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DEAR READER!

We present you the 100th anniversary edition of the
"Bulletin of the Karaganda University". "Bulletin of the
Karaganda University" is the scientific periodical is
aimed at publishing in the open press the results of re-
search in various fields of science by scientists from Ka-
zakhstan and other countries. The purpose of the journal
is to create an effective environment for the exchange of
important scientific and educational information, to ac-
quaint the international scientific community with new
methods and ideas. The journal is included in the list of
publications recommended by the Committee for Control
in Science and Education of the Ministry of Education
and Science of the Republic of Kazakhstan for publica-
tion of the main results of scientific activity.

The journal was first published in 1996 in two series
("Humanities" and "Natural Sciences"), since 2004
"Mathematics"; "Physics"; "Chemistry"; “Biology. Medicine. Geography.”; "Economics"; "Peda-
gogy"; "Philology"; "History. Philosophy. Law" published materials in eight series, and in 2010 the
ninth series was added.

Since 2015, the series "Chemistry", "Physics", "Mathematics" of the journal "Bulletin of the
Karaganda University" are included in the platform "Emerging Sources Citation Index (ESCI)" of
the international database Web of Science Core Collection. Currently, the Bulletin of the Karaganda
University is a prestigious publication that publishes 9 series of research papers in the CIS and
Germany, Poland, China, Egypt, Turkey, India and Pakistan, in addition to research on topical is-
sues by domestic scientists. The journal's personal website in 3 languages, complying with interna-
tional standards, contains the policy of the editorial board, the requirements for online submission
of articles and online peer review. All articles published in the journal are assigned a digital object
ID. The journal cooperates with leading Kazakhstan and foreign library systems and databases,
which in turn provides quick and open access to published materials.

We have a clear signature in the development of science and education of our independent
country. I believe that such a rise to the heights of prestige is the result of many years of hard work,
constant search and tireless progress. I am convinced that the publication, which has made the solu-
tion of the most pressing problems facing humankind its eternal and noble goal, will continue to be
the herald of scientific discoveries. We would like to express our gratitude to all the authors and re-
searchers who have contributed to the growth of the scientific potential of the journal, and sincerely
congratulate you on the publication of the 100th anniversary edition!

Chairman of the Editorial Board
Corresponding member of NAS RK,
Doctor of Law,

Professor N.O. Dulatbekov
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A.T. Assanoval*, Zh.S. Tokmurzin?®

! Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
2K.Zhubanov Aktobe Regional State University, Aktobe, Kazakhstan
(E-mail: assanova@math.kz; tokmurzinzh@gmail.com,)

Method of functional parametrization for solving a semi-periodic
initial problem for fourth-order partial differential equations

A semi-periodic initial boundary-value problem for a fourth-order system of partial differential equations
is considered. Using the method of functional parametrization, an additional parameter is carried out and
the studied problem is reduced to the equivalent semi-periodic problem for a system of integro-differential
equations of hyperbolic type second order with functional parameters and integral relations. An interrelation
between the semi-periodic problem for the system of integro-differential equations of hyperbolic type and
a family of Cauchy problems for a system of ordinary differential equations is established. Algorithms for
finding of solutions to an equivalent problem are constructed and their convergence is proved. Sufficient
conditions of a unique solvability to the semi-periodic initial boundary value problem for the fourth-order
system of partial differential equations are obtained.

Keywords: semi-periodic initial boundary-value problem, fourth-order system of partial differential equations,
the method of functional parametrization, semi-periodic problem, system of integro-differential equations
of hyperbolic type second order, family of Cauchy problems, algorithm, unique solvability.

Introduction

In the present paper, on the domain ©Q = [0,7] X [0,w] we consider the following semi-periodic
initial boundary value problem for a fourth order system of partial differential equations

4u 3U 3 2 2

5?38:5 - Al(t,x)afza + As(t, x)gtg + As(t, x)th + Aglt, @) ot
+As(t, x)‘?)t + Ag(t, x)gz + Ar(t,z)u+ f(t, @), (1)
u(()?x) = g01<l’), S [va}v (2)
D)= o), w0l ®)

2 2

- P (@
u(t,0) = (),  telo,T], (5)

where u(t,z) = col(uy(t,z),...,un(t,x)) is unknown function, the n x n matrices A;(t,z), (i = 1,7),
and n vector—function f (¢, x) are continuous on ; n vector—function v (t) are continuously three times
differentiable on [0, T']; the n vector—functions ¢;(x) and pa(x) are continuously differentiable on [0, w].
Let C(£2,R™) be a space of continuous on 2 vector functions u(t,z) with the norm
lullo = masx Jlu(t, o), lfu(t, 2)]] = ma Jus(t, 2)].

) 1=

,n

*Corresponding author.
E-mail: assanova@math.kz
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A.T. Assanova, Zh.S. Tokmurzin

A function u(t,x) € C(2,R") having partial derivatives

ou(t, ) oy Ou(t, ) o O%ult, o) . O%ult, o) n
5 € C(,R"), 9 € C(Q,R"), 590 © C(2,R"), 92 € C(Q,R"),
OBu(t,z) oy OBu(t, x) o Otult, o) "
W EC(Q,R ),T GC(Q,R ),m EC(Q,R ),

is called a classical solution to problem (1)—(5) if it satisfies system (1) for all (¢,x) € €2, and the initial
and the boundary conditions (2)—(5).

Mathematical modeling of various processes in physics, ecology, chemistry, biology and others are
leaded to initial - boundary value problems for a higher-order partial differential equations with variable
coefficients and boundary functions [1, 2]|. Despite the presence of numerous works, general statements
of initial-boundary value problems for the higher-order system of partial differential equations remain
poorly studied up to now. Therefore, the problems of solvability of initial-boundary value problems for
the fourth-order system of partial differential equations are important in applied problems [1-8|. Some
classes of initial-boundary value problems for systems of fourth-order hyperbolic equations are studied
in [4-8|.

Aim of the paper is to study issues for an existence and uniqueness of classical solutions to the semi-
periodic initial boundary value problem for the fourth-order system of partial differential equations
(1)—(5). We will establish coefficient criteria for its unique solvability and construct algorithms for
finding its approximate solutions. For reaching this goal, we use method of functional parametrization
[9-19] for solving the problem (1)—(5).

2
First, we introduce a new unknown function w(t,x) = aua(;’x) and rewrite problem (1)—(5) in
the following from
0w ow ow
50 Al(t,a:)% + Ag(t,x)a + As(t, x)w + f(t,z)+
0?u ou ou
+A4(t, $)% + As(t, $)a + As(t, l‘)% + A7 (t, 2)u, (6)
w(0,z) = w(T, z), x € [0,w], (7)
w(t,0)=¢(t), tel0,T], (8)
o t t T
a—? = pa(x) —i—/ w(r,z)dr, u(t,z)=pi1(x)+1t-p2(x)+ / / w(T,x) drdr, 9)
0 0o Jo
0?u L ow(r, r) ou T ow(m, )
_ . D, . . . X 1
prE Pa(z) + /0 B dr, 5 o1(z) +t - pa(z) + /0 /0 B drdr (10)

A solution of problem (6)—(10) is a function w(t,z) € C(2,R™) having partial derivatives % €

e C(Q,R"™), % e C(Q,R"), 82{;’2(8?) € C(Q,R"™), where the function wu(¢,z) and its partial

derivatives 8“((91@), aua(ijm) and 828%%531) are determined from integral relations (9), (10).

The method of functional parametrization is based on the introduction of additional parameters
as the value of the desired solution on the line t = 0 of the domain 2. The semi-periodic boundary-
value problem for system of hyperbolic equations with integral conditions (6)—(10) is reduced to an
equivalent semi-periodic problem for the system of integro-differential equations of hyperbolic type
with functional parameter depending on x. The properties of solution and its partial derivatives pass
into the properties of functional parameter. Using this method, we obtained coefficient conditions for
the unique solvability of semi-periodic initial boundary value problem for the fourth-order system of
partial differential equations (1)—(5).

Different types of initial-boundary value problems for some classes of fourth-order system of partial
differential equations are studied in [20-22] by introducing additional new functions.

6 Bulletin of the Karaganda University



Method of functional parametrization...

Scheme of the method functional parametrization without partitioning of the domain

We denote by A(z) = w(0,z) and in problem (6) — (10) make the change w(t,z) = w(t,x) — A(x).

Then, the integral relations (9) and (10) have the following form
du(t !
“ét’x) = @g(z)+t-)\(:c)+/ @(r, ) dr, (11)
0
t2 t T
u(t,z) = p1(z) +t- pa(x) + 5 Az) + / / w(r1,x) drdr, (12)
0o Jo
0%u(t, x . tow(r, x
m(am):S@( )+t Ax) + /(]()dT, (13)
Ou(t 0w
uéf) = ¢1(2) +t- pa(z )+— A / / = Tl’ drydr. (14)

Further, in system (6) instead of functions augt’x), u(t, z) g (;gf) and % we substitute their

representations from (11)-(14), respectively. We get the following equivalent nonlocal problem for
system of integro-differential equations of hyperbolic type with an unknown function A(z) :

O*w

0
oo~ Mt:7)

9w
ox

t ~
+ As(t,x 8t + As(t, 2)d + Ag(t, x)/ Ob(r.z) 4oy

)6 0 ox

¢ U T 94 t pT
+A;5(t, x) / w(T, ) dr + Ag(t, x) / / M dridr + Az (t, x) / / w(r, x) drndr+
0 0o JO

2

it 2) + st 2+ Ag(t 2 2} )+ [As(t, @) + As(t, )t + At x)’;}A(xH
+f(t,2) + 91(t, @) + g2(2, @), (15)
w(0,2) =0,  x€0,w], (16)
w(t,0) = w(t) $(0),  te[0,T), (17)
w(T,z) = z € [0,w], (18)
where  g1(t, ) = As(t, 2)pa(x) + As(t, x)pa(x )
92(t, ) = Ag(t, 2)[p1(z) + 1 - p2(z)] + A7 (L, z)[p1(2) + T - pa(2)].
The compatibility condition is valid:
A0) = 4(0). (19)

Problems (6)—-(10) and (15)—(18) are equivalent in the sense that if the function w(¢, x) is a solution
of problem (6)—(10), then the pair {\(z) = w(0,x),w(t,z) = w(t,x) — w(0,z)} will be a solution of
problem (15)—-(18), and vice versa, if a pair {A(x), w(¢,z)} is a solution to problem (15)—(18), then the
function {\(x) + w(t,z)} will be the solution to problem (6)—(10).

For fixed A(z), A(z) the function @(t, x) is a solution to the Goursat problem on € with conditions
(16), (17). From (16), (17) we obtain % =0, % = 1 (t) and reduce the Goursat problem to
an equivalent system of three integral equations

du(t,z) _/O [AI(T’ w)f)@éﬂm) + AQ(T,x)ang’“") + A (1, z)u(r, w)]dTJF

ox T

t T ~ T
+/ [A4(T,x)/ &U(aﬁ’:n) dr + A5(T,:E)/ w(, ) dﬁ] dr+
0 0 0

X

Mathematics series. Ne 4(100) /2020 7



A.T. Assanova, Zh.S. Tokmurzin

t T T1 ~ T T1
—I-/ [A(;(T, x)/ / awg%x)drgdﬁ +A7(T,x)/ / w(72, ) d72d7'1:|d7'—|—
0 o Jo T o Jo

/Ot [Al(T ) + Au(r, 2)7 + Ag(T, 7) Q}dm( )+ /Ot [Ag(T ) + As(r, 2)7 + Aq(7, ) Q}dM( )+

+ / F(7.2) + 1(7, 2) + ga(r, 2)]dr, (20)
0

WD =G0+ [ [0 4 a9 e Ot )] aer
+ / ' [A4(t,§) / %égg) dr + As(t,€) /O w(r, €) dﬂd&

0 0
+/OI [A6(t,§) /Ot/OT&Dgg’OdndeLAﬂt,f) /Ot /OTw(ﬁ,g) dﬁdT}d&—l—

+/0x [Al(t,é) +A4(t,£)t+A6(t,g)t22p(g)d5+/09” 2

[A5(t,€) + As(t, )t + A1(1,€) S | Mg+

n /0 "L ) + 91(6,€) + galt, e, (21)
i L = 9 (r, €)
alta) = (0~ )+ [ 2R (2)

Instead of 811;6(7,@ , 8@&);1 ) , 811}(87;’1:) we substitute the corresponding right-hand side of (20) and,

repeating this procedure m(m = 1,2, 3, ...) times, we obtain

ow ‘ ow ow
oo = Du(t.2) - A@) + Bn(t,2) - MN2) 4+ Gon (12, 50 ) + Hin (12, 52,0) + Funlti2), (23)

where

-
=
8
S~—
\H-
N

o
—~
E‘
Ef
=
+
\
:L
&
8
S~—
h
N
o
—~
S
~—
IS
I}
IS
f
4

m—1
=+ +/ Aq(m, / A1 (T, x)dTp,...dT1,
t _
E,(,P(t $> /A?;(Tla )d7'1+ +/ Al(Tl, )/
0 0

m—2 Tm—1 7y
G(l t Ty, —— / Al 7'1, / Al(Tm_l,l’)/ Al(tm,m)WdTm...dn,
0 xr

—2

Tm—1
Al(Tml,az)/ As(Tm, z)dTp,...dT1,
0

ow t ow
(1) YN v ~
Hy, (t,x,w, v ) = /0 [Ag(11, ) ) + Asz(m1, z)wldm + ...+

8 Bulletin of the Karaganda University



Method of functional parametrization...

t Tm—2 Tm—1 Ol
+/ AI(TI%U)---/ Al(Tm1,$)/ [Az(Tm,x)iw—I—A3(7‘m,x)w]d7'm...d7‘1,
0 0 0 0Tm
t t T —2 Tm—1
F,(nl)(t,x):/ f(ﬁ,:v)dﬁ—i—...—i—/ Al(ﬁ,x).../ Al(Tml,x)/ F(rm @)y,
0 0 0
¢ ¢
D(Q)(t x) / A4(7’1, ) 7’1d7’1 +/ A4 7'1, / / A4 ’7'3, ) 7'3d7'3d7’2d7'1+
T2m—3 T2m—2
/ Ay(m, / / Ay(rs, x / / Ay(Tom—1, ) Tom—1dTom—1dTom—2...dT1,
0 0
¢
ED(t,7) = / As(r1, 2)mdr + ot
T2m—5 T2m— 4 T2m—3 T2m — 2
-l-/ Ay(Ti, @ / / 4(Tom—3, / / 5(Tom—1, &) Tom—1dTom—1...dT1,
aw T2m—3 T2m— 2 T2m—1 8,11)(7-2 :L-)
(2) g TEN2my )
G <t Z, 6:1:) /A4 71,2 / / TQm 1,L )/0 8:6 dTQm...dTl,

t
H2) (¢, 2, w) = /A5(Tl, )/ (7o, z)drodT + .. +/ Ay, ).
0

T2m—5 [T2m— 4 Tom—3 [T2m— 2 2m—1
. / / TQm 3, / / TQm 1, )/ w(7—2m7-7;)d7_2m-~-d7_17
0 0 0

FO(t z) = /gl(ﬁ, D)+ ot

0
t T2m—5 T2m—4 T2m—3 T2m—2
+/ A4(T1,96)---/ / A4(sz—37ﬂf)/ / 91(Tem—1,2)dT2m1...dT1,
0 0 0 0 0
t 7_2
DR (t,z) = [ Ag(ri,a) - Tam+
0
t T T2 T3 7_2 t
+/ Aﬁ(ﬁ,x)/ / / A6(T4,x)‘24d7'4d7'3d7'2d7'1+...+/ AG(Tl,.T)
T3m—8 T3m—T T3m— 6 T3m—5 T3m—4 T3m— 3 3 _
/ / / 6(T3m—5,T / / / 6(T3m—2,T)—5— 5 2 dr3m—2...dT1,

Eg)(t,x):/ A7(7‘1,:C)T21d7'1—}—_,,—|—/ A6(7'17$)-~

T3m—8 [T3m—7 [T3m— 6 T3m—5 [T3m—4 [T3m— 3 ?? B
/ / / 6(T3m—5, / / / 7(T3m—2,2) —o— 5 2 dT3m—o...dT1,
G<3>< 7) _
" Ox
T3m—5 T3m—4 T3m— 3 T3m—2 T3m—1 8
/AG T, T / / / 6(T3m—2,T / / wT3m’ )d7'3m dr,
T3m—8 T3m—T

HP (t,2,w) = /A7 T, T / / W(T3, v)dm3dT2dT) + .. +/ Ag(1,x / /

T3m— 6 T3m—5 T3m—4 T3m— 3 T3m—2 T3m—1
/ 6(T3m—5,T / / / 7(T3m—2, / / W(T3m, )dT3m...dT1,
0

Mathematics series. Ne 4(100),/2020
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t
F,Sf’)(t, x) = / g2(m,x)dm + ..+
0

t T3m—8 [T3m—7 [T3m—6 T3m—5 [T3m—4 [T3m—3
—I—/ AG(Tl,l‘).../ / / AG(Tgm_g,,I)/ / / gg(Tgm_g,l‘)dTgm_Q...dTl.
0 0 0 0 0 0 0

Assumptions regarding the data of problem (6)—(10) allow us to differentiate relation (18) with respect

to x:
Ow(T, x)

Ox
Relation (24) will be equivalent to relation (18) if the compatibility condition (19) is satisfied.
From the right-hand side of (23), finding the value of w(¢,x) for t = T and substituting it in (24),
we obtain a system of n ordinary first-order differential equations that are not resolved with respect
to the derivatives:

= 0. (24)

Din(T, ) - M) = —Em(T, ) - M) — G (T, z, Z‘j) —H, (T, z, %t”, w) ~ Fp(T,z).  (25)
For fixed g—g’, %—f, w system of differential equations (25) with initial condition (19) is the Cauchy
problem with respect to A(z) for all z € [0,w]. We solve the Cauchy problem (25), (19) using the
fundamental matrix.

Let the matrix D,, (T, z) be invertible for all € [0,w] and ®(x) the fundamental matrix to system

of differential equations
d\(z)

dz

We re-write system (25) in the following form

= —[D(T, 2)] ' En(T, z) - A(z). (26)

- . o O
_ -1 . _ Iy
M) = = [Du(T,2)) " Bn(T,2) - Ma) - P(Toa, 50 S0 )), (27)
where
. on b N\ . o o
F(T,x,%, a,w) = —[Dp(T, 2)] {Gm<T,x, %> +Hm<T,x,a,w> +Fm(T,x)}.

A solution to the Cauchy problem (27), (19) is written as

Aa) = B(@)0) + #(a) [0 UOF (1.6 55, 5

@D)df, x € [0,w].

Thus, the invertibility of the matrix D,, (T, x) for all z € [0, w] allows us to find a solution to the original
problem (1)—(5) by using the fundamental matrix of a system of ordinary differential equations (26)
and constructing solutions to the Goursat problem (15)—(17).

Note that a similar technique was applied to the semi-periodic boundary value problem for systems
of quasi-linear and semi-linear hyperbolic equations of second-order in [23-24|. These problems were
reduced to an equivalent problems, consisting of a family of periodic boundary-value problems for quasi-
linear and semi-linear ordinary differential equations, respectively, and functional relations. To solve a
families of periodic boundary-value problems for ordinary differential the parametrization method were
used. Algorithms for finding periodic boundary-value problem’s solution for systems of the quasi-linear
and semi-linear system of hyperbolic equations are offered. To construct the algorithms were used a
solutions to families of Cauchy problems for systems of ordinary differential equations and systems of
functional equations with respect to the introduced parameters. This approach allowed to establish
sufficient conditions for the existence of an solution to considered problems.
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Algorithm for finding solution to problem (6)—(10)

As well-known, the fundamental matrix can be constructed for a narrow class of differential
equations. Therefore, we propose an algorithm for finding an approximate solution to problem (6)—(10)
without using the fundamental matrix.

So, the method of functional parametrization divides the process of finding unknown functions into
two stages:

1) finding the introduced functional parameter A(z) (A(z)) from system (25) with condition (19).

. . ow(t,x) Ow(t,z)
2) finding unknown functions =5 =, 5~

(20)—(22).
If the functions A(z), A(z) are known, then we will find the functions 8w£§i’$), 813(.5';’36), w(t, x) to
solve the system of integral equations (20)—(22), and the function A\(x) 4 w(¢, ) will be the solution to

problem (6)—(10). If the functions %, %, w(t, x) are known, then solving system of differential

, w(t,z) from the system of integral equations

equations (25) with condition (19), we find A(z), A(z) and again determining the sum of the functions
A(z) + w(t,x) we find a solution to problem (6)—(10).

Here unknown are both the functions /\(ac), A(z) and the functions ama(i’x), 815(%?1), w(t, x).
Therefore, we use an iterative method and the solution to system of integral equations (20)-(22) and the
Cauchy problem (25), (19) is found as the limits of the sequences {A(z), A(x), dwa(;’x), 8w§i’$) Jw(t, o)},
determined by the following algorithm:

Step 0. Assuming on the right-hand side of (25) A(z) = &(O), aw{éi’x) =0, aw(t ) — v (t),
w(t,z) = P(t) — w(O), and taking into account the invertibility of the matrix D ( ,a:) for all
z € [0,w], we find A9 (x) from equation (25). Using conditions (19) we find the function

AO(2): AO)(z) = ¢(0) + [AO(€)d¢, =z € [0,w]. From the system of integral equations (20)-(22),
0

where A(z) = AO(z), A(z) = AO(z), we define the functions aw(g)m(t’z), aw(gt(t’w),w(o)(t, x) for all
(t,x) € Q.

Step 1. From equation (25), where on the right-hand side of A(z) = A(©)(z), 8w(9(;’$) = 815(08)5’”6),
8@&,93) = am((gt(t’x), w(t, x) = 0O (t,z), by virtue of the invertibility of D,, (T, z) for all z € [0,w], we
find AM) (z).

Using conditions (19) again, we find the function AV (z) = )+ [y AD()de,  z € [0,w)].

= ()( ) e )*)\(1)( ), we define the

From the system of integral equations (20)—(22), where A(z)

functions aw(gaft’x), 8w(gt(t’$), @M (t, ) for all (t,x) € Q.
And so on.
~ = (k—1
Step k. From equation (25), where on the right-hand side of A(z) = A*~1(z), 8“’8(;’96) = odl 895) (t.2)
8w(t z) _ oot dz) (ta) w(t,z) = w1V (t, z), by virtue of the reversibility of Dy, (T, x) for all z € [0,w]

we ﬁnd AB) ().

Using conditions (19), we find the function A\(*)(x
system of integral equations (20)—(22), where A(z) =
000 (te) 00T(La) (k) (¢, 7) for all (,3) € Q.

Here Kk =1,2,3,... .

The following statement gives conditions for the convergence of the proposed algorithm and the
unique solvability of problem (6)—(10) in terms of the initial data.

) = (0) )+ Iy AR (€)de, x € [0,w]. From the
AE) (), A(z) = A )( ), we define the functions

Theorem 1. Suppose that for some m,m = 1,2,3, ..., the n X n -matrix Dy, (T, x) is invertible for
all z € [0,w] and the following inequalities hold:
a) |[[Dim(T, 2)] 7| < 4T, ), and v (T, ) is a positive continuous function for all x € [0,w];
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b) g (T, 2) = Y (T, 2) {ea(x)T —1-a@) —..— L[a(x)T]m} <y<l,

m!

where a(x) = ma (141 (,2)]|.[14a(t. )] || Aot ), x is constant

)

Then there is a unique solution w*(t,x) to problem (6)-(10), determining by equality

w*(t,x) = N (x) + w* (¢, )

with .
P =) e N @+ [ @),
ot
u*(t,z) = p1(x) +t - pa(x) + / / (11, x) dmidr,
0%u*(t, x . . ow
875((9z):@2()+t)\() /()dT,
ou*(t, ) ) . Ouw* (1, z)
) i@+t + 5 e+ [0
x
where  A\*(x) = lim A\(®)(z), M(z) = lim A®)(z) forall ze [O,w],
k—o0 » k—o0 .
w*(t,x) = lim @®) (¢, z), awT(wt’m) = lim W for all (t,z) € L.
k—o0 k—o0

Proof of the Theorem 1 is provided according to proposed algorithm above.

Therefore, from the equivalence of problems (6)-(10) and (1)-(5) it follows

Theorem 2. Suppose that for some m,m = 1,2,3, ..., the n x n -matrix Dy, (T, x) is invertible for
all z € [0,w] and the inequalities a), b) of Theorem 1 are fulfilled.

Then there is a unique classical solution u*(t,x) to problem (1)-(5), defining from the following
integral representation

u*(t,x) = o1(x) + / / (11, ) dmdr, (t,z) € Q.
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A.T. Acanona, 2K.C. Tokmypsun

Tepriummi perTti gepbec TybIHALLILI And depeHITnaaabIK TeHaeyiep

YIIIiH 2KapThLIafIepuoaThl 0acTalKbl €CenTi MIeNTy/TiH
byHKINOHAJIJIBIK ITapaMeTpJiey d/Iici

Teprinm perri gepbec TYBIHABLIBLI HuddepeHINAIBIK, TeHIeYIep KyHeci VI KapThlIaiinepuoarsl dac-
TanKbl METTIK ecell KapacThIpbLIAbl. DYHKIMOHAJIBIK [TapaMeTpJiey 9JIici KOMEriMeH aBTOpJiap KOCBIM-
I1a IMapaMeTpiH eHri3il, 3epTTeJiI OThIPFaH e€Cell eKiHI PeTTi TUIepOOIAbIK, TEKTEC WHTErPAJIIBIK-TUd-
depeHImaNIbIK, TEHAEYIEP 2KYiteci YVImH OyHKIMOHAIIBIK TapaMeTpsepi MeH MHTErPAJIIBIK, KATBIHACTAPDI
Gap mapa-rap KapThLIAHIEepUOATHI ecenke KeaTipi. ['unepbosiabiK, TeKTEC HHTErPAJIBIK-1uhdDepeHIrualI-
JIBIK, TEHJEYJIEp KYieci YIIH KapThIIANIepPHOIThI eCell TeH Kall quddepeHnaIabK, TeHIAeYIep Kyitec
yuria Ko ecenrepi oyserinin e3apa Oaitytanbichl TaraiibiHgaaran. [lapa-mmap ecenriy memnriMin tady aJ-
TOPUTMJIEP] KYPBUIFAH YKOHE OJIAP/IbIH, *KUHAKTBIIBIFEL JdoJesaeHred. Toprinmn perTi jgepbec TybIHIbLIbI
nuddepeHITIANIBIK, TEHAEYIEP YIIiH KapThLIANIEPUOITH OACTAIKEI MIETTIK €CenTiH OGIpMOHI IIeniiM-
JUTITIHIH 2KeTKIJIKTI MapTTaphbl aJbIHFaH.

Kiam ce3dep: apTbLIailiepuoAThl 6acTalKbl METTIK ecell, TOPTIHII peTTi Aepbec TybIHABLILL TuddepeH-
[UAJIIBIK, TEHIEYIIEDP XKyiteci, GyHKIMOHAIBIK, TapaMeTPJIey 9IiCl, XKapThIIaWIepUOATHI €CEIl, eKIiHII PeTTi
rurepOOJTAIbIK, TEKTEC HHTETPAJIIBIK-1rd depeHnanapk TeHaey ep xyiteci, Ko ecenrepinin oysteri, as-
rOpUTM, OIpMOH/II I TiMIIIIK.
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A.T. Acanora, 2K.C. Tokmyp3un

Metona dpyHKIIMOHAJIbLHO MapaMeTpu3alun perieHust
MOJTYTIEpUOANYECKO HadYaJbHOW 3ajiaun aJisa auddepeHnnaabHbIX
ypaBHEHUII B YaCTHBIX IIPOU3BOJAHBIX Y€TBEPTOTO IMOPSIKA

PaccmoTpena monynepuonyeckas HadaJ bHasi KpaeBasi 3ajlada Jjisi CUCTEMBI TudHEPEHITUATBHBIX YpaB-
HEHUI B YACTHBIX MPOU3BOJAHBIX YETBEPTOrO MOPsiKa. ABTOpaMU C MOMOMNILI0 METOJa (DYHKIUOHAJILHON
napaMeTpHU3allui BBeJeH JOIOJHUTEIbHBIN ITapaMeTp, U HccilegyeMad 3ajada CBe/leHa K SKBUBAJIEHTHOMN
MIOJIYTIEPUOIUIECKO 3a/1ate JIjisi CUCTEMblI MHTErpo-1nuddepeHIuaIbHbIX YPaBHEHUH ruiepOboInIecKoro TH-
18, BTOPOTO TOPSIIKA ¢ PYHKIMOHATBHBIMY TAPAMETPAMU U UHTETPAJIBHBIMU COOTHOIIEHUSIMHU. Y CTAHOBJIEHA
B3aMMOCBSA3b MOy IEPUOINIECKO 33241 JJIsI CHCTEMBI HHTErpO-TudHepeHITnaAIbHBIX YPaBHEHN rurepoo-
JIMYECKOTO THUIIA U ceMeiicTBa 3a1ad Ko 1yist cucreMbl OOBIKHOBEHHBIX U depeHInaIbHbIX yPaBHEHNIA.
TTocTpoenbr anropuTMbI HAXOXKIEHUS PENTeHN SKBUBAJEHTHON 3a/1a91 U JOKA3aHA UX CXOAUMOCTb. [lory-
YeHbl JOCTATOYHbIE YCJIOBUS OJHO3HAYHON pa3pemInMOCTH IIOJIYIIePUOANYEeCKON HavyaJIbHOU KpaeBoil 3a/1a49u
JIJIsl CUCTeMBI JTrbPePEHITNAIBHBIX YPABHEHUI B 9aCTHBIX TPOU3BOJIHBIX YETBEPTOrO MOPSIKA.

Kmouesvie caosa: momynepuoandeckas HadadbHAsl KpaeBas 3a/ada, cucTteMa auddepeHInaabHbIX yPaB-
HEHU B YaCTHBIX IIPOU3BOJHBIX YETBEPTOIO IIOPsIKA, METO (DYHKIIMOHAIBLHON IIapaMeTPU3allin, IOJLyIIe-
puomUecKas 3a7ada, CUCTEMa UHTErPo-auddepeHInaIbHbIX YPaBHEHUN TUepOoTMIecKOr0 TUIIA BTOPOTO
nopsizka, cemeiictso 3amaa Kormu, anroputM, ogHO3HAYHAST PA3PEITUMOCTD.
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The problem of trigonometric Fourier series
multipliers of classes in )\, , spaces

In this article, we consider weighted spaces of numerical sequences A, 4, which are defined as sets of sequences
a = {ar}p=1, for which the norm

oo - H
llallx,., == Z lak|Tk? < 00
k=1

is finite. In the case of non-increasing sequences, the norm of the space )\, 4 coincides with the norm of the
classical Lorentz space [, 4. Necessary and sufficient conditions are obtained for embeddings of the space
Ap,q into the space Ay, 4,. The interpolation properties of these spaces with respect to the real interpolation
method are studied. It is shown that the scale of spaces A, 4 is closed in the relative real interpolation
method, as well as in relative to the complex interpolation method. A description of the dual space to
the weighted space ), 4 is obtained. Specifically, it is shown that the space is reflective, where p’, ¢’ are
conjugate to the parameters p and g. The paper also studies the properties of the convolution operator in
these spaces. The main result of this work is an O’Neil type inequality. The resulting inequality generalizes
the classical Young-O’Neil inequality. The research methods are based on the interpolation theorems proved
in this paper for the spaces Ap 4.

Keywords: trigonometric Fourier coefficients, O’Neil inequality, convolution operator, M1 2! class.

Introduction

Let 1 <p < o0, L, = L,(R) and let the convolution operator be given by

(Af)(x) = (K= f)(x) = | K(z —y)[f(y)dy.
The Young convolution inequality
1
1AL, L, < IK]|L,, 1+6=*+*7 1<p<qg< oo,

has a very important role both in Harmonic Analysis and PDE (see, e.g., |1, Ch. 4, § 2, 4], [2]).
K(x) = |z|77, v > 0. Young’s estimates were generalized by O’Neil [3] who showed that for
l<p<g<oo,0<t,s1,52,<oc0,1/r=1—-1/p+1/qand 1/t =1/s1+1/s2

HA|’LP,51_>Lq,52 S C HKHLr,t7

and in particular

where L, s is Lorentz space.
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Note that inequality (2.2) unlike (2.1) gives the Hardy-Littlewood fractional integration theorem,
which corresponds to the model case in which K (z) = |z|~/".

When 1 < p < g < oo, were considered in [4], [5]. The estimate (1.1) was improved in [6], [7].

There are several generalizations of both Young and O’Neil’s inequalities for various function
spaces (weighted Ly, classical and weighted Lorentz spaces, weighted Besov and Hardy spaces, Wiener
amalgam spaces, Orlicz spaces; see, e.g., 8], [9], [10], [11], [12], [13], [14], [15], [16] and references
there in). We also remark that the sharp Young convolution inequality was obtained in [17] and [18].

Note that the norm estimates for convolution operators in various spaces are closely related to the
problem of multipliers of Fourier transforms and Fourier series [19], [20], [21], [22], [23].

Let 0 <p < 00, 0 < ¢ < oo. It is said that the sequence a = {a}72 _ belongs to the class A, 4, if

oL\
lalng, = Y laxl®e ™) <o,

k=—o00

—0o0

where k = max(|k|, 1), and
—1
HaH)\ = sup |ag|k? < oo,
P,00 k
if ¢ = o0.
Our aim is to study the convolution inequalities in weighted spaces A, 4.

Throughout this paper, F' < G means that F' < CG; by C we denote positive constants that may
be different on different occasions. Moreover, F' < G means that FF < G < F.

2. Properties of the spaces A\, 4

Lemma 2.1 For embedding

Apogo = Apar (2.1)
to hold it is necessary and sufficient that
1 1 1 1
fOTQOSC]h?—?Spfo—Ea
for ¢1 < qo, 1770_]771>0'
Proof. We consider the case gy < q1. Let q% — q% < p% — p%' Then, using the inequality (a + b)* <

< a®+ b for a < 1, we get:

1
9] _ja q1
ol ., = 3 i)

k=—00

1

( i <|ak|q%(r}1_q11))m> "

k=—00

1

1 1
< < > (|ak|k<£o—qt>)’“> "< ( > (|akyk<£o—qt>)"°> = all,,

k=—o0 k=—o0

Thus,
)‘Poﬂo — )‘Pl,th .

On the other hand, let m € N and we consider the sequence a = {a}32 _ :

1, k=m
ar =
0, in otherwise.
Then according to embedding (2.1),

1 1 1
) = o], <eldl], = emGiw).
>‘p1,(11 >‘P07‘10

1L 1 _ 1

Since m is arbitrary, which is possible if only if o a <
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1 1 -1 _ 1 _ 1, 1 i
T 0. Denote ¢ = T + ql.lFurlther anlyl?g

the Holder inequality with the following parameters r; and ro such that - — =

1 1 _ 1
(E+E—a>,weget

Let us pass to a case q1 < qo. Let

1
r1 qQ’ ™2 Q1 q0’

1 =

k‘:—OO ];;:—oo

1

©  \m
< Ha||,\pw0 ( Z k—6r2> )

k=—o00

po P q1 q0 q1 q0

1 o B
Moreover ery = [ (& = L)+ (2= L) (- 4) > 1 Wehave > k<.
k=—o0

To prove the necessity, we suppose that the embedding A,; 4, — )‘;1411 and m € N holds. We
consider the sequence a = {ax}32 _ . such that

{w,ogkgm
ap =

0, in otherwise.

1
. a
We have HaHAp o (g E<Z€+aq11)> " = clm(%Jra),
1:91

i=1
1
m
T(m+aqo_1) “ ~ (L+a>
lafl, = it = com\ro /.
0,490
i=1
. . . 1 1
Therefore, since Ay, g0 = Ap.q1> and m is arbitrary we have that 2 2 pr
1 -1 i — 00 .
In the case -~ = --. We consider the sequence a = {ar 32 _,,: when

{kplo @k 2<k
ap =

0, in otherwise,

where ¢ is chosen so that q1 < go — €. Then since 22— > 1, we get
O 1 1 q0_<@,> % e ln_qggf% w
laf, = Z(k % In qrs/-c) by - ZT < 0.
01490
k=2 k=2

On the other hand since & < 1, we have

Q
2=

ol = ()

k=2 E‘lnqﬂ*s ];:
Therefore, the condition p% > p% is necessary.
Lemma 2.2 Let 0 < po, qo, p1,q1 < 00, 0< 6 <1, then
(Apoqos )‘mm)e,q = Apg»

1 1-6 6 1-0 0
= +

i

1
g q@ @ p po P
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Proof. By the well-known theorem of powers (see [24, Th. 3.11.6]), we have

q
(()‘pquo)qo ’ (Apl,lh)ql )7771 = <()‘p0,q07 )‘p1,Q1)9,q> ’

where n = b

The norm of the element z in the space ((Apy,q0)" , ()\phql)‘n)n | is equal to

00 s (40 _ s (a1 _ dt
/ 7 inf ( > i) 4 > k0t 1)> =
0 r=z"+x e —o0 oo
o -0 _q .
:Z/ t™ x| kPo inf
A 0 0 1

Tp=Tp+T

:CkO q0 q1

L

k‘l
e

—491_ 490
‘xk|QI7q0kp1 PO

S o a—awipr )" wrpe—l 01490 Liq1 ds
= 30 | (s e Re ) gk in (BRI sl
k=—o0 =Yt
Considering that inf (Jypl + s|yz|™") ~ min(1,s) and n = Z—f the last expression is equal to
1=y)+

=YYk
o0

—(q2_
c Z |xk|qk(” 1>, whence the statement of the lemma follows.

k=—00

Lemma 2.3 Let 0 < g <00, 0 <s<oo, 0<8<1,then

[)‘q,Sa )‘qm]e = )‘q,tv

1 _ 1-6
where =5

Proof. The interpolation theorem (see [25], p. 142) concerning to the complex interpolation method
is known

[lpo (Ak); loo (Br)]g = lp([Ak, Bilo)

here 1 <pp < oo, 0 <6 <1, % = 1}0;00. In our case, the spaces A\; s, A\g,co can be represented as follows
)\q,s = ls(Ak)7 )\q,oo = loo(Bk)a
11 ~1
where H HA =|- |k‘q S, H‘HBk:|‘|kq'

Therefore we have

[Agss Agoolg = [ls(Ak), loo (Br)]g = 1t(Ck),

1_1-6
here = ~—,

C(1—p)(l_1y40 1 1-0 1
H-Hck:\-]k(l NG=re = | ka5 =] [k

ie. lt(Ck) = >\q,t
Let X be a linear normed space of numerical sequences. We define the dual space X’ as a set of
sequences a = {ay }rez for which

lallx := sup > axbs.
Iblx=1 5

Lemma 2.4 Let 1 <p < oo, 1 <q< o0, 7+,—7 ,:1 then

()‘p,q) = )‘p’vq’

Proof. The statement of Lemma follows from equality

HGH)\p/}q/ = sup Zakbk (22)

1Bll5p,q=1 kez

which could be proved using the Holder inequality.
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3. Convolution in the spaces A, 4

Let a = {ar}2_ o, b= {br}2_,, besuch that

[e.e]

Z apbp_m <00, mEZ.

k=—o00

The sequence

k=—o00

{ Z akbk—m}

will be called a convolution and denoted by a * b.
1 _1
Lemma 3.1 Let 1 <r,p,q < oo and E—I_l_ s+
Then

D=

[la* bl 00 < cllallx, o [10l]x,,-

Proof. By the definition of nonconforming transformations, we have

oo o0
Ha*b”kqw = sup ( Z ambmk) foa < sup |ap,|m sup Z ]bk,m]m*%lﬁ
' k m=—oo m=—00
. a1 N
= Ha“/\mosupkq Z b |(m — k)7 < ||a| . HbH)\ _supka Z (m—k)"rm »
7 k m=—o00 ’ " k m=—o00
Note that for k # 0
i (m—F)rm v =< / e kl—l/P—l/T/ gt
= R |z — k|7|a|? R [z —1]7|z]»

Therefore, we have

laxolly, . <ellally, . 12l .. -

Lemma 3.2 Let one of the following conditions be fulfilled:
- 1,1 _1,1
either 0 <s <1, 0<s<p,r<g<oo, s+~ > T 7
or 1 < s < oo, 1<p,r<q<oo,1+%:
Then the following inequalities hold:

q
+

S =

1
p

lax?ll,, , <clal

>\r,s bHAp,oo ’

laxbll,,, < cllal . [, -

Proof. Let 0 < s < 1. According to the Jensen’s inequality we have

Sk@l))i < < i i \ambmkm(il)f

k=—00 m=—00

o0

Z ambkfm

m=—0oQ

ax bl = ( 5

k=—o0

= ( Z |am|® Z \bkm]Sk;(Z—l)>s < (1B ( Z |t |® Z (k—m);k(2_1>>9

m=—00 k=—0c0
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Considering that

o0
S Fmm kG < mi o,
k=—oc
Wehave0<s§1,% %:%%—%
laxblly, , < e<llall, ],
and in particular
laxbll,,, <ellally,  lIoll,,, -
Using Lemma 3.1 we have
laxbll,, ., <ellall, 1ol ..

Applying the bilinear interpolation theorem [2; Theorem 4.4.1] we obtain

Ha*bH[A < cllallpn, a0 A 00l HbH[A

q,lv/\tLOO]G pylv)‘ruoo}e ’

Moreover, by Lemma 3.1 we obtain

laxblly,, < e<llalls, . [l -

s

where { =1-6, 6€[0,1], 1+, =7+

either 0 <s <1, 0<s<p,r<qg<oo
or 1 < s < oo, 1<p,r<q<oo,1+%:

The second inequality is proved symmetrically.
For the proof of further results we need next statement also of independent interest.
Theorem 3.1 Let 0 < s,t1,t < 00, L = L % Let one of the following conditions be fulfilled:

’s t1

[=
_l_

s

Then

22

laxbll,, , < cllalls,, [Pll,,, -

Proof. According to the Lemma 3.2 the following basic inequalities are known

lax2ll,, , <clal

A Bl -

laxbll,,, < cllal, . [, -

Applying the bilinear interpolation theorem and using Lemma 3.1, we obtain the desired statement.
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A. Baxsrr, H.T. Trneyxanosa

Tpuronomerpusyibik Pypbe KaTapblHbIH KOOEUTKIIITEPI
KJIACBIHBIH, )\, , KeHicTirinjeri ece0i

Makasnana a = {ak}he, TI30EKTIH >KULIHBI PETIHJE AHBIKTAJATBIH Ap g CAHIBIK Ti30EKTEpiHIH CAJIMaKTbI
KEHICTIr KapacTBIPBLIIBI, OJIap YIIIH HOpMa

1

o0 q q
lallx,, = { > laxlk» ™) < oo
k=1

mekTeya. OcneitTin TizbekTep GosFaH Karmaiiga Ap g KEHICTIriHiH HOpMAachl KJIACCHUKAIBIK [, , JlopeHit
KeHICTiriniH HOpMachIHa COKeC KeJlefi. Ap ¢ KeHICTIriHIH Ap, 4, KeHicririne eHrisy ymiin KaskeTTi yKoHe 2KeT-
KiJiKTi mIapTTaph! ajabiHabl. HaKThl HHTEPIOINs 9/1iCiHe KATBICTHI OChI KeHICTIKTeP/iH HHTEPIIOJIAIUSIIBIK,
KACHETTEPl 3ePTTENreH. \p o KEHICTIKTEPiHiH MIKaIachl HAKTHI NHTEPIIOIANNS 9/iciHe KATBICTEI, COHJal-aK
GipikTipinren mHTEpHOSAIUS 9/iCiHe KATHICTBI TYHBIK eKeH/iri kepcerinren. Kocapianran keHiCTIKTIH Ap ¢
caJIMaKThl KEHIiCTiriHe cumarTaMa ajbHIBl. ATan afiTkaHa, KeHicTiK pedJiekcuBTi, MyHIarsl p', ¢ mapa-
MeTpJIepi p XKoHe ¢ mapamerpJiepine Tyitinmec 6ombin keaeai. COHBIMEH KaTap OCbl KeHICTIKTepae yiipTKi
oIlepaTopJIapbIHbIH, KacueTTepi 3eprresni. Byi kymbicroiy Herisri mormxkeci O’Heitn tunti Tencizairi 6o-
JIBITT TabbLIa bl AJIBIHFAH TEHCI3MIK Kaaccukablk, FOur-O’Heitr TeHci3airin xannbuiaiiasl. 3epTrey oici
Ap,q KEHICTIKTEpI YIIIH [pJIesIeHreH HHTEPIOJISIUSIIBIK TeopeMaapra Heri3iesire.

. . T e PL.a1
Kiam cesdep: Tpuronomerpusiblk @ypre kosddbunuenrrepi, O’Heiin Tencizziri, yitiprki oneparopsr, Mjd:H
KJIACHI.

