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UDC 517.956

D.M. Akhmanova'!, N.K. Shamatayeva!, L.Zh. Kasymova'*>

! Ye.A. Buketov Karaganda State University, Kazakhstan;
2Karaganda State Technical University, Kazakhstan
(E-mail: danna.67@mail.ru, naz.kz85@mail.Tu)

On boundary value problems for essentially loaded
parabolic equations in bounded domains

In the paper we study issues of a strong solution for "essentially" loaded differential equations of the
parabolic type in bounded domains. Features of the problems under consideration: for example, in the
L2(Q) space the corresponding differential operators are not closure operators, since firstly, the load does
not obey the corresponding differential part of the considered operator, that is, for its differential part the
load is not a weak perturbation. Secondly, it is obvious that load operators in the spaces L2(0,1) and L2(Q)
are not closure operators. This indicates that it is impossible to directly investigate the issues of the strong
solution to boundary value problems for non-closed loaded differential equations. However, the study of
equations [1-4] give theoretical character, but also a clear applied [5-7] character.

Keywords: "essentially" loaded parabolic equations, Volterra integral equation, boundary value problem,
strong solution, load operator.

1 Statement of boundary value problems

Statement of the first boundary value problem. Consider the following boundary value problem in the
domain @ = {z, {0 <z < 1,0 <t < 27}

0 0? 0u(z,t
L= 0 PO e, ey € @ (1)
u(0,t) = u(1,t) = 0,u(z,0) = u(z, 27), (2)

where T € (0,1) is a given point; « € C' is a given number;

fe L (o, 2m; W (0, 1)) (3)

is a given function.
Statement of the second boundary value problem. Consider the following boundary value problem in the
domain @ ={z,t{0 <z < 1,0 <t <27}

ou  9%*u OFu(z
L=t 9% v a@)- 08|~ ), ety @ (@)
u(0,t) = u(1,t) = 0,u(z,0) = u(z, 2m), (5)

6 Bectnuk Kaparanmgurckoro yuuBepcurera



On boundary value problems for ...

where
7 € (0,1) is a fixed point;a € WE™(0, 1),
feLls (0, 2m; W2™(0,1) N W3 (0, 1)) are the given functions, (©)

k—

k . .
=, if k is an even number
E>2m=1< 2’ ’
-7 {21 if k is an odd number.

Remark 1. The loaded differential operator Ly defined by problem (1) - (3) is not closed in the Ly(Q) space,
so for considering problem (1)-(3) we introduce the following an auxiliary problem:

9% [ou  P*u 0% f
L?’“:ax?(at_ax?) = gpr nth €@ 0
u(0,t) = u(1,t) = 0,u(z,0) = u(z, 27); (8)
O*u(0,1) 0%u(l,t) O*u(z,t)
or2 0, e R e R 0- )

Note that in the operator Lz boundary value problem (7)-(9) (except the L; operator) is closed in the
L2(Q) space. It is also obvious that boundary value problems (1)-(3) and (7)-(9) are connected. In fact, a
regular solution to problem (7)-(9) is also a solution to problem (1)-(2). And visa versa, if the regular solution
to problem (1)-(2) contains a derivative of the required order, then it is a regular solution to problem (7)-(9) [8].

Remark 2. For considering problem (4)-(6), in the domain Q we introduce a non-contiguous auxiliary problem

w(0,1) = u(1,1) = 0, u(x, 0) = u(x, 27); (11)
aj;;zj;(;, H a]‘;zg, H, amm)% — o, (13)
ajg;z;gt, t) 8@:;9; t) Om)% =0 (14)

j=1,....m—1.

Note that boundary problem (4)-(5) and (10)-(14) are connected. In fact, a regular solution of problem
(10)-(14) is a solution to problem (4)-(5). And visa versa if a regular solution to problem (4)-(5) contains a
derivative of the required order, then it is a regular solution to problem (10)-(14).

There are some necessary definitions [9].

Supposing that C' = {u | u € C;lt(@), Ut, Uggy € Cf:?(Q),} and conditions (8)-(9) are implemented [9].

Definition 1. If there exists a sequence of functions {u,(z, t)}?fl:g) C C such that the following conditions
1% and 29 are implemented:

19, In Lo(Q) limy, o0 tn (2, 1) = u(x, t);

20, In Ly(Q) limy, 00 Lyt (z,t) = 24

then the function wu(z,t) is called a strong solution to boundary value problem (7)-(9).

Definition 2. A strong solution to boundary value problem (7)-(9) are called a strong solution to boundary
value problem (1)-(2).

Cepust «Maremarukas. Ne 2(98)/2020 7



D.M. Akhmanova, N.K. Shamatayeva, L..Zh. Kasymova

2 Theorems on uniqueness and existence of a strong solution

First we consider the first boundary value problem, and show that the following statements are valid.

