my,(h) of the multipont problem for the equations

dz,
dt

subject to the gluing conditions for x(t) at the interior partition points:

= A()zr + F(£), € [tr_1,t), 2)

lim z,(t) = z,41(t,), r€Z. (3)
t—t,-—0

Note that the derivative %r

ar in Eq. (2) is understood as the right-sided limit ~ lim  92=

t—tr140 U

Indeed, let Z(t) be a solution of Problem 1,. Let us show that the system of its restrictions to
the partition subintervals, Z[t] = (..., Z.(t), Zr+1(t),...)’, belongs to m,(h) and satisfies Eq. (2) and
conditions (3).

Since Z(t) is a solution of Eq. (1), it is continuously differentiable on (0,7"). Hence z,(¢) and dg;r,
r € Z, are continuous on [t,_1,t,). The boundedness of the function Z(¢) on (0,7") implies that the
functions Z,.(t), 7 € Z, are bounded on [t,_1,t,), and Z[t] € my(h).

The function system Z[t] satisfies Eq. (2) for all t € [t,_1,t,), 7 € Z:

dr,(t)  dz(t)
. dt
The continuity of Z(¢) on (0,7") implies the existence of the left-sided limits

t=t,_1

— A)F() + F(t) = AW (1) + F(D).

lim z.(t) = lim 2(t) = 2(t Z
P P = A O =), ez
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that is, conditions (3) are satisfied:

Let us now show that if Z[t] = (..., %.(t),Z,41(t),...) € my(h) is a solution of problem (2),(3),
then the function z(t), defined as z(t) = z,(t), t € [t,—1,tr), r € Z, is a solution of Problem 1.

It follows from (3) that z(t) is continuous on (0, 7). Since the functions z,(t), r € Z, satisfy Eq. (2)
for all ¢ € [t,_1,t,), the function Z(t) is continuously differentiable for all x € (0,T") except the points
t=t., r €Z, and

di(t) _ di,(2)

dt o = ADT() + f{t) = ADT(E) + f(2),
€ (0, T)\{t=t,,r €Z}.

The function Z(t) has the right-hand derivative at the points t = t,, r € Z. Let t; be one of these
points, and let us consider Eq. (1) on the intervals [t;_1,tx) and [tx, txr1):

d(t)

= AWEO + S(0), [t 1), (4)
PO _ AW0) + 10), o). (5)

From (4) and the continuity of A(t), f(¢), and Z(t) on (0,7"), we have
dx

lim

im S = A1) + £ (t)

i.e., at t = tj, there exists the left-hand derivative of z(¢):

T(ty — 0) = A(tp)Z(tr) + f(ts).

Taking into account (5) and the existence of Z(t, + 0) = A(tx)Z(tx) + f(t), we obtain that the
continuous derivative of T exists at ¢ = t;, and Eq. (1) holds at this point.

Thus, the function z(t) is continuously differentiable on (0,7") and satisfies Eq. (1) for all z € (0,T).
It follows from Z[t] € my,(h) that Z(t) is a bounded solution of Eq. (1).

Let A, denote the values of x,(t) at t = t,_1, r € Z. Setting u,(t) = z,(t) — A\, on each partition

subinterval [¢,_1,t,), we obtain the following boundary value problem with parameter:

d(ZT = At)[ur + N ] + f(t), tE[tr—1,tr), ur(ty—1) =0, (6)
t—l>itIn—0 Ur(t) +A=Np1, TEZ (7)
(A, ult]) € my x mp(h). (8)

If a pair (A\*, u*[t]) € m, X my(h) is a solution of problem (6)-(8), then the function x*(¢), obtained
by gluing the function systems (A* + u*[t]), 7 € Z, belongs to the space C((0,T),R") and satisfies
Eq. (1) for all t € (0,T). Conversely, if x(t) is a solution of Problem 1,, then the pair (A, u[t]) (with
A= (o xp(ten), e (tr), - ) and wft] = (.o, 20 () — 20 (t—1), T2 (B) — 241 (tr), . . .), Where z,.(t)

are the restrictions of z(t) to the r—th subintervals, r € Z) belongs to m, x my(h) and satisfies Eq.
(6) and conditions (7).
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Since (6) is an initial-value problem with parameter, we obtain the integral representation of w,(t)
for fixed parameter values \;:

t

up(t) = / A up(7) + Aldr + / f(r)dr, ret. ()

tr—1

Replacing u,(7) with the right-hand side of (9) and repeating this procedure v times (v = 1,2, ...),
we obtain

Ur(t) = Dl/ﬂ”(t))\?“ + FV,T'(t) + Gl/,’l”(ua t)7 te [tr—lu tr)7 (10)

where
t

Z/ATl /ATJ+1)dT]+1 dTl,

J= Ot tr—1
Ti—1 Tj
/f'rl d7'1+2/ 7’1 /A(Tj)/f(Tj+1)d7‘j+1d7‘j...d7'1,
J= 1tr 1 tr—1 tr—1

Gyr(u,t) / A(ry) / A(Tj1)ur(Tjp1)dTjq1 ...dm, To=1t, 1€ELL

-1

Now, substituting the values . 1itm Our(t), r € Z, determined from (9), into equations (10), we
—ty—

obtain the bilaterally infinite system of algebraic equations in parameters \;:
I+ Dyy(he) A — As1 = —Fup(hy) — Gup(u, hy), 1 €Z. (11)

Here I is the identity matrix of order n.
Let us denote by Q,, 7(0) the bilaterally infinite block-banded matrix corresponding to the left-hand
side of system (11). The only non-zero terms in each block row of @, hi(o) re I+ D,,(h;) and —1I.