A. Baxserr, H.T. Trneyxanora

Sajada KJIaCCOB MHOXKHTeJell TPUIrOHOMeTPUYeCKUX pPsd0B
@ypbe B IIPOCTPAHCTBAX Ay,

B craTtpe paccMoTpeHBI BECOBBIE IPOCTPAHCTBA YUCJIOBBIX IIOCJIEIOBATELHOCTER \p ¢, KOTOPBIE OIIPEIEIIs-
I0TCSI KAK MHOXKECTBa [OC/IeJ0BATeNbHOCTEN @ = {ak }ie 1, JJIsi KOTOPBIX KOHEYHA HOPMA

oo q q
lallx,, = | D lax|k» ™) < oc.
k=1

B ciyuae meBospacTaromux moceqoBaTeIbHOCTEH HOPMa IIPOCTPAHCTBA Ap 4 COBIAJAET C HOPMOM KJrac-
cuieckoro npocrpaHTsa Jloperma Iy, 4. Ilomxyuensr HeoOGXomuMble U TOCTATOUHbIE YCJIOBUS JJIsl BJIOYKEHU
[IPOCTPAHCTBA Ap ¢ B IPOCTPAHCTBO Ap, ,q, - VICCIIEIOBAHBI MHTEPIOJISIMOHHBIE CBOMCTBA 9TUX IPOCTPAHCTB
OTHOCHTEJILHO BEIECTBEHHOIO MHTEPIIOJISIIMOHHOr0 MeTofa. 1lokasano, ITo IIKaja MPOCTPAHCTB Ap g 3a-
MKHYT& OTHOCHUTEJIbHO BENIECTBEHHOI'O MHTEPIIOJSIIMOHHOIO METOA, & TaK>Ke OTHOCUTEILHO KOMILIEKCHOTO
MHTEPIOJISIIIHOHHOIO MeToia. [lo/iydeHo onrcanue JBOMNCTBEHHOIO MPOCTPAHCTBA K BECOBOMY ITPOCTPAHCTBY
Ap.q, @ UMEHHO: TIPOCTPAHCTBO pedJIeKCHBHO, T/e p’, ¢ COmpsKeHbl K mapamerpam p u . Kpome Toro B
CcTaThbe U3yYeHbl CBONCTBA OllepaTopa CBEPTKU B JaHHBLIX IpocTpancTBax. OCHOBHBIM PE3yJILTATOM JIAHHON
pabotsr siByisiercst HepaserncTio Tuna O’Heitra. [ToryuenHoe HepaBeHCTBO 0000IAET KITACCHIECKOE HEpaBEH-
crBo FOura-O’Heitna. Merosn ncciieqoBanust oupaeTcst Ha JJOKa3aHHBIE B 9TOH paboTe MHTEPHOJISIIHOHHbBIE
TEeOPeMBI JJIsi IPOCTPAHCTB Ap q.

Karoueswie caosa: tpuronomerpudeckue koaddunmrentsr Pypoe, Hepasencrso O’Heitsla, oneparop cBepTkH,

MPVIY xnacc.
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There is an uncountable number of papers devoted to research of the Hilbert transform defined by
the formula (1). In 20th century, David Hilbert finally showed that the function sin(wt) is the Hilbert
transform of cos(wt). After that, the Hilbert transform has been studied by many authors in different
research areas of science. One of the important applications of the Hilbert transform in Interpolation
theory and rearrangement invariant Banach function spaces has received a lot of attention since Boyd’s
pioneer work in 1966 [2] (see also [3], [4]), which is related to the main objective of this paper.
The boundedness properties of some classical operators were studied in [5-8]. Also, the boundedness
properties of the Hilbert transform were studied by many authors. For instance, [9], [10], [11] and
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On boundedness of the Hilbert transform
on Marcinkiewicz spaces

We study boundedness properties of the classical (singular) Hilbert transform

1 (s)
(’?—[f)(t)fp.v.7T t—sds
R
acting on Marcinkiewicz spaces. The Hilbert transform is a linear operator which arises from the study
of boundary values of the real and imaginary parts of analytic functions. Questions involving the H arise
therefore from the utilization of complex methods in Fourier analysis, for example. In particular, the H
plays the crucial role in questions of norm-convergence of Fourier series and Fourier integrals. We consider
the problem of what is the least rearrangement-invariant Banach function space F(R) such that H :
My(R) — F(R) is bounded for a fixed Marcinkiewicz space M, (R). We also show the existence of optimal
rearrangement-invariant Banach function range on Marcinkiewicz spaces. We shall be referring to the space
F(R) as the optimal range space for the operator H restricted to the domain My(R) C Ay, (R). Similar
constructions have been studied by J.Soria and P.Tradacete for the Hardy and Hardy type operators [1].
We use their ideas to obtain analogues of their some results for the H on Marcinkiewicz spaces.

Keywords: rearrangement-invariant Banach function space, Hilbert transform, Calderén operator, Marcin-
kiewicz space.

Introduction

The classical Hilbert transform 7 (for measurable functions on R) is given by the formula

1)
s t—s
R

(Hf)(t) = p.v.

recent papers [12-16], and references therein.
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Preliminaries

Let (I,m), where I = Ry = (0, 00)(resp. I = R) denote the measure space equipped with Lebesgue
measure m. Let L(I,m) be the space of all measurable real-valued functions on I equipped with
Lebesgue measure m i.e. functions which coinside almost everywhere are considered identical. Define
Lo(I,m) to be the subset of L(I,m) which consists of all functions f such that m({¢ : |f(¢)| > s}) < oo
for some s > 0. For f € Ly(I) we denote f*(t) the decreasing rearrangement of the function | f|. That is,

ff@)=mnf{s>0:m(|f]|>s)<t}, t>0

Definition 1. [11; 49] A function ¢ defined on the semiaxis [0, 00) is said to be quasiconcave if

(i) pt)=0&t=0.

(ii) (t) is positive and increasing on R.

(vit) @ is decreasing on R.

Observe that every nonnegative function on [0, 00) that vanishes at origin is quasiconcave. The
reverse, however, is not always true. However, we may replace, if necessary, a quasiconcave function ¢
by its least concave majorant ¢ such that

p< <@

DN | =

(see [10; 71)).

Definition 2. |10; 59] A Banach function space E is called rearrangement-invariant if, whenever f
belongs to E and ¢ is equimeasurable with f, then g also belongs to E and || f|lz = ||gll&-

Next we define the Kothe dual (or associate) space of rearrangement invariant Banach function

spaces. Given rearrangement invariant Banach function space F on I, equipped with Lebesgue measure
m the K6the dual space E* on I is defined by

By ={ge Lot [1rat0ldr < x. vr € B
I
E* is a Banach space with the norm

umﬂnwzmm{[u@w@mwfeEaxnmmngl}

If E(I) is a rearrangement invariant Banach function space, then (E*(I), || - [[gx(p)) is also rear-
rangement invariant Banach function space (cf. [9; Section 2.4]). For more details we refer to [10],
[17].

Let €2 denote the set of increasing concave functions ¢ : [0, 00) — [0, 00) for which tli%l+ o(t) = 0(or

%

simply ¢(+0) = 0). For the function ¢ in €2, the Lorentz space A,(Ry) is defined by setting

Ap(Ry) =< feLo(l): /f*(s)dgo(s) < 00
Ry
and equipped with the norm
I£la,m = [ F(6)es).
Ry

Let 1 be a quasiconcave function on [0, c0). Define the Marcinkiewicz space My, (I) by setting
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My(1) = { f € Lo(D) : I lar ey < o0

equipped with the norm
£l az, (o) =S /f

These spaces are examples of rearrangement invariant Banach function space. For more information
we refer [10], [11]. For more information we refer [10], [11]. The space (L1 + Loo)(R4+) = Li(R4) +
Lo (R4) consists of functions which are sums of bounded measurable and summable functions f €
Lo(R) equipped with the norm given by

It poy@ey = f {[fill ey + 1 felloa@y) : f = i+ fo, f1 € Li(Ry), fa € Lo (Ry) }
Define

(2)

tlog(2), 0<t<1
mw—{ 8(7)

2log(et), 1<t < 0.

It is easy to show that ¢y is a quasi-concave function on [0, 00). It was proved in [13; 5] that Ay, (Ry) is
the maximal rearrangement invariant Banach function space such that S : Ay, (Ry) = (L1 + Loo)(R4)
is bounded. For a function f € A, (R4 ) define the Calderén operator S : Ay (Ry) — (L1 + Loo)(R4)

as follows
t )
/ f(s)ds + /
0 t

Similarly, for a function f € Ay, (R), define the Hilbert transform as follows

1),
t—s
R

() 45 ¢ > 0.

w\»—l

(H)(@) =p

For more details on these operators refer to [10], [11].
Main results

More general results for the Hilbert transform in quasi-Banach rearrangement invariant spaces were
obtained in [12], [13]. In this work, we study the boundedness of the Hilbert transform on Marcinkiewicz
spaces. The following is the main result of this paper.

Theorem 1. Let ¢ be an increasing concave function on [0, 00) such that ¢(0) = 0 and

lim @

s—00 8§

=0, lim ¢(s) log(%) = 0. (3)

Then
S My(Ry) = (L1 + Loo ) (R4)

is bounded if and only if

500

) < oo, Vt>0.

Proof. Let
S My(Rs) = (L + Loo) (Ry).
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Since S is positive, it follows from Proposition 1.3.5 [18; 27] that S : My(R4) — (L1 + Loo)(R4) is
bounded. Then by duality and since S = S* (see Lemma 6 [14]), it follows that

St (L1 + Loo)*(Ry) — M (Ry)

is bounded. However, (L1 4 Loo)*(Ry) = (L1 N Loo)(Ry) and M (Ry) = Ap(Ry) (see [10], [11]).
Hence,

S (L1 N L) (Ry) = Ag(Ry) (4)

is bounded.
Take f = Xx(o) and it is easy to show that x4 € (L1 N Loo)(Ry) for any ¢ > 0. Therefore, it
follows from (4) that Sx (o) € Ag(Ry), that is,

18X (0.6 |8y (ry) < 0 (5)
But, the latter condition (5) is equivalent to tS(@) < oo for any ¢t > 0.
Indeed,
t 00
t
10 llaoms) = / Sxt0a)(s)do(s) = [(1+ 1og(2)do(s) + [ Laos)
0 t
t ¢ 00 x
_ <¢(s) log(et)> + / QFRLIO! t/ ¢(§)d5
Ean s s |, s
0 t
:t-S(@)—Ft lim M—hmlog( t) .
t s—o00 S s—0 S

Taking the assumptions (3) into account, we obtain the desired result.
Conversely, if t.5 (@) < 00, then, as we proved above, we have ||SX(0,t)HA¢(R+) < 00.

Let us show that S : My(Ry) — (L1 + Loo)(Ry) is bounded.
Take f € My(R4). Then by formula (6.8) in [10; 76] and Hélder inequality (see [10; 9])

1 1 0o
IS FI Ly + Lo (R / s)ds < /(Sf*)(S)dS = /(Sf*)(S)X(O,l)(S)dS
0 0 0

= /f*(S)SX(O,l)(S)dS < Hf||M¢(R+)||SX(O,1)HM{?(RQ

= ||f||M¢(R+)||SX(O,1)HA¢,(IR+)~

Since f is arbitrary and |[Sx(0,1)lla,®,) < o0, the assertion follows.
Corollary 1. Let the assumptions of Theorem 1 hold. If My(Ry) C Ay (Ry), where ¢ defined by
(2), then there is a minimal rearrangement invariant Banach function space F'(R;) such that

S My(Ry) — F(R,)

is bounded.
Proof. By Theorem 1,
S+ My(Ry) = (L + Loo) (R+)

is bounded if and only if tS <@> < oo for any ¢ > 0. As it was proved in Theorem 1, the latter
condition is equivalent to Sx (o) € Ag(R4). Since S = S* and A; (Ry) = My(Ry), it follows from
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Proposition 3.9 [1; 876] that there is a minimal rearrangement invariant Banach function space F'(Ry)
such that

is bounded.
Corollary 2. Let the assumptions of Corollary 1 hold. Then there is a minimal rearrangement
invariant Banach function space F'(R) such that the Hilbert transform

M+ My(R) — F(R)

is bounded.

Proof. By Corollary 1, there is a rearrangement invariant Banach function space F'(R,) such that
S : My(Ry) — F(R4) is bounded. Hence, by Theorem 4.8 [10; 138|, H : M4(R) — F(R) is bounded.
By assumming that G(R) is another rearrangement invariant Banach function space such that H :
My4(R) = G(R) is bounded. Take f € My(R). Then f* € My(Ry). By [13, Lemma 5| there is a function
g € My(R) with f* = g* such that Sf*(t) < caps(Hg)*(t), t > 0, which shows Sf* € G(Ry). Since
[ € My(R) is arbitrary, it follows from the Corrollary 1 that My(R;) C G(Ry), i.e. My(R) C G(R).

This completes the proof.
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H.T. Bekbaes, K.C. Tesienon

MapunHKeBUY KeHiCTiKTepiHaeri
I'mnpbepT TypJieHAipYyiHiH IIeHeJATreH/Iir TYPaJibl

MakaJjragia MapiimHkeBrud KeHICTIKTEpiHAeri dyHKIUAIapra 9Cep eTeTiH

L [ f(s)
(’5‘-[f)(t)fp.v.7T t—sds
R

KJIACCUKAJBIK (CHHIYIspibIK) ['miasbepr TypsieHIipyiHiH IneHenreHAik KacuerTepi 3eprresii. ['miusbepr
TYPJACHIIPYl aHATUTUKAJBIK, (DYHKIUSAIAP/IBIH HAKTHI 2KOHE YKOpaMaJl OeIKTEpiHiH MeKapaJIblK, MOHIEPIH
3epTTey Ke3iHjIe TYBIHJIAWTHIH ChI3IKTHIK, oriepaTop 6oJibii Tabblia bl. CoHIbIKTaH H TypJeHipyine KaTbic-
1ol cypakTap Pypbe TasgayblHBIH Kyprel oJicTepin KojjganraHga naiga 6omazmer. lepbec xarnaitaa H
Typaeaaipyi @ypbe kKartapiapbl MeH Pypbe WHTErpaIapbIHBIH, HOPMa OOWBIHINA YKUHAKTAJIYBIHBIH, M-
cesiecinzie ey pes arkapasabl. Makasa asropiaapst 6ekitiniren Mg (R) Mapuuakesud Kenicriri ymin
H : My(R) — F(R) rypuengipyi menesnren 6onarbiajaii ey imi F(R) anvacTbipy-uHBapuaHTTHl GaHax
byHKIUAIAp KeHicTiri Kammail 60IaThIHBI TypaJsbl ecenTi KapacToipibl. CoHbiMeH Karap, MapruwHKeBUY
KEHICTIKTepiHJe TUIM/II aJIMacThIPy-MHBAPUAHTTHI OaHaX (DYHKIUIAD YKUBIHLI 0ap OOJAaTBIHBIH KOPCETTI
skoHe F'(R) xenicriri My(R) C Ay, (R) xenicriringeri I'nnsbepr Typiesaipyiniy Tuivai MoHmep Kenicriri
6ostaTeiabiH eckepi. Ykcac ecentep Jxx.Copua men I1. Tpamarer xymbichiaga Xapan KoHe Xapau THITEC
omeparopJiap YImiH 3eprresret [1]. ABropsiap cos FagbMIapAblH Keibip HoTuKesepiniy aHajorsia Map-
nuHKeBUY KeHicrikrepingeri I'misbepr Typiesaipyi yiiiH KosaHraH.

Kiam ce3dep: anMmacThIpy-UHBApUAHTTHI OaHax KeHicTiri, ['mnsbept Typienaipyi, Kampmepon omepaTopsr,
MapruHkeBuY KeHicTiri.

H.T. Bek6aes, K.C. Tynenos

OO0 orpaHMYeHHOCTH TIPeoOpPa30BaAHUSA
I'mnpbepra B npocrpancTBax MapIlimHKeBI4a

B crarbe mccieoBaHbl CBONCTBA OMPAHMYIEHHOCTH KJIACCHIECKOTO (CHUHTYJISIPHOTO) mpeobpasoBanus [ nib-

bepra
1) g,
t—s

(HF)(0) = po—

R
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32

JleficTByIOIIEro Ha npocrpancTBax Maprmnakesnda. [IpeobpasoBanue I'nibbepTa sBIAETCS TMHEHHBIM OIIe-
PaToOpPOM, BOZHUKAIOIINM IIPUA U3y YeHNU TPAHNYIHBIX 3HAYEHUI BEIeCTBEHHON U MHUMOM JacTell aHAJIUTHIe-
ckux dyuknuii. [TosTomy Bompocer, cBa3aHHbIe ¢ H, BOSHUKAIOT U3-3a HCIOIb30BAHUS CJIOXKHBIX METOIOB B
anasuse @ypre. B gyacTHocTH, H Urpaer pelIaroNIyo POJIb B BOIIPOCAX CXOAUMOCTH II0 HOPME DsIIOB U MHTe-
rpajoB @ypbe. ABTOpaMu CTaTbU PACCMOTPEH BOIIPOC O TOM, KAKOBO Oy/IeT MHHUMAJILHOE II€PECTAHOBOYHO-
MHBAPHAHTHOE TPOCTPAHCTBO Ganaxosbix dynkmnuit F(R) ais Toro, arober H : My (R) — F(R) 661 orpann-
4YeHHBIM B (puKcHpoBaHHOM Ipocrpancrse Maprmukesnda Mg (R). Kpome Toro, mokasaHsl CyIeCTBOBaHIE
IIepPeCTaHOBOYHO-UHBAPHAHTHOMN 0bsiacTu 3HadYeHuil pyHKINI B mpocTpaHCTBAax MaplnuHKeBUYa, CChIIKA Ha
npocrpancteo F(R) kak onTUMabHOE IIPOCTPAHCTBO JJIsl OFPAHUIEHHOTO oneparopa H B 06sacTu ompe-
nenenust Mg(R) C Ay (R). ITogobuble koncrpykuuu 6bun usydens k. Copua u IT.Tpamaunerom s
oneparopos Xapau u tuna Xapau [1]. ABropaMu HCIIOIB30BAHBI UX MU JJIs [IOJLy9€HUs] AHAJIOTOB HEKO-
TOPBIX UX PE3yJIbTaTOB JjId olepaTopa H B mpocrpaHcTBax MapnuHkeBudya.

Kmouesvie cro6a: mepecTaHOBOYHO-MHBAPpHAHTHOE OAHAXOBO IPOCTPAHCTBO, IpeobpasoBanue ['minbepra,
oneparop Kasbaepona, npocrpancrso Maprimakesuya.
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Interpolation theorem for Nikol’skii-Besov
type spaceswith mixed metric

In this paper we study the interpolation properties of Nikol’skii-Besov spaces with a dominant mixed
derivative and mixed metric with respect to anisotropic and complex interpolation methods. An interpolation
theorem is proved for a weighted discrete space of vector-valued sequences Ig(A). It is shown that the
Nikol’skii-Besov space under study is a retract of the space lg (Lp). Based on the above results, interpolation
theorems were obtained for Nikol’skii-Besov spaces with the dominant mixed derivative and mixed metric.

Keywords: Nikol’skii-Besov type spaces, method of anisotropic interpolation, complex interpolation.

Introduction

The embedding theorems for spaces of differentiable functions play an important role in the study
of boundary value problems for equations of mathematical physics and approximation theory. At the
same time, interpolation of smooth function spaces is of great interest.

The interpolation of the Sobolev and Besov spaces was first studied by J. Petre [1], J.-L. Lions and
J. Petre |2]. Further results on interpolation of spaces of smooth functions with respect to the classical
real and complex methods can be found in the monographs of J. Berg and J. Lofstrom [3], H. Tribel [4].
In V.L. Krepkogorskii’s papers [5], [6], I. Asecritova’s and others 7] interpolation properties of Besov
and Lizorkin-Triebel spaces were studied with respect to Sparr’s method. E.D. Nursultanov and
K.A. Bekmaganbetov considered interpolation properties of Besov spaces with respect to a method
of multiparametric interpolation (see [8]). They also considered interpolation properties of classical
Besov and Lizorkin-Triebel spaces with respect to an anisotropic interpolation method (see [9], [10]).
In works [11]- [13] E.D. Nursultanov, K.A. Bekmaganbetov and Ye. Toleugazy considered interpolation
properties of Besov spaces with dominant mixed derivative with anisotropic and mixed metric. The
use of interpolation theorems for receiving embedding theorems and their further applications in
approximation theory is shown in works [14]- [16].

In this paper we study the interpolation properties of Nikol’skii-Besov spaces with a dominant
mixed derivative and mixed metric with respect to anisotropic and complex interpolation methods.

An interpolation theorem is proved for a weighted discrete space of vector-valued sequences Ig(A).
It is shown that the Nikol’skii-Besov space under study is a retract of the space la‘(Lp). Based on
the above results, interpolation theorems were obtained for Nikol’skii-Besov spaces with the dominant
mixed derivative and mixed metric.

Preliminaries and auxiliary results

Let E={e=(e1,...,en):6,=00reg; =1,i=1,...,n} be the set of vertices of an n-dimensional
unit cube in R, A = {A.}.cp is a set of Banach spaces that are subspaces of some linear Hausdorff

*Corresponding author.
E-mail: toleugazy-yQyandex.ru
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space, which is called a compatible set of Banach spaces [3]. For element a from space »_.p A we
define
K(t,a;A)= dnf > t[lac]a.,
0=2eep O c€E
where t* = ¢7' ... - t5.
Let 0 < 0 =(01,...,0,) <1,0<r=(rg,...,7y) < 0. By Agr = (4z;¢ € E)g, we denote the
linear subspace of ) _. Ac such that for its elements the following condition holds:

1/r
r dt
lal| Ay, = </R (t7K (60 8)) S )

+

00 9 L dt ro/ri Tn/Tn-1 dt 1/rn
_ —0, —61 e n
= /0 (tn </0 (tl K(t,a; A)) 0 > > T < 0.

Lemma 1 ([9]). Let 0 < 0 < 1,0 <r < oo and let A = {A.}.cp and B = {B.}.cr be two
compatible sets of Banach spaces. Suppose that for a linear operator T : A, — B, there are two
vectors Mg = (M?,...,M9),M; = (M{,..., M}) with positive components such that ||T||a. B, <
< C. [, M for any € € E, then

T: Agr — Bgr

n
with estimate ||T|| Ay, —By, < max C: ]‘_[1 (M) (M;)™.
1=
Lemma 2 ([4]). Let a1 < o < a9 and 1 < g < o0. For a sequence of non-negative numbers {ay }rez
define transformations

J
Io(a;j) = Yy 200,

k=—0o0
e .
N(a;j) = Y 200,
k=j+1
Then the following inequalities hold:
o 1/q - 1/q
> (@YD) | < Y (2Yy)'| (1)
j=—00 j=—00
o 1/q o 1/q
Yo (Yh(wg)'| <G| Y (2Y)"| . (2)
j=—00 J=—00
For multi-indices by = (8y,...,02),b; = (bi,...,bl) and € = (e1,...,&,) € E we introduce the

notation b, = (b7',...,b5").
Let a = (a1,...,0,) € R", 1 < q = (q1,---,¢2) < 00 and A be a Banach space. By I5(A) we
denote the set of multi-sequences {ay }xezn with values in A for which the norm

q 1/q
lalliga) = (Z (2(a’k)H6LkHA> ) =

kezn
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Qn/Qn— l/qn
too Yoo u a2/n !
= Z Z (22¢:1 ok Hakl,--.,k’nHA>
kn=—00 ki=—0o0

n
is finite, here (o, k) = Z a;k; is the inner product.

i=1

Lemma 8. Let ap = (¥, ..., %) # a1 = (ad, ..., al), 1 < qo = (&, ..., &),

q1 = (qi, ..., q}) < oo. Then for 0 < 0 = (01,...,0 )<1,1<q=(q,...,q,)00 the equality

(157 (A);e € B), =15(4)

holds, here a = (1 — ) + Oaq.
Proof. Without loss of generality, we can assume that ag = (a9,...,a%) > a; = (a},...,a}). Due
to the embeddings
15(A) = g (A) = I5,(A)

it is enough to prove the embeddings
(I (A)se € E)gg = 1g(A) 3)

and

15(4) > (5°(A); ¢ € By @

where o = (1 — ) + fag.
First we prove the embedding (3). If a = {ak kezn € (32 (A), then

K (t,a; 1%(A);< € E) ST e (4 =
€B% cp
= inf t® sup olae k) Hal(f) = inf Z sup TRPAGELY Hal(f) >
a:ZEGE Qe =3 ) kezZn A a:ZEGE Qe ccE kezZm
> inf sup min <t52<°‘€’k>) Hal(f) =
a=) cp Qe fcp kezr eck A
= _inf  sup min (t52<0‘5’k>) Ha(a) >
a=}_.cp e keZn €€E ; ko lla
> inf  sup min ( 9o K ) a =
a= ZaeE ac kezn €EE %ZE k

= inf  sup min (t€2<a5’ ) llak|| 4 = sup HllIl (t52 e ) l|lax|| 4 -
a=3 ccp tc kezn €€F keZ

Since ag > a1, then R} can be divided into parallelepipeds of the form {2 ao—e1)(j-1), 2(0‘0 O‘l)J),
jE€ Z™ Then

1/q
— —0 . JOe . th
||ar\(zgg<A>;€eE>9q—< [ (K stz (e < B) t) >

+
1/q
44t
> / (t_g sup min <t52<0‘5’k>) Hak\A> — =
i kezn cER t
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1/q

o(apg—a)j a4 g4t
= Z / . <t % sup min <t€2<a€’k>) ||ak|A> " >

jezm J 20Dy kezn €L

1/q
q

> —(0(co—a1),j) (e(ap—a1),j)+{ae k) _
“\& <2 s i 2 ) ol

1/q

. q
- Z <Sup min (2((879)(&0*&1),J>+<Ozs,k>) Ha’kHA> _

jezn keznr €EE

1/q

q
— E m ((e=0)(o—a1)+ac,j)+(ae,(k=]))
@ = <ksélzr:l 661115’1 <2 ) Hak|A>

Since for any € € E the equality
(e—)(ap—a1)ta=(—0)(apg—a1)+ (1 —e)ag+eag =
=1-0)ay+0ag =«
holds, then we get

1/q
q

ol e, = O | 3 ((sup mip (209500 gl )| =

jezn kezZnr €EE

1/q

. q
=0, Z <2<a,3> sup mm( <as,(kﬂ)>) HakHA> >

€E
iz keZn €

1/q

Z (2<°"j> Haj”A)q =0 ||a||zg(A) :

jezr

The last inequality means the embedding (3).
Next, we prove the embedding (4). Let a = {ax }xezn € Ig(A). We have

K(t,a;15%(A);c € E) St laclse () =

ecE e ceE

— nf S Y 2k Hagj> = _jof Z > w2tk o] <
0=2eer% [k Kezn A a=Y.epo €E keZn
< > min (t€2<%"‘>) ol
kezn

here we put al(() = qay for e that corresponds to m%l (t€2<a5’ >>.
€

As in the proof of (3), we obtain

qdt 1/a
lallge cem),, = (/ (TG @ (e € B)) t> <

+
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4 g 1/q
—0 . eo{ae k) e —
(/i (t > min (v°2 )||akHA> t)

kezm
2(apg—a1)i dt
) N (D SETICECE [T
jezn 2(ag—a1)(i-1) keZn
—(0 - »- o P 6)
X 'Z (2 (O(eo—en)g) 37 min (2< e(a0—a1),j)+{a |akHA>
jezn kezZn

oy <2<a_ao,j> 3 i (2o o )HakrA>

jezn kezn °F
q\ Va
(ov.d) ; (e k—j) —
Co jezz; (2 kéz:n min <2 ) Hak”A> =
q\ 1/a 1/q
A <2<avj>zfa<raumj>> <oy [ (@ niea)t] .
jezn ceE ceB \jezn

where I.(||alla;]) = L, (... I (Jla]| a3 ])) is a composition of transformations from Lemma 2.
Further, using the Minkowski inequalities, (1) and (2) we obtain

1/q
q
ol e, <0 X | 2 (2o9nlala)) -
eckE \JeZ"
a/q an/gu-1\ /0"
=G> | >0 |2 DD L, (I (lallasi)” <
eel \ jn=—00 J1=—00
q2/q1 dn I/Qn
SCQZ Z 2an]nIEn Z (2041]1[51(||a”A;j))q1 <
eelE \ jn=—00 J1=—00
2/qn n/qn—1 L/an
<o Y 2 Y @ lagglla)” =
eek | jn=—00 J1=—00
1/q
. q
= ([ 3 (2 lleglly) ) = Callallgay -
jezn

The last inequality means the embedding (4).
The lemma is completely proved.
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Nikol’skii- Besov type spaces and their interpolation

Let multi-index d = (dy,...,d,) € N, T = {x = (x1,...,Xp) : X; = (:1:11,,1:?11) € [0,2m)%,
i=1,...,n}. Let f(x) = f(x1,...,X,) be measurable function on T9.
Further, let 1 <p = (p1,...,pn) < 00. The Lebesgue space Lp(T9) with a mixed metric is a

set of functions for which the following expression is finite

pn/pn—l 1/pn

p2/p1
1Ny rey = /Tdn ( (/le |f(x1,...,xn)|p1dx1) ) dx,,

Here, the expression ( [pa, ]f(x)\pidxi)l/pi for pj=co we undestand as sup,cpq | f(x)].
Let a = (a1,...,an) €ER", 1 <q=(q1,...,qn) <00, 1 <p=(p1,...,pn) < 0.
For trigonometric series f ~ >y c7a axe"®¥) denote by

AS(f) X) = Z akei<k’x>7

kep(s)
n d;
where (k,x) = ZZk;:c; is the inner product, p(s) = {k = (ki,...,k,) € 29 : [231'_1] <
i=1 j=1
< maxj—i,. 4, |k;| <2% 4=1,...,n}

The Nikol'skii-Besov space Bp%(T9) with a mixed metric is the set of trigonometric series
o~ keza axe® %) for which the norm

I lgacesy = {218 zyco0 )

SEZY I

is finite, where || - ||;, is the norm of a discrete Lebesgue space lq with a mixed metric.
Definition 1. Let A and B be Banach spaces. An operator R € L(A, B) is called a retraction if
there exists an operator S € L(B, A) such

RS = E (identity operator from L(B, B)).

Moreover, the operator S is called the coretraction (corresponding to R).

Theorem 1. Let —oc0 < a = (a1,...,a,) < 00,1 < p = (p1,...,pn) < 00 and 1 < q =
= (q1,---,qn) < 00. Then the space Bp%(T9) is a retraction of the space la‘(Lp(’]Td)).

Proof. We prove first the S-property. For the function f € Bp%(T9) we define the operator S as
follows

ST = {8l ¥)}sezn = {(As* ) () }cz -

here Ag(x) is the Dirichlet kernel corresponding to the block p(s).
Then, by definition, we have

15 F g (Lp(rayy = I{As(fs ) Hha Ly (ray = [1f] B3a(Tay »

which means the fulfillment of the S-property.
Next, we check the fulfillment of the R-property. For the sequence f = { fs(x)}sEZi we define the
operator

Rf =) (Asx f5) (x).

SISVA
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Then, according to the inequality of M. Riesz about the boundedness of parallelepipedal partial
sums, we obtain

[Am * fllpray < ClIfllL, (ray

where C' is the absolute constant, and further
”RfHng(Td) = [{(As * fs) As}Hzg(Lp(Td)) =

= [{As * fs}lig Ly (ray) < Cl{sHgzp(ray = Cl1f g zpcra)) -

The last inequality means the fulfillment of the R-property.
It remains to show that RS = E. Indeed,

RSf(x) = RU{A(f,0)}) = D (As(fix) * As(x)) =

SELT
= D> (82 = Spen) % ) (%) = f().
SEZT
The theorem is completely proved. O

Theorem 2. Let 1 <p = (p1,...,0n) < 00, 040:(04(1)a~--70491)7éa1:(0‘%7-“70‘%)’15(10:
:(q(l)v'--’qg)’ql:(Q%v'“’q'rlz)SOO7€:(517"'a€n)GE' Thenfor0<9=(91,-..,9n)<1a11d
1<q=(q,---,qn) < oo the equality

(Bp=a=(19);c € B) o = BT

holds, where oo = (1 — 0) g + Oavy.

Proof. follows from Theorem 1 and the Lemma 3. O
Remark 1. In the case d = (1,--- , 1), the result of Theorem 2 was announced by E.D. Nursultanov
in [9].

Theorem 3. Let 1 < po = (p,...,p2),p1 = (p},...,pL) < 400, ap = (af,...,a) # a1 =
=(af,...;ar), 1<qo=(¢...,¢%), a1 = (qi,...,q:) < oc. Then for 0 < f < 1 the equality

(Bgge(T?): Bz (1)) | = BR(T)

holds, where a = (1 —0)ag+0a1, 1/p = (1 —0)/po+0/p1 and 1/q = (1 — 0)/qo +0/qu. Here (-, )
is a complex interpolation functor (see [3]).
Proof. follows from Theorem 1, Theorems 5.1.2 and 5.6.3 from [3]. O
Acknowledgments. Research was partially supported by the grant of the Science Committee of
Ministry of Education and Science of the Republic of Kazakhstan (grant AP08855579).
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K.A. Bekmaranberos, K.E. Keppener, E. Teneyrasnor

Apajac merpukaJjbl Hukonbckuii-becoB Tuiirec
KEHICTIKTep YIIIiH MHTEPIIOJASINNSJIbIK TeopeMa

MakaJsrasia apajac TYBIHIBLIBI K9HE apaJjac MeTpukaJibl Hukosmbckuit-BecoB KeHIiCTIrHIH MHTEPIIOINSsI-
JIBIK KACHETTeP] aHU30TPOITHI JKOHE KEIIeH i HHTEPIIOJIALS dicTepi Goiibimra seprrensi. lg (A) BeKTOpJIbI
MOH/Ii CaJIMAKTBIK JMCKPETTI KEHICTIK YIIIH NWHTEPIOJIAIUIIBIK TeopeMa Joienaen . 3eprreiares Hukoib-
ckuit-Becos kenicrikrepi Ig (Lp) KeHicTiriniy peTpakTh 60IaTHIHIBFE KopceTiam. 2Korapbiia KeaTipiaren
HOTHUKEJIepre CYeHe OTBIPHIN, YCTEMIIK €TETIH apajac TyBbIH LI KOHE apajac MeTpuKaIbl Hukombckmii-
Becos kenicTikTepi yIIiH HHTEPIOISIUASIBIK, TEOPEMAJIAD AJIBIH/IbI.

Kiam cosdep: Hurombckuii-Becos Tunrec KeHICTIKTED, aHU30TPONTHI MHTEPIIOJIATINS DTICI, KEIIEH I WHTEP-
[TOJIATINS.
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I/IHTepHOJISII_[I/IOHHaSI TeopeMa AJid ITPOCTPaHCTB THUIIA
Hukoabpckoro-BecoBa co cmemnaHHOI MeTpI/IKOﬁ

B crarbe nzyvennr nHTEPIOISAIIMOHHBIE CBOMCTBa pocTpancTB Hukosbckoro-Becosa ¢ jomunupyroreit cme-
MIAHHON MPOM3BOAHONM U CMENIAHHON METPUKON OTHOCHUTEIBHO AaHU3O0TPOITHOTO M KOMIIJIEKCHOTO METOJIOB
uHTepnoIdAmn. JlokazaHa MHTEPIOIAIMOHHAST TeOpeMa JIJIsi BECOBOT'O JIMCKPETHOTO IIPOCTPAHCTBA BEKTOP-
HO3HAYHBIX I110CJI€/I0BATEIbHOCTENR lg‘(A). ITokazano, uro uzydaemble npocrpancTBa Hukosiabckoro-Becosa
SBJISIIOTCA PETPAKTOM ITPOCTPAHCTBA lg(Lp). Ha ocHoBaHum nepevnc/IeHHBIX BBINIE PE3YILTATOB IOJIYde-
HBl WHTEPIOJIANNOHHBIE TEOPEMBI jisi pocTpaHcTB Hukombckoro-BecoBa ¢ momuHMpyIomeit cMeranaoit
IIPOU3BOJIHOI U CMeENIaHHON MeTPHUKOM.

Karouesvie caosa: mpoctpancTa Tuna Hukonbckoro-bBecoBa, MeTo aHU30TPOIIHON MHTEPIOISIIAN, KOMII-
JIEKCHAS WHTEPIIOJIATINSA.
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Decomposition formulas for some
quadruple hypergeometric series

Abstract: In the present work, the authors obtained operator identities and decomposition formulas for
second order Gauss hypergeometric series of four variables into products containing simpler hypergeometric
functions. A Choi—Hasanov method based on the inverse pairs of symbolic operators is used. The obtained
expansion formulas for the hypergeometric functions of four variables will allow us to study the properties
of these functions. These decompositions are used to study the solvability of boundary value problems for
degenerate multidimensional partial differential equations.

Keywords: Appell hypergeometric function, Lauricella function, Saran function, Quadruple hypergeometric
series, Decomposition formulas, Operator identities, Inverse symbolic operators.

Introduction

A variety of tasks related to almost all of the most significant sections of mathematical physics
and answering urgent technical questions are associated with the special functions applying, such
as the Bessel, Hermite, Gaussian hypergeometric functions, etc. Thus, for example, Bessel functions
are actively used in solving hydrodynamics, radiophysics, acoustics problems of atomic and nuclear
physics. There are applications of Bessel functions in problems of elasticity and thermal conductivity
theories (determination of stress concentration near faults, plate oscillation) [1]. Many functions used in
astronomy are arranged in series of hypergeometric functions [2]|. Also, the hypergeometric functions of
many complex variables are applicable to the research of analytic continuation problems of Mellin
— Barnes type integrals [3], in the superstring theory [4], and in theoretical aspects of algebraic
geometry [5].

Generalized hypergeometric functions are used in solving boundary value problems for shell theory
equations whose applications are used in mechanical engineering. A.D. Kovalenko developed the app-
lication of the theory of generalized hypergeometric functions to determine the stress state in disks,
circular plates of alternant thickness and conical shells of rotation according to the equilibrium linear
theory [6]. Multiple hypergeometric series are used in research and development of aerospace systems [7].
At the same time, hypergeometric functions of many variables arise in quantum field theory as a
solution of Knizhnik-Zamolodchikov equations [5]. In [8-10], the connection of special functions of the
hypergeometric type with the actual problems of the theory of representations of Lie algebras and
quantum groups is shown, as well as the application of hypergeometric functions and series to applied
problems of various fields.

It should be noted that the Riemann functions and the fundamental solutions of degenerate partial
differential equations are expressed in terms of multiple hypergeometric functions. Thus, hypergeometric
functions are used in solving boundary value problems for degenerate differential equations [11]. In
particular, hypergeometric functions are used in [12| to find the fundamental solutions of a four-
dimensional degenerate equation of elliptic type, which can be used in solving known boundary value
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E-mail: berdyshev@mail.ru
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problems. Also in [13]|, Appel hypergeometric functions are used to construct a double layer potential
theory.

Second order hypergeometric functions of four variables were introduced in [14,15]. For one class
of hypergeometric functions of four variables, various properties, such as decomposition formulas,
integral representations were obtained in [16,17]. However, it should be noted that decompositions into
products of simpler hypergeometric functions can be obtained not for all the introduced second order
hypergeometric functions of four variables.

In this paper, we obtain decomposition formulas using operator identities for the following quadruple
hypergeometric functions:

i (al)m+n+p(a2)q<b)m+n+p+q ™ y" 2Pl (1)

(4) . ) _ g2
Fl ((11,(12,(), Cl,CQ,C3,C4,l’,y,Z,t) - (cl)m(CQ)n(C3)p(C4)q m! n! p' q|7

m,n,p,q=0

N (al)m+”(a2)P(a3)q<b)m+n+p+q ™ y" 2P ﬁ
Z (c1)m(c2)y,(e3),(ca)g m! n! p! gl (2)

(4) ) .
F3 (al,a2,a3,b,61,62,63,04,$,y,Z,75) =
m,n,p,q=0

> a b ), ™y 2P 14
E{Y (a,b,cer, 003,050,y 2,1) = @mssp O )px—y—z——, (3)
(c1)(c2),(e3),(ca),  mlnl plg!

m7n7p7q:0
0 a a b b m o P 4
Fé4) (a1,a2,b1,ba;c1,c9,c3,c452,Y, 2,t) = Z (a1) e np(a2) g (01) o ( 2)p+qx—'y—'z—'—', "
m,n,p,q=0 (c1)m(c2),(c3),(ca)g m! n! p! ¢!
o
ai az bl bg b3 mon P 44
F6(4) (a17a2ab17b27b3; 01702703704;$,y,2,t) = Z ( )m+n+p( )q( )m+q( )n( )pi'yi'zi'i, (5)
m,n,p,q=0 (Cl>m(62)n(c3)p(c4)q m: n. p q!

ad a1)p,in(a 1)yt (D2),, (b mon P 44
F{Y (a1, a2,b1,ba5¢1, 2,03, ¢452,y, 2,) = > (4(@2) O ) v 02)u )y 2 7 2

mmpg=0 (61)m(62)n(03)p(04)q m! n! p!q!’
oo
ax az), (az), (b mom P 4d
FY (ar,az,b;c1 ¢, c352,y,2,8) = Y (01)4(@2),(43) )m+n+p+q3«;'y7'g'7 7)
m,n,p,q=0 <cl)m+p(c2)n<c3)q m:.n.p:-q
[e.@]
ar),,(az),(as), (as), (b mom . q
Fl(g) (a17a27a37a47b; Cl,CQ,C3;ZL’,y,Z7t) - Z ( )m( )n( )p( )q( )m+n+l7+q$7yii (8)

m.n,p,q=0 (1) man(c2)p(e3), m! nl p! g’

where (a),, =T (a+m) /T (a) is a Pochhammer symbol.
Operator identities
By means of Burchnall-Chaundy pair of mutually inverse symbolic operators V, ,, (h) and Az, (h)

[18—-20], decomposition formulas were obtained for the Appel’s hypergeometric functions of two variables
by the products of hypergeometric functions of one variable [21].
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To decompose multiple hypergeometric functions, a multivariable analogue of the above pair of
mutually inverse symbolic operators

S T(h+6)T(h+b6+ ... +6,)

Vs (B) = L(h)T(h+61+d2+...4+6r) i (=01) by, (02) g, - (=00)g,

al - - ko
k2 k3. k=0 (Wi ..o, Rothigl - - !

and
A (h):F(h+51)F(h+62+---+5r)_
T15X2,...,Tp T (h) T (h -+ 51 + 62 + ...+ 5r)

oo

— Z (_51)k2+...+kr(_52)k2 T (_57“)kr
(L=h—=01— e =0 )y yp Rolhsl - Ky

k?uk37~~7kr:0

(636]. = xj%; j=1,2, ...,r) was introduced in [22].
To study the various properties of another class of generalized multidimensional hypergeometric
functions, J. Choi and A. Hasanov [23] introduced the following reciprocal operators:

_ T (a+d+---+6) _ = (8- a)k1+~--+kr(—51)k1 o (_5T')k‘r
Ha:l,...xr (Oé, ﬁ) - T (OZ) T (B + 51 + -+ 57,) - kh,%:r_o (ﬁ)kl_f‘.._i_k;rk’l! . kr' )

CT(@T(B+61++06) = B=a)y g (=01), - (=0r),
H:m,...zr(aaﬁ)_F(ﬁ)r(a+51+...+5r) o Z (1_04_51_"'_5r)i+ji!j!

k1,...kr=0

o .
(&vj = x]aix] (] = 17 T E N = {1727 })> :

Theorem 1. For the second order hypergeometric functions of four variables (1)—(8), the following
operator identities are valid:

F1(4) (a1,a2,b;c1,c2,¢3,ca;,y, 2,t) = Hy (a2, cq) (1 — t)_bF((;3) <a1>b; €1, €2, €35 7 ° 1 Y 1 & t) :
(9)

—b (3 z Y z 4
(].—t) bFév) <CL1,b;C]_,CQ,Cg; 1—t’ 1—t’ ]_—t> :Ht(a27c4)F1( )(a17a27b;01502763764;xay52)t))

(10)

4
Fg( )(a1,a2,a3,b; €1,€2,C3,C4; 2, Y, 2, )

_ T y
- H H 1—t—2)""F b: : 11
Z(CLQ,Cg) t(a3,64)( Z) 4<a17 aclaCQal_t_zal_t_z)v ( )

_ x y
1_t_ bF aba 9 ) ]
( 2 4<a1 e 1—t—z>
— — 4
= H, (as,c3) Hy (a37C4)Fgf)(al,az,as,b;61,02703704;96,?/,2715)7 (12)

(4) : .
F4 (a,b,C,Cl,CQ,C3,C4,x,y,Z,t):
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— x t
=H, (CaC3) (17Z> ¢ ég) <a,b;01,62,63; 1-_ 2’ 132, 1—Z> ) (13)

_ t
(1 - Z) “ é’g) <a> ba C1, C2, C3; 1 * ) Y ; >
—Z

=H, (c,c3) F4(4) (a,b,c;cr,c2,c3,c432,y,2,t), (14)

4 _ z
FES ) (a1)a2)blvb2;01762)03504;$7y725t) = Ht (a27c4) (]‘ - t) bQFE (al; b17b2;01762)03;xay7 1_ t> )
(15)

— z —_— 4
(]- _t) b2FE <a1§b1,b2301702703§$,?/, > - Ht (CL27C4) Fg’f )(CL]_,CL2,b]_,b2;01762,03764;x7y72,t),

1—t
(16)

(4) : .
F6 ((11,(12,bl,bz,b3,01702703,04,$,y,27t)

_ T
= Hy (b2, c2) H, (b3, ¢3) (L —y —2)" "' Fy <bl;a1,a2;61704; 1_y_z,75> , (A7)

(1—y—2)"F, <b1;a1,a2;61,04; :Evt)
l—-y—=z

= H, (ba,c2) H, (b3, c3) Fé4) (a1,a2,b1,ba,b3;c1,¢2,¢3,c452,9, 2, 1), (18)

(4) . )
F8 (al,CLQ,bl,b2,01,62,03,647$,y,z,t)

—a —a €z x
= Hy (b, c2) Hy (b3, ca) (1 —y) (1 = 1) F <b1§a17a2§01703§1_y71_y>7 (19)

X X
1— ) (1 — £)"2F, ( by; a1, as; 1, c3; ——
( y) ( ) 2 ( 1,01, 02;C1,C3; 1_ya 1_y>

= H, (ba, c2) Hy (b3, c4) F8(4) (a1,a2,b1,b2;c1,¢2,¢3,ca52,y,2,t), (20)

_ z X
Fff) (a1, as,b; c1, ¢, 3,7, y, 2,t) = Hy (a3, ¢3) (1 —t) " Fp (b; a1, 23 €2, C1; 7 gta 111 —t> , (21)

z T
1—t"1—t"1—t

(1—1t)" Fp (b; ai,as; ¢z, C1; > =H, (a3763)F1(f‘) (a1,a2,b;c1,c2,c3;2,y, 2,t), (22)

(4) ) .
F13 ((11,(12,(13,(14, ba C1,C2,C3; T, Y, Z)t)

_ x y
- H H, 1—2—t)""F (b Jer; 2
2 (a3, c2) Hy (ag,c3) (1 — 2z —t) " F <57a17a2701, T 1 —z—t)’ (23)
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_ x Y
1—2—t) R (brar, ass e
( zZ ) 1<aa1>a2aclal_2_t71_z_t>

= H, (a3, c2) Hy (ay, c3) Fl(éf) (a1,a2,a3,a4,b;c1,¢2,¢3;2,y,2,t), (24)

where Fy, Fy, Fj are Appel hypergeometric functions [21], Fé?’) is Lauricella function [24], and Fg, Fr
are Saran functions [25]:

= (a) (B1) im0 (B2)
. . . _ pt+m+n m+n P, m,n_p
FE (0475175%717’72,73’%%2) — Z (’}/1) (72) (73) m'n'p' s
m,n,p=0 m n p
[eS)
(6%
FF (CY, 51752;71772;1.72/72) - Z ( )m—i-n-&-p(/Bl)m—f—]‘J(‘B?')nxm an.
I e

Proof. Theorem 1 is proved by dint of Mellin’s transformations [26].
Decomposition formulas

Theorem 2. For second order hypergeometric functions (1)—(8) the following decomposition formulas
are valid:

(4) : .
F1 ((11,(12,b,Cl,CQ,Cg,C4,I,y,Z,t)

- (- ib,c — a9)- i X z
=(1-1) b;( 1) ((Z;():' 2)z< t >Fé,3) (m,b—i—i;cl,cz,czs; Y )7 (25)

1—t'1—-t"1—t

1) FY (ar,b; .
( ) C at, aclac2ac3a1_t11_t71_t

— (c4 —a2);(b); ;
I F1(4)(a1,a27b+i;61762,c3,c4-H';w,y,zvt)? (26)

I
N

~
=

(4) . .
F3 (CLl,CLQ,CLg,b,61762,03,64,1’,y72,t)

O (—1)H(b)., (e3 — as).(cq — ag); > ¢
:(1_t_2),bz( )77 ()4 4(cs — a2);(ca 3)]< >

520 (c3);(ca) il 1—t—=z
t J T Y
X|—— | F b+i+J; ; 27
<1tz> 4((11, +Z+.]501702a1t271t2>7 ( )
_ x y
1—-1— bF aba ) ; )
( 2 4<a1 1,2 1—-t—=z2 1—t—z>

F?S4) (a1,a2,a3,b+ i+ j;c1,c0,¢3 +1,¢c4 + Jy2,y,2,t), (28)

_ S (s afe a0y

52 (c3);(ca);il!