Theorem 1. Let hxT)
o - sh{i\x
1 1
Os ShiAT #0,V, € v, (15)

in the case, v = {s|s = 0;+1;42;...},\2 = is, i = 1/(—1). Than for any function
f € Ly (0.2m WE(0,1) N 1W3(0,1))

boundary value problem (1) - (2) has a strong solution u(x,t).
Corollary 1. Let o € R'. The statement in this case is true for Theorem 1, iff the following condition is valid

1—aZ#0 (16)

The statement is a simple consequence of following fact: in (15) the imaginary part of the expression s;;l{{/\)i}

is not equal to zero at any point s € v\{0}, since the real and imaginary parts of this expression have a value
that is always different from zero.

Corollary 2. Let (16) be not satisfied, i.e. 1 — o = 0. Then the operator of boundary value problem (1)-(2)
is equal to zero, and according to this, the function is equal to

wo(x) = 2(1 — z?) (17)

Proof of the first theorem. In proving this theorem, we refer to the proving by A.A. Desin [8]. We are looking
for a solution to problem (7) - (9) based on the following series:

= Y u@)e* fat) = 3 ful)el™ (18)
s€v EISY

Then from boundary value problems (1) - (2) taking into account the Fourier coefficients defined from (18),
we obtain boundary problems for an ordinary differential equation

{(isus(aj) —ul(z) + azul(T) = fs(x),z € (0,1), Y, € v. (19)

us(0) = ug(1) =0,
A unique solution to (19) can be represented as follows:
us(w) = b, 1 |y Go(@, ) 1,(€)d€ — 35 £,(®)]

x | - }Ho (2, ) ()€, ¥, € 0\ [0}; (20)
uo(2) = 6715, " — 1) fol®) + fi ol &) fol€} e

where h(A&)sh{(1-=)}
AP A8 < €< g <1,
(2,6) = Xsh(A) =5="= Ve € (21)
Wogxgggl,
and h{\T
ash{\x
5 =1 v, 22
oy 20 e (22)

Expressions for Go(z, ) and &y can be obtained directly at s = 0 or passing to the limit from formulas (21)
and (22) as A = 0(s — 0)

8 Bectnuk Kaparanmguackoro yHuBepcuTeTa



On boundary value problems for ...

Formula (20) can define a regular solution to boundary value problem (7)-(9) for the Fourier coefficients with
sufficient smoothness of the function fs(z). Therefore, for the correctness of the function fs(x) according to the
functions us(z) found on the basis of the formula (20), any combinations in the form

s=N

uN (z,t) = Z ug(2)e®

s=—N

defines a regular solution to boundary value problem (7)-(9).
Based on formula (20) we obtain the following a’priori estimates

lus(@)lz0,) < K- 1FS (@) La0,1): 8 € 0, (23)
where k is a constant that independent of s, so estimates (23) are constant relative to the s [10-12].
Furthermore, proving estimate (23),we establish that the following estimate for the Green function G(z,¢)
is fair
/ / |Gs(x, &) P dade < W < K = const, ¥, € v\{0},(\? = is).

Really, taking into account that A = A\ 4+ iA1, we get

1 2 2 2 2
/ |Gs(x §)| d¢ < W {|sh)\ x)| / |shA§|=d€ + |shAx| / [shA(1 — &)] dé}

1 z 1
= AP {|3hA(1 - x)|2/ |ch2A1€ — cos2X1€)dE + |sh)\x|2/ |ch2A1 (1 — &) — cos2X; (1 — 5))d£} -
0 xX
1
= SWICEEA {[ch2X\1 (1 — z) — cos2A1 (1 — 2)](sh2 12 — sin2\z)+
(ch2X 1z — cos2A1x) X [sh2A1(1 — x) — sin2X\1 (1 — 2)]} =
= W [sh2 i@ + sin2 12 — ch2A1 (1 — x)sin2 2 —
1 S

—sh2X1xc0s2X\1 (1 — x) — ch2 1 xsin2A1 (1 — x) — sh2A1 (1 — z)cos2A ;1 x].

As a result, we get the following estimate

Lot 1 ch2)\ CcOS2\ C
. 2 . S X)) n2\x — ! L)< =
/0 /0 |Gs(x, &)|*dadE W (sh Mz + sin2)\z N + N SN

/\1 Re) = Im)\ 2‘)\1|2 |)\|2

To receive estimate (23) for s # 0 (20) we obtain the following equalities

dPuy
dx?

2.

:—A2fs<w)+A4/01Gs<x,f>fs<f)ds+a g U G (. f (e — LT >]; (24)

dtug(z) d2f5

+A4/ G, €)£5(6)de — N2f(x)+

det dz?
1 A hA
+a- 5t UO Gs(T, ) fs(§)ds — b )] '>\4ssh;'

For some terms of solution (20) and their derivatives (24)—(25) we get the following inequality

(25)

H)‘Qfs HL2 0,1) — HW fs HL2 0,1) — HW fs )HL 0,1)

We take into account A2 = is,s = +1,+2,...