Hence, for any sequence h(f), the matrix Q, 7(p) Maps the space m,, into itself, and the following
estimate holds:

||th HLmn §2+Z

Jj= 1

The matrix form of system (11) is
Qy,ﬁ(a))‘ - _FV(E) - GV(U7E)’ A € My,

where

F,(h)=(...,Fyr(he), Fyri1(hrs1),...) € my,
Gu(u7ﬁ) = ( R Gy,r(uv hr)v Gy,r+1(u7 hr+1)7 .. -), € mp
for all u[t] € m,(h) and h(6).

Definition 2. Problem 1, is well-posed if it has a unique solution z(t) € C((0,T),R"™) for any
f(t) € C1s0((0,7),R"), and [|z||y < K| f|la, where K is a constant independent of f(t).
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Theorem 1. Let @, 3y have an inverse for some h(#) and v (v =1,2,...), and let

—1 7
12 % gy ey < 0B, (12)
_ —( 0 0"
qv(h) =y (h) e—1—0—...—; <1 (13)
Then Problem 1, is well-posed and its solution satisfies the estimate
. B _
ol < e |2 0 @) — 1) 4 06) + m (B)(E? — 1) + e] 1l
1-— qy(h) V!

The proof of Theorem 1 follows the scheme of Theorem 1 in [7].

Let 2*(t) be the solution of Problem 1,. Then the pair (A*,w*[t]) with components A} = x}(¢,_1)
and w(t) = «*(t) — 2*(tr—1), t € [tr—1,tr), 7 € Z, is the solution of problem (6)—(8). Moreover, there
exist numbers d; and 0 such that [|A*|| < 61 and ||uf(t)| < b2, t € [tr—1,t,), r € Z, and for any v € N
the following identities hold:

WHt) = Dy (DN + Fyn(t) + Gop(u®,t), tE [tro1,ty), 1€Z, (14)
Qo = —Fo(h) — G (u", ). (15)

It can be easily shown that |G, (u*,h)|s < V, el < %52, and D, ,(t) and F,,(t) converge
uniformly to

oo t Tj
D.p(t)=>" / A(ry). .. / A(tj11)dTjs1 .. . dm,
jZOtT71 tr—1
and
/ flrm)dm —I—Z / A(mp) / A(T) / f(Tjs1)dTjprdrj ... dry,
71tr 1 tr—1 tr—1
respectively. Then, letting v — oo in (14), (15), and dividing both sides of (15) by 6 > 0, we obtain
up(t) = Dir(O)A; + Fir(t), t€tr_1,t,), reEL, (16)
1 * 7 *
Here F\ (A, f,h(0)) = lim $F,(h).
Thus, if (A*, *[t]) is a solutlon of problem (6)—(8), then the parameter A* = (..., X, A5 ,...)" €

my, satisfies Eq.(17), and the solutions w}(¢) of the Cauchy problems (6), corresponding to A, r € Z,
are of the form (16). R R
We now assume that A = (..., A, \rg1,...)" € my, is a solution of the system

)

1 1 1
5[[ + D*,T<t7‘>])\7’ — EATJ'_I = _EF*J'(t)a
or 1
5 Q.o = —F(4, £.7(0)), (18)

and uft] = (..., Up(t), Up41(t),...)" is the system of solutions of the Cauchy problem (6) on [t,_1,1,)
with A, = A, 7 € Z. Let us show that the pair (A, u[t]) is the solution of problem (6)—(8). Since u,(t)
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is the solution of the Cauchy problem (6) with A, = Ar, it follows from (16) and the unique solvability
of the Cauchy problem (6) for fixed parameter values A, that

Up(t) = Dy (DDA + Fup(t), t€[tr1,t,), 1€ (19)
In view of (18), we have
N+ [Dar(t) A + Fup(tn)] = Apy1, 1 €Z. (20)

Then, by (19) the expressions in square brackets in (20) are equal to lim wu,(t), r € Z, and the pair

R t—t,.—0
(A, uft]) satisfies (7) as well.

Theorem 2. Problem 1, is well-posed iff, given an arbitrary v € N, there is a () > 0 such that
the matrix @, 7, has an inverse for all h(0) = (..., h(0),hr41(0),...) and the inequalities (12) and
(13) hold.

Proof. The sufficiency of the conditions of Theorem 2 for the well-posedness of Problem 1, follows
from Theorem 1.
Necessity. Let us consider the equation

1
EQ*7E(9)A — b7 )\, b € My.

Obviously, the kernel of the matrix %Q* 7(6) consists only of the zero vector of the space my,.
Suppose, contrary to this claim, that there is a A € m,, such that %Q* E(@)X =0, ||| # 0. Hence, as

shown above, the pair (X, alt]), with @[t] = (..., %, (t), Tr11(t), . ..)" being the system of solutions of the
Cauchy problems (6) with A, = A, on [t,_1,t,), is the solution of problem (6)—(8) with f(¢) = 0. The

function Z(t), obtained by gluing the function systems (A, + @, (t)), r € Z, belongs to C((0,T),R")

and satisfies the equation Cfl—f = A(t)x. But sup |Z(¢)|| # 0, which contradicts the well-posedness of

te(0,T)
Problem 1,. Thus, the matrix @, 7(0) has an inverse.