(4) . )
F4 (aa b7 C;C1,C2,C3,C4; 2, Y, th)

o0

_ (- Z)—az (—1)"(a),(cs —c)z-< z )iFé:s) <a+z‘,b; e o2 y t > (29)

P (c3),4! 1—2 1—2"1-2"1-2
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_ t
(]‘ - Z) ¢ é'?’) (CL, ba C1,C2,C3; 1 ° ) Y ; )
—Z

Z' 4 (a+i7b7c;617027c3+iac4;x7y7zat)7 (30)

(4) : .
F5 (al)a2)b17b2501762)637047$7y727t)

b o= (=1)Y(b2). (cq — as), t o\ . z
:(]-*t) bQZ( )(2)1( k 2)Z< )FE (al;b17b2+7';’yl)72”y3;x7y7)7 (31)

v (ca),i! 1—¢ 1—t

(1-t)""Fg <a1; b1, ba;c1, 62, ¢35 2, Y, 1zt>

o (b2);(ca — az);
:ZM{LFESZL) (CLl,CLQ,bl,bQ+i;Cl,CQ,Cg,C4+’l:;x,y,2:,t)7 (32)

i—0 (ca);i!

(4) ) .
F6 (al,CLQ,bl,bQ,b3,Cl,CQ,C3,C47IE,y,Z,t)

Z)_al i (_1)i+j(a1)i+j(02 — bg)i(C?, — b3)j ( y _ Z>z

(Cg)i(C;g)ji!j! 11— Yy

i,5=0

J
) [ —— Fy bl;a1+i+j,a2;01704;L,t , (33)
l—y—=z l—y—=z

(1) (2 — b2)ies — bs); iyi
(ca)(c3),ils! y

[oe)
x
1_ _ —alF b . . t —
( Yy Z) 2<1,a1,a2,61,04,1_y_za> E

1,j=0

X F6(4) (al +Z+.77 a27b17b27b3;01762 +Z.>C3 +.]> C4;x7y7zat)7 (34)

—asg

F8(4) (a1,a2,b1,b2;¢1,¢,¢3,¢c452,y,2,t) = (1 —y) (1 —t)

« i (—1)i+j(a1)i(a2)j(cz —bg)i(04—b3)j( y )1( . >j

(c2);(ca) il l—y) \1-t

1,7=0

. . Xz z
X Fy | bisar +1i,a2 + jsc1,c3, ——, —— |, (35)
l—y 1—y

J yitj

x T ) _ i (a1);(az);(c2 — ba);(ca — b3)

1—y) (11—t "F (bl;a17a2;01,03;, —
( ) ) 1—y' 1—y (c2);(ca);ils!

i,j=0

X F8(4) (al +i,a2 +.]7 blabZ;ClaCZ +i,63,C4 +j;$,y,27t), (36)

(4) . .
F11 (a17a27 b; c1, 2,33 T, Y, Z7t)

e (C1)'(b)y(es —ag), [t ' . y z T
=1-7") d d Fr (b+i; ; ; 37
( ) g (Cg)lZ' 1_¢ F +Zva'17a'276270171_t71_t71_t ’ ( )
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_ Y z x
1—t)""Fp (b; ; ;
(1-1) F<’al’@’cz’cl’1—t’1—t’1—t>

(b);
= Z Ztl W (a1, 02,0 + 501, 00,3 + 652, y, 2,1), (38)

(4) ) .
F13 (a17a27a37a47 b; c1, ¢, C3; T, Y, Z7t)

Ly n (1)), (2 — a3);(cs — aa), z ' t J
=(1-z-07") (::;J)i(c;),)ji!j! j(l—z—t) <1—z—t>

i,j=0
. T Yy
xFy (b ; ;C1; 39
1( +Z+j7a17a27cla1_Z_t71_z_t>7 ( )
_ T Yy
1—2—t)"F (b ser;
(1-2-1) 1<’a1’a2’cl’1—z—t’1—z—t)
c3—ag); .
_Z Zﬂ )ilcs 4)Jzzt3F1(§)(alva27a3,a4,b+i+j;01762+i763+j;137?/,2775)- (40)

(c3);il5!

Proof. The proof of Theorem 2 is realized utilizing operator identities (9)—(24), some properties of
hypergeometric functions of many variables and the following operator identities [27, p. 93]

" reatnig (o)),

(0 +), (FO) =€

(=0), {f ()} = (= )dgn{f()} (41)

0= 56%; a€eC;neNy=NU{0}; N={1,2,3,...}, where f (&) is analytical function.
As an example, we give a brief proof of the decomposition (25).
The following equality holds:

> a b mon . a
(1—t) " FY (al,b;cl,cz,cg; =, >= 3 (mintyOminiprg 2 " 280 )

1—t'1—-t"1—1¢ 0 (c1)m(c2),(es), — mlnlplg!

Considering operator definition H; (az,c4) and identity (42), from (9) we have

4
Fl( )(al,ag,b; C1,C2,C3,C4; T, Y, 2, 1)

_ i (ea — a2)j(_5t)j i (al)m+n+p(b)m+n+p+q ™yt 2Pl

=0 (ca);! (c1)pn(c2),(es), — mlnlplgl

m,n,p,q=0

Using formula (41), we obtain

(4) : .
F1 ((11,(12,b,Cl,CQ,Cg,C4,I,y,Z,t)

_ S (_1)i(b)i(c4 — az); 4 i (al)m+n+p(b + i)m+n+p+q ™ y" 2Pt

i=0 (cq);a! mpg=0 (c1)m(c2),(c3), m! n! p! q!’
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By virtue of the validity of the identity () =(A),,(A+m), we get

m+n

%
@ b 04 _a2) t
Fl (GI,GQ,b C1,C2,C3,C45T,Y, 2, t 1_t Z 1—1¢

m n
« Z m+n+p(b ™ Z')m-i-n-&-p <&> (%> ép' (43)
ma )m(c2),,(c3),, m! n! pl

In view of the F ég) Lauricella hypergeometric function definition, from expression (43) we obtain
decomposition (25).

Thus, the decomposition formula (25) is proved.

Similarly, we can prove each of the decomposition formulas (26)—(40).

Remark 1. The decomposition formulas (25) — (40) can also be proved by comparing the coefficients
before the factor 2™ y"zPt? in both sides of the equality.

Conclusion

In conclusion, we proved the operator identities written via the mutually inverse operators H and
H for the hypergeometric functions of four variables F1(4)7 F?E4) — Fé4), F§4), Fl(f), Fl(gl), the validity
of the former is proved using the Mellin transforms. By applying the obtained operator identities,
differentiation formulas for hypergeometric functions, and properties of hypergeometric functions, we
have proved decompositions for the functions F1(4), F§4) — Fé4), F8(4), FS)’ Fl(g) by products of such
known hypergeometric functions as the Appell’s functions Fy, Fs, Fy; Lauricella’s function Fg)); the
Saran functions Fg, Fp. Similarly, the decomposition formulas for hypergeometric functions of four
variables Fl(;l), Fl(g), Fl(g), FQ(S‘), FQ(f), etc. can be obtained.
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A.C. Bepaprmes, A. Xacanos, A.P. Prickan

Keiibip TepT allHbIMAJIbI TUIIEPIE€OMETPUSLIIBIK,
KaTapJjap YIIiH XKiKTey (opMmyJiajgapbl

Maxkasazia TopT affHbIMAJIBI THIIEPTEOMETPUSIIBIK, [ 'aycc KaTap/iapsl YIIIiH OTIEPATOPJIBIK, TEele-TeHTIK TTeH Ka-
pamaiibiv dyHKIsIapra )ikrey dpopmysanapbl aibiHabl. CHMBOJIIBIK ONEPATOPIIAPIBIH KePi KYITapbIHA
Heriznenren Yown-XacaHOB 9/1iCi KOMIAHBLIILI. AJTBIHFAH TOPT aifHBIMAJIBI TUIIEPTEOMETPUSIIIBIK, KATApIaphbl
yImiH xkikrey dopMynanapbl ocbl DYHKIUAIAPIBIH, KACUETTEPIH 3epTTen Oliyre MyMKIiHIiK Gepemi. AJbia-
FaH XKIKTEyJIep KOUOJIIeM/Il a3rblHIaarad Jepbec Ty bHAbLIbL auddepeHnnaIblK TeHIeyep YImiH MeTTiK
ecenTep/IiH MEennHIiMIIIIK Macese/IepiH 3epTTeyie Mai aHbLIa bl

Kiam cesdep: Anmnennb runepreomeTpusiiblk yHKumsachl, Jlaypudenn dyunkiusaco, Capan QyHKIUACH,
TOPT affHBIMAJIBI TUIIEPreOMETPUSIIBIK, KaTap, YKikTey (opMysiajgapbl, OlepaTopJIbIK, Tele-TeHIKTeD, Kepi
CHMBOJIZBIK, OIIEPATOPJIAP.

A.C. Bepaprmes, A. Xacanos, A.P. Peickan

Dopmysbl pa3jI02KeHUsl JIJIsi HEKOTOPbBIX
runepreoMeTpuYeCcKnX psga0B YeTbIpexX NepeMeHHbIX

B craTtbe momydensr omepaTopHble TOXKIECTBA U (DOPMYJIBI PA3JIOKEHUS JIJII TUIIEPIeOMETPUIECKIX PsITOB
T'aycca BToporo nopsifka 4eTbipex IepeMeHHBIX 10 IPOU3BEIEHNAM, COePKAIIM O0Jiee IPOCThIe TUIIEPTe0-
MeTpudeckre (PYHKIMA. ABTOpaMHU HCIIOIB30BaH MeTos Jou-XacaHoBa, OCHOBAHHBIN Ha OOpATHBIX Mapax
CAMBOIMYECKUX oniepaTopoB. [losryaentbre popMysIbl pa3/IOKeHUS [I/IsI TUIIEPreOMETPUIEeCKUX PYHKIHI Te-
TBHIPEX IIEPEMEHHBIX IIO3BOJIAT U3YYUTh CBOHCTBA 3TuX PyHKnuil. JlaHHbIe pa3/I0KeHUs IPUMEHSIOTCH IPU
HCCJIETOBAHUYU BOIIPOCOB PA3PENINMOCTY KPAEBBIX 3aJ1a4 JjIsi BBIPOXKIAIOIINXCST MHOTOMEPHBIX JuddepeH-
[UAJIBHBIX YPABHEHUM B YACTHBIX ITPOU3BOIHBIX.

Karoueswie caosa: runepreomerpudeckas dynkuus Anmnens, dyukmusa Jlaypudesuia, dyukmus Capana, ru-
MIepreoMETPUIECKHIA PsiJT Y€ThIPEX MEPEMEHHBIX, (POPMYJIbI Pa3JIOKEHNsI, OTEPATOPHBIE TOXKIECTBA, 0O6paT-
HBIE CHMBOJINYECKUE OIIEPATOPHI.
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Stabilization of a solution for two-dimensional
loaded parabolic equation

In this paper we consider the stabilization problem of the solution of a boundary value problem for the heat
equation with a loaded two-dimensional Laplace operator. The loaded terms represent the values of the
required function and traces of the first-order partial derivatives of the required function at fixed points.
An algorithm for constructing boundary control functions is proposed.

Keywords: problem of boundary stabilization, loaded heat equation, loaded Laplace operator, biorthogonal
system, stabilization, algorithm.

Introduction

Along with the direct heat conduction problem - finding the temperature field by solving an
equation with known boundary conditions, it is often necessary to solve inverse problems, where the
corresponding boundary conditions from a given temperature distribution in space and time need to be
determined. Such inverse problems have great practical applications in physics, technology, mechanics,
and medicine.

Boundary value problems for loaded heat conduction equations, by themselves, have a large amount
of applications; they also constitute a special class of equations with their own specific problems. Such
problems arise when studying the unique solvability of semi-periodic (periodic in a time variable)
problems in a bounded domain in problems of optimal agroecosystem management, for example, the
problem of long-term forecasting and regulation of the level of groundwater and soil moisture.

Recently, among specialists in control problems, interest has significantly increased in the stabilizat-
ion of solutions to boundary value problems [1|-[4]. First of all, this is due not only to their importance
in theoretical terms, but also to the fact that one has to deal with them in many applied problems.

The problem considered in this paper on the stabilizability from the boundary 9Q2 of a solution
of a parabolic equation given in a bounded domain 2 € R consists in choosing a boundary control
such that the solution of the boundary value problem tends at ¢ — oo to a given stationary solution
at a given rate exp (—oopt). In this case, it is required that the control be with feedback, i.e. so that
it responds to unforeseen fluctuations of the system, suppressing the results of their influence on the
stabilized solution.

In [5], the stabilization problem for a parabolic equation is reduced to solving an auxiliary boun-
dary value problem in an extended domain of independent variables. This idea was further developed in
[6]-[8]. Note that in [5]-[8], stabilization problems for differential equations without load were considered.
At the same time, loaded differential equations [9]-[14] are actively used in control problems for
nonlocal dynamical systems. In [15]-[20], stabilization problems were studied for a loaded one- and
two-dimensional heat equation. In this paper, we consider the stabilization problem on the boundary
(forming a parallelepiped) of the solution of the boundary value problem for the heat equation with
a loaded two-dimensional Laplace operator, where the loaded terms are the values of the required
function and traces of the derivatives of the required function at fixed points.

*Corresponding author.
E-mail: ramamur@mail.ru, gulmanov.nurtay@gmail.com
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1. Problem Formulation

Let @ = {(z,y) : =5 < 2,y < §} be a domain with boundary €. In a parallelepiped

Q = Q x {t > 0} with a lateral surface ¥ = 9Q x {t > 0} we consider boundary value problem for a
loaded heat equation:

du du (z,y,1) Ou (z,y,1)
T Aut+ogu(z,y,t)|,_g+ a2 u(z,y,t)],_g+ a3 S — » + ay T - =0, (1)
u(xmyat)‘t:O:uO (mvy)v {.’E,y} € Qv (2)

U(.%',y,t)‘z :P<$7y7t) =
™ T T T
_ T . T\ T . _r E}
{U1<27y>t>7u2($>27t>7u3( 2ay7t>au4<xa 27t>‘{$,y>t}€ ) (3)

where a1, ag, ag, as € C, ug (x,y) is a known function. Equation (1) is loaded [9], [10]. It is necessary to
find such boundary functions u; (g,y,t); U9 (a;, g,t); U3 (—g, y,t); Uy (w, —g,t), so that the solution
of the boundary value problem (1)-(3) satisfies the inequality:

u (2, y,t) [ 1) < Coe™ 7 5>0,t>0, (4)
where o is a given constant, Co > [[ug (z,y) ||1,(q) is an arbitrary bounded constant.
2. Auziliary boundary value problem
Let Q1 ={(z,y) : =7 <z,y <7} and Q1 = Q; x {t > 0}.

9 Oz ()| (@)

5 Az+aoq z(z, y,t)|x:0+oz2z(a:,y,t)|y:0+a3 D x:0+ 4 2y yzo—(), (5)
2 (2,9, )]mg = 20 (2, 9), {z,y} € Q, (6)

somyt) =2yt ZOTD BB e (g5 0)
(i t) = 2 (2,1 1) (xé;”’t) _ % (‘g;f’“, (2.} € (—m7) x {t > 0} v

where aq, ag, a3, as € C, 2o (z,y) is a known function. It is necessary to find the function z, so that
the solution of the auxiliary boundary value problem (5)-(7) satisfies the inequality:

HZ (ﬂ?,y,t) HLz(Ql) < Cle_ot, c>0,t>0, (8)
where o is a given constant, C; > (Cj is an arbitrary bounded constant.
3. Spectral problem for the loaded two-dimensional Laplace operator

Let’s find the solution of the problem (5)-(7) by the method of separation of variables

kn€EZ

=Y Zi (8) Phn (,0);

kn€eZ
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Popn (@,y)  Popn (z,y
bam 3 Zun(t) (PP L T L) S 2 0 8

k,neZ kneZ

a1z (2,9, ) g+ 02 2 (2,4, )| ymg = Y (1 Zkn (8) P (0,9) + 02 Zk 0 () Pkn (,0));

kn€Z
o Z@wt) 2@yt
8ac x=0 8y y=0
8 n (L, 8 n \T,
=S (ang,n ) sok,a( y) + asZin (1) cpk,a( y) )
k,n€eZ t z=0 Y y=0

Now we substitute the obtained expressions into (5):

Z (ZIIC,TL (t) *Pkn (a;, y) - Zk‘,n (t) A Pt

kneZ
0 k €, 0 k z,y
+Zkn (t) | a10r,n (0,9) + a20pn (2,0) + as W + ay @g() =0.
€L =0 Y y=0
Hence, we get:
Zl/c,n (t) “Pkn ((L‘, y) - Zk,n (t) A Pk,n +
a k :L" a k :L" y
+ Zin (8) | 1010 (0,1) + 0200 (2,0) + a3 908“’) +a 90(;) 0.
€z x=0 Y y=0

Dividing both sides of the equality by Zj , (t) - ¢k (x,y), we obtain:

APk (2,y) APk (2,y)
Z//C,n (t) A Pen — A1PEn (07 y) — Q2QPkn (l‘, O) — a3 O% =0 —« dy )y:O

Zin (1) Prn (7, 9) ’

In order to find ¢y, (z,y), we consider the following spectral problem.

8 n 5 8 n )
A Ghn — 19k (0,9) — azpp (2,0) — g oenlo) o MTW‘ Y
— = = _Ak,na
PEk.n (l‘, y)
Opkn (=m,y)  Opgn (T,y) 9
i (~7,9) = i (m,y); e lT0Y)_ Openmy) o (9
Oppn (x,—7)  Oppn (z,m)
Pk.n (xa ﬂ-) = Pk,n (:Ea 7T) 3 8y — ay . )

Let’s use the method of separation of variables again. Let ¢y, (z,y) = Xj (2) - Y, (y). Then the
problem (9) can be written as follows:

X (@) —onXp (0) 3 X3 (0) V' (y) —aVn (0) —au¥7(0)
Xk (l’) = )\k’,n Y, (y) HE,
Xi (=7) = X (1) 5 X, (=) = X}, (7),

Yo (=7) =Yn (m); Y, (-m) =Y, (m).

This problem was reduced to finding solutions of the following two differential equations with
periodic conditions:

(10)

XY (2) + X () — (01 X5 (0) + asX}, (0)) = o,}
X (=) = X (7). X} (—7) = X} (7).
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YA/ (y) - (Uk - )\k,n) Y, (y) - (OQYn (0) + O‘4Y7: (0)) = 07} (11)

Yo (=m) = Yo (m); Y, (=7) =Y, (7).

Note that the general solution of loaded ordinary differential equations (10) and (11) is represented

as a linear combination of the complete system of periodic functions {@m =™ me Z}. Therefore,
we will find a solution of problem (10) in the form X}, (z) = Ape™** +Cj, (k € Z). Let’s consider several

cases.
Case (a). Let ay # k? Vk € Z\ {0}. Then the solution to the problem (10) will be as follows:

X (:E) = Akeikx + Cr = X (0) = A, + Cy,
X, (x) = ikAe™ = X (0) = ik Ay,
X]’(;, (Q’J) — *k’2Ak€ikz,
—k:ZAkeikm + ,ukAkeikx + uka. — (OélAk + a1Cy, + ia3kAk) =0.

—kQAk + upAg =0, N Ay, (_k2 + Nk) =0,
wiCr — (OzlAk +a1Cy + iagkAk) =0 wpCr — (OzlAk +a1Cy + iOégkAk) =0.

If A = 0, then the equation (10) has no nontrivial solutions. Therefore, it follows from the first
equation of the last system that Ay can take any nonzero value. For simplicity, we will assume that
A, = 1. It should also be noted that from the equality u; = k? it follows that k # 0, since for pz = 0
the equation (10) also has no nontrivial solutions. Thus:

A =1, A =1,
— 7.2
=k, k#0 = pe =% k£ 0
k2Cr — a1 — a1Cy — iagk =0 Cp = @ 1ok

/6'2 — X1 k2 — (X
Therefore, we obtain a system of eigenfunctions:

; a1 iOégk’ 2
X _ ikz k< Vk € Z\ {0
p@) =t A € Z\{0},

which correspond to the eigenvalues ux = k* Vk € Z\ {0}.
Let oy # k?, k = 0. Then we have

XY () + poXo () — (a1Xo (0) + az X} (0)) = 0,}
Xo (=) = Xo(m); Xo(-7) = Xq (7).

XQ(.I):AQ—I-C(] = XQ(O):AO—I-CU
X (2) = XY () = 0

po (Ag +Co) —a1 (Ao +Co) =0 = (Ag+ Co) (o — 1) =0

Ag+Ch =1,
Ho = Q7.

We get the eigenfunction Xg () = 1, which corresponds to the eigenvalue py = a.
Hence, the system of eigenfunctions and eigenvalues of the problem (10) for the case (a) has the
form: -
; [e5] 103
ezkw +
Xk (x) = kQ—Oq k2—a1
1, po=aq, k=0.

y Mk = kQa Vk € Z\ {0}
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Case (b). Let Ja € Z : a3 = a® Yk € Z\ {+a}. Reasoning similarly to the previous case, we
obtain a system of eigenfunctions X, (z) = e 162%1&1 + k’f‘fsl , which correspond to the eigenvalues
pr = k%, Yk € 7Z\ {0;+a}, and the eigenfunction X (z) = 1, which corresponds to the eigenvalue
Mo = O] = CL2.

Let Ja € Z: ay = a?, k = +a. Then we have

XY o (#) + praXaa (2) — (a1 X440 (0) + a3 X7y, (0)) = o,}
Xig (—7) = Xpq (m); Xy (—m) = X, (7).
Xia(®) = Apae™ 4+ Ciq = Xiq(0) = Atq + Cia,
X (2) =1 10 AL = X' (0) = +iaAL,,
XL, (2) = —a®Agqe™?,
—a?A g™ 4 o Arae™ 4 1o Crg — (aPAgq + a?Cyq £iasaAy,) = 0.

A:ta = 17

{ —a*Asq + prqAia =0, e =, o
pi4aCra — (A*Asq + a*Cag £iagadi,) =0 PO — @ — @Cn T icna = 0
Asa =1, Ava =1, Ara =1,
= fita = a°, = fita = 0%, = fita = a,
—a? Fioaza=0 a(atiag)=0 a=0wm a3z = +ia
Therefore, we get the eigenfunctions Xi,(z) = e**  which correspond to the eigenvalues

2
Hiaq = Q1 = a”.

Hence, the system of eigenfunctions and eigenvalues of the problem (10) for the case (b) has the

form: ok
a1 103 2

=k*, Vk e Z\{0; £
kg_a1+k2_alaﬂk ) € \{7 a'}

eikaz +
Xk(w): 1,,[1,0:0[1:&2,]{5:0
e =01 =d? k=+a
The solution of the problem (11) is defined similarly.
Case (c). Let ag # n Vn € Z. Then the system of eigenfunctions and eigenvalues of the problem

(11) has the form:

ey 4 2a2 + ;‘a;m
Y, (y) = n“—oay n

—, Mo = k2 +n?, Vk € Z, Vn € Z\ {0}
- Q2

1, Ak70:k2+a2, Vk e Z, n=0.

Case (d). Let 3b€ Z: ag = b?> ¥n € Z. Then the system of eigenfunctions and eigenvalues of the
problem (11) has the form:

ey 4

RN +n2—b2’ Men = k* +n*, Vk € Z, Vn € Z\ {0; £b}

Yol(y) = L Mo =k +az=k*+b%, Vk€Z, n=0
eiiby7 )‘k;ib:k2+a2:k2+b27 VkEZ, n = +b

Let’s write the systems of eigenfunctions and eigenvalues of the problem (9).

Mathematics series. Ne 4(100) /2020 59



M.T. Jenaliyev, M.I. Ramazanov et al.

Case 1. Let oy # k®> Vk € Z and ag # n? ¥n € Z. Then the system of eigenfunctions and
eigenvalues of the problem (9) has the form:

_ | Jika a1 iagk iny @2 laqn
{Sok,n(%y)_(e +k2a1+k2041> (e +n2a2+n2a2>7

Mo = k2 4+ n?, Vk,n € Z\ {0} ;

_ ikx a7 iagk}
ka,O(l‘ay)_e +k‘2—041+k2—041

a9 14N
+

. Ao = k? + a2, Vk € Z\ {0}; (12)

, Aon = a1 +n? Vn e Z\{0};

_ Liny
0 T =€ +
Yo (z,y) a7 =

0,0 (xay) = 17 )\0,0 =+ a2} .

Case 2. Let a1 # k?> Vk € Zand I € Z: ap = b? Vn € Z. Then the system of eigenfunctions and
eigenvalues of the problem (9) has the form:

. a1 Zagk ; (0%) Z.Oé4n
z,y) = [ e** " ’
{@k,n( Y) < +k2—a1+k‘2—a1> (e +n2—a2+n2—042>

Men = k2 + 1% VEk € Z\ {0} ,n € Z\ {0; b} ;

a1 iagk
]{72 — 1 k2 — Q1

oro (T, y) = e 4 . Ako = k2 + a9, Vk € Z\ {0}; (13)

; o tagk ;
Pr,xb (T,y) = (em t _1a1 T2 _3a1> e, Ny = K + o, Yk € Z\ {0}

Gz, dean 4 Vn € 7\ {0; 4b);

)

_ iny
0n (T,y)=€e"" +
o (2,4) n?—ay n?—ap

wo.sb (T,y) = eFY g4 = a1 + ag;
o0 (z,y) =1, Moo =01 +az}.

Case 8. Let Ja € Z: oy = a®> Vk € Z and ag # n? Vn € Z. Then the system of eigenfunctions
and eigenvalues of the problem (9) has the form:

_ | ika ! iagk iny @2 taan
{kam(x?y) <€ +k2—a1+k2—041> (6 _'_712—0(2_‘_7&2—042)7

Mo = k2 4+ n?, Vk € Z\{0;+a} ,n € Z\ {0} ;

o1 tazk

ikx 2
,Y) = , Ako=F , Vk € Z\ {0; +a}; 14
Pro (2,y) = €™ + 15— o T e o + a2 \ {0; £a} (14)
. « 10N
©Yo,n (:r:,y) ="+ n2 _2a2 + n2 ja2’ )‘O,n =aoay + n27 Vn € Z\ {0}§

a7 ’iagk
k2—o7 k2—og

P+a,n (xa y) = eiia:p <eikx + > 5 )‘:i:a,n =]+ n27 Vn € Z\ {0}7

»
V+a,0 (T,y) = 7", Aiqo = 01 + a;

0,0 (x,y) = 1, )\070 = 1 + ag} .
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Case 4. Let 3a € Z : a1 = a®> Vk € Z and 3b € Z : a9 = b?> ¥n € Z. Then the system of
eigenfunctions and eigenvalues of the problem (9) has the form:

_{ ika ay iagk iny @2 laqn
{Sok,n(x7y)_<e +k2—a1+k2—a1> (e +n2—a2+n2—a2>7

Mo = k2 + 02, Yk € Z\ {0; +a} ,n € Z\ {0; +b} ;

o1 tazk
k2 — 1 k2 — 1
1e%) 1oun

@o,n(%y):em“nz_az Ty Ao = a1 +n?, Vn € Z\ {0; +b} ;

ro (z,y) = etk 4 y Ako = k2 + o, Vk € Z\{0; £a}; (15)

(&3] iagk
k‘2 — (] ]{72 — 1

Otan (T,y) = etiar (eikz + > , Adan =01 + n?, Vn e Z\ {0; +b};

o tazk

Pt (3:9) = (em e e Oq) W, Mo =k + oz, Vh € Z\ {05 +a} ;

+i(az+b .
Pta,+b (ﬂf, y) =€ i(az+ y)a )‘:I:a,:l:b = a1 + a9;
N

V10,0 (Z,y) = e, Aigo = a1 + ag;
+iby

©o,4b (T,y) = e, Ao b = o1 + 2;

©0,0 (x,y) =1, oo =01 + as}.

Z/
Solution of the equation 7 8 = —M,n has the form.

Zk,n (t) = Ck,n . 67)"“’"2 (16)

where Cyp, = zopn, are the expansion coefficients of the function zg(z,y) by system
{(Pk,n (x,y) , ko€ Z}

Note that the obtained systems of eigenfunctions (12)-(15) are complete in the space Lo (€2;), forme
a basis but is not orthogonal (the completeness of the systems of eigenfunctions (12)-(15) follows from
the Paley-Wiener theorem [21], [22]). Therefore, the solution to problem (5)-(7) will be sought in the
form

where {¢, (z,y), k,n € Z} is a biorthogonal basis [23] of the space Ly (1) and Z = {0; £1; £2; ...}
to the system {¢g, (z,y), k,n € Z}.

3. Construction of biorthogonal systems of functions {ty . (z,y), k,n € Z}
The biorthogonal systems of functions in Lo (£21) for (12)-(15) will be constructed as follows:

1

{kn (z,y), kyn € Z} = {Zhlrg@i(kﬂny); —g0 (y) e™%; ifo () e™; k,n € Z\{0}; fo(z)- g0 (y)}

2T 2

where fo (), go(y) are unknown functions. For the (12) fo () we will search in the form:

fo(x)=Co+ Z Cm<zmm+mml>
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Coefficients Cy and C,,, we determine from the biorthogonality conditions:

1

oq 1Qgm
+
27

1 a1,
Co=—5-— Y CmBp®, Cp=-
meZ\{0}

B&v*3  where B21™*3 = .
mo m m2—oa; mZ2-—om

Further, applying the found values of Cy and C),, we find the required function fy (x):

1 . aq 1a3m
r)=—— BoL3 e - where BYY3 = + )
fO( ) 27Tmez m m 7712_0(1 m2_a1
Function gg (y) for the (12) is defined similarly:
1 : o iaam
= —— B2 - where B9 = + .
g0 (y) o P m m m2—ay  m2—as

Thus, biorthogonal system for (12) is:

{um (z,y), k,neZ} = {4126i(kx+”y); —% > Bpeseilivih), —4% > Bgoseilmatny),
7 7 T
leZ meZ

1 A
ko € ZIN{O}s — 5 D Bt Bt o (18)
m,lEZ
The biorthogonal systems of functions in L (€21) for (13)-(15) are defined similarly.
Biorthogonal system for (13) is:

1 1 ; 1 ;
{¢k,n (fE, y) , k,n e Z} = @ez(k:ﬁrny); —ﬁ Z B?Q’a4€z(ly+kz); —m Z B%I’asel(mz+ny)§
leZ\{+£b} meZ

1 A
o €ZN{O}s — 5 ) BRroBrttetti s o (19)

meZ
17\ {+b}
Biorthogonal system for (14) is:
1 . 1 : 1 .
{Vrn (x,y), kyneZ} = @ez(kﬁ"y); —EZB?’”“@“Z“M); - Z Bovasgilmatny).
leZ meZ\{xa}
1 ,
B €IN{O}s = Y BB telneri) 4o (20)
IEZ
meZ\{+a}

Biorthogonal system for (15) is:

{pnm (x,y), k,neZ} =
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1 i(kx+ny) 1 oz,04 i(ly+kx) 1 a,a3 i(me+ny)
=\ 1.2¢ Do D BT Do DL Birve ;
4 4 leZ\{%b} Am meZ\{£a}

1 .
k,n € 7\ {0}; i Z Bﬁf’a?’Bl‘m’a“el(mmHy) . (21)

leZ\{+£b}
meZ\{xa}

The constructed biorthogonal systems define biorthogonal basises in L (€21).
Hereinafter, we will assume that in the space Lo (1) we have:

e basises {prn (,v), k,n € Z}, composed of the systems (12)-(15) of eigenfunctions and eigenvalues;

e the corresponding biorthogonal basises {¢y ., (x,y), k,n € Z}, defined by the relations (18)-(21).

Then solution (16) of the auxiliary boundary value problem (5)-(7) can be written as:
for the Case 1:

z (IB, Y, t) = Z ZOkne_(k2+n2)t¢kn ((L‘, y) + Z ZOkoe_(kQ—i_az)tka (;Ua y) +
k,neZ\{0} kezZ\{0}

+ D zoone” )00, (2,) + zoo0e ™D oo (2,y) 5 (22)
nez)\{0}

for the Case 2:

z ($a Y, t) = Z ZOkne_(k2+n2)t¢kn (.T, y) + Z ZOkoe_(k2+a2)t¢kO (xa y) +

keZ\{0} kez\{0}

neZ\{0;+b}

+ 2 aoespe” BTy gy (2, y) + > zoome™ () g, (,y) +
keZ\{0} neZ\{0;+b}

+ zgowpe Ty (2, y) + z000e” T g0 (2, )5 (23)

for the Case 3:

z (.CE, Y, t) - Z zOknei(kQJrnQ)twkn (.’B, y) + Z zOkOei(k2+a2)t¢k0 (.’E, y) +

keZ\{0;xa} keZ\{0;xa}
neZ\{0}
+ Z ZOOnei(alJrnz)t"ﬂOn (.CI?, y) + Z ZO:I:cmei(alJrnQ)tw:tan (x7 y) +
nezZ\{0} neZ\{0}

+ 2otaoe” OOy oo (2, ) + z000e D lygg (z,y) 5 (24)
for the Case 4:
2@y t)= Y 2oene” ), (2,) + > zow0e” ) g (2,) +

keZ\{0;xa} keZ\{0;xa}
n€Z\{0;%b}

+ Z ZOOne_(a1+n2)t7/}0n (xa y) + Z ZO:‘:ane_(a1+n2)t¢ﬂ:an (37, y) +
neZ\{0;+b} neZ\{0;+b}

+ 0> zonere BTty (2,9) + zozaspe” @O g0y (2,y) +
keZ\{0;xa}

+ zoaa0e” TR Lo (2, ) + zoope” @Dy (2, y) + 2000 @ D g (2,y) 5 (25)
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where
20kn = /‘Pkn (%y)zo (xay) dxdy7 kvn € Z
951

are the Fourier coefficients of the function zg (z,y); and systems {¢ ,, (z,y), k,n € Z} are defined by
(18)-(21).
From (16) and (22)-(25) it follows immediately that if
for the Case 1:
Zon = 0 for k2 +n? <o,

2060 = 0 for k* + Re (v2) < o,

200n = 0 for Re (o) +n? < o,
zo0+b 7 0and zgpp # 0 for Re (o) + Re (o) > o,
z00+p = 0and zggp = 0 for Re (aq) + Re (a2) < o,

then solution (22) of the problem (5)-(7) will satisfy the inequality (8);
for the Case 2:
zoen = 0 for k2 +n? <o,

2ok0 = Oand zgp1p = 0 mpu k% + Re (ag) < o,
200n = 0 for Re(a1) +n? < o,

200+ 7 0and zgoo # 0 for Re(ay) + Re (a2) > o,

20045 = O0and zgoo = 0 for Re(ay) + Re (a2) < o,

then solution (23) of the problem (5)-(7) will satisfy the inequality (8);
for the Case 3:
zoen = 0 for k2 +n? <o,

200 = 0 for k% + Re (ag) < o,
200n = 0and zg4an = 0 for Re(a1) +n? < o,
20046 7 O0and zgog # 0 for Re (a1) + Re (o) > o,
20046 = Oand zgpo = 0 for Re (a1) + Re (a3) < o,
then solution (24) of the problem (5)-(7) will satisfy the inequality (8);
for the Case 4:
zoen = 0 for k% +n? < o,
zok0 = 0and zop1p = 0 for k% + Re (o) < o,
200n = 0and zgiqn = 0 for Re(aq) +n? < o,
2000 7 0, 20046 7 0, 20440 7 0and 2014+ # 0 for Re(a1) + Re (a2) > o,
2000 = 0, zoo+p = 0, 20440 = O0and zprq1p = 0 for Re (ay) + Re () < o,

then solution (25) of the problem (5)-(7) will satisfy the inequality (8);
We introduce the following notation for the sets of pairs of indices (k,n) k,n € Z:

L={(kn) K +n?>0}, T1 = {(kn) > +n> <o)

I = {(k,0), (k,£b) [k* + Re (a2) > o}, Tr = {(k,0), (k,£b) |k* + Re (o2) < o'}
Is = {(0,n), (+a,n)|Re (o) +n?> o}, Is={(0,n),(+a,n)| (1) +n? < o}
I, ={(0,0),(0,4b), (xa,0), (+a, £db) |Re (a1) + Re () > o}
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I, = {(0,0),(0,£b) , (£a,0), (£a, +b) |Re (a1) + Re (az) < o}
I=TLULUIL3UIL.
Let condition
2okn = 0 mpu (k,n) € T

satisfies for (22)-(25), then stabilized solution zgqp (z,y,t) of the problem (5)-(7), satisfying the
inequality (8), can be written as:
for the Case 1:

z (:L‘a Y, t) = Z ZOknei(szrnQ)tu}k‘n (l‘7 y) + Z ZOk’Oei(szrOQ)t?ﬁkO (SL’, y) +

(k,n)e.ﬁ (kJ,O)EIQ
+ Z Z00n€7(a1+n2)t¢0n (z,y) + A(a1, az) e 172 ygq (2,y)
(0,71)6]3
where
2000, 14 # ©
Alag,ag) =
0, I, =0

for the Case 2:

2@y t) = Y zomme” ) gy, () + > zowoe” (FHe2)tyg (2, ) +

(kn)el (k,0)el2
+ D zovave” Ty () + > zoome™ () g () +
(k,xb)el> (0,n)els

+ Ay (a1, o) e @y (2 y) + Ag (o, ag) e (1F0 by (2 y) |

where
2000, 14 # ©
0, I, =0

Z004b, 1o # O

A1(0417042)={ 0 Lo
, 44 —

Az (a1, a0) = {
for the Case 3:

2@y t) = Y zomne” ) gy () + > zowoe” 42ty (2, ) +

(k,n)€I1 (k,O)EIQ
+ Z ZOOne_(a1+n2)t1/}0n (l‘, y) + Z ZOiane_(a1+n2)t¢ian (.’L’, y) +
(0,n)els (£a,n)els

+ A (a1, a9) e @1F0ly o (@ y) 4+ Az (a1, ag) e @by, (2, y)

where
2000, 14 # ©
0, L=0

20+a0, L4 # O

Ay (0417042)2{ 0. Li=o
, 14 =

As (o1, a0) = {
for the Case 4:

2@y, t) = Y zomne” ) gy, () + > zowoe” 2ty (2, ) +

(k,n)e[l (k,O)GIQ
— 2 _ 2
+ D zo0me (01402) s, (2, ) + > zozane () 4 o (2, ) +
(O,n)els (£a,n)els
+ 2 zorane” )y (2,y) + Ar (0, an) e @ FODyy 4y (2, y) +
(k:,:l:b)EIQ
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+ Az (ar, an) e~ @ Featy, o (2, y) +

+ Ag (ar, og) e @2y (2, y) + Ag (a1, 02) e () 4ag)itoo (2,7)

where
2 ) @ 2 , 1 @
A (a1, a9) = { Oiaig I4 # ®; As (a1, a9) = { Oiag 14 d o
, 14 = , 14 =
200+b, 1o # @ 2000, 14 # ©
AS(alaOQ):{ 0 Lo A4(a17a2):{ 0. L= o
, 14 — , 14 —

Algorithm for solving the stabilization problem

The results of the previous sections make it possible to implement the following algorithm for the
approximate construction of boundary control functions (and even in the form of synthesis that work
out random perturbations) that provide a monotonic (no slower than a given exponent) decrease on
time according to the formula (4) of the Ly (2)-norm solution.

Step 1. To the original boundary value problem (1)—(3) on a parallelepiped the base of which is a
square with side 7, with the nonhomogeneous Dirichlet boundary conditions and an initial condition on
the square  determined by the given function ug (z,y) is posed an auxiliary boundary value problem
(5)—(7) on an extended parallelepiped, the base of which is a square with side 27, with periodicity
conditions (instead of the Dirichlet conditions) and an initial function zq (x,y) on the bottom base of
the extended parallelepiped ;. The function zj (z,y) will be defined as a continuation of the given
function wug (x,y).

Thus, in the auxiliary boundary value problem (5)—(7) it is necessary to redefine the function
20 (z,y) on the square €2y, so that for the solution z (z,y,t) of the problem (5)—(7) the requirement (8)
will be satisfied. In this case, the condition (4) will be also satisfied for its restriction u (z,y,t) and the
required boundary control p (z,y,t) {z,y,t} € ¥ will be defined as the trace of the function z (z,y, t)
upu {z,y,t} € X.

Step 2. Construction of complete biorthogonal systems of functions on the square €2; by solving
the corresponding spectral problems.

Step 3. Find the expansion coefficients of the required function zy (z,y) on the square £ according
to the complete biorthogonal system constructed in the previous step, so that condition (8) is satisfied.
Note that condition (8) ensures requirement (4) for the solution of the boundary value problem (1)—(3).

Step 4. Using the found solution z (z,y,t) of the auxiliary boundary value problem (5)—(7), as its
restriction on the parallelepiped @ we find the solution u (z, y, t) of the original boundary value problem
(1)—(3), satisfying the required condition (4). Boundary control p (z,y,t) {z,y,t} € ¥ we find as a
trace of the solution zg g (x,y,t), i.e.

p (Z’, Y, t) = Zstab (ZL’, Y, t)‘{x,y,t}ez :
Conclusion

The paper proposes a problem formulation of boundary stabilization (forming a parallelepiped)
of the solution of the boundary value problem for the heat equation with a loaded two-dimensional
Laplace operator, where the loaded terms are the values of the required function and traces of the
derivatives of the required function at fixed points, and an algorithm for the approximate construction
of boundary controls.
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M.T. JIxxenanues, M.I. Pamazanos, A.X. Arraes, H.K. I'yiemanos

Exieaniemi >KyKTeJIreH IapabdboJIaJIbIK TeHAeyiHiH,
ITEeNTiMiH TYPaKTaH/IbIPY

Maxkasaga ekiemmmemi Kykrearen Jlammac omepaTopbIMeH KbUIYOTKI3TIMITIK TEHAEYl VIIMTH IMeKapaJIbIK,
€CeIlTiH, IIEeNIMIH TypaKTaHIbIPy ecebi KapacThIpbLIAbl. 2KyKTeareH KOCBHUIFBIINITAD OeJriJieHreH HYKTe-
Jiepgieri i3mestiaal (PyHKIUSTHBIE MOHIEPl MEH OHBIH OipiHINi perTi mepbec TYBIHIBLIAPBIHBIH, i37epi 60IbIT
tabbliapl. CoHmaii-ak ecenre neKapaJblk 6ackapy QYHKIUAJIAPBIH KYPY aJrOPUTMi YCHIHBLIFAH.

