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Preface

This issue is a collection of 12 selected papers. These papers are presented at the Fifth International
Conference on Analysis and Applied Mathematics (ICAAM 2020) organized by Near East University,
Lefkosa (Nicosia), Mersin 10, Turkey.

The meeting was held on September 23-30, 2020 in North Cyprus, Turkey. The main organizer of
the conference is Near East University, Nicosia (Lefkosa), Mersin 10, Turkey. The conference was also
supported by Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan and Analysis
& PDE Center, Ghent University, Belgium.

The conference is organized biannually. Previous conferences were held in Gumushane, Turkey
in 2012; in Shymkent, Kazakhstan in 2014; in Almaty, Kazakhstan in 2016; in 2018 Lefkosa,Mersin
10, Turkey. The proceedings of ICAAM 2012, ICAAM 2014, ICAAM 2016, and ICAAM 2018 were
published in AIP Conference Proceedings (American Institute of Physics) and in some rating scientific
journals.

Near East University was pleased to host the fifth conference which was focused on various topics
of analysis and its applications, applied mathematics and modeling. The main aim of the International
Conferences on Analysis and Applied Mathematics (ICAAM) is to bring mathematicians working in the
area of analysis and applied mathematics together to share new trends of applications of mathematics.
In mathematics, the developments in the field of applied mathematics open new research areas in
analysis and vice versa. That is why, we planned to find the conference series to provide a forum
for researches and scientists to communicate their recent developments and to present their original
results in various fields of analysis and applied mathematics. This issue presents papers by authors from
different countries: Azerbaijan, Iraq, Russia, Turkey, Turkmenistan, USA, Kazakhstan. Especially we
are pleased with the fact that many articles are written by co-authors who work in different countries.
We are confident that such international integration provides an opportunity for a significant increase
in the quality and quantity of scientific publications.

Finally, but not least, we would like to thank the Editorial board of the "Bulletin of the Karaganda
University - Mathematics", who kindly provided an opportunity for the formation of this special issue.

July 2020

GUEST EDITORS:

Allaberen Ashyralyev

Department of Mathematics, Near East University, Nicosia, TRNC, Mersin 10, Turkey;

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan;

Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia;

allaberen.ashyralyev@neu.edu.tr

Makhmud A. Sadybekov
Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan;
sadybekov@math.kz
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Numerical solution to elliptic inverse problem
with Neumann-type integral condition and overdetermination

In modeling various real processes, an important role is played by methods of solution source identification
problem for partial differential equation. The current paper is devoted to approximate of elliptic over
determined problem with integral condition for derivatives. In the beginning, inverse problem is reduced
to some auxiliary nonlocal boundary value problem with integral boundary condition for derivatives. The
parameter of equation is defined after solving that auxiliary nonlocal problem. The second order of accuracy
difference scheme for approximately solving abstract elliptic overdetermined problem is proposed. By using
operator approach existence of solution difference problem is proved. For solution of constructed difference
scheme stability and coercive stability estimates are established. Later, obtained abstract results are applied
to get stability estimates for solution Neumann-type overdetermined elliptic multidimensional difference
problems with integral conditions. Finally, by using MATLAB program, we present numerical results for
two dimensional and three dimensional test examples with short explanation on realization on computer.

Keywords: difference scheme, inverse elliptic problem, overdetermination, source identification problem,
stability, coercive stability, estimate.

Introduction

Methods of solutions and theory nonlocal boundary value problems (BVPs) for differential equations
have been studied by numerous authors (see [1-5,7-12,14-16, 18,19] and references herein).

Let us I is identity operator and A is a selfadjoint and positive definite operator (SAPDO) in an
arbitrary Hilbert space H. It is known that A > §I for some positive number 9, and the operator

C=3A+\/A+ TQfQ) is also SAPDO.

Assume that given function f € C'([0,7], H), elements ¢,n,( € H, number Ay € [0, 1]. Denote
by [0,1], = {t; =i, i=1,--- , N, 7N = T} the uniform grid space with step size 7 > 0, where N is
a fixed integer number. Let 8 be known scalar continuous function satisfying condition

N
Z‘,@ (tj_%)’7-<1. (1)
j=1

MATHEMATICS series. Ne 3(99)/2020 )



C.Ashyralyyev, A. Cay

In the study [10] established well-possedness of elliptic inverse problem with Neumann-type over-
determination and integral condition for obtaining a function u € C? ([0,7], H)NC ([0,T], D (A)) and
an element p € H such that

—u"(t) + AU() f() +p, t€(0,7),

2
(0) = 60 /(1) = [ 5O NIN+3. ue) = )

Moreover, in [10], the stability inequalities for solution of inverse problem (2) were applied to
investigate the following source identificating problem (SIP) for multi dimensional elliptic partial
differential equation

—un(t2) — 3 (@ (@), (b,2))e, + oult,z) = f(t2) + plx), (L) € (0,T) x O,

r=1

f/B Ny (v,2)d v +n@), u(Xo,z) =((z),7 €9Q, (3)

Ut(o’x):d)(
0, ) [O T]><S

u(t,z) =

Here 2 = (0,7)" is open cube in R" with boundary S, Q = QUS; a,,(,¢,n, f are given sufficiently
smooth functions; Vo € Q, a,(z) > ap > 0; 0 > 0,0 < A\g < T are known numbers.

We denote by R, P, and D, the corresponding operators R = (I +7C)~!, P = (I — R?N)~!
D= (I+7C)2I+7C)~tC~ L.

Now, let us to give some lemmas that will be used in further.

Lemma 1. [8] The following estimates hold:

)
(t,

1
| BY lgon< M (8) (1+627)7F, | CRF |lyn< M @), k2L Pllaon< M(8), 6>0. (4)

Lemma 2.
Suppose that inequality (1) is satisfied, then the operator

Gy = [-3(1 — F*V) + 4 (R~ R2VY) — (R? = RN 2)] (3= 78 (ty_s ) ) (1 = R2Y)

+ (—4 —7f (tN )) (R— RN~ 1) + (1 —- 78 (tN ) +70 (tN_%» (R? — R?N72)

o () R () < )]t

— [RN-1— RN+L_pN-24 RN+2 ] = (4478 (ty- g)) (RN-1 — RN+

008 g) 00 () 0 e o ) )] -
+78 () (R— B2N=1) 478 (1) (1 - B2)] )

has an inverse G 1 and its norm is bounded, i.e. ®)
I Gy lasm< M (5). (6)
In the paper [8] , for given vy and vy,the solution of difference scheme
T2 (Vg1 — 20 Fvi) FAvi=fi, 1<i<N -1 (7)
was represented by formula
v = [(Rz _ RQN—i) vo + (RN—i _ RN—H’) UN} _p (RN—’i _ RN—H’) D

<X (YT BV fir D S (R B fr 1< <N -1 ®

= j=

6 Bulletin of the Karaganda University



Numerical solution to elliptic ...

Let o € (0,1) is a given number. Introduce notations for C-(H),C*(H), and C7"*(H), the Banach
spaces of H-valued grid functions w, = {wk}sz_ll with the corresponding norms,

sl = gpa okl Torlesgn = swp_ () esn = willr + el
lwrllemeq = lwrllo.gn + sup (1= k) (7)™ (k7 + n7)° g — wil.

1<k<k+n<N-1

In the current study, we construct the second order accuracy difference scheme (ADS) for approximately
solution of inverse problem (2) and study well-posedness of difference problem. Then, we discuss the
second order ADS for SIP (3).

The second order of ADS for SIP (3)

Now, we study second order of ADS

—7 Hups1 — 2up + up—1) + Aug = fr +p, fio = f(te) 1 <k<N-—1,
N-1

—3ug + 4uy —up = 27¢,3uy —4duy_1 +un—2= > T (ti,%> (Wit1 — uj—1) + 271, (9)
i=1

ug + (g —w) = ¢ (MZA?O—O

for approximate solution inverse problem (2).
Theorem 1. Let us ¢,n,¢ € D(A), and f; € C-(H) and inequality (1) is satisfied. Then, solution

(~{uk}]kv:_11 , p) of difference problem (9) exists in C(H) x H and the next stability estimates for solution

N-1
|ty < M@ (Ul + 1<l + Wl + 1l o) (10)
147l < M @) (16l + 1Sl + Inlle + 1l o) (11)
are fulfilled.
Proof. Firstly, by using
up = vp + A" 'p, (12)

we get auxiliary difference problem for unknowns {Uk}ivzo :
—T7 2 (Upyr — 205 +p_q) FAvp = fr, 1<k<N-1,

—3vg + 4v; — vo = 279, (3 — 70 <tN7%)> N + <—4 —7p (thg>> UN_1

R (A Rt () PRt > IOV BT ) PR

+78 (tg) v 478 (t%) v = 277,

We seek solution of (13) by (8). By using (8), from first condition of difference problem (13), we
get equation

[-3(I = R*M) 4+ 4 (R— R 1) — (R? — R*N"2) ]y
i [4 (RNfl o RN+1) _ (RN72 _ RN+2)] oy = Fl,

for unknowns vy and vy, where

(14)

N-1
Fy=2r(I-R*)¢p+4 (RN — RNTI)D > (RN — RNTI) fir — 4(I — R*N)D
j=1
N—-1 N—-1
x 3 (R|1—j| _ Rl—i—j) fiT — (RN—2 _ RN+2) DY (RN—j _RN+J') Vi
J=1 J=1

+(I = R?N)D 3 (RP*I| — R?H) f;7.
j=1

MATHEMATICS series. Ne 3(99)/2020 7
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From integral condition follows the next equation
(3-78 (ty_2)) (1= BNyow + (—4 =78 (ty_5 ) ) [(RN " = RN 1) g
- <1 — 78 <tN_7> + 78 (tN 3>) [(RN=2 — RNT2) vy 4 (R? — R*N %) uy
n Z { < %> iy (tz‘—%ﬂ [(Rz _ R2N7i) vo + (RNfi _ RNJri) UN]
8 (t%> [(R= RNV wo + (RN1 = RV oy] 478 (1) (1 - R2Y)

+ (R - RAN1) oy
]

vo = Fy

(15)
for unknowns vy and vy, where

e (173 (1)

% Z (R\N—l—j\ *RN_1+j) ij

j=1

N-1
(R—R*-1)D Y (RN —RN%) f;r— (I - R*)D
j=1

+(1=78 (tyz) +78 (tv-2))

N-1
(R2 _R2N72) DY (RN*J' RN+J) [T
j=1

S ) )

—(I - R?M)D Ni (R = R9) fyr | =78 (ts ) [(RY-1 = RN*1) D
N—1 -

x > (RN=9 — RN¥I) fir — (I - R?N)D Nzl (Rt
j=1

X

(I RZN)D Z (R\N 2—j| _ RN72+j) ij]
7j=1

(RN=i — RN+)) D Z_ (RN=J — RN+3) fr
j=1

— RlH) fiT+2r(I — R*N)p

Thus, determinant operator Gy of linear system equation (14), (15) has bounded inverse G '. Therefore
solution of linear system equation (14), (15) is defined by

=G {[(3=78(tn_z)) (I = B¥)+ (<4 =78 (tw-2 — 3)) (R— B2NY)
n (1 — 78 tN_%) + 18 (tN_%)> (R? — R2N-2)
EE () = 1)) (R ) 1) (0 - )
X [27(1 — R*N)¢p 4+ 4 (RN~ — RN DNf (RN=9 — RN*I) fir —4(I — R*N)D
N
>

Jj=1

-1 N-—1
(R\kj\ — R™I) fyr — (RN=2 = RN*2) D S (RN~ — RN f7
1

j=1
N-1 , .

+(I — R?N)D 3= (RPI - R?Y) f7
j=1

. {W RN (<78 (1))

(I R2N D Z (R|N—1—j| _RN—H—j) fj

_ (RN—l _ RN+1 _ RN—Q +RN+2)

N-1
(R—RN-1D Y (RN~ — RNV f;7
j=1

]+ l-95) ()

—(I- RQN) Nil (R‘N_Q—j‘ . RN—2+j) ij]

N-1
(RQ _R2N—2) DY (RN—j RN+J) f
j=1

X

j=1

Bulletin of the Karaganda University



Numerical solution to elliptic ...

S . o N-1 , '
= X rlaltn = 5) —alt - )] | (BY7 - BYH) DY (RN RN fr
(1= RM)DY (B~ R9) fir | a1y~ §) [(RN - BYH) D (10

j=1

N-1 N-1
x > (RN=9 — RNYI) fir — (I - R?N)D 3 (R — R') ij]] }}
j=1

=1

and
oy =Gy {[-3(I — R¥™) +4(R— B!
H(A=7B (tv2— 3))

) — (R — R*N=2)] 2r(I — R*N)p
(R— Y1) D S (R = B¥) 7

N-1 ) .
—(I—R2N)D Z (R|N717]\ _RN*I‘F]) ij
J=

(1= T = )+ 7 v - 5)

x [(32 R*N=2) D i (RN — RN®) fyr — (I - BPN)D'Y" (RIN-2-41 - RN-24) fﬂ]

[ () ()]

g
(RN~1 — RN+) D Ni (RN~3 = RN41) fyz — (I = RP)D'Y. (R4 Ri*9) fyr ]
= j=1

=8 (13)
— |- (4478 (taog)) (RN 1= RYHY)

+ (1 — 78 (tN_%) 8 (tN_%» (RN-2 — RN+2) 4 73 (t%) (I — R2N)
B b)) - ) () )]

=2

(RNA _ RNH) DNZ_:I (RN J_ RN+J) fim— (I — R*M)D Nzl (Rllfjl — R1+J’) ij]
j=1 J=1

N—1 , ‘
% [27_([ _ R2N)¢_|_4 (RNfl _ RN+1) D Z (RN*] _ RN+J) ij
j=1
N_l . -
—4(I - R?NYD Y~ (Rl — R f7
j=1
N-1 A } N-1 . A
— (RN=2 = RN+2) D'S° (RN=I — RN+5) fir + (I — R*N)D Y (R~ — R2H9) g7
j=1 =1
(17)
Thus solution of difference problem (13) exists and it is defined by (8) with the corresponding vy and
vy via (16) and (17). From (8), (16),(17), estimates (4), (6), it follows that for solution of difference

problem (13) stability estimates

| RSy < @) (0l + 1l + il + 17 ) (18)
faisl,.,, e[

o () (19)
< M 9) (g 1l gy, + 1ACI + 4B + 1 Anl )

are fulfilled. (12) and estimates (18) permit us to get estimates estimates (11) (10) and (19).

MATHEMATICS series. Ne 3(99)/2020 9
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Theorem 2. Let us fr, € C7%(H), and ¢,(,n € D(A) and inequality (1) is satisfied. Then, for
solution ({uk}fcvz_ll , p) of difference problem (9) the coercive stability inequality

N-1

N—
+ [fawn S|+ vl
C“(H) o (H) (20)

< M (9) (g 1y, + IS + 1490 5+ 11 Anil )

H uk+1 2uk+uk 1}

k=1

is valid.
The proof of inequality (20) is based on formulas (8), (12), (16), (17), and (19).

Approzimation of (3)

Denote by

Q= {z = (hama, ..., hymy);m = (my, ..., my), m; =0, M;, hiM; =1,i=1,n },
QhZQhﬁQ,Sh :ﬁhﬂs
and by A difference operator
A (@) = = (wil@)ds (2))  + oul(x)
i=1

acting in the space of grid functions u"(z), satisfying boundary condition v/ (z) = 0 for all x € Sj,.
In the beginning, by using approximation in variable x and later by approximation in variable t,
one can get the following difference scheme for approximately solution of SIP (3):

—772 (upy (2) = 2ul(2) +up_y (x) + Auj(z) = f(z) +p"(z), 1<k<N-1lazeQ,

~3u(@) + duf(2) ~ () = 76 (@), () + (s (2) — uf (@) = (@) o)

Buly () — duly_y(2) +uly_y(2) = 3 7o (ti — 3) (ulyy () — ul (@) + 277 (2), 2 € Q.

=1

Let Loy, = Lz(ﬁh) and W22h = W;(Qh), the Banach spaces of the grid functions
ul(z) = {u(hymy,- -, hymy)} defined on Qy, equipped with the corresponding norms

HuhHLgh = (erﬁh ’uh(‘r)|2h1 e hn)l/Q,
[ vz, = el + +(Eaea, Zic [ @)a iz, m.

Theorem 3. Assume that (1) is valid, f, € C¥%(Lay), and ¢" 0P, ¢h € D(A7) N Lap. Then, the
solution of difference problem (21) exists and for solution the stability estimates hold:

[ . <M<<s>[(u¢huhh+\>nh\\L2h+uchuwnffuc(L%)),
0 <30 (I, + 1, + 16", + sty W)

Theorem /. Assume that (1) is true, fr € C7°(W3,), and ¢, 7", (" € D(AZ)NW3,. Then, for the
solution of difference problem (21) the coercive stability estimate obeys
rN-1 h
R s+ 1P

N—-1
{ “Z+1*2"Z+"§—1 ) }
2
! Cr(Lan)

< MG (16" g, + oz, + 116"z, + sy 1 llozearz) -

“hy-- ha )12,

10 Bulletin of the Karaganda University
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The proofs of Theorems 3 and 4 are based on the symmetry property of the operator A} in the Hilbert
space Loj, and the corresponding theorem in [20] on the coercivity stability inequality for the solution
of the elliptic difference problem in Lo with first kind boundary condition.

Test examples
In the present section, we illustrate computed results for twodimensional and threedimentional

examples of inverse elliptic problem with Neumann-type overdetermination and integral condition. All
computed results are carried out by using MATLAB.

2D example

Notice that pair functions (p(z),u(t,z)) = ((7?+1) sin(rz), (e7" +t+1)sin(rz)) is exact
solution of the following 2D overdetermined elliptic problem with integral boundary condition:

—up(t, &) — Ugy (t, ) +ult,z) = f(t, ) —il—p(ac), t,z € (0,1),

ur(0,2) =0, u(0.3,2) = ((z),u(l,z) = Ofe_’\uA()\)d)\ +n(z), = €10,1], (22)
u(t,0) = 0,u(t,1) =0, t € [0,1],
where
flt,z) = l—e‘t + (72 +1) (et +1t) | sin(rz),{(z) = (7% + 1.3) sin(mz)
n(z) =[5 — 372 ] sin(ma).

The notation [0, 1], x [0, 1], means the set of grid points
[0,1); x [0,1]y, = {(ts,zp) : t; = i1, i =0,N, x,, = nh, n=0,M},

which depends on the small parameters 7 and h such that N7 =1, Mh = 1. Let us

l() = [0.37'_1] , o = 0.37-_1 — lo’ ¢)n = 0)7771 =7 (xn) 7C7L — C(xn) , n= 07 M’
Y = fltryxn),k =0,N, n=0,M.

n

To approximately soving (22), we use algorithm which contains three stages. Firstly, we find
approximately solution of auxiliary NBVP

72 (o = 2o o) 4 BT (o — 20 o) — o = —f(tk, 7a),
k=1T,N—1,n=1,M—1,
v =0k, =0, k=0,N, — 300 +4v} —v2 =0, (23)
N—-1 . ) . . .
3N — 4Nt N2 = %e_(tﬂ'_i) <v¥l+1 — v 4o, — v%_Q) + 271, n=0,M.
j=1

Secondly, we find p,,. It is caried out by

l l
Pn = _#[(gn—kl - (Movrgjll — (o — 1)“7?+1)) —2(Cn — (NOU%—H — Mo — 1)”#)
lo " —
n’? )

)
+ (Guo1 = (novi?®) = (po = Do_ )] + Gu = (novi¢™ = (o — 1o 1L,M—1.
Difference problem (23) can be rewritten in the matrix form

Avpi1 + Bop + Cvopq = Ig™, n=1M —1,
%

24
Uozﬁﬂ}M:O- (24)

MATHEMATICS series. Ne 3(99)/2020 11
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Here, A, B, C, I are (N+1)x (N +1) square matrices, and I is identity matrix, vy, s = n—1,n,n+1, g™

are column matrices with (N + 1) rows, vy = [ v) ... o ]t. Denote by
11 2 2 B
il VA S A A=
Then,
An:diag(()?a?aa“'?aao)?Cn:Anag]gn) __f(tkaxn)7 kzlaN_la nzlvM_l
bzz—Q7 i— 11—T7bz,z 1—TZ—2Nb11 = -3, b12 =4, b13 = -1,
tN o—tN— “ty_3 —t
bN+1N+1—27( 1 _3)3, byi1,N = 2T Z5+e — —€ N‘%)+4,
bN41,N—1 = = ;V : + *— 3 —T;;N_% -1,
—t3 —t —t3 B —t
b1 =27 (= —e %>’bN+172_27<_e42—642+e %)
—t3 —t5 —ty
b Te 2 _T1e 2 _Te 2
N+1,3 — 2 2 2
—t. —t. —t. —t.
bN+1,j:%<e i3 4e 7z —e Itz —¢ J+%) J=4,..., N —2;

b;; = 0, for other i and j;gg = 27¢n, gﬁf =20, n=1,M — 1.

To solve (24), we use modiﬁed Gauss elimination method.

Thirdly, we define {uk} by uf = vF + ¢, — (,uovlo+1 (MO 1) lo)

Errors are presented in Tables 1-3 for second order ADS in case N=M=10,20, 40, 80, 160 and 320.
It can be seen from Tables 1-3 when N, M are increased two times that errors are decreased with

approximately ratio %.

Table 1
Test example (22) - error v
DS\ (N, M) (10, 10) (20,20) (40, 40) (80, 80) (160, 160) (320, 320)
2nd order of ADS | 6.29 x 1073 | 1.57 x 1073 | 3.93 x 107* | 9.84 x 107° | 2.46 x 107° | 6.15 x 10~
Table 2
Test example (22) - error u
DS \ (N, M) (10, 10) (20,20) (40, 40) (80, 80) (160, 160) (320, 320)
2nd order of ADS | 3.13 x 10™* | 7.95 x 107° | 2.02 x 107° | 5.10 x 107% | 1.28 x 107° | 3.22 x 10~
Table 3
Test example (22) - error p
Appr. \ (N, M) (10, 10) (20,20) (40, 40) (80, 80) (160, 160) (320, 320)
2nd order 5.03 x 1073 | 1.28 x 1073 | 3.21 x 107 | 8.06 x 1075 | 2.02 x 1075 | 5.05 x 1076
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3D example

Now, consider the three dimensional inverse elliptic problem with integral condition

*utt(ta'xay)7uxx(t7x7y)7uyy(t7x7y)+u(t’$ay):f(tvxa )+p(l‘7y)7xaya te (07 1)7
u(t,0,y) = u(t,1,y) =0, y,t € [0,1],u(t,z,0) = u(t,z,1) =0, z,t € [0,1],
u(0,2,y) = ¢(z,y),u(0.6,z,y) = ((z,y), (25)

ur(1, 2, y) — fe Mun(\, z,y)dN = n(z,y), 2,y € [0,1],

where
ft,z,y) = 2n%e (2, y), (2, y) = —q(@,y),n(z,y) = [~e7' + 3 (7 + e ") q(z,y),
C@,y) = (77 +1) (. y) (@, y) = sin(ra) sin(ry)

It is clear that pair funcions p(z,y) = (27% 4+ 1) ¢(z,y) and u(t,z,y) = (e7' +1) g(z,y) is exact

solution of (25).
Denote by [0,1]_ x [0,1], x[0,1], set of grid points depending on the small parameters 7 and h

[0,1]; x [0,1]% ={(ti,n,ym) : t; =i, i=0,N, x, =nh, n=0,M,
Ym =mh, m=0,M, TN =1,hM = 1}.

Let us

lo = [0~37—_1] y MO = 0‘37_1 —lo 7¢m,n =¢ (:L'nuym) y NMmun = 1] (xnvym) 7Cm,n = (xnaym) )
’I’ZZO,M, m:07M7fTZn,n:f(tZ7$n)ym)7 i:07N7 n:07M)m:O7M'

Firstly, difference scheme for approximate solution of NBVP can be written in the following form:

( T_ ( k+1 - 22}7];:1,71 + v'r]fl_,'r%) - h_2 (vfn,n—l-l - 21}7]?1,71 + vfn,n—l)

—h~ ( m+1n 2Ufn,n+vfn—1,n) +U7]?n,n: m,n’
k=1,N—-1,n=1,M—-1, m=1,M —

U&nzvﬁﬁnzvﬁl,nzvfn,M:Oakzoa Nn—lM 1, m—lM (26)
_309n,n + 41)71n,n - v’r2nn = 27—¢m ns 3'077]\{71 - 4UN 1 + ?)N 2

N—-1 -
= %C_(tj_a) ( ]+1 — 'Umn +’Umn Um n) + 27'77771 n

j=1

n=1,M-1,n=1M — 1.

Secondly, calculation of p, (n =1, M-1m=1,M — ) is caried out by
Pmn = _% { gm n+1 — (NOUW(;—;JA ( ig,n+l>] Cm n (MOU%ZI (,Uf0 - 1) Ui%,")]
+ {Cm,n—l — MoV 522 = (po — 1) mn 1 ]} s {[CmHn - (Novigim (o — 1) m+1n>}

-2 [Cm,n (MO'UL%J# (,UO — 1) vn%,n)] Cm—l,n — (Movi,%ﬂ n (MO — 1) m 1 n)] } '
Thirdly, we calculate {uf} by
Wy = Vb G = (ol = (0 = 1)) -

Difference problem (26) can be rewritten in the matrix form (24). In this case, g, is a column
matrix with (N + 1)(M + 1) elements, A, B, C, I are square matrices with (N + 1)(M + 1) rows and
columns, and [ is the identity matrix, vy is column matrix with (N + 1)(M + 1) elements such that

_ 0 N 0 N 0 N t
US_[UQS UO,S /ULS vl’s /UM7S UM,s] ,S—H—l,n,n—i—l.

MATHEMATICS series. Ne 3(99)/2020 13
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Denote by
1 4 1
a:ﬁ’q:1+72+ﬁ7r:72'
Then,
O O O O ] Q@ O O O ]
O FE O O O D O O
A=C=| ... B = e
O O E O O O D O
| O O 0O 0O | | O O 0O @ |

E = diag(0,a,a,...,a,0),Q = Int1)yx(n+1), O = O(Np1)x(N+1)
g'rk;hn = _f(tk>$n7ym)v k= 17N_ 17 n = 17M_ 17m: laM_ 17

di; =q,di—1;=r,dij 1 =r,i=2,N,dyy =-3,dio =4,d13 =—1,
dN+1.N+1 = 27 (M + 6—(tN—§)> —3, dyy1n =27 (e*(iNisz) + e*(twilfﬁ) B 6_<tN_5)> 4,

dNt1,N-1 = TE_(W{?’_%) + Te_(tN;_%) - Te_(tN;_%) =1, dyvy11 =27 (_ﬁ - _(tl_%)) ;
dnirs =27 (_6_(2_7) S D e (D)) g = re(78) _ pe(s78) _ pelan®)
AN+1j = 3 (ef(t“’%) te(tim3) o (tim-3) _ e’(tj“’%)) j=4,.,N—2

d; ; = 0, for other i and j;g?n,n = 2T Pmm, g%n =2TNmm, n=1,M -1 m=1,M — 1.

In Tables 4-6, errors approximations in case N=M=10, 20, 40 for u, v and p are displayed. It can be
seen from Tables 4-6 when N, M are increased two times that errors are decreased with approximately
ratio &.

1

Table 4
Test example (25) - error v
DS \ (N, M) (10,10) (20, 20) (40, 40)
2nd order of ADS 4.75 x 1073 1.18 x 1073 2.97 x 10~*
Table 5
Test example (25) - error u
DS \ (N, M) (10, 10) (20, 20) (40, 40)
2nd order of ADS 2.43 x 10~* 6.23 x 107° 1.56 x 107°
Table 6
Test example (25) - error p
Approximation \ (N, M) (10, 10) (20,20) (40, 40)
2nd order 3.42 x 1074 1.15 x 1074 3.07 x 107°
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Y. Ambipasnsies, A. Yaii

NuTerpaaabik miapThl 0ap »KoHe KaiiTa
aHbIKTarad HeliMaH TUOTI 3JIIMIICTIK Kepi
€CelnTiH CaH/JbIK ecenTeyi

OPTYPJIi HAKTHI IIPOIECTEPl MOJEIBIEY Ke3iHe 1epbec TYyBIHABLIb JudOEPEHITHANIBIK, TEHIEY YIMH Je-
PEKKO3/1ep/i CONKEeCTeH APy ecenTepiH IIelry 9icTepi MaHbI3IbI POJI aTKapasbl. MakaJia HHTErpasIblK
maprel 6ap TYBIHABL YINH Gesrisi 6ip ecenTiH 3JUIMIICTIK anIpOKCHMAIMSCHIHA apHAJraH. AJFamkbiia,
Kepi ecen TYBIHIBI VIIH WHTETPAJIIbIK IMapTTapbl 6ap Oeitiokaab KaHmail mga Oip KOMEKI ImeTTik
ecenrrepre okesemi. Tenmeymin napamerpi OeMJIOKAJIb KOMEKIN  €CerTi IIMelIKeH COH aHBIKTaJIaIbl.
AGcTpakTili AaHBIKTAJFAH  SJUIMICTIK €CENTi KYBIKTAIl IIIeNry VIMH eKIiHIN JOJIIKTIH afbIPhIMIbIK
cxemachl  ycbIiHBLTFAH. OmnepaTtop TOCITIH KOJJaHA OTBIPHIN, AWBIPBIMIBIK, €CENTiH ImemnnMiHig 6ap
ekengiri mopureserai. CajblHFAH afbIPMAIIBUIBIK, CbI30ACHIH IIEINly YIIH TYPAKTBbUIBIK I[I€H M9XKOYpJIiiK
TYPaAKTBUILIK, OaraiaHybl OpHATHLTFaH. KeifiH aJbiHFalH abCTPaKTI/I HOTHXKEJIep WHTErPaJIIbl IIapTTapbl
bap Heiiman Tumiageri /UIMICTIK KON  OJIIIEMJIl afbIpbIMJIBIK, €CeNTEepPiHiH MIeNNMiHIH OpPHBIKTHIIBIK
GaraMbIH  ajy VIIH KojjaHbuianbl. KopbeiTeiasiiait keine, MATLAB 6GarmapiaMachiH  KoJigaHa
OTBIPBII, €Ki OJIMeMJl >K9HEe VI OJIIeMJl TeCTIK MbBICAJIAPhIH KbICKAIA TYCIHIAIpMeCiMEeH »KoHe
CaHJIbIK, HOTHUXKECIH YCHIHAMBI3.

Kiam ce3dep: alibIPBIMIBIK, CXeMa, SJUIHICTIK Kepi ecel, KaiiTa aHbIKTAJIFaH, NEPEKKO3Il CofKeCTeHIipy
MoceJIeCi, OPHBIKTBIIBIK, MOKOYPJIl TYPAKTBIIBIK, OaraMbl.

Y. Ameipasbie, A. Yaii

YHucaenHoe perieHne JIJIUIITHYECKON
oOpaTHOIi 3a/IaYi C MHTETPAJIbHBIM yCJIOBUEM
u nepeonpeaeaenneM tuiia Heiimana

IIpu MomennpoBaHNN PA3IMIHBIX PEATHHBIX IIPOIECCOB BaXKHYIO POJIb UTPAIOT METO/IbI PEIIeHUs 3aJa4un
UIeHTUDUKAIUYA UCTOYHUKA I ypPaBHEHUs] B YACTHBIX NPOM3BOAHBIX. Hacrosimasi crarbs IOCBAINEHA
ANIIPOKCUMAIINY SJJIMITUIECCKON IepeolpelleIcHHON 3aladld ¢ MHTErPAJIbHBIM YCJIOBHEM JJId IIPOU3BO/I-
HBIX. BHadasie obparHas 3ajada CBOJMTCS K HEKOTOPOH BCIIOMOIraTe/bHON HEJIOKaJbHON KpaeBoil 3aja-
be C MHTErpajbHBIM I'DAHUYHBIM yCJOBUEM /I IIPOM3BOJHBIX. IlapaMeTp ypaBHEHUs OIpPeesIsieTcs I10-
cJle pellleHnd 3TOH BCIOMOraTesJbHOM HeJOKaJdbHOU 3amadun. IIpemyioxkena pasHocTHasd cxemMa BTOPOIO IIO-
PsI/IKa TOYHOCTH JJIsi IPUOIMKEHHOIO PelleHnss abCTPAKTHOM IePeoIpe/IeIEHHON ITUITHIECKON 3a/1a9n.
C mOMOIIBIO OIIEPATOPHOTO IOJXO/A JOKA3aHO CYIIECTBOBAHME DEIleHHs] Pa3HOCTHON 3asadu. st pere-
HUS IIOCTPOCHHON Pa3HOCTHOMA CXEMBbl yCTAHOBJICHBI OLICHKH YCTOMYMBOCTH W KOIPUUTUBHON yCTOHYIWBO-
cru. llo3nmnee monmydyeHHble aOCTPAKTHDBIE PE3YIbTATHI MIPUMEHSAIOTCS [JIsl TOJyJIEHUs! OIEHOK YCTOWYMBO-
CTHU PEIIEeHUsT TePEOIPEJIeIEHHBIX JUINITUIECKUX MHOTOMEPHBIX Pa3HOCTHBIX 3ajad Tuma Heiimana c
MHTErpaJibHbiMU ycsioBusaMu. Kpome toro, ucnonbdysi nporpammy MATLAB, aBropamu mpemcrabie-
HBl YHCJIEHHBbIE DPE3Y/IbTATBHI JJIsI JBYX- U TPEXMEPHBIX TECTOBBIX IPUMEPOB C KPATKUM OObICHEHHEM
peannsalui Ha KOMIIbIOTEpe.