Let us fix € > 0 and choose 0y(g) > 0 satisfying the inequality

1 £/2
g€ ~1=0 < sa ATy

Then, by Lemma in [12], for arbitrary b, € R", r € Z, the functions f;, € C([t,_1,t,],R™) can be
constructed such that

(21)

Fo(A fo,) =br, max [[fy, (8)/a(t)] < (1+¢/2)[br]-

t€[tr—1,t]
Hence, the function f,(t) defined as fi(t) = fp,(t), t € [tr—1,,], satisfies the relations
fot) € CUO,T), R, lfslla < (1 +e/2)llbll2,  Fu(A, £, h(6)) = b.

The well-posedness of Problem 1, implies that Eq.(17) has a unique solution A\, € m,, for any
fb(t) € Cl/a((07T)7Rn)7 and

[Aoll2 = sup [ Ay, [| = sup [[zp(tr )| < sup [lzp()]| < K| folla < K(14¢/2)[|b]2-
reZ reZ te(0,T

)

Taking into account that || Ay[|2 = [|[3Q, E(a)]_lbﬂg, the latter estimate yields

1o _ 11
||[9Q*,h(9)] ||2 < (

1+5)K, Vb € mp.
[10l2

2
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This gives
1

1 9
15@um0)  nenn < (145) K. v € (0,60,

Hence, choosing 6 € (0, 6] such that

“*f;/m’((e@_l_e_..._e”)< -

and taking into account

1 1
HeQ*,h(G) a0

1 o
o),
Limn) 0 V!

by the theorem on small perturbations of boundedly invertible operators, we obtain that the matrix
Q, 7(6) has a bounded inverse satisfying the estimate

1 -1
I |:9Qu,h(9):| | L(m,) < (1+€)K.

Finally, (17) yields

qy(ﬁ(a)):(ue)% <e9—1—a_...—ey> < 5€<1,

vl

which completes the proof.

Theorem 3. Problem 1, is well-posed iff, given an arbitrary v € N, there is a 0o(v) such that the
matrix @, 7 has an inverse for all sequences h(f), 6 € (0, 6o], and

I @us@] o < 5 (22)

where 7 is a constant independent of h(6).

Moreover, if the well-posedness constant K is known, then for any ¢ > 0 there exists 6(e,v) > 0
such that estimate (22) holds with constant v = (1+4¢)K for all § € (0,0(e, v)]. Conversely, if estimate
(22) holds, then K = .

Proof. Necessity. Let Problem 1, be well-posed with constant K. Given ¢ > 0, we choose (e, v) €
(0,6o(g)], where y(e) satisfies condition (21). Then, as it was shown in Theorem 2, the matrix @y k(o)

_ -1 1 K
is invertible for all 6 € (0,60(e,v)] and || [Qu,ﬁ(e)} I Lm) < (+0€)7 ie. v=(1+¢)K.

Sufficiency. Let estimate (22) hold. let us choose  so that g,(h(f)) < 1. Then, by Theorem 1,
Problem 1, is well-posed and

1 e Y
P A S A AU REEEY 0 T 1 o
ol <e [9 R LR R TR L1
Letting & — 0, we obtain
[z*]l1 < A fllas

i.e. K =, which completes the proof.
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! Xanvapasv axnapammons mexnosozuasap yrueepcumemi, Aamamot, Kasaxcman;
2 . . .
K. XKybanos amwmdazer Axmebe onipaix ynusepcumemi, Axmebe, Kasaxcman

Kosddburmenrrepi mekreamereH nuddepeHInaIIbIK TeHaeyJIep
CBHI3BIKTHI 2KYyleJepiHiH IMeKTeJITeH MIelIiM/Iepi TypaJibl

MakaJstazia mekTenmeren KoddduimeHTTep MaTpuiachbl 6ap 6ipTeKTI eMec ChI3BIKTHI I depeHInaIbK
TeHJeyIep Kyheci VIMH aKbIpJIbl MHTEPBAJa IMEKTeIreH mennMin taby ecebi KapacTeIpbLiraH. TeHge-
VIiH OH »Kafbl y3ijicci3 »KoHe KaH/ai mga 6ip cajMakIieH IIeKTeJreH (PyHKIUsIap KeHiCTiriHe »Karaibl;
caJIMaKThIK OYHKINA KO3bPUIMEHTTep MATPULIACHIHBIH, OPEKETIH eCKepe OTBIPBIN TaH aJIbl. KapacTeIpbl-
JIBITT OTBIPFAH €CENTi 3epTTey VImiH OipKesKi eMec GoiMMEH mapaMeTpsiey OIiCiHIH MOIuMUKAIUICH KOJI-
JaHBLLIBL. ApHaiibl KYyPBUIBIMIBI €Ki YKaKThI MIEKCi3 MATPUIACHl TYPFLICBIHAH 3€PTTEIIeH €CElTiH JyPbIC
HIeNTiTiMITIriHe KaXKeTTi yKoHe »KEeTKIJIIKT] mapTTap aJIbIHFaH.

Kiam cosdep: kot 1n ePEHIINAJIABIK TEeHAEY/IED, CAHTYIAPJIbL IITETTIK ecell, KOPPEeKTi MIeIiTiMIIiK, ma-
b b )
pamMeTpJiey 9JIici, IMEeKTEeJINeH IIeIiM, ChI3BIKTHI XKYiie, IeKTeIMereH K03 UuInueHTrep.