Kiam cesdep: mekapa GOMBIHINIA TYPAKTAHIBIPY €cebi, XKbITyOTKI3TIIITIKTIH, *KYKTEJITeH TeHIeYl, *KYKTe-
ren Jlammac omeparopbl, GHOPTOTOHAJIBI XKYite, TYPAKTAHIBIPY, aJITOPUTM.

M.T. JIxxenamues, M.I1. Pamazanor, A.X. Arraes, H.K. I'yiibmanos

Crabunmzanus perneHus AJs ABYMEPHOTO Harpy>kKeHHOTO
nmapadboJITIecKoro ypaBHEeHUS

B craTbe paccmoTrpena 3amada crabuimsauu penreHnsi TPAHUIHON 33/1a9u JjIs yPABHEHUS TEILIOMPOBO/I-
HOCTH C Harpy>KeHHBIM JIByMepHBIM oneparopoM Jlamraca. Harpy:xenuble ciaraemble IpeCcTaBIsIOT COOOM
3HAYEHMsT UCKOMOI (DYHKITUU U CJIEIbI €€ YaCTHBIX MPOU3BOHBIX TIEPBOTO MOPSIIKA B (PUKCUPOBAHHBIX TOY-
kax. [IpemjokeH aaropuTM mMOCTPOECHUS TPAHUYHBIX YIPABISAOMNAX (PYHKITHIA.

Karouesvie crosa: 3a/1a4a CTaOUIN3AIAN 10 TPAHNIIE, HATPY2KEHHOE ypPaBHEHNE TEIJIONPOBOIHOCTH, HAIPY-
JKeHHBbIN orreparop Jlamaca, GropToronaabHas CUCTEMa, CTaOUIN3aIHsI, AJITOPUTM.
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Problem of describing the function of a GPR source

In this paper, we consider the problem of determining the source h(t)d(z) of electromagnetic waves from
GPR data. The task of electromagnetic sensing is to find the pulse characteristic of the medium r(t) and
consists in calculating the response of the medium to the pulse source of excitation d(¢) (Dirac Delta
function). To determine the analytical expression of the impulse response of a homogeneous medium r(t),
we use the method proposed in [1-2]. To determine h(t), the inverse problem is reduced to a system of
Volterra integral equations. The source function h(7), is defined as the solution of the Volterra integral
equation of the first kind, f(t) = fg r(t — 7)h(7)d7 in which f(¢) is the data obtained by the GPR at the
observation points. The problem of calculating the function of the GPR source h(7) consists in numerically
solving the inverse problem, in which the function of the source h(7) is unknown, and the electromagnetic
parameters of the medium are known: the permittivity ¢; the conductivity o; the magnetic permeability
and the response of the medium to a given excitation h(7).

Keywords: radargram processing, source recovery, mathematical simulation, calculation results.

1 Introduction

Ground-penetrating radars have builtin software, the output of which is a radarogram, i.e. time
scans of the reflected signal taken along the route. To interpret radarograms, engineering techniques
are used, and it also depends on the geophysicist’s experience and skills in reading radarograms. On
the other hand, there is a different direction of interpretation of radarograms, based on mathematical
and computer modeling of the propagation and reflection of electromagnetic waves in the medium. The
radarogram is a function of the run time to inhomogeneity. In practice, geophysicists are interested in
the physical characteristics of inhomogeneities that depend on spatial coordinates. For the numerical
solution of the inverse coefficient problem, it is necessary to have a table value of the source of the
disturbance, as well as table values of the reflected signals (medium responses) at the measurement
points. To solve these problems, we have developed an algorithm for restoring the source, and as a
result, determining the response of media corresponding to real GPR data at observation points. Here
is a brief overview of the work related to these problems. Questions of uniqueness of the solution of
inverse coefficient problems are studied in [3|. Numerical algorithms for solving such a class of inverse
problems are described in [4], which also studies the convergence of iterative methods for determining
coefficients for hyperbolic equations. The problem of restoring the source of a tsunami is considered

in [5].
In [6], we consider the inverse problem of identifying a source that depends on the
spatial variable F (z) in the one-dimensional wave equation wuy = Pug, + F(z)H(t — ),

(x,t) € {(x,t) |]xr > 0,—00 <t <T}. The measured data is taken as g(t) := u(0,t). The relationship
between this task and the GPR data interpretation task is shown. An iterative algorithm for restoring
an unknown source F'(z) is developed. The algorithm is based on the decomposition of F'(x) functions

*Corresponding author.
E-mail: kazizat@mail.ru
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into a Fourier series and representation of the solution of a direct problem using the F(x) function.
Next, we solve the minimization problem for the discrete form of the Tikhonov functional, which is
reduced to a linear algebraic system and solved numerically. Calculations show that the proposed
algorithm allows reconstructing the x-dependent F(z) source with sufficient accuracy for clean and
noisy data.

In [7], it was assumed that a function h(t) of a special type was defined for each carrier frequency.
Assuming that the coefficients of dielectric, magnetic permeability, and conductivity are smooth functi-
ons, a fundamental solution for the system of the Maxwell equation is constructed in [8]. The original
problem is reduced to an auxiliary problem for vector and scalar potentials. In [9], we derive a formula
for solving the Cauchy problem of a multidimensional Telegraph equation, which allows us to reduce
the problem to quadrature forms and obtain exact solutions explicitly. Later, using these formulas, we
can obtain formulas for calculating the impulse response of an arbitrary sufficiently smooth medium.

The need to solve inverse coefficient problems for hyperbolic equations follows from practical
applications that arise in problems of seismology, electrical exploration, tomography, rock mechanics,
archeology, and many problems of natural science. A class of questions of existence, uniqueness of
solutions, regularization and stability are considered in a series of works by scientists from near and far
abroad (see, for example, [10]-[24]). Algorithms for numerical solutions of coefficient inverse problems
for hyperbolic equations are covered in monographs [15]-[17].

Note that the development of interpretation methods is still in demand in geophysical research. As
noted above, in practice, the inverse problems that arise in georadar methods are solved by various
approximate methods, the most commonly used ones are described in [25] and in the review [26]. To
study the horizontally-layered media are used for economical methods of solution of direct problems of
radar. This method is based on the method of layer-by-layer recalculation, which was proposed in [27],
and was further improved in [28]-[29]. This algorithm was used for electrical exploration and elasticity
problems in [30]-[33].

2 Description of the method

The problem of accurately describing the GPR source function occurs in all known GPR series
produced. An approximate value of the source function leads to an error in interpreting the GPR data.

One of the reasons that leads to an inaccurate description of the GPR source is the effect of a pulse
of the order of 10 nanoseconds. It is almost impossible to measure the amplitude of the pulse carrier
in the specified time interval.

Note also that knowledge of the source function is necessary to solve the inverse problem, since
effective algorithms are constructed not for the function f(t) that is the response of the medium, radar
data from the source h(t), but for the r(t) pulse characteristic of the medium perturbed by the Delta
function 0(t) of the source.

The proposed method for determining the functions of the GPR source h(t) is based on the
numerical solution of the inverse problem, in which the function of the source h(t) is unknown, and the
electromagnetic parameters of the medium are known: the permittivity €, magnetic permeability pu,
conductivity o, and the response of the medium to a given excitation h(t).

We give to the description of the mathematical model. Let us consider the problem statement
formulated and studied in monographs [3,4] for the geoelectric equation:

HEWH = Wy + Weg — UOWE + ) (t) 5(2)77 (x) (1)
w|t<0 = O,Wt|t<0 =0 (2)
wl0,2,1) = r(z 1) 3)

Here: ¢ is permittivity, p is magnetic permittivity,
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o is medium conductivity, 6(¢) is Dirac Delta function,

r(x,t) is an impulse response of the medium,

We introduce the equation of geoelectrics, in which electromagnetic waves are excited by the source of
the GPR A (t):

UEWU = Uy + Ugy — pouy + 0 (2) ) (z) b (t) (4)
ulyco = Ou [;cg =0 (5)
u(0,2%,t) = f(x*, 1) (6)

Here: h(t) is a function describing the GPR source as a function of time, f(z*,t) is a the response of
the medium at the observation point z* (the radarogram trace).
To determine the impulse response of the medium, we consider the Volterra equation of the first kind:

f(z,t) = /0 r(xz,t —7)h(T)dT (7)

In this equation, the left side is known, i.e. the radar data at the observation point. The h(t) is a
function describes the radar source. The relation (7) shows the relationship between the response of
the medium, which is a trace of the solution of the problem (4)-(6) and the impulse response (3).
Obviously, it is advisable to determine the impulse response r(x,t) analytically. For this purpose, in
the future we use the method of solving the direct problem (1)-(3), with constant coefficients, given in
[1]. To analyze the numerical algorithm, we conduct experimental studies in a homogeneous medium
with known geoelectric properties.

Analytical method for determining the impulse response

Following [34], we denote:

1 o
2
= —.a=— 8
ag ,us’ ai g’ ( )
Then, taking into account the notation (8), we write problem (1)-(3) in the form:

Wit = a(%(wzz + W) + a1wy — agd (t) 0(2)n (v) 9)

wlico =) Wilyeg =0 (10)

w(0,z,t) = r(xz,t) (11)

Let’s introduce a new function ¥ instead of w using the formula
w = ey
Assuming o = a1,¢2 = —a? 4 2a; from the relations (9)-(10), we get :
Dy = af (D22 + Vae) + 20 + aon(x)d(t)

19|t<0 =0, 1975|t<0 =0

Next, to get an explicit analytical expression for the impulse response of the medium, we use the
method of work [1].
We decompose the following functions into a Fourier series in the system of function {e”z}.

I (x, z,t) = Zﬁj (2,t) 9®
y
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n(x) =Y ne’"
i

Then be
(0, — ad.s + (N)297 — 297) = n;(2)d(t)

Finally, after performing a series of calculations of relations (9)-(10), we write it differently:

9y — agdd. + (N)*) =0 (12)
W),y = 0. =0 (13)
[0:):—0 = aon’6(t) (14)

By analogy, after applying the Fourier transform, condition (11) has the form

0(0,2,8) = r(z,t) = Y 1 (1) s”

99(0,t) = i (t)

Solution of problem (12)-(14) have the form

9 (2,1) = % — ' (0)Jo (¥ Vi~ 22) (15)

Assuming z = 0,in expression (15), we obtain an explicit analytical expression for the impulse
response of the medium:

P (t) = —Jo(NM)Nmj = 1,N
8 A description of the method in the General case

In [9], a formula for solving the Cauchy problem for a linear Telegraph equation in three-dimensional
space is derived and the Kirchhoff formula for a linear wave equation that passes into it at zero
conductivity. Reducing the problem of the field of a given is derived external current source in an
infinite homogeneous isotropic conductor to a generalized Cauchy problem for a three-dimensional
Telegraph equation is considered, which allows us to reduce this problem to quadratures, and in some
cases to obtain accurate three-dimensional solutions with a propagating front, which are of great applied
value for testing methods for the numerical solution of Maxwell’s equations. As an example, an exact
solution to the problem of the field of the Hertz electric dipole with an arbitrary dependence of the
current on time in an infinite homogeneous isotropic conductor is constructed is constructed.

Let us present formulas for solving the Cauchy problem for the telegraph equation described in [9].
The Cauchy problem for the spatially three-dimensional linear telegraph equation is considered, the
formulation of which is completely similar to that for the wave equation

0? 0 9 3
LET:ﬁET‘i‘A(;aET—C AET:(S(IZ’,t), rEeR y t>0 (16)
0 0 0 3
ET(:L‘at) |t=0 = ET(x)a 7ET(:E7t) |t=0 = (ET)t ($)7 r€ER (17)

ot
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Here: \s > 0, ¢ > 0 are set constants, 6(z,t) is the Delta function, Ep(x,t), (Er)?(z) are
set functions. Then the exact solution of problem (16)-(17) for a spatially three-dimensional linear
Telegraph equation has the form:

o(t)
mésct (z) +

wl(t)0 (ct — |x|)

Ame2y/ (ct)? — |z|?

T () (et)? = |2]) (18)

Er(x,t) = e” 27
C

Here: 6(t) is a theta function, dg,,(x) is a simple layer on the sphere S = {x : |x| = ct} with
: _ _0

density 1, A\s = BE-
In [8], a fundamental solution for the system of the Maxwell equation is constructed.

rot H = 5(%E+ oE) + j% (z—a%) é(t), 2 € R

rot H = —M%H, (v, t) € RY (19)
on the construction of its generalized solution satisfying the conditions
H ;<o = Eli<o =0. (20)
Assuming that €, u, oare smooth functions of the point z € R3,e >0, u >0,
j=3%(x—2a° 6(t), 2" € R®, (21)
49 is some numeric vector, § is the Dirac Delta function. We consider the vector potential
H:l rot A, E:—QA—V(,O (22)
7 ot
Here the Lorentz gauge condition is
divA +ep(pr+op) =0, ¢lco=0. (23)
The scalar potential is found through the vector by the formula
o (z,t xo) S /t e? @ iy A (2,2 xo) dz (24)
. e (@) p () Jo o ’

Problem (19)—(21) is reduced to some auxiliary problem, for vector (22) and scalar potentials
AA, p: (see (23)-(24))
For a vector potential, the Cauchy problem is studied:
LA = (%2214%-0% - i ’AA%—% V% X rot A—
-V (i) div A + iVJ fg @ EDdin A (ac, z,:I:O) dz = %j,

Alico = 0.
Conclusions

When numerically modeling the solution of the inverse coefficient problem, the question arises
about the table value of the source of the disturbance, as well as the table value of the reflected signals
(medium responses), at the measurement points. To solve these issues, we have developed an algorithm
for restoring the source. Next, it is necessary to carry out measurements using ground-penetrating
radar in a homogeneous environment, for example, a sand pit with known geoelectric properties. The
response of the medium obtained by georadar from a test environment is used to calculate the table
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values definition source excited by the GPR. Then the obtained source value is used in algorithms for
determining the geoelectric section of the object under study. The authors of this article have developed
a series of algorithms for the numerical solution of inverse and ill-posed problems, and they can be
found in published monographs and scientific articles [3, 4, 6, 20].

In General, using exact formulas (18) for solving the Cauchy problem for a spatially three-dimensional
linear Telegraph equation, one can obtain formulas for calculating the impulse response of an arbitrary
sufficiently smooth medium.

The work was supported by a grant from the Ministry of education and science of the Republic of
Kazakhstan under contract No. 132 dated 12.03.2018 under the project AR05133922 and KPFI SB
RAS project No. 26.
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I'eopagap nepekke3iHiH YHKIMSICBIH TYCIHIAIPY MaceJieci

Maxkasaia reopajiap MoJIMETTEPIHEH JIEKTPOMATHUTTIK TOMKBIHAAPABIH h(t)0(x) NepeKKe3iH aHbIKTay Mo-
ceJieci KapacTbIPBUIIBI. DIEKTPOMATHUTTIK 30HATAYABIH MiHgeTTepi 7(¢) OPTACHIHBIH UMILYJIbCTIK PEaKI-
sicblH Taby GOJIbII TaObLIAIbl XKOHE OPTaHbIH, NMITYJIbCTIH KO3y JAePEKKO3iHe PeaKIUsIChIH eCeITell MIbIFapy
4(t)(Dirac delta dpynkmmscer). ABropaap 6iprekTi r(t) OPTAHBIH UMITYIHC PEAKIIUICHIHBIH AHAJTATHKAJIBIK
epHerin aHpIKTay yiiid [1, 2] yceiHbuFan ozicTi Kommauapl. h(t) aHbIKTay YIIiH Kepi ecen BOJILTEP/iH MHTe-
rpaJiJIbIK, TeH ey Iep XKyitecine kenripingi. @yukius 6ipinnn Tunteri BosbreppaHblH HHTErpaJIIbIK, TEH e~
yiHIH memmiMi periage aHbIKTaNAbL, f(t) = fg r(t — 7)h(7)d7m-ne h(7) — 6yn GPR Gakpuiay HyKTesnepinge
aspiaral Masiverrep. GPR, mepekkesi h(7) dyaknusaceH ecenrey ecebi Kepi ecenti CaHABIK MIENIYJEH Ta-
pansl, ouza h(7T) mepekkesi (yHKuuscH Gesricis, ajg OpTaHBIH JEKTPOMArHUTTIK Hapamerpsepi Gesrisi:
OTKI3TIMTIK €; oTKi3rimTik conductivity ¢; marauT erkisrimriri permeability p >kone oprambIH GepiireH
KOB/IBIPYFa peaknuscel h(T).

Kiam cesdep: paiaporpaMMaHbl OHJIEY, [ePEKKO3/1i KaJIIbIHA KEITIPY, MATEMATHKAJIBIK MO/JIENIbJIEY, ECEIITEY
HOTUIKeJIEP].

C.U. Kabanuxun, K.T. Uckakos, /I.K. Tokcent, M.A. Iumnennn, A. Toiitbekos

Ba,zl;aqa oImmcaHnngd (bYHKHI/II/I NCTOYHHUKa reopajapa

B crarpe paccMmoTpena 3amada onpepenenus uctoaHuka h(t)d(r) 37MeKTPOMATHUTHBIX BOJIH IO JAHHBIM
reopajiapa. 3ajada 3JeKTPOMATHUTHOTO 30HAMPOBAHUS 3aK/II09aeTCs B HAXOXK/IEHUM UMITYTbCHON Xapak-
TepUCTUKU cpezpl 7'(t) U COCTOUT B BBIYUCIEHUN OTKJIMKA CPEJbl Ha MMILYJIbCHBIN NCTOYHUK BO30Y2KIEHUS
4(t) (mempra~-dynxmus dnpaka). s onpeesieHns aHATATHIECKOTO BBIPAXKEHUST MMITYJIbCHON XapaKTepu-
CTUKHU OJHOPOIHOHN cpenpl 7(t) aBTOpaMM MCHOIL30BAH METOJ, IpeJIoxKeHHbll B [1, 2|. s onpenenenus
h(t) paccmarpuBaemasi o6paTHasl 3a/a9a CBOAUTCS K CUCTEME BOJIBTEPOBCKUX MHTEIPAJIbHBIX ypPABHEHMIL.
QOyukius ucTouHuKa h(T) OnpenesseTcs Kak pelieHne NHTErpaibHOTro ypaBHeHus Bojbreppa nepBoro poja
fit) = fot r(t—7)h(7)dr, B xoTOpOM f(t) — HmAaHHBIE, IOJIYYEHHBIE TeOPAJIAPOM B TOUKaxX Habroaenust. 3a1a-
4a BbIYHMCIIeHNs] DYHKIMA UCTOYHUKA reopajsapa h(7T) COCTONT B UMCJIEHHOM pelleHnu oOpaTHOM 3a/auu, B
KOTOPOI HEU3BECTHOI sABjsgeTcs (byHKIUs UCTOYHUKA N (T), & U3BECTHBIMHU MPEJCTAIOT 3JIEKTPOMATHUTHBIE
napamMeTphbl CPeJIbl: JIU3JIEKTPUIecKast IPOHUIIAEMOCT €; IIPOBOJIUMOCTD 0°; MarHUTHAsA TPOHUIAEMOCTD [ 1
OTKJIVK CpeJbl Ha 3aaHHoe Bo30yxKaeHue h(T).

Kmouesvie caosa: 06paboTka paaporpaMMbl, BOCCTAHOBJIEHHE UCTOYHUKA, MATEMATHIECKOE MOJIEIMPOBa-
HU€, Pe3YJIbTAThl PACUYETOB.
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Numerical implementation of solving a control problem
for loaded differential equations with multi-point condition

A linear boundary value problem with a parameter for loaded differential equations with multi-point
condition is considered. The method of parameterization is used for solving the considered problem. We
offer an algorithm for solving a control problem for the system of loaded differential equations with multi-
point condition. The linear boundary value problem with a parameter for loaded differential equations with
multi-point condition by introducing additional parameters at the partition points is reduced to equivalent
boundary value problem with parameters. The equivalent boundary value problem with parameters consists
of the Cauchy problem for the system of ordinary differential equations with parameters, multi-point
condition, and continuity conditions. The solution of the Cauchy problem for the system of ordinary
differential equations with parameters is constructed using the fundamental matrix of differential equation.
The system of linear algebraic equations concerning the parameters is composed by substituting the values
of the corresponding points in the built solutions to the multi-point condition and continuity conditions.
The numerical method for finding the solution of the problem is suggested, which based on the solving the
constructed system and solving Cauchy problem on the subintervals by Adams method and Bulirsch-Stoer
method. The proposed numerical implementation is illustrated by example.

Keywords: problem with parameter, loaded differential equation, multi-point condition, numerical method,
algorithm.

Introduction

The problem of constructing effective models finds its solution in many areas of science and
technology. Therefore, a modern approach in the theory of control and identification of parameters
should be directed to the development of new constructive methods and modifications of known
methods for solving boundary value problems with parameters for ordinary and loaded differential
equations with multi-point condition [1-7].

In recent years, an intensive study of loaded differential equations associated with various appli-
cations of problems has been observed. The problems of the applications described by these equations
include the problems of long-term forecasting and regulation of the level of groundwater and soil
resources, simulation of processes of transported particles, and some optimal control problems [8].
The theory of boundary value problems for the loaded differential equations with parameters is rapidly
developing and is used in various fields of applied mathematics, biophysics, biomedicine, chemistry, etc.
[8-13]. Despite this, the questions of finding the effective criterions of unique solvability and constructing
the numerical algorithms for finding the solutions of boundary value problems for the system of loaded
differential equations with parameters remain open. One of the constructive methods for investigating
and solving the boundary value problems with parameters for the system of ordinary differential
equations is the parameterization method [14].

The parameterization method was developed for the investigating and solving the boundary value
problems for the system of ordinary differential equations. Later, this method was developed for the two-
point boundary value problems for the Fredholm integro-differential equations [15-19]. The algorithms

*Corresponding author.
E-mail: apelman86pm@mail.Tu
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for finding the numerical solutions of the problems are considered. This approach are applied to two-
point boundary value problems for system of ordinary and loaded differential equations with parameter
[20, 21].

In the present paper, we offer numerical algorithm of parametrization method for solving the control
problem for the loaded differential equation with multi-point condition.

So, we consider a linear boundary value problem with a parameter for loaded differential equation
with multi-point condition

dw = x—i—ZK i)+ Ao(t)n+ f(t), xz€R", peR™ te(0,T), (1)

N+1
ZC’x )+ Bop=d, deR"" (2)

Here the (n x n) matrices A(t), K;(t) are continuous on [0,77], j = 1, N; the (n x m) matrix Ag(t) is
continuous on [0, T]; the n vector f(t) is continuous on [0, 7]; the ((n + m) x m) matrix By and the
((n4+m) xn) matrices Cj, i = 0, N + 1 are constants; 0 = 0y < 01 < 03 < ... < Oy_1 <Oy < Ont1=T;

[l ]| = max |z;].
i=1,n
C([0,T], R™) is the space of continuous functions z : [0,7] — R™ with the norm ||z||; = n%ax} [|z()]|.
te[0,T
A pair (z*(t), u*) , with z*(t) € C([0,T], R"), u* € R™, where n vector function z*(t) is continuously
differentiable on (0,7"), is called a solution to problem (1), (2), if it satisfies the loaded differential

equation (1) and condition (2) for pu = p*.
1. Scheme of the method

Points 0 =0y < 61 < 03 < ... < Ony_1 < On < On41 =T are given and the interval [0,T) is divided

N+1
into N subintervals: [0,7) = U [0r—1, 0r).
r=1
C([0,T],0xn, R*™+1) is the space of systems functions z[t] = (z1(t), z2(t), ..., zx11(t)), where z,:
[0r_1,0,) — R™ are continuous and have finite left-sided lim Oxr(t) for all r = 1, N + 1, with the

t—0,—
norm ||z[-]||]2 = max sup ||z, (2)|].
=T,N+F1t€[f,_1,0)

Let z,(t) be the restriction of function z(t) to the r—th interval [0,_1,0,), i.e. z.(t) = z(t) for
t € [0y-1,0,), r = 1, N + 1. Then we reduce problem (1), (2) to the equivalent multipoint boundary
value problem

dx, [
:ZL[; = xT+ZK x]-‘rl +A0( )M+f(t)a te [01“—1797‘)7 T:17N+]—’ (3)
Z Cizit1(6;) + C'N+1 hm 0$N+1( ) + Bop = d, (4)
t_1>10r;1_0 Tp(t) = Tp41(0p), p=1N, (5)

where (5) are conditions for matching the solution at the interior points of partition.
The solution of problem (3)-(5) is the pair (z*[t], u*) with elements z*[t] = (27(t), ¥5(t), ..., w1 (t)) €
e C([0,T),0n, RPN+, ;i € R™, where functions z*(t), r = 1, N + 1, are continuously differentiable
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on [0,_1,0,), which satisfies system of loaded differential equations (3) and condition (4) with pu = px
and continuity conditions (5).

We introduce the additional parameters A, as a values of required functions at the points of
partition: A, = z,(6,-1), 7 = 1, N 4+ 1, the (N +2)—th component is assigned the original parameter p,
i.e. Ayt2 = p. Making the substitution z,(t) = wu,(t)+ A, on every r-th interval [0,_1,6,),r =1, N + 1,
we obtain multipoint boundary value problem with parameters

N
du, .
(Z :A(t)(ur+)\r) +ZKj(t))‘j+1 +A0(t))‘N+2+f(t)7 te [07‘—1797")7 r=1,N+1, (6)
j=1
up(6,-1) =0, r=1,N+1, (7)
N
Z Cidiv1 + Onpi ANy + COnga t_ljil;lio un+1(t) + BoAn42 = d, (8)
i=0
Ap + hgmoup():)\pH, p=1,N, 9)

A solution to problem with parameters (6)—(9) is a pair of functions (u*[t], A\*), where the function
wt] = (uf(t),us(t), ..., uk 1 (t) € C([0,T], 0n, R*™+)) with continuously differentiable on [6,_1, ;)
components uy(t), 7 = 1, N + 1, and \* = (A}, A3, ..., A1, Avpe) € RMN+D+m gatisfies system of
ordinary differential equations (6), initial conditions (7) and relations (8), (9) for \; = A}, j =1, N + 2.

If the pair (z*(t), u*) is a solution to problem (1), (2), then the pair (u*[t], A*) with elements u*[t] =
(wi(t),us(t), . uiyya (1) € C(0,T]0n, RN, A" = (AL, X3, o Ay Alvg) € RIVEDF™,
where w)(t) = 2*(t) — 2*(0,-1), t € [0,-1,0,), Aj = 2*(0,—1), r =1, N + 1, X§,, = p* is a solution to
problem (6)—(9). Conversely, if the pair (a[t], ) with elements a[t] = (U1 (t), uz(t), ..., un4+1(t)) €
e C([0,T],0n, R"™+D) . X = (A, Aa, ..., AN41, ANg2) € RMNHDFM s 4 solution to problem (6)-(9),
then the pair (Z(t),z) defined by the equalities z(t) = u.(t) + A\r, t € [0,-1,0;), 7 = 1, N + 1, and
z(T) = hm 1 un+1(t) + AN+, and 1 = Any42, is a solution to the origin problem with parameter (1),
(2)-

Let X,(t) be a fundamental matrix to the differential equation Z—f = A(t)x on [0r_1,0,],

r =1, N 4+ 1. Then the unique solution to the Cauchy problem for the system of ordinary differential
equations (6), (7) at the fixed values A = (A1, A2, ..., AN+1, AN+2), has the following form

ur(t) = X, (t) / X, N () A(T)dr A + X(t) / X Y1) Ag(T)dT AN o+
Or—1 Or—1

¢ N
t) / XY ZKJ T)dT A j1 + X ( / X, (r)f(r)dr, te€lf_1,0,), r=1,N+1. (10)
=1 01

Substituting the corresponding right-hand sides of (10) into the conditions (8), (9), we obtain a system
of linear algebraic equations with respect to the parameters ., r =1 N 4 2:

N

Z CiXit1 + Cnp1AN1 + CN+1{XN+1 /XN+1 T)A(T)dT AN 1+

=0 On

Mathematics series. Ne 4(100) /2020 83



Zh.M. Kadirbayeva, A.D. Dzhumabaev

N
+XN+1(T) /X]?[}’_l(T)Ao(T)dT)\N_FQ + XN+1(T) /Xl;—i-l Z KJ dT)\J+1} + BO)\N+2 =
7j=1

=d— COnt1Xn+1(T) /XX[IH(T)f(T)dT, (11)
N
Ap + X, (0 / X, T)dTAp + Xp( / X, T)dTAN 12+
0, N 0,
+X,(0p) / ZKJ T)dTNjp1 — App1 = —Xp(6p) / X;l(T)f(T)dT, p=1,N. (12)
Op—1 j=1 Op—1

Denoting by Q.(6n) the matrix corresponding to the left-hand side of system (11), (12) which is consist
of the coefficients at the parameters A., 7 =1, N 4+ 2, and then introducing the vector

T

d— Cnp1 XN (T) f X&}H(T)f@')dT
N
01
_ ~1
F*(QN) — Xl(el) {Xl (T)f(T)dT
—Xn(0n) f Xy (7)dr,
On—1
we write the system (11), (12) as
Q0NN = F.(0x), X e RrV+h+m, (13)

It is not difficult to establish that the solvability of the boundary value problem (1), (2) is equivalent
to the solvability of the system (13). The solution of the system (13) is a vector \* = (A}, A3, ..., Ay,

Nyi2) € RMVFD+M - consists of the values of the solutions of the original problem (1), (2) in the initial
points of subintervals, i.e. ¥ = 2*(0,—1), 7 =1,N+1, Xy o = p*
Further we consider the Cauchy problems for ordlnary differential equations on subintervals
dz

=AW=+ Pt), 26,0) =0, te,6] r=TN+L, (14)

where P(t) is either (nxn) matrix, or n vector, both continuous on [0,_1,6,],r = 1, N + 1. Consequently,
solution to problem (14) is a square matrix or a vector of dimension n. Denote by a(P,t) the solution
to the Cauchy problem (14). Obviously,

t
a(P,t) = X, (1) / XU\ P(r)dr, te 6], r=TNFI,
97"—1

where X,.(t) is a fundamental matrix of differential equation (14) on the r-th interval.
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3. Algorithm for finding of solution to problem (1), (2)

We offer the following numerical implementation of algorithm. This algorithm is based on the the
Adams method and the Bulirsch-Stoer method to solve the Cauchy problems for ordinary differential
equations.

1. Suppose we have a partition: 0 = 6y < 61 < 6y < ... < Oy_1 < Oy < Ony1 = T. Divide each
r-th interval [6,_1,0,], » = 1, N + 1, into N, _parts with step hy = (6, — 6,— 1)/N Assume on each
interval [0—1,0,], 7 =1, 1, N + 1, the variable 0 takes its discrete values: 6 = 0,_ 1, 0=0,_1+ s ..
0=0,_1+ (N, —1)h,, 0 = 0., and denote by {#,_1,60,}, 7 =1, N + 1, the set of such points.

2. Solving the Cauchy problems for ordinary differential equations

)

‘Z —A()z+ A1), 2(0,1)=0, telb_1.0,), r=T N1,

% — A(t)z+ Kj(t), 2(0,1) =0, tel61,6,), j=LN, r=LN+I,
% = A(t)z + Aolt), 2(6,-1)=0, te€[f_1.6,], r=LN+1,
% = At)z + f(t), 2(6,-1)=0, telb_1,6,], r=1N+1,

by using the Adams method or the Bulirsch-Stoer method, we find the values of (n x n) matrices
ar(A, D), (KJ,O) j =1,N, (n x m) matrices a,(4o,0) and n vector ar(f,8) on {0,-1,0,},
r=1N+1.

3. Construct the system of linear algebraic equations with respect to parameters

QMOx)A = Fi(0y), X € RiN+D+m, (15)

Solving the system (15), we find A", As noted above, the elements of Ab = (/\ )\E, . )\]EVH, )\51\42) are
the values of approximate solution to problem (1), (2) in the starting points of subintervals: " (6,_1) =
— N =T N+, 0 = Ay

4. To define the values of approximate solution at the remaining points of set {6,_1,6,},
r =1, N + 1, we solve the Cauchy problems

dx h
= ;U—I—ZK +1+A0(t))\}]<[+2+f(t)v

2(0_1) =N, te[0_1,6,), r=1,N+L

And the solutions to Cauchy problems are found by the Adams method or the Bulirsch-Stoer method.
Thus, the algorithm allows us to find the numerical solution to the problem (1), (2). To illustrate the
proposed approach for the numerical solving linear boundary value problem with a parameter for an
loaded differential equation with multipoint condition (1), (2) on the basis of parameterization method,
let us consider the following example.

4. Example
Consider a linear boundary value problem with a parameter for loaded differential equation with
multipoint condition

N
= Az + Y Kj(t)x(0;) + Ao(t)u+ f(t), =€ R?, peR® te (1), (16)
j=1

dx
dt
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N+1
> Cix(6;) + Bop=d, de R (17)
=0
1 4 6
-4 6 2
t —
where A(t):G ffs_(@ Ao(t):(é :2 i+§> Bo=|1 7 -2
-4 3 11
1 0 4
Case 1. Let N=1.0=0,0, =1, 6 =1, Ki(t) = ! t=1
' o RCERERE B 3t+1 t ’
—t4 72 — 2 AT 19et — cos(wt)cos(t) — teos(t)
f(t): _ o943 _ 2 ﬁt_&_z _ : )
2t° — 19t + = g — tocos(mt) — msin(mt) + 2cos(mt)
2 5 1 6 -2 5 1007
0 2 4 5 0 4 149
Co=|6 -4, Gi=|3 2|, Co=]6 4|, a=] %
1 0 0 —4 8 0 150
3.1 3 5 3 -1 159

We use the numerical implementation of algorithm. Accuracy of solution depends on the accuracy of
solving the Cauchy problem on subintervals. We provide the results of the numerical implementation of
algorithm based on the Adams method and the Bulirsch-Stoer method by partitioning the subintervals
[0, 0.5], [0.5, 1] with step h = 0.05.

3 _
Solution to problem with parameter (16), (17) is pair (z*(¢), u*), where z*(t) = <t _ﬁ cos?frt)) ,

)
p* =1 19 | . Table 1 provides the numerical solution values (Z(t), ).
9

The following estimates are true:
using the Adams method for solving the Cauchy problems for ordinary differential equations

max ||pu* — ]| < 0.00005, max |z*(t;) — z(¢;)|| < 0.00008;
j=0,20

using the Bulirsch-Stoer method for solving the Cauchy problems for ordinary differential equations

max ||u* — fil| < 0.00000002,  max ||z*(t;) — Z(t;)|| < 0.00000002.
§=0,20

1
CaseQ.LetN—S.HO—O,Hl—}1,92—5,93—2,94—1,K2(t)—<t t2—1>’

4315
-1 6 3 5 Lo
-5 12 5v2 4 2P
Ks(t) = 22 Cs=| 7 2 Ci=| 0 -4 d= 31
sity={e 5] G= 4= = I :
2 0 4 -1 0 166 — 44/2
-3 5 3 -1 83

ft) = ( —t* 4+ 718%2 — 308 4 @ + @ + 88 — 19¢! — cos(mt)cos(t) — tcos(t) )

_0f3 _ 233142 | % — V264 3V2 4017 _ t2cos(mt) — wsin(mt) + 2cos(nt)

128 2 2 64
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Results received by using MathCad15

T1(t)

To(t)

71 (t)

T (t)

Adams method

Bulirsch-Stoer method

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

-0.0000768202
-0.1999451311
-0.3990642033
-0.5966839083
-0.7920541444
-0.984424811
-1.173045817
-1.3571670797
-1.5360385196
-1.7089100632
-1.875031638
-2.0336244073
-2.1839925346
-2.3253604761
-2.4569780171
-2.5780953578
-2.6879621167
-2.7858287117
-2.8709446048
-2.9425595558
-2.9999235398

1.0000483623
1.0377205669
1.0510744329
1.0410116624
1.0090107586
0.9570903823
0.8877597447
0.8039568233
0.7089759575
0.6063867668
0.4999462346
0.393563497
0.2909724033
0.1959893476
0.112185956
0.0428566274
-0.0090590279
-0.0410520677
-0.0511055772
-0.0377405131
-0.0000548018

0.0000000206

-0.1998749798
-0.3989999803
-0.5966249809
-0.7919999817
-0.9843749827
-1.1729999838
-1.3571249852
-1.5359999867
-1.7088749883

-1.87499999

-2.0336249926
-2.1839999946
-2.3253749967
-2.4569999988
-2.578125001

-2.6880000032
-2.7858750057
-2.8710000083
-2.9426250112
-3.0000000144

0.9999999887
1.0376883286
1.0510565038
1.0410065115
1.0090169819
0.9571067693
0.8877852415
0.8039904905
0.709016987
0.6064344599
0.4999999973
0.3935655316
0.2909830051
0.1960095024
0.1122147524
0.0428932257
-0.0090169855
-0.0410065138
-0.0510565047
-0.037688328
0.0000000132

[i1 = —4.9999451449
fiz = 19.0000319553
fis = 8.9999764358

(1 = —5.0000000147
2 = 18.9999999821
13 = 9.0000000058

Table 1

In this case we provide the results of the numerical implementation of algorithm by partitioning
the interval [0, 1] with step A = 0.25 and partitioning the subintervals [0, 0.25], [0.25,0.5], [0.5,0.75],
[0.75, 1] with step hy = 0.025. For the second case the following estimates are true:
The errors of using the Adams method

max || — ff] < 0.00002,

§=0,40

The errors of using the Bulirsch-Stoer method

max || — fil| < 0.000000001,

§=0,40

max |z*(t;) — z(t;)|| < 0.00002;

max |z*(t;) — Z(t;)|| < 0.000000003.

As we can see, the numerical algorithm based on the Bulirsch-Stoer method proposed is effective and
allows us to obtain the numerical solution to the the problem with a parameter for loaded differential
equation with multipoint condition of higher order accuracy.

Below in the Figure 1, we plot graphs of the exact and numerical solutions to the problem (16),
(17) on the interval [0, 1].
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x(t) = t + cos (mt)
x,(t) = t3 — 4t 0.5]

o
o
oo o
00000 °ooo
oo o
oo o

0 03 i

-05

Figure 1. The exact solution values are indicated by the light blue solid line and the numerical

solution values obtained by the Bulirsch-Stoer method are indicated by the symbol o
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KennykreJii mapTbl 0ap >KykKTeJreH auddepeHimansgblk TeHJaeyaep

YIIiH O0ackapy eceOiH IIeInydiH CAaHABIK »Ky3ere achbIpbLIybl

Kennykresi mapret 6ap »Kykreares auddepeHuaiablK TeHIeyIep YIIiH napamMeTpi 6ap ChI3bIKTHIK, IIETTIK
ecel 3epTTesai. KapacThIPBIIBII OTBIPFAH €CEITi IIeNTy YIIiH TapaMeTpJIey 94ici KoaasIHbINAb. KemaykTesti
mapThl 0ap XKyKTearen quddepeHInaIIbK, TeHIeYIep VIl 6acKapy ecebiH merry aaropuTMi YCHIHBLIIHL.
Kenunykresi maprel 6ap kKykrejren muddepeHImaiblK, TeHIeyIep YVIIiH mapaMeTpi 6ap ChI3bIKTBIK, IIeT-
TiK ecen GeJry HYKTeJIEPiH/Ee KOCBIMIINA ITapaMeTpJIep €Hri3y apKbLIbl Iapa-nap napamerpsepi 6ap merrtik
ecenike Kesripinai. [lapa-map mapamerpiiepi 6ap merTik ecemn kait muddepeHITuaNIbIK, TEHIEYIED XKylieci
yuria mapamerpJiepi 6ap Ko ecebineH, KomHyKTe i MIapThIHAH »KOHE Y3iIiCCi3 K mapTTapblHaH TYPabl.
ITapamerpuiepi 6ap »kait quddepenumanabik Tegaeynep xkyiteci yrrin Komu ecebinin memivi muddepen-
UAJIIBIK, TEHIEY/IiH (PyHIaMEHTAIbIK, MATPUIIACHIHBIH KOMETiMEH TYPFBI3bUIABL. TYPFBI3bLIFAH T MHIH
ColiKeCc HYKTeJIEPIHJET1 MOH/IEPIH KOITHYKTEJI IIapTKa *KOHe Y31JIiCCi3 K IapTTapblHa KOsl OTBIPHII, Hapa-
MeTpJiepre KaTBICTHI ChI3BIKTHI aJre0paJsiblK, TeHIeysIep Kyieci Kypbliabl. KapacThIpbIIbIl OTBIPFAH €CenTi
LIy iH KyPbIIFan »KyleHi koHe imki apasbikrapiarbl Komm ecenrepin Agnamc xone Bymupru-IITTép
SIiCTePiH KOJIJIAHBII, IIENIyTe HETi3/IeJreH CaHIbIK O/IiCi YCHIHBIIIBI YKOHE OJI YKY3€re aChIPhLIY MbICAJIMEH
KOPHEKTEJIII.

Kiam cesdep: mapamerpi 6ap ecerr, KyKTeared 1udepeHuaiIblK, TEHIEY, KOMHYKTE apT, CAHIBIK, 9IiC,
aJICOPUTM.
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YHucienHnaa peaausanus penieHus 3aa4u yIIpaBJIeHUs
JJI Harpy2kKeHHbIX AnddepeHnnaJbHbIX ypaBHEeHUIA
C MHOT'OTOY€YHBIM YyCJIOBUEM

WccnenoBana nneiinast KpaeBast 3a7[ada ¢ TapaMeTPOM JIJTst HATPYKEHHBIX M depEeHITNATbHBIX Y PABHEHUI
C MHOI'OTOYEYHBIM ycJaoBHeM. [ljisi perennsi paccMaTpUBaeMoOi 3a/1a49u IPUMEHEH METO/I IIapaMeTPU3aIHH.
IIpenyozken aaropuT™m pelleHus 3a0a49¥ yIPABIEHUs JJI CUCTEMBI HAUDYKEHHBIX IudhepeHnaaIbHbIX
ypaBHEHUI C MHOTOTOYEYHBIM ycaoBueM. JlumHeiiHass KpaeBas 3ajada C MapaMeTPOM JJisi HATrPY2KEHHBIX
nuddepeHnaIbHbIX YPABHEHH C MHOIOTOYEYHBIM YCJIOBUEM IIyTeM BBEJIEHUS JONOJHUTEJbHBIX apaMeT-
POB B TOYKax pas3sOMEHUsl CBOJWTCS K SKBUBAJIEHTHOW KpaeBOil 3ajiadye C mapaMeTpaMu. DKBUBAJEHTHAsI
KpaeBas 3ajlada C mapaMeTpaMH COCTOUT u3 3aaadu Ko 1jis cucTteMbl OOBIKHOBEHHBIX JauddepeHtin-
aJIbHBIX YPaBHEHUIl C IapaMeTpaMy, MHOIMOTOYEYHOIO YCJIOBUsI M YCJIOBHs CKJIeMBaHUs. PereHue 3a1a4du
Ko mytst cucrembl 06BIKHOBEHHBIX TuddepeHIINaTbHBIX YPABHEHUN € TAPAMETPAME CTPOUTCS C TIOMOIIBIO
byHIAMEHTAIBHOM MATPUITHI AuddepeHITnaILHOTO ypaBHenust. [lomcrasiiss 3Ha4eHnst B COOTBETCTBYIONIAX
TOYKAX [IOCTPOEHHOIO PEIIEeHUs] B MHOINOTOYEYHOE YCJIOBHE U YCJIOBUs CKJIEMBAHUSI, COCTABJISIETCS CUCTEMA
JINHEWHBIX aJIredpandecKux yYPaBHEHUNM OTHOCUTEIHLHO MapaMeTpoB. [IpesioskeH YuC/IeHHBI METO/T, HAXO0XK-
JICHUsI PEIIeHUsl 33/1a91, OCHOBAHHbBIN Ha, PEIIIEHUU [TOCTPOEHHON CUCTEMBI U 3a1a4u Ko Ha moabplHTepBa-
sax o merogaMm Anamca u Bysnupma-IlItépa. [Ipemiaraemas unciienHast peaausaiiust IPOUIIIIIOCTPUPOBAHA
MIPUMEPOM.

Karoueswie caosa: 3amada ¢ mapaMeTpoM, HarpykeHHoe nuddepeHnnaIbHoe YPpaBHEHHe, MHOIOTOYETHOE
YCJIOBHE, YUCJIEHHBI METO/I, aJIlTOPUTM.
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Internal boundary layer in a singularly perturbed
problem of fractional derivative

This paper is devoted to the study of internal boundary layer. Such motions are often associated with effect
of boundary layer, i.e. low flow viscosity affects only in a narrow parietal layer of a streamlined body, and
outside this zone the flow is as if there is no viscosity - the so-called ideal flow. Number of exponentials
in the boundary layer is determined by the number of non-zero points of the limit operator spectrum. In
the paper we consider the case when spectrum of the limit operator vanishes at the point To study the
problem the Lomov regularization method is used. The original problem is regularized and the main term
of asymptotics of the problem solution is constructed as the low viscosity tends to zero. Numerical results
of solutions are obtained for different values of low viscosity.