Karoueswie cao6a: pa3HOCTHAS CXeMa, 00paTHAs SJUIHIITHYECKAs 3a/1ata, IepeolpeiesieHue, npobemMa uieH-
TUDUKAINN UCTOYHUKA, YCTONINBOCTD, KOIPIMTUBHAST YCTONINBOCTD, OIEHKA.
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A comparison between the fourth order linear differential
equation with its boundary value problem

In this paper, we study a fourth order linear differential equation. We found an upper bound for the solutions
of this differential equation and also, we prove that all the solutions are in L* (0,00). By comparing these
results we obtain that all the eigenfunction of the boundary value problem generated by this differential
equation are bounded and in L* (0, o0).

Keywords: linear differential equation, eigenvalue, eigenfunction, upper bound, linearly independent solution,
L? (0, 00), wrongskian, Gronwall inequality, Variation of parameters.

Introduction

The method of finding an upper bound for the solutions of a differential equation has been
investigated by many authors. In papers [2,4] by authors were investigated the solutions of the second

order linear differential equation. They obtained some important properties of this equation such that
all solutions of the differential equation are bounded and in the space L? (0, 00). Here L? (0, 00) is the
space of all functions f which are continuous and satisfy the conditions:

| 1@k < s

0

The estimate of upper bounds for the eigenfunctions of a boundary value problem was investigated by
many authors. In papers [2-6, 10| by authors were investigated a second order differential equation of
the form

v +q@)y=Np()y,zel0a].

They found a normalized eigenfunctions for this problem and an upper bound for this solution under
a certain condions.
Methods of finding of general solution of a fourth order differential equation were studied by many
authors, see: [1,7-9,11].

This paper is specified to study some important properties of solutions of a fourth order linear
differential equation of the form:

yW (@) +{g@) +r@}y@) =0, 0<z<oo, (1)

where 7 (z) is a function satisfying the condition:

/OO Ir (z)| dz < oo. (2)
0

We investigate whether the solutions of (1) are related to any general properties such as boundedness
of the solutions of the differential equation

Yy (@) +q(@)y@) =0, 0<a <o (3)
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Let L*(0,00) is the space of all continuous functions f for which satisfy the condition

/Oo|f(x)]4dx<oo.
0

In this paper we show that all solutions of (1) are in L*(0,00). It is based on the fact that the
solutions of (3) are in L* (0, 00) under the condition (2). Moreover, we show that eigenfunctions of the
boundary value problem which is generated by the differential equation y® (z) +{\ 4+ r (z)} y (z) = 0
are bounded under a certain condion.

Let f(x) and g (x) be real-valued, continuous, and nonnegative in [a, b] and suppose that
f (@) < e+ [ f(t)g(t) dt , in [a,b] where ¢ > 0 is a constant. Then,

f (@) < ¢ elaa®it, (4)
This is known as Gronwall inequality [2].
Ezxpression for the solutions

In this section we found a general solutions for (1) by using the method of variation of parameter.
We need some properties of the differential equations (1) and (3) which are immediate consequence of
the results of chapter two in [2].

Lemma 1. There are solutions ¢; (z), {j =1,2,3,4} of (3) such that
W (¢1, ¢3, 2, $4) = 1 in [0, 00).

Proof. Let y1 (x), w2 (z), wy3(x) and y4 (z)be a fundamental system of solution of (3), then we
obtain W (¢1, ¢3, ¢2,¢4) = ¢ in [0,00), where ¢ is a non zero constant , we take ¢1 (z) = y1 (x),
o2 (x) = yo(x), ¢3(xr) =ys(x) and ¢4(x) = y“—éx), then we can easily establish that
w (¢17 ¢3, P2, ¢4) =1

Lemma 2. 1f ¢; (x), {j =1,2,3,4} are as in Lemma 1 and #(z) is any solution of (1), then there
are unique constants c; for j =1 : 4 such that

Y (x) = c1é1 (x) + capa () + c3¢3 () + cags (v) + 1o (), (5)
where
@) = [ 1026067 (061 (@) + 5 ()03 () 61 () 1 (2) + 6 ()55 (004 (061 (o)

—y (1) b3 () by () 61 (x) — 62 (t) b3 (£) by () b1 () — &g (1) b5 (t) 64 (1) 61 (@)
—61 (t) b () by (t) b2 () — ¢y (£) b3 (t) by (t) b2 (x) — &y (t) P (t) 6a (1) b2 (@)
0y (1) 03 (1) by () D2 () + 1 () b3 (t) by () P2 () + ) (t) s (t) P (£) P2 ()
61 () ¢y () 6y (£) 03 () + 6y (1) P2 () By () $3 () + by (£) by (£) ba (t) &5 ()
—y (1) ¢ (t) ¢>§g (t) 3 (x) = 61 (1) 40 as; (t) ¢5 () — as;’ (1) czs% (t) da (1) b3 (x)
—d1 (1) by (1) b3 () da (x) — by () G2 (t) G5 (£) 4 (x) — 1 (£) Py (£) b3 (t) da (2)
o () 2 (L) 5 (£) Pa () + 61 (£) By () P () da (%) + by () by (t) B3 (t) a ()]
xr (t) 1 (t) dt.

Proof. If 1 (x) is a solution of (1), then as we see in [2| by using variation of parameter there is
unique constants c;such that

Y (x) = c191 (7) + ca¢2 (7) + c3¢3 (7) + cags (z) + 2o () , (6)

where

Yo () = c1 (z) ¢1 () + 2 (2) P2 () + ¢3 (x) d3 (2) + ca () Pa (2) (7)
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and

T W (@1, ¢3, P2, 04) (t)
W (¢1, @3, P2, d4) (1 )r(t)w(t) dt. (8)

From Lemma 1 it follows that W (¢1, ¢3, ¢2, ¢4) = 1.Therefore, (8) has the form

= [ W (60,00, (00 0) . (9)
For r = 1, we have that
0 ¢2 (t) 3 (t) 4 (t)
Wi (1, P2, ¢3, ¢4) (t) = 8 gif Eg j;" Eg 23 8
L o¢y (t) o5 (1) ¢y (1)

1"

= ¢ () ()¢ (t) + 65 () &3 (1)

( ( G (1) + 62 (1) &3 (1) ba (£) — 65 () &3 (1) 64 ()
— 2 (1) b3 (1) 5 () — b (1) &5 (¢)

b4 (1) .
That is

Wi (41, b2, 03,01) (1) = @2 (t) b5 (t) &y () + ¢y () (><z>4(t>+¢>;(t)¢§ (t) ¢4 (t)
—y () b3 (1) by () — 2 (L) 5 (£) Py (£) — oy (1) o

For r = 2,3, 4,applying the same way, we obtain

Wa (61,02, 03, 04) (t) = —1 () ¢ () by () — &y (£) b3 (t) by () — &y () b3 (t) da (L)
oy () 03 (t) dy () + b1 (£) b3 () by (£) + by (t) b () Pa (1)

Wi (61, 60,03, 62) (£) = 61 (£) &2 (1) &1 (1) + 61 (1) & ()¢(t)+¢>1()¢> (t) ¢4 (1)
— 61 (1) b2 (8) &y (1) — 1 (1) 6a (8) & (1) — 61 (1) b (1) 64 (1),

Wi (b1, 02,63, 04) (1) = —1 (£) by (£) P35 () — by () b2 () b3 () — ¢y (1) &5
67 (t) 62 (t) bs () + 1 () by (1) b3 (1) + 1 (t) &,

Substituting these values of W, in (9) and then (9) in (7), we get the result.

- S

Bounded solution

In this section we obtain that all solutions of (1) are bounded. It is based on boundednees of
solutions of (3) and condition (2).

Theorem 1. Let that all solutions and their derivatives up to order three of (3) be bounded in
[0,00) and the condition (2) is hold, then all the solutions of (1) are bounded in [0, c0).

Proof. Let ¢1 (z),¢2 (z), ¢3 (z) and ¢4 (z) be four linearly independent solutions of (3) such that
W (p1, P2, p3,04) = 1 and let ¢ (z) be any solution of (1), then by Lemma 2 there are constants
c1,C2,c3 and ¢4 such that
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Then by hypothesis there are constants C, ko, k1, k2 such that |r ()] < C in [0, 00), and
4 PENT!
S5 15 @)ldr < ko, 52|65 @) dw < ki, J57 |0 @) dr <k for j=1,2,3,4.
Now, applying the Holder’s inequality for integral, we get

1"

| / (62 (£) b3 () by (£) b1 (x) + oy (1) b3 () by (£) 61 () + &5 (t) b5 (t) G4 (t) D1 ()
—y (£) @3 () by () b1 (x) — 2 () g () by () B1 (x) — By () B3 (t) Ga (£) B ()
—1 (t) @3 () by () b2 () — ) (1) P3 () by (t) B2 (x) — &y (£) by (t) Ga (t) b2 ()
oy () s (L) 6y (£) P2 () + 61 (£) b5 () By () d2 (%) + by (t) b3 (t) ba (t) 2 ()
o1 (1) dy () by (£) 03 () + ) (1) d2 () by (£) B3 (2) + &y (£) by (t) Ga (£) 63 ()
—y (£) @2 () ¢y () b3 () — 1 () By () by (t) B3 (x) — By () Do (t) Ga (£) b3 ()
—p1 (t) by (1) b3 () da () — by () B2 (t) G5 (£) 4 (x) — ) (£) Py (£) b3 (t) da ()
6y (£) 62 (t) by () da () + b1 (1) by () B3 () b4 (%) + by (£) 5 (t) 63 (t) 64 ()]
|

X
=
—~
~
~—
<
—
~
S—
QU
~

IN

6C |41 (z k0k1k2i[/0 I (¢ 4dt} 6C |2 (z kokll-@i[/ I (¢ \dt}

+6C |3 (2)] (ko ko) {/Ox |4 (8)] dt] : +6C |4 (2)] (kokikz) T [/0 ¥ (¢ )’464 :

= 6C(kokik2)® (|61 (2)] + |62 ()] + |03 (2)] + | (2)]) UF ().

Now, from the equation (11) it follows that

[ (@)] < ler] [¢1 (@) + lea| 92 (@) + es| [@3 (2)] + [l |da (2)]

+6C (kok1k2) T (|61 (2)] + |62 ()] + |63 (2)] + |6 (2) )T ().

Then
W@ < (el |61 (@) * lca| [@2 ()| + les| |@s (2)] + lea| |4 (2)]
+6C (kok1ka) T (|61 (2)] + |62 (2)] + |és (2)] + |6 (2)]) UF ()
Using the elementary inequality for any two real numbers z,y
(z+y)* <8 (z* + %)

and equation (12), we get

@) < (el lo1 @) +leal 162 (@) + les| @3 (@)] + lea] [da (2)])*
+1296C* (kokika) (|61 ()] + |2 ()] + 63 ()] + |4 (2)) !0 (2) .

Using the elementary inequality for any real numbers a, b, ¢, d
(at+btetd)* <64 (a*+b*+ct+d?)
and equation (13), we obtain
@)t < 64 (jerl! o @I+ leaf! o2 (2)]* + lesl” s (@)|° + leal* 161 (2)]*)

18294404 (kok1ks) ( 61 ()" + |2 (@)* + |¢3 (@)|* + |pa (w)l4)
XU (x).

(12)

(13)

(14)
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Integrating (14) over [0, X], we can write

X X X
/ W @)de < 64’ / 61 (@) de + |caf? / (62 (2)|*de
0 0 0
X X
es)! /0 163 (2)*dz + |eaf* /0 64 ()] dz)
X
+82944C* (koky k) /O (161 (@) + |62 (x)]*
s @) + [oa (@) (2) da
<

64ko (Jea|* + leal® +lesl* + el )

+829440* (kok1ko) /O X( 61 ()" + o2 (2)[*
+ |3 (@) + |64 (@)1 (2) da.
That means
W (2) < 64k (Jeaf* + leal® +lesl* + Jeal )
+82044C" (o) [ T @1+ 6@+ @1+ o @)) ¥ @)da

Then, using the Gronwall’s Inequality, we obtain

w(X) < 64k (lal" +leaf* + sl + el )
829440 (kokik2) [5° (1o1(@)|"+ [2(a)*+ |¢3(@)|"+ |a(2)|*)de
This means that ¥ (z) is a bounded as X — oco. Thus we get v (z) € L* (0, 00).

Corollary 1. Let A be a complex parameter and there be a value A\g such that all solution and their
derivatives up to order three of the equation

yW+{A-Q(@)}y (@) =0 (15)

are in L* (0,00) when A = \g. Then all solutions of the equation are in L* (0, 00) for every .
Proof. We can write

A=Q(x) =X+ Q(x)+ (A= o).

Then the differential equation has the following form
v+ {0 - Q@)+ (A= )}y () =0.

Comparing with (1) and (3), we obtain ¢ (z) = Ao — @ (z) and r (z) = XA — Ag. This means that r (x)
is a constant function which is bounded in [0,00). Then by using the Theorem 3 we obtain that all
solutions of (15) are in L* (0, 00) for every \.

Conclusion

In the present paper, we study some properties of a general linear differential equation of fourth
order in infinite interval of the form: y¥ (z) + {¢ (z) + 7 (x)} y (z) = 0, 0 < z < oo, where 7 (x)
is a function which satisfies the condition: [ |r (x)|dz < co. A simple application of this result is
provided.
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Kapsan X.®. ?Ksemep, Panmo P.K. Pacyn

Teprianii perTi cbI3BIKTHI AnddepEeHITNATIIbIK
TeHaey/dl OHbIH HIeTTIK ecebiMeH CaJIbICTBIPY
Makasaga TepTiHim perTi chI3bIKTHI auddepeHnnaiabK TeHIeY KapacTbipbliran. ABropaap 6y audde-
PEHIAJIBIK, TEHJEY/IiH >KOFaprbl OaraMbIH, COHBIMEH KaTap OapJIblK IIerriMi L4(0, 00) TabbLIATHIHIBIFBIH

JTRJIEJIIIETeH. AJIBIHFAH HOTUXKEJIEP/Ii CAJIBICThIPa KeJie, ochl auddepeHnuaablK TeHACYIACH TYbIHIAFaH [1eT-
TiK ecenTiy O0apJIbIK MEHIMKTI DYyHKIMSIAPHI IIIEKTEITEH KOHE L4(0, 00) OPHAJIACKAH GOJIBIT TaOBLIAIBI.

Kiam cesdep: cbI3bIKTHI AudHePeHIUIAIbIK, TEHIEY, MEHIIIKTI MOH, MEHIIIKT] (DyHKIINS, YKOFaprbl HaraMbl,
CHIBBIKTHI ToyeJIci3 merrimi, L2 (0, infty), Bpouckuan, ['poHyOIIIa TEHCI3AIN], TYPAKTHIHEI BAPUAIMIAY.
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Kapsan X.®. ?Ksemep, Panmo P.K. Pacyn

CpaBHeHue JmHeitHOro AuddepeHnuaapbHOTO ypaBHEHA A
9eTBEepPTOTO TOPHAIKA C ero KpaeBoii 3ajadveit

B crarbe usydeHo smHeitHoe nuddepeHIaibHOe ypaBHEHNEe YeTBEPTOro Iopsiaka. ABropamu HafijeHa
BEPXHsIsl OLEHKA JJIsl PellleHuit 5Toro audhepeHnnanibHOro ypaBHeHUs], a TaK¥Ke JOKA3aHO, YTO BCE Pelle-
must naxonsares B L*(0,00). CpaBHUBAS 3TH PE3YJILTATH, ABTOPHI MPUITLIA K BBIBOJLY, YTO BCE COBCTBEHHbIE
dyHKIMK KpaeBoil 3aja4uu, NOPOXKAeHHbIE 3TUM JuddepeHIaNbHBIM yPABHEHNEM, ODAHUYEeHBl U HAXO-
nsrest B L0, 00).

Kmouesvie caosa: nuneitnoe muddepeHmaabHoe ypaBHeHne, COOCTBEHHOe 3HaYeHne, COOCTBeHHAas (DyHK-
IS, BEPXHss OIEHKa, JHHeino Hesapucumoe pemrenne, L2(0, infty), Bponckuan, nepasencrso ['ponyosiia,
BapHAIWsl [IOCTOSIHHBIX (IIapaMeTpPOB).
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Existence and uniqueness of solutions for
the system of integro-differential equations with three-point
and nonlinear integral boundary conditions

The paper examines a system of nonlinear integro-differential equations with three-point and nonlinear
integral boundary conditions. The original problem demonstrated to be equivalent to integral equations
by using Green function. Theorems on the existence and uniqueness of a solution to the boundary value
problems for the first order nonlinear system of integro- differential equations with three-point and nonlinear
integral boundary conditions are proved. A proof of uniqueness theorem of the solution is obtained by
Banach fixed point principle, and the existence theorem then follows from Schaefer’s theorem.

Keywords: three-point boundary conditions, nonlinear integral boundary value problems, existence and
uniqueness of solutions, fixed point theorems.

Introduction

Multipoint boundary value problems for ordinary differential equations play a crucial role in various
applications. It is epitomized the fact that, given a dynamical system with n degrees of freedom,
there may exist exactly n states detected at n different times. A mathematical description of such
a system results in an n-point boundary value problem. Another source of multipoint problems is
the discretization of certain boundary value problems for partial differential equations over irregular
domains with the method of lines. Multipoint problems for ordinary differential equations are a
particular class of interface problems, and hence solvable with different techniques [1-4].

Integro-differential equations are encountered in many engineering and scientific disciplines, the
problems can be represented as continuum phenomena and can be described approximately to partial
differential equations. Many forms of these equations are possible. Some of the applications are unsteady
aerodynamics and aeroelastic phenomena, viscoelasticity, viscoelastic panel in supersonic gas flow, fluid
dynamics, electrodynamics of complex medium, many models of population growth, polymer rheology,
neural network modeling, sandwich system identification, materials with fading memory, mathematical
modeling of the diffusion of discrete particles in a turbulent fluid, heat conduction in materials with
memory, theory of lossless transmission lines, theory of population dynamics, compartmental systems,
nuclear reactors, and mathematical modeling of a hereditary phenomenon. For details, see [5-7| and
the references therein. Integral boundary conditions have various applications in applied fields such
as blood flow problems, chemical engineering, thermos-elasticity, underground water flow, population
dynamics, and so forth. For a detailed description of the integral boundary conditions, we refer the
reader to a recent paper [8]. For more details of nonlocal and integral boundary conditions, see [9-16]
and references therein.

In the last few decades, the study of differential equations with nonlocal boundary conditions has
been an interesting subject of mathematics, that has recently received the most significant attention
of researchers; the reader is referred to [17-27]. It has been proposed by several authors that existence
results for boundary value problems may be useful in real world problems. (see e.g., [28-30] and the
references therein)
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Problem statement and preliminaries

In this section, we set up problem statement and lemmas which are used throughout this paper.
We denote by C([0,7], R") the Banach space of all continuous functions from [0, 7] into R™ with the
norm ||z|| = max {|z(¢)| : t € [0,T]}, where |-| is the norm in space R".

We consider the existence, uniqueness of the system of nonlinear differential equations of the type

o(t) = f(t,x(t), (xx) (), te [0,T], (1)
subject to three-point and nonlinear integral boundary conditions

T

Az(0) + Ba(t) + Ca(T) = / ¢ (x (1)) dt, @)
0

where A, B,C are constant square matrices of order n such that det N # 0, N = A+ B + C;
f:0,T]xR"xR*"—- R"q: R"— R", g:1[0,T] x [0,T] x R" — R" are given functions, t; satisfies

the condition 0 < t; < T and (yz) ( fg (t,s,x(s))ds.

For simplicity, the problem can be 1nterpreted as solving the following problem:
Lemma 1. Suppose p € C([0,T], R™) and det N # 0. Then the unique solution of the following problem

o(t) = p(t), tel0,T] (3)

with three-point boundary conditions

T
Az(0) + Bz(ty) + Cx(T /n (4)
0
is given by
T
x(t) =d+ G(t,7)u(r)dr, (5)
0
where t.7) [ |
| Gt T), t e 0,11,
Gt = { Golt,7),  te (T
such that
N—'A, 0<7<t
Gi(t,7) = N-YB+0) t <1<ty
—N*lC, tih<7T<T
and
N_IA, 0<7<ty,
Ga(t,7) =< N7YA+ B), t <1<t
—N~tC, t<t<T
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where z is an arbitrary constant vector. Now we define x( so that, the function in equality (6) satisfies
the condition (4)

t1 T
mzd—N*B/y@ﬁ—N*C/u@ﬁ. (7)
0 0

Now we put the value zy determined from the equality (7) in (6) and obtain

~—

t1 T t
ﬂw:d-N*B/M@ﬁ—N*c/u@ﬁ+/pumm (8
0 0 0

Assume that, ¢t € [0,¢;]. Then we can write the equality (8) as follows:

t1 t1

z(t)=d— N7'B /t,u(T)dT—f—/,u(T)dT - N"!C /tu(T)dT—i—/u(T)dT
0 0

t t

T t
N*C/p®ﬁ+/ﬁﬁMr )
t1 0

We get (9) combining similar terms, and using the common technique for simplifying:

z(t)=d+ (E—N'B-N"'C) /,u(T)dT — (N"'B+N7'C) /M(T)dT
0 t

T ¢
—N_IC/u(t)dt:d—i—N_lA/,u(T)dT
t1 0

t1 T
_N'WB+C0/MuMT—Nlc/p@mu (10)

where E is an identity matrix.
Define new function as follows:

N4, 0<7<Ht,
Gl(t,T): —N_l(B+C), t <71 <y,
—-N~1C, ti<7t<T.

Equality (10) can be rewritten as integral equation below:

T
x(t) = d—l—/o Gi(t,m)u(r)dr.

Now assume that, ¢ € (t1,7]. Then we can write the equality (8) as follows:

t T

x(t) :d—N‘IB/,u(t)dt—N_lC/,u(t)dt—N_IC /M(T)d7+/y(7)d7
0 0

t1 t
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t1 t1

+/u(t)dt - /,U,(T)dT =d+ (E-N'B-N"'C) /u(t)dt +(E-N"'0) /M(T)dT

0 0
t T
—N~ 10/ dr—d+N1A/ t)dt + N1 (A + B) /u dT—NIC/u
t1 t
We establish a new function as follows:
N_lA, 0 S T S t17
Go(t,7) =4 N HA+B), t<r<t,
—-N—1c, t<71<T.

Hence, if ¢t € (t1,T], then we can write the equality (8) as follows:

T
xz(t) =d+ /Gg(t,T),u(T)dT.
0

Thus, the solution of the boundary value problem (3)-(4) can be shown as follows:

T
:d—l-/G(tT
0

We showed that the argument given above is valid (5). Proof is completed.
Lemma 2. Assume that f : [0,7] x R" x R® — R", ¢ : R" — R" are given functions. Then the
function x(t) is a solution of the boundary value problem (1)-(2) if and only if x(¢) is a solution of the

integral equation
T

x(t) =D+ / G(t,7)f(r,z(7), (xz) (1))dT, (11)

0

D=N"1 [ qz(t))dt
/

Proof. Let z(t) be a solution of the boundary value problem (1)-(2).Proving statements similar to
Lemmas 1 this lemma can be derived. By checking directly we identify the solution of integral equation
(11) satisfies the boundary value problem (1)-(2). Lemma 2 is proved.

where

FExistence results

Let P be an operator such that, P : C(]0,T], R") — C([0,T], R") as

T
(Pz) (t) = N- 1/q dt+/Gt N (), () (7))dr
0

It is evident that, the problem (1)-(2) is equivalent to the fixed point problem z = Pz. Thus, the
problem (1)-(2) has a solution if and only if the operator P has a fixed point.

In Lemma 1, we use the most basic fixed point theorem named the contraction mapping principle and
it uses the assumptions:
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H1) There exist constants M, My such that

|f(t, x1,22) — f(t,y1,92)| < My |21 — y1| + M2 [ze — yo

for each ¢t € [0,T] and all 1, x9,y1,y2 € R™.
H2) There exists a constant M3 such that

lg (t,s,2) —g(t,s,y)| < Ms|z—y

for each ¢,s € [0,7] and all z,y € R".
H3) There exists a constant My such that

g () —q(y)| < My|z —y|

for all z,y € R™.
Theorem 1. Assume that, the assumptions H1)-H3) hold, and

M2M3T2>
2

L= [S (MlT + + MyT HN‘lﬂ] <1, (12)

then the boundary-value problem (1)-(2) has a unique solution on [0, 7], where

S= max |Gt T1)].
[0,T]x[0,T]

MyTS+mgT||N~1|
1-L

Proof. Setting I[n%g}( |f(t,0,0)] = My, I[n%ﬂx l¢ (0)] = mg and choosing r > we show
0, 0

that PB, C B, where ’
B, = {x € C([0,TIR") : ||z|| <}

For x € B,., we have

I(Po) @) < | N [ (e ®) - a )] +la ) dt
0

T
+ / Gt (1 (ra(r), (x2) (7)) — (70,0 + |£(r,0,0)]) dr
0

2

||| + ST My

2
< [M4T IV + S <M1T + MQAfTﬂ r+STM;+mT|[N7| <.

Now for any x,y € B, we have

(Pa) (1) - "

T

+ N‘lof(q (z (1) —q(y (1)) dt

- (fmm, J ot .2 () ds) — Fry(r), g (5.5 () ds)
0 0

T t t
<5 [ {110~y O1+ Mo (s, () ds = o s as| b
0 0 0
T
+M4HN_1HOf\:c(t) (t) dt < [ (M1T+%3T2) +M4THN—1M |l — yl|,
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or
[Pz — Pyl < Lz —yl.

It is seen that, P is contraction by condition (12). So, the boundary-value problem (1)-(2) has a unique
solution.

Theorem 2 ( Schafer’s fized point theorem). Let X be a Banach space. Assume that, G : X — X is
a completely continuous operator and the set p = {z € X|z = Gz, 0 < 5 < 1} is bounded. Then G
has a fixed point in X.

Now we apply Schafer’s fixed point theorem and it uses the following assumption:
Theorem 3. Assume that the functions f : [0,7] x R™ x R™ — R™ and ¢ : R™ — R"™ are continuous
and there exist functions p, A € C ([0, T], R") such that |f(¢,z(t), (xz) (t))| < p(t), |g(z ()] < X (1),
vVt € 0,71, z € C(]0,T], R™) and with sup |p(t)| = ||pl|, sup |A(¢)] = ||A|l. Then the boundary value
te[0,T7] t€[0,T

problem (1)-(2) has at least one solution on [0, 7).

Proof. Let P be the operator defined in (12). We use Schaefer’s fixed point theorem to prove that P
has a fixed point. The proof will be given in several steps.

Step 1: Here we prove that P is continuous. Let {x,} be a sequence such that z,, — = in C ([0,7]; R").
Then, for each t € [0, 7]

[(Pz) (t) = (Pn) (1)

T T
N Of (¢ (z (1) = q(zn (1)) dt + E)fG(lt,T) (f (ryz (7)), (xx) (7)) = [ (7,20 (7) , (xn) (7)) dT

My MsT?

< [S <M1T+ 5 ) +M4THN1||] |z (t) — 2 ()] < L||z — ]| -

From here we get ||(Pz)(t) — (Pzy)(t)]] — 0 as n — oo, which implies that the operator P is
continuous.

Step 2: P maps bounded sets into bounded sets in C ([0, 7] ; R™). Indeed, it is enough to show that for
any 1 > 0 there exists a positive constant w such that for each € B, = {z € C'([0,T]; R") : ||z| < n}
we have || P (z)|| < w. We have for each ¢ € [0,T]

|(Pz) ()] < T [|NTHHIM + TS |l -

This implies that
[(Pz) @) < T[N+ TS ol -

Step 3.The operator P maps bounded sets into equicontinuous sets of C' ([0,7], R"). Let
71,72 € [0,T], 71 < T2, B, be a bounded set of C ([0,7]; R") as in Step 2, and let z € B, .
Case 1. Let be 71,7 € [0,t1]. Then,

(Px) (m) — (Px) (m) = N~'A / f oz (r), (xa) () dr
0
~NYB+C) / f(r.x(r), (xz) (7)) dr — N1 4 / f(r.x(7), (xz) (7)) dr
T2 0

NTL(B+0) / £ (rz (r) , (xe) (7)) dr = / f(rz(7), (xz) () dr.
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Case 2: Let be 71 € [0,¢1] and 72 € (t1,T]. Then

(Pz)(12) — (Px) (1) = N_lA/f(Tjw(T%(Xfr) (1)) dr
0

‘1(A+B)/f(ﬂw(7)( 2) (7)) dr — N lo/fm (xz) (7)) dr

N4 / f(ra(r), () (7)) dr + N7L(B + C) / f(rz(7), (x) () dr

T1

+N10/f(r,a:(r),(xx) (T))dTZ/f(TafC(T)a(Xl’) (7)) dr.

Apparently, in both cases

[(Pz) (2) — (Pz) (n)] < /|f(7',:13(7'),(xx) ()] dr.

T1

As 7 — 7, the right hand side of the preceding inequality tends to zero. Taking into account
that the mapping P is continuous and equivalently continuous, we conclude that the mapping
P:C([0,T],R") — C(]0,T], R"™) is completely continuous by Arzela-Ascoli theorem.

Step 4. We show that a set Q@ = {z € C([0,T],R") : x = AP(x), for some 0 < A < 1} is bounded.
Assume that, z = AP (z) for some 0 < A < 1. Then for each t € [0,T], we can write

T T
x(t) = )\N_l/q dtJr)\/G (1), (xx) (7))dr.
0 0

From here we get
lzll < T | NTHIA -+ TS [lp]l -

Therefore, the set € is bounded. The conclusion of Theorem 2 applies and the operator P has at least
one fixed point. So, there exists at least one solution for the problem (1)-(2) on [0, 7.

Ezxample
Consider the following system of integro-differential equation

T = sin a x9,

2 = cos (5 fon j;gﬂdt> (4)

subject to
21(0) + 22(0) — z2(3) = 1,

—21(3) + 21(1) + 22(1) = Oflcos dxa (t) dt.
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Evidently,

For t € [0, %], we obtain

11
<7<
<O 0), 0< 1<,
1
Gi(t,7) = <8 _1), t<r<3,
0 0 1
= <
(_1 _1>, 5 <7<,
and for t € (%, 1]
11 1
<7< =
<0 o)’ Os7<3
1
GQ(t77—): <_1 8)7 %<T§t7
0 O
<1.
<_1 _1),t<7'1

Obviously, My = |al, My = |8, My = y|, My = 3] and ||S]| < 2. 16 L = 2 (Jaf + ZPL) + 18] < 1,

then boundary value problem (A)-(B) has a unique solution.
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M.I:x. Mapaanos, f.A. [Mlapudos, K.E. Ucmaiiniosa

Y11 HyKTeJl >KoHe MHTEerpaJiablK MIeTTIiK IMapTTapbIMeH
OepijireH ChI3BIKTHI eMeC MHTerpaJiabl-anddepeHnnanabIk,
TeHaeyJiep »KylieciHiH, nrentiMiiH, 6ap 00Jybl »KoHE KAJIFBI3IbIFBI

MakaJjaga yII HYKTeJIi >KoHe WHTErPAaJIJIbIK, IEKapaJIblK MapTTapbIMeH OepijireH ChI3BIKTBI eMeC WHTerpaJi-
JIbl-auddepeHnualIIbIK TEHIEYIEp Kyiieci 3eprrenred. bacrankpeiaa, I'puH GyHKIMSICH apKbLIbI SKBHUBa-
JIEHTTI MHTErPAJIIBIK TEHEYTe AJIbIN KeJimi. KeilinneH, KO3raJIMalThIH HYKTEIEP TYPAJIbl TEOPEMAHBI KOJI-
JaHa OTBIPBII, IETTIK eCeITiH, MeniMiHiH 6ap 00Jybl YKoHE KAJFBI3AbIFBIHBIH, YKETKIJIKTI IMAaPThI AJIbIHIbI.
ITemriMiziH 2KaIFBI3IBIFB TEOPEMACHIHBIH, JT9JIEJIAEMECI KO3FaIMANTBIH HYKTe TypaJjbl Banax npuHum 6oii-
BIHITIA AJBIHBI, COMaH Keifin 6ap 6oiybl Teopemach Llledep TeopemachiHAH IITBIFAIHL.

Kiam cesdep: yIm HYKTeJI MEKAPAJIBLIK, MAPTTAP, CHI3BIKTHI eMeC MHTErPAJIIABIK, IIETTIK eCcernTep, MeiMiHiH
bap 6OJIybI YKOHE YKaJIFbI3JIbIFBI, KO3FAJIMANTBIH HYKTE TYPAJIbl TEOPEMA.

M.I:x. Mapaanos, 4.A. [lapudos, K.E. Ucmaiinmosa

Cy1iecTBoBaHEe U € IMHCTBEHHOCTDh PEIeHUl AJIsi CUCTEM
nHTerpo-anddepeHImaabHbIX YPABHEHNN C TPEXTOUYEYHBIMA U
HeJINHEWHbIMU WHTETrPaJIbHbIMIA KPA€BbIMHU YCJIOBUSMU

B crarbe nccnenoBana cucrema HeJIMHEHHBIX MHTErpo-Iud depeHINalbHBIX YPABHEHUI C TPEXTOYEIHBIMA
¥ MHTErPaJIbHBIMUA FPAHUYIHBIMEU ycaoBusaMmu. CHatgas a ¢ MoMoIpio GyHKIuN ['prna oHa IpuBeJeHa K K-
BUBAJIEHTHOMY MHTerpaJIbHOMY ypaBHeHMIO. /lajiee, ¢ MCIIOIb30BaHNEM TEOPEMBI O HETIOIBHKHBIX TOYKAX,
IIOJIyYeHBI JIOCTATOYHBIE YCJIOBUS CYIIECTBOBAHHS U €IWHCTBEHHOCTH DeIlleHus] KpaeBoil 3anaun. Jlokaza-
TEJILCTBO TEOPEMBI €IMHCTBEHHOCTH PEIIEeHNUsI [IOJIyIeHO 10 NpuHnniy BaHaxa o HEIIOIBUKHOI TOUKE, & 3a-
TeM TeopeMa CyIIeCcTBOBaHU: ciemyeT u3 TeopeMsbl [Iledepa.