A o [ e
2(0,1)

Cepust «Maremarukas. Ne 2(98)/2020 9

02
[P~

5
dz <[ I fsll7q00,0) - 1P -

L2(0 1)

)\4/ Gs(z, &) fs(€ df’ dx<H|>\‘ fs



D.M. Akhmanova, N.K. Shamatayeva, L..Zh. Kasymova

= 2|t

L2(0,1)

_ e ) L 2
W/o |shAz|“dx (/0 Gs(x,g)fs(g)wg) <

/0
2
< K MA@ 0 = K [P E@F, o)

there, we are used the following

4shAx

/ Go(@,6)1,(6)

! 1 ! sh2A1 — sin2A c

20p = —— Nz — cos2 =2 o o

/0 |shA|“dx 2|sh>\2\/0 (ch2Mix — cos2 i x)dx Das? S
’)\

We get estimate

sshae f.@) |
sh A2

4
. = |2|A|2/ |shz|*da - (/ |fh (& |d§>

<c- I r >H <C- IR A )H

L»(0,1) wW2(0,1)

or

”'A|2~dQ“S L@

dz? )2

5 3
< K [INE£@) 0 + TN £ @20 -

L2(0~1)

Taking into account (24), and terms on the right side of equality (25) are covered by the right side of the
equality, the next assessment will not be difficult to obtain

Now, we can determine that the estimate is valid. Really,

d'us(z) fo(@) |
det A2

5 3
< B [N @I IV @ R + 1@ o]
2(0,1)

) o) 15 f(@) 1> NGO
s (2)1170,1) < [ A M 153 Mo IR e | <
fs(z) ?
K1 || =5 < @00 < KsllFL @120,
Lz(owl)

for s = 0. Based on formula (20), this calculation is taken in a simple form.

Taking into account estimate (23), on the basis of the results [8] (p. 118-119) we proved uniqueness of strong
solution to boundary value problem (7)-(9). The theorem is proved.

In addition, from the above estimates, the following uniform estimate for s € v is derived by the formula

9 dQuS( ) 2 d*us() 2
A7 <
S da? I dzt ||,
2(0,1) 2(0,1)
K [[INE @) A @] 1fs(@)]I} (26)
’ Lz(o,l) ° W;(o,m ’ v, 2(0.1)
in addition, For derivative the next estimate is valid
H = <K || f(z, 0 + || fz (2, )1 + |f (@, 1)
a. 99 —_ x? 3 x? 3 x?
Ox*0e L2(Q) W22(0-2W;L2(011)) ’ 24(0.27r;L2(0,1)) L2<0'2";W22<0’1mw21<0’1))

Estimate (26) presents that the strong solution to the boundary value problem has the differential property
that is given by estimate (23).

10 Bectnuk Kaparanmguackoro yHuBepcurera
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Thus, in condition (3), the requirement for the function f(x,t) can be replaced by the following:
—f € Ly(0,2m;W2(0,1)). In this case (23), the estimate has the following form

(@) s0 < K- 1@l s €.

Definition 3. Let u,(z,t),>, C C be a sequence of functions and

1Y.Ly(Q)in hm Up(z,t) = u(z,t);

82mf
Ox2m :

Then the function u(z,t) is-(14) are called a strong solution to boundary value problem (10)-(14).
If

20.L2(Q)m hm Lyup(z,t) =

ou(zx,t)

ue C(Q),u e C(0,2r;C*™+2(0,1) N C™ 10, 1)), o

€ C(0,2m;,C*™(0,1) N C™[0,1]),

we assume that the conditions u € C' and (11)-(14) are satisfied.

Definition 4. The strong solution to boundary value problem (10)-(14) is called a strong solution to boundary
value problem (4)-(5).

From these definitions it follows that the domains of the closed operators Lo and L, are equal.

We get the following

D(Ls) = D(Ly) =

Ju
ot
For the second boundary value problem, the following statement is valid [13-15].
Theorem 2. Let

{u|u € Ly (0,2m W3™%%(0,1)) , = € Lo (0,2m; W3™(0,1)) } x boundary conditions(11) — (14)  (27)

(5_1+—/fo &)dE #£ 0,V € v, (28)

where v = {s|s = 0;£1;£2;...},72 = is,i = /—1,G4(7,€) is the function defined by the formula from
conditions (21), then for any f € Lo (0,27T;W22m(0, 1) N Wy (o, 1)) ,a € W2™(0,1) the function u(x,t) is a
strong solution to boundary value problem (4)-(5). The proof of the second theorem is similar to the proof of
the first theorem.
The validity of the statements follows from (27) and (28).
8 Conjugated problem

Consider conjugate problem (1)-(2),

=20 %Y e ®/ o€ U(E0dE = gl 1), {1} € Q. (29)
$(0,1) = (1,t) = 0;9(x,0) = ¢(x, 27), T € (0, 1), (30)

here it is taken into account that the value supp{¢)(x,1)} C Q. A weak solution ¢ € Ly(Q) of this problem we
define the following integral equality: for any w € C (from the first definition) (w, L) = (L1, w, 9) = (w, g).