Keywords: singular perturbation, small parameter, regularization, spectrum stability, asymptotic convergence.

Introduction

A mathematical model of motion of a viscous flow, where a non-uniform transition from one physical
characteristic to another occurs, is described by various differential equations with large or small
parameters, which are responsible for non-uniformity of the transition. If we consider the self-made
flows, then the Navier-Stokes motion equations and the continuity equation are reduced to ordinary
differential equations. In addition, if we introduce a small positive parameter then the motion equation
will have a small parameter at the highest derivative. Such an equation is called singularly perturbed.
Solution of singularly perturbed differential equations is fundamentally different from a solution of
ordinary differential equations with a small parameter. Solution of such equations has an area of rapid
change of the function, which is located, as a rule, in a neighborhood of one (or two) boundary points
of the problem. Such an area of rapid change of function is called area of mathematical boundary layer.
Location of the mathematical boundary layer coincides with hydrodynamic boundary layer. Thickness
of the boundary layer depends on size of the small parameter, and as the small parameter decreases, the
thickness of the boundary layer also decreases. The domain of integration is divided into the external
(outside the boundary layer) and the internal (inside the boundary layer). A solution of the singularly
perturbed equation is sought as a solution suitable for the external a domain which is then refined in
neighborhood of a boundary point where the boundary layer is located [1]. A problem with an internal
boundary layer does not belong to the number of standard problems in the singular perturbations
theory. This is due to the fact that value of a small parameter is singular for a singularly perturbed
equation (see, for example, the equation (2)). In these cases, it is habitually to talk about a "singular
point". The singular point gives rise to a double dependence of the solution on singular and regular.
We will illustrate this fact with the following specific example - the Cauchy problem for an ordinary
differential equation of the second order [2]:

e%ij(t, e) +e (Mt )+>\2( ) gt ) + M(t)Xa(t)y(t, €) = h(t), 1)
y(0,e) =%, 9(0,e) =y,

*Corresponding author.
E-mail: burkhan.kalimbetov@ayu.edu.kz

92 Bulletin of the Karaganda University



Internal boundary layer in a singularly...

where € > 0 is a low viscosity, for mathematics it is a small dimensionless parameter; y(¢, ) is a desired
function; function h(t) is a given known function, y°, 3! are known constants. It is necessary to study
the problem as ¢ — +0.

Let functions \p(t), A2(t) satisfy the following spectrum stability conditions:

1) N(t) #0, i =1,2;

2) Ai(t) # X\o(t) VE € [0,T].

In this case structure of a solution of the problem (1) will be as follows:

+ w(t,e).
Let the spectrum stability conditions be violated only at one point:
() =0 —-1DA(E), A{t)#0, Vtel0,T].
and the condition 2) hold as usual, then instead of the decomposition (2) the following decomposition

of the problem (1) will take place:

y(t,e) = v (t) + e dr [wip(t)+ ewii(t) +...]+

t T
%f)\ (z)dz —%f)\ (z)dz
0 /7’8 o dr [woo(t)+ ewor(t) +...] +

+ [’wgo(t) + w31 (t) +.. ] = 1 (t, 5) + (pgyg(t, 5)+
1
ror (12 ua(t0) + oaun(t.2) + walt.e),

where the new type of singularity

N @i | oo P -
O’<t7>:€ ’ /e ' dT+/Te
&
0

0

A (z)dz
dr

O =~

gives the main contribution to describe the internal boundary layer

o (t, i) wi(t,e) + o3 (t, i) wat, <),

1. Statement of the problem

Internal boundary layers in singularly perturbed problems were considered in [3,4] from the stan-
dpoint of the regularization method [1,2], in [5-18] from the standpoint of the normal forms method.
In this paper the internal boundary layers are investigated in a scalar singularly perturbed problem
with fractional derivative:

Ley(t,e) = ey'™ +ty = h(t), y(0,e) =4°, tel0,T], (3)
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where £ > 0 is a small parameter, a = 1/2, h(t) € C*°[0,T] is a given known function, y° is a constant
number. It is required to find an asymptotic solution of the problem (1) as ¢ — +0.

Singularly perturbed problems with fractional derivatives were studied in [19-22] from the standpoint
of the regularization method. In these problems, due to fulfillment of spectrum stability condition,
internal boundary layers do not arise. Presence of a singular point at ¢ = 0 generates an additional
singularity in solution of the problem (3), which is not described in terms of limit operator spectrum
of the problem (3). By definition of a fractional derivative [23], the derivative y(1/?) is denoted as
\/f%. Then problem (3) has the following form:

d
Ley(t.e) =eVil +ty=h(t),  y(0.) =" (4)
2. Regularization of problem (4)

We introduce the following regularizing variable:
¢
1 2
T=—= [ Vtdt = —=V13 = p(t,¢),
€ 3¢
0

and the additional regularizing variable, which takes into account the essentially special singularity,
induced by instability of the spectrum at the point ¢t = 0.

According to the regularization method [1|, we must move from the problem (4), the order of which
is reduced when € = 0, to some extended problem, which preserves its own order at ¢ = 0. Let us
construct the extended problem. If we denote a solution of the extended problem by g(t, 7, 0,¢), and
by y(t,e) a solution of the original problem (4), then the following identity holds

g(t’ 7—7 U’ 8) ’T:p(t,a)7a’:q(t7a) = y(t7 6)’

This identity will be satisfied if the derivatives with respect to of the functions g(t, 7, 0,¢) and y(t,¢)
will coincide.
Then for the functions g(t, 7, 0, e) the following "extended"task corresponds:

Lejit,my0,6) = eVE% — 198 1600 4 o\/t20 1t = (1), 5)
(0005) y°.

The main advantage of the problem (5) over the task (4) is that its solution g(¢,7,0,¢) can be
searched in the form of a regular classical series in powers of ¢ :

y(t,T,0,¢) Zeyktro (6)

where yi(t,7,0) € C*°[0,T1], that could not be done for the original problem (4).
Substituting the series (6) into the "extended"problem (5) and equating the coefficients with the
same powers of €, we obtain the following iteration problems:

Yo Yo

Loyo(t,7) = _tﬁ —to S +tyo = h(t), 40(0,0,0) = y% (70)
0 0

Loy (t.7) = —VEZE = VIZE. 41(0,0,0) = 0; (71)

Loy (t,7) = —vE2%=1 — /1%t 4(0,0,0) = 0; k> 2, (Tx)
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3. Solvability of iterative problems

Solutions of the iteration problems (7;) will be defined in the following space of functions:
U={ylt,1,0): y(t,7,0) =yo(t) +y1(t)e” +y2(t)o, y;(t) € C ([O,T],l) ,j=0,1,2}.
The problem (7) has a solution in the space U, which can be written in the form:
yo(t,7,0) = cr(t)e” + fr(t)o + ho(t), (8)

where oy (t), f1(t) € C*°[0,T] are still arbitrary scalar functions, ho(t) = h(t)/t. Here expression of the
type h(t)/t at the point ¢ = 0 is understood in the limit sense:

= m

To calculate the arbitrary functions «(t) and B;(t) we subject the right-hand side of the equation
(71) to the orthogonality conditions (see, for example, [1]). We get the equations:

Vidi(t) =0,  Vipi(t) =0. (9)

Subjecting (8) to the initial condition y(0,0,0) = y°, we find that

a1(0) = y” — ho(0),
therefore, from the equation (9) the function aq(t) will be defined complitely:

ai(t) = y° — ho(0).
Now let us calculate the function 51 (t). From (9) it follows that 51 (t) = const,

ho(0) + $1(0) = 0.
Thus we uniquely find the function:

A1(t) = —ho(0),
hence, the solution (8) of the problem (7y) will be found in the form
yo(t,7,0) = [y° — ho(0)]e” — ho(0)a + ho(?).

Doing here constriction on functions 7 = p(t,¢), o = q(t,€), we obtain the main term of the asymptotics:
y(t.p(t,e),q(t,e)) =

= yo-(t) = [3° = ho(0)] €73V~

/ ()
2
_h 6 35 37 .
0(0 / t
0

a solution of the problem (4). The following approximations are calculated in the same way.

We formulate the corresponding result in the form of the following proposition.

Theorem 1. During consistent solution all iteration problems (Ty) are uniquely solvable in the
space U.
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4. Numerical results

Now we find a solution of the problem (4) by using the computer math systems Maple [24]:

>restart; with(plots); odu:=(epsilon)*sqrt(t)*diff( y(t),t)+t*y(t)=h(t);
odu =gt (d% y(t)] +ty(t)=h(1)

>ins:=y(0)=A;
ins =y(0)=4

5 g
)
h(_zl)e

()= E@

>dsolve ([odu,ins]);

Different values of these solutions depending on values of the small parameter € and the constant

yY are given in the following table:

t=0 t-0,2 t-04 t-06 t-08  t—1
£=0,010 0 0,19557 0,39372 0,59230 0,79110 0,99005
£=0,025 0 0,18913 0,38450 0,58094 0,77795 0,97531
£=0,050 0 017888 0,36962 0,56252 0,75652 0,95125
£=0,075 0 0,16927 0,35537 0,54471 0,73573 0,92781
£=0,100 0 016027 0,34175 0,52754 0,71555 0,90500
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B.T. Kamumberos, A.H. Temupbekos, b.11. Eckapaesa

Beuiek perTi TYbIHABLIBI CUHTYJISPJIbI
aybITKBIFAH ecellTe iMiKi 1mekapa KadbaThl

Maxkausta imki mekapa KabaTbIH 3epTTeyre apHaaraH. MyHail KosrajabicTap KebiHece IeKkapa KabaTbIHBIH
ocepiMeH GaIAHBICTDI, IFHU TOMEH AFBIHHBIH, TYTKBIPJIBIFBI AFbIHIBI JEHEHIH Tap MapueTassabl (KabbIpra-
Jibl) KabaTbIHA FaHa ocep eresi, ajl Oy aliMaKThIH CHIPTBIHA aFbIH TYTKBIPJIBIK YKOK, — HUJIEaJIbl AFbIH Je1l
arasagbl. [Tlekapabik KabaTTarbl SKCIIOHEHTAJIAP/IBIH CAHBI IIIEKTI OMepaTop CIEKTPIHIH HOJIIK eMeC HYK-
TeJIepiHiH caHbIMEH aHBIKTAJAbI. Makasa aBTOpJApPBI IMIEKTI OMepaTop CHEKTPiHiH 6ip HykTeme Oy3bLIFaH
JKaraiiblH Kapacteiprad. Ecenti 3eprrey ymria JIoMOBTBIH perysspuaius 9/ici KOIJaHbLIFaH. bacTankbl
€CEITiH, Peryasapu3aluschl >KYPri3ijireH KoHE a3 TYTKBIPJIBIK, HOJINe YMTBUIFAHJIAFBI €CEITiH, IIeNiMiHiH
ACHMIITOTHKACHIHBIH 0ac Mymreci KypbLTFaH. T'YTKBIPIBIKTBIH OPTYPJI MOHIAEP] VIMH IMIENMHIH CAH/IbIK
HOTHUKeJIeP] aJIbIHFaH.

Kiam ce3dep: cuHryJsisip aybITKY, Killll TTapaMerp, peryJsipu3alius, CIeKTP/iH TYPAKTBUILIFbl, aCUMIITOTH-
KaJIBbIK, >JKUHAKTBLIBIK,

B.T. Kanumberos, A.H. Temupbekon, B.11. Eckapaesa

BryTpenHuii morpaHuvHbIi CJIOIl B CUHTYJISPHO BO3MYIIEHHOM
3ajiave C IPOU3BOJIHBIM JPOOHOTO MOPsSIKa

Crarbsl MOCBSIIEHA U3YUEHUIO BHYTPEHHErO [TOTPAHUYHOIO CJiosi. Takue NBHKEHUs 9allle BCErO CBSI3aHBL C
BO3/IefICTBUEM IOT'PAHUYIHOIO CJIOS, TO €CTh HU3KAas BA3KOCTb IIOTOKA BIIUSAET TOJBKO B Y3KOM ITapUeTaIbHOM
cJjioe 00TEKaeMoro TeJsa, a BHE 9TON 30HBI IOTOK, KaK ecjii Obl He ObLIO BA3KOCTH, — TaK HA3bIBAEMBIH Hjie-
aJIbHBIN TOTOK. KOJIM4IecTBO 9KCIIOHEHT B IIOTPAHUYHOM CJIO€ OIIPEIE/ISIeTCsT KOJIMYeCTBOM HEHYJIEBBIX TOYEK
[IPEJIEIBHOTO OIIEPATOPHOIO CIEKTpa. B cTaTrbe pacCMOTpPEH CiIydail HeoOPATUMOCTH CIEKTPA IPEIe/ILHOrO
omeparopa B 0HOI Touke. [l1s1 mccaenoBanus 3a/a9u UCHOJIB30BaH MeTo ] peryisipusamnuu Jlomosa. IIpo-
U3BeJleHa Peryisipu3aliys NCXOIHON 3a/1a4r, ¥ IIOCTPOEH IVIABHBIN YJIEH aCUMIITOTUKY PEIleHus 33/1a49U IIPU
CTPEMJIEHUH MaJIOfl BA3KOCTU K HYJIO. I pa3sjauyHbIX 3HAUYEHUN MaJIOi BSI3KOCTHU IIOJIYUEHBI UUCJIECHHbIE
Pe3yIbTaThl PEIIEeHN.

Kmouesvie cro6a: CHHTYISIPHOE BO3MYIIEHUE, MAJIbI TApAMETP, PErY/IsIpU3AIlisl, CTAOMIBHOCTD CIEKTPA,
aCUMITOTHUYECKas CXOJAUMOCTb.
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Characterizing the Ordered AG-Groupoids Through
the Properties of Their Different Classes of Ideals

In this article, we have presented some important charcterizations of the ordered non-associative semigroups
in relation to their ideals. We have initially characterized the ordered AG-groupoid through the properties
of the their ideals, then we characterized the two important classes of these AG-groupoids, namely the
regular and intragregular non-associative AG-groupoids. Our aim is also to encourage the research and the
maturity of the associative algebraic structures by studying a class of non-associative and non-commutative
algebraic structures called the ordered AG-groupoid.

Keywords: Ordered AG-groupoids, left (right, interior, quasi-, bi-, generalized bi-) ideals, regular (intra-
regular) ordered AG-groupoids.

Introduction

In 1972, a generalization of commutative semigroups has been established by Kazim et. al [1]. In
ternary commutative law: abc = cba, they introduced the braces on the left side of this law and explored
a new pseudo associative law, that is (ab)c = (cb)a. They have called the left invertive law of this law.
A groupoid S is said to be a left almost semigroup (abbreviated as LA-semigroup) if it satisfies the left
invertive law : (ab)c = (c¢b)a. This structure is also known as Abel-Grassmann’s groupoid (abbreviated
as AG-groupoid) in [2]. An AG-groupoid is a midway structure between an abelian semigroup and a
groupoid. Mushtaq et. al [3], investigated the concept of ideals in AG-groupoids.

In [4] (resp. [5]), a groupoid S is said to be medial (resp. paramedial) if (ab)(cd) = (ac)(bd) (resp.
(ab)(cd) = (db)(ca)). In [1], an AG-groupoid is medial, but in general an AG-groupoid needs not to be
paramedial. Every AG-groupoid with left identity is paramedial by Protic et. al [2] and also satisfies
a(be) = b(ac), (ab)(cd) = (dc)(ba).

In [6,7], if (S,-, <) is an ordered semigroup and () # A C S, we define a subset of S as follows :
(A] = {s € S:s <afor some a € A}. A non-empty subset A of S is called a subsemigroup of S if

A non-empty subset A of S is called a left (resp. right) ideal of S if following hold (1) SA C A
(resp. AS C A). (2) If a € A and b € S such that b < a implies b € A. Equivalent definition: A is
called a left(resp. right) ideal of S if (A] C A and SA C A (resp. AS C A).

A non-empty subset A of S is called an interior (resp. quasi-) ideal of S if (1) SAS C A (resp.
(AS]N(SA] C A). (2) If a € A and b € S such that b < a implies b € A.

A subsemigroup (A non-empty subset) A of S is called a bi- (generalized bi-) ideal of S if (1)
ASAC A. (2)If a € A and b € S such that b < a implies b € A. Every bi-ideal of S is a generalized
bi-ideal of S.

*Corresponding author.
E-mail: kausar.nasreen57@gmail.com
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In [7,8], an ordered semigroup is said to be regular if for every a € S, there exists an element
x € S such that a < aza. Equivalent definitions are as follows: (1) A C (ASA] for every A C S.
(2) a € (aSa] for every a € S.

In [9,10], an ordered semigroup S is intra-regular if for every a € S there exist elements x,y € S such
that a < xa’y. Equivalent definitions are as follows: (1) A C (SA29] for every A C S. (2) a € (Sa?9)] for
every a € S.

We will define left (right, interior, quasi-, bi-, generalized bi-) ideals in ordered AG-groupoids. We
will establish a study by discussing the different properties of such ideals. We will also characterize
regular (resp. intra-regular, both regular and intra-regular) ordered AG-groupoids by the properties of
left (right, quasi-, bi-, generalized bi-) ideals.

Ideals in Ordered AG-groupoids

An ordered AG-groupoid S, is a partially ordered set, at the same time an AG-groupoid such that
a < b, implies ac < bc and ca < ¢b for all a,b, ¢ € S. Two conditions are equivalent to the one condition
(ca)d < (cb)d for all a,b,c,d € S.

Ezxample 1. Consider a set S = {e, f, a, b, c} with the following multiplication
13 <77

H‘”

and order relation

A Q=0
0 Q@ —olo
SHESELNEE NG
S0 0 ele
A - > o o

0 o oo

f

<={(e,€),(e,a),(e,b), (e, ), (f, [), (f,0), (f, ), (a,a),(a,c), (b,), (b,c), (¢,c)}.

Then (S, -, <) is an ordered AG-groupoid with left identity e.

For ) # A C S, we define a subset (4] = {s € S : s < a for some a € A} of S and obviously
A C (A]. For ) # A,B C S, then ((A]] = (4], (A](B] C (AB], ((A|(B]] = (AB], if A C B, then
(A] C (B], (An B] # (AN (B], in general.

For ) # A C S. Then A is called an ordered AG-subgroupoid of S if A2 C A. A is called a left
(resp. right) ideal of S if the following hold (1) SA C A (resp. AS C A). (2) If a € A and b € S such
that b < a implies b € A. A is called an ideal of S if A is both a left and a right ideal of S.

We denote by L(a), R(a), I(a) the left ideal, the right ideal and the ideal of S, respectively, generated
by a. we have L(a) = {s € S : s < aor s < za for some z € S} = (aU Sa], R(a) = (a U aS],
I(a) = (aU SaUaSU(Sa)S].

A non-empty subset A of an ordered AG-groupoid S is called an interior (resp. quasi-) ideal of S
if (1) (SA)S C A (resp. (AS]N(SA] C A). (2) If a € A and b € S such that b < a implies b € A.

An AG-subgroupoid A of S is called a bi-ideal of S if (1) (AS)A C A. (2) Ifa € Aand b e S
such that b < a implies b € A. A non-empty subset A of S is called generalized bi-ideal of S if (1)
(AS)AC A. (2) If a € A and b € S such that b < a implies b € A.

Now we give the imperative properties of such ideals of an ordered AG-groupoid .S, which will be
play a vital rule in the later sections. Specifically we show:

(1) Let S be an ordered AG-groupoid with left identity e. Then every right ideal of S is a ideal of
S.

(2) Let S be an ordered AG-groupoid with left identity e, such that (ze)S = xS for all z € S. Then
every quasi-ideal of S is a bi-ideal of S.

Lemma 1. Let S be an ordered AG-groupoid with left identity e. Then SS = S and eS = § = Se.

Proof: Since SS C S and ¢ = ex € 5§, i.e.,, S C S5, thus S = 5. Obviously, eS = S and
Se=(SS)e=(eS)S=55=5¢.
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Lemma 2. Let S be an odered AG-groupoid with left identity e and a € S. Then Sa is a smallest
left ideal of S containing a.
Proof: Let x € Sa and s € S, this implies that z = s1a, where s; € S. Now

st = s(s1a) = (es)(s1a) = ((s1a)s)e = ((s1a)(es))e
= ((s1e)(as))e = (e(as))(s1e) = (as)(s1e) = ((s1€)s)a € Sa.

Thus sz € Sa and (Sa] C Sa. Since a = ea € Sa, hence Sa is a left ideal of S containing a. Let [
be another left ideal of S' containing a. Since sa € I, because [ is a left ideal of S. But sa € Sa, this
means that Sa C I. Therefore Sa is a smallest left ideal of S containing a.

Lemma 3. Let S be an odered AG-groupoid with left identity e and a € S. Then aS is a left ideal
of S.

Proof: Straight forward.

Proposition 1. Let S be an ordered AG-groupoid with left identity e and a € S. Then aS U Sa is a
smallest right ideal of S containing a.

Proof: Let x € aS U Sa. We have to show that (aS'U Sa)S C aSU Sa. Now

(aSUSa)S = (aS)SU(Sa)S = (SS)aU (Sa)(eS)
C SauU(Se)(aS) = SaU S(aS)
= SaUa(SS) C SaUaS =aSUSa.

Thus (aS U Sa)S C aSU Sa and (aS U Sa] C aS U Sa. Therefore a.S U Sa is a right ideal of S. Since
a € Sa, ie., a € aS U Sa. Let I be another right ideal of S containing a. Now aS € IS C I and
Sa = (SS)a = (aS)S € (IS)SCISC1, ie.,aSUSaCI. Hence aSU Sa is a smallest right ideal of
S containing a.

Lemma 4. Let S be an ordered AG-groupoid with left identity e. Then every right ideal of S is an
ideal of S.

Proof: Let R be a right ideal of S and r € R,s € S. Now sr = (es)r = (rs)e € (RS)S C RS C R.
Thus SR C R and (R] € R. Hence R is an ideal of S.

Lemma 5. Let S be an ordered AG-groupoid with left identity e such that (ze)S = zS for all
xz € S. Then (AS)S C AS and (AS]S C (AS].

Proof: Since

(AS)S = (AS)(eS) = (Ae)(SS) C (Ae)S = AS.
and (AS]S = (AS](S] C ((AS)S] C (AS).

Remark 1. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
z € S, then (AS] is an ideal of S.

Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all z € S and
A,B C S. Then (AS)(BS) C (AB)S and (AS]|(BS]| C ((AB)S]. Similarly (SA)(SB) C S(AB) and
(SAJ(SB] C (S(AB)].

In general for Aj, As,..., Ay, C S, then (A15)(A2S)...(4,S) C (A1As, ..., A,)S and (A1S5](A25]...
(4,5] € (A1 As, ... Ay)S].

Similarly, (SA1)(SA2)...(SA,) € S(A14s, ..., Ay) and (SA1](SAs]....(SA,] C (S(A1Aq, ..., Ay)].

Lemma 6. Let S be an ordered AG-groupoid. A is a right ideal of S and B is a right ideal of A,
then (B] = B.

Proof: Since (B] = {s € S| s < b for some b € B} and s € (B], this implies that there exists an
element s € S such that s < bforsomebe BC A. Thus S>3s<bec A Now A>s<be BandBis
a right ideal of A, i.e., s € B, so (B] C B. Since B C (B], thus (B] = B.
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Proposition 2. Let S be an ordered AG-groupoid with left identity e such that (ze)S = xS for all
x € S. Ais a right ideal of S and B is a right ideal of A such that (B?] = B. Then B is an ideal of S.
Proof: We have to show that B is a right ideal of S. Now

BS (B%)S = (B*)(S] € (B*S] = (BB)S]
= ((SB)B] € ((5B)A] = ((SB)(eA)]
= ((5e)(BA)] = (B((Se)A)] = (B((4¢)5)]
= (B(AS)] C (BA] C (B] = B by the Lemma 6.

Thus BS C B and (B] C B, i.e., B is a right ideal of S. Hence B is an ideal of S by the Lemma 4.

Lemma 7. Let S be an ordered AG-groupoid. A is a left ideal of S and B is a left ideal of A, then
(B] = B.

Proof: Same as Lemma 6.

Proposition 3. Let S be an ordered AG-groupoid with left identity e. A is a left ideal of S and B
is a left ideal of A such that (B2 = B. Then B is left ideal of S.

Proof: We have to show that B is a left ideal of S. Now

SB = S(B% = (S|(B” < (SB°] = (S(BB)

( ]

c ( | C(AB] C (B] = B, by the Lemma 7.

Thus SB C B and (B] C B. Hence B is a left ideal of S.

Lemma 8. Every two-sided ideal of S is an interior ideal of S.

Proof: Straight forward.

Proposition 4. Let S be an ordered AG-groupoid with left identity e. Then any non-empty subset
I of S is an ideal of S if and only if I is an interior ideal of S.

Proof: Suppose that I is an interior ideal of S. Let ¢ € I and s € S. Now is = (ei)s € (SI)S C I,
this implies that I.S C I and (I] C I, i.e., I is a right ideal of S. Hence I is an ideal of S by the Lemma
4. Converse is true by the Lemma 8.

Lemma 9. Every right (two-sided) ideal of S is a bi-ideal of S.

Proof: Straight forward.

Lemma 10. Every bi-ideal of S is a generalized bi-ideal of S.

Proof: Obvious.

Lemma 11. Every left (right, two-sided) ideal of S is a quasi-ideal of S.

Proof: Let I be a right ideal of S. Now (IS] N (SI] € (IS] C (I] € I and (I] C I. Thus I is a
quasi-ideal of S.

Proposition 5. Every quasi-ideal of S is an ordered AG-subgroupoid of S.

Proof: Suppose that I is a quasi-ideal of S. Now IT C I.S C (I](S] C (IS] and II C SI C (S|(I] C
C (SI], i.e., I? =11 C (IS N (SI] C I. Hence I is an AG-subgroupoid of S.

Proposition 6. Let R be a right ideal and L be a left ideal of an ordered AG-groupoid S, respectively.
Then RN L is a quasi-ideal of S.

Proof: Since (RN L)S]N(S(RNL)] C (RS]N(SL]C (RN(LJ]C RNLand (RNL] =RNL.
Thus RN L is a quasi-ideal of S.

Lemma 12. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then every quasi-ideal of S is a bi-ideal of S.

Proof: Let @ be a quasi-ideal of S. Now (QS5)Q C (55)Q C SQ C (SQ] and (QS)Q C (QS)S =
= (@5)(eS) = (Qe)(55) = (Qe)S = Q5 € (QS], thus (RQS)Q S (@S] N (SQ] S Q. Therefore
(QRS)Q C @ and (Q] C Q. Hence @ is a bi-ideal of S.
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Regular Ordered AG-groupoids

An ordered AG-groupoid S is called regular if for every a € S, there exists an element € S such
that a < (ax)a. Equivalent definitions are as follows:

(1) AC((AS)A] for every A C S.

(2) a € ((aS)a] for every a € S.

An ideal I of an ordered AG-groupoid S is called idempotent if (I?] = I.

In this section, we characterize regular ordered AG-groupoids by the properties of (left, right, quasi-,
bi-, generalized bi-) ideals.

Lemma 13. Every right ideal of a regular ordered AG-groupoid S

Proof: Let R be a right ideal of S. Let r € R and a € S, this implies that there exists an element
z € S such that a < (ax)a. Now ar < ((ax)a)r = (ra)(ax) € RS C R, thus SR C R and (R] = R.
Hence R is an ideal of S.

Lemma 14. Every ideal of a regular ordered AG-groupoid S is an idempotent.

Proof: Suppose that I is an ideal of S and (I?] = (II] C (I] = I. Let a € I, this mean that there
exists an element x € S such that a < (az)a. Now a < (ax)a € (IS)I C IT = 1% ie., I C (I?].
Therefore (I%] = I.

Remark 2. Every right ideal of a regular ordered AG-groupoid S is an idempotent.

Proposition 7. Let S be a regular ordered AG-groupoid. Then any non-empty subset I of S is an
ideal of S if and only if I is an interior ideal of S.

Proof: Assume that [ is an interior ideal of S. Let @ € I and s € S, then there exists an element
z € S, such that a < (ax)a. Now as < ((ax)a)s = (sa)(azx) € (SI)S C I. Thus IS C I and (I] = I,
i.e., I is a right ideal of S. Hence I is an ideal of S by the Lemma 4. Converse is true by the Lemma
13.

Proposition 8. Let S be a regular ordered AG-groupoid with left identity e. Then (IS]N(SI] =1,
for every right ideal I of S.

Proof: Let I be an ideal of S. This implies that (I.S] N (SI] C I, because every ideal of S is a
quasi-ideal of S. Let a € I, this means that there exists an element x € S such that a < (az)a. Now
a < (ax)a € (IS)I CII C IS, ie., I C (IS]. Now a < (ax)a = (ax)(ea) = (ae)(za) € 11 C SI, ie.,
I C (SI]. Thus I C (IS]N(SI]. Hence (IS]N(SI] = 1.

Lemma 15. Let S be a regular ordered AG-groupoid. Then (RL] = RN L, for every right ideal R
and every left ideal L of S.

Proof: Since (RL] C (RS] C (R] = Rand (RL] C (SL] C
this implies that there exists an element x € S such that a
i.e., RNL C (RL]. Therefore (RL] = RN L.

Theorem 1. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(L]=L,ie., (RL] C RNL.Leta € RNL,
< (ax)a. Now a < (ax)a € (RS)L C RL,

(1) S is a regular.

(2) RN L = (RL] for every right ideal R and every left ideal L of S.

(3) Q = ((QS5)Q)] for every quasi-ideal @ of S.

Proof: Suppose that (1) holds. Let @ be a quasi-ideal of S and a € @, this implies that there exists
an element z € S such that a < (az)a. Now a < (az)a € (QS)Q, ie., Q@ C ((QS)Q] C (Q] = Q,
because every quasi-ideal of S is a bi-ideal of S. Hence @ = ((QS5)Q], i.e., (1) = (3). Assume that
(3) holds, let R be a right ideal and L be a left ideal of S. Then R and L be quasi-ideals of S by the
Lemma 11, so RN L be a quasi-ideal of S. Now RN L = ((RNL)S)(RN L)) € ((RS)L] C (RL].
Since (RL] C RN L,so (RL] = RNL,1ie., (3) = (2). Suppose that (2) is true, let a € S, then Sa is
a left ideal of S containing a by the Lemma 2 and aS U Sa is a right ideal of S containing a by the
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Proposition 1. By (2),

(@SUSa)NSa = ((aSUSa)(Sa)] = ((aS)(Sa)U (Sa)(Sa)].
(Sa)(Sa) = ((Se)a)(Sa) = ((ae)S)(Sa) = (aS)(Sa).

Thus

(aSUSa)NSa = ((aS)(Sa)U (Sa)(Sa)l
= ((aS)(Sa) U (aS)(Sa)] = ((aS)(Sa)].

Since a € (aS U Sa) N Sa, Implies a € ((aS)(Sa)]. Then a < (az)(ya) = ((ya)z)a = (((ey)a)r)a =
= (((ay)e)z)a = ((ze)(ay))a = (a((ze)y))a € (aS)a for any z,y € S, ie., a € ((aS)a]. Hence a is
regular, so S is a regular, i.e., (2) = (1).

Theorem 2. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(1) S is a regular.

(2) Q@ = ((QS)Q)] for every quasi-ideal @ of S.

(3) B = ((BS)B] for every bi-ideal B of S.

(4) G = ((GS)G] for every generalized bi-ideal G of S.

Proof: (1) = (4), is obvious. (4) = (3), since every bi-ideal of S is a generalized bi-ideal of S by
the Lemma 10. (3) = (2), since every quasi-ideal of S is bi-ideal of S by the Lemma 12. (2) = (1),
by the Theorem 1.

Theorem 3. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(1) S is a regular.

(2) QNI = ((QI)Q)] for every quasi-ideal @ and every ideal I of S.

(3) BN I = ((BI)B] for every bi-ideal B and every ideal I of S.

(4) GNI = ((GI)G] for every generalized bi-ideal G and every ideal I of S.

Proof: Suppose that (1) is true. Let G be a generalized bi-ideal and I be an ideal of S. Now
((GDG] € ((SI)S] € (I] = I and ((GI)G] C ((GS)G] C (G] = G, thus ((GI)G] € GNI. Let
a € G NI, this means that there exists an element z € S such that a < (ax)a. Now a < (ax)a =
= (((ax) Jx)a = ((za)(ax))a = (a((za)z))a € (GI)G, thus GNI C ((GI)G]. Hence GN I = ((GI)G],

5 (1) =(4). (4) = (3), since every bi-ideal of S is a generalized bi-ideal of S by the Lemma 10.
(3) = (2), since every quasi-ideal of S is a bi-ideal of S by the Lemma 12. Assume that (2) is true.
Now QNS = ((QS)Q], ie., Q = ((QS)Q], where @ is a quasi-ideal of S. Hence S is a regular by the
Theorem 1.

Theorem 4. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

1) S is a regular.

2) RNQ C (RQ)] for every quasi-ideal ) and every right ideal R of S.

3) RN B C (RB] for every bi-ideal B and every right ideal R of S.

4) RN G C (RG] for every generalized bi-ideal G and every right ideal R of S.

Proof: (1) = (4), is obvious. (4) = (3), since every bi-ideal of S is a generalized bi-ideal of S.
(3) = (2), since every quasi-ideal of S is a bi-ideal of S by the Lemma 12. . Suppose that (2) is true.
Now RNQ = Q@ N R C (RQ], where @Q is a left ideal and R is right ideal of S, because every left
ideal of S is a quasi-ideal of S. Since (RQ] € RN Q, thus RN Q = (RQ)]. Hence S is a regular, by the
Theorem 1.

(
(
(
(

106 Bulletin of the Karaganda University



Characterizing the Ordered...

Intra-reqular Ordered AG-groupoids

An ordered AG-groupoid S is called intra-regular if for every a € S, there exist elements z,y € S
such that a < (za?)y. Equivalent definitions are as follows:

(1) A C ((SA?)S] for every A C S.

(2) a € ((Sa?)S) for every a € S.

In this section, we characterize intra-regular ordered AG-groupoids by the properties of (left, right,
quasi-, bi-, generalized bi-) ideals.

Lemma 16. Every left (right) ideal of an intra-regular ordered AG-groupoid S is an ideal of S.

Proof: Let R be a right ideal of S. Let » € R and a € S, this implies that there exist elements
x,y € S such that a < (za?)y. Now ar < ((za®)y)r = (ry)(za®?) € RS C R. Thus SR C R and
(R] C R. Hence R is an ideal of S.

Lemma 17. Every ideal of an intra-regular ordered AG-groupoid S with left identity e, is an
idempotent.

Proof: Suppose that I is an ideal of S and (%] = (II] C (I] = I. Let a € I, this means that there
exist elements z,y € S such that a < (za?)y. Now

a < (za)y = (z(aa))y = (a(za))y
= (a(za))(ey) = (ae)((za)y) = (za)((ae)y) € I1.
Thus a € (II] = (I%]. Therefore (1] = 1.
Proposition 9. Let S be an intra-regular ordered AG-groupoid with left identity e. Then any non-
empty subset I of S is an ideal of S if and only if [ is an interior ideal of S.
Proof: Assume that I is an interior ideal of S. Let ¢ € I and a € S, then there exist elements
z,y € S such that x < (yx?)z. Now
ia < i((za®)y) =i((z
= i((a(za))y) = i(
— i((ae)((wa)y)) = i((za)((ae)y))
= (za)(i((ae) ae)y)) € (SI)S C 1.
Thus IS C I and (I] C I, i.e., I is a right ideal of S. So I is an ideal of S by the Lemma 16.
Converse is obvious.
Lemma 18. Let S be an intra-regular ordered AG-groupoid with left identity e. Then LN R C (LR)]
for every left ideal L and every right ideal R of S.

Proof: Let a € L N R, where L is a left ideal and R is a right ideal of S, respectively, this implies
that there exist elements z,y € S such that a < (za?)y. Now

a < (za’)y = (2(aa))y = (a(za))y = (a(za))(ey)
(ae)((za)y) = (za)((ae)y) € LR.
= LNRC(LR].

Theorem 5. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.
(1) S is an intra-regular.
(2) LN R C (LR) for every left ideal L and every right ideal R of S.
Proof: Since (1) = (2) holds by the Lemma 18. Suppose that (2) holds and a € S, then Sa is a left
ideal of S containing a and aS U Sa is a right ideal of S containing a. By our supposition
San(aSUSa) C ((Sa)(aSUSa)l=((Sa)(aS)U (Sa)(Sa)l.
(Sa)(aS) = (Sa)((ea)S) = (Sa)((Sa)e) = (Sa)((Sa)(ee))
= (Sa)((Se)(ae)) = (Sa)(S(ae)) = (Sa)(Sa).

Mathematics series. Ne 4(100) /2020 107



N. Kausar, M. Munir et al.

Thus
(aSUSa)NSa € ((Sa)(asS)U (Sa)(Sa)]
= ((Sa)(Sa) U (Sa)(Sa)]
= ((Sa)(Sa)] = (5%a’] = (Sa’]
= (S(a®e)] = ((59)(a%e)] = ((eS)(a*S)] = (S(a®S5)]
= (a*(59)] = ((ea®)(S5)] = ((Sa?)(Se)] = ((Sa*)$]

Since a € (aSUSa)NSa, implies a € ((Sa?)S], thus a is an intra regula. Hence S is an intra-regular,
ie, (2)=(1).

Theorem 6. Let S be an ordered AG-groupoid with left identity e such that (ze) S = S for all
x € S. Then the following conditions are equivalent.

(1) S is an intra-regular.

(2) QNI = ((QI)Q)] for every quasi-ideal @ and every ideal I of S.

(3) BN I = ((BI)B] for every bi-ideal B and every ideal I of S.

(4) GNI = ((GI)G] for every generalized bi-ideal G and every ideal I of S.

Proof: Suppose that (1) holds. Let a € GN I, where G is a generalized bi-ideal and I is an ideal of
S, this implies that there exist elements z,y € S such that a < (za?)y. Now

a < (za’)y = (2(aa))y = (a(za))y = (y(za))a.
y(za) < ylz((za®)y)) = y((za®)(zy)) = (za®)(y(zy))
= (za®)(zy?) = (z(aa))m, say zy*> =m
= (a(za))m = (m(za))a.
m(za) < m(z((za®)y)) = m((za®)(zy)) = (za?)(m(zy))

= wa, say n(za) =v.

= y(za) = (m(za))a = (va)a = (va)(ea) = (ve)(aa) = a((ve)a).

Thus a < (za®)y = (y(za))a = (a((ve)a))a € (GI)G. This means that a € ((GI)G], i.e.,
GNI C (GIHG]. Now ((GI)G] C ((SI)S] € (I] = I and ((GI)G] C ((GS)G] C (G] = G, thus
((GI)G] € GNI. Hence GNI = ((GI)G], ie., (1) = (4). (4) = (3), every bi-ideal of S is a
generalized bi-ideal of S by the Lemma 10. (3) = (2), every quasi-ideal of S is a bi-ideal of S by the
Lemma 12. Assume that (2) is true and let R be a right ideal and I be a two-sided ideal of S. Now
INR = ((RI)R] C ((SI) R] C (IR], since every right ideal of S is a quasi-ideal of S. Therefore S is an
intra-regular by the Theorem 5, i.e., (2) = (1).

Theorem 7. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(1) S is an intra-regular.

(2) LN Q C (LQ) for every quasi-ideal @) and every left ideal L of S.

(3) LN B C (LB for every bi-ideal B and every left ideal L of S.

(4) LN G C (LG] for every generalized bi-ideal G and every left ideal L of S.

Proof: Suppose that (1) holds. Let a € LN G, where L is a left ideal and G is a generalized bi-ideal
of S, this means that there exist elements x,y € S such that a < (za?)y. Now a < (za?)y = (z(aa))y =
= (a(za))y = (y(za))a € LG, ie., a € (LG]. Thus LN G C (LG, ie., (1) = (4). (4) = (3), every
bi-ideal of S is a generalized bi-ideal of S. (3) = (2), every quasi-ideal of S is a bi-ideal of S. Assume
that (2) is true and let R be a right ideal of S and L be a left ideal of S. Now L N R C (LR], where R
is a quasi-ideal of S. Hence S is an intra-regular by the Theorem 5, i.e., (2) = (1).
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Theorem 8. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.
(1) S is an intra-regular.
(2) LNQNR C ((LQ)R] for every quasi-ideal @, every right ideal R and every left ideal L of S.
(3) LN BN R C ((LB)R] for every bi-ideal B, every right ideal R and every left ideal L of S.
(4) LNGNRC ((LG)R] for every generalized bi-ideal G, every right ideal R and every left ideal
L of S.
Proof: Suppose that (1) holds. Let a € LNGN R, where L is a left ideal, G is a generalized bi-ideal

and R is a right ideal of S, this implies that there exist elements x,y € S such that a < (xa?)y. Now

a < (za®)y = (z(aa))y = (a(za))y = (y(za))a.
y(za) < y(z((za®)y)) = y((za®)(zy)) = (za®)(y(zy))
= (2za®)(zy?) = (¢(aa))m, say zy® =m

= (a(za))m = (m(za))a

Thus a < (za?)y = (y(za))a = ((m(xa))a)a € (LG)R, i.e., a € (LG)R]. Hence LN GN R C
C ((LG)R], ie., (1) = (4). (4) = (3), every bi-ideal of S is a generalized bi-ideal of S. (3) = (2),
every quasi-ideal of S is a bi-ideal of S. Assume that (2) is true. Now

LnSNR < ((LSR] = (((eL)S)R] = (SL)e)R] = (((SL)(ee)) R]
= (((Se)(Le))R] € ((S(Le))R] € ((SL)R] € (LR].
= LNRC(LR].

Hence S is an intra-regular by the Theorem 5, i.e., (2) = (1).
Regular and Intra-reqular Ordered AG-groupoids

In this section, we characterize both regular and intra-regular ordered AG-groupoids by the properties
of (left, right, quasi-, bi-, generalized bi-) ideals.

Theorem 9. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(1) S is a regular and an intra-regular.

(2) (B?] = B for every bi-ideal B of S.

(3) B1 N B2 = (BlBQ] (BQBl] for all bi-ideals Bl, BQ of S.

Proof: Suppose that (1) holds and B be a bi-ideal of S. Since (B? = (BB] C (B] = B. Let a € B,
this implies that there exists an element = € S such that a < (az)a, also there exist elements y, z € S
such that a < (ya?)z. Now

(ya*)z)e =

— ((an)a)(ya) = (sa)(ya), say 5 = an
aa)(ys) = (aa)t, say t = ys
((az)a)a)t = ((aa)(ax))t = (t(azx))(aa)

)
a(tz))(aa) = (aw)(aa), say w = tz.

IN
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Thus a < (((ya?)2)z)a < ((aw)(aa))a € (BS)B)B C B2, ie., a € (B%. So B C (B, ie.,
(B?] = B. Hence (1) = (3). Assume that (2) is true. Let By, By be bi-ideals of S, then BN By be also
a bi-ideal of S. Now B; N By = ((Bl N BQ)(Bl N Bg)] - (BlBQ] and B1 N By = ((Bl N Bg)(Bl N Bz)] -
C (ByBy], thus By N By C (B1Bs] N (ByBy]. First of all we have to show that (BBs] is a bi-ideal of S.
It is enough to show that ((B1B2]S)(B1Bs] C (B1B2]. Now

((BiBs)S)(BiBs] =

N 1N

=

Thus (B1Bs] is a bi-ideal of S, similarly (B2Bj] is also a bi-ideal of S. Then (B;Bz] N (B2By] is
also a bi-ideal of S. Now

(B1Ba2] N (B2B1] = (((B1B2] N (B2B1])((B1B2] N (B2B1])]

C  ((B1B2|(B2B1]] € (((B1B2)(B2B1)]]

= ((B1B2)(B2B1)] € ((B15)(SB1)]

= (((5B1)S)B1] = ((((Se)B1)S)Bi]

= ((((B1€)9)S)Bi1] = (((B15)5)Bi]

= (((SS)B1)B1] = ((S )Bl] = (((Se)B1)Bi]
(((B1e)S)B1] = ((B1S)B1] € (B1]

= (B1B2| N (ByB1] C (B1] = By.

Similarly, we have (B1Bs2| N (B2Bi1] C (B2] = Ba, thus (B1Ba] N (B2Bi] € By N By. Therefore
By N By = (B1B2] N (B2By], ie., (2) = (3). Suppose that (3) holds, let R be right ideal of S and I
be an ideal of S. Then R and I be bi-ideals of S, because every right ideal and two sided ideal of S is
bi-ideal of S by the Lemma 9. Now RN I = (RI] N (I R], this implies that RN I C (RI] N (IR]. Thus
RNI C (RI] and RNI C (IR], where I is also a left ideal of S. Since (RI] C RN 1, i.e., (RI]=RNI,
thus S is a regular by the Theorem 1. Also, RN I C (IR], thus S is an intra-regular by the Theorem
5. Hence (3) = (1).

Theorem 10. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(1) S is regular and intra-regular.

(2) Every quasi-ideal of S is an idempotent.