Karouesvie crosa: TpexTouedHble TPAHUYHbIE YCJIOBUS, HEJTUHEHbIE HHTErPAJIbHbIE KPAeBble 3aJat4, CyIIe-
CTBOBAaHME U €IUHCTBEHHOCTDb PEIIEHU, TEOPEMBI O HENIOJABUKHOI TOYKE.
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Nonlocal boundary value problem with Poisson’s operator
on a rectangle and its difference interpretation

In the present paper, differential and difference variants of nonlocal boundary value problem (NLBVP)
for Poisson’s equation in open rectangular domain are studied. The existence, uniqueness and a priori
estimate of classical solution are established. The second order of accuracy difference scheme is presented.
The applications with weighted integral condition are provided in differential and difference variants.

Keywords: Poisson’s operator, nonlocal boundary value problem, rectangle, difference scheme.

Introduction

Firstly, NLBVP for Laplace’s equation in a rectangular domain was considered by A.V. Bitsadze
and A.A. Samarskii [1|. Later, the n-dimensional problem was studied by A. L. Skubachevskii [2].
V. A. I'in and E. I. Moiseev [3] studied 2-d NLBVP with Poisson’s operator on rectangle IT

Au = f(z,y), (x,y) € I1=(0,1) x (0,), N
u(x,()) = u(wi) = u(0>y) =0, u(lvy) = 1;::1 O‘ku({kay)7 T € [07 1]7 /S [O,W], &k € (07 1)

m
and proved the existence and uniquness of classical solution when Y 3(ay + |ay|) < 1, established a
k=1

m

priori estimate |ullyzmy < Cl|f|[r,qr) when —oo < >7 ap <1 andif all ag, & =1,m have the
k=1

same sign and given this condition offered the second order of accuracy difference scheme on a uniform

grid.

In [4], E. A. Volkov demonstrated a simple proof of the existence and uniqueness of classical
solution for Laplace’s equation with the original Bitsadze-Samarskii nonlocal boundary value condition
(NLBVC), proposed a finite-difference method on a square mesh that produces a uniform approximation
by the second order of accuracy in the difference metric C, applied the method to Poisson’s equation
Au =g when g€ C*>* for 0 < A < 1. In [5], he studied a solvability of the multilevel NLBVP for
Poisson’s operator on rectangular domain by applying the contraction mapping principle.

In [6], A. Ashyralyev established well-posedness of NLBVP in the open square Q2 = (0,1) x (0,1)
by proving the coercive inequalities for solution of the differential problem

uge(t, ) +a(r)ug, (t, 1) —6u(t,r) = f(t,x) in Q, u(0,7) = u(t,0) = u(t,1) =0, u(l,2) = u(\,x) inQ,
when smooth functions a(z) and f(t,z) satisfy the conditions

a(:c)zo,f(O,x):O,f(l,a:):f()\,x),0§x§1,0§)\<1,

1
where ¢ > 0 is sufficiently large number. In 2, under the condition [ |p(t)|dt < 1, E. Ozturk [7]
0

studied well-posedness of NLBVP for elliptic equation with integral type of NLBVC (in Q) by reaching
the coercive inequalities for solution of the problem

up(t, ) + (a(x)ugy(t, ) = f(t,x), u(t,0) =u(t,1) =0, u(0,z) = ¢(x),
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1
/p u(t, z)dt + ¢ (z)
0

and offered the first order of accuracy difference scheme against the term Z lp(tj)r| <1, 7=1/N.
j=1
By returning to Laplace’s operator on rectangular domain we note, that various numerical methods
on multilevel and integral type of NLBVPs were researched in [8-11] and other papers.
In the present paper, we generalize and prove the statements of the preliminary abstract [19] and,
additionally, apply our results to NLBVP with integral conditions. We study the problem

AU(.’E,y):f(LU,y), (l‘,y) eI, . .
u(m,()) = u(x,w) = u(O,y) =0, u(lay) = ;1 OZT’LL(CT,y) - ;1 55“(%4/) =0,z € [07 1]7 RS [0777]7

where feC(ﬁ), a, >0, Bs >0, 0<C1 o <G <1 and 0<m < .. <y < 1,
m

—00 < Z ar — Y. Bs <1 when ¢, <m ; Z ar <1 when (, > n . We prove the existence,
r=1 s=1

uniqueness and a priori estimate ||ul[yzqr) < C H fllyqm of the classical solution. Particularly, we

consider the problem when n=m and (. <n., r=1,n and for this special subcase we prove the

n
existence, uniqueness and a priori estimate when w < 1. We offer the finite difference
r=1

variants on a uniform grid and prove the second order of accuracy in terms of h = /h? + h2 for
h1 < cohs, ho — 0 in respect of each difference metrics C' and VV22
As an application, we study NLBVP for Poisson’s equation with weighted integral condtion (WIC)

Au(z,y) = f(z,y), (z,y) €1,
1

u(z,0) = u(z,m) =u(0,y) =0, u(l,y) = [ p(z)u(z,y)dz =0, 0<z <1, 0<y<m
0

respectively the behavior of p(z), p(z) € COro, 7], i.e., [r0,71] C (0,1), p(x) =0 in [0,1]\ [10,71].
We prove the existence, uniqueness and a priori estimate under the conditions on p(x) subject to
whether or no the weight function changes the sign, whether or no the sign changing acts from plus to
minus or vice verca, whether or no the number of sign changes is an even or odd. Particularly, when

!

p(x) does not change the sign and —oo < [ p(x)dz <1, we prove the existence, uniqueness, a priori
70

estimate and offer the second order of accuracy difference sheme.

Differential problem
We consider NLBVP in the rectangle I=(0<z < 1) x (0 <y <)

Au(z,y) = f(z,y), (z,y) €I, (1)
u(z,0) =u(z,m) =0, 0<z <1, u0y) =0, Lul(y) =0,0<y<m,

where

Lu)(y) = u(l,y) Zar (G ) +Zﬂsums,y) 5 (2)
s=1

0< <. <G<L 0<m<..<ny <l Cr#ns, ar >0, Bs >0, r=1,n, s=1,m. We study
the classical solution wu(x,y) € C*(II) N C(II) that satisfies the equation and all conditions of (1).
n

Further, on default, the symbol A1 denotes the term: —oo < > a,— > s <1 holds when {, < n;.
r=1 s=1

The symbol A2 denotes: > a, <1 holds when (, > n;. The A denotes that A1 holds or A2 holds.

r=1
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Theorem 1. Let f(z,y) € C(IT). If A holds, then classical solution of (1) exists and it is an unique.

Proof. Assume that classical solution of (1) exists. To prove the uniqueness it is sufficiently to show
that u(z,y) = 0if f(z,y) =0. Put f(z,y) =0 in II. Then wu(wx,y) is the solution of Laplace’s
equation, therefore, for each natural number k& € N the function

— V2/r [ ule.y)sinlhy)dy )
0
satisfies the equation X} (z) — k*Xg(z) =0, 0 < < 1. Moreover, since u(0,y) = ¢[u](y) = 0, then

X(0) =0, Xp(1 Zarxk ¢r) Zﬁsxk 7s)-

Hence, Xj(z) is the solution of the multipoint problem
X/(z) — k*Xp(z) =0, 0<z <1, Xi(0)=0, ¢([X;] =0, (4)
where ¢[Xj] = Xx(1) — i a, Xi(G) + i BsXk(ns) . By virtue of mean value (MV) property [12,
p. 1198-1199] (see also [1;;8,20]) we getﬁ}llat solution of (4) satisfies the problem! [17, p. 92-93]
Xi(x) = B Xp(2) =0, 0 <z <1, Xp(0) =0, Xi(1) = aXi () — BXk(px) (5)

where 2 o = Z oy, B= Z Bsy ) € [C15Cnl, My € [m1,Mm] and () < gy when ¢, < 1. By virtue

of |16, p. 1298- 1299] we Conclude that ( ) has only trivial solution since A holds, i.e., Xi(z) =0 in the
interval [0, 1]. Hence, from (3), using the completeness of orthonormal system {./2/7sin(ky), k € N}
on the interval 0 < y < 7, we result wu(z,y) = 0 in Il Since the uniqueness is proved, then the
existence follows from Fredholm’s property [2]| inherent (1). Theorem 1 is proved.

Theorem 2. Let f € C(II). If A holds, then for classical solution of (1) a priori estimate holds
lullwzmy < ClALom- (6)

Proof. To prove (6) it is sufficiently to establish the estimates

C Cy
[ Xkl Lo00,1) < ?;|‘fk|‘L2[0,1]7 Xkl oo, < kaHL2[01 1 X% Lap0,1] < CsllfrllLap0,1] (7)
for k € N, where
—V2/r [ f(o.p)sin(ru)dy ®)
0

so that (7) [3, p. 142-143]| results in

ullwzay < Cullfllaanys Nuwallwzan < Coll fllLoan), Nuayllwzany < CsllfllLoa) 9)
2 2 2

'Further in similar obstacles we will say, for example: the problem (4) is reducible to the problem (5), or the nonlocal
condition (4) is reducible to the nonlocal condition (5), or we reduce (4) to (5).

2Further in this section the symbols o and 3 denote the sums a = Z ar and 8 = Z Bs.
r=1 s=1
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and, after all, (9) results in (6). Hence, our target is to prove (7) Thereto, usmg (3) and (8) for equation
Au(z,y) = f(z,y) and conditions u(0,y) =0, wu(l,y) = Z aru(Gryy) — Z Bsu(ns,y) , we conclude
that Xj(z) satisfies the nonhomogeneous multipoint problem (this problem was studied in [16,17])

3

XI(2) — k2 Xp(z) = fa(z), 0 <z <1, Xx(0) =0, Xzx(1) = zijl 0 Xp(G) = 3 BaXi(ns) . (10)

s=1

Actually, the estimate
X)) €€ @) )
k = k‘3/2 k\T LQ[O,I]
results in the estimates (7). Indeed, put Xi(x) = X (z) + ?k(x), where X (z) is the solution of
Xp(2) — KX p(z) = fi(z), 0 <o <1, X(0)=X4(1) =0, (12)
and ?k(m) is the soluion of
X, () — k2X4(2) =0, 0 <z <1, Xu(0) =0, Xp(1) = Xx(1) . (13)

Thereby, it is sufficiently to show that the analog of (7) holds for each of the functions Xi(z) and
X (). Thereto, we use the explicit solution of (13) to get

Rl < | Xy | (Dobebdrye (1)
Rl < & X | (Jocomtithoddrys (15)
X0 < 2 | Xu(1) | (W)” g (16)
and then, in view of W <1 and W < &, from (14)-(16), we get
Rllon < S0 o (Belliaon € S0 lliaoss 1Felliaoa) < OV fellaoa (17

It means that if (11) holds, then (7) holds for the function ?k(x) Moreover, if (11) holds, then (7)
holds for Xy(z) [3, p. 143-144]. Therefore, to establish (7) for X (z) it is sufficiently to prove (11).
Let we prove (11). In view of [17, 92-93] the multipoint problem (10) is reducible to 3-point problem

Xil(x) = k*Xp(z) = fr(z), 0 <z <1, Xp0) =0, Xp(1) = aXp((p) — BXk(m) » (18)

where the points (i € [C1,Cnl, ) € [1M1,7m], so that (g < npy when ¢, < m1. Therefore, it is
sufficiently to obtain the estimate (11) for the solution of (18) when the term A holds.

Let A1 holds, ie., —oo <a—f <1 and ¢, <. Put sign(Xp(1) Xi(np) Xe(Cp)) # 0. We
consider the alternate subcases: sign(Xk(l)Xk(n[k])) = —1 and sign(Xg(1 )Xk(n[k])) 1. Note in
advance, if sign(Xy(1) Xp(np) Xk(Cpy)) = 0, then (11) results from the current proof.

Subcase 1.1 :
If sign(Xi(1)Xk(ny)) = —1, then in view of Bolzano theorem Xj(7) = 0 for 73 € (g, 1). Then
by virtue of |3, 143-144|

1 1
” Xk’ HLQ[O,T;C} < ﬁ kaHLQ[O,Tk} ) || XIZ: ||L2[0,7’k] < % ka||L2[0,7’k} . (19)
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Since Xj(0) =0, then by virtue of Cauchy-Bunyakovskii inequality

Cix
X2 () —|/Xk dx|—2/Xk )Xh(@)de] < 2 Xl oco )l Xellmapges (20)
M[k] N[k]
XR0n) = | [ XE@)del =2 | [ Xu(0)Xp(@)da] 2 10| cto | X o (21
Using (19) in (20) and0(21) we get
| Xl | < 5 elliony | Xl | < 5 lellio )

Put ¢; = a+ . From the 3-point condition (18), in view of (22), we obtain the desired estimate

V2
| Xk(D) | < erogps [l - (23)

Subcase 1.2 :
Let  sign(Xp(1)Xg(np)) = 1. Then sign(Xp(1)Xk(x)) = 1 in view of (18). By virtue of MV
property [12, p. 1198-1199] we reduce the 3-point condition (18) to

Xk(0) =0, Xk (&) = vXk((y) (24)

for & € [, 1] and v = 195 Note, 0 <wv <1 since a—pf <1, (g <& since (g < By
virtue of [12, p. 1199-1200] we specify an appropriate point 74 € [(j, &k, so that the solution of (18)
satisfies the classical boundary value condition

Xi(0) =0, Xp(7h) + huXp(ri) =0 (25)
for hy > 0. Therefore, (19) holds [3, 143-144]. Since () < 7%, then (20) holds, and then the first
estimate (22) holds. Since X(1), Xi(m), X&((x) have the same sign, then in view of (18)

2
(14 B) min{| X (1), [ Xe ()|} < af Xp(py) | < ak{/g [ frll Lafo,1] >

2
min{| X (1)], | X ()|} < 11/%{ 1l zafon - (26)

Hence, the estimate (11) follows from (26) or, in view of (22), results from (18), i.e

V2
| Xe(1) | < 23372 [ fxll 2201 > (27)

_ % if | Xk(D] < [ Xe(np)!
s Ha, i [ Xe(1)] > [Xe(p)] -

Let A2 holds, i.e., a <1 and ¢, £ m. Put () # npy » because if this two points coincide, then
NLBVC (18) transfoms to

Xi(0) =0, Xi(1) = (a = B)Xp (&) for & = (g =mnp while —co<a-pB<1,

so that the estimate (11) holds in view of [3]. Moreover, we consider the layout (y > nyy only,
since for the alternate order when (pj < 7 (note that —oco < a—f < 1 since a < 1)
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the estimate (16) is proved already in the above case under the term A1. Additionally, we put
sign(Xk(1) Xi(nr) Xk(Cry)) # 0. Note in advance, if sign(Xg(1) Xi(np) Xi(Cgy)) = 0, then the
estimate (11) results from the current proof. In summary, we have to consider the alternate subcases
when sign(Xk(l)Xk(C[k])) = —1 and sign(Xk(l)Xk(C[k])) =1 for np < (-

Subcase 2.1 :

If sign(Xk(l)Xk(C[k])) = —1 and 7y < (), then by analogy with the subcase 1.1 we obtain all
estimates (19)-(23).

Subcase 2.2 :

Put sign(Xk(l)Xk(C[k])) =1 and 7y < (- Then we have the alternate inequalities: |Xy((jx)| >
> X ()] and | Xi(Gy)| < Xk(D)].

If X3(Cpry) = Xx(1), then by virtue of Rolle’s theorem X (7x1) =0 for 731 € [y, 1]-

If [ Xp(Cry)l > [Xk(1)], then Xp(1) = v Xy ((y) for an appropriate value vy, 0 < v, < 1. Hence,
by virtue of [12, p. 1199-1200] we specify an appropriate point 7x2 € [(j], 1], so that the classical
boundary value condition holds for hy > 0: X3(0) = 0, X (7k2) + hiXp(7k2) = 0. Thereby, if
| X% (Crp)| = | Xk(1)[, then for some 7y € [y, 1] and hy >0

Xi(0) =0, Xp.(7) + hpXp(6) =0

Since 7 < ([, then using the method of section 1.1 we succesively obtain the estimates (19)-(23).
If | Xk ()l < [Xk(1)], then sign (X () Xe(1)) = sign(Xe(np) Xx(Cpy)) = —1 since @ <1 and
because sign(Xk(l)Xk(C[k])) = 1. By virtue of Bolzano theorem Xy (7) = 0 for 7 € [np), (]
Then, by analogy with subcase 1.1 we get (19), (21) and the second estimate in (22). Hence, if o <1,
then in view of (18)

2
(1= )Xl < Al ell o 2

Put ¢3 = % + /3. Using (18), in view of (22) and (28), we obtain the desired estimate

V2
| Xp(1) | < 37372 [ fll Lafo,1] - (29)
At least, if | X5 ()| < [Xk(1)] but « =1, then to estimate X (1) we reduce NLBVP (18) to
LIXp(z)] = fr(zx), 0 <z <1, Xp(0) =0, Xp(1) = Xi(Cry) — Y » (30)

where L[Xj(z)] = X}/(z) — k*Xi(z) and v = BXp(np). In view of the second estimate in (22)

il < B ell o @)
Put Xj(z) is the sum Xj(z) = Vi(z) + Wi(x), so that Vi(x) is the solution of
LiVig(z)] = fr(x), 0 <2 <1, Vi(0) =0, Vi(1) — Vi({wy) =0, (32)
and Wi (z) is the solution of
LWg(z)] =0, 0 <z <1, Wg(0)=0, Wi(1) = Wi(Cx) = = - (33)

The classical solution of (32) exists and is a unique [12, p. 1198-1200|. By virtue of Rolle theorem
Vi(mi) =0 for 7 € (Cp,1). Then similar subcase 1.1 the analogs of (19)-(20) and the first estimate
(22) hold for Vi(x). Hence, since V(1) = Vi(()

NG
[ Vi(1) | < 132 [ !l £afo,1) - (34)
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sin -1 i

n the other hand, for Cp = —v |1l — —=7— the function ) = Cp= 1s the solution o
On the other hand, for C 1— 2 T the function W, CpSEhkz s the solution of

33) since 1 — in| > 0 for () < 1. Then, in view of 2-point condition (33),

i el > 0 for Gy < 1.Th f d
sinh k¢ -1 /2
Wil < (1= 5 ) sl illzaoa - (35)
Hence, for M = Sslﬁﬁff
1 V2

Wi (1)] < mﬁ@”fk”@[o,u : (36)

Then, in view of (34) and (36), |Xx(1)| < ca 22 || (@)l Loy for e =1+ Frty .
Finally we resume, that for the classical solution of (10) the estimate (11) is proved for the constant
C = max{cy, c2, c3,cq4}. Theorem 2 is proved.
— n
Theorem 3. Let f € C(II), m=n and ( <mny, r=1,n.1f > w < 1, then
r=1
classical solution of NLBVP (1) exists, it is an unique and a priori estimate (6) holds.
Proof. Suppose that classical solution exists. In view of Theorem 2, we rewrite (10) as

LIXip(2)] = fa(@), 0 <z <1, Xu(0)=0, £[X;]=0, (37)

where L[Xg(z)] = X[/(z) — k*X)(2) and £[X;] = Xk(1) — Y [0 Xk () — BrXk(n,)] - To obtain the
estimate (11) we put Xy(z) = Vi(x) + Wi(x), so that Vk(x)_'s the solution of problem

e

LVi(z)] = fr(z), 0 <z <1, Vi(0)=0, Vi(1) =0, (38)

and Wy(z) is the solution of problem
LWi(z)] =0, 0<z <1, Wi(0)=0, (W] =—L[Vk]. (39)
For solution of (38) the analog of (7) holds (see Theorem 2). Hence, since V4 (0) =0 and ¢, € (0,1),

n- € (0,1), »=1,n, then

V2 V2
Ve(Gr)] < WkaHLQ[O,I]a Vie(nr)| < Wka”Lz[O,l] :

Therefore,
- V2
€[V < (Zlm +60)) 573l lago.y - (40)
The problem (39) has the solution Wy(z) = WySEhkr =y, — A ;
1—(sinh k)=! 3" [ sinh k¢ —Br sinh kny |
r=1

where the denominator of Wj, is nozero when 3 > [(ar - Br) + oy — BT|] < 1. In view of (40),
r=1

M=

V2
Wi(1)] < e
k3/2[1 -1 ;(ar — Br + o — B])]

(a’f + 67‘)

1

[ £kl Lafo,1) -

Hence, (11) holds since Vi(1) =0, ie., | Xp(1) | < C% [|fullzaj0, -
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n
At least, put 3 > [(ar — Br) + |y — ﬁ,” =1, then similar (35), but in view of (40), we get
r=1

inh 1. ﬂ
W)l < (1= 22 T[S a4 6)] s fellzapn

r=

where p, 1 <p <n is anatural number, so that

( Bp) + |O‘p | >0, but (ap+i - erJri) + |O‘p+i - Bp+i|

. 5 =0 forall ’L,p<2§nv

and p=n if i doesnot exists. Hence, (11) holds for 3 >~ [(ar—B,)+|ar—B,|] =1 since V(1) = 0.

n

In summary, for the solution of (37) the estimate (11) holds when % > [(ar — Br) + |y — BTH <1
r=1

Hence, in view of Theorem 2, a priori estimate (6) holds for NLIVP (1), thereto the solution of (1) is

a unique and, therefore, in view of Theorem 1 the solution exists. Theorem 3 is proved.
Difference variant
We consider the difference variant of NLBVP (1)

AY = Yfz + ng = f(xiayj)7 (xi)yj) € H>
Yo = Y]yer =0, 25 € [0,1), Yoo =0, y; €[0,7],

[ 1)h = r—1c. h
Ly — Zar{ Zg‘w][( <r+h) 1—Grl +YZ j[C hir 1}}_ (41)

1

_ 258{ %J%’HMJFYMSH W}_YNIJZQ j=T1,Np —1,

\

where iCrh‘l <G < (iCr -+ 1)h1, r = 1,7, inshl <ns < (ins + 1)h1, s =1,
hy < %min{CT—i-l =G, 7 =0,n, Ns41 —ns, s =0,m, |C7“ - 7’8|7 r=1, §
Cat1 = NMmy1 =1, h1 < coha, ha =m/Na.

fOl“ hl = 1/N1,
m}, G =m =0,

S

Theorem 4. Let the term A holds and u € C®(II) is the solution of NLBVP (1). Then solution
of the difference problem (41) approximates wu(z,y) by the second order of accuracy in terms of
= \/h? + h3 when hy — 0 in respect of difference metrics C, W3 .
Proof. We denote z =Y — u and obtain the difference problem

Az=f—Au=F, (ih1,jho) €Il, z|p—0 = z|y=0 = 2|y=r =0, Lz = —Lu. (42)
For this problem F = O(h?), Lu = O(h?) [14, p. 81, 229]. Put z = Z+ 2, where Z is the solution of
AZ=0, (ih1,jhe) €II, Z|pmg = Zly—0 = Zly=r =0, LZ=—Lu, (43)

and 2 is the solution of
Az =F, (ih1,jh) € 11, Z|p—0 = Z|y—0 = £|y=r =0, LZ=0. (44)

kNgl

To estimate Z we use [14, p. 113] the orthogonal system of mesh functions {sin(ky)}; , so that

Z wsin(ky), y=jha, j=0,N
k=1
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thereto Zp, k=1, Ny — 1 is the solution of difference problem
A2k — M2 =0, Zkla=0 =0, LZ=—Q, (45)
where A1Z = Zz,, A\ = 4h2_2 sin?(khy), Qr = (Lu)p so that, in view of [3, p. 142-143],

Zy; = Apsinh(ilng), Ap = —Qx/Llsinh(ilng)], i=0,N1, g, =1+ M\hi/2+ \/\h? +A2h1/4.

By acting £ in the denominator of the fraction Ay, we get

—L[sinh(i1n g;)] > sinh(NVy Ingx) — Z a, sinh((i¢, + 1) Ingy) + Z B sinh(iy, Ingy) . (46)

r=1 s=1
Hence,
—L]sinh(i1n g)] > sinh(Ny Ingx) — S'sinh((i¢, + 1) Ingz) (47)
for
Zar_ Zﬁsa if CTL<7717
S = Tﬁl s=1
Ny, it G>m.
r=1
Then
—L[sinh(i1n g;)] > C'sinh(Ny Ingg) (48)
for C >0,
1, if —o0o< Zar_26s§07 Cn<771;
r=1 s=1
C= 1—(2051”_253), if O<ZQT_ZBS<17 Cn <M1
r=1 s=1 r=1 s=1

1-=> ap, if ap<1, §>m.

Let we show that when S =1 in (47), then the inequality (48) holds for C' =1 — m subject
to an appropriate 0, 0 < ¢ < 1. Indeed, in view of (47)
o ) sinh((i¢, +1)Ingy)
— L[sinh(iln g)] > sinh(N; 1 [1— n }>o.
[sinh(i1n g )] > sinh(N7 In g) Sinh(Ny 0 1)
Hence,
qunJ’_l _ q_(iCn+1)
—L[sinh(i1n g)] > sinh(NV; In gx) [1 — & ~ k,N (49)
9 ' — 9 !
Since g > 1, then
i, t1 (i, +1) icr, +1 —2(i¢,, +1) icn 1
' g g g T g (50)
A i | By "

Since hy <@ for 6 = imin{G1— G, v =0,n, o1 —ns, s=0,m, |G —ns|, v =T,n, s =1, m},
then for specified 6 =1—¢, —6 the inequality ¢, +hy; <1—4 holds. Hence, i¢, +1 < hy*(1—4).
Then from (60) it follows that

iC'nJ’_l _(iCn+1) Nl(lfé)
9 — 4 < dx < 1
N- —N — N- — N :
qx ' — 9 ! 9 ! qx 10
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Hence, in view of (49),

1
—L[sinh(71n g)] > (1 o 6> sinh(Ny Ingy) - (51)
4y,
Since q,ivl > (14 vVAch1)M > (1+vAh1)M > (14 /A1) > 1+ 2 | then from (51) we obtain
L 1 .
—L[sinh(ilng)] > [1 - m} sinh(N7 Ingy) . (52)
In summary, if the term A holds, then
—L[sinh(i1ngg)] > Csinh(Njlngg) > 0. (53)

Finally, in view of (53), by virtue of [3, 150-151], we obtain the estimates

max |Z;| =
l?]

Therefore, max; ; |2;;| = O(h?),

O(h%), |Izllwz = O(h?), max |2i;] = O(h?), |I2llwz = O(h?).

2] lwz = O(h?). Theorem 4 is proved.

Corollary 1. Let n = m, ¢ < ny, = 1L,n. Let u € CW(I) is the solution of NLBVP (1).
n
If > w < 1, then difference solution of (41) approximates u(z,y) by the second order

r=1

of accuracy in terms of h = \/h} + h3 when hy — 0 in respect of difference metrics C, W2
Proof. By virtue of (42)-(46) we get the inequality for the denominator of the fraction Ay:

—L[sinh(71n gg)] > sinh(NV; In gx)
r=1

Since ¢, +1 <14y, r=1,n, then

-3

—L[sinh(iln g;)] > sinh(N7 In g)

n n
— Z a, sinh((i¢, +1)Ing;) + Z By sinh(iy, Ingy) .

r=1

— Br) sinh((i¢, +1)Ingg) .

r=1
Hence,
n i A1 —(ig,+1)
— L[sinh(iln gp)] > [1 =S (ar = B) ( k k- )} sinh(NV7 In ).
r=1 qk Yk
Then
n ZCT‘J’_l (iCr+1)
. . Ay — + |« .
—L[sinh(ilng)] > [1 - Z <( r =) 5 o 6T‘)< k N )} sinh(Ny In gi,). (54)
r=1 qk — 4
Put p is a natural number, 1 < p <n, so that
(ap — Bp) ;‘ lap — Byl >0, but (p+i — Bp+i) ‘2|‘ lap+i — Bp+il —0 forall i,p<i<n
(if such p does not exists, or if such ¢ does not exists, then put p = n). Hence, in view of (54),
i+l —(ig,+1)
—L[sinh(i1ng)] > [1 — 5 O } sinh(Ny In gx) (55)
qk; —q
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for S = > w . By analogy with (50), for g > 1 and for 6 =1—(,—0 we get

r=1
ingrl 7(’i<p+1)
— 1
Qk qk_Nl S NS (56)
qk — 4 qx

since the inequalities (, +h1 <16 and i¢, +1 < hi'(1—6) hold. Hence, the analog of (47) holds,
then (51)-(53) hold, too. Thereby, in view of Theorem 4, the proof is finished. Corollary 1 is proved

NLBVP with integral condition

Here we apply the results of the previous sections to NLBVP with weighted integral condition (WIC).
We consider the differential problem in the rectangular 11

AU(CU, y) - f(x,y), (a:,y) S H’ (57)
u(z,0) =u(z,m) =0, 0<z <1, u0,y)=0Zu(y) =0, 0<y<m,

Tlul(y) = u(t.9) - [ p(o)ula,y)de. (53)

where p(z) € Clro, 11, [10,71] C (0,1), 70 <7 and p(z) Z0 in |79, 71].
Theorem 5. Let the function p(z) changes the sign® no more than once in the interval (79, 71). Let :

T
—00 < /p(x)dm <1, if p(z) does not change the sign, or changes it from plus to minus ;
7o

T1

/ de <1, if p(z) changes the sign from minus to plus .

70

Then classical solution of (57) exists, it is an unique and a priori estimate (6) holds.
Proof. Assume that classical solution exits. Since

/ (1,y) sin(ky)dy = // u(z,y)dx sin(ky)dy = 7[)(»@)(]%%1/) Sin(k‘y)dy> dv

) 0

then from (57)-(58), in view of (3) and by virtue of Theorem 1, we conclude that the function Xj/(z)
satisfies the problem

X(z) — k*Xp(x) =0, 0 <z <1, Xi(0)=0, Z[X}] =0, (59)

T1
where Z[Xj] = Xi(1) — [ p(2)Xj(z)dz . By virtue of the integral type of mean value theorem, we
70
reduce WIC problem (59) to the 3-point problem
X/ (z) — k*Xp(z) =0, 0 <z <1, Xg(0)=0, {[X;] =0, (60)

where
T1

(X = X(1) - ( / Wd) XelGe) + ( / ol dx) Xlm) (6

70

3The sign changing number and order are regarded as argument z shifs towards 7.
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for some (i € (19, 71) and n € (79, 71). Denote

oo [ty Fiol-ato),, ©2)

70
If p(z) does not change the sign, then:
Xk = Xi(1) —aXp(() and 0 <a <1, if p(x)is a nonnegative function ,

[ Xk) = Xi(1) + BXi(nk) and —oo < —F <0, if p(x) is a nonpositive function .
If p(xz) changes the sign, then ¢[Xj] = X (1) — aXk (k) + BXk(nk) , so that

—co<a—pF<1, ¢ <n if p(x)changes the sign from plus to minus ,

a <1, np < if p(x) changes the sign from minus to plus .

Hence, in view of (61)-(62), for the 3-point NLBVP (60) the term A holds in extended form [16, p. 917],
i.e., includes the option when o =0 or = 0. Then, in view of Theorem 1, the problem (60) (and in
turn the problem (59) of course) has only trivial solution Xj(z) = 0, and, therefore, u(z,y) =0 in
the rectangle II. Since the uniqueness for the problem (57) is proved, then the existence follows from
the Fredholm’s property inherent such NLBVP with WIC [15, p. 68-70|.

To prove a priori estimate (6) we follow Theorem 2 and, in view of (8), get WIC problem

Xil(x) = K Xg(z) = fu(z), 0 <z <1, Xp(0)=0, Z[Xx] =0 (63)
(this problem was studied in [17]) and, in view of (60), reduce it to the multipoint problem
Xil(x) = K Xi(z) = fu(z) , 0<z <1, X4(0) =0, ([X3]=0. (64)

In view of (61)-(62) and by virtue of Theorem 2, we ascertain that (11) holds for solution of (64) and,
thereby, it holds for solution of (63). Further proof is similarly of Theorem 2. Theorem 5 is proved.
Corollary 2. Let the function p(z) has an arbitrary order and a finite number of sign changings.

T1
If [ wdx < 1, then classical solution of (57) exists, it is an unique and a priori estimate (6)
70
holds.
Proof. The proof results from Theorem 1 and Theorem 2 by using Theorem 5. Corollary 2 is proved.
Corollary 3. Let starting from plus to minus the function p(z) changes the sign 2n — 1 times in

the interval (79,71) for specified natural number n and ¢&,...,&2,—1 are the sign changing points.
Put =7 and &, =7 If

"4 Sok ok
— <
Z 2( / p(x)dx + ‘ / p(m)dw’ ) <1,
k=1
§2(k—1) Ea(k—1)

then classical solution of (57) exists, it is an unique and a priori estimate (6) holds
Proof. 1t results from Theorem 1-2 and by using of Theorem 3, Theorem 5. Corollary 3 is proved.
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Difference application for WIC

We consider the difference problem

Ylyo = Y]yer = 0, 2; € 0,1), Yl]oeo=0, y; € [0,7],

N (65)
TY =5 27 YpYij+ pic1Yic1j)h — Y, ; =0, j=1,Ny — 1,
i=1

where p(z) does not change the sign, p(z) € C[0,1] and p(z) =0 in [0,70] U [, 1], pi = p(zi) ,
hy < %min{Tg, 1-— 7'1}, hi1 < Cth, hi = 1/N1, hy = 7T/N2.