First, we show that the operator L} is conjugate with the operator L;. To do this, it is enough to make sure
that the following relation is valid

/27r/ 8283:2 t)dxdt:/o%/oléu(x_x) (/Olggb(f,t)%) u(z, t)dzdt.
/2”/ 82 ¥(x, t)dadt = /zﬂ/ w“{/é aét)df]dxdt:
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/ZW/ -z (/ fwﬁtd€>82( ule ))d dt = :Tréx—l‘ (/ fwﬁtdg) (( ))odt—
/2”/ 5z —7) (/ f¢§td§>au( D dudt — /M:—x (/ w&tds) (e, 1) Ldt+
/%/ §'(x —7) </ §Y(&,t df) (z,t)dzdt = /%/ 8" (x — ) (/ (&t d{) u(z, t)dwdt.

Using the method of separation of variables from (29) - (30), we get the corresponding system of problems for
the Fourier coefficient ¢4(x), s € v\{0}

—isths(x) — Y () + 0z —T) [} - € y(x)de = gy(),x € (0,1),
15(0) = (1) = 0,Vs € \{0}.

The solutions to these problems have the form: {the Fourier coefficient of the function g(x,t) according to

gs(x)} L )
- / Gis (o, €)g (€)de + / € (€)de - [\ - G, 7))
0 0
where in{ A} sin{A(1—)}
_ sin sin —x 70§§§x§17
(ZL’ f) sin ASSQE(A) — VS cv (31)
Defornfd0-9} 0<2 <<,
iff )
gszl—l—o@—oz%#O Vs € v(A\? = is). (32)

The expressions for Go(x,€) and §p can be obtained directly or passing to the limit as s — 0(A — 0) in
formulas (31) and (32):

Remark 3. Let o € RY. If the function wy(z) (17) given by (1)-(2) is orthogonal to all functions g(x,t) from
conjugate problem (29)-(30) (by Corollary 2) then wo(z) (17) is a univocal weak solution. In this case, condition
(32) is valid for all s € v.

Remark 4. If g(x,t) = 0 then (29)-(30) has a unique solution ¢ (z,t) = §(x — T).

Note that to study the integral equation to which the problem for a parabolic equation has been reduced,
we can use the Laplace transform by applying the model solution method [16].
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JI.M. Axmanosa, H.K. [ITlamaraesa, JI.2K. Kacbimona

IllekTenren aiiMakKTapaarbl ejieyJl >KYKTeJreH IapadosiajbIK,
TeHJleyJiepre apHAJIFaH MIEKaPAaJIbIK ecelTep TYypPaJibl

MakaJjtazia meKkTe/IreH aiiMakTarbl eJIeysl »KYKTeJreH mapadboJialiblK, 1uddepeHIualablK TeHIeyIepre ap-
HAJIFAH 9/l IIENTM CypaKTaphl 3ePTTENTreH. KapacThIpblIFaH eCenTep/IiH, epeKIeikrepi: Mbicasst, La(Q)
KeHicTirie coiikec auddepeHuaablK ornepaTopJap TYWbIKTAYIIbl O0JIMaiIbl, cebebi, 6ipiHmTiTeH, KyKTe-
Me KapacTbIPBLIBIIT OTBIPFAH OIEPaTOPAbIH colikec auddepeHna bk 0eririne 6arbIHOANIbI, AFHU OHbBIH
nuddepennmmannbik 6iri yImn o/1ci3 aybITKy 606 TabbLMaii el Eximmminen L2 (0, 1) xone Lo (Q) KeHicTIK-
TepiH/e XKYKTEME OIepPaTOPJIAPBIHBIH, 63/1epi TYABIKTAYIILI OllepaTopsaap OOJbIT TabbLIMANRTBIHBI OEIriJIi.
OCBIHBIH 6aPJIBIFBI TYHBIKTAIMANTHIH XKYKTeJINeH JuddepeHnaabK TeHIeyIepre apHaJIFaH oI/ IIeriM Il
IIEKapaJIbIK eCelTep CYpPaKTapbIH TiKesIell 3epTTey MyMKIH eMec eKeHiH kepcerei. Amnaiina [1-4] rerneymnepin
3epTTEy TEOPUSIIBIK KAHA €MeC, aHBIK, KOJIanbassl [5-7| cunar Gepe.