Proof: Suppose that (1) holds. Let @ be a quasi-ideal of S and (Q?] = (QQ] C (Q] = Q, i.e.,
(Q?] C Q. Let a € @, this implies that there exists an element z € S such that a < (ax)a, also there
exist elements y, z € S such that a < (ya?)z. Now
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(az)((ya®)z) = (((ya*)2)z)a.
ya®) = m(ya?), say m = zz
) = m(a(ya)) = a(m(ya))
ya)) = ((ax)m)(a(ya))
ya)) = (qa)(a(ya)), say ¢ =ma
) = ((ag)e)(a(ya))
) = ((ag)a)(ya) = (sa)(ya), say s = aq
= (aa)t, say t = ys
(aa)(az))t = (t(az))(aa)

aw)(aa),say w = tx

((ya*)z)z =

|
A~ N N /N /N /N

IN

—~

Thus a < (((ya?)2)x)a < ((aw)(aa))a € ((QS)Q)Q € QQ C Q2 ie., a € (Q?, because every
quasi-ideal of S is a bi-ideal of S by the Lemma 12. Thus Q C (Q?], i.e., (Q* = Q. Hence (1) = (2).
Assume that (2) is true. Let a € S, then Sa is a left ideal of S containing a, so Sa is a quasi-ideal of S,
because every left ideal of S is a quasi-ideal of S. Now Sa = ((Sa)?] = ((Sa)(Sa)], i.e., a € ((Sa)(Sa)].
Thus S is an intra-regular by the Theorem 5. Now Sa = ((Sa)(Sa)] = (((Se)a)(Sa)] = (((ae)S)(Sa)] =
= ((aS)(Sa)], i.e., a € ((aS)(Sa)]. Thus S is a regular by the Theorem 1. Therefore (2) = (1).

Theorem 11. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(1) S is regular and intra-regular.

(2) Every quasi-ideal of S is an idempotent.

(3) Every bi-ideal of S is an idempotent.

Proof: (1) = (3), by the Theorem 9. (3) = (2), every quasi-ideal of S is a bi-ideal of S, by the
Lemma 12. (2) = (1), by the Theorem 10.

Theorem 12. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(1) S is regular and intra-regular.

(2) Q1 N Q2 C (Q1Q2] for all quasi-ideals Q1, Q2 of S.

(3) @ N B C (QB] for every quasi-ideal @ and every bi-ideal B of S.
(4) BN Q C (BQ)] for every bi-ideal B and every quasi-ideal @ of S.
(5) B1 N By C (B By] for all bi-ideals By, By of S.

Proof: Suppose that (1) holds. Let By, By be bi-ideals of S, then By N By be also a bi-ideal of S.
Since every bi-ideal of S is an idempotent by the Theorem 9, then Bj N By = ((B; N Bs)?] =
= ((B1 N Bg)(B1 N By)] C (B1Bs]. Hence (1) = (5). Since (5) = (4) = (2) and (5) = (3) = (2),
because every quasi-ideal of S is a bi-ideal of S by the Lemma 12. Assume that (2) is true.
Now RN L C (RL], where R is a right ideal and L is a left ideal of S. Since (RL] C RN L, i.e.,
RN L = (RL], thus S is regular. Again by (2) LN R C (LR], thus S is an intra-regular. Therefore
(2) = (1).

Conclusion

In this article, we have characterized the non-associative ordered semigroups in terms of their one-
sided ideals, ideals, interior ideals, bi-ideals and quais ideals. We have also characterized the intraregular
and regular orderded AG-groupoids through the properties of their ideals.
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H. Kaycap, M. Myunup, M. I'ynbzap, I. M. Amgmauc

Perrenren AG-rpynnouaTapabiH, OPTYPJI UAeaJIIbI
KJIaCTapPbIHBIH, KACUEeTTEePi OOMBIHIIA CUMATTAMACHI

MaxkaJsaja accOnMaTUBTI eMec KapThbLIail rpyNIajgap/IblH HAeajIapblHA KATHICTHI Keibip MaHbI3IbI CH-
narraMaJjap YChIHbLIFaH. Bipinmrigen, 6i3 perrenren AG-rpynmonThl OHBIH UIEAIBIHBIH KACHETTEP] TYPFbI-
CBIHAH CHUMATTAIBIK, COMAH Keitin ocbl AG-TpymmonaTap/IblH eKi MaHbBI3 bl KJIAChIHA, SFHU PETYJISIPJIBIK XKOHE
imki perysspibik emec acconmaruBTi emec AG-rpynmnounarapra cunarrama 6epik. Bizzin mMakcaTbIMbI3 —
perrenren AG-rpymnmouns Jen arajgaTblH aCCOIMATUBTI eMeC KOHEe KOMMYTATUBTI eMeC aJire0paJibiK, Kyphl-
JIBIMJAP KJIACBIH 3€PTTEY apKBLIbI ACCOIMATUBTI aarebpasblkK KypPbUIBIMIAPILI 3€PTTEY MEH JaMBITY/IbI
BIHTAJIAHIBIPY.

Kiam cesdep: perrearen AG-rpynnounarap, cosra (OH, imKi, KBasu-, 6u-, *KajlbUIaHFaH Ou-) nieasagap,
peryssipiblk (imki peryssipibik) perresirer AG-rpymmoungrap.

H. Kaycap, M. Myunup, M. I'ynbzap, I. M. Amgauc

XapakTepusalnus ynopaaodeHHbIX A G-rpynmmonaos
gyepe3 CBOMCTBA UX PA3JIMYHBIX KJAaCCOB M/I€aJIOB

B craTtbe mpencraBiienbl HEKOTODBIE BayKHBIE XAPAKTEPUCTUKY YIIOPSIOUYEHHBIX HEACCOIHMATHUBHBIX IOJIY-
IPYIII OTHOCUTEJBbHO uX uieasoB. CHavasa ObLIM OXapaKTepu30BaH yrnopsgpodeHHblil AG-rpynnon; depes
CBOMCTBaA €ro MJIEAJIOB, 3aTeM JBa BaXKHbIX Kjacca 3Tux AG-rpynnouioB, a UMEHHO, PEryJisipHble U BHYT-
puperyspuble nHeacconuatububle AG-rpynmnonspt. [lesnb nHacrosmeil paboTbl — CTUMYJIUPOBAHUE UCCIIEII0-
BAHUA U PA3BUTHUE ACCOIMATHUBHBIX AJIre0OpPandeCcKUX CTPYKTYDP IIyTeM HU3ydYeHUs KJIacCa HeaCCOIMATUBHBIX
¥ HEKOMMYTATUBHBIX aJre0pandecKux CTPYKTYD, HA3bIBAEMBIX yHOpsgodeHHbiM AG-Tpynmnoniom.

Kmouesvie crosa: ynopamodenunie AG-rpynmnonipl, neBble (IpaBble, BHyTPEHHUE, KBA3H-, OU-, 0600IIEHHbIE
6u-) uzeassl, perysspHble (BHYTPUpEry/spHble) yrnopsgodenasie AG-rpynnonast.
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Smoothness and approximative properties of solutions
of the singular nonlinear Sturm-Liouville equation

It is known that the eigenvalues A, (n = 1,2, ...) numbered in decreasing order and taking the multiplicity
of the self-adjoint Sturm-Liouville operator with a completely continuous inverse operator L™' have the
following property

(*) An — 0, when n — oo, moreover, than the faster convergence to zero so the operator L1 is best
approximated by finite rank operators.

The following question:

- Is it possible for a given nonlinear operator to indicate a decreasing numerical sequence characterized
by the property (*)?
naturally arises for nonlinear operators.

In this paper, we study the above question for the nonlinear Sturm-Liouville operator. To solve the above
problem the theorem on the maximum regularity of the solutions of the nonlinear Sturm-Liouville equation
with greatly growing and rapidly oscillating potential in the space L2(R) (R = (—00,0)) is proved. Two-
sided estimates of the Kolmogorov widths of the sets associated with solutions of the nonlinear Sturm-
Liouville equation are also obtained. As is known, the obtained estimates of Kolmogorov widths give the
opportunity to choose approximation apparatus that guarantees the minimum possible error.

Keywords: maximum regularity; singular nonlinear equation; Sturm-Liouville equation; smoothness of
solutions; approximative properties; approximate numbers; Kolmogorov widths; rapidly oscillating potential;
greatly growing potential; two-sided estimates.

Introduction

In this paper we study the nonlinear Sturm-Liouville equation
Ly =—y" +q(z,y)y = f(z) € L2(R), R = (—00,00).

The existence and the smoothness of nonlinear elliptic equations solutions in a bounded domain
have been studied quite well. A very comprehensive bibliography is contained, for example, in [1-6]
and the works cited there.

However, nonlinear equations in an unbounded domain with greatly increasing and rapidly oscillating
coefficients arise in applications. For example, the nonlinear Sturm-Liouville equation, which is especially
interesting for quantum mechanics.

Here we are interested in the question:

A) to find out the conditions on the potential function ¢ (x,y) which provide y” € Ly (R), when
y (x) is a solution of the nonlinear equation Ly = f € Lo (R).

We note that the linear case is well studied and reviews are available in [7-12].

It is known that eigenvalues A, (n =1,2,...) of the self-adjoint positive completely continuous
operator A in the Hilbert space H are numbered according to their decreasing magnitude and observing
their multiplicities have the following approximative properties

*Corresponding author.
E-mail: mmuratbekov@kuef.kz
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a) A\p = imln |A — K||, where [, is the set of all finite-dimensional operators with dimension no greater
Eln

than n;
b) Ap, — 0, when n — oo, wherein the faster convergence to zero, the operator A better approximated
by finite rank operators.

It will be natural to explore a similar issues for a nonlinear Sturm-Liouville operator, i.e. to study
the question

B) Is it possible for a given non-linear operator to specify a numerical sequence that characterizes
properties a)-b)?

This paper is devoted to the study of the issues A) and B) for the nonlinear Sturm-Liouville
equation.

Formulation of the main results. FExample

We will make some notation and definitions for the statement of results.

The set of integrable functions with respect to the square of the module in each strictly internal
subdomain Q C R is denoted by Lg 1o (R).

The set of functions from Ls ;.. (R) having generalized first-order derivatives (from L jo. (R)) will
be denoted by W}, (R). We denote the subset of Wi, (R) by Wi (R), which elements together

Jloc Jloc

with the first generalized derivatives belong to Lo (R). By W, . (R) we denote the set of all functions
u € L3 joc (R) which with their generalized derivatives up to and including the second order belong to
L2,loc (R)
|||, is the norm of an element in Ly (R), || ||, ; is the norm of an element in W3 (R), |- [l5 0. i
the norm of an element in Lj 4. (R). ’ ’
Consider the nonlinear Sturm-Liouville equation

Ly=—y"+q(z,y)y=f(x) € Ly(R), R=(-00,00). (1)

Suppose that ¢ (z,y) satisfies the conditions:

i) q (x,y) is a continuous mapping R x C' in [0, 00), § > 0, C'is a set of complex numbers;
Q(a:ﬂcl)

dnc) < i (A) < oo, where A is a finite value, p (A) is a continuous function

i1) sup sup
|z—n|<1le1—ca|<A

from A.

Definition 1. The function y € Lo(R) is called a solution of the equation (1) if there exist a sequence
[}, © W3 (R) such that {g}2%, © Wiy, (R), lyn — yll,,, =0 Ly — fl,, —0asn - oc.

Definition 2. Following [13-15], we say that the solution y (z) € Lo (R) of equation (1) is called the
maximal regular in Lo (R) if ¢ (z,y)y € La(R), vy € Ly (R).

Theorem 1.1. Let the conditions i) — ii) be fulfilled. Then there is the most regular solution to
equation (1).

The condition ), imposed in Theorem 1.1 and in [16], limits the potential oscillations. This
condition is removed in the following theorem. In order to formulate the theorem, we introduce the
following condition:

2es) < OO Q (z, c2) is a special averaging of the function ¢ (x,c;) [11], i.e.
T€ER |c1—ca| 2

Q (z,c2) = inf (d_l -+ /CI:—F2 q(t,cz)dt> ,

d>0 d
2

where A is a finite value.
Theorem 1.2. Let the conditions i) —ig) be fulfilled. Then there exist the maximal regular solution
to equation (1).
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On the bounded invertibility

Ezample 1. Let q (z,y) = el*l - sin el*l + el¥l. Then it is not difficult to verify that all conditions of
Theorem 1.2 are satisfied for the equation

Ly = —y” + (e‘xl - sin® elml + e\yl) y=1r (33) :

Therefore, there exists a solution y (x) for the equation such that y” (x) € Lo (R).

This shows that Theorem 1.2 holds for a very wide class of nonlinear equations, including equations
with potentials that are rapidly oscillating at infinity.

Now, we consider consider the question B), i.e. finding such sequences of numbers that have
approximative properties of the type a)-b). To do this, we study the behavior of the Kolmogorov
k-widths of the set

M = {u €Wy (R) : ||—y"+q(a:,y)yH§ < T}.

By definition [17], the Kolmogorov k-width of the set M is called the quantity

di (M, Lo) = di, = inf sup inf ||u —v||,,
(M. L2) = di. = nf sup inf o,

where f}, is a subspace of dimension k.

Note that the Kolmogorov widths of a compact set have the following properties: 1)
do>dy >doy>...>dp>...;2)dp — 0 as k — 0.

By L3 (R, q(x,0)) we denote the space obtained by completing C§° (R) with respect to the norm

ly - L5 (R q (x,0)|, = (/_Z (‘3/”‘2 +4q(z,0) !y\2> dw) :

Theorem 1.3. Let the conditions )-ii) be fulfilled. Then any bounded set is compact in L3 (R, g (z,0))
if and only if
lim ¢ (z,0) = occ. (%)

|z| =00

We introduce the following counting function N (A) = de> y 1 of those widths dj, greater than
A> 0.
Theorem 1.4. Let the conditions 7)-ii) be fulfilled. Then the estimate

AV 2mes (r€R:q(z,0) < c_l)\_l) <
< NA) < edV2mes (z€R:q(x,0) < c)\_l) ,
holds, ¢ > 0 is a constant depending, generally speaking, on T'.

Ezxample 2. Let us take g¢(x) = |z| + |y| + 1. Then, by virtue of Theorem 1.4, the
estimate ¢ IN"3/2 < N (N < eA73/2 holds for the distribution function of the widths of the set

M = {y eWs(R): |-y +q(z,y) y||§ < 1}, where ¢ > 0 is a constant. Since N (\) is a monotone
function then we have dj ~ ]CQ%, k=1,2,3,...

On the existence of solutions of the nonlinear Sturm-Liouville equation

In this section we prove a lemma on the existence of solutions.

Lemma 2.1. Let the condition i) be fulfilled. Then there exists a solution of the equation (1) in the
space W3 (R) for any f € Lo (R).

To prove this lemma we need some auxiliary assertions.

Consider the following problem

Loy =—y" (x) +q(x,0)y = [ Xn, (2)
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y(=n)=y(n) =0, (3)

where Y, is the characteristic function of the segment [—n,n|, n=1,2,..., v(x) € C[—n,n|, C[-n,n]
is a space of continuous functions.

Lemma 2.2. Let the condition ) be fulfilled and let v € C[—n,n]|. Then there exists a unique
solution of problem (2)-(3) for any f - x» € La (—n,n) such that

Wllwi o < o1 £1ls- (4)

Yl ernn < ellfll2- (5)

where ¢y > 0 and ¢ > 0 are constant numbers.
Proof. Assume ¢ () = g (z,v). Then the problem (2)-(3) takes the form

Loy =—y" () +q(@)y = f xns (6)

y(=n)=y(n)=0. (7)

From the general theory of boundary value problems [7] it follows that the problem (6)-(7) has a
unique solution W2 (—n,n) such that

1Yl -y < €0 (6) [ xnlly < co (6) [ £l - (8)

It is known that W3 (—n,n) is completely continuously embedded in the space C' [—n, n]. Therefore,
the following estimate

HyHC[fn,n} <a ”yHWQI(fn,n) ) (9)

holds, where ¢; > 0 is the constant of the embedding theorem.
So problem (6)-(7) has a unique solution

Yno = Loy (fXn) (10)

where L, 3, is the inverse operator of the operator Ly, corresponding to the problem (6)-(7). And

[F 2 P (11)

where ¢ = ¢1 - ¢g (9).
Lemma 2.3. Let the condition i) be fulfilled. Then the operator L, maps the ball 5 into itself,

n,v
where § = {v € C[-n,n]: [[vllgj_pn < A} is a ball in the space C'[—n,n| and A is an arbitrary
positive number.

Proof. If the radius A of the ball 5 is equal to the right side of the inequality (5), i.e. A = c||f,,
then Lemma 2.2 implies that the operator LY_L}J maps the set § into itself. Lemma 2.3 is proved.

Let K = {ynw € C[=n,n] : ynp = Ly3, (fXn) ,v €5, f € Ly (R)} is the image of the ball § under
the mapping L,_Lj,.

Lemma 2.4. Let the condition i) be fulfilled. Then the set K is compact in the space C [—n,n].

Proof. Lemma 2.2 implies that the inequality

Hyn,vHWQl(_mn) <co|fll,

holds for any function y,, (z) from K, where ¢y > 0 is a constant.

This and the embedding theorem imply that the set K is compact in C[—n,n]. Lemma 2.4 is
proved.

Lemma 2.5. Let the condition ¢) be fulfilled. Then the operator L;}) is continuous.
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Proof. Let f(x) € La (R) and let the sequence {vy},-; converge to the element v () of the ball §
in the norm of the space C' [—n, n] and

L Ynw, = f () X, (12)

Ln,vyn,v =f (x) * Xns (13)
From the equality (12)-(13) we find that

- (yn,’uk - yn,v) +q(z,vg) (yn,vk - yn,v) + (¢ (z,vr) — q(z,v)) Ynw = 0.

Hence
L, (yn,vk - yn,v) = (q (iL‘, 'U) —q (.TU, 'Uk)) Yn,v- (14)
It is easy to verify that the coefficients of the operator L, ,, satisfy the conditions of Lemma 2.2,
therefore there exist an inverse operator L,j})k and the equality
Yn,or, = Yno = L,;},k (¢ (z,v) — q (2, v)) Yn,v

holds.
From this and the inequalities (4)-(5) and (9)-(11) we obtain that

Hyn,vk - yn,vuc[,mn] = HL;’ik (q (fl', ’U) —q (.%', Uk)) Ynv

C[—n,n] =

< Eillorn 1@ (@ 0) = 0 (@06 ynoll o <

<c- sup |Q($7U) - Q(x)vk” : ||yn,v||L2(_n7n) .

z€[—n,n|
From this and from the inequality (4) we have
e = Vsl S sUD g (@) — 0] - Ao- £l =
x€[—n,n]

=<C1- Sup |Q(:U7,U)_Q(xvvk)‘HfH2a

z€[—n,n]

(15)

where ¢; = ¢ - ¢p.
Since [[vg — ||y, — 0 for & — oo then we obtain from (15) that

klggo | Ynvp — ynv””C[—n,n] <cp- khanoloxes[l_lgn] lq (z,v) —q(z,v)] - || fll; = O

The last relation shows that the operator L;}}k is continuous. Lemma 2.5 is proved.
Now, consider the following nonlinear problem

Lyyn = —y;{ +4q ($ayn) Yn = f " Xn (16)
Yn (—1) = yp (n) = 0. (17)

Lemma 2.6. Let the condition ¢) be fulfilled. Then there exist a solution of the problem (16)-(17)
for any f € Lo (R) such that

HynHC[—n,n] + ||ynHW21(—n,n) <c Hf”?’ (18)

where ¢ > 0 is a constant.
Proof. The function y, , = L;}, (fxn) belongs to the domain D (L,,) of the operator L,, for each
function v € C[—n,n] corresponding to the problem (16)-(17). Therefore, the existence of a solution
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to problem (16)-(17) is equivalent to the existence of a fixed point of the operator L, 7}, in the space

C[—n,n], i.e., to the existence of a function y,, € C[—n,n] such that y, = L, 3 f-2n. Thus y, € D (Ly),
since L1, (fxn) € D (Ly) for any v (z) from C[—n,n].

To find a fixed point, it remains to show that the operator L} maps the convex set into itself
and it is completely continuous. The proof of this assertion follows from Lemmas 2.2-2.5. Lemma 2.6
is proved.

Proof of Lemma 2.1. Each y, is continued by zero outside [—n, n] and the continuation is denoted
by 9. As you know, we get the elements W, (R) with such a continuation and (18) implies that their
norm is bounded

il < ¢ 1Ny - (19)

Therefore, from the sequence {7,} one can select a subsequence g, such that

Un,, — Yy weakly in W21 (R), (20)
Uny, — y strongly in Ly o, (21)

and the estimate
Il < - 171 (22

holds. The last estimate follows from (19) and (20).
Let [—a, o] is an arbitrary fixed segment in R, where o > 0 is any number. Then there exists a
number N for any € > 0 such that

| LYn, — fHLQ(fa’a) — 0 for ng, — oo (23)

for n > N [—a, a] C supp @y, and by virtue of (16).
(21) and (23) imply that y (x) is a solution to the equation (1). Lemma 2.1 is proved. O

On smoothness of solutions

Proof of Theorem 1.1. Let |z —n| <1, then by Lemma 2.1 and from the inequality (22) we have

ly () —y(n)] =

[vw dtl < Va7l flly < ellfll-
n

Now supposing y (z) = ¢, y(n) =c2 A =c||f|, we obtain that

sup q(fv,y(ﬂf))S sup sup q(z,c1)

<u(A) < oo.
|lx—n|<1 Q(nuy(n)) |lx—n|<1|c1—c2|<A Q(TLCQ)

Hence, according to Theorem 3 in [11] y”, ¢ (x,y)y belongs to Lo (R). Theorem 1.1 is proved. O

Proof of Theorem 1.2. By Lemma 2.1, there exist a solution y (x) for the equation (1) such that
y (z) € W4 (R). Consequently, by the Sobolev embedding theorem y (x) € C (R). In the space C (R)
the norm is defined by the formula

1Yllor) = sup |y (z)].
T€R
Then, according to the condition ) ¢ (x,y (x)) € Cioc (R). Further, the inequality

ly(z)—ym)| <|laa—c] <A

holds, where y () = c1, y(n) = co.
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Hence, we have:

ap @G g(ee) o a(e)

z€ER Q2 (l‘,y(ﬂ?)) ZER |c1|<A Q% (1"761) TER |c1—ca|<A Q2 (.7),62)
From the last inequality according to the condition i) we find that

sup q(z,y(x)) “sup  sup q(z,c1) < o

2eR Q* (2,9 (7)) 2eR|c1—es)<a Q% (,C2)

It follows that all the conditions of Theorem 4 of [11] are fulfilled. Consequently, ¢ (z,y)y(z),
y"” € Lo (R). Theorem 1.2 is proved. O

Two-sided estimates of the approximate numbers of solutions
of the nonlinear Sturm-Liouville equation

As is known for a compact set, especially, when it contains solutions of a differential equation, the
problem of the asymptotics of their widths is meaningful. The Kolmogorov widths estimation of the
set M can be used to determine for the equation Ly = f the convergence rate of approximate solutions
to the exact one.

In order to prove Theorem 1.3, first we prove several lemmas.

Lemma 3.1 Let the conditions ¢) — 4i) be fulfilled. Then there exist a number K (7) such that

M C M C M,

where N )
M={yeLy(R): |-y"[;+ la @)yl < K (D)},

N

M=ty L) [/} +la e wlE< T |

Proof. Let y € M. Then, using the triangle inequality, we get

Ter
5 =

H—W+@Cuwwﬁ§2(WWW@+WM%wyﬁ)§2-

It follows that y € M, i.e. M C M.
Let y € M. Then, by virtue of Lemma 2.1 and the estimate (22) and the embedding theorem
W (R) in the space C (R) we have

1Yl <cll-y" +a(@y)yl,,

where ¢ is independent of y (z) u q (z,y).
It follows that

sup [y (@)llgy < ¢ TV (24)
yeM

On the other hand, using the estimate (22), we have

ly (@) —y )| <cll-y" +a(@y)y| <c TY? (25)

for any y € M, where ¢ > 0 is a constant independent of y (z).
Now, supposing y (z) = ¢1, y (1) = ¢2, A=c- T2 from (25) we obtain that |¢; — ¢3| < A.
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Let yo (x) € M and suppose qo (x) = g (z,yo (x)). Denote by L the closure in the norm of Ls (R)

of the operator defined on C§° (R) by the equality

Loy = —y" () + @ () y.

It is easy to verify that the operator L is self-adjoint, positive definite and yo (x) € D (L), wherein the

estimate
=9t 1l, < 1 (A) | =yo + q (z,%0) yll,

holds. The estimate (26) follows from Theorem 1.1.
This shows that the inequality
I=y"ll, < p(a) T2

holds for all y € M.
From the inequality (27) we have

lg (@ 9)ylls = [|=y" +a @)y +3"[|, < [[y"[] , + | ="+ a (@ 9y, <

SM(A)T1/2+T1/2 §2,U,(A)T1/2

for any y € M. Here we take into account that the condition 47) implies that u (A) > 1.
From the inequalities (27) and (28) we find

="+ lla (x,9) I3 < p2(A) - T + 44> (A) - T < K (T)

for any y € M, where K (T) = 5u% (A) - T. The estimate (29) proves Lemma 3.1.
Lemma 3.2. Let the conditions i) — ii) be fulfilled. Then M C B, where

= 2
B={ueLa(R): |[~y[3+lla(z.0)yl3 < K1 (1)}
Proof. By the embedding theorems, we have

1/2
Wlleqr < e (Il-v" 3+ la () wl?) < e K (T)

for any y (x) € M, where ¢ > 0 is the constant of the embedding theorem.

Hence, using the computations and arguments used in the proof of (29), we obtain that

y@) =c1, y(m) =co, le1—ca| <A, A=2c K'V2(T).
Hence, using the conditions of i) for all y (z) € ]\:4, we have

Pt (A)q(2,0) < q(x,y(2) < p(A)q(x,0),

where A =2¢- K'2(T), pn(A) =p (20K1/2 (T)).
From (32) we have

|="[15 + Nla (2,00 yl? < [|=9"|[2 + 1 (A) lla (= 9) w2 < w2 () (|]-9"|2 +

+ IIq(w,y)yHi) <p’(A)-K(T) < K1 (T), Ky (T) = i (20[(1/2) K (T)

for any y (x) € M. This implies M C B.

(26)

(27)

(28)

(29)

(30)
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Lemma 3.3. Let the conditions i) — 44) be fulfilled. Then B C M, where
~ 2
B={uels(B):[|~y"[3+lla (x,0)yl} < K2 (T},

K5 (T) is a positive number depending on 7', such that Ky (T") < %
Proof. Let u € B. Then, using the embedding theorem, we have

T

lllew s e K2 (T) <e- 5, (33)
¢ > 0 is the constant of the embedding theorem from W2 (R) to C (R).
Now, using the condition i), we obtain from (33) that for all u € B
_ T T
i 1(c-2)q<x,o>Sq<m,y<x>>sM(c-2)q<x,o>. (34)
Hence, we find
2 2
=13+ la ol < =12 0 (e 3 ) -l o000l <
<i (e 3 ) (1ol + a0 wl2) <2 (e 5 ) Ko ()
for any y € B.
T ~
If we assume Kj (T) = ﬁ then the inequality ||—y"[3 + |lq () y||§ < L holds for all y € B.
cy

Therefore B C M. Lemma 3.3 is proved.
Lemma 3.4. Let the conditions ¢) — ii) be fulfilled. Then the estimates

C_ldk < Czk < Cdk, k= 1,2,

hold, where ¢ > 0 depends only on T, Jk,dk k are the Kolmogorov widths of the sets M and B,
respectively, where B = {y € Ly(R) : ||—y”\|§ + Hq(a:,())yHg < 1}.

This lemma is proved in the same way as Lemma 4.3 in [18].
Lemma 3.5. Let the conditions ¢) — i7) be fulfilled. Then the estimates

N(cA) < N(\) <N (c ')

hold, where N (A) = >_, ., 1 is the counting function of those dj, greater than A > 0, N\ = Ddpoal

is the counting function of those dp, greater than A > 0, ¢ > 0 is a constant.
The proof of this lemma follows from Lemma 3.4.

Proof of Theorems 1.3-1.4. Repeating the computations and arguments used in the proof of Theorems
1.2-1.3 from [18] we obtain the proof of Theorem 1.3. O

Proof of Theorem 1.4. Using Lemmas 3.4-3.5, the proofs of Theorems 1.1—1.4 from [18] and the results
from [19], we obtain the proof of Theorem 1.4. O
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M.B. Mypatr6ekos, M.M. Myparbexkon

Cunryaspabl cbI3bIKTHI eMec 1ITypMm-JInyBusias, TeHaeyiHiH,
OIEIIiMiHIH TericTiri MeH aIlnmpoKCUMATHUBTI KacueTTepi TypaJibl

Kemy TopriGimen eceiri Goiibiamma pertenren o3-e3ime ryitingec IITypm-JlmyBums omeparopeiver L~
2KeTe y3lricci3 Kepi omepaTopbIHBIH MEHIMKTI CAHIAPBIHBIH Kejteci Kacueri 6ap ekenmiri 6esrisi: &) A, — 0,
erep m — 00, COHBIMEH KATap HOJIPe YMTBIIY JKbIJIIaM GOJIFaH caitbia, L' omeparopsl akbIpIIbl PAHIiI ome-
paTopJap apKbLIbI XKAKChIPAK KYbIKTaIaabl. COHBIMEH KATap CHI3BIKTHI €eMEC OlepaTop/IapFa Kejeci cypak
TyBbIHAAM B «Bepliren chI3bIKTHI emec omepaTopra (*) KacneTiMeH cumaTTAIATHIH KEMIMeJTi CAHIbIK, Ti36e-
rin kepceryre 6oJia Ma?» Makanaga cbi3bIKThL eMmec [1ITypMm-JInyBusb onepaTopbiHa apHAJFaH KOFAPBIIA
KeJITiplireH cypak 3eprresi. Arasran mMoceseti memy yiia Lo (R) (R = (—00,00)) KeHicTiriHge Kbligam
oCIesIi K9He XKbIIIaM TepbesMeni moTeHnnaabl 6ap ch3bIKTH eMec ltypm-JInyBumns Tenmeyiniy merrim-
JepiHiH MAKCUMAJIIbl PEryssipJIbIFbl TYPAJIbl TeOpeMa JIRJIeJEH/Il KoHe ChI3bIKThI eMec [IITypm-JluyBuiin
TeHeYiHIH mermiMepiMer OalIaHbICTBI KUBIHIAPIBIH KOIMOropoB eHiHiH eKiKaKThl Oaraiayaapbl aJIbIH-
net. Benrini 6onranaait, Kommoropos eninin anbiaras 6arajiayiap €H a3 KATeTKKe KeMIIiK OepeTiH KybIK-
Tay alrnapaTblH TaH/ayFa MyMKIHIK Oepesi.

Kiam cesdep: MaKCUMaJI bl PETYIISPJIBIFL, CAHTYIISPJIBI CHIBBIKTHI eMec Tengey, ITypy-JInyBuiuis renueyi,
e M/ IeP/IiH, TETiCTiri, alllPOKCUMATHBTI KACUETTED, AIIPOKCUMATHBTI cangap, KosmMoropos eni, xKbliaMm
TepbesiMesti TOTeHInAa, KATTHI OCIIeJIi TOTEHITNA, eKi2KaKThl baraJiay.

M.B. Mypar6exkos, M.M. Myparbekon

O raakocT; U anOpPOKCUMATUBHBIX CBOMCTBaX peIreHu’it
CUHTYJIIPHOTO HeJimHeliHoro ypaBHeHud llItypma-JlnyBusiis

WsBecTHO, 4TO COGCTBEHHBIE YMCIa Ap(n = 1,2,...), IPOHyMEpOBAaHHBIE B IOPs/iKe YOBIBAHUA U C yde-
TOM KPATHOCTH CaMocompsizkeaHoro oneparopa IIItypma-JIuyBuiuist ¢ BIOJIHE HENPEPLIBHLIM OOPATHBIM
omepaTopoM L™', 06IaqaoT CAEIyIOmUM CBOHCTBOM: (SO WY 0, korma n — 0O, IpUYEM, YeM OBICT-
pee CTpeMIIeHHe K HYJIIO, TeM oreparop L' JIydie amrpoKCHMHUDPYeTCs ¢ OIEPATOPAMH KOHEYHOTO PAHTA.
EcrecTBernbIM 06pa3oM BO3HUKAET CJIEIYIONINN BOIMPOC ISl HEJIMHEWHBIX OMepaTopoB: «MOXKHO Ju JTst
3aJIAHHOIO HEJIMHEHHOTO OlepaTopa yKas3aTh YOLIBAIONLYIO YHCJIOBYIO HOCIEIOBATEILHOCTH, KOTOPas Xa-
pakrepusyercs coiicrBoM (*)7». B crarbhe m3ydeH ykasaHHBIN BbIIle BOIIPOC [IJIsi HEJIMHEHHOIO OIIEpAaTopa
Irypma-Jluysunns. st perenunst 3aa9u JOKa3aHA TeOpeMa O MAKCUMAJIBLHON PEryssipHOCTH PEeIeHuit
HesmHeHOro ypaBuenus ltypma-JluyBuiis ¢ CHIbHO PACTYIIMM U OBICTPO KOJIEOIONUMCS MOTEHITHA-
goM B npocrpancTBe Lo(R) (R = (—00,00)), a Tak»Ke MOJIyYeHbI IByCTOPOHHUE OLEHKU IIONEPETHUKOB II0
KonmoropoBy mMHOXKeCTBa, CB3aHHbIE ¢ pemleHusiMu HejuHeiHoro ypasuenus IlItypma-JInysumisa. Kak
M3BECTHO, IOJIyYEHHBbIE OIEHKU IOMNEPEYHUKOB 110 K0JIMOrOpoBy JIal0T BO3MOXKHOCTH BBIOMPATH Alllapar
NpubJIMZKEHHsI, KOTOPBI rapaHTUPyeT MUHUMAJIbLHO BO3MOXKHYIO IIOIDEIIHOCT.

Karouesvie crosa: MaKCUMaJIbHAA PETYISPHOCTD, CHHIYJISIDHOE HEJIMHETHOe ypaBHeHue, ypaBHenue LlItypma-
JInyBusList, TIQKOCTh PEIIEHU, allIPOKCUMATHBHBIE CBOMCTBA, AIIIPOKCUMATUBHBIE UHUCJIA, ITONEPEUHUKA
o KosmoropoBy, O6bICTPO KOIEOIIOMIMIICS TOTEHITNAT, CUIBHO PACTYIIUN MTOTEHINAJ, IBYCTOPOHHNE OIIEH-
KH.
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Recovery problem for a singularly perturbed
differential equation with an initial jump

The article investigates the asymptotic behavior of the solution to reconstructing the boundary conditions
and the right-hand side for second-order differential equations with a small parameter at the highest
derivative, which have an initial jump. Asymptotic estimates of the solution of the reconstruction problem
are obtained for singularly perturbed second-order equations with an initial jump. The rules for the
restoration of boundary conditions and the right parts of the original and degenerate problems are established.
The asymptotic estimates of the solution of the perturbed problem are determined as well as the difference
between the solution of the degenerate problem and the solution of the perturbed problem. A theorem
on the existence, uniqueness, and representation of a solution to the reconstruction problem from the
position of singularly perturbed equations is proved. The results obtained open up possibilities for the
further development of the theory of singularly perturbed boundary value problems for ordinary differential
equations.

Keywords: Perturbed problems, degenerate problems, small parameter, boundary value problem, initial
jump, asymptotic behavior.

Introduction

At the end of the last century and over the past decade (ten years), approximate methods for solving
differential equations, asymptotics construction, solution for singularly perturbed differential equations
attracted the attention of many researches. This interest is caused by the needs of numerical methods
for solving differential equations. Since in many cases the asymptotic approximation of solution of
boundary value problem is useful to use as a first approximation in numerical calculations [1,2].

The difficulty of constructing an asymptotic approximation to the solution of initial and boundary
value problems for differential and integro-differential equations is related to the perturbation feature.
In this regard, the researchers proposed various asymptotic methods for constructing the asymptotic
behavior of the solution of initial and boundary value problems. However, without a preliminary study
of the asymptotic behavior of the solution of singularly perturbed initial problems with singular initial
conditions and boundary value problems with boundary jumps phenomena, the greatest difficulty is
the selection of a suitable asymptotic method for solving these problems [3-8].

The most general cases of the existence of the phenomenon of initial jumps were investigated
in the works of Dauylbaev [9], Kasymov and Nurgabyl [10,11,12]. In the works of Nurgabyl [13,14],
Mirzakulova [15] for the third-order equation with a small parameter at higher derivatives, the pheno-
mena of boundary jumps were studied.

The constructions of an approximate solution of a boundary value problem defined with various
additional conditions were studied by Hikosaka-Nobory [16], Kibenko and Perov [17], Dzhumabaev [18].
In these works, using the well-known structure of the differential equation and additional information,
the problem of restoring the right side of the differential equation is solved.

*Corresponding author.
E-mail: n.saniya_ 96@mail.ru
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So in the work of A.V. Kibenko and A.M. Perov [17] problem of simultaneously finding the function
y(t) and the parameter A from the relations ¢y = X - f(t,y), y(0,e) = «, y(t1,e) = B, with given
a, B,t1 € R were considered.

On the other hand, in some singularly perturbed boundary value problems, it might turn out that
the number of additional conditions exceeds the order of the equation, and the equation contains
unknown parameters. Interest in such problems is caused by the problems of the optimal management.

So, for example, [19], the restoration problem for singularly perturbed differential equations was
investigated in the work, in case when the right-hand side of the differential equation and boundary
conditions linearly depend on an unknown parameter. A priori estimates were established to solve a
parametrized singularly perturbed boundary value problem for a second-order equation, by Mustafa
Kudu et al. [20].

The proposed work is devoted to the study of the solution of a singularly perturbed boundary value
problem with initial a jump in case when the boundary conditions depend on an unknown parameter
in a nonlinear way.

1. Set the problem’s condition

Let R = (—o0, +00), J = [0,1] and A— be some bounded set from R.
Consider the boundary value problem:

Ley = ey’ + A(t)y' + B(t)y = Ah(t), (1)
y(07€) = Qo, y(17 E) = /80<)‘)7 y/(17€) = ﬁl(A)7 (2)

where «g, 8y, 1 € R, A is an unknown parameter, € > 0 is a small parameter.

The problem is to determine the pair (y(t, A(€),€), A(€)), where the function y(¢,\,e) at 0 <t <1
satisfies equation (1) and the boundary conditions (2), to establish an asymptotic estimate for the
solution to problem (1), (2), to formulate a degenerate problem, to define condition for the occurrence
of a jump.

A pair (A, y) is called a solution to problem (1), (2) if, for each fixed value of A = X € A, the
function y(t, ) is a solution to problem (1) (2).

In this article, using the results of the research|[11], an analytical representation of the problem
solution (1), (2) will be constructed and on its basis the existence and uniqueness of a solution are
proved, a degenerate problem is formulated, an proximity of a solutions of the original and degenerate
problem are proved at € — 0, the nature of the derivative growth of the solution of the problem (1),
(2), the condition for the appearance of a jump, and asymptotic estimates of the solution of problem
will be established (1), (2).

Let be:

190 A(t), B(t),h(t) € CH(J);

200 At)>v>0,teJ;

30. The equation Ry(\o) = —,Boigg +)\OZS; — B1(Xo) = 0 has a unique solution A\g = Mg, at that
_ F(l) _
Ry(Ao) = i) B1(Xo) # 0.

2. Construction of the initial function
We consider the homogeneous equation
Ley(t.e) =ey” (te) + A)y' (t,e) + B(t)y (t,e) =0, (3)

which corresponds to the inhomogeneous equation (1).
The following lemma holds [4].
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Lemma 1. Let conditions 1° - 2 be satisfied. Then for the fundamental system of solutions y1 (t,€),

y2 (t,€) homogeneous equation (3) the following asymptotic representations are valid at € — 0:
t

o (00 = 0 +0) 0 (1) = Sew | 1 [u@ds | u@)w O 1+0@), j=0.1 (@)

&
0

where yo(t) = exp —/ ﬁég ds |, p(t) = —A(t), uo (t) = i(((z)) - exp —/ iég dx
0

0
We introduce the initial function
W (t,s,e)
W(s,e) ’

where W (t, €) is the Wronskian of the fundamental system of solutions yi(¢,¢), ya(t, €) of equation (3),
W (t, s, ) is a second-order determinant obtained from W (s, ) by replacing the second row with a row
with elementsy; (¢, ), y2(t, ).

Obviously, the function K (¢, s, ) satisfies by at the variable ¢ the homogeneous equation (3) and the
initial conditions K (¢,t,e) =0, Kj(t,t,e) =1, and does not depend on the choice of the fundamental
system of equation solutions (4). Therefore, the initial function K (¢, s, ) for equation (4) is uniquely
determined.

From (5) taking into account (4) we obtain:

K(t,s,e) = (5)

1 1
Wis.e) = Zexp (1 [n@)ds | un ()0 (s)u(s)[1+0 () £0; (©
0
Ly x)dx lt xz)dx L z)dx
W@ (5. ¢) = up(s)e 1" yéq)(t)+€1qe€sfu( MW+O s+ie o G
0

Now using these estimates, it is easy to verify the validity of the following lemma.
Lemma 2. If conditions 1), 2) are satisfied, then the initial function K(t,s,e) for 0 < s <t <1
and sufficiently small € > 0 is representable in the form

K(t,s,e) = MES + of ))exp i/,u,(x)dx +0() |, ()

t

/ _c (@ 1 uw®)p) 1/ [ o)
Kt(t,s,s)—u(s) yo(s)+5 o (s) exp - plz)de | +0 [e+e

S

Proof. Estimating function (5) with regard for (6) and (7), we obtain estimate (8).
3. Solution representation of the auziliary boundary value problem
Since the initial function K (¢, s, €) satisfies the homogeneous equation (3) and the initial conditions

K(t,t,e) =0, K/(t,t,e) = 1,50 at fixed value of the parameter), the general solution of the inhomo-
geneous equation (1) can be represented in the form

y(t,e) = cry1(t, e) + Caya(t,e) +

™| >

¢
/Ktsa s)ds, 9)
0
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where ¢, €2 are arbitrary constants. Then the boundary value problem (1), (2) is solvable, and can
be represented in the form (9), if and only if, when the coefficients ¢, ¢ can be chosen so that (9)
satisfies the boundary conditions (2). Thus, substituting (9) in (2), we find

¢1y1(0,¢€) + E2y2(0,¢) = ap,

1
A
c1y1(l,e) + caya(l,e +€/K (1,s,e)F(s)ds = Bo(N), (10)

0

~ ~ A

c1y1(1,€) + Gavh(1,e) + = /Kt(l, s,e)F(s)ds = p1(N).
0

From the first two equations of system (10) we have:

g = [ D — (1) + 0C) 20, (1)
o 1 y2(0,¢) _ 1 y1(0,¢) oo (12)
YT @) |Bo— o0 ya(le)| J(e) [y1(l,e) Bo— ool

Substituting the found values é;, é from (12) into (9), we find that for each fixed value of the parameter
A, the solution of the auxiliary boundary value problem is representable in the form

1 ¢
A A
y = aoPi(t,e) + BoPa(t,e) — CIDQtEE/Klss ds+€/Ktse s)ds, (13)
0 0
where the functions I(te) To(t. o)
e 2 €
By(t,e) = L By(t,e) = 27 14
1( ’8) J(E) ) 2( ) ) J(E) ( )

are called boundary functions of the boundary value problem (1), (2), which satisfy the homogeneous
equation (3) and the boundary conditions:

‘1)1(0,6) = 1, @1(1,5) = 0, (I)Q(O,E) = 0, ‘I’g(l,e’;‘) = 1, (15)

where the determinant Ji(t, ) is obtained from the determinant J(g) by replacing the first row with
the row yi(t, ), y2(t,€), and Ja(t, ) is obtained from J(g) by replacing the second row with the row
Y1 <t7 5)7 Y2 <t7 5)'

Based on (14), it can be proved that the boundary functions ®(t,¢), k = 1,2 satisfy the boundary
conditions (15) do not depend on the fundamental system of solutions y;(¢,¢), ya2(t,e) of equation (3).
Then, for sufficiently small € > 0, the boundary functions ®(¢,¢), k = 1,2 on the interval [0,1] exist
are unique, and are expressed by formula (14).

Lemma 3. If conditions 1°-°, are satisfied, then at sufficiently smalle > 0, for the boundary
functions <I>,§Q) (t,e) on the interval 0 <t <1 the following estimates are true:

t t
%f,u(ac)dz t %f,u(w)d:v
Bi(t,e) = up(t) e o 4 O(e), Balt, e) ?;0((1)) +ug(t) e’ d +O0(e),
0
1 L f p(a)d L f (a)d
W(t,e) = —wo(But)e s 40 [eae ) (16)
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t t
0(t 2 [ u(z)dx 2 [ u(x)d
@’Q(t,e):zo((l))Jr (t)u(t)e 0" vofeten”
0

The proof of the lemma directly follows from (14), taking into account estimates (11) and (4).
4. On the unique solvability of the solution of the recovery problem

Now, substituting (13) in the third equation of system (10), we obtain

>/

9

1
R\ e) = ap®(1,¢) + Bo®h(1,e) — Ph(1,¢) /K (1,s,6)F(s)ds+ (17)
0

/Ktlss (s)ds — P1(N) =

Thus, the solution of the boundary value problem (1), (2) is uniquely solvable if and only if the equation
R(\e)=0 (18)

regarding a parameter A has a unique solution.
Let us prove that equation (17) is solvable with respect to . To this end, from (17) we find R'(),¢)
and we study the asymptotic behavior of the functions R(), ¢) and

1 1
, ~P5(L,e) 1 , ,
R'(\e) = K(1,s,e)F ds+ Ki(1,s,e)F(s)ds — B1(A). (19)
0 9

at € — 0.
Estimating the expressions from (17) and (18) at sufficiently small £ > 0, we obtain:

P (1,¢e) = o(e), P5(1,¢) = so(1) + O(e)

yo(1)
K(ls.e) = = zgg%z(ﬁ; exp /1 (@)dz | +0(e) |,
K{(1,s,¢e) (s) zﬁgi +iuof;)(5)(1) exp S/lu(fwdx vO[ete iflu(w)dm ;
i\/lK(l,s,s)F(s)ds = A/ly()?(/;%p(s)ds+0(e), (20)
0 0
[ oaron e [ 40000 0 o
0
i\o/thsa SAO/tyo?s)(Z)() (s)ds + O(e)
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t

: WOFE) ,  FO | u(u() e
/ Kt s.e)F dS‘AO/ ) ® T u0)20) +0(e)

Taking into account estimates (20) for the functions R(\,e) and R'(\, ) at sufficiently small € > 0,
the following representations are valid:

B(L) ()

R(\e) = —Po am g T 1(A) +0(e) = Ro(A) + O(e).
R()e) = ig; ~ BN +0(e) = Ry(A) + 0 (e)

Hence, by virtue of condition 3°, we conclude that at the point A\ for sufficiently small ¢ > 0 the
following asymptotic representations are valid:

R(Xo,€) = O(e);
R(Mo,e) = Ry(2o) + O (2) £0.