— T1
Corollary 4. Let w € C(TI) is solution of WIC NLBVP (57). If —oo < [ p(z)dx < 1, then the

70
solution of (65) approximates wu(z,y) by the second order of accuracy in terms of h = /hi + h3
when hg — 0 in respect of difference metrics C, W3.
Proof. Following Theorem 4, for z =Y —u we obtain the difference problem

Az=f—Au=F, (ih1,jhe) €I, z|p—0 = 2|y=0 = 2|y=r =0, Tz =-Tu, (66)

thereto F' = O(h?) and Tu = O(h?) as a neglect of the trapezoid method. Put z = Z + 2, where 2
is the solution of

AZ=0, (ih1,jhg) €T, Zlamo = Zlymo = Zlyer =0, TEZ=—Tu, (67)
and % 1is the solution of
Az=F s (ihl,jhg) ell, 2|x:0 = i‘yzo = ZA"y:W =0, Tz=0 (68)

By virtue of the orthogonal system [14, p. 113| of the mesh functions {sin(ky)}, h= N2 !

Z ksin(ky), y = jha, m,
k=1
thereto Zp, k =1, No — 1 is solution of the problem
AMZ— M2k =0, Zkla=0 =0, TZr=—Q% (69)

for A1Z = Zps, A = 4hy2sin?(khy), Q= (Tu);, and, in view of [3, p. 142-143],
2, = Apsinh(ilngg), Ay = —Qp/Tlsinh(ilngy)], i =0,Ni, g = 14+ \eh?/2 4+ \/Ah? + AEhi/4.
Acting by T we get the inequality for the denominator of the fraction Ay:

—T [sinh(iln gx)] > sinh(N7 In g;) Z 27 (pZ sinh(é1ng) + pi—1 sinh([¢ — 1] In qk)>h1 . (70)

If p(x) <0, then —7[sinh(ilngg)] > sinh(NiIngg) . If p(z) > 0, then for i,h1 < 70 < (ir, + 1)1
and irlhl << (iTl + 1)h1

iry +1

—7T[sinh(iIn g;)] > sinh(Ny Ingy) — sinh ((ir, + 1) Ingx) Z 27 (pi + pi—1)h1 .
i=irg+1
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ir 1
Denote Sp, = Y. 27Ypi + pi—1)h1, then
=i +1

—T[sinh(ilngg)] > (1 — Sp,) sinh(Ny Ingy) .
1
Since [ p(xz)dz < X for specified A, 0 < A <1, then Sj, < A for sufficiently small h;. Hence,
0

—Tsinh(ilngg)] > (1 — A)sinh(NyIngx) > 0.

In summary,
—T [sinh(i1ng)] > C sinh(Ny In gx) (71)

for

c— 1>0, if p(x) <0,
Sl 1=-X>0, if p(z)>0.

In view of (71) and by virtue of Theorem 4, the proof is finished. Corollary 4 is proved.
Conclusion

We considered NLBVP for the Poisson’s operator on a rectangular domain and obtained new
accurate conditions of the existence, uniqueness and a priori estimate of classical solution. We applied
our results and researched NLBVPs with weighted integral condition. We offered the difference variants
and proved the second order of accuracy on a uniform grid.

The author thanks to Prof. Dr. A. Ashyralyev for his attention to author’s preliminary results [19]
which preacted this paper research.
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JI.M. /loBieroB

Tikoypernnrta Ilyaccon onmepaTopbiMeH OepijireH OeiijToKa b Ii
HIeTTiK ecebi >KoHe OHBIH, aiibIPBIMAIBIK NHTEPIIPETAIUSICHI
2Kywmpicta ambik TiKOYpoIiTe! 001bIcTa [Iyaccon Ternmeyi yimin 6eitmokabai meTTik ecebinin auddepenn-
AJIIBIK YKOHE aflbIPBIMJIBIK HYCKAJIAPbl KApacThIpbLIral. Kiraccukasblk merriMinig 6ap 6051ybl, KaIFbI3Ibl-
FbI >KOHE AIlPUOPJILIK OaraMbl aHBIKTAJFaH. EKIHINT perTi JMoJIiKieH albIPpbIMIBIK CXeMaChl KOPCETIJIreH.

CaJMaKThbl MHTErPaJIbIK, apTTaphl 6ap KochIMIIaaap AuddepeHnralablK *KoHe afbIPhIMIBIK, HYCKAIa
YCBHIHBLIFAH.

Kiam cosdep: myaccoH omeparopbl, 6eHIOKabIl METTIK ecebi, TIKOYPHII, aifbIPBIMIIBIK, CXEMACHI.
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Nonlocal boundary value problem ...

.M. dosneron

HenokanbHasa KpaeBas 3aja4a ¢ onepaTopom Ilyaccona Ha
NpsAMOYTOJIbHAKE U €€ PA3HOCTHAs WHTepIIpeTanus

B crarpe uzyuens! quddepennnanbable 1 PASHOCTHBIE BAPUAHTHI HEJIOKAJIBHON KPaeBOil 3a/1a4u /I ypaB-
Henus [lyaccoHa B OTKPBITOI MPSIMOYTOJIBHOM OOJIACTH. YCTAHOBJIEHBI CYIIECTBOBAHNE, €IMHCTBEHHOCTh U
aIpHUOPHAsi OIEHKA KJIaCCUIeCKOro pemrenusi. [IpeacraBiera pasHOCTHAS cXeMa BTOPOTO MOPSIIKA TOYHOCTH.
IIpusoxkennsi ¢ BECOBBIM MHTEI'DAJIHHBIM YCIOBHEM JAHBI B 1 depeHnnajbHOM U PA3HOCTHOM BapHUAHTAX.

Karoueswie crosa: orepaTop HyaCCOHa, HeJIOKaJIbHasd KpaeBas 3aa4a, IIPAMOYTOJBbHUK, PA3HOCTHAA CXeMa.
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Stability analysis of an eco-epidemiological
model consisting of a prey and two competing predators
with SI-disease in prey and toxicant

In the present paper, we study two eco-epidemiological models. The first one consists of a prey and two
competing predators with Sl-disease in prey species spreading by contacts between susceptible prey and
infected prey. This model assumes linear functional response. The second model is the modification of the
first one when the effect of toxicant is taken into account. In this paper, we examine the dynamical behavior
of non-survival and free equilibrium points of our proposed model.

Keywords: Stability analysis, epidemiological model, prey, predator.

Introduction

In the nature, no species live alone. There are many hundreds or thousands of species in any given
environment, in which two populations interact either by competition or mutualism or prey-predator.
In the beginning of twentieth century, a number of attempts were made to predict the evolution and
existence of species mathematically. Indeed, the first major attempt in this direction was due to the well
known classical Lotka-Volterra model in 1927. Since then many complicated models for two or
more interacting species have been proposed according to the Lotka-Volterra model by taking
into account the effect of competition, time delay, functional response, etc. (see, e.g., [1,2] and
the references therein). On the other hand, over the last few decades, mathematics has been used
to understand and predict the spread of diseases, relating important public-health questions to
basic transmission parameters. The detailed history of mathematical epidemiology and basics
for SIR epidemic models (or Kermack-McKendrick model) can be found in the classical books [1,3].
However, recently Haque and Venturino [4] have discussed mathematical models of diseases spreading
in symbiotic communities. During the last three decades, there has been growing interest in the study
of infectious disease coupled with prey-predator interaction models. In many ecological studies of
prey-predator systems with disease, it is reported that the predators take a disproportionately high
number of parasite-infected prey. Some studies have even shown that parasites could change the
external features or behavior of the prey so that infected preys are more vulnerable to predation
(see [5,6] and the references therein). Later on, many authors have proposed and studied eco-
epidemiological mathematical models incorporating ratio-dependent functional response, toxicant,
external sources of disease, predator switching and infected prey refuge [1,2,7,8].

In the present paper, we formulate two types of eco-epidemiological models, the first one consisting
of a prey and two competing predators with Sl-disease in prey species. The disease spreads by contact
between susceptible prey and infected prey; the proposed model includes linear functional response.
The second model is the modification of the first one by taking into account the effect of toxicant.

Model formulation

In this section, a prey-predator model consisting of a prey and two competing predators with SI-
disease in prey species proposed and analyzed. The disease spreads by contact between susceptible
prey and infected prey. The proposed model includes linear functional response and is given by
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ds S Al
dT—T‘S(l—K)—(m—‘rl_’_I)S,

dl A
dT—<m+1+I>S—MlIY—,LLQIZ—d1], (2)
(3)
dY
— = lY —a1YZ — dyY,
o7 = © o d2Y,
(4)
dz
— =l — Y Z —dsZ
o7 = €2 Qs ds3Z,

where 7, k, m, e1, ea, a1, g, i1, 42, d1, do, d3 are positive parameters. At time T' > 0 prey population is
divided into two classes, namely, susceptible S(T') > 0 and infected I(T") > 0 due to the existence of
infectious disease, interacting with two competing predators species Y (7T') > 0 and Z(T') > 0, which
describe the population densities of the first and second predator, respectively.

The modified model is given by

ds S A
dt—?’S(l—K> — <m+1+I>S—01WS,

dI Al
— = — — Y — pol Z — o IW — dy 1
7t <m+1+1>5 G H2 olIW —di1,

% — e IY —a Y Z — dyY,
(7)
% — o7 — Y Z — dsZ, (8)
(9)

% o — oy U(S+ 1) — dal,
(10)

% — 03U(S + 1) — dsW,

where W (t) is the toxicant concentration in the prey population at time ¢ and U(t) is the environment
concentration of toxicant at time ¢. Here, the new parameters can be described as follows: 7 is
the exogenous inputrate of the toxicant in the environment; d4 is the natural depletion rate of the
environmental toxicant; ds is the natural washout of the toxicant from organism; o1 and oo are the
rates at which susceptible and infected prey are decreeing due to the toxicant and og is the uptake
rate of toxicant by organism.

The existence of the equilibrium points of system (2) can be guaranteed easily by using basic routine
techniques and following Routh-Hurwitz criteria. It turns out that we have the trivial equilibrium point
J(0,0,0,0, ;—4, ), which always exists, and the predators free equilibrium point (S, Io, 0,0, Uy, Wp).
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Boundedness
The following theorem ensures the boundedness of the system (2).

Theorem 1. All solutions of the system (2) that start in RS are uniformly bounded, that is

K
Sup(S+I+Y+Z+W+U)Z7T+(rd+d) (11)

Proof. The proof of theorem is similar to the case where the extra conditions are not included, it
is omitted here as it is easy.

Analysis of non survival equilibrium point

The variation matrix of the non survival equilibrium point is
s

J(0,0,0,0, 7

0) = (bij)6x6,

where b11 =Tr—m, b21 =m, bgg = —dl, b33 = —dQ, b44 = —d3, b55 = —d4, b66 = —d5 and all other

entries are zeros. So the eigenvalues of J(0,0,0,0,i, ) are r — m, —dy, —ds, —d3, —d4 and —ds.

(0,0,0,0, ;—4, 0) is locally asymptotically stable if and only if r < m.
Analysis of the free predator equilibrium point

The free predator equilibrium point is (Sp, Iy, 0,0, Uy, Wy), where Sy, Iy, Uy and Wy are positive
solutions of the following system

S Al
T(l—K)—(m+1+I)_UIW_Oa

Vi
—_— — LY — ol Z — o1 IW — dqI =
(m—i— 1—|—I> S — 2 oW —diI =0,

7T=O‘3U(S—|—I)—|—d4U,

o3U(S + 1) = dsW.

Theorem 2. The free predator equilibrium point of the system (2) is locally stable if the following
conditions hold

ASp
20 W+ da,
(1+I)2 10T
da d
I0<min{—2—3,
el e
< +
=< ——5+0
K> (1+1L)2 7"
)\So )\IO
—— — oWy —d  —— 1 1 1
1+ 1)? aWo 1<m+1+IO+M1 0 + p2do + o021,

max{d4, d5} < 203U).

Proof. Using Gerschgorin Theorem, one can easily prove the theorem.
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Permanence of the population

In this section we give criteria for the persistence of the population in the system as shown in the
following theorem.

Theorem 3. If the following conditions
() (m+ 07+ 10) < 1,

(ii) max {p1, po, 01} < 1,
a10+ds  asf+ds < mp
el ’ (D) (d1+t9)
hold, then the population in the system (2) is persistent.
Proof. From the first equation of the system (2) and using (11), we obtain

(iii) max {

as S S
s _ =) _ — _ _ =
i rS (1 K) (m—+X)S —0105= 1S <1 (m+ 60X+ 016) K> ,
where 0 = M. It gives us
tlim inf (S(t)) >(1—(m+0X+010)) K =p. (12)
Due to condition (i) we have
tliglo inf (S (t)) >0
Using (12) and condition (ii), we get
dl
s _
7 mpB — (dy + 0)1,
that is 5
m
N S
tlgrolo inf (I(t)) > @10 >0 (13)
By using (13) and condition (iii), we get
dY mp
s (e 2 Y,
dt = (el @ +o) M d2) !
so that
o S
tli\rglo inf (Y (¢)) > Yo >0,
and iz 5
m
Y2 s ey g — d3)Z
it = 2 (g ) 00 W2
hence

lim inf (Z(t)) > Zy >0,

t—00
where Y and Zj are initial values.

Numerical simulations

With the following parameter values

r=20.999, K=50, m=pu=u=A=o03=1,
g1 = dl = dQ = d3 = 0.5, g9 = 0.6, €1 = €9 = 0.9, (14)
a1 = 2, Qg = 1.9, d4 = d5 = 0.1, m =100
the system approaches the non survival equilibrium point as shown in Figure 1.
But if we neglect the affect of the toxicant then with the same parameter values (14) the system

approaches the predator free equilibrium point (0.0509,0.1133,0,0). That is the prey population will
survive as shown in Figure 2.
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Conclusions

In this paper, we study the effect of toxicant on dynamical behavior of proposed model (1). We give

the sufficient conditions for permanence of the system and local asymptotic stability of non survival
equilibrium point and predator free equilibrium point. We have discovered that decreasing the intrinsic
grow rate of the susceptible prey below a contact rate value, as shown in (14), the system (2) approaches
a locally asymptotically stable non survival point. However, if we neglect the effect of the toxicant,
then for the same set of parameter values (14) system approaches the predator free equilibrium point
(0.0509,0.1133,0,0). That is the prey population will survive.
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TokcukanTTan »KoHe TapaiiTeiH SI aypysnl 6ap eKi bocekesiec

2KbIPTKbIIIITapJaH 2KoHe KYpGaHHaH TYPATBIH 3KO3IINAECMHNOJIOTINAJIBIK

60

MOJIEJI/IIH, TYPAKTBLIBIFBIH TAJIIAY

MakaJsiazia exi 9KO3IUIeMUOJIOTUSIJIBIK, MOJIE/Ib 3epTTereH. Bipinmici cediMmran KypOaH MeH KYKThIPFaH
KypbOaHHBIH GaillaHbICHl apKBLIbI TapaJjaTbiH, Sl aypybl TypiH HIbIFapaTblH €Ki 69CeKeJseC *KBIPTKBIIITAH
TYpaabl. Byl Mo/Ie/Tb CBIBBIKTHI (DYHKIIMOHAJABI 60 KAl bl EKIHIIN MOIE/ b TOKCHKAHTTHIH, OCEPIH ecerre-
rene, Oipinminin MoguduKanusachl GOJBIT TaObLIAALI. ABTOPJIAP YCHIHBLIFAH MOIEIb OOMBIHINA TipIiik
eTIeNTIH >KoHe epKiH Tele-TeH/IK HYKTeJepiHiH JMHAMUKAJBIK TOPTIOIH KapacThIPFaH.

Kiam cosdep: OpHBIKTBLIBIK TAJIAYBI, SMTHAIEMUOJIOTUSIIIBIK, MOJIE, OJIXKa, KBIPTKHIIII.
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9. Xunxasu, 1. Moxammen, B. Kaiimakamzate

AHan3 yCcTONYMBOCTH 3KO3IINUIEMUOJIOTTYECKO MOae In,
cocToslIneil N3 »KEPTBbI U JIByX KOHKYPHUPYIOIINX XUIITHUKOB
c SI-60J1e3HBIO B JOOBIYE M TOKCUKAHTE

B crarbe nccienosanst gBe sKosmmmeMuosorudeckne Mogesn. Ilepsast cocront u3 mo0bIMH U ABYX KOHKY-
PUDPYIOMIAX XHUITHUKOB ¢ SI-60/1€3HBIO Y BUIOB JOOBIYH, PACHPOCTPAHAIONIUXCS IIyT€M KOHTAKTOB MEXKLY
BOCIIPUMMYHMBON »KEPTBOI 1 MHQPUIIMPOBAHHON »KEPTBOM. DTa MOJEJb [IPEJIIoJaraeT JINHENHHbIH (yHKINO-
HaJIbHBIM OTKJINK. Bropast Mozmesns siBisiercst MoguduKaIyeil mepBoii, KOrjga yINTHIBACTCSA BJIASIHUAE TOKCH-
KaHTa. ABTOpaMU PACCMOTDPEHO JTUHAMHYECKOE IIOBEJIEHNE TOUYEK HEBBLKUBAHUSA W CBODOIHOIO PABHOBECUS
MIPEIIO’KeHHON MU MOJICJIIN.

Kamouesvie crosa: aHaan3 yCTONINBOCTH, STMUIEMUOTOTUIECKAS MOIEh, JOOBIYaA, XUITHUK.
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On the numerical schemes for Langevin-type equations

In this paper, a numerical approach is proposed based on the variation-of-constants formula for the
numerical discretization Langevin-type equations. Linear and non-linear cases are treated separately. The
proofs of convergence have been provided for the linear case, and the numerical implementation has been
executed for the non-linear case. The order one convergence for the numerical scheme has been shown
both theoretically and numerically. The stability of the numerical scheme has been shown numerically and
depicted graphically.

Keywords: difference schemes, stochastic oscillators, Langevin equation, variation of constants

Introduction

In the beginning of the 20th century Paul Langevin discovered a very successful representation of
the Brownian Motion [1]|. This representation has been used as a fundamental building block, modified
and generalized to analyze a large class of important stochastic processes. In simple terms, he applied
the Newton’s second law to a Brownian particle and obtained the differential equation that is known
as the Langevin equation.

Due to its fundamental nature the generalized and modified versions of the Langevin equation
has been used for modeling particle movements in so many different fields. |2| shows how it could be
utilized in the statistical mechanics . Kubo introduces a generalized version of the equation for different
applications [3,4]. [5] introduces a structure of energetics into the stochastic system described by the
Langevin equation and applies it in the thermodynamics context. [6] shows that how the Heisenberg-
Langevin equation can be used to derive a Schrodinger equation for a Brownian particle interacting
with a thermal environment. |7] used an approximate time-evolution equation of the Langevin type
in modeling chemically reacting systems. [8] applies the Langevin equation in a stochastic control
problem. [9] numerically investigates the Brownian motion of particles in a fluid with inhomogeneous
temperature field.

In this study, a modified version of the Langevin equation has been studied from a numerical
perspective. The convergence rate analysis of numerical schemes designed for these type of equations
have been examined thoroughly in the literature. For a general treatment of numerical solutions of
stochastic differential equations the reader is referred to [10].

[11] considers similar stochastic differential equations and analyzes the convergence rate of a
numerical method where the approximation of the drift coefficient is done by the local linearization
method and the diffusion coefficient by the Euler method. It is shown that order one convergence is
obtained which is in line with the results obtained in this paper. The order of convergence of the Euler
method for neutral stochastic functional differential equations has been studied in [12] where also similar
order of convergence has been achieved. Convergence performance of different numerical integrators
have been discussed in [13,14] specifically for the Langevin-type equations, and weak convergence of
order one has been obtained.

[15] considered the same Langevin-type equation

X, =X, — X} —vX, + oW, (1)
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and approached to solve the equation by putting it into the form of
Xt—f—I/Xt:Xt—X?—f—O'Wt (2)

[15] obtained numerical schemes for the approximation of the solution (2). While discretizing the
integral he used the trapezoidal rule. The numerical schemes are obtained by the variation-of-constants
formula, however, no analysis of convergence of the numerical schemes has been given.

In this study, equation (1) has been considered under the form of

Xt + VXt - Xt - *XE + O'Wt (3)

Therefore, slightly different numerical schemes are obtained for the approximation of the solution
of the equation (1). In addition to this, while discretizing the integral the left hand rule has been used
as opposed to the trapezoidal rule. The results in the existing literature have been obtained but in
an easier and more straight forward way. Furthermore, higher order of convergence rates have been
established both for one step convergence and general n step convergence.

The organization of the paper is as follows. In section 2, an explicit numerical scheme has been
derived for equation (1). The convergence analysis has been worked out in detail and order h convergence
has been proved. In section 3, the theoretical results obtained in the previous section have been verified
and a further stability analysis has been carried out. Finally, in section 4, the results are summarized
and the paper is concluded.

Numerical schemes for Langevin-type equations
Now, let us consider the oscillator with cubic restoring force and additive noise from [15].
X, =X, — X} - vX, +oW,. (4)
Let us consider the Langevin-type Eq.(4) in the form
Xi+vX,— X, = —X} 4+ oW, (5)

Let us write Eq.(5) as a system of first-order Ito stochastic differential equations

()= (0 2 ) (5o (o o) ®

Let us find the unique solution of Eq.(6) using the method of variation of constants formula. Namely,
first let us find the solution of homogeneous part. For this consider the matrix

0 1
A= :
The eigenvalues of the matrix A are r = =¥tvr+d V2”2+4 and —r — v, with the corresponding eigenvectors

(1 ,7)T and (1 ,—r—v)7, respectively. Using these information, we can write the matrix A as a Jordan
canonic form to write the exponential matrix el as

At 1 1 ert 0 1 —-r—v -1
et = _ .
ro—r—v 0 et ) —opr —y - 1

From here the solution of homogeneous part is found as

1
X; = X Y.
t 2T+V(0411(t) 0+ a12(t)Y0)
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1
Y, = X )Y,
f 2r+y(0421(t) 0 +a2(t)Yo),

where
an(t) = (r+v)e +relm I as(t) = et — e,

ag(t) = r(r+v)e —r(r+v)e " and ag(t) = re’t + (1 + v)el TV,

Therefore, by the variation of constants formula the solution of the non-homogeneous Eq.(6) is

Xe N _ e[ Xo " A(t—s) 0
<Yt>‘e <Yo>+/oe -X3+odw, )

Hence,
¢
X, = )X, )Y, t—s)(—X3 V,)d
¢ 2r+y(o¢11() 0+ a1a(t) 0)+2r+1//0 are(t — s) (= X2 + oWs)ds,
1 t .
Y, = )X )Y t—s)(—Xx3 L )ds.
f 2r+y(a2l() o+a22()0)+2r+y/00422( $)(— X7 + oWy)ds

Using the fact that eAteds = A+ discretizing the integrals with the left hand rule gives the
following explicit numerical scheme

1 h
Xn =5 . Xn Yo) - 55— X3 A n
+1 2r+y(0¢11(h) + a12(h)Yy) 2T+V0412(h) nt 2T+V0412(h) w, (7)
h
Yog1 = h) X, h)Yy) — h) X} h)AW,,.
1= g (e () Xn + an()Yn) — 5 = —an(h) X, + 5 ——an(h) AW, (8)
It is clearly seen that the solution of linear part of non-homogeneous equation is
Xy = — (a1 ()Xo + ana(t) o) — —2 /toa (t — s)dW, (9)
t= 9 \en 0 12(t¥o) =5 = ; 12 59
t
Y, = t) X t)Yp) — t—s)dWs, 1
= 5y (on(0Xo + am(¥) - -5 [ am(e— s)aw (10)
and discretization of linear part is
1
Xnt1 = h) X, h)Y, h)AW,,, 11
1= 5 (en () Xn + 1a()¥n) + 5 =012 (R) AW, (11)
o
Y= h) X, h)Y, hAW,,. 12
1= g (021 (h) X + 0 ()Yn) + 5 —— 0 (h) AW, (12)

Lemma 1. For the numerical solution of linear first order system of differential equation

()= (5 o) () o+ (o) 13)

consider numerical scheme (11) and (12). Then, the mean square errors after one step of the numerical
schemes satisfy the following estimates:

(E[1X1 = Xu])V/? < CL(T)oh??, (14)

(E(Y1 = Yal*)'? < Co(T)o ™2, (15)

where the constants C1(T) and C2(T) are independent of o and h, but depend on T. Here, X3,Y},
denote the exact solution after a time h and X7, Y7 denote the numerical solution after one step. That
is the local errors are of order 3/2 uniformly.
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Proof. By definition,

o
2r+v

h
BlIX: - X342 = (-7 )?E( / [(na(h) — ana(h — 5))duw])?,

but using Itd isometry, we get

g

:(27‘—1—1/

h
)2/0 [a12(h) — a1a(h — 8)]2(18.

Then by the mean value theorem, we have

o h
= (%5 [ e (= (- 9)pas

for some h — s < £(s) < h.
Since we have |o/j5(£(5))| = |re™ 4 (1 + v)e"" & < |re™€ 4 (r + v)e’é| < |(2r + v)e™| then we get

(B[|X1 — X3)?) < o2e®h3/3 < o2e¥Th3/3.

Hence, we have
(B[ X1 — Xu?)"? < oC/(T)D??

for some positive constant C7(T") does not depend on h and o, but depends on T
The mean square error after one step for numerical scheme for velocity is

g

E[V1 - Y] = (m

h
PE([ l(an(h) — an(h - 5))dw.)?
0
But using It6 isometry, we get

g

:(27"—1—1/

h
)2/0 [aga(h) — aga(h — s)]?ds.

Then by the mean value theorem, we have

o h
— Ty / [y (€(5)) (h — (h — 5))ds

2r+v

for some h — s < £ < h.
Since |ahy(£(5))] = [12e86) — (r + v)2eTVEG) | < |r2eth — (1 4 v)2e(TTR) < 2P < (21 4 v)em™h
and since o, (&(s)) is an increasing function, then we have

(E[|Y1 — Y 2DY? < 0e™™h3/2/\/3 < 0 Cy(T)h3/?,

for some positive constant Cy(7T) does not depend on h and o, but depends on 7.

Corollary 1. Let ¢, be a solution of the equation ez? =1, 0 < p < 1.5. If we take in Lemma 1 the
step size h with h < (cp)l/ P /2r then we have the mean square errors after one step of the numerical
schemes satisfy the following estimates

(B[ X1 — Xn|}))2 < CLon®P/2, (16)

(E[[Y1 — Y3|H)/? < CoohB—P)/2 (17)
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where the constants C7 and C5 are independent of o, h and T'. If we take for example p = 1.2, then
we get the case ¢1.2 = 0.6043. Hence, for any h < 0.6572/2r, the mean square errors after one step of

the numerical schemes satisfy
(EHXI . Xh‘Q])l/Z < C1O’h0'9,

(B[|Y1 — Y3|?])Y? < Cyoh®?.

To show general mean square errors at time T, we need to obtain the following estimates.
Lemma 2. a) We have E|dX| = E|d}| = 0.
b) We have E[(dy)?] = O(h?), E[(d},)?] = O(h?) and E[|d;{d}[] = O(R%),

where
X o tn+1
dn = 2 + v </tn a12(tny1 — s)dws — a12(h)AWn>
and
Y o tn+1
dn = 2r +v (/tn ag(tnt1 — s)dws — 0422(h)AWn> -
Proof.

a) Since the Ito stochastic integral has expectation zero, the estimates E|d.| = E|dY | = 0 follow.
b) By definition

2
g

E(dX)2 - (27“ + v

n

2B < /t :n+1(alg(tn+1 _ ) - alg(h))dWs)

Then, by the Itd’s isometry we have

o
2r+v

= ( ) /ttnﬂ(am(tnﬂ —5) — aga(h))?ds.

But by the mean value theorem

o tn+1
=57 [ (0 D s Wodale(e) s
for some t,11 — s < &(s) < h, for the differentiable function ajs(z) = €™ — e(=""*)%) we have

ot (£(5))] < < (2r + v)e™. Then

< (-7

tn+l
2 ERRY: rhy2
< 2r+y) /tn (nh —s)“((2r +v)e™)%ds

tn+1
= 0262”‘/ (n*h? — 2nhs + s?)ds = 02> T h3/3,
tn

for any h < ¢o/2r since ﬁ?*l(n2h2 — 2nhs + s?)ds = h3/3.
In the same manner, by definition

2
g

E(d))* =
(dr) (2r+1/

)2E ( /t :n+1(a22(tn+1 _) - agg(h))dW5>

then, by the [t6’s isometry we have

o
2r+v

= ( ) /ttn+1(a22(tn+1 —5) — aga(h))?ds
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But by the mean value theorem

o
2r+v

— Ty / "+ Db — s — B2 (ahal(€(5)))%ds,

for some t,, 11 —s < & < h and for the differentiable function ags(z) = re™ + (r+v)el=""*)%). Since the
function oy ()| is an increasing function, oy (£(s)) < r2e™ — (r4v)2eTh < 2 < (27 4 v)e™).

Then
o

< (

tn+l
2 RY) rhy2
< 2r+y) /tn (nh —s)*((2r + v)e"™)%ds

tn+1
= 02€2rh/ (n*h? — 2nhs + s?)ds = o> Th3/3.
tn

Now, let us find an estimate for |d;X d¥ |. But by the fact that expectation of product of independent
increments is zero, we have

aXay| < (=

n —= my /tnnH(O‘lQ(tn—i-l - 3) - 0412(}1))(0422(75711% - S) — an(h))dS.

But by the mean value theorem, we obtain

X2 < G5 R [ (Db = s = WPlaa(w(e)) b (€(e))lds

for some t,,41 —s < YP(s) < h and tp11 — s < &(s) < h. Hence,

g

< (

tn+1
2 2 rh rh
— 2 2
< 2r+y) /tn (nh —s)“((2r +v)e™)(2r + v)e™ds

tn+1
= TO'2€2Th/ (n*h? — 2nhs + s*)ds = o> T h3/3.
tn

Corollary 2. Let the positive real numbers p and ¢, be as in Corollary 1. If we take in Lemma 2
the step size h with h < (c,)'/?/2r, then
a) E[(dX)?] = O(h37P), E[(dY)?] = O(h37P) and E[|dXdY|] = O(h*P), where the upper bounds for
the estimates do not depend on o, h, and T. If we take, for example p = 1.2, then we get the case
c1.2 = 0.6043. Hence, for any h < 0.6572/2r
b) E[(d)2] = O(h'), E[(dY)?] = O(h'®) and El|ldXdY || = O(h'*).
We now indicate the global mean-square error of the stochastic exponential integrators (11) and (12).
Theorem 1. Consider the numerical solution of (13), the method (11) and (12). Then, the mean-
square errors of the numerical scheme satisfy
8) (E|X, — X, P)/2 < Cy(T)h,
b) (E[Y, — i, )2 < Cy(T)h,
for some constants C3(7") and Cy(T).
Proof. The recursive relation for the solution of linear part is

Xtnr ) _ an [ Xi, /t"“ Altnsr—s) (0
( Vi, >—6 Y:, + . e - ds.

Using equations (11) and (12), we have

En+1 = eAhEn + dp,
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L (e X, —Xa _ ([ dY . o :
where £, = vy | = v, _v and d, = o) Using the mathematical induction, we
€n tn = In n

obtain the formula
n

Epi1 = A(n+1) hE + Z (n—j hd _ ZEA(n_j)hd]’,
7=0

since Fy = 0. Hence,

2
El(e)41)%] = (3, 1 V)QE { (an((n = j)h)d + ara((n - j)h)d}v)]

ZZ an((n— RS + ara((n — j)h)dY) (an((n — )h)d + aw((n — i)h)d})
7=0 =0

2T+V

since expectation of product of independent increments is zero, we have

n

)2 ((anr((n = 5)R)ZE((d})?) + (anz((n — )h)*E((d] )?))

J=0

1
2r+v

= (

n

)2 (an((n = Hh)ara((n — j)h)E(d} d]))
=0

1

2
+ (27"—1—1/

<.

Qi (ann(( h) + anz((n — j)h))* O(h)

Jj=

. . . o\ 2
)2 ((,,4_‘_ U)eryh +T€(—T—V)]h + eryh o 6(—r—u)]h) O(hS)

2276 (@r+v+r Tﬂh)20(h3)

2r+y =
27"‘1‘7/‘1‘12 T 2
< (——————)*Te“™ O(h*).
< B Lo

Similarly, we get

1

)P Y (@ni((n = ) + anal(n — ) O(h?)

Jj=0

= (

: . : N2
)2 (r(r +0)e M — i (r 4+ )eTTIIR Lperih L (r 4 V)e(*r*”)]h) O(h?)

23" (vl v DT (1= )+ ) ) O

2r+v
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since 0 < r < 1, we have

n 2
)2 rjh 3 2rT (1,2
2r+u ]go( rir+v+1)+(1—r)(r+v)e ) O(h?) < Te ™ O(h?).
This completes the proof of the theorem.

Corollary 3. Consider the numerical solution of (13), the method (11) and (12). Let 1 < p < 1.5
and let the positive real number ¢, be as in Corollary 1. In Theorem 1 if we take the step size h with
h < (cp)l/p/(er) for any j = 1,2,3,...,n and using Corollary 2, therefore the mean-square errors of
the numerical scheme satisfy the convergence estimates
a) (E|Xn _ th|2)1/2 < Cgh(3_2p)/2
b) (E‘Yn _ Y;fn’2)1/2 < C4h(372p)/2
for some constants C3 and Cy independent of T'.