P.E. Yremosa', E.B. Kokorosa?

! Meowcoynapooraiii yrusepcumem ungopmayuornmos mexnoaozut, Armamo, Kazazcman;
2 Axmaobuncruts pezuonarsruiti ynusepcumem umenu K. XKybanosa, Axmobe, Kasaxcman

OO0 orpaHWYEeHHBIX pENIeHUSAX JUHEMHBIX cucTeM JquddPepeHITnaTbHBIX
ypPaBHEHUII ¢ HeorpaHUYeHHbIMU Ko3d durmenramm

B crarpe paccmorpena 3ajiatua HAXOXKJEHUsI OIPAHUYEHHOI'O HA KOHEYHOM HHTEpPBAJie PEIIeHUs] CHCTEMBI
HEOJHOPOIHDIX JIMHEHHDLIX UM depeHIaIbHbIX YPABHEHUI C HEOTPAHIMTIEHHOM MaTpuIeil Koap UIMEHTOB.
IIpaBast yacTh ypaBHEHH: IPUHA/IEXKUT IIPOCTPAHCTBY HEIPEPBHIBHBIX U OTPAHUYEHHBIX C HEKOTOPBIM BECOM
dyHKIW; BecoBast (DYHKIWs BBIOUPAETCSI C y9IETOM IOBEJEHUsI MaTpulbl Koaddunnenron. st ucciero-
BaHUsI PacCMaTPUBAEMOIl 3a1a49u IPUMEHEHA MOAUMUKAINST METOIA IapaMeTPU3AIUU C HEePABHOMEDPHDLIM
pasbuenneM. [TorydeHbl HEOOXOMMBIE U JTOCTATOYHBIE YCIOBUS KOPPEKTHON PAa3pPEIINMOCTH PACCMaTPUBA-
€MOii 3a/1a41 B TEPMUHAX JIBYCTOPOHHE-OECKOHETHON MAaTPHUIIBI CIIEIUAJILHON CTPYKTYPHI.

Karouesvie caosa: OObIKHOBEHHBIE JauddepeHnaJbHble YPaBHEHUsI, CHHIYJISpHAs KpaeBas 3ajada, KOp-
PEeKTHasl pa3pelImMOCTb, METOJ, TapaMeTPU3allii, OrPAHUYEeHHOE DelleH e, JNHEeiHas CucTeMa, HeOrpaHM-
qeHHbIe KOYDMUITUEHTHI.

References

1 Ronto, M., & Samoilenko, A.M. (2000). Numerical-Analytic Methods in the Theory of Boundary-
Value Problems. World Scientific.

2 Daleckii, Ju.L., & Krein, M.G. (2002). Stability of Solutions of Differential Equations in Banach
Space. American Mathematical Society.

3 Pliss, V.A.(1977). Ravnomerno ogranichennye resheniia lineinykh sistem differentsialnykh uravnenii
[Uniformly bounded solutions of linear systems of differential equations|. Differentsialnye uravneniia
— Differential Equations, 13(5), 883-891 [in Russian]|.

4 Muchamadiyev, E.M. (1981). Issledovaniia po teorii periodicheskikh i ogranichennykh reshenii
differentsialnykh uravnenii [Studies on the theory of periodic and bounded solutions of differential
equations|. Matematicheskie zametki — Math.notes, 30, 3, 443-460 [in Russian]|.

Mathematics series. Ne 4(108)/2022 115



R.Ye. Uteshova, Ye.V. Kokotova

10

11

12

116

Mitropolsky, Yu.A., Samoilenko, A.M., & Kulik, V.L. (2002). Dichotomies and Stability in Nonauto-
nomous Linear Systems. Taylor & Francis Ltd, United Kingdom.

Abramov, A.A., Konyukhova, N.B., & Balla, K. (1980). Ustoichivye nachalnye mnogoobraziia i
singuliarnye kraevye zadachi dlia sistem obyknovennykh differentsialnykh uravnenii [Stable initial
manifolds and singular boundary value problems for systems of ordinary differential equations].
Computational mathematics, Banach Center Publ., Warsaw, 13, 319-351 |in Russian]|.
Dzhumabaev, D.S. (1989). Criteria for the unique solvability of a linear boundary-value problem
for an ordinary differential equation. USSR Computational Mathematics and Mathematical Physics,
29(1), 34-46. https://doi.org/10.1016/0041-5553(89)90038-4

Dzhumabaev, D.S. (1990). Approximation of the bounded solution of an ordinary linear differential
equation by solutions of two-point boundary-value problems. USSR Computational Mathematics
and Mathematical Physics, 30(2), 34—45. https://doi.org/10.1016,/0041-5553(90)90074-3
Dzhumabaev, D.S.; & Uteshova, R.Ye. (2018). Weighted limit solution of a nonlinear ordinary
differential equation at a singular point and its property. Ukrainian Mathematical Journal,
69(12), 1997-2004. https://doi.org/10.1007 /s11253-018-1483-2

Muratbekov, M.B., & Bayandiyev, Ye.N. (2022). Existence and smoothness of solutions of a
singular differential equation of hyperbolic type. Bulletin of the Karaganda University. Mathematics
series, 107(3), 98-104. https://doi.org/10.31489/2022M3/98-104

Yesbayev, A.N., & Ospanov, M.N. (2021) The solvability conditions for the second order nonlinear
differential equation with unbounded coefficients in Lo(R). Bulletin of the Karaganda university.
Mathematics series, 101 (1), 104-110. https://doi.org/10.31489/2021M1/104-110

Uteshova, R.Ye. (2004). O korrektnoi razreshimosti singuliarnoi zadachi dlia lineinogo differentsial-
nogo uravneniia [On the well-posedness of a singular boundary-value problem for a linear differential
equation|. Mathematical Journal, 4(3), 91-98 |in Russian].