Kiam cesdep: eneyni Kykrearen nudepeHnnaiablK, TeHaeyiep, Boabrepp HHTErpaIblK, TEHIEY1, IeKa-
PaJIBIK €cell, 9JIi IIeMIiM, OIepaTop.
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JI.M. Axmanosa, H.K. [TTamaraesa, JI.2K. Kacbimora

O rpaHnMYHBIX 33JladaX AJd CyIeCTBEHHO HATpPy KEHHBIX
napadoInvYecKnx ypaBHEHNII B OrpaHNYEHHbBIX 00JIaCTIX

B craTbe m3ydueHBI BONPOCHI CUJIBHOTO PENIEHHs I CYIIECTBEHHO HArPy’KeHHBIX auddepeHnmaabHbIx
yPaBHEHMIT TTapaboJIMYeCcKOro THUIa B OIPAHUYEHHDbIX 00jacTsaX. OCOGEHHOCTH pacCMaTPUBAEMbBIX 3aJlad:
nanpumep, B L2 (Q) mpocrpancTse coorBercTByomue auddepeHuaabable OMepaTopbl HE ABJISIOTCS OIe-
paTopaMy 3aMbIKaHUs, MOCKOJbKY, BO-TIEPBBIX, HATPY3Ka HE MOMYUHAETCS COOTBEeTCTBYyIomIel auddepen-
IUAJIbHON Y9aCTH PACCMAaTPUBAEMOTO OIepaTopa, TO €CTh /i ero AudepeHIuaIbHol 9acTH He ABJISIeTCs
c1abbiM Bo3MyIeHneM. Bo-BTOpbIX, 09eBnaHO, 9T0 B ipocTpancTBax L2 (0, 1) n L2(Q) onepaTopsr HArpY3KH
caM# He SBJIAIOTCS OlepaTopaMy 3aMbIKaHusA. Bce 3To yKa3bIBaeT Ha TO, YTO HEBO3MOXKHO HENOCPEeCTBEH-
HO MCCJIEIOBATh BOIIPOCHI CHJILHOTO PENIeHHUs] FPAHUYIHBIX 3319 JjIs HE3aMKHYTBIX HATDYYKEeHHBIX audde-
peHImasbHbIX ypaBHeHunit. OfHAKO nccienoBanne ypasHeHuil [1-4] jaer He TOJIBKO TeopeTHUECKHil, HO U
BBIPaXKEHHBIN MpUKIaaHol [5-7] xapakTep.

Karouesvie carosa: CyIecTBEHHO HArpysKeHHbIe nuddepeHnaibHble yPpaBHEHNs, HHTErPaIbHOE YPaBHEHHE
Bonpreppa, rpannynas 3a7a4a, CUIBHOE pelleHUe, OIIEPATOP HAIPDY3KH.
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The Cauchy problem for the Navier-Stokes equations!

Ch. Fefferman in his works two problems for Navier-Stokes equations are set out: one of them is the
Cauchy problem and he considers «only those solutions that are infinitely smooth functions are physically
meaningful». In this article, the author received positive answers for the above problem of Ch. Fefferman.
He proved the uniqueness and existence of smooth solutions of the Cauchy problem for the Navier-Stokes
equations. The ratio between the pressure P and the kinetic energy density F, previously established by the
author. is taken as the basis. As a result of in-depth studies of the Cauchy problem for the Navier-Stokes
equations, it is shown that E is a bounded, continuous function that satisfies the Laplace equation and has
continuous first-order derivatives with respect to ¢t and all kinds of second derivatives with respect to the
spatial variables x and is a regular harmonic function in the space Rs. An explicit form of E' is found with
the help of which the Navier-Stokes equations are reduced to a system of linear parabolic equations and
the solutions are written out by the Fourier transform that are infinitely differentiable with respect to ¢
and x. The systems of equations for the curl-vector are found. Proven uniqueness, the existence of infinite
smoothness. An estimate is obtained linking the curl-vectors with the Reynolds number.

Keywords: The Cauchy problem for the Navier-Stokes equations, the uniqueness and existence of smooth
solutions of the Navier-Stokes equations, the harmonicity of the kinetic energy density, the equations for the
vortex vector, the Cauchy problem for the curl-vector equations, the uniqueness and existence of smooth
solutions of the equations curl-vectors

0.1 Some introductory information

Unsolved problems in the theory of Navier-Stokes equations homogeneous liquids are given in [1-2], [3] and
others.

In a number of works [4]-[6] of the author, the results of some explored. The substantiation of the simplest
principle is given in [4] maximum for three-dimensional Navier-Stokes equations, which allows get a positive
answer to an unresolved problem O.A. Ladyzhenskaya in [1, 2].

In [5], based on the properties of solutions of the Navier-Stokes equations, the relation between the pressure
and squared modulus of the velocity vector. Based on what the uniqueness of the weak and the existence of
strong solutions to a problem from a class of functions

C((0, T} W5 (G) U CH((0, T]; W5 (G))

for the Navier-Stokes equations in bounded domain of G in whole time t € [0,T],VT < oc.

The justification of the method was given in [6] splitting for solving the Navier-Stokes equations. Shown
the compactness of the solution sequence, thereby the existence of strong solutions to the three-dimensional
Navier-Stokes equations in whole time.