Proof. By following the proof of Theorem 1, we have

E[(efﬂ)Z]

. 2 1
23720 v 12RO P) < (VT L2 1 o3y 1+Z

= 2r +v (27‘)

1
2r+v

<(

Since the infinite series . = j 77 converges for p > 1, we have

(B|X, — X, |2)Y? < C3hB=2)/2,

But this estimate is independent of T'.
Estimate b) for the velocity component is obtained in a similar way.

Numerical Results

For the comparison of the numeric solution of the difference equation and the analytical solution
of the differential equation, the error terms are computed by the following formulation:

1 Nsim 1/2
— 2
Ey = N ( g (Xn — X4,) ) . (18)

J=1

Maintaining the same notation that has been used in the second section, we represent the analytical
solution of system of equations (6) by X, , and numerical solutions of the problem based on the
equations (11)-(12) by X,,. The error terms are recorded for various values of h, i.e. size of the step
in time. The results are shown in the Table 1 for ~ = 0.1, h = 0.01, h = 0.001 and A = 0.0001,
respectively. In all of these numerical experiments, the number of simulations Ng;,, is kept constant
at 10,000. Hence, each numerical problem has been solved based on 10,000 different sample paths
for the process of Standard Brownian motion, Wy. As one could easily see from Table 1 and the way
that the error is computed in equation (18) the convergence between the numerical and the analytical
solutions is measured in the sense of pointwise convergence with respect to the time variable. Each row
in the table measures the difference between the numerical and the analytical solution for a specific
time point between ¢t = 0 and ¢t = 1. Finally, for each sample path this difference is computed, squared,
summed, square rooted and averaged based on the number of simulations used, which is 10,000, to
arrive at the final value of the error term. This final step is the typical way of computing the error for
Monte Carlo Simulation applications which is often called in the literature as the root mean square
error.
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Table 1
Comparison of the errors for the approximate solution of problem
Point in Time/Step Size h=0.1 h =0.01 h =0.001 h = 0.0001
t=0.1 6.3198e-04  7.4114e-05  1.0097e-06  2.9488e-07
t=0.2 0.0022 6.8840e-04  1.1159¢-04  5.0846¢-05
t=0.3 0.0038 4.7510e-04  5.1366e-04  6.6956e-05
t=104 0.0123 0.0025 1.9910e-04  2.8405e-05
t=0.5 0.0120 0.0013 2.7540e-04  2.2375e-05
t=0.6 0.0161 0.0064 0.0017 8.1783e-04
t=0.7 0.0244 0.0061 6.4270e-04  9.8445e-05
t =038 0.0511 0.0093 0.0019 9.1302¢-04
t=0.9 0.0616 0.0157 0.0077 0.0031
t=1.0 0.0829 0.0033 0.0012 5.4713e-04

Some of the rows in Table 1 are highlighted in order to emphasize the order one convergence which
is theoretically proved in Theorem 1. It is clear that for each cell in the Table the number of steps
is multiplied by 10, hence the size of the step is divided by 10. It is expected that the error term
goes down by a factor of 10 as one goes from left to right on each row. If the first row is considered,
highlighted light blue, roughly the error terms are divided by 10 at every step going from left to right.
If one carefully looks that that first highlighted row, he would see that every step there is one more
digit that is 0. First row corresponds to the error term at ¢ = 0.1. Similar observations can also be
made about the other rows, especially on the pink highlighted row that corresponds to ¢ = 0.6 and the
yellow highlighted row which corresponds to ¢ = 1. Figure 1 shows the behaviour of F[X?] computed
along 10,000 sample paths for a step size h = 0.001 on the time interval [0,100] along the numerical
solution given by the previous section.

E[Y2(1)]

Time ()

Figure 1. The convergence of expected value of the squared position and velocity functions

As T — oo, the numerical solution converges to the limit value 2.44, and the velocity converges
to the value 9.92. [15] does the same numerical exercise with the same model parameters and initial
conditions. [15] obtains a very similar result for the solution. Here, the numerical experiment has been
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extended to the velocity also. For further details on the physical interpretation of this result, the reader
is referred to look at [16].

At least, this numerical experiment can be thought as a test of stability. In Table 1 error terms
beyond ¢ = 1 is not reported. One could be interested in the question that what happens to the

numerical solution as the time grows. This is a partial answer to that question that the proposed
numerical scheme is stable.

-4
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Figure 2. Error measured as the difference between the exact solution and the numerical solution

at particular points in time between 0 and 1. Step sizes used vary from h = 0.1 down to h = 0.0001

Finally, let us have a look at the mean-square errors of the numerical scheme offered in the previous
section. Fig. 2 illustrates the point wise mean-square errors at various times between t =0 and ¢t = 1
of the numerical scheme for the initial values zg = 0, yp = 0, and the parameters v = 0.05, 0 = 1 and
M = 10,000. The step size h ranges from 0.1 down to 0.0001. We observe a first order of convergence
both in the position and in the velocity. This is the same mean-square order of convergence as the one
offered in [15]. For the plots the log scale has been avoided intentionally. To emphasize the order |h|
convergence the original cale has been kept and the almost straight lines are observed as a result. Of

course, these error terms are only for some specific values of ¢, for more detailed values for the error
terms please also see Table 1.

Conclusion

In this study, a new explicit numerical scheme has been constructed for a specific Langevin-
type equation. The main mathematical tool behind this construction is the variation-of-constants
formulation. The convergence rate for one step has been established to be 3/2 for the linear Langevin-
type equation. As a result of this, the convergence rate at any step has established to be of order 1. In
the main theorem of the paper, Theorem 1, the upper bounds for the convergence analysis depend on
the upper limit of the time interval, T'. In a later corollary, these upper bounds have been updated to
versions that are also independent of the the upper limit of the time interval, T'.
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The proposed numerical scheme have been applied to the non-linear version of the Langevin-type
equation. The theoretical results that have been proven for the linear case have been verified also by
the non-linear case numerically. The stability of the numerical scheme has been shown numerically
and graphically. Similar results have been obtained in the literature, but with semi-implicit numerical
schemes. Just as strong results have been provided with explicit and easy to implement numerical
difference equations. All of the numerical experiments have been in line with the existing literature,
and occasional extensions, such as the stability of the velocity term, have been provided.
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M. Axar, P. Komxkep, A. Cupma

JlaH>XXeBeH TUITI TeHJeyiHiH CaHJbIK CXeMacChl TYPaJibl

Maxkasaza JIanzKeBeH THITI CAaHIBIK TEHIeyJIepi VIIIiH TYPAaKThIHbBI BApUAIHsAIay (OPMYJIaChIHA HETi3 Ie/IreH
CaHBIK TOCLITI YChIHBLTFaH. ChI3BIKTHI }KOHE CHI3BIKTHI EMeC YKaFIaiIaphl JKeKe KapaCThIPbLIFaH. 2K MHAKTHI
OOJIYBIHBIH JRJIEIIEY] ChI3BIKTHI KaF/Iail YIIiH KOPCETIIreH, ajl CAHMBIK, €CENTeyl ChI3BIKTHI eMeC Karmail
yinin opeiggasrad. CaHJbIK, cXeMa YIiH, OGIpiHII peTTi >KUHAKTBLIBIFBI TEOPHUSIBIK, YKOHE CAHIBIK TYp-
e xkepcerisireH. CaHIBIK, CXEMAHBIH, OPHBIKTHLIBIFBI CAHIBIK TYP/I€ KOPCETIITeH YKoHe IPAdUKAIIBIK TYPJe
OeifHeIEHT eH.

Kiam ce3dep: albIPBIMIBIK, CXeMAChI, CTOXaCTUKAJIBIK, OCITHJIIATOPIApEI, JlamKeBeH TeHIeyi, TypaKThl Ba-
pHUAalUACHI.

M. Axar, P. Komkep, A. Cupma

O umcJeHHBbIX cxeMaX JJIE ypaBHeHI/Iﬁ tuna JlaH>xeBeHa

B crarbe npesjiorkeH YMCIIEHHBIH TOX0/, OCHOBAHHBIN Ha (DOpMYyJIe BapUalii KOHCTAHT JIJIsl YUCJIEHHBIX
ypaBHEHU auckperm3arun Ttumna Jlamkesena. JIuHeiiHble n HeJIWHENHHBIE CIIyIaW PACCMOTPEHBI OTIAEIIb-
HO. JloKa3aTeabCcTBa CXOAMMOCTH ObLIN IIPEIOCTABJIEHBI /1JIsI JIMHEHHOTO CIydasi, a YHCACHHAS PeaI3aIius
BBITIOJIHEHA, JIJTsT HEJIMHEWHOTO ciry4dasi. CXOIUMOCTb TIEPBOTO MOPSIIKA, JIJIsT YMCJIEHHON CXeMbI TIOKA3aHa TeO0-
PETUYECKU M YUCIEHHO. YCTONINBOCTD YHUCJIEHHON CXEMBbI ITOKA3aHa IUCIEHHO U M300parkeHa IpapuIecKn.

Kmouesvie ca06a: pa3sHOCTHBIE CXEMBI, CTOXACTHIECKIE OCIUJISTOPHI, ypaBHeHUe JIaHKeBeHa, BapUaIlns
ITOCTOSTHHBIX.
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A remark on elliptic differential equations on manifold

For elliptic boundary value problems of nonlocal type in Euclidean space, the well posedness has been
studied by several authors and it has been well understood. On the other hand, such kind of problems
on manifolds have not been studied yet. Present article considers differential equations on smooth closed
manifolds. It establishes the well posedness of nonlocal boundary value problems of elliptic type, namely
Neumann-Bitsadze-Samarskii type nonlocal boundary value problem on manifolds and also Dirichlet-
Bitsadze-Samarskii type nonlocal boundary value problem on manifolds, in Holder spaces. In addition,
in various Holder norms, it establishes new coercivity inequalities for solutions of such elliptic nonlocal
type boundary value problems on smooth manifolds.

Keywords: differential equations on manifolds, well-posedness, self-adjoint positive definite operator.

Introduction

In the study of partial differential equations, the importance of the well-posedness (coercivity
inequalities) is well known (see, for example [1-3]). Many researchers has been studied extensively the
well-posedness of nonlocal boundary value problems of elliptic type partial differential equations in the
Euclidean space, which is a flat manifold, (see, e.g. [4-18] and the references therein).

In the present article, we consider differential equations on smooth closed manifolds. We establish
the well-posedness of nonlocal boundary value problems Holder spaces. Furthermore, in various Hélder
norms we establish new coercivity estimates for the solutions of such boundary value problems for
elliptic equations.

Preliminaries

This section provides the basic definitions and fact about the Laplacian on Riemannian manifolds.
The reader is referred to [19,20] and the references therein for more information and unexplained
subjects.

A Riemannian manifold is a pair (M, g), where M is a smooth manifold and to each z € M
(Vg + TaM X Ty M — R is a positive definite symmetric non-degenerate bilinear form such that
for all smooth vector fields X,Y" € Icee (TM), 2 — (X(2),Y (2)) 4, 1s smooth.

2]

W)x e (8%)1} is the corresponding basis of tangent

In the local coordinates (x1,...,2,), {(

Vg : €% (M) = I'geo (I'M) is the gradient operator defined by

space Tu M, gij = <( 9 )x , ( 0 )x>g(z) , and g% are the entries of the inverse matrix of (g;;).

(Vgp, X), = dp(X)
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for every ¢ € €°(M), X € 'y (I'M) . In local coordinates (x1,...,z,), the gradient V¢ is equal

to
n

> n
i,j=1 Lt
From the fact d (¢ 4+ ¢) = dip + dy for every ¢,1p € €1(M) it follows that V, (¢ + ) = Vo + V1.
The fact that d(¢ -9) = ¢ -dip + 1 - dp results Vg (@ -1)) = ¢ - Vg +1 - Vgep.
If w € Q*(M) is an n—form and X is a vector field on M, then tyw € Q"1 (M) is the (n—1)—form
defined by
15¢%% (Xl, e ’anl) = UJ(X, )(17 e 7Xn71) .

Here, Xi,...,X,,—1 are vector fields on the Riemaniann manifold M. From the fact that d(1xw) €
€ Q"(M) it follows that d (txw) = div,(X)w for some number div,(X).
Recall that divy : g (TM) — €°°(M) is the divergence operator defined by

d(1xwg) = divg(X)wy for every X € T'goe (TM),
where wy, € Q"(M) denotes the volume element obtained from the metric g. In local coordinates

n
(T1,..., @), for X = ij% € 'y (T'M) divergence becomes
j=1

N

Note that if X,Y € T'coe (TM) and w € Q" (M), then tx4yw = txw + tyw. By this fact, we have
divy (X +Y) = divy (X) + divy (Y') Moreover, from (1) it follows that for ¢ € €°>°(M)

divg (pX) = @divgX + (Vgp, X)) .

divy(X) = Ztg;;% (b“/det g> . (1)

The Laplace operator A, on smooth functions € (M) is defined by
Ay = —divgoV,

is the Laplace-Beltrami operator on (M, g).
Note that for any ¢, € (M)

Ag (p+ 1) = Agp + Agth,
DNy (@) = YAy + pAgh —2(Vyp, V!ﬂ/}>g .

In local coordinates (z1,...,x,), we have

Ay = 1 z”: 0 (g“ detga> .
g \/ng’j:laxi 0z
For example, let us consider the n—spere
S = {(z1,...,2p41) € R" 22 +"’+33721+1 =1}
in geodesic polar coordinates, to be more precise £ : (0, 7)" ! x (0,27) — S",

r1 = cos B,
T9 = sin 6 cos Oy,
r3 = sin 64 sin 6 cos O3,

T, =sinfysinfy - --cosb,,
Tpy1 =sinfisinbs - -sinfb,,
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where 0 < 61,605,...,0,_1 <m, 0 <6, <2r. Then, we get

1 0 0 0 0 .. 7
0 sin®6, 0 0 0 ...
0 0 sin? 01 sin? 6, 0 o ...
B =10 o0 0 0 . 7
00 0 0 0 sin®6;---sin®6,1 |

n—1
Vdet g, = H (sin )" "
(=1
Moreover, the Laplace-Beltrami operator Agn in these coordinates becomes

1 "0 0
_—n_l , 287 (a](el,,en)ae>7 (3)
sin @) F =1 7 J
I anto

1
(sin B,)" "

n

—

where a1 =1 and for j =2,...,n, a; = ¢

<L

i—1

sin? 6;

We recall Stokes’ Theorem and Divergelnée Theorem for manifolds.
Theorem 1. [Stokes’ Theorem| Assume M is an oriented smooth compact n-manifold with boundary and
a € Q"1 (M) have compact support. Denoting by t : OM — M the inclusion map, t*a € Q"1 (OM) .
Then [y, a = [,,da, or for short, [5 = [, da.
Theorem 2. [Divergence Theorem|] Suppose M is a Riemannian manifold and X is a C'—vector field
on M. Then,

/M divy(X) dV, = / (X,v), do.

oM
Here, divg, dVy, and v denote respectively the divergence operator on (M, g), the natural volume element

on (M, g), and the unit vector normal to OM.
From these results it follows

Theorem 3. |Green’s Theorem| For a compact Riemannian manifold (M, g) with boundary OM, if
Y €6t (M) and ¢ € €* (ﬂ) , then the following equality is valid:

_ _ ¢
/M¢-AM¢ av, _/M (Vgh, V) dV, /BM%Vdag.

Here, V4 denotes the gradient operator on the Riemannian manifold (M, g).
Green’s Theorem yields
Theorem 4. [19] If (M, g) is a closed (i.e. compact without a boundary) Riemannian manifold, then

1 (Formal self-adjointness): (1, Ay ®) g pav,) = (& BDp) gymav,) -
2 (Positivity): (A, ¢, ¢>$2(M,dvg) > 0.

Here, £5(M,dVy) is the Hilbert space

- M= B 0.0) sy = [ 60 aVila) < o
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Recall that eigenvalues of the Laplacian on n—sphere S® C R*™! are \p = £({+n—1),£=0,1,2,....
The corresponding eigenfunctions are restrictions of harmonic polynomials to the sphere.

Elliptic differential equations on manifolds
Neumann-Bitsadze-Samarskii type nonlocal boundary value problem on manifold
Let (ai,b;) C (0,7),i=1,...,n—1 and (an,by) C (0,27). We consider the domain
Q=¢((a1,b1) X -+ X (@n—1,bn—1) X (an,bn)) CS", (4)
where € : (0,7)" ! x (0,27) — S™ is the geodesic polar parametrization (2).

(

—ug(t,x) + Agnu(t, z) + du(t,z) = f(t,z), €, 0<t<1,

p
w(0,2) =0, w(l,z)=> Buw(h,x), z€Q, (5)
=1

p

ou
DBl 0 < <Xy <1 —=(t2) lecon= 0.
i=1 an

Here, Agn is the Laplace-Beltrami operator on the Riemannian manifold (S™, gsn) and § > 0.
We prove
Theorem 5. For the solutions of problem (5), the following coercivity estimate holds:

K(5.))
vo(n@avy) = atay I fllge(z@.av,) -

[wtell a2 (,av,)) + Ilu

Here, K is independent of f(t,x).
Let us consider Equation (5) as the following nonlocal boundary value problem of Bitsadze Samarskii

type
—U"(t)+LU (t) = F(t), 0<t<1,

p
U(0) =0, Up(1) = Y Billi(N),
=1

P
Z]ﬁi\gl, 0< A <--<)<1
i=1
in % (92, dV,) with the self adjoint and positive definite operator L = Agn + d1. Here, I denotes the
identity operator.

The proof of Theorem 5 is based on the symmetry property of L, Theorem 6 with H = 25(2,dV})
and Theorem 7 on the coercivity inequality for the solution of elliptic differential problem in %5 (2, dV/)).
Theorem 6. [17] Let A be a self-adjoint positive definite operator with dense domain D(A) in a Hilbert
space H. Let o, € E, (D (AI/Q) ,H) . Then the following elliptic type differential problem

—vg(t, ) + Av(t) = g(t), 0<t <1,

ve(0) =, v(1) =Y Bive (\i) + ¥, (6)
i=1

p
Z|Bl-\§1, 0< A <--< )<l

\ =1
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is well-posed in Hélder space € (H) and for the solutions of (6) the following coercivity inequality
holds:

5 A
o T 1 Av]ga ) < K 0) [|420] y + 420 ] + 52285 gllco
Theorem 7. The solutions of the following elliptic differential problem

Agu(€(0)) = w(€(0)), T = (Br,....0,) € (ar,by) X -~ X (an,bn),

||,U//

I —
% =0, 0 inboundary of [a1,b1] X -+ X [ap, by]

satisfy the coercivity inequality

Z ||u9i9i‘|j2(ﬂ7dvg) < KlH"JHzg(Q,qu)-
i=1
The proof of Theorem 7 is based on the following theorem.
Theorem 8. [8] For the solutions of the elliptic differential problem

Agu(é.) ({) § € (041’ Bl) (04774 Bn)
U — 0, € in boundary [ar, B1] X -+ X [an, By

the following coercivity inequality

Z ”uﬁiﬁiHZg((al,Bl)x--~><(an,ﬁn)) < Kollwll. g ((a1,81) % (an.80)
i=1

is valid. Here, AS = Z P (a,«(g)%) and a,(§) >a>0,r=1,...,n

Proof of Theorem ’7 Clearly, the image &( 6 ) of boundary of the n—cube [a1,b1] X - - - X [ay, by] is the
boundary of Q. This parametrization maps (a1,b1) X -+ X (an, by) to the interior of Q. Let u:  — R
be so that % vanishes on the boundary of Q. Then, v = uo& : [a1,b1] X -+ X [ay,b,] — R and %
vanishes on the boundary of the cube [a;,b1] X - -+ X [ay, b,]. Here, v is the outward unit normal to the
boundary.

n—1
For some constants k, K > 0, on © we have 0 < k < [] (sinf)" " < K.

Equation (3) and Theorem 8 yield

- 2
"0 L Ouog(0)
. . ]zzjl 60] (G](g) ae] )
[ B av@) = [ a6, dby
Q al an H (Sineé)n—ﬁ
=1
2
1 [h b [ Cx 0 — 8uo§(§>)
> = A
> K/al 5 ;aej (ag(e) 50, do,, - - - do,

_ 1 HA(el,...,en)u . 5‘ 2

Zo((a1,b1) %X (an,bn))
- gl

.,?’2 (al,bl)X X(an, n))

2
1
= K K2 <;”“%||f2<(a1,b1>x~--x(an,bn») :
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Hence, we obtain

1 n
2
/ [Agu(@)["dVy(z) | > \/EKQZ;H%«%H%«al,bl)x---x(an,bn»~ (7)
Q i=
Fori=1,...,n, we have
by b 1/2
Hveiei||$2((a1,b1)><---><(an,bn)) = /"'/voiei(ﬁh...,Hn)]2d0n---d91
a1 an
n—1 1/2
b bn [T (sin@,)"*
> | [ [ om0 ety
a1 an
= T = / / |'U91.9i (91’ 79n)|2 H (Sin Hé)n_e dan del
VE a1 an =1
- L /---/|(uo§)9i9i(01,...,9n)|2 T (sin60)™" do, - doy
VE o an =1
1
= ﬁ”“&&”%(g,dvg)- (8)

Combining equations (7) and (8), we get

1/2
1 n
[18utav@) | = I P
Q =

This is the end of the proof of Theorem 7.
Dirichlet- Bitsadze-Samarskii type nonlocal boundary value problem on manifold

Assume (M, g) is a closed orientable Riemannian manifold (such as n—sphere S", n—torus T").
Let us consider the mixed boundary value problem of Dirichlet-Bitsadze-Samarskii type

(—uu(t,z) + A u(t,z) +ou(t,x) = f(t,z), eM, 0<t<1,

u(0,2) = @(x), u(l,z)=> aju();,z)+¢(z), = €M,
j=1 9)

p
0<h < <A <1, > oyl <1,
j=1

where A is the Laplace-Beltrami operator on the Riemannian manifold (M, g).
We prove
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Theorem 9. If p,1 € D(L), then for the solution of (9) we have the following coercivity inequality

lwtell o (2o mavy)) + IEullga (2 m,avy))

K (5, M1, )
< K| ILell gy mav,) + I8 o mavy | + ﬁ 1f ls, (2o M,avy) -

Here, K(0,A1,\p) does not depend on @(x),¢(z), and f(t,x).

Let us consider problem (9) as the following nonlocal boundary value problem of Bitsadze Samarskii

type
—U" (#)+ LU (t) = F(t), te(0,1),

U(0) = Za] )+ ¥,

P
O<h < <A<l ) |oyl<t
j=1
in % (M, dV,) with the self-adjoint and positive definite operator L = Ap4 + 61. Here, I denotes the
identity operator, ||Ul| g m.av,) = (Joq U (@)dVy(z ))1/ ? and dV, denotes natural volume element of
M obtained from metric tensor g.
The proof of Theorem 9 relies on the following theorem.
Theorem 10. [16] Assume A is a self-adjoint positive definite operator with dense D(A) C H in a
Hilbert space H and ¢, € D(A). Then, the following boundary value problem

( —’Utt(t,l') + A’U(t) = f(t), 0<t< ]_,

v(0) = ¢, v(l) = Z%‘U(AJ‘) + 1,

p
0<A <= <A <1, > oy <1
\ j=1

is well-posed in Holder space 655 (H). Moreover, the solutions of the problem satisfy the following
coercivity inequality

(5 )‘1a )
a(l—a)

Here, K (5, A1, \p) is independent of of p(x),¥(x), and f(t,z). €5, (H) (0 < a < 1) denotes the Banach
space which is the completion of of smooth funtions v : [0,1] — H with the following norm

10" | 1) + 140l iy < K 1Ay + 1460 ] + 1 llgs

(A=)t +)*vt+71)—v@®)la
go ) = [vlle@) +  sup -
0<t<t+7<1 T

lv

and ||v

) = ax [[v(t)]a
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Dirichlet-Bitsadze-Samarskii type nonlocal boundary
value problem on a relatively compact domain

For the domain  in (4), let us consider the Dirichlet-Bitsadze-Samarskii type mixed boundary
value problem
( _utt(tax) + AS”u(tvx) = f(t,l’), T e Qa te (07 1)7

u(0,) = p(x XkaApm+¢<»xem

(11)

p
0<A <= <A <1, > oyl <1,
j=1

u(t,z) =0, x € 09,

where Agn is the Laplace-Beltrami operator on the Riemannian manifold (S™, gsn).

We have
Theorem 11. The solutions of nonlocal boundary value problem (11) satisfy following coercivity inequality
lustlleg (zavy)) T 1llee (rz@avy) = K |I€llvzavy) + I19llnz@.av,)

K (0,1, )
m”f“% (Lo(Q,dV,))

where K (0, A1, \p) does not depend on ¢(x),¢(x), and f(t,x).

Let us consider problem (11) as the nonlocal boundary value problem (10) in the Hilbert space
H = %, (Q,dV,) with the self-adjoint positive definite operator L = Agn.

The proof of Theorem 11 is based on the symmetry properties of the operator L defined by formula
(11), Theorem 10 with H = %5(Q2, dV,), and the following result which is about the coercivity estimate
for the solution of the elliptic type differential equation in % (€2, dV,).

Theorem 12. For the following differential equation of elliptic type

Asrul€(#)) = w(€(F)), T = (01, 6) € (a1,b1) x - x (an, by),
u(ﬁ(?) =0 7 in boundary of [a1,b1] X -+ X [ay, by)

we have the following coercivity estimate

Y Mol y0.av,) < Killwllz@ar,):
=1

The proof of Theorem 12 relies on the following theorem.
Theorem 13. [8] For the solutions of the elliptic differential problem

Afu(€) = w(€), €€ (a1,B1) x -+ x (an, Bn),

u(§) =0, &inboundary [aq,B1] X -+ X [an, Bl

the coercivity inequality

D gy oy 1yt () S F2ll 20 81)xx (0 80))
r=1
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is valid. Here, AS = 3 B%T (aT(é)a%r) and a.(§) >a>0,r=1,...,n.

r=1
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A. Amipasbies, 9. Cozen, @. Hezenxu

Kemnbeitneaeri aumnctik anddepeHnaiablk
TeHJey TypaJibl eCKEPTY

EBkinarik kenicriringe OeflJIoOKa bl TUNTI SJUIAICTIK MIETTIK ecenTepi yIIiH KONbLIFAH eCEeNTiH, KOPPEeK-
Tistiri 6ipHeIe aBTOPJIAPMEH KAKCHI YKOHE TOJIBIK 3epTTesreH. BacKa »KarblHaH, OCbl MoceJiesiep KorbeitHe e
3eprrenMered. Makasazga Teric TYHBIK Kembeitnese nuddepeHInaiIbK TeHIEY KAPACTHIPhLIFAH. DJIIAT-
cTiK TUNTI OeMTOKaJIb/Il MIETTIK €CeNTiH, KOPPEKTLIIr KOWBIIa/Ibl, HAKTHIPAK, alTaThIH OoJicak KemnbeitHe e,
Tonbnep kenicriringeri kenbeitnene lupuxie-Bunanze-Camapckuii Typingeri 6eifioka bl meTTik ecebi.
ConbiMen KaTap, oprypsi [ombaep HOpMachiHIa Teric kembeiftHeae OEHIOKAIB/II TUNTI SJITHICTIK IMETTIK
ecebiH IMIbIFAPy YIIH MOXKOYPJIi >KaHA TEHCI3MIKTEep aHBIKTAJIFAH.

Kiam cesdep: kenbeiineneri nuddepeHnmnaaablK TeHIeY, KOPPEKTLIIr, o3iHe-031 TYiliHIeC OH aHBIKTAJIFaH
oIepaTop.

A. Amipasbies, 9. Cozen, @. Hezenxu

3ameduaHne 00 ummnTIdecknx aAnddepeHImaIbHbIX
YPaBHEHHUSX HA MHOT00Opa3uu

JlJ1st 2JUIMIITUYECKUX KPAEBBIX 33/1a9 HEJIOKAJBLHOIO THIA B €BKJIUIOBOM IIPOCTPAHCTBE KOPPEKTHOCTD I10-
CTaBJIEHHOI 3a/1a4M ObLIA XOPOIIIO U3yYeHa HeCKOJbKuMU aBropamu. C Ipyroif CTOPOHBI, TaKUe TPOOIEMbI
Ha MHOTOOODPa3UsiX MHUPOKO HE M3y4UeHbl. B HacTosIell cTarhe paccMOTpeHbl qudHepeHInaIbHbe YpaBHe-
HUS Ha IVIQJKUX 3aMKHYTBIX MHOTOOOPAa3usAX. YCTAaHOBJIEHA KOPPEKTHOCTb HEJOKAJIbHBIX KPAaeBBIX 3aJad
JUIMIITUIECKOTO THIA, & UMEHHO HEJIOKAJbHONW Kpaepoil 3amaun Tuna Heilimana-Bunanze-Camapckoro Ha
MHOT000pa3usix, a TaKyKe HEJIOKAJbHOU KpaeBoi 3amaum tuna upuxite-Bunanze-Camapckoro Ha MHOTO-
0bpa3usix B mpocTpancTBax losibiiepa. Kpome Toro, B pasiundabix HopMax [oJibjepa yCTaHOBJIEHBI HOBbBIE
HEPaBEHCTBA KOSPIUTUBHOCTHU JIJIsI PEITIEHUI KPaeBbIX 33/1a4 JITUIITHIECKOTO HEJIOKAJIBHOTO THUIIA Ha, TJIa]I-
KHX MHOT'OOOPA3USIX.

Kmouesvie caosa: nuddepeHnaabHble YpaBHEHN Ha MHOTO0OOPA3UIX, KOPPEKTHOCTD, CAMOCOIPSI?KEHHBIH
[TOJIOXKUTEJILHO OIPEJIJIEHHBIN o1epaTop.
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Basic reproduction number and effective reproduction
number for North Cyprus for fighting Covid-19

The aim of this paper is to show how North Cyprus fought with Covid-19 by using Ry and R:, as herd
immunity. For that purpose, we used a SEIR model for basic reproduction number, Ry, and calculated R:
values by using Ry values. North Cyprus is the first country in Europe to free from Covid-19 epidemic.
One of the most important reasons for this is that the government decided to tackle Covid-19 pandemic
by using Rop and R; daily. For Ry, we constructed a new SEIR model by using real data for North Cyprus.
From March 11, 2020 to May 15, 2020, R, varies from 0.65 to 2.38.

Keywords: Covid-19, Northern Cyprus, epidemics, mathematical model.

Introduction

Coronavirus is the virus that causes one of the most infectious diseases, Covid-19 (namely SARS-
CoV-2). This highly fatal disease began in December 2019, in Wuhan, China [1]. Disease has been
named by the World Health Organization, after a new coronavirus discovered from an infected patient
by Chinese Center for Disease Control and Prevention (CDC) [2]. In a susceptible population, the
main route of the transmission for Covid-19 is through small droplets from an infected person to other
people [3].

Symptoms of this disease are very similar with influenza, such as high fever, dry cough, tiredness.
Intensity of symptoms can range from very mild to severe. Infected people may have many symptoms
or no symptoms at all [4]. Many countries around the world have brought many restrictions to prevent
the spread of the disease. These restrictions include closure of workplaces, shops, restaurants and
airports [5].

Cyprus is the third largest island located in the Mediterranean region. In the North side of Cyprus,
the population is approximately 374000, and consists mainly of Turkish Cypriots [6]. In Northern
Cyprus, the SARS-CoV-2 outbreak started with patient zero on March 9, 2020 [7]. SARS-CoV-2 entered
the Northern Cyprus through the routes of Germany and England [7]. Since then the government took
many restrictions to prevent the spread of disease. On March 10, 2020 all of the schools, including
universities, were closed till March 15, 2020. Then closure was extended till the end of semester.
Afterwards, on March 15, 2020, all businesses except markets, pharmacies and gas stations were closed.
With all these restrictions, partial curfew and closure of the airport were announced by councilof ministers.

For infectious diseases, mathematical models can be constructed in order to study the infectiousness
of the disease. SEIR model is one type of the mathematical models that contains four main compart-
ments which are S, E, I, and R. Here S denotes susceptible, E denotes exposed (infected but not
yet infectious), I denotes infectious and R denotes recovered individuals in that population [8]. We
constructed a new SEIR model in order to calculate Ry and R; by using real data for North Cyprus [7].

The basic reproduction number, denoted by Ry, can be defined as the number of cases which are
expected to occur on average in a homogeneous population as a result of infection by a single individual.
The effective reproduction number, R., sometimes also denoted by Ry, is the number of people in a
population who can be infected by an individual at any specific time. It changes as the population
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becomes increasingly immunized, either by individual immunity following infection or by vaccination,
and also as people die |9, 10].

There are few differences between Ry and R;. The main difference is that in Ry there are no immune
individuals taken into account while in R; we count immune individuals as well. During an epidemic Ry
can not reflect the change of epidemic in time but R; can provide more information since it tracks the
evolution of transmission. Another important difference is that Ry works with daily cases. However,
R, generally works with death ratios [11,12].

Currently, a total of 30025 tests have been conducted resulting in 108 Covid-19 positive cases
in Northern Cyprus, of whom no patients are left under treatment. There are no individuals under
quarantine for 26 days due to the risk of carrying the Covid-19. As a result, 104 of patients have
recovered and 4 deaths have occurred [7]. North Cyprus is the first European Country that has become
Covid-19 free in 37 days [13]. In addition, no new cases were seen for 75 days.

In this paper, firstly we define the basic reproduction number, Ry, and the effective reproduction
number, Ry, as herd immunity. Then, we define the method and formulas which we have used in order
to calculate Ry and R; values. With these values, we illustrate in figures the evolution of disease in
North Cyprus. Lastly, we conclude our findings.