Bulletin of the Karaganda University



DOI 10.31489/2022M4/117-124
UDC 510.67

A.R. Yeshkeyev, I. O. Tungushbayeva®, S. M. Amanbekov

Karagandy University of the name of academician E.A. Buketov, Karaganda, Kazakhstan
(E-mail: aibat.kz@gmail.com, intng@mail.ru, amanbekovsmath@gmail.com)

Existentially prime Jonsson quasivarieties and their Jonsson spectra

This article is devoted to the study of Jonsson quasivarieties in a signature enriched with new predicate
and constant symbols. New concepts of semantic Jonsson quasivariety and fragment-conservativeness of the
center of the Jonsson theory are introduced. The cosemanticness classes of the Jonsson spectrum constructed
for a semantic Jonsson quasvariety are considered. In this case, the Kaiser hull of the semantic Jonsson
quasivariety is assumed to be existentially prime. By constructing a central type for classes of theories
from the Jonsson spectrum, the following results are formulated and proved. In the first main result, the
necessary and sufficient condition is given for the center of the cosemanticness class of an existentially prime
semantic Jonsson quasivariety to be A-stable. The second result is the criterion for the center of the class
of theories to be w-categorical in the enriched language. The obtained theorems can be useful in continuing
studies of various Jonsson algebras, in particular, Jonsson quasivarieties.

Keywords: Jonsson theory, perfect Jonsson theory, variety, quasivariety, semantic Jonsson quasivariety,
Jonsson spectrum, existentially prime theory, central type, orbital type, central-orbital type, fragments of
Jonsson sets.

Introduction

It is well-known fact that the greatest part of considered objects in Model Theory is connected
with the study of incomplete theories. Many classical algebras, such as groups, fields, R-modules and
many others, are axiomatized by incomplete theories. Nevertheless, this class of theories is too vast
and, consequently, complicated for considering in detail. This is the reason why we need to introduce
some conditions that clarify the subject of our research and allow studying various algebras, as well as
their syntactic and semantic properties.

Thus, a subclass of incomplete theories where we do our research is Jonsson theories. One can find
basic material in [1,2] and more specific information on the connection between Jonsson theories, for
example, in [3-5]. In this paper we mainly deal with semantic Jonsson quasivarieties and central-orbital
type that play a significant role in the apparatus of Jonsson theories. In Section 1, necessary information
on Jonsson theories is given. Section 2 is devoted to considering some specific properties of the Jonsson
spectra of semantic Jonsson quasivarieties in the case of existential primeness. The main results are
connected with constructing of the central type and stability and categoricity of cosemanticness classes.

All definitions that are not given in this article can be found in [2].

1 Preliminary information

We start with the main definitions and facts concerning the subject of the study. Recall the
definitions of Jonsson theory and related concepts.

We are working within the framework of the following definition of Jonsson theory published in the
Russian edition of [1].

*Corresponding author.
E-mail: intng@mail.ru
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Definition 1. |1; 80] A theory T is called Jonsson if the following conditions hold for 7™
1. T has at least one infinite model;
2. T is an inductive theory;
3. T has the amalgam property (AP);
4. T has the joint embedding property (JEP).

Classical examples of Jonsson theories include:
1) group theory;
2) the theory of abelian groups;
3) the theory of Boolean algebras;
4) the theory of linear orders;
5) field theory of characteristic p, where p is zero or a prime number;
6) the theory of ordered fields;
7) the theory of modules.
The following notions and facts form a necessary apparatus for studying Jonsson theories.

Definition 2. [2; 155] Let T be a Jonsson theory. A model C7 of power 27! is called to be a semantic
model of the theory T if Cr is a |T|*-homogeneous |T'|*-universal model of the theory T

Theorem 1. |2; 155] T is Jonsson iff it has a semantic model Cr.
The following definition was introduced by T.G. Mustafin.
Definition 3. |2; 155 A Jonsson theory T is called perfect if its semantic model Cp is saturated.

Definition 4. [2; 161] The elementary theory of a semantic model of the Jonsson theory T is called
the center of this theory. The center is denoted by T*, i.e. Th(C) = T*.

The following theorem represents one of the most considerable facts describing perfect Jonsson
theories.

Theorem 2. [2; 162| Let T be a perfect Jonsson theory. Then the following statements are equivalent:
1) T* is the model companion of T

2) ModT* = Er;

3) T* = T7, where T/ is a forcing companion of the theory 7.

Some classical examples of perfect Jonsson theories one can find in [4], while non-perfect Jonsson
theories are considered in [5].

Theorem 3. [5] Let T be a Jonsson theory. Then for any model A € E7 the theory T°(A) is Jonsson,
where TY(A) = Thys(A).

We can see that in the case of perfectness of T its center T* is also a perfect Jonsson theory.
The following definition will help us to specify the class of Jonsson theories which we will deal with
in this paper.

Definition 5. [6; 120] A Jonsson theory is said to be hereditary if, in any of its permissible
enrichment, it preserves the Jonssonness.