The original Navier-Stokes equations are not equations of type Cauchy-Kovalevskaya. Using ratio
(P = —|U?) V(P = 0) from [5] the system of equations (1a) can be reduced to the Cauchy-Kovalevskaya type.
We will study the Navier-Stokes equations (1a) taking into account the relation P = —|U|?, preserving the
condition of incompressibility of the fluid.

The Cauchy problem for the Navier-Stokes equations with respect to the velocity vector U = (Uy, Us, Us)
in the domain @ = (0,00) x Rg it will be written in the form [5]:

ou

E—,uAU—l—(U,V)U—ZVE:f(t,X), V-U=0, (1a)

!The work was done on the personal initiative of the author.
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U(0,x) = ®(x), (1b)
where x € R3; E = 1|U|?; t € (0,00).

Known [1] orthogonal decomposition Lo (Q) = G(Q) @ J(Q), moreover, the elements J(Q) at Vtbelong to
J(R3), and the elements G(Q) belong to the subspace G(R3); J(R3) — the space of solenoidal vectors, and
G(Rs3) consists of V), where 7 is a unique function in Rs. Ly (Q)— subspace C(Q). W} (Bg) is the Sobolev
space.

In the plane ¢t = 0, we introduce the ball B ( imaginary, of course, since in the case of the Cauchy problem
a homogeneous incompressible fluid fills all spaces R3) of radius R > 1 with center at origin of coordinates.

Input f and ® problems (1) satisfy the requirements:

. 0o 07 (t,x) e f(t,x) e
i) £(t,x) € C*(Q) N J(Q), 7&7 <+ A ’—a s | S dan(1+ x)
. o o 0%®P(x e
ii) ®(x) € C*(R3) NJ(R3), | 5-ar7ash s o§2 ) o | S dan(l+ X)) 0= a1 + a2 + a3,
10x5? 0xg®
where o; € {0,1, ..., a}, 7, k— positive integers. gy, dax, gar -positive constants. O

0.2 On the harmonically of the kinetic energy density E

Theorem 1. If the input data of the problem (1) satisfies the requirements i), ii), then for the solutions of the
problem (1) the estimate

10l c(0,00:Lu0 (Rs)) < q0al| Pl (Rs) + d2,allfllc(0,00:L0 (R5)) = Aty (2)

HEHC(O 0oL (Ry)) = A, E= §\U|2» da,4 = 802904- (3)

Proof. We write a formula from vector algebra
(U,V)U - VE = [rotU, U]
using this formula of the equation (la) we rewrite

ou
ot

We multiply the equation (4) by the vector function U # 0, then, taking into account the property [rotU, U] L U
we get

pAU — 7V|U|2 —[rotU, U] + £(t, x). (4)

U
a@t uAU — VE = f(t,x). (5)
Acting by the operator div on (5), we have
AE = 0. (6)
Lemma 1. There is a relation
—-(AU,U) > 0. (7)

Proof. By painting AE and doing a little counting, we find
3
1
AE = divV (5|Uf) = (AU, U) + 3 (VUL)* =0
a=1

Whence the inequality (7) follows.
Multiply the equation (4) by a vector function p|U[?®~DU and taking into account the property
[rotU, U] L U integrate over domain of Br

2dt / |U|2pdx—p,u/ (AU, U)|U|2p Ddx—
Br

—f/UV|U|2de —p/(|U|2p DUfdx. (8)

Br
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Each term (8) is simplified accordingly. When evaluating the second term in the left-hand side, we take into

account (7). Third [ UV|U[?’dx = 0, due to the orthogonality [1] of the spaces J(Bg) and G(Bg). The
Br
right-hand side, estimated by Holder inequality, we get:

2p—1 1
2dt/’U|2de<p /|U|2pd 2p (/ |f|2pdx) 213. (9)
Br

2p—1
Both parts (9), dividing by a positive value p( S/ |U|2pdx) B , we have
Br
d 2p ﬁ 2p ﬁ
([ ofax)™ < (] [g7ax) ™.
dt

BR BR
Choosing an arbitrary ¢ € (0,00) and integrating the last time inequality ranging from 0 to ¢, find

1

</|U(t,x)|qu ) /\@ )|"ax) " / /|f7x | dx) dr,¥g = 2p,p € N.
Br

10O 0y < 120+ [ N 5,7
0

since it is inequality valid for any ¢, we put ¢ = oo and take into account the property i) of the well-known
vector function

If] < gox(1+1t)7", k=2

then

ot ||Lm Br) = ||<I)HLO°(BR) +§§g|lf(t)||Lm<BRy t € (0,00),

as you can see, the right-hand side is independent of the time ¢ and the inequality holds for all ¢ € (0, 00),
thereby the left side continuous in t, i.e.