Consequently, in a sufficiently small neighborhood of the point Ag there is a unique point 5\(5) such
that will be fulfilled equality 3
R(X\(e),e) =0,

at that .
‘)\(5) - /\0‘ < Ke.

Thus, we proved that there a unique solution (y(t,¢), A(e)) of the boundary value problem (1), (2)
exists. Thus, the following theorem holds.

Theorem 1. If conditions 1° — 3 are satisfied, then the boundary-value problem (1), (2) has a
unique solution and this solution can be represented in the form

- 1
y(t, M€)) = ap®y(t, ) + BoPa(t, ) — Bo(t, ) ; /K (1,s,6)F(s)ds+
0
- ¢
)\;/K t,s,e)F(s)ds. (21)
0

5. Limit Transition Theorem. The phenomena of the initial jump

The following estimate holds for solution (21):

t

1 t
y(t,e) = Boexp —/iégdm —)\o/exp —/ig;daz Z((SS))ds—i-
0 S

1

t t t

— B(x) X F(S) S 3 ex 1 xX)ax
+A00/exp S/A@f)d s+ 0 | e+ ex Eﬂ/u( ya | . (22)

Now, we define a degenerate problem. Without any additional considerations, we cannot formulate
the boundary conditions for the unperturbed (degenerate) equation

Loy = A(t)y' + B(t)y = MF(t), (23)

obtained from (1) at € = 0.
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Such an additional consideration we can obtain from estimate (22). It follows from (22) that the limit
function y(t,e) does not contain ap and f; at ¢ — 0. Therefore, the boundary conditions for the
solution are defined in the form

(1) = Bo(Ao)- (24)
Therefore, the solution to problem (23), (24) is representable in the form
[ B(z) o[ [ 2@, FO
_ x x s
3(t) = Bo(ho) exp | — 1/ o]+ 1/ exp | / T ) T (25)

Theorem 2. Let conditions 1°-3 be satisfied. Then, for sufficiently small € > 0, the following
estimate holds:

v (8:X).¢) ~ 7t 20)] = 0 (a +exp <”;)> . (26)

The proof follows from representations (22), (25).
Thus, it directly follows from Theorem 2 that the solution (y(t, NGESE A(s)) of the singularly
perturbed problem (1), (2) at tends small parameter € to zero tends to the solution of (¢, Ao):

~

limy(t, \M(e)e) = y(t, No), 0<t<1. (27)
e—0
Hence, we conclude that ~
hII(l)y(O, A(E)7 E) - g(07 )‘0) = Aa (28)
E—>

where A is a some magnitude. We define magnitude of the jump A. Using formulas (23), (26), (27)
and the condition y(0,¢) = ag, we determine the magnitude of the initial jump:

1 0
= ap — ex B(z) 1 ex — B) €z o) §

S

Conclusions

The proposed algorithm serves as the basis for constructing asymptotic solutions of some linear and
nonlinear singularly perturbed boundary value problems with parameters for higher order equations
with more complex additional conditions such U;(y) = 0, ¢ = 1,.n where U;(y) the linear form of
y9(0,¢),y9)(1,¢),7 =0n — 1.

In this work, the asymptotic behavior of the solution to the problem of reconstructing the boundary
conditions and the right-hand side for second-order differential equations with a small parameter at
the highest derivative were studied. At that the following new results were obtained:

- Asymptotic estimates are obtained for the solution of the reconstruction problem for singularly
perturbed second-order equations with an initial jump;

- rules for the restoration of boundary conditions and the right side of the original and degenerate
problems were established;

- Asymptotic estimates are obtained for the solution of the perturbed problem and the difference
between the solution of the degenerate problem and the solution of the perturbed problem.

The results obtained open up possibilities for the further development of the theory of singularly
perturbed boundary value problems for ordinary differential equations.
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JI.H. Hypraosur, C.C. Haxum

Bacrankpl ceKipyMeH CUHTYJISPJIbl aybITKbIFaH
anddepeHInaAJIIbIK TeHAeydl KaJNbIHA KeJaTipy ecebi

MakaJjraza bacTammkbl ceKipy KyObLIBICHIHA e >KOFapbl TYBIHJIbI Ke3iHe Kimli mapamerpi 6ap exiurii per-
Ti nuddepeHInaiIblK TeHIeyIep YIMiH OH YKoHe IIETTIK YKarmailjapIbl KaJblHA KeJITIpy ecenTepiH Iie-
ITy/IiH, aCHMIITOTUKAJIBIK, IIENiMi 3epTTe/ren. bactankbl ceKipyMeH eKiHIT PeTTi CHHTYJISPJIbI aybITKBIFAH
TeH/JIeyJIep YIIiH KAJIIbIHA KeJITipy ecebiH My IiH aCuMIITOTUKAJBIK Oaratapbl agblHabl. [1leTTik »xarmaii-
JIapbl KAJIIBIHA KeJITIPY epexKesiepi, 6acTalKbl XKoHe KAJIBINTACKAH MiHIeTTep/IiH OH OeJliKTepi Ge/rieHreH.
AyBITKBIFAH €CeNTiH MeniMiH aCUMITOTUKAJIBIK, 6arajiay, COHBIMEH KATap aybITKBIFAH YKOHE a3FbIHIAJIFAH
ecenTep/iiH MerriMaepi apachblHIarbl allbIPMAIIBLUIBIK, aHBIKTabl. CHUHIYJISIPIIbL Ay BITKBIFAH TEHJIEYJIED 110~
BUIUSCHIHIAFBI KAJIBIHA KeJITIipy ecebini, 6ap 60/1ybl, 6ipTYTACTHIFBI YKOHE IIENNMIH YChIHY TYpPaJIbl TEOPEe-
Ma JIDJIeJIIeHTeH. AJIbIHFaH HOTHKeIep Kail quddepeHualiIbK, TeHIey/Iep YIiH CUHTYIISPIIbL &y bITKBIFAH
MIETTIK ecenTep TeOPHUsIChIHBIH, OJIaH 9Pl JIaMybIHA MYMKIHIIK Oepe/ii.

Kiam ce3dep: aybITKBIFaH ecemTep, Killli mapaMeTp, METTIK ecenTep, OaCTamKbl CEKIpiC, ACMMITOTUKAJIBIK,
KaCHeT.

JI.H. Hypraosur, C.C. Haxum

3aaya BOCCTAHOBJIEHUS CUHTYJISPHO BO3MYIIEHHOTO
anddepeHImaJIbHOr0 ypaBHEHUsI ¢ HAYaJbHbBIM CKA9YKOM

B crarpe ucciie1oBano acHMITOTHYECKOE ITOBEIEHNE DEIIeHNs 33,/1a91 BOCCTAHOBJIEHNUsI KPAEeBBIX yCJIOBUl 1
npaBoil JacTu Uit auddepeHnraIbHbIX YPABHEHI BTOPOro HOPSIKA C MaJIBIM [IapaMeTPOM IIPU CTapIieit
IIPOU3BOHOI, 00JIaJAIONINX SIBJICHIEM HAYAJbHOTO CKadKa. 110y IeHpl acCHMITOTHYECKNE OIEHKN PEeIIeHUsT
3a/1a9¥ BOCCTAHOBJICHUS JJId CUHTYJIIDHO BO3MYIIEHHBIX ypPaBHEHUII BTOPOI'O IOPsAJIKa C HadaJbHBIM CKad-
KOM. YCTaHOBJIEHBI IIPABUJIA BOCCTAHOBJIEHNS KPAEBbIX YCJIOBUN U IIPaBble YaCTH UCXOTHOM U BBIPOXKIEHHOMN
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zama4d. OupeiesieHbl aCUMIITOTHIECKUE OLEHKH PEIlIeHs BO3MYIIEHHOM 3a/1a49y U Pa3HOCTU MEXKJY pelle-
HHEM BBIPOXKJICHHOHN 3a/lauy W peIIeHueM BO3MYIINeHHOHN 3ajadu. JlokazaHa TeopeMa O CyIIeCTBOBAHUU,
€IVHCTBEHHOCTU U NPECTABJICHNU DeIleHNd 3a/a9l BOCCTAHOBJIEHUs C IO3UIIMU CHHTYJISAPHO BO3MYIIEH-
HBIX ypaBHeHUil. [losrydennbple pe3ybTaThl OTKPBIBAIOT BO3MOXKHOCTH LIS JAJIBHENIIIEI0 PA3BUTUS TEOPUU
CHHTYJIIPHO BO3MYIIEHHBIX KPAEBBbIX 3aa4 JJIsi OOBIKHOBEHHBIX JudpepeHnaabHbIX yPaBHEHNTIA.

Karoueswvie caosa: BOBMYUIECHHbIE 3a/Jla91, BbIPDOXKJICHHbIE 3a/1a4U, MaJIbIiA ITapaMeTp, KpaeBad 3aJa4a, Ha-
JaJIbHBIN CKa4Y0K, aCUMIITOTUYECKOE IIOBEICHUE.
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On a bottom layer in a group

We consider the problem of recognizing a group by its bottom layer. This problem is solved in the class
of layer-finite groups. A group is layer-finite if it has a finite number of elements of every order. This
concept was first introduced by S. N. Chernikov. It appeared in connection with the study of infinite locally
finite p-groups in the case when the center of the group has a finite index. S. N. Chernikov described the
structure of an arbitrary group in which there are only finite elements of each order and introduced the
concept of layer-finite groups in 1948. Bottom layer of the group G is a set of its elements of prime order.
If have information about the bottom layer of a group we can receive results about its recognizability by
bottom layer. The paper presents the examples of groups that are recognizable, almost recognizable and
unrecognizable by its bottom layer under additional conditions.

Keywords: group, layer-finiteness, bottom layer, thin layer-finite group, spectrum, periodic group, Sylow
subgroup, Abelian group, quasi-cyclic group, complete group.

Introduction

Every direct product of finite groups, having for each prime number p only a finite number of factors
with orders divisible by p, is a periodic group with a finite set of elements of each order. The direct
product of quasi-cyclic p-groups containing only a finite number of factors of this type for each p has
the same property. Each direct product of a group of the first kind and a group of the second kind has
the same property. However, the last products do not exhaust all periodic groups possessing a finite
set of elements of each order. Groups with a finite set of elements of each order are called layer-finite,
and a layer is called a set of elements of the same order.

This concept was first introduced by S. N. Chernikov. It appeared in connection with the study
of infinite locally finite p-groups in the case when the center of the group has a finite index in it.
S. N. Chernikov in 1948 described the structure of an arbitrary group in which there are an finite
number of elements of each order, and in this work the term layer-finite groups appeared. The main
result describing the structure of layer-finite groups was obtained by S. N. Chernikov also in 1948. It
says that a group is then and only then layer-finite when it can be represented as the product of two
elementwise permutation subgroups, of which the first is a layer-finite complete Abelian group, and
the second is a layer-finite group with finite Sylow subgroups. The bottom layer of the group G is the
set of its elements of prime orders. In this work we will recognize the group by its bottom layer under
additional conditions. It will be convenient for us to do this in the class of layer-finite groups.

For the convenience of reading the article, the last section contains well-known results that we
referred to in the proof of the theorems as proposition with the corresponding number.

Main part

A group G is called recognizable by the bottom layer under additional conditions if it is uniquely
reconstructed by the bottom layer under these conditions. A group G is said to be almost recognizable by

*Corresponding author.
E-mail: sen1112home@mail.Tu
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its bottom layer under additional conditions if there are finitely many pairwise non-isomorphic groups
with the same bottom layer the same as in the group G under these conditions. A group G is called
unrecognizable by the bottom layer under additional conditions if there is an infinite number of pairwise
non-isomorphic groups with the same bottom layer as in the group G under these conditions.

Recall that the set of elements of prime order in a group is called its bottom layer.

Among the results on recognizability by the bottom layer, we can name those that describe the
entire structure of the group by its bottom layer. For example: if the bottom layer of an infinite group
consists of elements of order 2 and the group does not have non-identity elements of other orders, then
G is an infinite elementary Abelian 2-group. That is, the group under such conditions is recognizable
by the bottom layer.

V. P. Shunkov proved that if the bottom layer in an infinite layer-finite group consists of one element
of order 2, then the group is either quasi-cyclic or an infinite generalized group of quaternions [1]. In
this example, groups are almost recognizable by the bottom layer.

The following series of groups gives an example of unrecognizability by the bottom layer: in groups
Cpoo X Cy, Cpoo X Cp2, Cpoo X Cs, . .. the same bottom layer consisting of the p — 1 element of order p
and the ¢ — 1 element of order q.

If the set of orders of elements of the bottom layer of an infinite group is small in terms of the
number of its constituent numbers, but not in magnitude, then such examples of groups are quite
rare. According to the figurative expression of Yu. I. Merzlyakov, they are comparable with "samples
of lunar soil". Such examples include monsters of A. Yu. Olshansky [2]. Olshansky groups, as well
as direct products of cyclic groups of prime order, are examples of groups without a single element
coinciding with their bottom layer.

N. D. Gupta and V. D. Mazurov proved that for the group G, which, without a unit element,
coincides with its bottom layer consisting of elements of orders 3, 5, one of the statements is true:
1) G = FT; where F is a normal 5-subgroup of nilpotent class at most two and |T| = 3; 2) G
contains a normal 3-subgroups T' of nilpotent class at most three such that G/T is a 5-group [3]. In the
same work, it was shown that a group that, without a unit element, coincides with its bottom layer
consisting of elements of orders 2, 5, either contains an elementary Abelian 5-subgroup of index 2, or
an elementary Abelian normal Sylow 2-subgroup |[3].

Sometimes you can restore a group by the bottom layer of a group, sometimes you can say something
about the properties of such a group. Among the results of the first type, we can name those that
describe the entire structure of the group by its bottom layer, for example: if the bottom layer consists
of elements of orders 2, 3, 5 and the group does not have non-identity elements of other orders,
then A. S. Kondratiev and V. D. Mazurov proved that this is a group of even permutations on five
elements [4]. The results of the second type include the establishment by V. D. Mazurov of the local
finiteness of a group with a bottom layer consisting of elements of orders 2, 3, 5, in which all other
non-unit elements are of order 4 [5].

In the theory of finite groups, a similar concept of spectrum recognition of a group is considered.

The spectrum of a finite group is the set of orders of its elements. The spectrum of a group G is
denoted by w(G). A finite group G is called spectrum recognizable if any finite group whose spectrum
coincides with the spectrum of the group G is isomorphic to G. A group G is said to be almost
recognizable by spectrum if there exist finitely many pairwise nonisomorphic groups with the same
spectrum as the group G. A group G is said to be unrecognizable by spectrum if there is an infinite
number of pairwise nonisomorphic groups with the same spectrum as the group G.

It was proved in [6] that the symmetric groups S,, are recognizable by spectrum for n ¢ {2,3,4,5,6, 8,
10,15, 16,18, 21,27, 33, 35,39, 45}.

In 1994, W. Shi and R. Brandl proved spectrum recognizability of an infinite series of simple linear
groups La(q), ¢ # 9 [7,8].
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Let G be a finite group and w(G) = w(Ss(2)). Then G is isomorphic to Sg(2) or O%. In particular,
the group Sg(2) is almost recognizable by spectrum [9].

An example of a group not recognized by the spectrum is the group Ag with the spectrum
1,2,3,5,4,8,9 (there are infinitely many groups, one of which is the group Ag) [10]. Also, the group
L3(3) with the spectrum, 1,2,3,4,8,9,13, 16,27, is unrecognizable by the spectrum [10].

By the theorem of A. V. Vasiliev (Proposition 1), a finite simple non-Abelian group Uy(5) is
not recognizable by spectrum. In this regard, we prove the result of recognizability of this group
simultaneously by the spectrum and by the bottom layer.

Theorem 1. Let G be a finite simple group Uy(5) and H be a finite group with the property
w(H) = w(G) and the bottom layer same as the group Us(5). Then H = G. That is, the group U4(5)
is an unique finite group with such a spectrum and a bottom layer.

Proof. Indeed, let G be a finite simple group Uy(5) and H be a finite group with the property
w(H) = w(G).

By the theorem of A. V. Vasiliev (Proposition 1), in addition to the group U4(5), there is only one
such group H = G(v), where 7 is a field automorphism of the group G of order 2. The groups Uy(5)
and H have the same spectrum, while these groups have different bottom layers, which differ at least
by an element of order 2. Thus, the group Uy (5) is an unique finite group with such a spectrum and a
bottom layer. The theorem is proved.

Definition. Recall that if the orders of all elements of a group are finite, then the group is called
periodic.

Theorem 2. If G is a complete group in which Z(G) is layer-finite and G/Z(G) is a periodic group
containing for each prime p only a finite number of p-elements, then the group G is recognizable by
the bottom layer among groups with such properties.

Proof. Indeed, let the group G satisfy the indicated conditions. Since Z(G) is layer-finite
and G/Z(G) is a periodic group containing for each prime p only a finite number of p-elements,
by proposition 2, the group G is layer-finite. Since, by Proposition 3, each complete subgroup of a
layer-finite group G is contained in the center of the group G, then since G is complete, then it is
Abelian.

By Proposition 4, the complete Abelian group G decomposes into a direct sum of subgroups
isomorphic to the additive group of rational numbers or to quasicyclic groups, possibly for different
prime numbers. There can be no rational groups in this extension, since G is a layer-finite group and,
therefore, there are no elements of infinite order in it. Since the direct product of quasi-cyclic groups
is obviously restored from the bottom layer, the group G is recognizable by the bottom layer among
groups with the properties as in the theorem. The theorem is proved.

Definition. Layer-finite group is called a thin layer-finite group if all of its Sylow subgroups are
finite.

Theorem 3. Let G be a group in which the center contains a complete layer-finite subgroup R such
that the factor group G/R is a thin layer-finite group. Then the group G is recognizable by the bottom
layer among groups with such properties.

Proof. Suppose that the group G satisfies the indicated conditions. Since G is a group in which
the center contains such a complete layer-finite subgroup R such that the factor group G/R is a thin
layer-finite group, by Proposition 5 the group G is layer-finite .

Since by Proposition 3 each complete subgroup of a layer-finite group G is contained in the center of
the group G, the group G, being complete, is Abelian. Then, by Proposition 4, the group G decomposes
into a direct sum of subgroups isomorphic to the additive group of rational numbers or to quasi-cyclic
groups, possibly for different prime numbers.

Among the direct components there can only be quasi-cyclic groups, since the group of rational
numbers has elements of infinite order, and G is a layer-finite group and therefore cannot contain
elements of infinite order. So G decomposes into a direct sum of quasi-cyclic primary groups, and such
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a group is recognizable by the bottom layer among groups with the properties as in the theorem. The
theorem is proved.

Theorem 4. Let G be a complete nilpotent p-group with finite bottom layer. Then the group G is
recognizable by the bottom layer among groups with such properties.

Proof. Indeed, since G is a complete nilpotent p-group with a finite bottom layer, by Proposition
6 the group G is layer-finite. Given that GG is a complete group and repeating the final part of the
previous proof, we see that the group G is recognizable by the bottom layer among groups with the
properties as in the theorem. The theorem is proved.

Theorem 5. Let G be a complete periodic group in which for each prime p there is only a finite
number of Sylow p-subgroups and for every prime p there is at least, one Sylow p-subgroup in G, which
is a layer-finite group. Then the group is recognizable by the bottom layer among groups with such
properties.

Proof. Suppose that the group G satisfies the given conditions. Because G is the group in which
the conditions are satisfied: G is the periodic group; for each prime number p there is only a finite
number of Sylow p-subgroups; for every prime number p there is at least one Sylow p-subgroup in G,
which is a layer-finite group, then by Proposition 7 the group G is layer-finite. Based on the fact that
the group is layer-finite, complete, and applying Propositions 3 and 4, we have that the group G is
complete Abelian and decomposes into a direct sum of subgroups isomorphic to the additive rational
group or quasi-cyclic groups, may be according to different prime numbers.

Among the direct components there can be only quasi-cyclic groups, since the group of rational
numbers has elements of infinite order, and G is a layer-finite group and therefore cannot contain
elements of infinite order. Therefore, G decomposes into a direct sum of quasi-cyclic primary groups,
and such a group is recognizable by the bottom layer among groups with the properties as in the
theorem. The theorem is proved.

In proving the results of the paper, we used the following theorems, which were referred to as
proposition with the corresponding number.

Proposition 1 (A.V. Vasiliev [10]). Let G be a finite simple group Us(5) and H be a finite group
with the property w(H) = w(G). Then H = G or H = G(7), where 7 is a field automorphism of the
group G of order 2. In particular, h(G) = 2.

By h(G) we denote the number of non-isomorphic groups with the same spectrum.

Proposition 2 (R. Baer [11]). The following properties are equivalent;

a) G is a layer-finite group;

b) Z(G) is layer-finite and G/Z(G) is a periodic group containing for each prime p only a finite
number of p-elements;

c) there is a subgroup S in the center of G such that S and G/S are layer-finite groups.

Proposition 8 (S.N. Chernikov, Lemma 3.1. from [12]). Each complete subgroup of a locally normal
(in particular, layer-finite) group is contained in the center of the group.

Proposition 4 (Theorem 9.1.6 from [13]). A nonzero complete Abelian group can be decomposed
into a direct sum of subgroups isomorphic to the additive rational group or quasi-cyclic groups, may
be for different prime numbers.

Proposition 5 (S. N. Chernikov, Theorem 1 from [14]). A group G if and only if is layer-finite if
its center contains such a complete layer-finite subgroup R such that the factor group G/R is a thin
layer-finite group.

Proposition 6 (S. N. Chernikov [15]). If a nilpotent p-group of G contains only a finite set of
elements of some non-unit order, then it is layer-finite.

Proposition 7. (R. Baer [11]). A group G is layer-finite if and only if the following conditions are
satisfied:

a) G is a periodic group;

b) for each prime number p there is only a finite number of Sylow p-subgroups;
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¢) for every prime number p there is at least one Sylow p-subgroup in G, which is a layer-finite
group.
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B.U. Cenamos, N.A. [Tapamyk

I'pynmamarbl ToeMeHTi KabaT TypaJibl

Maxkanasma rpynmaarsl ToMeHri KabaT OONBIHINA TAHBLIY M9CeseCi KapacThIPBLIABL. By Moceme KabaTThl
MIEKTI rpyHnajapably KJIaChlH g mremriiesai. ['pynmna KabaTTsl MIeKTi Jel aTajaj bl, erep rpyIiaHbH opoip
perinze mekTi caump! dstemeHT Gap 6osca. By yreivasr C.H. Yeprukos enrisren. Our mekci3 JIOKaIbIbI-
IIEKT] p-rpymmajapblH TPYNIAHBIH IEHTPIHIAE MIEeKTI WHAEKC OOJFaH JKarmaiia 3eprreyre OalTaHBICTDI
naiiga 6osapl. C.H. Yepuukos 1948 »kbuibl opbip perrTeri ajieMeHTTep >KUBIHBI IIEKCI3 Ke3 KeJINeH I'PYIl-
MaHbIH KYPbLUIBIMBIH CHMATTAIbI YKOHE OChI KYMBICTa, KabATThI IIEKTI IpyHnajap TEPMUHI maiiga GOJIbL.
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(G rpynnachlHBIH TOMEHIT KabaTbl eIl OHBIH, »Kail PeTTi 3JIeMeHTTEep »KUbIHBIH afitambi3. Temenri kabar
TypaJibl MoJIiMeTTep COMBIHINA IPYIITAHBIH TOMEHT1 KabaThl GOMBIHINA TAHBLIYBI TYPAJIbl HOTUXKEIEP] ajla-
MbI3. 2KymbicTa ToMeHTi KabaThl OONBIHITIA TAHBLIATHIH, TAHBLIATHIH JEPJIiK, TAHBIIMANTHIH IPYITAIAD/IbIH
MBICAJIZIAPbI KeJITipijreH.

Kiam cesdep: rpynna, KabaTThI IEKTLTIK, TOMEHT1 KabaT, XKyKa KabaTThI MIEKTi TPYyIa, CIIEKTD, TEPUOITHI
rpyIa, CUIOB iIKi IPynnacel, abeIbIiK IPYINa, KBA3UIUKIIAIK IPYIIa, TOJIBIK, PYIIIA.

B.. Cenamos, 1.A. ITapamyk

O HEUXKHEM cJjioe B TpyIIie

B crarbe paccMoTpeH BOmpoc 0 pacmo3HaBaHUHU TPYIIIBI IO €€ HUXKHEMY CJIOI0. DTOT BOIPOC PEIAeTcs B
KJIacce CJIONHO KOHEYHBIX rpymil. ['pymnmna Ha3pIiBaeTCs CIIOHO KOHEYHOM, €CTH OHA MMEeT KOHEYHOE HUHCIIO
3JIEMEHTOB KaKJOro MOopsaKa. DT1o mnoHsrtue Brepsble 6but0 BBeneno C.H. YepuukoBbiM. OHO 1MOSIBHIIOCH
B CBsI3U C U3yYeHWEeM OECKOHEUYHBIX JIOKAJIHHO KOHEUHBIX P-TPYII B CIydae, KOTrja IEHTP TPYIIbl UMeeT
KoHe4HbIH uHAeke B Heil. B 1948 r. C.H. YepHukoB onmcaj cTpoeHue MPOU3BOJILHON PYIIbI, B KOTOPOH
GECKOHEYHO MHOXKECTBO 3JIEMEHTOB KarKJOr'0 IIOPSIJIKA, ¥ BBEJI IOHSTHE CJIOWHO KOHEYHBIX rpyiil. Huxkaum
cjtoeM Tpymnmnbl G Ha3BIBAETCS MHOXKECTBO €€ JIEMEHTOB MPOCTHIX MOPsAKOB. [lo mHbOpManmm o0 HIKHEM
CJI0€ ABTOPAMU CTATHU TOJIyYeHbl PE3YJIbTaThl O PACIO3HABAEMOCTH I'PYIIILI 110 HUXKHEMY ¢JI010. [IpuBegennl
[IPpUMEPBI I'PYIII, PACIIO3HABAEMbIX 10 HUXKHEMY CJIOIO, IIOYTH PAIlO3HABAEMbBIX U HEPACIIO3HABAEMBbIX I'DYIII
MIpY JIOTIOJTHUTETBHBIX OTPAHUIEHUSIX.

Kmouesvie caosa: rpyina, caoiiHas KOHEIHOCTb, HUKHUI CJION, TOHKasi CJIOMHO KOHEYHAas T'PyIIia, CIEKT,
IleproguYecKasl I'PYIIa, CUJIIOBCKAsA MOAIPYIIa, abejieBa IPyNIa, KBA3UIUKINIECKas IPYIIIa, IOJIHAS IPYII-
na.
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A source inverse problem for the pseudo—parabolic equation
with the fractional Sturm—Liouville operator

A class of inverse problems for restoring the right-hand side of the pseudo-parabolic equation with one
fractional Sturm—Liouville operator is considered. In this paper, we prove the existence and uniqueness
results of the solutions using by the variable separation method that is to say the Fourier method. We are
especially interested in proving the existence and uniqueness of the solutions in the abstract setting of
Hilbert spaces. The mentioned results are presented as well as for the Caputo time fractional pseudo-
parabolic equation. There are many cases in which practical needs lead to problems determining the
coefficients or the right side of a differential equation from some available decision data. These are called
inverse problems of mathematical physics. Inverse problems arise in various areas of human activity, such
as seismology, mineral exploration, biology, medicine, industrial quality control goods, and so on. All these
circumstances put the inverse problems among the important problems of modern mathematics.

Keywords: Pseudo—parabolic equation, inverse problem, fractional Sturm—Liouville operator, Caputo frac-
tional derivative.

Introduction

In this paper we consider pseudo—parabolic equation generated by fractional Sturm—Liouville ope-
rator with Caputo time-fractional derivative. We investigate the equation

Diflu(t, x) + 0%, Dy pult, ©)] + 0%, . Dy u(t, x) = f(x), (1)

for (t,z) € @ ={(t,2)| 0 <t < T < oo, a <z < b}, where Df" is the Caputo derivative and 9%, , D',
is the fractional Sturm-Liouville operator which is defined in the next section.

In many physical problems, it is required to determine the coefficients or the right-hand side (the
original term, in the case of the diffusion equation) in the differential equation from some available
information; These problems are known as inverse problems. Similar problems are poorly formulated
in the sense of Hadamard. A number of papers consider the problem of solvability of inverse problems
for the equations of diffusion and anomalous diffusion (see [1-9]| and references therein).

1 Definitions of fractional operators

We begin this paper with a brief introduction of several concepts that are important for the further
studies.
Definition 1 [10]. The Riemann-Liouville fractional integral I* of order a > 0 for an integrable

function is defined by

1f)(t) = F(la) / (t— )2 f(s)ds, 1 € [c,d],

where I' denotes the Euler gamma function.

*Corresponding author.
E-mail: serykbaev.daurenbek@gmail.com
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Definition 2 [10]. The Riemann-Liouville fractional derivative D® of order v € (0, 1) of a continuous

function is defined by
o d o
DefIE) = Z1°1A1(8), ¢ € [e. d].
Definition 3 [10]. The Caputo fractional derivative of order 0 < o < 1 of a differentiable function
is defined by
D[f](t) = D[f'(t)],t € [c,d].

Definition 4 [10]. Let f € L'[a,b], —co < a < t < b < +oo and f x K, o(t) € W™a,b],
m = [a], a > 0. The Caputo fractional derivative 0¢, of order « € R (m —1 < o < m, m € N) is
defined as

(t—a)™ !
(m—1) |

(t —a)
1!

0%af (1) = DS |[f () = f(a) = f'(a) R AR )
If f € C™]a,b] then, the Caputo fractional derivative 9, of order « € R (m —1 < o <m, m € N) is

defined as ,

/ (t — )™ £ (5)ds.

a

1

0%, [f1(t) = Iy f™) (1) = Tm—a)

2 Fractional Sturm-—Liouville operator

We study the operator generated by the integro-differential expression
L(u) = 0%, Dy u, a <z <b, (2)
and the conditions
I,=%u(a) =0, I,”*u(b) = 0, (3)
where 0%, is the left Caputo derivative of order a € (0,1] of u,

b
Df (o) =~y | € 0w

x

is the right Riemann-Liouville derivative of order a € (0,1] of u, and

b
R ule) = o [ €= 0w
x
is the right Riemann-Liouville integral of order a € (0, 1] of u, [10]. The fractional Sturm-Liouville
operator (2)—(3) is self-adjoint and positive in L?(a,b) (see [11-14]). The spectrum of the fractional
Sturm-Liouville operator generated by the equations (2)—(3) is discrete, positive and real valued, and
the system of eigenfunctions is a complete orthogonal basis in L?(a, b).
So we can denote eigenvalues and eigenfunctions accordingly by A¢ and e¢(x). That say us for
e¢(x) € L*(a,b) following identity is hold:

Leg(x) = Aeee(x), e € Ry (4)
Where 7 is a countable set and V¢ € 7.

8 Formulation of the problem
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We aim to find a couple of functions (u(t,x), f(x)) satisfying the equation (1) with an initial
condition

U’(O?‘T) = (,O(IL'), (S [avb] (5)

and with an additional information
W(T, @) = (x), @ € [a,b]. (6)

By using L£-Fourier analysis we obtain existence and uniqueness results for this problem.

We say a solution of the problem (1), (5), (6) is a pair of functions (u(t,x), f(x)) such that
they satisfy equation (1) and conditions (5), (6) where u(t,z) € C*([0,T],H'),0 < a < 1 and
f(x) € L*(a,b).

Now, to investigate our problem, we need to define the Hilbert space H!.

Definition 5. The Hilbert space H! is defined by

H' = {u € L*(a,b) : Lu € L*(a,b)}.
4 Main results

For problem (1), (5), (6) the following theorem holds.
Theorem. Let ¢, € H'.Then a solution u(t,r) € C¢ ([O,T],’Hl), 0<ac<l,f(xr) € L*a,b) of
problem (1), (5), (6) exists, is unique, and can be written in the form

u(x,t) = p(z)+) [(6%@13?_@% eé)”’(avb) - (%MDZ?_’W’ €5> LZ’(a,b)] (1 ~ Faa (_P/:iista)) ce(®)

by Y
= e (1= B (-5 T))

et
f(x) = 034Dy pp(x) + >
ceT 1-— Ea,l (—71+§\£ Ta)

Where E, s is the Mittag-Leffler type function [15]:

L2(a,b) LQ(a,b):| “ (:1:)

m

£0s®)= X am+ 5y

m=0

Proof. First of all, we start by proving an existence result. Let us look for functions u(t,z) and
f(z) in the forms:

u(t,z) = ug(t)ee(w), (7)
ez
and
fla) = feee(w), (8)
ez

where wug(t) and fe are unknown. Substituting (7) and (8) into problem (1), (5), (6) and using
relationship (4) we obtain the following problem for the functions u¢(t) and for the constants fe, £ € I:

Do) + 5ol = 75 )
ug(0) = . (10)
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where ¢¢, 9¢ are L-Fourier coefficients of p(x) and ¥ (x):
ve = (Pree) p2(ap)

wf = (wa eﬁ)LQ(a,b) :

General solution of the equation (9):

Je A a

where the constants Cy, f¢ are unknown. By using conditions (10) and (11), we can find they. We first
find Cg:

f
ug(0) = Az + C¢ = o,

Then
e — P

1—-FEqn ( 1if\ TO‘) .

fe is represented as
Je = Aepe — Al

Substituting fe, ug(t) into formula (7), we find

u(@,t) = p(z) + > Ce <Ea71 (— : ifAS ta) - 1) ee (). (12)

el

Using self-adjoint property of operator £
(£907 ef)LQ(a b) — ((pvﬁeﬁ)LQ(a b)
and in respect that (4) we obtain

(Losee) [2(ap)
(s ef)L2(a’b) = /\—5’

and for ¢(x) we can write analogously. Substituting these equality into formula of C¢ we can get that
(L%eg)m(ab (‘Cwaef)LQ )
3 .
e (1 Eor (-1357))

Putting this into the formula (12), we have

u(t, = )+ [ Ly, ee) p2qy) — (Lo, ei)Lz(a,b)} (1 — Faa <_1iiifta>> (o)
ceT A¢ (1 — a1 (_%TQ)> |

Ce =

(13)
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As the same way as (13), we obtain

{ L, eg) L2(a,b) (E‘Pveﬁ)m(a b)} eg(7)
f( + Z >‘§ o °
§eT 1= Ean ( 1+,\5T )
The following Mittag-Leffler function’s estimate is known by [16]:

M
1+ |7

|Ea(2)| < yarg(z) = m,|z] = 0. (15)

Now, we show that u(t,z) € C*([0,T],H'), f(x) € L?(a,b), that is

e o) = i ) s + mace [P u(t, s < o0,

and
[l 22@ap) < 00
Where
[u(t, )z = llut, ) 2(@p) + 1Lut; )l L2(0p)
and
1D u(t, )z = IDFult, )l z2(a,p) + 1DF L, )| £2(a)-

Using by the estimate (15) we get following estimates for u(¢, x), Lu(t,z) and Dfu(t, x):

[[u(t, 95)||20([0,T},L2(a,b)) = llo(z)

[£¢v€£ L2(a b) - (Le, eﬁ)LQ(a,b)} ( — Eo,1 (_piif\gta» eg(x) 9
o7, 220,0))

2

A
cez N (1= Bon (—22577))

[(&/;7 €e) 12(ap) — (L0 €6) 12, b)} (1 ~ Eaa <_1iiiéta>) 2

S ||<P||%2(a p) T max lleel|7»
~ , A L?(a,b)
ez 10T Ae (1 — Eaa ( Tr T"‘))

2 2
’(£¢765)L2(ab)’ + ‘(E@’ef)LQ(ab)’
Sl + D 32 < 00,

¢ezT €

”ﬁu(‘r’t)HQC([O,T],H(a,b)) = [[Lp(z)
2 80 € ] O~ ) e,
Lot 5 g |[Eran ~ Coreinan] (1= Bor ()|
L2(a,b)

tez tOT] (1 — Eag ( 1+/\5Ta>)

S 1Ll + D “(&/”ef%%a,w’ + e ef)wvbﬂ =
(el

Hef“%Z(a,b)

1D u(, )12 (0.1, 22(ap)
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(20, ¢6) 120y — (£62€€) gay| DF (1= Bt (— 125517 ) ela)

= 526; )\E (1 E < 1i§\£T°‘>> 1E(0,11.22(a,))
N 2
- tre%}f% [(E% €£)L2(a,b) - (‘Cfv eE)LQ(a b)LE ( 1+€\5 ta) ||ef”%2(a,b)
= (1+2) (1= Fax (—25:72))
_ ‘(ﬁw,eg L2(a ‘ —I—‘ ﬁ%eg)y(a b)‘2 =
~ & (1 +Ae)? ’

and
1D Lu(z, t)H%([o,T],Lz(a,b))

{ L), eg) L2(a,b) (E(P7e§)L2(a,b)} Dy (1 — Eaa ( 1+>\ )) Leg(x) 9

= 526; )\5 (1 b, ( 1i§£ Ta)> 1E(t0.17,L2 (0 b))
. tg[lg}zg] ¢ [(£¢7 6§)L2(a,b) — (Lo, GE)LQ(a b)} Ea ( 1-&)3\{ ta) 2 H‘%H%Q(a,b)
ez (14 X¢) (1 — Ea,1 ( Troe Ta))

<> “(ﬁw, eg)Lz(&b))Q + ’(ﬁso, 65)L2(a,b)‘2:|
el
’(ﬁw, eg)Lz(&b)‘Z + ‘(ﬁ% eé)LQ(a,b)‘Q
(14 X¢)?

< 00.

2

el

Similarly for f(x) we have the estimate

[£¢>€§ L2(a,b) — (Lo, €£)L2( )] eg(x) 9
) HL2(a,b)

112200 = I£(a Z "
¢eT 1-— thl ( 1+/\£T06

2
(LY, €) 120y = (£Pr€e) 12(0)

A
1= o (—125.T)

SULella@m + legl72 0

£el

g Hﬁﬁp”%z(a’b) + Z “(Ew,eé)L%a,b)’ + ’(£<P; €£)L2(a,b)‘2:| < 0.
(el

Where, L < @ denotes L < CQ for some positive constant C' independent of L and (). Existence of

the solution of problem (1), (5), (6) is proved.

Now, we start proving the uniqueness of the solution.

Let us suppose that {u1(z,t), fi(x)} and {ua(z,t), fo(x)} are solution of problem (1), (5), (6). Then
u(z,t) = uy(x,t) —ug(x,t) and f(x) = fi(x) — fa(z) are solution of following problem:

Dilu(z, ) + 054 o Dy yule, )] + 0%, . Dy yu(z, t) = f(x), (16)

u(z,0) =0, (17)
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u(z,T) = 0. (18)

By using (13) and (14) for (16)—(18) we easily see u(z,t) = 0, f(x) = 0. Unigness of the solution of
problem (1), (5), (6) is proved.

Discussion on further generalisations. Note that the results are derived here can be generalised
by using the non—harmonic analysis developed in the papers [17,18] with the general setting settled
in [19,20]. Moreover, the reader is referred to [21-25] for interesting applications of the non-harmonic
analysis to the different branches of partial differential equations.

Acknowledgements

This research was funded by the Science Committee of the Ministry of Education and Science of
the Republic of Kazakhstan (Grant No. AP09259394).

10

11

12

13

References

Kaliev, I.A. & Sabitova, M.M. (2010). Problems of determining the temperature and density
of heat sources from the initial and final temperatures. J. Appl. Ind. Math., 4, 332-339. DOI:
10.1134/5199047891003004X

Orazov, I. & Sadybekov, M.A. (2012). One nonlocal problem of determination of the temperature
and density of heat sources. Russ Math., 56, 60-64. DOI: 10.3103/S1066369X12020089

Orazov, I. & Sadybekov, M.A. (2012). On a class of problems of determining the temperature
and density of heat sources given initial and final temperature. Sib Math J, 53, 146-151. DOI:
10.1134/S0037446612010120

Torebek, B.T. & Tapdigoglu, R. (2017). Some inverse problems for the nonlocal heat equation
with Caputo fractional derivative. Mathematical Methods in the Applied Sciences, 40(18), 6468
6479. DOI: 10.1002/mma.4468

Furati, K.M., Iyiola O.S. & Kirane, M. (2014). An inverse problem for a generalized fractional
diffusion. Applied Mathematics and Computation, Vol. 249, 24-31. DOI:10.1016 /j.amc.2014.10.
046

Ismailov, M.I. & Cicek M. (2016). Inverse source problem for a time-fractional diffusion equation
with nonlocal boundary conditions. Applied Mathematical Modelling, 40(7), 4891-4899. DOLI:
10.1016/j.apm.2015.12.020

Kirane, M. & Malik A.S. (2011). Determination of an unknown source term and the temperature
distribution for the linear heat equation involving fractional derivative in time. Applied Mathe-
matics and Computation, 218(1), 163-170. DOI: 10.1016/j.amc.2011.05.084

Kirane, M., Samet, B. & Torebek B.T. (2017). Determination of an unknown source term
temperature distribution for the sub-diffusion equation at the initial and final data. Electronic
Journal of Differential Equations, Vol. 2017, No. 257, 1-13.

Nguyen, H.T., Le, D.L. & Nguyen, V.T. (2016). Regularized solution of an inverse source problem
fora time fractional diffusion equation. Applied Mathematical Modelling, 40(19), 8244-8264.
Kilbas, A.A., Srivastava, H.M. & Trujillo, J.J. (2006). Theory and Applications of Fractional
Differential Equations. North-Holland: Mathematics Studies.

Tokmagambetov, N. & Torebek, T.B. (2016). Fractional Analogue of Sturm—Liouville Operator.
Documenta Math., 21, 1503-1514.

Tokmagambetov, N. & Torebek, B.T. (2018). Green’s formula for integro—differential operators.
J.Math. Anal. Appl., 468(1), 473-479.

Tokmagambetov, N. & Torebek, B.T. (2019). Fractional Sturm-Liouville Equations: Self-Adjoint
Extensions. Complex Anal. Oper. Theory, 13, 2259-2267. DOI: 10.1007 /s11785-018-0828-z

Mathematics series. Ne 4(100) /2020 149



D. Serikbaev, N. Tokmagambetov

14

15

16

17

18

19

20

21

22

23

24

25

150

Tokmagambetov, N. & Torebek, B.T. (2018). Symmetric differential operators of fractional order
and their extensions. Transactions of the Moscow Mathematical Society, 2018, 177-185.

Luchko, Y. & Gorenflo, R. (1999). An operational method for solving fractional differential
equations with the Caputo derivatives. Acta Math. Vietnam, 24, 207-233.

Li, Z., Liu, Y. & Yamamoto, M. (2015). Initial-boundary value problems for multi-term time-
fractional diffusion equations with positive constant coefficients. Appl. Math. Comput., 257, 381—
397.

Delgado, J., Ruzhansky, M. & Tokmagambetov, N. (2017). Schatten classes, nuclearity and non—
harmonic analysis on compact manifolds with boundary. J. Math. Pures Appl., 107, 758-783.

Ruzhansky, M. & Tokmagambetov, N. (2016). Nonharmonic analysis of boundary value problems.
Int.Math. Res. Notices, 2016(12), 3548-3615.

Kanguzhin, B., Ruzhansky, M. & Tokmagambetov, N. (2017). On convolutions in Hilbert spaces.
Funct. Anal. Appl., 51(3), 221-224.

Ruzhansky, M. & Tokmagambetov, N. (2018). Convolution, Fourier analysis, and distributions
generated by Riesz bases. Monatsh. Math., 187(1), 147-170.

Ruzhansky, M. & Tokmagambetov, N. (2017). Wave equation for operators with discrete spectrum
and irregular propagation speed. Arch. Ration. Mech. Anal., 226(3), 1161-1207.

Ruzhansky, M. & Tokmagambetov, N. (2018). On a very weak solution of the wave equation for
a Hamiltonian in a singular electromagnetic field. Math. Notes, 103(5-6), 856-858.

Ruzhansky, M. & Tokmagambetov, N. (2018). Nonlinear damped wave equations for the sub-
Laplacian on the Heisenberg group and for Rockland operators on graded Lie groups. J. Differential
FEquations, 265(10), 5212-5236.

Munoz, J.C., Ruzhansky, M. & Tokmagambetov, N. (2019). Wave propagation with irregular
dissipation and applications to acoustic problems and shallow waters. J. Math. Pures Appl., 123,
127-147.