The basic reproduction number

An epidemiological definition of the basic reproduction number, denoted by Ry, is the expected
number of secondary cases by a single individual who is infected in an entirely susceptible population
[14,15]. Estimating Ry values in an epidemic can be helpful in order to see the infectiousness of the
disease. For that purpose we generally use mathematical modeling to find a formula for Ry of an
epidemic [15,16].

Basic reproduction number is calculated by using the parameters of the mathematical model [17].
Biological, social behaviour, and environmental factors can affect the basic reproduction number [18].
However, immunization is not an effect for Ry, which may occur naturally or by vaccination [19].

When Ry > 1, outbreak is expected to continue. We expect an outbreak to end if Ry < 1 or in
other words the number of infected individuals are expected to decrease [18,20]. Since Ry < 1 means
that each infected individual causes less than one new infection, this guarantees that the disease will
die out under that circumstances [21|. Hence, we desire the value of Ry to be less than 1.

Basic reproduction numbers for the previous pandemics are given in Fig. 1. SARS-CoV-2 has an
average value 2.65 during this pandemic if we compare with the other pandemics. If we check the Fig.

1, we can easily see that measles, HIV, or even influenza (Autumn 1918) are more infectious than
SARS-CoV-2.

Measles

Smalipox

Mers-CaV'

Influenza( Autumn 1918)
SARS-CoV-1
SARS-CoV-2

Influenza H2N2(1957)
Influenza [Spring 1918)

Influenza HiN1(2009)

2 B & 8 10 12 14 15
Basic Reproduction Number, Ro

Figure 1. The basic reproduction numbers for pandemics comparing to SARS-Cov-2 (Covid-19)
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The effective reproduction number

The Effective Reproduction Number, R;, can be defined as the real average number of secondary
cases infected by primary cases per time [10]. As in Ry, R; < 1 means that epidemic will decline and
the epidemic will spread if R; > 1 [10]. In this paper, we will use the effective reproduction number as
herd immunity.

When most of the population gain immunity to an infectious disease, this provides indirect protection,
namely herd immunity, to those who don’t have immunity to that disease. In other words, in a
population, the greater the number of immune people means the lower likelihood that a susceptible
individual will be infected [22]. There are two ways for gaining herd immunity; vaccines and infection.
Since the vaccine of SARS-CoV-2 has not been found yet, we can analyze herd immunity idea only for
infection [23].

There is a threshold that must be reached in order to say that the population has gained herd
immunity. This threshold is called herd immunity threshold which is the percentage of the population
that must be immune by getting infected [22]. Herd immunity threshold changes from disease to disease.
The proportion of the population that needs to gain immunity to the disease to stop the spreading
increase as the infectiousness of the disease increase [23].

In this paper, we calculate the effective reproduction number, R;, as herd immunity. We attempt
to analyze the herd immunity idea for Northern Cyprus.

Calculating the basic reproduction number and effective reproduction number

In order to calculate the basic reproduction number in Northern Cyprus we use a basic SEIR model
where S is susceptible, F is exposed, I is infectious and R is the recovery compartment. This model
was first introduced by William Ogilvy Kermack and Anderson Gray McKendrick in 1927.

In this paper, herd immunity, Ry, is calculated by the following formula

1

Ri=1—— 1
t RO’ ( )
where Ry is the basic reproduction number.
We construct the following model for Covid-19
dsS
— =71-AS
a0
dE
— = A5 — (61 +62)F
i (014 62)E,
d
Y —0p— 51+ 0@
t
dl
P O2F + 03Q — (62 + w + 04 + a1) 14,
dl.
d7t2 = 0411 — (® + a2 + 63) I,
dH
ar =wl; + Pl — (04 + a3)H,
dR
i 01Q + 0201 + 0312 + 04 H,

called a SEIR model with seven compartments which are explained in Table 1. By using this model and
system, we calculated Ry values for North Cyprus with real data. The formula for Ry can be obtained
by using the next generation matrix method. Then, with calculated Ry values, we can find R; values
using formula (1).
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The value of Ry is calculated as

Ry = (01871 4 B2b3) 01 + Brokablz) k3 + w B4 (O2ka 4 0301)) ba + 04 (BTap + BT3ks) (B2ka + 0301)
k1kaksbiba ’
(2)
where the variables and parameters of the model are described in Table 1 and Table 2, respectively.
Here

ki=01+ 05, ko =061 +03,ks =04 +a3,b1 =0 +w+ 04+ aq,by :C,O+052+53 (3)
Table 1
Variables for the model
Variables Descriptions
N Total population of humans
S Susceptible humans at the risk of having COVID-19 infection
E Exposed humans
I Infected humans with moderate infection
I Infected humans with severe infection
Q Human population under quarantine / isolation
H Hospitalized humans
R Recovered humans
Table 2
Parameters for the model and basic reproduction number
Parameters Descriptions
T Recruitment rate
I3 Transmission rate
7; (i =1,2,3,4) | Parameters for increase / decrease on infectiousness in humans
0; (1=1,2,3,4) Progression rates
w Hospitalization rate from I; class
10) Hospitalization rate from I class
a; (i=1,2,3) Disease induced death rates
0 Recovery rates

A formula (2) for Ry is obtained by using the method which needs next generation matrix where
finitely many distinct categories of individuals are introduced in a population. The method that uses
next generation matrix for calculating Ry was introduced by Diekmann et al. (1990) and van den
Driessche and Watmough (2002) [24]. This method needs two matrices which can be obtained from the
mathematical model. One matrix includes new infections of the disease taken from the system while
the other matrix consists of the rest of the system [24,25].

As we can see from Figure 2, while calculating Ry and R; values, we used daily cases between the
dates March 11, 2020 and May 15, 2020. We can observe that after approximately April 27, 2020, Ry
value decreased below one. This means that disease is not infectious anymore in TRNC under taken
restrictions, after that time.

On the other hand, if we look at the R; values which were calculated by formula (1), we see that
it is below one from the beginning. So, we can not make any comment by using R; for North Cyprus.
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25 Northern Cyprus R, patern for Covid-19 Pandemic
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Figure 2. Rgp and R; values from March 11, 2020 to May 15, 2020
Conclusions

Tackling of Covid-19 in North Cyprus has been compared with the other European countries. With
using the model, we calculated the basic reproduction number that secondary cases of new infectious
for Covid-19. Then we compared the infectiousness of the Covid-19 with the other pandemics, which
can be seen in Figure 1.

Some of countries used effective reproduction number during the SARS-CoV-2 pandemic. In Figure
2, we gave two graphs that are showing the infectiousness in North Cyprus with using Ry and R;.
Between April 17, 2020 - July 1, 2020 there were no new Covid-19 cases in North Cyprus. It can be
seen in the Figure 2 that this was what we assumed for the progression of the disease in North Cyprus
by using Ry values that we have obtained from the formula (2).

Furthermore, we have monitored Covid-19 pandemic in North Cyprus with R; as herd immunity.
The second graph in Figure 2 illustrates that R; values are less than one which shows us that there
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was no pandemic in North Cyprus. Although, both figures have similar behaviour, Figure 2 shows that
Ry is more effective than R;. However, we can not generalize this result.

In Figure 3, we can see that the North Cyprus has the lowest death rate with highest recovery in
Europe. Furthermore, North Cyprus is the leading country in Europe that it has almost 80000 tests
around 1000000 population. As a result, we can say that North Cyprus has reached zero at the case of
Covid-19 in 37 days.

Death Rate(1000000 Population) Total Recovered(1000 Population)
Belgium | TRNC
Italy | Austria
France |
1 Finland
Switzerland m—"
— Spain
Germany e
) I World
Finland js=
] .
Norway = Belgium
_-
TRNC Portugal
T T T T T
0 100200300 400500600 700800900 0 150 300 450 600 750 500
otal Te DO0000 Population
TRNC
Portugal
Belgium
Spain
Italy
Norway
Austria
Switzerland
Germany
USA
United Kingdom
Finland
France
Turkey
Sweden
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Figure 3. Comparison of North Cyprus with some other countries

and world data between March 11, 2020 and May 15, 2020
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Diekmann O. The construction of next-generation matrices for compartmental epidemic
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Yang H.M. The basic reproduction number obtained from Jacobian and next generation matrices
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9. Xunxan, b. Kaitmakamsae, Hesuxan [okOyryT

KoBua-19 nangeMusicbiMeH Kypecy YHIiH
Coarycrik Kunpaig penpoayKinsgacbIHBIH, 0a3aJbIK, HOMIipPI
2KoHe penpoayKIMACHIHBIH, THIM/iI HOMIpPi

MaxkaJsianblH MakcaTbl — YKBIMIBIK uMMyHHUTET peTinge RO kone Rt konmany apkbuibr Conrycrik Kump
Covid-19 mammemusicbiMeH Kajait KypeckeHin kepcery. Ocwkl makcarta RO MOHIEpiH KOJIJaHY apKBLIBI
Rt monzepi ecenrenai »xone RO 6azasblk HeMipin oiimary ymia SEIR momeni xkommamburran. Coaryctik
Kunp — KoBu-19 suunemusicbinan aifbikkan Eypona esjepi immineH ayramikbl €1 OOJbIT TadbLIa bl My-
HBIH MaHbI3/IbI cebenrepiniy, 6ipi - ykimertin kyuaeaikTi RO xxone Rt konnansin, Kosua-19 nangeMusicbiMen
Kypecy TypaJibl mermnim Kabbuiaaysl. Cosrryerik Kunp ymin HakTer MastiMerrepai kosgansin, RO ymin SEIR
KaHa Mojetin KypacToipabl. 2020 xkbuabiH, 11 Haypb3binan 6acran 2020 KbeuiabiH, 15 MaMbIpblHa JAeiiin
RO mowi 0,65- Ten 2,38-re neitin aybITKBIIT TYPIBI.

Kiam cosdep: Kosua-19, Conrycrik Kump, snugemusiiap, MareMaTHKAJBIK, MOJIE/b.

9. Xumxaia, b. Kaitmakamzane, Hesuxan ['okOyayT

BazoBbrit HOMep penpoaykiun u 3ppeKTuBHBbIIT HOMEP
pemnpoaykitnu CeBeproro Kumnpa ajis 60ops6b ¢ KoBua-19

Iesp mannoit cratbu — nokasarh, kak Cesepublit Kunp 6oposics ¢ Covid-19, ucnonibsyss Ro u R:, B kKade-
CTBE KOJUIEKTUBHOIO NMMyHuTera. s sToro aBropamu ncnosib3oBana mojesab SEIR s 6a3oBoro Homepa
BocmipousBeieHusi, Ry, n Bbrunciienne 3uadenus R, ucnonn3ys 3uadenus Ro. Cesepubiit Kumnp sBiistercst
nepBoii crpanoit B EBpone, koropas uzbasuiack ot snugemun Kosuia-19. Oqna 3 nanbosiee BayKHBIX IIPH-
9PH 9TOTO 3aKJI0YAeTCs B TOM, YTO [IPABUTEILCTBO permyio 6oporbes ¢ naugemuein Covid-19, ucnonssys
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exxenueBHble Ro n R:. [Ina Ry HaMmu mocTpoeHa HoBast Mojenb SEIR ¢ ncnonb3oBanneM peabHBIX JaHHBIX
st Ceseproro Kumpa. C 11 mapra 2020 r. mo 15 mas 2020 r. ypoBerb Ry B 910l cTpane KoJsebyercs B
npeznesax or 0,65 no 2,38.

Karouesvie caosa: Kosun-19, Cesepubiit Kunp, snnmemun, maremMaTudeckas MOJIEb.
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A note on well-posedness of source identification
elliptic problem in a Banach space

We study the source identification problem for an elliptic differential equation in a Banach space. The exact
estimates for the solution of source identification problem in Hoélder norms are obtained. In applications,
four elliptic source identification problems are investigated. Stability and coercive stability estimates for
solution of source identification problems for elliptic equations are obtained.

Keywords: well-posedness, elliptic equations, positivity, coercive stability, source identification, exact estimates,
boundary value problem.

Introduction

Several source identification problems for partial differential equations have been extensively inve-
stigated by many researchers (see [3,4,8-11,14,15,17-19] and the bibliography herein). Well-posedness
of nonclassical boundary value problems for various partial differential and difference equations was
established in a number of publications (see [1]-|22] and references therein).

Large number of the source identification problems for an elliptic differential equations can be
written as the source identification problem for the second order differential equation

—u’(t) + Au(t) = f(t) +p, 0<t<]1,
(1)
uw(0) = u(1), v/(0) = u/(1),u(N) =& X € (0,1)

in an arbitrary Banach space E with a positive operator A. Here parameter p € E and abstract
function u : [0,1] — E are unknown and element & € D(A) and abstract function f : [0,1] — E are
given.

Let E; C FE and F(FE) be the Banach space of E—valued smooth functions on [0, 1]. We say that
the pair {u(t),p} is the solution of the source identification problem (1) in F'(E) x Ej if the following
conditions are valid:

(i) pe€ Ep,u"(t) € F(E), Au(t) € F(E),

(ii) {u(t),p} is satisfied the equation and all three conditions of (1).

In the present paper, theorem on well-posedness of the source identification problem (1) in Holder
spaces is established. In applications, stability and coercive stability estimates for solution of the four
type of source identification problems for elliptic equations are obtained.
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Stability and coercive stability estimates

Denote by C5;“(E) (0 < o < 1), the Banach space obtained by completion of the set of E—valued
smooth functions ¢(t) defined on [0, 1] with values in F in the norm

Ielemesy = lello + s 71— 0%+ 7)ot +7) = o0l 5.
0<t<t+7<1

where C'(E) is the Banach space of all continuous functions ¢(t) defined on [0,1] with values in F

equipped with the norm
liellogs = max le®ls-

Assume that v(t) is the solution of the nonlocal boundary value problem

—"(t)+ Av(t) = f(t), 0 <t <1,

(2)
v(0) =v(1), v'(0) =(1)
Then, for the solution of problem (1) we have the following formulas
u(t) = v(t) + A" p, (3)
p = AE — Av(\). (4)

Therefore, the following algorithm can be used to find the solution of problem (1):

(1) Find the solution v(¢) of nonlocal boundary value problem (2).

(2) Use (4) to obtain the source element p of source identification problem (1).

(3) Applying (3), obtain the solution wu(t) of source identification problem (1).

It is known that the operator B = As is the strongly positive operator for any positive operator
A. Therefore, the operator —B will be a generator of an analytic semigroup exp —tB (¢t > 0) with
exponentially decreasing norm (see |7]), when ¢t — oo, i.e. there exist some M (B) € [1,+00),
a(B) € (0,400) such that the following estimates

lexp(=tB)| g, < M(B) exp(—a(B)1), (5)
[tB exp(=tB)|lp_,p < M(B)exp(-a(B)t)(t > 0), (6)
Il g < M(B) (1 — exp(—a(B))) ™ (7)

are satisfied. Here T = (I — exp(—B))~L.
The solution of direct problem (2) is defined by (formula (1.7) [1])

1
v(t) = 1B 1T exp(— (1 —t) B) Ofexp(—sB)f(s)ds (8)

¢ 1
+3B71 Z)fexp(— (t—s)B)f(s)ds + B! {exp((t —8)B)f(s)ds
1

+ 4B Texp(—4B) [ exp(— (1= ) B)f(s)ds
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From (4) and (8), it follows that

p=A¢ — 3BT exp(—(1—\)B) Oflexp(sB)f(s)ds 9)
A 1
—%Bofexp(— (A—3s)B)f(s)ds — %B{exp(()\ —8)B)f(s)ds

ABTexp(—B) [ expl— (1 - ) B 5)ds

Finally, by using formulas (8), (3) and (9), we can obtain u(t).

Now, we formulate result on well-posedness of the source identification problem (1) in the space
Cop" ().

Theorem 1. Assume that £ € D(A) and f(t) € Cyi"(E),0 < o < 1. For the solution {u(t), p} of
the source identification problem (1) the following stability inequality

lllogsy + 114725 < M [lEls + 17l (10)
and coercive inequality
"oy e) + Al g sy + Ipls < MIIAELg + agy I lge e (11)

hold, where M is independent of o, and f(t).

The proof of Theorem 1 is based on the formula (3) and estimates (5) and (7) on the Theorem on
well-posedness of the nonlocal boundary value problem (2) [1].

Note that same results can be established for the solutions of the general source identification
problems

—u"(t) + Au(t) = f(t) +p, 0<t<]1,

N
w(0) = 3 aju(ty) + ¢, v'(0) =u'(1) +,u(r) = A€ (0,1),
j=1
where 0 < t1 < ... < ty < 1, if the operator
N
J— 2B _ Zaj (efth e (@t)B _ ~(1-t;)B | 67(1+tj)3)
j=1
has a bounded inverse in £ and

—u"(t) + Au(t) = f(t)+p, 0<t<]1,

=2

u(0) = u(1) + ¢, u'(0) = 1%’”’(%’) +,ud) =&, A€(0,1),

where 0 < 51 < ... < sy < 1, if the operator

N
(I _ 6—3)2 B Zaj <e—3jB e (2=5)B _ ~(1=s))B _ e—(1+sj)B>
j=1

has a bounded inverse in FE .
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Applications

In this section, we consider the applications of Theorem 1. First, we study the source identification
problem for the two dimensional elliptic differential equation with nonlocal boundary conditions

2u(t,x 2u(t,x
—Qultr) 8&3’ ) _ a(ac)a 83(:27 ) du(t,z) = f(t,x) + p(x),

O0<t<1,0<x <,
(12)
U(O,J)) = u(l,x),ut(O,x) = ut(la'r)a U(/\,.%) = 6(1‘),0 S x S la

u(t,0) = u(t, 1), uy(t,0) =wuy(t, 1), 0<t <1,

\

where a(x), £(z) and f(t,x) are given sufficiently smooth functions and a(z) >0, 0 < A< 1,0 > 0 is
a sufficiently large number. Assume that all compatibility conditions are satisfied.

We introduce the Banach spaces C?[0,1] (0 < 8 < 1) of all continuous functions o(z) satisfying a
Holder condition for which the following norms are finite

p(z +7) — p(2)]

¢ llcspg=l ¢ llcog +  sup ;
CB[0,]] [0,7] 0<ocm i< B

where C[0, 1] is the space of the all continuous functions ¢(z) defined on [0,!] with the usual norm

H@%mfgggww%

Theorem 2. For the solution of the source identification problem (12) the following stability and
coercive stability estimates hold:

lulleeaoay < MB) [lellosoy + 1 fleesioa] -

||U||c§1+a7a(cﬁ[o,q) + ||U\|cgf"(cﬁ+2[o,11) + ||p”(jﬂ[0,l]

< aticey 1 legecopn + MB) [Ellgs2pog
where M () is independent of o, {(z) and f(t,2),0<a <1, 0< B < 1.
The proof of Theorem 2 is based on the Theorem 1 and the positivity of the elliptic operator A in
Cch10,1 [7].
Second, we investigate the source identification problem on the range {0 <t < 1,z € R"}

(o) + Y (@) u(t,x) + du(t,z) = f(t,x) + p(x),

l 1
ll=2m 8x11...8zn"

O<t<1l,xz€ R,

uw(0,2) = u(l,z),u(0,2) = u(1,x), u(\,z) =¢£(z),z € R"

for the 2m—order multidimensional elliptic equation, where a;(z) (I = (I1,...,1),[l| =0,...,2m) and
&(z) are known sufficiently smooth functions, a;(x) > 0, and 0 < A < 1, 6 > 0 are given real numbers.
Assume that all compatibility conditions are satisfied and the symbol

F7 Q)= > a,0) ()" ... (i)™, ¢=(¢1,---,Cn) € R

[l|=2m
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of the differential operator
. olll
B = Z az(C)W (14)
li|=2m 1Otn
acting on functions in the space R™, satisfies the inequalities

0< My [¢P™ < (—1)™F"(¢) < Ma |¢]*™ < o0,

for ¢ # 0.
Theorem 3. For the solution of the source identification problem (13) the following stability and
coercive stability estimates are satisfied:

lelloencrmy < M) [1Ellougam + 1 lownrny)] -

I
ull g2 g gy + PRI Pl re
oy (CH(R™)) |1|=2m a96111“"95’3% Coi™(CH(R™)) B
M () olle
< oo n M A A ln
< atreay I llegiecney + M) 3 NG|

where M (u) is independent of «, {(z) and f(¢,2),0<a <1, 0 <p <1

The proof of Theorem 3 is based on the Theorem 1 and the positivity of the elliptic operator A*
in C*(R™) |7] and the coercivity estimate for an operator A* in C*(R") [8|.

Third, let Q = (0,1)" be the open cube in R" with suitable boundary S, Q@ = QU S. In [0,1] x Q,
we study the source identification problem

7

M=

_Utt(ta «75) - ak(x)uxkzk (t, .73) + 5u(t7 x) = f(tv x) +p(x),

k=1

x=(r1,..,2y) €Q0<t <1,

u(0,2) = u(l,z),u(0,2) = ue (1, x), u(A,z) =£&(z),x € Q,

[ w(t,z)=0,0<t<1,zes

for the multidimensional elliptic equation. Here a,.(z) (z € Q) and o(z), ¥(z), £(z) (z € Q) are given
sufficiently smooth functions, and 0 < A < T, § > 0 are known numbers. Assume that all compatibility
conditions are satisfied.

Denote by Cgl(ﬁ)(ﬂ = (B1,..,6n),Bi,1 < i < n), the Banach spaces of continuous functions
satisfying a Holder condition with weight xf’“(l —ap —h)%,0 < < x4+ hp <1,1 <k <nand the
indicator 8 which equipped with the corresponding norm

”f”cgl(ﬁ) = Hch(ﬁ)

n Bri
+ s ) = @ (E) (1w b
0 < xp< xzp+hr <1, k=1
1<k<n
It is well known that the differential expression
n
A%y = — Zak Ugpay, + OU (16)

k=1
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defines a positive operator A” acting on C’gl () with domain D(A%) C C’gfr () and satisfying the
boundary condition v =0 on S.

Theorem 4. For the solution of the source identification problem (15) the following stability and
coercive stability estimates hold

lullogem @y < M) [ legen @) + 1Ellon @) (17)

Jullcggom @y + 3 ltsenellogcpam + IPllog @)

< N gy + M) Il vy

O<a<lyu=(p1, i) 0<p; <1, 1<i<nmn,

where M (p) is independent of «, &(x) and f(t,x).
Fourth, in [0, 1] x €, we consider the source identification problem

;

et 2) = 32 k(@) (1) + dult,2) = £(1,7) £ p(a),

reN0<t<,

u(0,2) = u(l,z),u(0,2) = u(1, ), u(A z) =&(x),x € Q,

L %u(t,x):(), 0<t<1l,zes

for the multidimensional elliptic equation. Assume that all compatibility conditions are satisfied. The
differential expression (16) defines a positive operator A* acting on C’Ol(ﬁ) with domain
D(A”") C Cgfr A (Q) and satisfying the boundary condition 2 5= = 0 on S. Therefore, by using Theorem
1, we can get the following result.

Theorem 5. For the solution of the source identification problem (19) the stability and coercive
stability estimates (17) and (18) respectively are valid.

Conclusion

In the present paper, the well-posedness of the source identification problem for the abstract elliptic
equation in Banach spaces is investigated. The exact estimates for the solution of this problem in Holder
norms are established. In future investigation, absolute stable difference schemes for approximately
solution of the source identification problem for elliptic differential equations will be constructed and
investigated.
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Banax keHicTirinze JepeKKe3/1l COiKecTeHIipy/ie
JIJINTCTIK €CEeNTiH KOPPEKTILJIIri TypaJibl eCKepTy

Banax kericririame simrnctik quddepeHnnaliIbiK, TeHIey VIIH IePEeKKO3/Ii COMKEeCTEH/Iipy Moceieci Kapac-
TBHIPBLIFaH. XeJiep HOPMacChIHIa JePEKKe3/epi ColKecTeH1ipy ecebiH Imenry yIiiH 1o/ 6araMbl ajIbIHIBL.
Kocbivmmanapia nepekkesi coffkeCTeHIIPY/IiH TOPT JUIUICTIK ecebi 3epTTereH. DJUIUICTIK TeHIAEY VIMiH
JEePEKKO3JeP/Il COMKECTEH 1Py ecebiH Imerny YIIiH MoXKOYpPJi OPHBIKTBIIBIK >K9HE OPHBIKTBLIBIK, OaraMbl
aJILIHFAH.

Kiam cesdep: KOPPEKTIIiri, SJIUIICTIK TEHIEY, TO3UTUBTI, MoXKOYPJIi OPHBIKTBLIBIK, JTEPEKKO3/I1 CofiKeCTeH-
Iipy, mos1 6araMbl, IMIETTIK ecelr.

A. Amprpaseie, Y. Ambipassies, B.I. 3sarun

3aMevaHre 0 KOPPEKTHOCTH SJIJIUIITUYIECKOI 3a1aum
NAeHTU(PUKAINN NCTOYHNKA B 0aAHAXOBOM HPOCTPAHCTBE

HccnenoBana npobiemMa uaeHTUDUKAIIUNA UCTOYHUKA JIJIS SJTUITHIECKOTO TuddepeHINaTLHOIO YPaBHEHNS
B GaHaxoBOM IpocTpaHcTBe. [loIyYeHbl TOYHBIE ONEHKU JJIsI PEIIEHMs 3a1a9¥ UICHTH(MUKAIUNT UCTOYHU-
Ka B HOpMax XeJjjepa. B IpPUIOXKEHUSIX MCCIETOBAHBI YEThIPE IJIITUINTHIECKUX 3aJa4UN WUICHTUPUKAITUN
UCTOYHUKA. [10JIyIeHbI ONEHKM YCTOWYNBOCTU U KOIPIUTUBHON YCTONYMBOCTH JIJIsl PEIIeHHs] 33124 WJIEHTH-
dUKaIUKM UCTOYHUKA JIJIST SJITUIITHIECKUX YPABHEHUN.

Karouesvie carosa: KOPPEKTHOCTD, IJIJIMIITUICCKNE YPaBHEHUA, IOSUTUBHOCTDH, KOIPIIUTUBHAaA yCTOI'-/'I“II/IBOC"I‘L7
I/I,HEHTI/I(l)I/IKaLII/IH UCTOYHUKa, TOYHbIC OIIEHKH, KpacBad 3a1a4a.
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On the stable difference scheme for
the time delay telegraph equation

The stable difference scheme for the approximate solution of the initial boundary value problem for the
telegraph equation with time delay in a Hilbert space is presented. The main theorem on stability of the
difference scheme is established. In applications, stability estimates for the solution of difference schemes
for the two type of the time delay telegraph equations are obtained. As a test problem, one-dimensional
delay telegraph equation with nonlocal boundary conditions is considered. Numerical results are provided.

Keywords: difference schemes, delay telegraph equations, stability.

Introduction

Time delays appear in a diversity of science and engineering, such as biology, physics, chemistry,
dynamical processes. The delay term can cause oscillatory instabilities and chaos. However, to find more
realistic solutions to the problems encountered in life, the delay term should be taken into consideration
in mathematical modeling. Many scientists have worked to solve such problems (see [1-10]).

Telegraph equation is mostly interested in physical systems. Many physicists, engineers and
mathematicians have studied on telegraph equation without time delay (see [11-18|) paranthesis is
missed. Operator theory is used in [19] for the investigation of stability of the initial value problem for
the telegraph equation in a Hilbert space. Ashyralyev, Agirseven and Turk in [20] studied the stability
of the initial value problem for the telegraph differential equation with time delay

deq:gt) T advjigt) + Au(t) = aAu([t]), t >0,

(1)
u(0) =¢, u'(0)=1v
in a Hilbert space H with a self-adjoint positive definite operator A, A > §I, ¢ and v are elements of

D(A) and [t] denotes the greatest-integer function, here 6 > ‘1—2 and 0 < a < 1.
In the present paper, the first order of accuracy stable two-step difference scheme

( Ug+1—2Uptug—1 Uk+1—Uk _
b + p= + AukH = aAu[k;]T{V]N_’_mN,

Nr=1, im—1)N+1<k<mN-1, m=1,2,..,

Uy = @, ((1 +ar)l + T2A) TR0 = qh,

[ (A +ar)I 4 72A) 2l tml — SmN_mNoL o = 1,2, .

for the solution of the problem (1) is constructed. The main theorem on stability estimates for the
solution of difference problem (2) is established. In applications, stability estimates for the solution
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of the difference scheme for the two type of the time delay telegraph equations are established. As a
test problem, an initial-boundary value problem for one-dimensional delay telegraph equations with
nonlocal boundary conditions is considered. Numerical results are given.

The stability of difference scheme (2)

Throughout this paper, the operator B is defined by the formula

2
@
B=A-—1I
4

It is easy to show that for § > %2, the operator B is a self-adjoint positive definite operator in a Hilbert

space H with B > (§ — %Q)I . Operator functions R and R are given by formulas
-1 - —1
Ru = ((1+%>I—i731/2> u, Ru= <(1+%)I+i731/2> u.

Lemma 1. The following estimates hold:

1B < ——, (3)
(0%
1
IRlgm <1, |7BY*Rllgm <1, | Rla—n < 1,|7BY? Rl|lgon <1, (4)
HTBI/2((1+M)1+T2A)—1H <1. (5)
H—H

The proof of Lemma 1 is based on the spectral representation of the self-adjoint positive definite
operator B in Hilbert space H (see [21]).
Theorem 1. For the solution of difference problem (2), the following estimates hold:

<ol + |57, :
max[uely < bllelly +[|B20] ()

— Uk — Uk—1 _
p1/22k — Tkl < dHB 1/2 H
N ‘ Yo cllelly + Y - (7)
max U <b max m
mN+1<k< (m+1)N el < (m—1)N<k<mN lurll
+ max Jz el ierion | RN S @)
(m—1)N+1<k<mN T i
Ul — Uf—
max HB—l/Qkk‘1 <ec max llurll 5
mN 1<k (mA LN T H (m—1)N<k<mN
+d max HB—1/2u’f_uk’1 : —1,2, ., (9)
(m—1)N+1<k<mN T .
where
0 a
b:|a]—|—|1—a|d, C:’l—a’ﬁ7 dzl_}_#
o — & o2
1 §—
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Proof. Difference problem (2) can be rewritten as the equivalent initial value problem for the second
order difference equations with operator coefficients

((1 +ar)l + TQA) Ugr1 — (24 aT) up + up—1 = (IT2AU[k—mN]N+mN,

N+1

Nt=1, im—1)N+1<k<mN -1, m=1,2,..

w=¢, w=¢+7((1+ar)l+ T2A)_11/1,

[ UmN+1 = UmN + Rﬁ(umN — UpN-1), m=1,2, ...
Let 1 < k < N. It is clear that

ur = ¢+ rBY*RRB™/%)
and

B2 — (1t ar)I +724)7' B2 = RRB™/?y,

T

Then, using the triangle inequality and estimate (5), we get
e < loller + 1B~ |m
and

121 — Ug _
1B 1/ZfllH < lleller + 11B72¢] .

Therefore, they follow the estimates (6) and (7) for & = 1. Now, we prove estimates (6) and (7) for
2 < k < N. We have that (see [21])

uy = RR (fz - R)fl (R""l - 172’“—1) o + (Fz - R)il (E’f . Rk) w

E

N -1 e (E_ R>—1 (Zj.ékfj _ Rk*j) C”'QAU[J'*T"N]N-FmN' (10)

N+1
7=1

Using the formula (10) and the following identities
(I _ ﬁa) (I — R) = r2ARR, (R’ _ R>_1 _ (—21731/2)_1 R'RY,
we get
up = {a +(1—a) % (B2 (-51-iB"?) R
_ B2 (—%I + z’Bl/2> E’“fl) } o+ % (12“2’“ - Rk> B2y (11)
and
B*WM - {(1 —a) %B*W (B*W (—%I - z‘BW) (—%I + z‘Bl/2> R
B2 (—%I n z‘BW) (—%I . z’Bl/Q) E’“) } o

—1—%3_1/2{(—%[— Z-Bl/2> Rk+1 _ (—%]+Z.Bl/2) RkH}B_l/Qw. (12)
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Applying the formulas (11) and (12), using the triangle inequality and the estimates (3) and (4), we
obtain

« 1 _
luelyr < [lal+ 1=l [ 14+ 5 ———| | Il + || B2 (13)
§2 — o2 H
4
and
e e e ] PGPy
4

From (13) and (14), they follow the estimates (6) and (7) for 2 < k < N.
Now, let mN +1 <k < (m+ 1)N for m = 1,2,3.... It is clear that

UmN+1 = UmN + TBl/QRé <B—1/2umN—TumN—1> (15)
and

p1/2UmNEL ZUmN _ p R p—1/2UmN ~ UmN -1 16)

T T .
Applying formulas (15), (16) and using triangle inequality and estimates (3) and (4), we get
—1/2UmN — UmN-—
lumnt1llg < lumnll g + HB 1/2%mN = YmN-1 an
T H

and

HBl/meﬂwvH <l + HBW“mN—“le | "

T H i Y

So, from these estimates they follow the estimates (8) and (9) for £ = mN, respectively. Now, we will
prove estimates (6) and (7) for mN +2 <k < (m+ 1)N, m = 1,2,.... We have that (see [21])

uy = RR (R’ - R) o (R’f*mN*1 - fé’f*mN*I) U + (E - R) o (fé’f*mN - R’f*mN) YN 11

k-1 e o By
+jm§];+1 RR (R—R) (Rk J _Rk J) aTQAu[jX,;"fV]NerN (19)

for the solution of the difference problem (2). Using formula (19), we get

up = {a +(1- a)%B_l/Q [(‘2‘“1 - iBl/2> RF=mN=L <_20‘I + z‘BW) E"f—mN*H UnmN

+% B2 (Rﬁ)il [E’H”N _ Rk-mN } (“mN “T_ HUmN ) . (20)

Applying the formula (20) and using triangle inequality, we get

_ UmN+1 — UmN
rmeSbmmmm+MBlﬂ<’”+;mﬂ\- (21)
H
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From (21) it follows the estimate (8). Using (20), we obtain

B—l/Quk+1 — U _ |:(1 _ a)% |:B—1ARk—mN _ B—lAék‘—mN}] U N

T

[(_%B_l/z B l) R-1pk—mN _ (_%3_1/2 4 Z) é—le—mN} B1/2 <“mN+1_“mN> (22)

-I—i
2 T

Now, applying (22) and using triangle inequality, we get

_ 5 a _
"B_I/QUk+1 Uk < ’1 . CL‘ _ ||UmN||H + 1+ 2 HB—1/2 (umN—l-l UmN) H . (23)
T g §— ﬁ T H
4
From (23) it follows the estimate (9). Therefore, the proof of Theorem 1 is completed. O

By applying operator B2, in the same manner of proof of Theorem 1, we can obtain the following
stability results.
Theorem 2. For the solution of difference problem (2), the following estimates hold:

B, < b5t 21
max || BY 2w < b B%|| + 1wl (24)
= <el|B
_ <cl||B d , 25
[pax, . s |, T alvla (25)
max HBl/2ukH <b max HBl/ZukH
mN+1<k<(m+1)N H (m—1)N<k<mN H
n max el N | R T (26)
(m—1)N+1<k<mN T H
max el <c max HB1/2U;€H
mN+1<k<(m+1)N T " (m—1)N<k<mN H
+d max il § | R BN (27)
(m—1)N+1<k<mN T H

Applications

Now, we consider the applications of abstract Theorem 1 and Theorem 2.
As first application, we consider the initial value problem for the delay telegraph equations with
nonlocal boundary conditions

(up(t, ) + au(t,z) — (a(x)uz(t, x))y + ou(t, )

= a(=(a(@)ug ([1], )z + ou(lt], x)), 0 <t <o0, 0 <z <, o)
28
w(0,2) = p(x), us(0,2) = Y(x), 0 <z <1,

u(t,0) = u(t, 1), ug(t,0) = ug(t,1), 0 <t < oo.