Unfortunately, there is no complete description of this notion. However, one can find some useful
information in |7] on hereditary Jonsson theories.

One more specific notion that is widely used in the study of Jonsson theories is a Jonsson set.
Recall its definition.

Definition 6. [8] Let T be a Jonsson theory and C be its semantic model. A X-definable subset of

C' is called a Jonsson set for the theory T, if del(X) = M, M € Er. A theory Thy3(M) is called a
fragment of the Jonsson set X.
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Some research methods, where this notion is used, are revealed in [9].
The following class of theories was specified by Yeshkeyev A.R.

Definition 7. [10] A theory T is called existentially prime, if APpN Ep # (), where APr is the class
of algebraically prime models of 7.

Let T be a Jonsson theory and S7(Y') be a set of all existentially complete n-types over Y that are
consistent with 7', for any finite n.

Definition 8. [11] A Jonsson theory T is J — A-stable if for any T-existentially closed model A and
for any subset Y of A from the inequality |Y| < \ it follows that |S/(Y)] < \.

In [11], the authors proved the following result that shows the connection between Jonsson stability
and stability in the classical sense.

Theorem 4. [11] Let T be a perfect Jonsson theory and let T be complete for existential sentences.
Let A > w. Then the following statements are equivalent:

1) T is J — A-stable;

2) T* is A-stable, where T* = Th(C'), C' is a semantic model of T.

Let L be a first-order language of a signature o and let K be a class of L-structures. Then we can
consider a Jonsson spectrum for K, which can be defined as follows.

Definition 9. |5] A set JSp(K) of Jonsson theories of L, where
JSp(K) = {T |T is a Jonsson theory and K C Mod(T)},

is called a Jonsson spectrum of K.

Jonsson spectra are well-described in [12]
Let T1 and 75 be Jonsson theories, T} and T35 be their centres, respectively.

Definition 10. |2; 40] T} and T, are said to be cosemantic Jonsson theories (denoted by 77 > T3),
it T =T5.

It is easy to see that the relation of cosemanticness between two Jonsson theories is an equivalence
relation:

1) this relation is reflexive since for every Jonsson theory T' the equation T% = T™* holds,

2) it is symmetric as soon as, for any Jonsson theories 71 and Tb, if T} = T3 then T = T7,

3) finally, ” b ” is transitive, that follows from the fact that, for any Jonsson theories T3, T» and
T3, i Tf =Ty, Ty = T3 then T =T3.

This means that, when introducing the relation of cosemanticness on the Jonsson spectrum JSp(K),
we get a partition of JSp(K) into cosemanticness classes. The obtained factor-set is denoted by
JSp(K) />

Now let us consider the notion of a semantic Jonsson quasivariety. One should note that this concept
differs significantly from the concept of a Jonsson quasivariety introduced in [13].

Let K be a quasivariety in the usual sense as in [14; 269]. We construct a set V3(K), where V3(K)
is a set of Jonsson theories and obtained as follows:

VI(K) ={Th(K) U ¢ |y is an V3-sentence and ¢ UTh(K) is consistent}. (1)

In other words, the set V3(K) = {711, 15, ...} is a list of all Jonsson theories that satisfy Condition 1.
Then Cj is a semantic model of T; from this list. Let us consider the following set:

JK = {C;| C; is a semantic model of T;, T; € VI(K)}.

Definition 11. The set JK is a semantic Jonsson quasivariety, if the theory T°(JK) = Thys(JK)
is Jonsson.
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The theory T°(JK) is called a Kaiser hull of the class JK.
Definition 12. A set of theories JSp(JK), where

JSp(JK) = {T°(JN)| N is a subquasivariety of K},

is said to be a Jonsson spectrum of a semantic Jonsson quasivariety JK.

2 Central types for cosemanticness classes of JSp(JK)

In this section, we consider the Jonsson spectrum of a semantic Jonsson quasivariety from a position
of central-orbital types and existential primeness. The main definitions and facts related to central type
can be found in the papers of the first author Yeshkeyev A.R., for example [15-17]. A special role is
played by the work [18] where the author defined the notion of central-orbital type for the Jonsson
case by analogy with [19]. Here we apply the results of [18] to semantic Jonsson quasivarieties.

Currently, the class of Jonsson quasivarieties is not studied well enough. Generally speaking, in
contrast to the case of complete theories, the apparatus for studying incomplete theories (including
Jonsson ones) is not developed at a sufficient level. This is why we have to restrict this research by
introducing some specific conditions.

First of all, we have to refine that all the Jonsson theories in this section are hereditary (Definition
5) by our assumption.

Another necessary restriction is formulated by the following definition.

Definition 13. The center T of a Jonsson theory T is said to be fragment-conservative if the
semantic model of any fragment of T is an existentially closed submodel of the semantic model C' of
T.

Further in this paper, we work with Jonsson theories whose centers are fragment-conservative.

We work in a first-order language L of a signature o. Let JK be an existentially prime semantic
Jonsson quasivariety, which means that the theory T°(JK) from Definition 11 is existentially prime as
it is described in Definition 7. Let JSp(JK) be a Jonsson spectrum of JK. We introduce the relation
of cosemanticness on JSp(JK). In this manner, we have a factor-set JSp(JK) ., consisting of all
Jonsson theories that satisfy Definition 12. Let us consider some class [T /g € JSp(JK) /0. Let C be
a semantic model of each theory T € [T] ., X € C be a Jonsson set.