Ruzhansky, M. & Tokmagambetov, N. (2019). Wave Equation for 2D Landau Hamiltonian. Appl.
Comput. Math., 18(1) 69-78.

J1. Cepukbaes, H. Tokmaramberon

ITtypwm-JInyBuianab 0eJeK TybIHAbI OepPaTOPJIbI
TceBJIoNapadoJIaJbIK TeHJeyl YIMiH
KaliHap Ke3/li aHbIKTayIbIH Kepi ecebi

Maxkanaga IItypm-JlnyBumts Gesirek TYBIHIBI OMEPATOPJIBI MICEBAOMAPAOOJIAIBIK TEHIEYIIH OH YKAFbIH
KAJIIbIHA KEJITIPY Kepi ecenTep KJachl KApaCThIPLLIALI. ABTOpIap aifHbBIMAILLIADALI aXKbIPATY SICIH, dF-
Hu Pypbe OJiCiH KOJIJaHa OTBIPHIN, IIENIMHIH 6ap »KoHe XKaJFbI3ALIFBIH JoJenaeni. CoHbIMeH KaTtap ab-
cTpakThl ['mabbepT KeHiCTIriHAe TeniMHIH 6ap *KoHe YKaJFBI3IbIFI Ty PAJIbl HOTUZXKEIEP Al aaasl. Kepceris-
reH HOTHXKeJIep YaKbIT Ooitbiaima KamyTo Gesek TybIHABLIBL ICEBAONAPAOOJIATIBIK, TEHIEY YIMH AJbIHIbL.
HuddepeHruaaablk TeHIEYIiH MenriMIepiHe KaTbICThl KeHOip KOCBIMINA aKIapaTTap apKbLIbl TEHIACY/IiH,
OH, >KaFblH aHBIKTAY HEMeCEe TeHJEYIIH KOI(MMUITMEHTTEPIH aHBIKTAY €CENTepi MPAKTUKAJIBIK, JKYMBICTADIAH
TYBIHJAIl OTBIP. ByJl MaTeMaTukaJblk (usukanbiy, Kepi ecerrrepi. Osiap ajjaM KbI3MeTiHIH, opTYpJIl cajia-
JIApBIHIA Taiaa 00Ja/ bl, MBICAJIbI, CEICMOJIOTUsI, MUHEDAJIJIbI OapJsiay, OUOJIOrusl, MeIUIMHA, OHEPKICIIITIK
camaHbl Oakpuiay eHiMepi xkoHe T.6. Ocbl KarmaiiapIblH OapJIbIFbl Ka3ipri MaTeMaTUKAHBIH MaHBI3/IbI
MdceJIeJIepiHiH KaTapbliHa KEPi eCenTep CaJlaChblH €HTi3il OThIP.

Kiam cesdep: ncesnonapabosiajiblk, TeHzey, Kepi ecer, 6esek Tybiaabl [ITypm-JlnyBusuis omneparopsl,
KamnyTo Gesek TyBIHIBICHL.
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J1. Cepukbaen, H. Tokmaramberon

Oob6parHas 3aga4a olpeaejeHnsd NCTOYHNKA
JJId TICEBOOIIApad0IMIeCKOr0 ypaBHEHU
c apoboubiM oneparopom IlITtypma-JInyBusis

B crarre paccmoTpen kitacc 06paTHBIX 38719 BOCCTAHOBJIEHHS TPABOI YACTH TICEBIOMAPAOOIMIECKOTO YPaB-
HeHus ¢ ApobubiM oneparopoM [IIrypma-JluyBusis. ABropaMu j10Ka3aHbl Pe3yJIbTATHI CYLIIECTBOBAHUS U
€JINHCTBEHHOCTHU PEIIEHUH, C UCIOJb30BaHUEM METOJIa Pa3lesleHus IIepeMeHHBIX, TO ecTb MeTogoM Dypre.
Kpowme Toro, ocobernast 3anHTEpECOBAHHOCTD HAOIIOMAETC B OKA3aTEIBCTBE CYIIIECTBOBAHNUSI U € IMHCTBEH-
HOCTH peleHnit B abCTPAKTHON ITOCTAHOBKE I'MJIBOEPTOBBIX IPOCTPAHCTB. YKa3aHHbBIE PE3YJILTATHI IIPEJI-
CTaBJIeHBI ISl JPOOHOTO IceBo-apabonudeckoro ypasaenns: Kamyro o Bpemenu. Ects MHOrO ciydaes,
B KOTOPBIX MPAKTUIECKUE MMOTPEOHOCTH MPUBOIAT K 3aJa9aM OMpPEIeTIeHnsT KOIMMUIMEHTOB UIN MPABOit
qacTu AudepeHaIbHOr0 ypaBHEHHs 110 HEKOTOPBIM JOCTYIHBIM JaHHBIM PElIeHus. JTO TaK Ha3blBae-
Mble OOpaTHBIE 33Jadu MaTeMaTudeckoil ¢pusnku. OHN BO3ZHUKAIOT B PA3JIHMIHBIX OOJIACTIX UEJIOBEYECKON
IeATETbHOCTH, TAKUX KaK CEACMOJIOTHsI, Pa3BEIKa MOJE3HBIX NCKOMTAEMBIX, OMOJIOTHS, MEUIIAHA, TTPOMBIIII-
JIEHHbIE TOBApPbl KOHTPOJISI KadecTBa U T.J. Bce 3Tum 0OCTOATENHCTBA CTABAT OOpATHBIE 33/1a49M B HUHCJIO
Ba’KHBIX TTPOOJIEM COBPEMEHHON MATEMATUKU.

Kaouesvie caosa: tnceBnomapabosindeckoe ypaBHeHUe, obpaTHas 3afiada, IpobHbIi omeparop IlTypma-
JInyBuisa, npounsBoguas KarmyTo.
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Method of the rheostat for studying properties
of fragments of theoretical sets

In this article discusses the model-theoretical properties of fragments of theoretical sets and the rheostat
method. These two concepts: theoretical set and rheostat are new. The study of this topic in the framework
of the study of Jonsson theories, the Jonsson spectrum, classes of existentially closed models of such
fragments is a new promising class of problems and their solution is closely related to many problems that
once defined the classical problems of model theory. The purpose of this article is to determine the rheostat
of the transition from complete theory to Jonsson theory, which will be consistent with the corresponding
concepts for any a and any a-Jonsson theory. For this we define a theoretical set. On the basis of research
by the author formulated a model-theoretical definition of the concept of a rheostat in the transition
from complete theories to ¢(z)-theoretically convex Jonsson sets. Also was formulated an application of
h-syntactic similarity to a-Jonsson theories.

Keywords: Jonsson theory, Jonsson spectrum, Jonsson set, theoretical set, fragment, rheostat.

This article is devoted to the study of model-theoretical properties of fragments [1-3| of theoretical
sets. The concept of a theoretical set is defined as a special case of a Jonsson set [1]. In order to define
a theoretical set, we take a fixed Jonsson set [4] and then we apply the universal quantifier for all free
variables from existential formula which defined this set. And received universal-existential sentence
should be satisfy for demand of Jonsson theory, i.e. to be Jonsson theory. It is clear that we can define
in such way just finitely axiomatizable Jonsson theories. We will also consider the rheostat method
and give a model-theoretical definition of the concept of a rheostat. Since both concepts: theoretical
set and rheostat are new, we consider that the study of this topic in the framework of the study of
Jonsson theories [2, 5, 6, 7], the Jonsson spectrum [5], classes of existentially closed models [5] of such
fragments represents from itself a new promising class of problems and their solution is closely related
to many problems that defined in their time the classical problems of Model Theory (8, 9|.

Until now, the study of Jonsson theories and their classes of models [6, 10] was a complex of model-
theoretic problems, the formulation of which was due to adaptations of the conceptual apparatus
and related content from the arsenal of the Model Theory course for the study of complete theories.
It is clearly seen from the definition of Jonsson theory that these theories are, generally speaking,
incomplete. Therefore, the direct transfer of results on complete theories to the field of study of Jonsson
theories is not a simple and easy thing. Until now, we have used the so-called semantic method in
solving problems related to the study of Jonsson theories. The essence of this method is to translate
the elementary properties of the first order to the theory itself, while adapting the model-theoretical
properties inherent for the center of this theory.

Let us consider in more detail on the need to study the above two new concepts: a theoretical
set and a rheostat. Research of the definable subsets of the semantic model of a fixed Jonsson theory
allows one to transfer many of the central ideas of modern methods of studying complete theories and
their classes of models to the field of studying Jonsson theories and their classes of existentially closed
models. These methods include, first of all, the methods of the so-called geometric stability |11, 12].
At the same time, it should be noted the outstanding contribution to the development of this direction
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of modern Model Theory by the results of E. Hrushovski [13, 14|, as well as the works of B. Zilber
[15, 16]. The concept of a Jonsson set allows us to consider issues related to geometric stability in the
framework of the study of Jonsson theories and their classes of existentially closed models.

In this work, we want to focus our attention on the adaptation of problems from work [8, 9] in
the framework of studying the concepts of Jonsson rheostat and theoretical set. The concept of a
rheostat arose in physics as a technical means for the study of such properties as current strength,
voltage and resistance. Drawing an analogy with this technical means, we consider the classical model-
theoretical concepts from the technical and conceptual apparatus for the study of complete theories,
we will adapt and investigate the corresponding model-theoretical concepts for the study of Jonsson
theories. It is clear that a concept from the arsenal of complete theories is transformed in a certain way
when translated into the Jonsson theory. And at the same time, we want to interpret the difference in
the transformation of the concept by some mathematical property. Conditionally, a certain imaginary
rheostat is responsible for the transformation, and therefore a necessary mathematical property that
will characterize the transition from a concept in a complete theory to a concept in a Jonsson theory,
and, accordingly, describe this transition in a syntactic or semantic way, and in what follows we will
call this mathematical property the corresponding rheostat.

To formulate the main results, we will need some definitions and model-theoretical properties of
these concepts. Those results that will not be determined can be extracted from the following works
[6, 17, 18, 19, 20, 21].

By II,, we denote the set of all formulas in the language L of the form V3...p ((i.e., formulas with
n variables quantifiers starting with V), ¥, = {¢ : ~p € II,,}, V,, =1I,, U X,,. Then

Hw = Ew = vw = Hw+1 = Ew—l—l = Aw—i—l = .= U vn
n<w

Definition 1 [10]. Let I' C L. Then:

1) T € I'Ca means that TNT F ¢ for all p € T,

2) if B C| 2|, then Thr(2(, B) denotes the set of all I'-sentences in Lpg, that are true in 2;

3) the mapping f : A — B is called a I'-embedding if for any @ € 2 and ¢(Z) € T in A | ¢(a)
follows B = ¢(f(a));

4) if A C B, then A Cp B means that Thr(2A, |A|) C Thr(B, |2|);

5) a sequence of models 2;, i < 3, is called a I'-chain if ; Cp 2; for i < j < f.

Lemma 1 |10]. The mapping f : A — 9B is a II,-embedding if and only if it is a ¥,1-embedding.

Definition 2 [10].

1. The theory T is stable under the union of I1,-chains (or a-inductive), if the union of any I1,-chain
of models of T is again a model of T

2. The theory T has the property of a-joint embedding (a-JEP),if for any 2, B |= T there are
M = T and I,-embeddings f: A — 9 and g : B — M.

3. The theory T has the property of a-amalgamation (a-AP), if for any 2, B, B, = T and Il,-
embeddings f1 : A — B and fo : A — By there are M = T u [I,-embeddings ¢ : By — M and
go : Bo — M such that g1 o f1 = gs 0 fo.

Definition 3 [10]. A theory T is called a-Jonsson theory, if

1) T has an infinite models;

2) T is a-inductive;

3) T has the a-JEP;

4) T has the a-AP.

Lemma 2 [10]. 1. The theory T is complete if and only if 7" is w-Jonsson.

2. The theory T is Jonsson in the sense if and only if 7" is 0-Jonsson.

Proposition 3 [10]. The following conditions are equivalent:

1) T has the a-JEP;
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2) T has the a-JEP for countable models;

) fzNy =0, p(T) and ¢q(y) are an arbitrary sets X, 1-formulas such that T'Up(T) and T U ¢(7)
are consistent, then 7"U p(T) U ¢(¥) is consistent.

Proposition 4 [10]. The following conditions are equivalent:

1) T has the a-AP;

2) T has the a-AP for countable models;

3) If p(z) and ¢(T) are sets of X1~ formulas such that

TUp(@), TUq(T),

TU{~¢(7) : ¢(T) € Zat1,0(T) ¢ p(T) Nq(@)}

are consistent sets, then the set T'U p(Z) U ¢(T) is consistent;

4) for any 2 =T and @ € 2 the set Thy,_, (2, @) is contained in the only maximal consistent with
T set of ¥,41- sentences of the language L(a).

Proposition 5 [10]. The following conditions are equivalent:

1) T € py2C0;

2) the theory T is a-inductive.

Proposition 6 [10]. The property of a theory to be or not to be a-Jonsson is absolute, i.e. does not
depend on complementary to ZF axioms of set theory.

Proposition 7 [10]. The following conditions are equivalent:

1) T € a41Cn;

2) If B =T and A Cyp, B, then A =T

Proposition 8 [10]. The following conditions are equivalent:

1) T e ZoHrlCA;

2) If A =T and A Cpp, B, then B =T

Proposition 9 [10]. The following conditions are equivalent:

1) T € Vatr1Ca;

2) If A, =T and A Cpp, M Cyp, B, then M =T

Definition 4 [10]. Let a < w.

1. An alternative chain over 2 C B is a sequence of models % C B C My C My C ... € My C
..., B < «, satisfying the relations

(a) A <Ny <My < ... < My; < 2t < o

(b) A<M My <X .My 2,2l + 1 < o

2. A theory T is called a-alternative if for any 2,8 = T the equivalence 2 < B < (2 C B and
there is an alternative a-chain over 2 C B).

Proposition 10 [10|. The following conditions are equivalent:

1) for any formula ¢(x) € L there exists a X,1-formula ¢ (x) such that T = ¢(x) <> ¥(z);

2) for any formula ¢(z) € L there exists a Il 1-formula 6(x) such that T = ¢(x) < 0(x);
3) the theory T is the a-model complete;
4) the theory T is the a-alternative;
5) for any A,B = T the relation holds

ACH, BeA<DBACy, B

a+1

Proposition 11 [10]. The following conditions are equivalent:

1) in the T theory, any formula is equivalent to a Boolean combination of V,-formulas;

2) for any 2 =T and @ € A theory T'U Thy, (2, @) is complete;

3) (for the complete theory T') if 2 is a saturated model of T and @ € 2, then the theory
T UThy, (2, a) is complete.
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Definition 5 [10]. The a-Jonsson theory T is called a perfect if &p is a saturated model
Th(&r)(=T7).

Proposition 12 [10]. For the a-Jonsson theory T the following conditions are equivalent:

1) the theory T is perfect;

2) T* is the a-model completion (that is, the D(T™) is a-model completion) of the theory 7'

All of the above facts and definitions are directly related to the transition from a complete theory
to a Jonsson theory. Using these facts and definitions from [10], we can notice that in the language of
generalized Jonsson theories, it is possible to formulate the results from [8, 9] in a unified language for
the a -Jonsson theory, which was considered in [10].

The purpose of this article is to determine the rheostat of the transition from complete theory to
Jonsson theory, which will be consistent with the corresponding concepts for any o and any «-Jonsson
theory. For this we define a theoretical set.

Definition 6. Let T be some Jonsson theory, C' is the semantic model of the theory T, X C C.

A set X is called theoretical set, if

1) X is Jonsson set, and let ¢(Z) be the formula that defines the set X ;

2) o(T) = JyY(Z,7y) and let § be the universal closure of the formula ¢(Z), i.e. 0 is the sentence
Va3yy(z,7) defines some Jonsson theory.

It is easy to see from Definition 6 that 8 can only be a finitely axiomatizable theory and belongs to
the Jonsson spectrum JSp(M ), where M = ¢l(X) and M € Er. It can be seen that VA € JSp(M), if A
is a finitely axiomatizable theory, then we can consider sentences ¢’ such that 6’ defines a Jonsson theory
A. If we eliminate the universality quantifier in ', then we get formula, which defines a theoretical set
that will be a subset of M. Thus, all the finitely axiomatizable Jonsson theories from JSp(M) will be
define uniquely some theoretical subset in the model M.

Definition 7. We will say that an existentially closed model M is convex (strongly convex) if its
Kaiser hull (T"hy3(M)) is a convex (strongly convex) theory.

Definition 8. We will say that an existentially closed model M is ¢(x)-convex if it is convex and

1) ¢(x) defines a Jonsson set in the model M;

2) if for all substructures 2; of the model M, (2; contains ¢(M ), given that this intersection is
not empty.

If this intersection is never empty and the model M is a strongly convex, then the model M is
called the ¢(x)-strongly convex.

If the semantic model C of a Jonsson theory T is ¢(x)-convex (strongly convex), then the theory
T itself is correspondingly the same. Note that the classical definition of convexity [3; 41; Def. 2] of
the theory coincides with this definition if we omit the prefix ¢(z).

Definition 9. A model M € Er is called p(z)-theoretical convex (strongly convex) if this model
(x)-convex (strongly convex) and ¢(x) defines a theoretical set.

The following definition provides a generalization of the concept of the syntactic similarity of
Jonsson theories.

Definition 10. Let Ty and T are an arbitrary Jonsson theories. We say, that T and Tb are the
h-syntactically similar, where h is map h : E(T1) — E(T%) such that

1) restriction h to E,(71) is homomorphism of lattices E,,(T1) and E,(T2), n < w;

2) h(Fvpt19) = Fvpr1h(p), ¢ € Eni1(T), n < w;

3) h(’Ul == 'U2) == (’Ul = UQ).

If the kernel Ker(h) of this homomorphism is trivial, then we obtain a definition of the syntactic
similarity of two Jonsson theories [22; 167; def. 10].

We are now ready to give a model-theoretical definition of the concept of a rheostat in the transition
from complete theories to ¢(z)-theoretically convex Jonsson sets.

Definition 11. Let T be some Jonsson theory, C' is the semantical model of the theory T, X C C,
X is the theoretical set. p(C) = X, p(z) € L.
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If the universal closure ¢(x) will be the Jonsson theory and the Kaiser hull MY = Thys(M),
M € Er, where M = cl(¢(C)), then we will say that ¢(x) is a rheostat if exists h-syntactic similarity
between theories T and Thy3(M).

The next result is an application of h-syntactic similarity to a-Jonsson theories.

Theorem. Let T1,T> be ¢(x)-convex (strongly convex) complete for existential sentences perfect
a-Jonsson theories. Then the following conditions are equivalent:

1) Ty, Ty are the h-syntactically similar and the kernel Ker(h) is trivial;

2) Ty, Ty are the syntactically similar in the sense of [23| and o = w;

3) Thys(My) = T}, Thya(Mz) = T, where Cy is a semantic model of the theory T7, Cs is a
semantic model of the theory T, cl(¢(Ch)) = M, cl(p(Cy)) = Ma.

Proof. The proof follows from Theorem 2.7.1 [6; 182] and from Definition 11.

Consequence. All Propositions 3-12 are true for the corresponding ¢(x)-rheostat and the ordinal «,
which defines the a-Jonsson theory. Moreover, there is an h-syntactic similarity between the a-Jonsson
theory and the corresponding Kaiser hull of the fragment of the theoretical set defined by the formula
() and the corresponding a-Jonsson theory.
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A .P. Emkeesn

TeopeTuKaJbIK YKUbIHIAPABIH, (pparMeHTTEPiHIH
KaCHeTTePiH 3epTTey YIIiH peocTaT d/ici

Maxkasiazia TeOpeTUKAJIBIK, >KUBIHIaPIbIH (PParMeHTTEPIHIH, MOJIE/bIi-TeOPETUKANBIK, KACUETTEP] XKOHE PEo-
cTar omici KapacTHIPLUIFaH. ByJl €Ki VFBIM — TEOPETHKAJIBIK YKUbIH YKOHE PEOCTAT — JKAHA. VIOHCOHIBIK
Teopusijiap, HOHCOH/IBIK, CITEKTP/Ii, OChIHIail (bparMeHTTEeP/IiH SK3UCTEHITAAIIbI TYABIK MOJEbAEPIHIH KJla-
CTapBIHBIH asIChIH/IA OChI TAKBIPBINTHI 3€PTTEY — OYJI TPobIeMaIap/IbIH *KaHa MePCIeKTUBAJIBI KJIaChl JKOHE
oJIapAbl MIENLy MOJEIbIAEP TEOPHUSCHIHBIH, KJIACCUKAJBIK MOCeJIeJIEPiH aHBIKTaraH KOIITEreH CypaKTapMeH
TBIFBI3 OANIAHBICTBI. BYJI KYMBICTBIH MAaKCATBhl — Ke3 KeJINeH (v YKOHE (-MOHCOH/IBIK, TEOPUSTHBIH YFbIM/Ia~
pBIHA COMKEC KEeJIeTIH TOJIBIK TeOPUsIaH HOHCOHBIK, TEOPUSICHIHA OTY PEOCTATHIH aHbIkTay. OJI yIImiH aBTOp
TEOPETUKAJIBIK, JKUBIH bl AHBIKTAIbI. 3€PTTEY HETI3IH/IE OJ1 TOJIBIK, TEOPUIAPIAH (T )-TEOPETUKAIIBIK, TOHEC
MOHCOH/IBIK, YKUBIHIaPFa 0Ty Ke3iHJeri peocTaT YFbIMBIHBIH MOJIE/Ib/Ii-TeOPETUKAJIBIK, aHBIKTAMACHIH, COHBI-
MeH KaTap h-CHHTAKTUKAJBIK, YKCACTBIFBIH (-IHOHCOHIBIK, TEOPUSIAPBIHA KOJIAHYIBI TYKBIPBIMIA/THI.

Kiam cesdep: HOHCOHIBIK T€OPUSsI, HOHCOHIBIK, CIIEKTP, HOHCOH/IBIK YKUBIH, TEOPETUKAJIBIK, YKUBIH, (PPATMEHT,
peocTar.
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A .P. Emkeesn

Metoa peocrara i n3ydeHUsI CBOICTB
dparMeHTOB TeopeTuYeCKNX MHOXKECTB

B crarpe paccMoTpeHbl TEOPETHKO-MO/IEbHBIE CBOMCTBA (DPArMEHTOB TEOPETUIECKUX MHOXKECTB M METO/T
peocrara. DTHU JBa MOHSITHS — TEOPETUIECKOE MHOXKECTBO W PEOCTAT — SIBJISIFOTCS HOBbIMU. V3yueHue
JaHHOUA TEMATUKU B PaMKaX HOHCOHOBCKHAX TE€OPUH, HOHCOHOBCKOI'O CIIEKTPAa, KJIACCOB 9K3UCTEHIINAIBHO 3a-
MKHYTBIX MO/IeJIell TIPeJICTABIIsIET U3 Ce0sI HOBBIN TEPCIEKTUBHBIN KJIACC 33184, U PEIIeHNe HX TECHO CBA3AHO
CO MHOTMMU TpOOIeMaMi, KOTOPbIE OMPEIEISIIN B CBOE BpeMsl KJIaCCUIeCKUe MPOBJIeMbl TEOPUH MOJIETIEN.
Ilens macTosiieit pabOTBI — ONPENENUTh PEOCTAT MEPEX0/ia OT MOJHONW Teopur K HOHCOHOBCKON TEOpHH,
KOTOPBIH OyJIeT COryiacOBaH COOTBETCTBYIOIMIMMU ITOHATUSIME JJIsi JIIOOOro v 1 JitoOOi (r-IHIOHCOHOBCKOM T€0-
pun. [Ij1s1 9TOro aBTOPOM OIIPEJIESIEHO TEOPETHYECKOe MHOXKeCTBO. Ha 0CHOBe IIpOBEIEHHOTO HCCIIeJOBAHUS
cOPMYIUPOBAHBI TEOPETUKO-MOJICIHHOE OIIPE/IEIEHNE TOHATHAS PEOCTATA [IPH TIEePEXO/IE€ OT MOJHBIX TEOPHUit
K ©(T)-TeopeTnvIecKn BBILYKJILIM HOHCOHOBCKUM MHOYKECTBAM, & TAKXKe IIPUJIOXKEHHE h-CHHTAKCHIECKOrO
mo00usT K (-HIOHCOHOBCKUM TEOPHUSIM.

Karouesvie carosa: HOHCOHOBCKAsI Te€OpUs, HOHOHOBCKUI CIIEKTD, IOHCOHOBCKOE MHOYKECTBO, TE€OPETUYECKOE
MHOYKEeCTBO, (DparMeHT, PeOCTaT.
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Small models of convex fragments of definable subsets

This article discusses the problems of that part of Model Theory that studies the properties of countable
models of inductive theories with additional properties, or, in other words, Jonsson theories. The characteristic
features are analyzed on the basis of a review of works devoted to research in the field of the study
of Jonsson theories and enough examples are given to conclude that the vast area of Jonsson theories
is relevant to almost all branches of algebra. This article also discusses some combinations of Jonsson
theories, presents the concepts of Jonsson theory, elementary theory, core Jonsson theories, as well as their
combinations that admit a core model in the class of existentially closed models of this theory. The concepts
of convexity, perfectness of theory semantic model, existentially closed model, algebraic primeness of model
of the considered theory, as well as the criterion of perfection and the concept of rheostat are considered
in this article. On the basis of the research carried out, the authors formulated and proved a theorem
about the (V1, V2) — ¢l coreness of the model for some perfect, convex, complete for existential sentences,
existentially prime Jonsson theory T'.

Keywords: Jonsson theory, Jonsson set, convex theory, fragment, existentially closed model.

We have studied the special countable models of inductive theories 1] with additional properties.
These properties are the amalgamation property and the joint embedding property. In other such
theories are called Jonsson theory [1]. The class of theory, which is determined by the conditions
of Jonssonness, is quite wide. These include classical examples of theories as group theory, abelian
group theory, field theory of fixed characteristic, theories of various kinds of rings, modules theory,
and finally theory of polygons. The last example is essential for all problems of classical Model Theory
by the results from work [2|. This paper shows that any complete theory is similar in some formal
sense to the theory of polygons. As we can see from the above the areas of Jonsson theories a very
wide and relates to almost all fields of algebra. Also, it should be noted that Jonsson theories are not
complete, and therefore many classical problems from Model Theory and universal algebra considered
for elementary theories of classes of algebras that are not complete are directly related to the study of
Jonsson theories. In the study of Jonsson theories within the framework of this problem, the notion
of a Jonsson spectrum and the notion of cosemanticness were defined, respectively. In connection with
these new concepts, which respectively generalize the study of the problem of elementary equivalence
of fixed classes of algebras in the framework of the study of Jonsson theories, results related to abelian
groups and modules were obtained [3, 4|. In connection with these new concepts, which respectively
generalize the study of the problem of elementary equivalence of fixed classes. On the other hand, if
we consider the class of models of an arbitrary Jonsson theory, then this class can be conditionally
divided into two subclasses. The class of existentially closed models and the class of models that are
not. It is well known that the elementarity of the subclass of existentially closed models is directly
related to the perfection of the considered Jonsson theory [5]. Thus, the problems associated with the
study of the behavior of a class of existentially closed models of an arbitrary or fixed Jonsson theory
is an actual class of problems related to both the classical model theory and universal algebra.

Recently, quite a lot of works have been devoted to the study of Jonsson theories [6-9]. After the
definition of Jonsson set [10], we noticed the usefulness of this concept in the sense that it made it
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possible to define the rheostat principle [11]. Among these works, one can single out the work related
to definable subsets of the semantic model of the fixed Jonsson theory [11|. One of the new technical
concepts is a fragment of a definable subset of the semantic model. As part of the study of this concept,
the following works were considered [12-16].

Small models are usually understood as countable models of the considered theory. Since we
will work with fragment models of some fixed Jonsson theory’s models, generally speaking, it is
not necessary that small fragment models coincide with small models of this theory. The concept
of convexity of theory was introduced by A. Robinson [7; 41; Def. 2| and D. Kueker [17]| studied the
properties of core models for convex theories.

The main result of this article is Theorem 4. 9t is a (V1, V) —cl core model for some perfect convex
complete for existential sentences existentially prime Jonsson theory 7' if and only if it is (V1, Vo) — ¢l
core model T*, where T™ is the center of the theory T

We give the following definitions and the related results, which we need for further work.

We begin with a classic definition of Jonsson theory and all the concepts needed to work with
Jonsson theories.

Definition 1 [5]. A theory T is called a Jonsson theory if:

1) the theory T' has infinite models;

2) the theory T is inductive;

3) the theory T has the joint embedding property (JEP);

4) the theory T has the property of amalgam (AP).

Definition 2 [5]. Let k > w. Model M of theory T is called k-universal for T, if each model T’
with the power strictly less k isomorphically embedded in M; k- homogeneous for 7', if for any two
models A and Ay of theory T', which are submodels of M with the power strictly less then x and for
isomorphism f: A — A; for each extension B of model A, which is a submodel of M and is model of
T with the power strictly less then k there exist the extension B; of model A1, which is a submodel of
M and an isomorphism ¢ : B — B; which extends f.

Definition 3 [5]. A model C of a Jonsson theory T is called semantic model, if it is w™-homogeneous-
universal.

Definition 4 [5]. The center of a Jonsson theory 7' is an elementary theory 7™ of the semantic model
CofT,ie T*=Th(C).

Fact 1 [5]. Bach Jonsson theory T has k+-homogeneous-universal model of power 2¥. Conversely,
if a theory T is inductive and has an infinite model and w'-homogeneous-universal model then the
theory T is a Jonsson theory.

Fact 2 |5]. Let T is a Jonsson theory. Two k-homogeneous-universal models M and M; of T are
elementary equivalents.

One of the main results obtained previously in the above definitions is the following result:

Theorem 1 (Criterion of perfectness) [5; 158|. Let T" be a Jonsson theory. Then the following
conditions are equivalent:

1) Theory T is perfect;

2) Theory T™* is a model companion of theory 7.

Since there are much fewer perfect theories than imperfect ones, and only the perfectness of Jonsson
theory guarantees the elementary class of existentially closed models of this theory, the study of
properties of the class of existentially closed models is a very important task. Recall the classic definition
of an existentially closed model for any theory.

Definition 5. A model A of theory T is called existentially closed if for any model B and any
existential formula ¢(T) with constants of A we have A |= 3T (T) provided that A is a submodel of B
and B | Jzo(T).

We denote by Er the class of all existentially closed models of the theory T
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The existence of an existentially closed model is not necessary for any theory. But, as is well known
from the following theorem [1], for any inductive theory T' Ep is non-empty.

Theorem 2 [1; 97; Proposition 8.12]. If the theory T is inductive, then any model of the theory T
is embedded in an existentially closed model of the theory T

The next aspect related to the models of the theory is called the convexity of theory. The concept
of convexity of theory was first introduced by the well-known specialist in the field of Model Theory
A. Robinson.

Definition 6 |7]. A theory T is called convex if for any its model A and any family {B; | i € I} of
substructures of A, which are models of the theory T', the intersection [;; B; is a model of T', provided
it is non-empty. If besides such an intersection is never empty, then 7T is called strongly convex.

As a simple example of a convex but not strongly convex theory, we can give the following example:
consider a theory T that defines an equivalence relation. It is clear that any substructure of the model T'
also satisfies the axioms of T', but the intersection of two substructures may well turn out to be empty.
An example of a strongly convex theory is group theory. A simple example of a nonconvex theory is
given by the following example: the theory of densely ordered sets with different end elements. On
the other hand, if the language of a theory T' contains at least one constant a and the theory T is
convex, then it is also strongly convex since any model from ModT contains an element that realizes
this constant a.

The concept of an algebraically prime model was also introduced by A. Robinson. This concept is
a generalization of the concept of a prime model, which says that the model is prime if and only if, it is
elementary embeddable in any model of the considered theory. A model is called algebraically prime if
and only if, it is isomorphically embedded in any model of the considered theory. Since in the definition
of Jonsson theory we see only isomorphic embeddings, it is naturally important for us to know the
behavior of an algebraically prime model. If in the case of a prime model we have a good criterion in
the form of R. Vaught’s theorem: a model is prime if and only if it is countable and atomic. In the case
of algebraic primeness there is no such criterion. Therefore, the study of algebraically prime models is
an important task in the study of Jonsson theory.

Definition 7. Model A of theory T is called core if it is isomorphically embedded in any model of
a given theory and this isomorphism exactly one.

As part of the study of inductive theories, we define the core theory [11].

Definition 8. An inductive theory T is called a core theory if there exists a model A € Er such
that for any model B € Ep there exists a unique isomorphism from A to B.

Definition 9. The inductive theory T is called the existentially prime if:

1) it has an algebraically prime model, the class of its AP (algebraically prime models) denote by
APT;

2) class Ep nontrivial intersects with class APr, i.e. APr(Er # 0.

When studying Jonsson theories, we noticed that not all of them have an algebraically prime model.
But there are also such Jonsson theories that have such a model. Therefore, it was natural to define
the following subclasses of inductive theories.

The following definition makes sense in the case of imperfect Jonsson theories. In the perfect case,
the concept of algebraic primeness is considered in the class of the considered theory’s models. Since
in the perfect case will be ModT™* = Ep.

Definition 10 [11|. Theory T is called existentially algebraically prime (EAP) if it has a model
A € Ep such that for any B € Ep, A is isomorphically embedded in B.

In the modern Model Theory, the definable subsets of the considered models play an important
role. A set is called definable if there is a formula of the language, the solution of which is the given set.
We distinguish such special definable subsets of the semantic model of the considered Jonsson theory
through the following definition.
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Definition 11. Let X C C. We will say that a set X is V — cl-Jonsson subset of C' if X satisfies the
following conditions:

1) X is V-definable set (this means that there is a formula from V, the solution of which in the C
is the set X, where V C L, that is V is a view of formula, for example 3,V, V3 and so on.);

2) cl(X) = M, M € Ep, where ¢l is some closure operator defining a pregeometry [16] over C' (for
example ¢l = acl or ¢l = dcl).

In order to take advantage of the rheostat principle, which will be applied to a specific model, we
must define a series of definable subsets, in which the foundations of a rheostat are laid in the form of
a formula subset with additional conditions regarding primeness atomicity, coreness, and existentially
closeness, when necessary.

Definition 12 [11]. A set A is said to be (V1, Vg) — ¢l atomic in the theory T, if

1) Va € A,Jp € V7 such that for any formula i) € Vo follows that ¢ is a complete formula for ¢
and C' |= p(a);

2) cl(A) =M, M € Er,

and obtained model M is said to be (Vi, Va) — ¢l atomic model of theory T

Definition 13 [11]. A set A is said to be weakly (V1,Va) — ¢l is atomic in T, if

1) Ya € A,3p € V; such that in C = ¢(a) for any formula ¢ € Vy follow that T' = (¢ — )
whenever ¢(x) of V3 and C = ¢(a);

2) cl(A)=M,M € Er,

and obtained model M is said to be weakly (V1, Va) — ¢l atomic model of theory 7'

Definition 14 |11]. A set A is said to be (V1, Va) — cl-algebraically prime in the theory T', if

1) If Ais (V1,V2) — cl-atomic set in T

2) c(A)=M,M € APr,

and obtained model M is said to be (V1, Va) — ¢l algebraically prime model of theory T

Definition 15 [11]. The set A is said to be (V1,V3) — cl-core in the theory T, if

1) Ais (V1,V2) a cl - atomic set in the theory T

2) cl(A) = M, where M is the core model of theory T

and obtained model M is said to be (Vi, Va) — ¢l core model of theory 7'

Theorem 3 [17; Th. 2.1] For any T the following conditions are equivalent:

1) € is a core structure for 7.

2) € is a model of every universal sentence consistent with 7', and there are existential formulas
wi(z) and k; € w, for i € I, such that

¢, Tl=3FPigp, foraliel,

and

¢V \/ ©i
i€l

The following two definitions (Def. 16 and Def. 17) will have a value for the formulation of further
results of this article.

Definition 16. Let T7 and T» are an arbitrary Jonsson theories. We say, that 77 and 15 are the
h-syntactically similar, where h is map h : E(Ty) — E(T%) such that

1) restriction h to E,(711) is homomorphism of lattices £, (17) and E,(T2), n < w;

2) h(Fvpt19) = Fvpt1h(p), ¢ € Eni1(T), n < w;

3) h(vy = v2) = (v1 = v9).

The following definition belongs to the first author and is a measure of the change in the rheostat
principle for Jonsson theories.

Definition 17. Let T be some Jonsson theory, C' a semantic model of the theory T, X C C, X a
theoretical set. p(C) = X, p(z) € L.
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If the universal closure o(z) is a Jonsson theory and the Kaiser hull M° = Thys(M), M € Er,
where M = cl(¢(C)), then we will say that ¢(z) is a rheostat if there is an h-syntactic similarity
between the theories T" and Thy3(M).

The next result connects the convexity of the theory and its center in connection with the existence
of the above form of the core of the model (Def. 15).

Symbols V1, Vs, ¢l s in definitions 11-16.

Further, by the requirements for the content of Theorem 4: let Vi = {¢(x)}, Vo = {p(x)},
cl = acl,cl = decl, p(z) there is a rheostat such that cl(X) = M, M° = Thys(M), 0 = VoI (x,7), 0
there is Jonsson theory, ¢(z) = Iy (x,y) and h : E(f) — MY, satisfying the definition 16.

Let Ker h be trivial, i.e. consists only of identical congruence.

Theorem 4. M is (V1,Va) — cl a core model for some perfect, convex, complete for existential
sentences, existentially prime Jonsson theory 7T if and only if it is a (V1, Va) — ¢l core model 7™, where
T* is the center of T'.

Proof. Let’s prove the sufficiency. Suppose that 7™ is strongly convex and 9 is the (V1,Va) — ¢l
core model T*. Let C' be a semantic model of T. Let 2l be any model of T" and 2y be a sufficiently
saturated existentially closed extension of 2. Then 9132,, which means that any 3-sentence true in 9t
implies being true in 2A,. This is true since any model of the theory T" can be isomorphically embedded
in C', in particular, the models 20,, 2, are also embedded in C since the theory T is perfect, the model
As. And due to the strong convexity of the theory T the model 9 is isomorphically embedded in the
model 2A,. Therefore, 9 = 9MN,, for some M, C A,. Since no proper submodel of M is a model of T,
we must have

M, =N{B:B CAand B =T}

In particular 9%, C 2. If 9 is isomorphic to some other M, C A, then the same argument shows
that 9, = 9M,. Therefore, M is (V1, Va) — ¢l core model for T

Let’s prove the necessity. Let 0t - (V1, Va) — ¢l core model for T, and let T be the center of the
theory T, then it is obvious that the set of all existential and universal sentences is true in 9, since
T* = Th(C). Condition (2) of Theorem 2.1 [17; 157] holds for 9t and T so that 9 is (V1, Va) — ¢l
core model for T*. Let 2 any model T%*. 9 is isomorphic to exactly one 9V C 2 and can also be
embedded in any other model T, therefore,

M =n{B:BCAandB = T*}

It follows that T is strongly convex and that 9t is (V1, Va) — ¢l core model T*, as clamed.
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A.P. Emkees, H.B. Ilonosa

AmHbIKTaJIFaH IIMKi >KUBIHIAPAbIH JTOHEC
dbparmeHTTEpiHiH KILIiripiMm Mo/eJIbAepiHiH, TUIITEPI

Maxkasnazma Moenbaep TEOPHUSICHIHBIH, KOCHIMITIA KACHETTepl 0ap WHAYKTUBTI TEOPUSIAPILIH, CAHAIBIMIbI
MO/IEJIbIEPIHIH, KACHEeTTEPIH 3epTTelTiH O66JIriHiH, HeMece, HacKalla aiTKAHIA, HOHCOHIBIK, TEOPUIIAPIbIH,
MoceJtesIepi KApaCThIPBUIIALL. VIOHCOHIBIK TEOPHSIIEl 3¢PTTEY AsCHIHIA AHBIKTAYFA APHAJFAH YKYMBICTAPFA
IIOJIy HETI3iHJIe CUIATTAMAJIBIK €PEKINEeJTIKTeD TaJIaH bl YKOHEe HOHCOHJBIK TEOPHUSIAPIbIH KEH ayMarbl
aJireOpaHbIH 0apJIbIK JAEPJIiK casiajlapblHa KATBICTBI JereH TYKBIPBIM Kacayra KEeTKLIKTI MbIcajiap KeJl-
Tipinren. COHBIMEH KaTap aBTOpJIap HOHCOHIBIK, TEOPUSIAPIBIH Kebip KOMOUHAIUSIIAPBIH TAJKBLIAI, HOH-
COHJIBIK, TEOPUSHBIH, 3JIEMEHTAPJIBIK, TEOPUSHBIH, $POJIBIK HOHCOH/IBIK TEOPUSHBIH YFBIMIaPhIH, COHTal-aK,
OCBhI TEOPUSIHBIH, 9K3UCTEHITUAJIIBI TYHBIK, MOJIE/IbIEP] KJIAChIH/IA SAPOJIbIK MOJEb/l PYKCaT €TeTiH oJap-
JTBIH, KOMOWHAIUSITAPBIH KeaTipred. Makasaga JOHECTIIIK, TEOPUSTHBIH, KEMEJIILIIT, CEMaHTUKAJIBIK, MOJEb,
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9K3UCTEHITUAJIIBI TYWBIK, MOJIE/Ib, KAPACThIPBLIATBIH TEOPUIHBIH aJrebpaJsiblK, »Kail Mojesi, CoHai-aK Ke-
MeJIJIIK KPpUTEPHUill XKoHe PeoCTaT YFBIMBI KAPACTHIPBLIFAH. 3€PTTEY HETI3iHAe aBTOPJAp SK3UCTEHIUAIIIbI
cellulemMzIep YIIIiH TOJIBIK, JIOHEC, S9K3UCTEHIUAIIBI 2Kail ioHCcOHabIK Teopus T yimin moxenbaiy (V1, Va) —cl
SAJTPOJIBLIIBIFBI TYPAJIbI TEOPEMAHBI TYKBIPHIM/IA I KOHE TRJIEJIIET].

Kiam cesdep: HOHCOHIBIK, TEOPUSI, HOHCOHIBIK, CIIEKTD, HOHCOH/IBIK, >KUbIH, TEOPETUKAJIBIK KUBIH, (PPArMeHT.

A.P. Emkees, H.B. Ilonosa

Mauble Mo1eJIn BBITYKJIBIX (pparMeHTOB
ornpeIeJIMMbIX MOJMHOYKECTB

B crarpe paccmoTpensl npobseMbl TONW YACTH TEOPUU MOJIEJIel, KOTOpas M3ydaeT CBOWCTBA CUETHBIX MO-
Ilesiel MHAYKTUBHBIX T€OPUil ¢ JIONOJHUTEIBHBIMUA CBOMCTBAMU, UJIN, NHAYE IOBOPA, HOHCOHOBCKUE TEOPUU.
IIpoananmsupoBaHbl XapaKTepHbIe 0OCOOEHHOCTH, Ha, OCHOBAHUU 0030pa paboT, MOCBSIIEHHBIX UCCTIEI0BAHN-
M B 00J1aCTH U3y I€HNsI HOHCOHOBCKUX TEOPUii, U IPUBEIEHO JTOCTATOYHO IIPUMEPOB, TO3BOJIAIONINX CAEIATH
BBIBO/I, YTO OOIIUPHBII apeas HOHCOHOBCKUX T€OPU UMeeT OTHOIIEHNE TPAKTUIECKHA KO BCEM pa3JiesiaM aJi-
re6pbl. ABTOpaMu 06Cy K I€HbI HEKOTOPbIe KOMOUHAIIMN HOHCOHOBCKUX TEOPUil, IPUBEIEHDBI TOHITHST HOHCO-
HOBCKOM TEOPUH, JIEMEHTAPHON TEOpUH, AJ1ePHON HOHCOHOBCKOM TEOPHUH, & TaK»Ke UX KOMOWHAIIUN, JTOIyC-
KaIOIIKX sIJIEPHYIO MOJIEJIb B KJIaCCe SK3UCTEHITNAIBHO 3aMKHY TBIX Mojiesieit 3Toit Teopun. Kpome Toro, B cra-
Thb€ NOHATHUA BBIIYKJIOCTH, COBEPIICHCTBA TEOPUH, CEMAHTUICCKON MOAEJN, IK3UCTCHINAJIBHO 3aMKHYTON
MOZeu, aaredpanvdecKoil IPOCTOTHI MOJEIH PACCMATPUBAEMO TEOPUH, & TAKXKE KPUTEPUN COBEPITEHHOCTH
¥ TIOHSITUE PEOCTaTa BCECTOPOHHE M3y4deHbl. Ha OCHOBE MPOBEIEHHOTO MCCJIEIOBAHUsI aBTOpaMU CHOPMYJIn-
poBaHa M JoKa3aHa TeopeMa O (V17 Vg) — ¢l ssmepHOCTH MOMEN [JjIsi HEKOTOPOW COBEPIIEHHOMN, BBIMYKJION,
IOJTHOM 111 9K3UCTEHIINAIbHBIX TPEIJIOKEHNHN, S9K3UCTEHIINAJIHLHO TPOCTON HOHCOHOBCKO# Teopuu 1.

Karouesvie caosa: HOHCOHOBCKasi T€OpUsl, HOHOHOBCKUI CIEKTP, TOHCOHOBCKOE MHOYKECTBO, TEOPETHIECKOE
MHOKECTBO, (pbparMeHT.
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