Problem (28) has a unique smooth solution (¢, z) for smooth funtions a(z) > ag > 0, (z € (0,1)),
a(l) = a(0), 6 > 0, ¢(z), Y(x), (z € [0,1]) and 0 < a < 1. This allows us to reduce the problem (28)
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to the initial value problem (1) in a Hilbert space H = Ls[0,!] with a self-adjoint positive definite
operator A* defined by the formula (28).

The discretization of problem (28) is carried out in two steps. In the first step, we define the grid
space

0,]p, ={z=2n:2p=nh, 0<n <M, Mh=1}.

We introduce the Hilbert spaces Lop = Lo([0,1]s) and Wi, = Wi([0,{],) of the grid
functions " (x) = {¢n})! defined on [0,1];, equipped with the norms

1/2

1/2

hl

2
h
ol ()]

h _|.n
1y, = "

Lop, * Z

xe|0,l|p

respectively. To the differential operator A* defined by (28), we assign the difference operator A} by
the formula

A" (2) = {—(a(@)p)on + dpn}y ! (29)

acting in the space of grid functions ¢"(x) = {p,}}! satisfying the conditions po = @ur, 1 — o =
©m — pm—1. It is well-known that A7 is a self-adjoint positive definite operator in Loy. With the help
of A7, we reach the initial value problem

d?ul (t,x)
dt?

@t b At (1, 2) = adfut (1], ),

0<t<oo, z€[0,h, (30)

ut(0,2) = " (2), u(0,2) = 9"(z), 2 € [0,
In the second step, we replace (30) with the difference scheme (2) and we get

h _ h
gy (2) = aAﬁ“[k;]TlN]NerN(x)a

uz+1(a:)72ug‘(a:)+uzil(:r) 4 aug+1(x3-fu2(ac) I A

T2

ty =kr, z€[0,lp, Nr=1, m—1)N+1<k<mN-1, m=1,2,..,
(31)

ug(a:) = cph(a:), ((1 +ar) I + T2Agﬁ) M = wh(m), x € [0,]n,

h . h
((1 +Oé7') I +T2Ai) UmN+1($7)— U v () _ Ymn TmN—l om=1,2, .., x¢€ [Oal]h‘
Theorem 3. Suppose that § > %2. Then, for the solution {u} (a:)}év of problem (31) the following
stability estimates hold:

h h h
II’SI};%XN HukHLQh S Ml {ng HL2h + Hw HLQh} )

h h
Up — Up_q

T

< My {Jl"l,y + 11"y,
Loy,

h
1ShEN Hu’“”W%h T
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h
max luglle,,
mN+1<k<(m+1)N
h h
up —up_
< Ms max b, + max k kol ,m=12 ..,
(m—1)N<k<mN 2h (m—1)N+1<k<mN T
Lan
h
h Y — Uk—1
max llugll , + max
MmN+1<k<(m+1)N Warn  mN+1<k<(m+1)N T .
2h
h _ ,h
up —up_
< M, max lufll , + max h_ kol ,m=1,2,..,
(m—1)N<k<mN Won  (m=1)N+1<k<mN T
Lan
where My, My, M3 and My do not depend on ¢"(z) or ¥"(z).
Proof. Difference scheme (31) can be written in abstract form
h h h h h
Upyq —2up Uy, Ukt1 % )b _ Az, h
72 +a—= + Ajuy .y = aAhu[’“;VT{V}NerN’

tp=kr, Nt=1, (im—1)N+1<k<mN-1, m=1,2,..,

h h

uf = ¢ (14 ar) Iy + 7247) "2 = g,

h

2 Az “?nN+1_“%N Up N U N 1
((1+oz7’)[h+7' Ah) = = — ,m=1,2,..

in a Hilbert space Lo, with self-adjoint positive definite operator A, = Aj by formula (29). Here,
ull = ul(x) is unknown abstract mesh function defined on [0, 1], with the values in H = Loy,. Therefore,
estimates of Theorem 3 follow from estimates (6), (7), (8) and (9), respectively. O

For second application of abstract Theorem 1 and Theorem 2, let 2 C R™ be an open bounded
domain with smooth boundary S, Q = QU S. In [0,00) x Q, we consider the initial-boundary value

problem for the delay telegraph equations
wnlt,) + @t ) = 3 )i, (60D, = (= 3 (orlohs (), ).
r=1

x= (21, ...,y) €Q, 0 <t < 00, (32)

w(0,2) = ¢(z), 2902 — y(2), z €1,

u(t,z) =0, x €S, 0 <t < oo,

where a,(z), (z € Q), p(x), ¥(z), (x € Q) are given smooth functions and a,(z) >0 and 0 < a < 1.
We introduce the Hilbert space Lo(Q), the space of all integrable functions defined on €2, equipped
with the norm

N

11l @) = / / f(x))? dzy...dzy,

z€Q
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The discretization of problem (32) is carried out in two steps. In the first step, we define the grid
space

ﬁh:{x:x'l‘:(hljla"'7hn.jn)7 j:(jla"'7jn)a OSj'I‘SNra N’rh'r’:L T:17"'7n}7
thﬁhﬂg, ShzﬁhﬂS.

We introduce the Hilbert spaces Loj = Lo(,) and W), = W} (€),) of the grid functions
o"(x) = {o(h171, ..., hyry)} defined on Qy, equipped with the norms

|

1/2

(S @] hem)

Z‘GQh

Lap

1/2
o + Z Z %T,jr(x)‘ hi---hy 7

ey r=1

h _ h
"l ="

respectively. To the differential operator A” defined by (32), we assign the difference operator A7 by
the formula

Ayl — — Zn: (ar(epd,)
r=1

where A} is known as self-adjoint positive definite operator in Loy, acting in the space of grid functions
u” (z) satisfying the conditions u” (x) = 0 for all z € Sj,. With the help of the difference operator A%,
we arrive at the following initial value problem

2, h h
Fu ) 4 oD | Azyh (¢, ) = aATuP ([t], ),

0<t<oo, €y, (33)
u(0,z) = (), u(0,x) = Y"(x), z €

for an infinite system of ordinary differential equations.
In the second step, we replace (33) with the difference scheme (2) and we get

2“2—&-1 () = aAﬁul[lk]—vaNerN(a?)a

u2+1(m)—2u22(ac)+u271(:v) i au2+1(z)—u2($) LA
T T

tk=kr, 2€Qp, N71=1, (im—1)N+1<k<mN-1, m=1,2,..,
(34)

h —uh z o
ull(z) = "), (14 ar) I +7247) U@ _ yhry 2 eqy,

h _,h h _h —
((1+ ar) I + r2Ap) et @7y @ oy @2ty 1@ ey 212,

T

Theorem 4. Suppose that § > %2. Then, for the solution {uz (x)}év of problem (34) the following
stability estimates hold:

h h h
1g}€a§XN HukHLmL < Ms {H(‘O HL% 11 HL%} ’
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h up —up h h
e Tt ) <y { }
(max Jugll,, + max | —— < Mo llo®llyy A+ 17y, ¢
Lap,
h
max u

mN+1§k§(m+1)N|| ’“HL%

h h

U, — U

< My max lufll,  + max —k kel , m=1,2,..,
kllL
(m—1)N<k<mN 2k (m—1)N+1<k<mN T

Lap

h

uy —u

max Jullll , + max k__ kol
MmN+1<k<(m+1)N Wor  mN+1<k<(m+1)N T .
2h
h Uy — “2—1
< M;g max lugll. , + max ,m=1,2,..,

(m—1)N<k<mN Wan  (m—=1)N+1<k<mN T

Lap,

where M, Mg, M7 and Mg do not depend on ¢"(z) or ¥" ().

Proof. Difference scheme (34) can be written in abstract form (2) in a Hilbert space Loj = Lo(Q4)
with self-adjoint positive definite operator A, = A? by formula (33). Here, uf = ul'(z) is unknown
abstract mesh function defined on €2;, with the values in H = Loj,. Therefore, estimates of Theorem 4
follow from estimates (6), (7), (8) and (9) and the following theorem on the coercivity inequality for
the solution of the elliptic difference problem in [22]. O

Theorem 5. For the solutions of the elliptic difference problem

Arul(z) = W), © € Qy, u(z) =0, 2 € 8,

the following coercivity inequality holds:

n
h

3

r=1

where My does not depend on h and w”.

< M9Hwh||L2h7
Lop

Numerical results

When the analytical methods do not work properly, the numerical methods for obtaining approximate
solutions of telegraph differential equations play an important role in applied mathematics. In this
section the first order of accuracy difference scheme for the solution of the initial boundary value
problem for one dimensional telegraph differential equation with nonlocal boundary conditions is
presented.

We consider the initial-boundary value problem

U (€, ) + 2us(t, ) — uge (t, ) + u(t, x) = 0.001 (—uze([t], z) + u([t], x)) ,
0<t<oo, 0<z<m,

(35)
u(t,z) = e tsin(2z), -1 <t <0, 0<z <,

u(t,0) = u(t,m), ug(t,0) = uz(t,m), 0 <t < o0

for the delay telegraph differential equation with nonlocal conditions.
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By using step by step method and Fourier series method, it can be shown that the exact solution
of the problem (35) is

where

Thi1(t) = Tp(n)e ' cos(2t) +

Tn(n)
2000

+

u(t,z) =Tp(t)sin(2z), n—1<t<n, n=1,2,...,

999
= e
1000

T (1)

~tcos(2t) —

1
2000

e sin(2t) +

e

1000’

sin(2t)

(2 — 2™ cos(2(t — n)) — e~ sin(2(t — n))) L n=1,2..

Using first order of accuracy difference scheme for the approximate solutions of problem (35), we
get the following system of equations

_ k41 k41, k41
up ™t —2uk fuf ! I Quﬁ“fuﬁ _ Upg—2un tup Ty 1okt
T2 T ]’L2 n
k—mN k—mN k—mN
PR vmy AR N emy B N em k=mN] 4 N
un+1 _2u’” +un71 [ N+1 ] +m
=0.001 | — 7 + U, ,

tp=kr, Nr=1, mN+1<k<(m+1)N-1, m=0,1,2,...,

Tp=nh, Mh=m, 1<n<M -1,

. 1_,0 u; —2u}l+u317
u) = sin(2nh), (1+27) 2" 471 (— L L+ u}L)
ud | —2ud +u? .
+7 (”“T’H - u%) = —sin(2nh), 0 <n < M,
mN+1_ mN umN+1—2umN+l+umiV+1
(1+27)—"n— 47 (— n+1 o nol MmN+
u7nN _QU';LrLN_;'_umN mN _, mN—1
—|—7‘< SRS —uf;N) =T 0<n< M, m=1,2,..,
ub =uk, o ub —ub =k, -k, mN<E<(m+1)N, m=0,1,2,...

We can rewrite system (36) in the matrix form

114

k—mN

CcUk+t + DUF* + EU+1 — © (U[m]N+mN) ,k=1,2,3,..

0

sin(2h)

UO

0

sin(2h)

, Ut=r"1a

sin(2(M —1)h)
0

(M+1)x1

sin(2(M —1)h)
0

Umi+l = ptHU™Y — PNl om =12,

(M+1)x1

(36)

(37)
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k—mN

where C, D, E, F, G and H are (M + 1) x (M + 1) matrices, ¢ (U[mw+1]N+mN) and U, 1 = k, k+1
are (M + 1) x 1 column vectors defined by

1 0 0 0 0 0 0 -1
a b a 0 0 0 0 0
0 b a 0 0 0 0
C: . 9
0 0 0 0 a b a 0
0 0 0 0 a b
| 1 -1 0 0 . 0 0 -1 1 | (M+1)x(M+1)
0 0 0 0 0 0]
0 c 0 0 0 0
0 0 c 0 0 0 0
D: . )
0 0 0 0 c 0
0 0 0 0 0 c 0
| 0 0 0 . 0 0 0 0 | (M+1)x (M+1)
0 0 0 0 0 0 0]
0 d 0 0 0 0 0
0 0 d 0 0 0 0
FE = . )
0 0 0 0 d 0 0
0 0 0 0 0 d 0
L 0 0 0 0 0 0 01y
[ 0 0 0 0 0 —1 7
e e 0 0 0 0
0 e e 0 0 0 0
F: . )
0 0 0 0 e p e
0 0 0 0 0 e e
|1 -1 0 0 . 0 0 -1 1 | (M+1)x (M+1)
i 0 0 0 0 0 -1
e e 0 0 0 0
0 e e 0 0 0 0
G: . )
0 0 0 0 e e
0 0 0 0 e
| 1 -1 0 0 . 0 0 -1 1 | (M+1)x (M+1)
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[ 0 0 0 0 0 -1
e g e 0 0 0 0
0 e g e 0 0 0 0
H= . )
0 0 0 0 e g e
0 0 0 0 0 e g
|1 -1 0 0 . 0 0 -1 1 ] (M4+1)x (M+1)
S ur
o Uy
(p(U[f{zw”N*mN) = L, U™ = , forr =k, kF1,
PM-1 Ubr—1
T
L 0] (M+1)x1 L Uy (M+1)x1
where (e _ [y [ (o
_ —mNIN L mN
©F =0.001 | — It 2 W o +—uLJV+1] o ) for k=1,2,...,

m=0,1,2..,1<n<M-—1.

Here, we denote a = —1/h?, b=1/72 +2/7+2/h?2 + 1, c= —-2/72 - 2/7,d = 1/7%, e = —7%/h?,
p=1+2r+724272/h%, s=1+7+72+27%/h? and g = 2 + 27 + 72 + 272 /R

Hence, we have a second order of difference equation with matrix coefficients. We find the numerical
solutions for different values of N and M and here, u® represents the numerical solutions of the
difference scheme at (tg,z,). For N=M =40, N =M =80and N =M =160int € [0,1], t € [1,2]
and t € [2,3], the errors computed by the following formula are given in Table 1.

EY = max u(ty, ) — uk].

mN+1<k<(m+1)N, m=0,1,...

0<n<<M

Table 1
Errors of Difference Scheme (36)

N=M=40 N=M=80 N=M=160
t €1[0,1] 0.045895 0.023073 0.011568
te [1,2] 0.042967 0.021574 0.010810
te [2,3] 0.019786 0.010107 0.0051085

As it is seen in Table 1, the errors in the first order of accuracy difference scheme decrease
approximately by a factor of 1/2 when the values of M and N are doubled.

Conclusion

In this study, we consider the initial-boundary value problem for telegraph equations with time
delay in a Hilbert space. Theorem on stability estimates for the solution of the first order of accuracy
difference scheme is established. In practice, stability estimates for the solution of the difference schemes
for the two type of the time delay telegraph equations are obtained. As a test problem, one-dimensional
delay telegraph equation with nonlocal boundary conditions is considered. Numerical solutions of this
problem are provided.
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A. Ammipansies, K. Typk, /. ArupceBen

Kigiprmesai Teaerpad TeHaeyi YIIiH OPHBIKTHI
ANBIPBIM/IBIK, CXEMAChI TYPAJIbI

I'mabbept KenicTiringe kerrirysi tejerpad Tengeyi yinin 6acTanKbl-IIETTIK €CceOiHiH KYBIKTay IIENTiMiHIH
OPHBIKTBI AMBIPBIM/IBIK, CXEMACHI YCHIHBLIFAH. ANRBIPBIMIBIK CXEMACHIHBIH, OPHBIKTBLIBIFBI TYPAJIbl HEIi3ri
Teopemachl Gepinren. Koceimimacbinma yaksIT Kigiprmeci 6ap Temerpad TeHzeyiniy eki Typi yimiH aiibr-
PBIMJIBIK, CXEeMACBHIHBIH, IIENIIMiHIH OPHBIKTBHLIBIK Oarambl aJibIHIAbI. TecTisik ecebi perimie, GeittoKaJIb/Ii
mapTrapbIMeH GepinreH Kimipriesi Tererpad Gipesmemai TeHaeyi KapacTbpbLiabl. CaHIBIK ecenTeyrepi
MaKaJjaja KOPCeTiITreH.

Kiam cesdep: aflbIPBIMIIBIK, CXEMACHI, KEIMrysi Tejerpad TeHIeyl, OPHBIKTHLIBIK,

A. Ameipaseies, K. Typk, /. Arupcesen

OO0 ycroitunBoOii pa3HOCTHOI cxeme JJid
ypaBHeHUs Tejierpada c 3a/1ep2KKoii

IIpencraBiena ycroitumBast pa3HOCTHAs CXeMa I MPUOJIMKEHHOTO DEIIeHNs HAaYaJbHO-KPAeBOM 3aaduu
JjIs TesierpadHOTO ypaBHEHUsI C 3ala3bIBaHuEM B I'MJIBOEPTOBOM IIPOCTPAHCTBE. YCTAHOBJIEHA OCHOBHAS
TeopeMa 00 YCTONIMBOCTH PA3HOCTHON CXeMbl. B MPHUIOKEHUSIX Oy IeHbl OIIEHKH YCTOWIMBOCTHU PEITEHUST
Pa3HOCTHBIX CXeM /[JIs JIBYX THUIIOB TejerpadHBbIX yYpaBHEHHII ¢ BpeMeHHON 3ajepKKoil. B kadecTBe Te-
CTOBOII 33129 PaCCMOTPEHO OJHOMEPHOE ypaBHEHHE 3aJepPKKHU Tejierpada ¢ HEeJIOKAJIbHBIME YCIOBHUSIMUA.
YHucneHHbIE PE3yIbTATHI IPUBE/IEHBI B CTATHE.

Karoueswvie caosa: PAa3HOCTHBIE CXEMbl, YPABHEHUA TeJIerpa(ba C 3alla3JbIBaHUEM, yCTOﬁ‘IHBOCTL.
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A note on the hyperbolic-parabolic identification problem
with involution and Dirichlet boundary condition

In the present paper, a source identification problem for hyperbolic-parabolic equation with involution and
Dirichlet condition is studied. The stability estimates for the solution of the source identification hyperbolic-
parabolic problem are established. The first order of accuracy stable difference scheme is constructed for
the approximate solution of the problem under consideration. Numerical results are given for a simple test
problem.

Keywords: source identification problem, hyperbolic-parabolic differential equation, difference scheme, stability.

Introduction

Partial differential equations with unknown source terms are used to model the behaviour of real-
life systems in many different areas of science and technology. They have been studied extensively by
many researchers (see, e.g., [1]-[13] and the references therein). Numerous source identification problems
for hyperbolic-parabolic equations and the corresponding difference schemes for their approximate
solutions were previously studied by the authors (see [14]-[18]. Partial differential equations with
the involution have been recently investigated in [19]-[22] However, source identification problems
for hyperbolic-parabolic equation with involution have not been investigated.

The present paper is devoted to the study of source identification problems for hyperbolic-parabolic
differential and difference equations with involution. The stability of these source identification problems
is established. Numerical results are presented.

Stability of differential equation

We consider the space-dependent source identification problem
ugt(t, ) — (a(z)ux(t, ) — Bla(—x)ug(t, —x))  + du(t,z)

=pz)+ f(t,x), A<z <l 0<t<l,
ur(t, ) — (a(@)ug(t, ), — B(a(—2)us(t, —x))  + du(t, )

=p(x)+g(tz), C<z<l —1<t<O, (1)

(0%, 2) =u(07,2), u (0", 2) =w (07, 2), £ <z </,
(t,—0) =u(t,0) =0, —1 <t <1,
u(—=1,z) = p(x), u(l,z) =¢(x), <z </

u
u

\

for one-dimensional hyperbolic-parabolic differential equation with involution. Throughout this paper,
we will assume that @ > a(z) = a(—z) > a > 0, x € (—¢,¢) and a — @|B| > 0. Under compatibility
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conditions problem (1) has a unique smooth solution (u(t,z),p(z)) for the given smooth functions
a(x), p(z), P(x), x € [=L4,4, f(t,z), (t,z) € (0,1) x (=£,0), g(t,x), (t,x) € (—1,0) x (—£,¢) and
constant 6 > 0.

Let the Sobolev space W.2[—/, £] be defined as the set of all functions v(x) defined on [, £] such that
v(x) and the second order derivative function v”(x) are both locally integrable in Ls[—¢, ¢], equipped
with the norm

y 1/2 ¢ 1/2
2
o@hwgien = | [lo@Pde) ([l do
14 —{

Theorem 1. Suppose that ¢, € WZ[—/, {]. Let function f(¢,z) be continuously differentiable in ¢
on [0,1] x [—£,¢] and function g(¢,x) be continuously differentiable in ¢ on [—1,0] x [—¢, ¢]. Then the
solution of the identification problem (1) satisfies the stability estimates

lull ooty Laj—e) + H(AZ)APHLQH,Q

< M (6) [ ol po—e,q + 191 o= + 1 o), Loy + 19l ((=1,0,0[-2,0) ],

[ullee o1, La-e0) + Nullow (1,0, o) + lulloqornwei—ea) T 1Pz, —0q

< Ms(0) [ lelwei—eg + 1¥llwzi—eqg + 1 lco o1, La1-e0) T 19lc (1,0, L21-2.0) ],

where M;(6) and M3(9) do not depend on ¢(x), ¥(x), f(t,z) and g(t, ).
Proof. Problem (1) can be written in the following abstract form

u"(t) + Au(t) =p+ f(t), 0<t <1,
u'(t) + Au(t) =p+g(t), -1 <t <0,
u(0*) = u(07), W/(0%) = o/ (07),
u(=1) =, u(l) =17
in a Hilbert space La[—/, ¢] with self-adjoint positive definite operator A = A® defined by the formula

A%u(z) = —(a(@)ue(x)), — Bla(—x)uz(—2x))  + du(x) (2)

with the domain D(A%) = {u € W20, 4] ‘ u(—0) = u(f) = o}. Here, f(t) = f(t,2) and g(t) = g(t,z)
are given abstract functions, u(t) = u(t, z) is unknown function and p = p(z) is the unknown element
of Lo[—£, £]. Therefore, the proof of Theorem 1 is based on the self-adjointness and positive definiteness
of the space operator A” (see [19]).

Stability of difference scheme

Now, we study the stable difference scheme for the approximate solution of identification problem
(1). The discretization of source identification problem (1) is carried out in two steps.
In the first step, the spatial discretization is carried out. We define the grid space

[—E,é]h:{xzmn‘xn:nh, —-M<n<M, Mh:E}.

We introduce the Hilbert space Lo = Lao([—£, {]),) of the grid functions ¢"(z) = {¢"}M,, defined on
[—¢, 0]}, equipped with the norm

]

1/2

2
‘ h

L=l X e

.IE[—Z,Z]]—L
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To the differential operator A” defined by the formula (2), we assign the difference operator Aj by the

formula
M—1

Afeh(@) = { = (al@)ed), - Bla(-a)e3"), + 86"} . 3)
acting in the space of grid functions ¢"(z) = {p"}*,, and satisfying the conditions ¢_p = @p = 0.
Here
SOn _ SOnfl (PnJrl n
n

7_@’ M<n<M-—1.

It is well-known that A7, defined by (3), is a self-adjoint positive definite operator in Loy. With the
help of A}, the first discretization step results in the following identification problem

ht,x) + AZul(t,2) = p(x) + fP(t,2), x € [0, 0<t <1,

u?(t,x) + A”fluh(t, x) = ph(a:) —l—gh(t,x), x e[, —1<t<O, )
uh(0+,x) = uh(O_,a:), u?(O’L,x) = u?(O_,x), x € [, {p,
uh(_Lx) = Soh(x)v uh(Lx) = wh(x)v WS [_Ea g]h

In the second step, we replace the identification problem (4) with the following first order of accuracy
difference scheme

wpy () = 2up(x) + up_ (2)
)
“ikl(x) - “2—1( )

+ Aful (2) = p"@) + f(z), 1< k<N -1, 2 € [,

+ Ahuk( ) = h(w) +gligl(x)a -N+1 < k < Ov T E [_Kaé]}u (5)
fh(tk,[]}), I1<k<N-1, gllg(x) :g(tlm‘r)? ~N+1<k<0, z€ [_£7£]h7

[ ul(@) = ug(@) = ug(z) —uly (), u y(2) = ¢"(2), uiy(z) = " (), © €[4,

=3
—
8
N—
I

where 7 = 1/N and t;, = kr, —N <k < N.

N
Theorem 2. Let 7 and h be sufficiently small numbers. For the solution {{uﬁ(w)}

h
f
P (l‘)} o
problem (5) the following stability estimates

max gl + | (457"

—N<k<N
<3 @) [, o, + _ymas k], e [l |
Loy Loy,  —N+1<k<0 Loy 1<k<N 1 Loy
upy = 2up U up —up h h
max 5 + max _— 4+ max HukH —G—Hp‘
1<k<N-1 T L —N+1<k<0 T I —N<k<N W22h Loy,
2h 2h
g —gr
> -1
<30)| [, + [0, + ], _ymae JF
w2, w2, Loy  —NA41<k<-1 T
Loy,
=

max
Lop,  2<k<N-1

+ Hflh‘

T

L2h]

hold, where M;(8) and My () do not depend on 7, b, fff, 1<k <N -1, g, ~-N+1<k <0, ¢"(x)
and " (x).
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Proof. Difference scheme (5) can be written in the following abstract form

h h ., h
Uy — 2up +up_y

h h h
7_2 +Ahuk+1:p +f71§kSN_17
h h
ul —u
L el kil—l—Ath:ph—l—gZ, —-N+1<k<0,
-

h h _ ,h h h _  h , h _ _h
Uy — Uy = Uy — U_q, U_N—SD,UN—ﬂJ

in a Hilbert space Loy, with operator A;, = A¥ defined by formula (3). Here, f! = fl(z) and g = gl(z)
are given abstract functions, uf = u}(z) is unknown mesh function and p" = p”(x) is the unknown
mesh element of Lop. Therefore, the proof of Theorem 2 is based on the self-adjointness and positive

definiteness of the space operator Ay in Loy [23].
Numerical experiments

When the analytical methods do not work properly, the numerical methods for obtaining the
approximate solutions of partial differential equations play an important role in applied mathematics.
In this section, we will use the first order of accuracy difference scheme to approximate the solution of
a simple test problem. We will apply a procedure of modified Gauss elimination method to solve the
problem. Finally, the error analysis of first order of accuracy difference scheme will be given.

We consider the identification problem with the Dirichlet condition

¢

it 7) — taa(t, 7) — %(um(t, ), +ult,z) = p(x) + f(t,x), x € (—m,7), t € (0,1),

up(t, ) — ugy(t, ) — %(ux(t, —;zc)),Jj +u(t,x) =plx) +g(t,x), x € (—m,m), t € (—1,0), (6)

u(_lvx) - 90(1')7 ’U,(l,.%') - ¢($)7 S [_7T77T]7
u(t,—m) =u(t,m) =0, t € [-1,1]

for one-dimensional hyperbolic-parabolic equation with involution, where
ft,z) = (; cost — 1> sinz, z € (—m,m), t € (0,1),
g(t,z) = <2 cost —sint — 1) sinz, z € (—m,m), t € (—1,0),
o(x) = coslsinz, ¢(x) =coslsinz, = € [-m, 7.
The exact solution of problem (6) is the pair of functions
(u(t,x),p(m)) = (costsin:n,sin:z:), —mr<z<m —-1<t<1.
We define the set [—1, 1], x [—m, 7| of all grid points as following:
[—1,1]; X [-m,7]p = {(tk,xn) ‘ ty,=kT7,—-N<EkE<N, Nt=1, 2, =nh,—-M <n <M, Mh= 7r}.

For the numerical solution of source identification problem (6), we construct the first order of accuracy
difference scheme in ¢
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(uk ! ok 4okl uEL 2uli+l uk+1 G 21/321 WS

n+41 —n+1 —n—1 k+1
2 N h?2 - 2h? Tt
up —up up g — 2up +up g B ub g =2k, b b (7)
T h? 2h? "

ul —uo :uo —u_l, u;N:go(xn), unN:w(fnn), —-M<n<M,

n

[ W*yy=uk, =0, —-N<k<N,

E‘

where u* and p,, denote the numerical approximations of u(t, z) at (¢, z) = (t, z,) and p(z) at z = x,,
respectively. The solution of difference scheme (7) can be found in the form

ub =of —oN 4 p(x,), —-M <n<M, —N<k<N,

Dy = w(xn) o w(mn-f-l) — zwigfn) + 1/)(1’”_1) _ ¢($—n+1) — 2¢2(';UL2—7L) + w(x—n—l)

n+1 21} + v vﬁm — 2v],Vn + vyn,l
h? 2h2

—o, M +1<n<M-1,

N M
where {{vk} N} is the solution of the following nonlocal boundary value problem
= n=—M

(. k+1 k k-1 k+1 k+1 k+1 k+1 k+1 k+1
Un+ - 2Un +p 21) + vy, U_nt1 2v—n +vl, + Uk+1
n

72 B h2 a 2h?
f(tk,:nn) 1<k<N-1,-M+1<n<M-1,

vy —opt Upat — 208 + U5 _ VP — 208, ok 4ok
T h? 2h2 "
=g(tk,xn), —-N+1<k<0, -M+1<n<M-1,

v}l—vgzvg—v;l, vN—v*N:w(a:n) — (), —M <n <M,

n n
k

of =0k, =0, -N <k <N.

To obtain the solution of difference scheme (8), we first rewrite it in the matrix form

AVyi1 + BV, + AV 1 +CV_py1 + DV, +CV_py 1 =F,, —M+1<n<M —1,
Vi =V =0,

where 0 is (2N + 1) x 1 zero vector and

00 --- 000 --- 0 VY(zn) — p(Tn)
0Oa --- 000 --- 0 79 (t-N+1,Tn)
A: 0 0 a 0 o --- 0 Fn: Tg(tO;xn)
00 - 000 --- 0 0
00 - 00%b --- 0 T2f (t1, 2n)
s Do .o ) :
00 - 000 - b 1 eni1)x@nt1) L 7 ftn-1,2n) 4 (2N+1)x1
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0 000 0 vV
- 00 0 0 p N+
o |00 ¢ 0 0 0 Vo "
1o o 00 0 0 " n
00 00 r 0 n
: N
00 - 00 0 7 | oninyxent) L P Jeva
[ —1 0 0 0 0 0 0 0 1]
-1 ¢ 0 0 0 0 0 0 0
5 0 0 -1 ¢ 0 0 0 0 0
|l o o 1 -2 1 0 0 0 0
0 0 0 1 -24d 0 0 0
I 0 0o --- 0 0 o o --- 1 -2 d 4 2N+1)x(2N+1)
00 --- 00 O --- 0] [ v:fy 1
0 00 0 0 vy
“lo o 0 0 0 R e
0 0 00 o 0 20
Do oo T N
| o0 --- o0 o0 --- (o} ] (2N+1)><(2N+1) L U_n - (2N+1)><1
. T 72 2T 277 2 T i T r
witha = —75, b=—g5, c=l4 s trd=l+ 0 +7, =55, 71="53. 5= 73, 0= 13

Next, we rewrite the system (9) as following

AZpi1+BZy+AZy = ¢p, 1<n< M-—1,

CZy + BZy = ¢, (10)
ZM:67
~ AC = B D = ~ CA :
where A = [C’A]’B = [DB] and C = A + [AC} are (4N + 2) x (4N + 2) matrices,

Zy = [ ‘}/n } and ¢, = [ 15" ] are (4N + 1) x 1 column vectors. Now, the matrix equation (10)
-n -n

can be solved by using the modified Gauss elimination method [24]. We seek a solution of the matrix
equation (10) in the following form:

Zn :Ckn+1Zn+1+ﬂn+1, n=M-— 17...,2,1,
Zy =0,
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where «,, are (4N +2) x (4N + 2) square matrices and f3, are (4N + 2) x 1 column vectors, calculated
by
{ api1 = —(B+ Aa,) A
S . -
Bnt1 = (B + Aan) (pn — ABn)

forn=1,2,...,M — 1. Here, oy = —B~'C and 8, = B~} ¢y.