To consider the properties of JK and JSp(JK) through constructing the central type for the
cosemanticness classes, firstly we need to enrich the signature o by new constant ¢ and predicate P
symbols as follows.

Let or(X) = 0 U {cs,a € X}UT, I' = {P} U {c}. We consider a class of theories [T'{] in the
new enriched signature or(X) for each cosemanticness class [T ., where T ¢ € [T§] is constructed as
follows:

T)C(j =TU ThVH(C7 a)an U {P(Ca)v ac X} U {P(C)} U {Pv g}

Here P is a new l-ary predicate symbol interpretations of which are an existentially closed submodel
M of the semantic model C, i.e. P(C) = M,M € Er, T € [T .

As soon as any theory T' € [T'] ., is hereditary by our assumption and the introduced enrichments
are permissible, every theory T)(g in the class [T )(g | is also Jonsson. Therefore, there is a semantic model
C’ for [T§]. It is easy to see, that the semantic models of the theories from [T'{] coincide, so we denote
it by C". Let T" = Th(C") be a center for the class [T¢]. Now we will consider the theory 7" in a
restricted signature op(X)\{c} so that 7" becomes a complete type of c.

Definition 14. A complete type described above is called a central type for the Jonsson theory T
with respect to the Jonsson set X (denoted by pg)
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In case when a central type coincides with an orbital type of a Jonsson theory the obtained type is
called a central-orbital type. Some properties related to central-orbital types of a Jonsson theory are
considered in [18]. Since a central-orbital type is central and orbital at the same time, all statements
that are connected with central types and mentioned in this section can be considered in terms of
central-orbital types.

Here we work with the cosemanticness classes of theories, not single theories. Taking into consideration
this fact and the results from [18], we can get the following theorems.

Theorem 5. Let JK be an existentially prime semantic Jonsson quasivariety, JSp(JK) be its
Jonsson spectrum, [T]/q € JSP(JK) o, T; € [T])pq (i € I), T* is a center for the class [T /.. Let
X; be Jonsson sets for the theories T; respectively, dcl(X;) = M;, M; € Er,. [Tg] is the class of the
theories in the enriched signature as it is described above. If A\ > w, then T™ is J — A-stable if and only
if S is A-stable for any theory S € [T$].

Proof. The proof follows from Theorem 4 from Section 1 and Theorem 1 from [18], applying this
result to each arbitrary theory from [T$].

The following result demonstrates the connection between the categoricity of a center for the
cosemanticness class of Jonsson fragments and the categoricity of the corresponding theories in the
enriched signature. Here we need to introduce the following notation. Let a cosemanticness class [T
consist of theories T;,7 € I. As soon as all theories are inductive, for any T; there exists a non-empty
class of existentially closed models E7,. For each 7, we consider a Jonsson set X; such that a model
M; € E7, is a definable closure of X, i.e. del(X;) = M;. After this, we can construct a theory Thyz(M;),
which is called a Jonsson fragment of the Jonsson set X;, for each theory T;. Thus we get a class of all
Jonsson fragments for the corresponding cosemanticness class [T] /sa- We denote the obtained class by
[T'x]. Note that every theory in this class is Jonsson, which means that it has a semantic model. It is
easy to see that the semantic models for each Tx € [T’x]| coincide, so let us denote the center for this
class by T%.

The following lemma is true for [T'x| because of heredity.

Lemma 1. Every theory Tx € [T'x] is Jonsson in the new signature op(X).

Theorem 6. Let K be an existentially prime semantic Jonsson quasivariety, JSp(JK) be its Jonsson
spectrum, [T g € JSP(JK) ), T; € [T] )50 (i € I), T* is a center for the class [T] /., and let [Tx] be
as it is describe above. Then T% is w-categorical if and only if each S € [T)(g] is w-categorical.

Proof. The proof can be obtained by applying Theorem 2 of [18] to arbitrary theories of the
mentioned classes.
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Existentially prime Jonsson ...