OO 0,001z By < 1Bl 50y + 1Ell 0 00120 (B0

From where, using the input properties i),ii) we have

8T R?
HU Hc 0,00;L o (BR)) < 3 5 (1= (1 + R)3 (H(I)HLOO(BR) + ||f||C(O,oo;Loo(BR))>'
Hence, for R — oo we arrive at the proof inequalities (2), (3) of the theorem 1. O

Next, we differentiate the equations (5) with respect to time ¢, and initial conditions for it are found from
the systems of equations themselves (5), T. e.

1
U:(0,x) = pAP(x) + §V|<I’|2 +£(0,x) = ®1(x),

then we have the extended Cauchy problem for Uy,

ou,

8t /j/AUt VEt = ft (t7 X), (103)

U, (0,x) = &, (x). (10b)

Problem (10) is no different from problems (5), (1b), only in place of the vector functions U and the functions
FE stand for them corresponding derivatives U; u ;.
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Multiply the equation (10a) by the vector function p|U,|?*~1DU, and integrate over the ball Bg, then

2dt/|Ut\ P dx — p,LL/(AUt,Ut)|Uf|2p Ddx—
Br

—f/UtV|Ut\2”dx —p/|U |2e-DyU,fdx. (11)
Br

Proof. We denote v = Uy.
Lemma 2. There is an inequality (see [1])

—(Av,v) = Ai(v,v), (12)

since the operator —A in the finite domain By positive definite, i.e. —(Av,v) = A?(v,v), where A; = min A\?.
Each term (11) simplify accordingly. The second term in the left-hand side is estimated taking into
account (12) using the following inequality chains:

—pu/ (AU, U)|U, PP Ddx > —pusgg|||Ut|2(”*1)||Loo(BR) / (AU, Up)dx >
t
BR N BR

> puAi Sup I[UL2P D By / (U, Up)dx > 0.
> 2

Third term [ U, V|U;|?dx = 0 due to the orthogonality of spaces J(Bg) and G(Bg). The right side
B

R
is estimated by inequality Holder:

2p—1 1
th/\Ut 2pdx<p /\Ut 2pd & (/‘ft‘dex)Qp
Br

From where, arguing as well as in the previous case, we come to the statement:
Theorem 2. If the input data to the original problem (1) satisfies the requirements i), ii), then for the
solutions of the problem (10) the following estimates are valid:

H U HCl(O,oo;Loo(RS))S q2,4 H P, HLOO(R3) +d274 ” f ”Cl(O,oo;Loo(R;;))E Ao,

HEHcl(OW;Lw(R@) < Ay, d24 = g2,2q04-
Next, we introduce the differential operator

o~ -
DY = ——— —  — a=q« le} as, a=1,3; a; €{0,1,2,3},
0z{' 0x5?0xs® 1ot as i€d }
For example, when o« = 1, D- = 8:1:1 Vv am V ar . Acting by the operator D on the problem (10) we
obtain the extended Cauchy problem with respect to vector functions Uy, :

0DUy
ot

— uADU; — VDE; = Dfy(t,x), (13a)

DUL(0,x) = D®1(x), (13b)

Theorem 3. 1If the input of the problem (1) satisfies the requirements i), ii), then for solutions to
the problem (13) the following estimates are valid:

Ul 0.00wi (B)) < [ ®1llwi (Br) + [IEllet 000w (B) = As-
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1Bl 1 0 00w, By < A3 (14)

Proof. We denote v = DU;. Multiply the equation (13a) by a vector function p|DU;|>®=YDU; and

integrate domains Bpr and simplify each term of the result, as in the proof of theorem 2, the second

term from the left side taking into account (12), and the third term [ DU,V|DU;|?’dx = 0, due to
Br

the orthogonality of spaces J(Bg) and G(Bg). We estimate the right-hand side by Holder’s inequality

and in the end we get the estimate:

2p—1 1
;CZ/\DUt\dex<p(/|DUt\2pdx) » </|th|2de) & (15)
Br Br Br

The inequality (15) is no different from (9), only in the places of the function under the integrals, in
this case there are their derivatives, that is, DU;. Therefore, arguing literally, as after the inequality
(9) of the theorem 1, we find the estimates (14). The theorem 3 is proved.

Corollary 1.

||U(t’ X)Hcl(O,oo;C(Rg)) < @21, G2k — const, (16&)
1|10 ocicms) S g2 (16b)
Proof. From the estimate (14), using embedding theorems Sobolev [7; 64|, we find
1Ulc10,00:¢(Br)) < d1ll®lley) + d2llfllct0,00:c(Br)) (17)
M||® M|
where dy = M, 9 = H HCI(O’OO;W}’C’(BR), M- constant of the embedding theorem. From the
H‘PHC(BR) ”f”Cl(O,oo;C(BR))

inequality (17), taking into account the requirement i), ii) for input data, we find

s R?

U, x)lcr(0,000(Br)) < @264 (1 —

3 m) =di4, (18)

HEHC’l(O,OO;C(BR)) < d1,4, Kk =4.