The numerical solutions of the first order of accuracy difference scheme (7) are computed for
different values of M and N by using the algorithm described above. We measure the error between
the exact solution and numerical solution by

HEUHOO = —N+¥§}c}éN—1 u(tk’xn) - UITCL ’ ||Ep||oo = —M+{I%?1};M—1 ’p(xn) _pn| )

—M+1<n<M—1

where u(tg,x,) is the exact value of u(t,z) at (tx,z,) and p(x,) is the exact value of source p(x) at
T = Tn; uf; and p, represent the corresponding numerical solutions. Table 1 shows the errors between
the exact solution of the problem (6) and the numerical solutions computed by using the first order of
accuracy scheme. We observe that the scheme has the first order convergence as it is expected to be.

Tabmuma 1: The errors between the exact solution of the problem (6) and the numerical solutions

computed by using the first order of accuracy difference scheme (7) for different values of h = % and

1
T = N
| Eplloo Order | Bl oo Order
N=M=20 | 4.9976 x 10~2 - 3.6439 x 102 -
N=M=40 | 25072 x 1072 | 0.9951 | 1.8518 x 1072 | 0.9765
N=M=280 | 1.2558 x 1072 | 0.9975 | 9.3355 x 10~3 | 0.9881
N =DM =160 | 6.2845 x 1073 | 0.9987 | 4.6871 x 10~3 | 0.9940
N =M =320 | 3.1436 x 1072 | 0.9994 | 2.3484 x 1072 | 0.9970

Acknowledgement
The publication has been prepared with the support of the "RUDN University Program 5-100".
References

1 Dehghan M. Determination of a control parameter in the two-dimensional diffusion equation /
M. Dehghan // Appl. Numer. Math. — 2001. — 37. — P. 489-502.

2 Kimura T. A parabolic inverse problem arising in a mathematical model for chromatography /
T. Kimura, T. Suzuki // SIAM J. Appl. Math. — 1993. — 53. — P. 1747-1761.

3 Gryazin Y.A. Imaging the diffusion coefficient in a parabolic inverse problem in optical
tomography / Y.A. Gryazin, M.V. Klibanov, T.R. Lucas // Inverse Problems. — 1999. — 15. —
P. 373-397.

4 Eidelman Y.S. Boundary Value Problems for Differential Equations with Parameters /
Y.S. Eidelman — PhD thesis, Voronezh State University, 1984.

5 Ashyralyev A. On the problem of determining the parameter of a parabolic equation /
A. Ashyralyev // Ukrainian Math. J. — 2011. — 62. — P. 1397-1408.

126 Bulletin of the Karaganda University



Identification hyperbolic-parabolic...

10

11

12

13

14

15

16

17

18

19

20

21

22

Orlovskii D.G. Approximation of the Bitsadze-Samarskii inverse problem for an elliptic equation
with the Dirichlet conditions / D.G. Orlovskii, S.I. Piskarev // Differential Equations. — 2013.
—49. — 7. — P. 895-907.

Ashyralyyev C. Numerical solution to inverse elliptic problem with Neumann type overdeter-
mination and mixed boundary conditions / C. Ashyralyyev, Y. Akkan // Electron. J. Differential
Equations. — 2015. — 188. — P. 1-15.

Ashyralyev A. On the problem of determining the parameter of an elliptic equation in a Banach
space / A. Ashyralyev, C. Ashyralyyev // Nonlinear Anal. Model. Control. — 2014. — 19. —
P. 350-366.

Erdogan A.S. On the second order implicit difference schemes for a right hand side identification
problem / A.S. Erdogan, A. Ashyralyev // Appl. Math. Comput. — 2014. — 226. — P. 212-228.
Ashyralyev A. On the determination of the right-hand side in a parabolic equation / A. Ashyralyev,
A.S. Erdogan, O. Demirdag // Appl. Numer. Math. — 2012. — 62. — P. 1672-1683.

Sazaklioglu A.U. Existence and uniqueness results for an inverse problem for semilinear parabolic
equations / A.U. Sazaklioglu, A. Ashyralyev, A.S. Erdogan // Filomat. — 2017. — 32. — 4. —
P. 1057-1064.

Ashyralyev A. Investigation of a time-dependent source identification inverse problem with integral
overdetermination / A. Ashyralyev, A.U. Sazaklioglu // Numer. Funct. Anal. Optim. — 2017. —
38. — 10. — P. 1276-1294.

Orazov I. On a class of problems of determining the temperature and density of heat sources
given initial and final temperature / I. Orazov, M.A. Sadybekov // Sib. Math. J. — 2012. — 53.
— P. 146-151.

Ashyralyev A. On source identification problem for a hyperbolic-parabolic equation / A. Ashyra-
lyev, M.A. Ashyralyyeva // Contemporary Analysis and Applied Mathematics. — 2015. — 3. —
1. — P. 88-103.

Ashyralyyeva M.A. Stable difference scheme for the solution of the source identification problem
for hyperbolic-parabolic equations / M.A. Ashyralyyeva, A. Ashyralyyev // AIP Conference
Proceedings. — 2015. — 1676. — No. 020024.

Ashyralyyeva M. On a second order of accuracy stable difference scheme for the solution of a
source identification problem for hyperbolic-parabolic equations / M. Ashyralyyeva, M. Ashyra-
liyev // AIP Conference Proceedings. — 2016. — 1759. — No. 020023.

Ashyralyyeva M. Numerical solutions of source identification problem for hyperbolic-parabolic
equations / M. Ashyralyyeva, M. Ashyraliyev // AIP Conference Proceedings. — 2018. — 1997.
— No. 020048.

Ashyralyyeva M.A. On the numerical solution of identification hyperbolic-parabolic problems
with the Neumann boundary condition / M.A. Ashyralyyeva, M. Ashyraliyev // Bulletin of the
Karaganda University-Mathematics. — 2018. — 91. — 3. — P. 69-74.

Ashyralyev A. Well-posedness of an elliptic equation with involution / A. Ashyralyev, A.M. Sar-
senbi // Electron. J. Differential Equations. — 2015. — 284. — P. 1-8.

Ashyralyev A. Well-posedness of a parabolic equation with involution / A. Ashyralyev, A. Sar-
senbi // Numer. Funct. Anal. Optim. — 2017. — 38. — 10. — P. 1295-1304.

Ashyralyev A. Stability of a hyperbolic equation with the involution / A. Ashyralyev, A.M. Sar-
senbi // Springer Proc. Math. Stat. — 2016. — 216. — P. 204-212.

Ashyralyev A. Stable difference scheme for the solution of an elliptic equation with involution /
A. Ashyralyev, B. Karabaeva, A.M. Sarsenbi // AIP Conference Proceedings. — 2016. — 1759.
— No. 020111.

MATHEMATICS series. Ne 3(99)/2020 127



M. Ashyraliyev, M.A. Ashyralyyeva, A. Ashyralyev

23

24

128

Ashyralyev A. New Difference Schemes for Partial Differential Equations, Operator Theory
Advances and Applications / A. Ashyralyev, P.E. Sobolevskii. — Birkhduser Verlag, Basel,
Boston, Berlin, 2004. — 444 p.

Samarskii A.A. Numerical Methods for Grid Equations: Iterative Methods / A.A. Samarskii,
E.S. Nikolaev. — Basel: Birkhauser Verlag, 1989.

M. AmbipansieB, M.A. AmbipanbieBa, A. Ambipasibien

IMlexapasbik /lupuxie mapTrapbIMeH >KoHEe
MHBOJISIINSICBIMEH COMKeCcTeHIipiJIreH
runepo60IaJIbI-TIapadoJIAJIBIK, ecedl TypaJibl eCKepTy

Maxkasaa nHBOTIOIUSICHIMEH KoHEe [upuxite mapThiMeH OepiareH rumepoosIaIb-mapadoIaIblK TEHIEY VITiH
JIEPEKKO3/Ii ColKecTeH,Iipy Macesieci 3eprreiireH. Jlepekkesi colikecTeH 1ipiJireH runepooJIaIb-IIapadboJIAJIbIK,
ece0i menriMinig OPHBIKTBLIBIK 6araMbl aJblHFaH. KapacThIpbIIFaH eCeITiy, XKy bIK IIernimi yirin 6ipinmi per-
Ti MO/IIIKIIEH OPHBIKTHI aflbIPBIMIIBIK, CXEMAChl KYPACTBIPBLIALI. KapamailbiM TeCcTiK ecerrrepi YIiH CaHIbIK
HOTHKeJIepi bepireH.

Kiam cesdep: nepekkesni colikecTeHaipy ecebi, rumepbosanbl-napabonablk anddepeHnnaiablK TeHIey,
AMBIPBIMIBIK, CX€Ma, OPHBIKTHLIBIK,

M. Ambipansies, M.A. AmbipanbieBa, A. Ambipaibie

3aMedaHne o runepoboJIo-rIapaboIMIecKoil 3ajade
NAeHTU(PUKAINY C NHBOJIIOIUEH 1 I'PaHNYHBIM
ycaoBueM Jlupuxiie

B craTbe ncciemoBana nmpobiiema uaeHTH(MUKAIIMT NCTOYHUKA, JIJIsT TUITEPOOJIO-TTapabOTMIECKOTO Y PABHEHNU T
¢ uaBOTIONIMEH U ycaosueM Jupuxite. [loydens! oneHKE yCTOWIMBOCTH pelteHnst THIePOO0I0-T1apaboInIecKoil
3a7a4un uaeHTuduKamu ucrodnuka. [locrpoena ycroityrBas pa3HOCTHAs CxeMa IIEPBOIO IIOPsJIKA TOYHO-
CTHU OJ1d4 HpI/I6J’II/I)KeHHOI‘O perreHnAa paCClVIa,TpI/IBael\/IOI';I 3aJa49u. HpI/IBe,Z[eHI)I YUCJICHHbIE DPEe3yJIbTaTbl JIsA
IPOCTOMN TECTOBOU 3aJa4u.

Kmouesvie caosa: 3amada MIeHTUPUKAIMNT UCTOYHHUKA, TUIEPOOJIO-Tapabomdaeckoe auddepeHinaaIbHoe
yPaBHEHUE, PA3HOCTHAsI CXeMa, YCTOWYNBOCTb.
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A note on the parabolic identification problem
with involution and Dirichlet condition

A space source of identification problem for parabolic equation with involution and Dirichlet condition is
studied. The well-posedness theorem on the differential equation of the source identification parabolic
problem is established. The stable difference scheme for the approximate solution of this problem is
presented. Furthermore, stability estimates for the difference scheme of the source identification parabolic
problem are presented. Numerical results are given.

Keywords: well-posedness, elliptic equations, positivity, coercive stability, source identification, exact estimates,
boundary value problem.

Introduction

The theory and applications of source identification problems for partial differential equations
have been studied by many authors (see, e.g., [1-9] and the references given therein). Numerous source
identification problems for hyperbolic-parabolic equations and their applications have been investigated
too (see, e.g., [L0-13] and the references given therein). In the last decade, partial differential equations
with involutions were investigated in [14-18|. However, source identification problems for parabolic
equations with involution have not been well-investigated.

The present paper is devoted to study a space source of identification problem for parabolic equation
with involution and Dirichlet condition. The well-posedness theorem on the differential equation of the
source identification parabolic problem is proved. The stable difference schemes for the approximate
solution of this problem are constructed. Furthermore, stability estimates for the difference schemes of
the source identification parabolic problem are established. Numerical results are provided.

Well-posedness of differential problem

We consider the space source identification problem

w(t, z) — (a(x)ug (t,x)), — B (a(—x)uy (t, —2)), + ou(t, x)
=px)+ f(t,x), -l<z<l, 0<t<T, 1)
t, =) =u(t,])=0,0<t<T, (
)

0,z) =¢ .CC),’LL(T,IE) = 7/)(90% 1<z <l
for the one dimensional parabolic differential equation with involution. Problem (1) has a unique

solution (u(t, ), p(z)) for the smooth functions f(¢,z) (t € (0,T)x(—1,1)),a > a(x) =a(—z) >0 > 0,
d—al|Bl >0 (z e (=11)), and ¢(x), P(z), x € [-1,1].
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In the present paper C§' ([0,7T], H) (0 < a < 1) stands for Banach spaces of all abstract continuous
functions ¢(t) defined on [0, 7] with values in H satisfying a Holder condition with weight t* for which
the following norm is finite

(t+7)" llpt +7) = o)l
. — +  su :
Ielles orym = lelleqorm + _sup 7o

Here, C ([0,T], H) stands for the Banach space of all abstract continuous functions ¢(t) defined on
[0, T] with values in H equipped with the norm

= t .
||<P”C([0,T],H) OgltaSXTHSO()HH

Theorem 1. Suppose that ¢, 1 € W2 [~1,1]. Let f(t,z) be continuously differentiable in ¢ on [0, T x
[—1,1] function. Then the solutions of the identification problem (1) satisfy the stability estimates

lull oo, La—t) H(Axrlp”h[—z,l]

< M (6,0,8,1) [HSOHL2HJ] T 10l gy + ”fHC([O,T},LQ[fl,l])} : (2)

HUHC(U([O,T},LQ[—l,l]) + HUHC([O,T],W;HJ]) + Il Lo[—1,]]

< Mz (0,0, 8.0) [Illwzrsg + 1llwzsg + 1 lc o) caoap | - (3)

Here M; (6,0,5,1) and M (d,0,3,1) do not depend on ¢(x),9(x) and f(¢t,z). The Sobolev space
W2 [—1,1] is defined as the set of all functions u(z) defined on [0, ] such that u(z) and the second order
derivative function u”(z) are all locally integrable in Lo[—I, 1], equipped the norm

2

z b
2
g = | [l@Par| +{ [ @] as
—1 —1

Proof. Problem (1) can be written in abstract form

{ W) 4 Au(t) =p+ f(£),0<t<T, (4)
u(0) = ¢, u(T) =

in a Hilbert space H = Lg[—[,1] with self-adjoint positive definite operator A = A* defined by the
formula

Afu(z) = — (a(2)us(2), — B (a(—2)uz (—2)), + ou (2) (5)

with the domain D(A®) = {u € W§ [-1,1] : u (=) = u(l) = 0} [14]. The proof of Theorem 1 is based
on the symmetry properties of this space operator A and on the following stability results.

Theorem 2 [5]. Assume that ¢,1 € D(A) and f(¢) be continuously differentiable in ¢ on [0, 7]
function. Then, for the solution {u(t), p} of the source identification problem (4) the following stability
inequalities hold:

lulleqo,r,my + Al < M (el + 10l + foqor.m)] (6)

oo oz + 1Al eqoyin + Pl < M (140l 5 + 144l + I flcwqoam] @
where M is independent of ¢, and f(t).
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Moreover, we have the following coercive stability results.
Theorem 3. Suppose that o, € W2 [—1,1] and f (t,z) € C§([0,T], La[—1,1]). Then the solutions
of the identification problem ((1) satisfy coercive stability estimates

lelleg o,y Lor-ry + el cg qoywi-ry + 1P Lo

<M (8,0,0,5,1) [H@HW;[—z,u + W llwzi—g + 1 les o0, Loi—0a) | -
where M (6,0, a, 3,1) is independent of ¢(x), ¥ (x) and f(t,x).

The proof of Theorem 3 is based on the following abstract Theorem on coercive stability of the
identification problem (4) in C§([0,T], H) spaces and on self-adjointness and positive definite of the
unbounded operator A defined by formula (5) in La[—, ] space.

Theorem 4. Assume that ¢, € D(A) and f(t) and f € C§([0,7],H) (0 < o < 1). Then, for the
solution {u(t),p} of the source identification problem (4) the following coercive stability inequalities
hold:

1wl o,y + I Aullcg (or,m) + 2l g

1
al—a) Iflleqo.r).m)

< M |[[Aplly + [[A¢] 5 +
where M is independent of p,1 and f(t).
Stability of difference schemes

Now, we study the stable difference schemes for the approximate solution of identification problem
(1). The discretization of source identification problem (1) is carried out in two stages. In the first
stage, we define the grid space

Ll ={rx=xp:2p=nh, - M <n<M, Mh=1}.

We introduce the Hilbert spaces Loy = Lo([—1,1]p) and W3 = WE([—1,1];) of the grid functions
o"(z) = {¢"}M,, defined on [, 1];, equipped with the norms

|

- xe[zl ‘Wh(x)’ h

and
1/2

h :

2
g =1+ {2 [,

xe*v]h

respectively. To the differential operator A generated by problem (5), we assign the difference operator
A7 by the formula

A (@) = {—(a(@)z(2))a,r — B (al=2)pz(—2)),,, + 0o}, (8)

acting in the space of grid functions ¢"(z) = {¢, }M,, satisfying the conditions p_p = ppr = 0.
It is well-known that A7 is a self-adjoint positive definite operator in Loj,. With the help of A7, we
reach the identification problem

{ ul(t, x) + Aju ht, ):ph(:c)+fh(t,:c), ze[-L1l],, 0<t<T, ()
h(()?m) - Soh( ) ( 7x) - wh($)a T [_lﬂl]h'
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In the second stage, we replace identification problem (9) with a first order of accuracy difference
scheme

uh x 7’U,h' x
WO | Al (@) = p(2) + SP SR (@) = flte o),

T

th=kr,1<k<N,Nr=T,ze|-11I,, (10)
ug(x) = (), uly(x) = ¢"(z), = € [-1,1];.

Let a € (0,1) is a given number and C;(H) and C¢(H) be Banach spaces of H-valued grid functions
w, = {wy}r_, with the corresponding norms

pr— o p— _ak; « — .
lwrlle, = mas, el Twclopon = s ()= ) wieen = il + el g

Theorem 5. For the solution {{uZ(x)}éV , ph(x)} of problem (10), the following stability estimates

[{4,

e

Cyr(Lan Lan
| T e N ay
h__ . h N
S R L

0 ller (Lan)

N

(12)

+ max

<24 6,0,8.0) [, + ], + 44
< My(0,0. )[90 wa, TV g, T, 0%

{2 ()}

hold, where Mj (8,0, 3,1) and My (4,0, 3,1) do not depend on 7, h, f, 1 <k < N, " (z) and ¢" ().
Proof. Difference scheme (10) can be written in the following abstract forms

2 1Ly

Ul —Uk—1 _

U0:<P7UN:¢

in a Hilbert space H = Loj, with operator A = A7 by formula (8). Here, f, = f,i‘ (x) is a given abstract

mesh function, uy = u} (z) is unknown mesh function and p = p(x) is the unknown mesh element of

Lop,. Therefore, the proof of Theorem 5 is based on the self- adjointness and positive definiteness of
the space difference operator A in Lyj [14] and on the following stability results.

Theorem 6. [5]. For the solution {{uk}év ,p} of the source identification difference problem (13),
the following stability inequalities hold:

et o+ 1470l
C.(H)

< 5 0.0,8.0) Il + 1l + | G5, )
U — Uk—1 N N
H{ T } * H{Auk}o ‘ Cr(H)
O llc, (m) T
1 N
< M5 (6,0,8,0) ||Abll g + 1AV g + L fill g + G {T (fx — fk:—l)}2 ] )
- H

where M5 (9,0, 3,1) is independent of ¢, and f(t).
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Moreover, we have the following coercive stability results.
Theorem 7. The solutions of the identification difference problem (10) satisfies coercive stability

estimate N
h h
uy —u N
il | ) <
T 0

Cce(W32,)
Ulloa(Lan) 2h

)

C?(LQh)]
where Ms (3,0, 3,1) does not depends on 7, h, fi, 1 <k < N, ¢"(x) and ¢" (z).

<aat60 0 [P+l o0,

The proof of Theorem 7 is based on the self-adjointness and positive definiteness of the space
difference operator A in Loy [14] and on the following coercive stability results.

Theorem §. For the solution {{uk}év ) p} of the source identification difference problem (13) the
following coercive stability inequality holds:

N
{Uk — u/H}
T
Ullee )

where Mg (9,0, 3,1) does not depends on 7, h, fr, 1 <k < N, ¢ and 9.

+ ||t

< Mo (5.0, 5,0) [Lell + 14wl + | (507

Ce (H) @wj’

Numerical experiment

When the analytical methods do not work properly, the numerical methods for obtaining approximate
solutions of partial differential equations play an important role in applied mathematics. We can
say that there are many considerable works in the literature. In present section for the approximate
solutions of a problem, we use the first order of accuracy difference scheme. We apply a procedure of
modified Gauss elimination method to solve the problem. Finally, the error analysis of first order of
accuracy difference scheme is given.

We consider the identification problem with the Dirichlet condition

¢ (8,2) — g (6,2) — Fug o (¢, —2) + u(t,z)

=p(z) —sinz + costsinz + 3sintsinz, z € (—m,m),t € (0,7),
u(0,2) =0,u(m,x) =0,z € [-7, 7],

u(t,—m) =u(t,m) =0,t € [0, 7]

g

(14)

for parabolic equation with involution. The exact solution pair of this problem is
(u(t,z),p(x)) = (sintsinz,sinz), -7 <z <7,0<t<m.
Here and in future, we denote the set [0, 7] x [, x|, of all grid points
0,7] x [—m, 7], = {(tk, xn) : tx, = k7,0 < k < N,
Nt =m,zp=nh,—M <n< M, Mh=m}.
For the numerical solution of SIP (14), we present the first order of accuracy difference scheme in ¢

P ) 2 (k2 )
7§h—2 (u’im_l —2uF + u’in_l) +uy = pp, —sinzy,

+ cos t, sin x, + %sintksinxn,l <k<N,-M+1<n<M-1, (15)
:O’UEI,LV:O’—MSTLSM,

0
u?’L
ub =ul, =0,0<k<N.
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M
In the first step, we obtain{{wﬁ}év} o 5 solution of nonlocal BVP
n=-—

71 (wﬁ —wh=1) —p2 (waH — 2wk + WfL—1)

—%ff2 (wﬁnJrl — 2w’ﬁn —i—wﬁn_l) —|—w’nC

= —sinx, + costysinz,, + %sintksinxn,l <k<N,-M+1<n<M-1, (16)
W) —wN =0,-M <n<M,

Wk =wk, =0,0<k<N.

Here and in future, w® denotes the numerical approximation of w(t, ) at (tg,z,). For obtaining the
solution of difference scheme (16), we rewrite it in the matrix form

{ Awn41 + Bwy + Awp—1 + Cw_py1 + Dw_yy + Cw_p—1 = f, (17)

Aw7n+1 + Bw_p + Aw_p_1 + Cwpy1 + Dwyp + Cwyy = o, ’

0
1§n§M—1,< wM >:<_>>,
W— M 0

where 6>, ws for s =n, n+1, and f, are (N + 1) x 1 column matrices, and (N + 1) x (N + 1) square
matrices A, B, C, D are defined as follows:

[0 0 0 0 0
0 —h2 0 0 0
12
Ao 0 0 h 0 0 ’
0 0 0 —h2 0
0 0 0 0 —h?2
[ 1 0 0 0 -1 ]
—r 1 1y on241 0 0 0
B 0 —r1 rl4op241 0 0 7
0 0 0 T 42241 0
.0 0 0 —771 T 4 2n72 41 |

1
C=-A D=-A
2
Grouping the above expression (17) as

Awp+1 +Cw_p_1 + Bwy + Dw_p, + Awp—1 + Cw_pnt1 = fn,
Cwpi1+Aw_p_1+ Dwp + Bw_p + Cwp1 + Aw_py1 = fop

and defining z, = ( uljun ) and ¢, = < ff " ), the system can be written as
—n —n

%
A C B D A C 0
(C < )zn+1+<D D )m(c " )zn_lm,lsmM—l,ZM<6>>.(18>

For solving the system (18), we use the Gauss elimination method. Thus, let’s define

—
0
Zn = Qni1Zn41 + Buyr,n =M —1,..,1, 2y = ( o ) . (19)
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where oy, (1 <n < M) are (2N +2) x (2N + 2) square matrices and 3, (1 <n < M) are (2N +2) x 1
column vectors, calculated as,

Qnt1 = (Pan + Q) 1
Bui1 = (Pay + Q)" (Rqsn — PBy), (20)
n=1,.M-1,

A C B D . . . .
where P = ( c A > and Q = ( D B > and R is (2N + 2) x (2N + 2) identity matrix.

First, we evaluate oy, and B, (1 < n < M). Since,
bo = fo\ [ Awr +Cw_y n Bwg + Duwy n Aw_1 + Cuw;
0= fo o Cwi + Aw_4 Dwy + Buwyg Cw_1+4+Aw )’
(w\_(B D\ ' [(A+C A+C s
“=\w /) "D B A+C Ayrc )T
(B D\ '[A+C A+C
“="\p B A+C A+C )

B D \ '
ﬂ1=<D B) ®o.

Using the iteration (20), we obtain all a,, and 5, (1 <n < M) values. Second, using the formula (19),

we get

and

we obtain z, and the equality z, = uljun gives the values of w,,.
-n

In the second step, using [5, Equation 8], we get

_ n+1 2w +wn 1 lwl—vn—i-l B QWNn + wyn—l N
for —-M+1<n<M-—1.
In the last step, using formula (see, [5])

ub =wF — N n=—-M,-M+1,.. M E=0,..,N, (21)

n

M
. N
we obtaln{ {un }k:O }n:_M .
Here, we compute the error between the exact solution and numerical solution by

— k
HEUHOO _ngﬁNl,Tiz}\)J{SnSM‘U(tk,xn)_un}’ (22)
1Eplloo = max |p(zn) = pal,

where u (t,2) , p(z) represent the exact solution, u¥ represent the numerical solutions at (¢, x,) and
Pr, represent the numerical solutions at x,. The numerical results are given in the Table 1.

Table 1.
Errors [ Eplloo || 1 Eulloo
N =20,M =20 0.1117 .0195

N =80,M =80 0.0278 || 0.0052
=160, M =160 || 0.0139 || 0.0026

H | H |
H N =40, M = 40 H 0.0557 H 0.0101 H
H | H |
L~ | [ [
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Conclusion

In this paper, we considered a space source of identification problem for parabolic equation with
involution and Dirichlet condition. The theoretical considerations that prove well-posedness theorem
on the differential equation of the source identification parabolic problem and stability estimates for the
difference schemes of the source identification parabolic problem were given. To support the theoretical
results by a numerical experiment, we constructed a stable difference scheme for the approximate
solution of the problem. Obtained results given in Table 1 also support the theoretical results.

Acknowledgement

The publication has been prepared with the support of the "RUDN University Program 5-100".

10

11

12

References

Choulli M. Generic well-posedness of a linear inverse parabolic problem with respect to diffusion
parameters / M. Choulli, M. Yamamoto // Journal of Inverse and III-Posed Problems. — 1999.
— 7. — No. 3. — P. 241-254 .

Ashyralyev A. On source identification problem for a delay parabolic equation/A. Ashyralyev,
D. Agirseven // Nonlinear Anal. Model. Control. — 2014. — 19. — No. 3. — P. 335-349.
Ashyralyev A. On the problem of determining the parameter of an elliptic equation in a Banach
space /A. Ashyralyev, C. Ashyralyyev // Nonlinear Anal. Model. Control. — 2014. — 19. — No. 3.
— P. 350-366.

Erdogan A.S. On the second order implicit difference schemes for a right hand side identification
problem / A.S. Erdogan, A. Ashyralyev // Appl. Math. Comput. — 2014. — 226. — P. 212-228.
Ashyralyev A. On the determination of the right-hand side in a parabolic equation / A. Ashyralyev,
A.S. Erdogan, O. Demirdag // Appl. Numer. Math. — 2012. — 62. — P. 1672-1683.
Ashyralyyev C. High order approximation of the inverse elliptic problem with Dirichlet-Neumann
conditions /C. Ashyralyyev // Filomat. — 2014. — 28. — No. 5. — P. 947-962.

Blasio G.Di. Identification problems for parabolic delay differential equations with measurement
on the boundary/G.Di. Blasio , A. Lorenzi // Journal of Inverse and Ill-Posed Problems — 2007.
— 15 — No. 7. — P. 709-734.

Jator S. Block unification scheme for elliptic, telegraph, and Sine-Gordon partial differential
equations/S. Jator // American Journal of Computational Mathematics — 2015. — 5 — No. 2.
— P. 175-185.

Ashyralyev A. New Difference Schemes for Partial Differential Equations, Operator Theory
Advances and Applications / A. Ashyralyev, P.E. Sobolevskii. — Birkhauser Verlag, Basel,
Boston, Berlin, 2004. -444 p.

Ashyralyev A. On source identification problem for a hyperbolic-parabolic equation / A. Ashyra-
lyev, M.A. Ashyralyyeva // Contemporary Analysis and Applied Mathematics. — 2015. — 3. —
1. — P. 88-103.

Ashyralyyeva M.A. Stable difference scheme for the solution of the source identification problem
for hyperbolic-parabolic equations / M.A. Ashyralyyeva, A. Ashyralyyev // AIP Conference
Proceedings. — 2015. — 1676. — No. 020024.

Ashyralyyeva M. On a second order of accuracy stable difference scheme for the solution of a

source identification problem for hyperbolic-parabolic equations / M. Ashyralyyeva, M. Ashyra-
liyev // AIP Conference Proceedings. — 2016. — 1759. — No. 020023.

MATHEMATICS series. Ne 3(99)/2020 137



A. Ashyralyev, A.S. Erdogan, A. Sarsenbi

13

14

15

16

17

18

138

Ashyralyyeva M. Numerical solutions of source identification problem for hyperbolic-parabolic
equations / M. Ashyralyyeva, M. Ashyraliyev // AIP Conference Proceedings. — 2018. — 1997.

Ashyralyev A. Well-posedness of an elliptic equation with involution / A. Ashyralyev, A.M. Sar-
senbi // Electron. J. Differential Equations. — 2015. — 284. — P. 1-8.

Ashyralyev A. Well-posedness of a parabolic equation with involution / A. Ashyralyev, A. Sarsenbi
// Numer. Funct. Anal. Optim. — 2017. — 38. — 10. — P. 1295-1304.

Ashyralyev A. Stable difference scheme for the solution of an elliptic equation with involution /
A. Ashyralyev, B. Karabaeva, A.M. Sarsenbi // AIP Conference Proceedings. — 2016. — 1759.

Ashyralyev A. Stable difference scheme for the solution of an elliptic equation with involution /
A. Ashyralyev, B. Karabaeva, A.M. Sarsenbi // AIP Conference Proceedings. — 2016. — 1759.

Cabada A. Differential Equations with Involutions / A. Cabada, F. Tojo. — Atlantis Press, 2015.

A. Amsipaseie, A.C. Epgoran, A. Capcenbu

Jdupuxiie niapTbIMeH >K9He MHBOJIIONUSIChIMEH
colikeCcTeHipiJireH mapadoJiajbIK TeHJey TypPaJibl eCKEPTY

Jupuxite MmapThIMEH K9HE WHBOJIIOIUSICHIMEH COWKECTEHIIPIIreH mapabosiaablk, TEHIAEY VIMH KEeHICTIKTIK
ecenrepi 3eprresren. [lapabosanbik muddepeHImaibiK, TeHIEY YIIH JIePEKKO3/[l COKecTeHaipy ecebiHiH
KOppeKTiJiiri Teopemacs! Kypbliaral. OCbl ecenTiy »KybIK, IIeIIiMi YIITiH OPHBIKTHI albIDBIMJIBIK, CXeMaChl KOP-
cerinren. COHBIMEH KaTap, J€PEKKO3/I CONKECTEHIIPY MapaboJIaIblK TeHIEYIHIH OPHBIKTBLIBIK, ABIPBIMIBIK,
cxeMachIHbIH 6arambl 6epiiirer. CaHIBIK HOTHXKEIED KeJITipijareH.

Kiam cesdep: KOPPEKTINIiri, 3JUIMIICTIK TEHEY, OH TaHOAJIbI, KOSPIUTUBTI OPHBIKTHLIBIK, JIEPEKKO3] Coii-
KeCTEH/IIPY, JoJ1 OaraMbl, MIETTIK €Cell.

A. Amsipasneie, A.C. Epgoran, A. Capcenbu

3aMedyaHue o nmapadboJimiecKoii mpodjgemMme uAeHTUDUKAITIN
c mHBoOJTIOTINEH U ycaoBuem /lupuxiie

WccnenoBana mpocTpaHCTBeHHAs 3a/1a9a UACHTUMUKAINA UCTOYHUKA, JJIsT TapabOJIMIECKOTO YPABHEHUST C
“HBOJIIOIMEHR 1 ycioBueM Jlupuxire. YcTaHOBIEHA TeOpeMa KOPPEKTHOCTH 33341 HACHTU(MUKAIMI UCTOIHU-
Ka JJIsl TapaboIndeckoro audpepeHnualbHoro ypasaenusi. [IpeicraBiena ycTolunBasi pa3HOCTHAs CXeMa
JJIsl IPUOJIMKEHHOTO PEITieHnst 3To 3aa9u. Kpome Toro, JaHbl OMEHKU YCTONIUBOCTH PA3HOCTHOM CXEMBbI
mapadboIMIecKoi 3a/1a49n UIeHTUMhUKAIIME UCTOYHUKA. [[pUBeIeHBI YUCIEHHBIE PEe3Y/IbTAThI.

Kmouesvie c106a: KOPPEKTHOCTD, JIIUITUIECKNAE YPABHEHNUS, TIOJIOKUTEIbHOCTD, KOSPIIUTUBHAS YCTONIN-
BOCTB, UJEHTUMOUKAINS UCTOYHUKA, TOYHBIE OIIEHKH, KpaeBas 3aJada.
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