A.P. Emkees, U. O. Tyurymbaesa, C. M. AmanbexkoB

Axademur E.A. Boxemos amuvindazv. Kapazandv ynusepcumemi, Kapazandw, Kasaxcman

DK3UCTEHINAJIJIbI »Kail MOHCOH/IBIK KBAa3UKOIITYPJIJIIKTED >KoHe
OJIapJbIH, MOHCOHJBIK, CIIEKTPJIePi

Makaua xaHa IpeIUKATTHIK K9HE TYPAKTHI CUMBOJIIAPMEH OAfbIThIFAH CHTHATYPAIAFbl HOHCOHIBIK, KBa-
3UKONTYPJLIiKTepAl 3eprreyre apHajrad. CeMaHTUKAJIBIK HOHCOH/IBIK KBa3UKOITYPJIJIIKTED MEH HOHCOH-
JIBIK, TEOPUSHBIH (bparMeHT-KOHCEPBATHBTLIIN TypasIbl KaHa TYCiHIKTep eHrizimmi. MIOHCOHIBIK KBaSHKeI-
TYPJIIIKTEp YIIiH KYyPBbLIFAaH HOHCOH/IBIK, CIEKTP/IIH KOCEMAHTThI KJIaCTapbl KAPAaCTHIpbUIFaH. Byt xxarmaii-
I HOHCOHTBIK, KBAa3HKOITYp/IitikTiH Kaiizep KaObIKIIACH 9K3UCTEHIIAT BT JKail el yifrapblaapl. MoHCoH-
JIBIK, CIIEKTP/IiH, TEOPUsI KJIACTAPHI YIMH IIEHTPJIK TUITI KYPY apKbLIbI KeJIeCi HOTUKeIep TYKBIPhIMIAJIbI
JKoHe Jpsesaer i. Bipinmi Herisri HoTHXKele SK3UCTEHIINAJIIbI YKail HOHCOHIBIK KBa3UKOIITYPJILIKTIH KO-
CEMaHTTBI KJIACBHIHBIH, IEHTPl A-TypakThbl GOJIybl VIIIH KA’KETTI YKOHE YKETKIJTIKTI IapTTap KeJTipiareH.
Exinmi #Horurke, 6afbITBHIIFAH TIIAIH TEOPUsIap KJAChl IEHTPIHIH w-KATErOpPUSILIFBIHBIH, KPUTEpuiii 60-
JIBII TabbLIaIbl. AJIBIHFAH TeopeMaJjap opTYpPJ HOHCOHIBIK, ajrebpajapibl, aral afTKaHJIa, HOHCOHJIBIK,
KBa3UKOUTYPJITIKTED/Il 3epTTEY/ >KAJFACTBIPY YIIiH Maii1aabl 60JIybl MYMKIH.

Kiam cesdep: HOHCOHIBIK TeOpHUsi, KEMeJ HOHCOHIBIK, TEOPHs, KONTYPJIIIIK, KBA3UKOUTYPJILIIK, CEMAHTHU-
KaJIbIK HOHCOHIBIK, KBa3UKOIITYPJILIK, HOHCOHIBIK, CIIEKTD, SK3UCTEHIINAJIIBI YKall CIIEKTD, IEHTPAJIb/I THII,
opbUTAIBII THUII, IEHTPAJIbII-OPOUTAIBII TUTI, HOHCOHIBIK YKUBIHHBIH (DparMeHTTEDI.

A.P. Emkees, 11.0. Tynarymbaesa, C.M. AmanbexoB

Kapazandunckutl ynusepcumem umeny axademura E.A. Byxemosa, Kapazanda, Kaszaxcman

SKBI/ICTQHI_II/IaJIbHO IIPpOCThIE IHOHCOHOBCKIUE KBaSI/IMHOI‘OO6paBI/I$I n
X MMOHCOHOBCKHE CIIEKTPbI

Crarbsl OCBAIIEHA U3y YEHUIO HOHCOHOBCKUX KBA3WMMHOI00OPa3uil B CUrHATYpe, ODOrallleHHOW HOBBIM IIpe-
JIUKATHBIM ¥ KOHCTAHTHBIM CUMBOJIAMU. BBe/IeHbI HOBBIE TIOHSATUSI CEMAHTUYECKOIO0 HOHCOHOBCKOTO KBa3W-
MHOT000pa3ust 1 pparMeHT-KOHCEPBATUBHOCTH TIEHTPa HOHCOHOBCKOW TeOpwHu. PaccMOTpeHbI KIacChl Koce-
MaHTUYIHOCTA HOHCOHOBCKOI'O CIIEKTPA, IIOCTPOEHHOIO JIJIsi HIOHCOHOBCKOrO KBazuMHOroobpasus. [Ipu srom
obostouka Kaifzepa HOHCOHOBCKOI0 KBa3MMHOIr00Hpasnsi MPe/IIIoJIaraeTcs 9K3UCTeHInaIbHo npocroit. C mo-
MOIIBIO TTOCTPOEHUSI IEHTPATBHOTO THIIA i KJIACCOB TEOPWiIl M3 MOHCOHOBCKOTO CIIEKTpa (hOpMysIHpy-
IOTCsl ¥ JOKA3BIBAIOTCS CJIEMYIONIME PEe3y/IbTaThbl. B IIepBOM OCHOBHOM pe3yJIbTaTe MPUBEIEHO HEOOXO/u-
MO€e U JIOCTATOYHOE YCJIOBHE JIJIsI TOTO, YTOOBI IIEHTP KJIACCa KOCEMaHTUIHOCTH IK3UCTEHIUAJILHO IIPOCTOrO
MOHCOHOBCKOTO KBa3WMHOT00OPa3Us SIBJISIJICS A-CTaOMILHBIM. BTOPO pe3ysbTaT sIBJASETCS KPUTEPUEM w-
KaTeropuvHOCTH IIEHTPA, KJIACCa TeOpUil 060raIieHHoro sa3bika. [losydeHHbie TeopeMbl MOTY T ObITh IOJIE3HbI
JIJIsI TIPOJIOJIZKEHUST UCCJIEOBAHNN PA3IMIHBIX HOHCOHOBCKUX aJiredp, B 9aCTHOCTH, HOHCOHOBCKUX KBA3WM-
HOrooOpa3uii.

Karouesvie caosa: HOHCOHOBCKAsI TEOPHSsI, COBEPIIIEHHAs] NOHCOHOBCKAsl TEOPHsI, MHOrooOpa3ue, KBa3HMHO-
roobpasue, CeMaHTUIECKOEe HOHCOHOBCKOE KBa3MMHOIOOOpPa3ue, MOHCOHOBCKMN CIEKTD, SK3UCTEHIINAIHHO
IpOCTasi TEOPUsi, EHTPAJBHBIA TUIl, OPOUTAIBLHBIA THII, IEHTPAJIbHO-OPOUTAIBHBIN TUII, (DparMeHThbl HOH-
COHOBCKOI'O MHOXKECTBA.
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