From here, passing to the limit at R — oo we come to inequalities (16). The corollary 1 is proved.
Further, acting by the operator D on the problem (10) sequentially for o = 2,3 we get extended
Cauchy problems with respect to a vector function Uyg,e;, Utszjz,:

0D*U,
ot
DYU4(0,x) = D*®4(x), «a=2,3. (19b)

- MADaUt - VDaEt == Daft(t, X)7 (19&)

Theorem 4. If the input to the problem (1) satisfies the requirements i), ii), then for the solutions of
the extended problems (19), the estimates:

<Ay =23,
(20)

From estimates (20), using embedding theorems and the requirement i), ii) for the input, we obtain

the inequalities are similar (17), (18), then moving from there to the limit as R — oo we find the

estimates (21), (22) in Corollary 2:

Corollary 2.

1Ullen 000w, (8a)) < 1@1llwa, (3r) + IEllcr0.00wa (B = Aas [ Ell 010 00w (51)

(HU(tvx)HCl(Q) < CI3n) A (HEHcl(Q) < q:m), =2, qmx — const. (21)

(HU(tvX)HCl(O,oo;CQ(Rg)) < Q4m) A (HEHCKO,OO;CQ(RQ) < Q4N)7 a=3. (22)
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Note that the number of all possible derivatives of the third the order of the vector function D3Uy in
spatial x is equal to ten.
As a result, the following main

Theorem 5. From the theorems 1-4 and Corollaries 1, 2 followed by boundedness, continuity and
continuity of the first time derivative ¢ vector functions U and kinetic energy density F, as well as the
continuity of various derivatives of the first and second orders in the spatial variables x and satisfies
the Laplace equation (6) for all ¢ € (0,00), thus the function E is regular harmonic function in the
finite domain Bg. From the general theory harmonic functions (h.f.) [8], [9] it follows that h.f. It has
derivatives of any order and according to the statements proved to The function E also belongs to this
class. Then in the domain Bp for each ¢t € (0,00) based on the corollary of the Poisson formula and
Harnack inequalities positive harmonic function F is constant over the spatial variables x for every
t € (0,00).

0.3 On the ezistence and uniqueness of smooth solutions of the Navier-Stokes equations

From the theorem 5 it follows that the harmonic function E(t,x) is constant inside the ball Br
right up to spherical ball surface dBg, i.e.

B(t,3)| sy = 51+ 1 IR, (23)

where k—positive integer. Then the harmonic function F can be determined from the Dirichlet problem
for the Laplace equation in the exterior of the sphere dBp of radius R with constant boundary condition
(23):

1
AE(t,x) =0, E(t,x)|yp = (1 +1)7F|®(R)|?, Vt e (0,00).

It is known [8; 231] that the solution to this problem can be written with using the Poisson formula:

[®(R)? p— R

E(t,x) = 108 . o
() 8m(1+t)~ [ R), R<p<oo (24)
Hence, since p > R we find the function £
®(R)* R
Et,x)= 2B R

which is a continuous harmonic function of the form:

|®(R)[?
2(1+t)"

X € BR,
E(t,x) =

2
IMEP R xeR3\Br, Vi € (0,00),

which has continuous derivatives of all orders outside the sphere Bp.

Where from B
0, x € Bp,
VE(t,x) = (25)
(t)V(5), x€R3\Br, ¥t € (0,00),
®(R)|?R
where ¢(t) = |2((1+)t|),€ .
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Now from a non-linear system of Navier-Stokes equations (5), taking into account (25), we arrive
at a linear system equations of parabolic type, i. e., to a system of disengaged heat equations with
known right-hand sides

f, xe¢ BR,
£ (£ %) —
f+ CV(%), x€R3\Bg, Vt € (0, 00),

then the Cauchy problem for the obtained systems of equations taking into account initial conditions

(1b) can be written as:

%[tj — nAU = f8(t, x), (26a)

U(0,x) = ®(x). (26b)

Where do we get the uniqueness solution to the problem (26), using Poisson formula obtained and
justified by the Fourier transform for the heat equation, for example, in [8]:

2

Ua(t.x) = (2ym)° / / (t_lT)gexp (= o=y aCryydrs
0 R3

1
MCNEDE

For t > 0 the function U, (t, x) is infinite differentiable with respect to ¢ and spatial variables x and that
all derivatives can be obtained using differentiation, the Poisson formula (27) under the sign integral.
O

2
r
/exp ( - TM)CI)O&(Y)dy’ r= |X - Y|> & = 17273' (27)
R3

0.4 On the estimation of the curl vector of a problem (1)

Multiply the Navier-Stokes equations (1a) by 2U and integrate over the domain Bpr

d
dt/|U]2dx—2u/(AU,U)dx—/UVde:Z/dex. (28)
Bgr Br Br

Bgr

From where we transform the second term on the left with integration by parts

3 3
—2u /(AU, U)dx = 2,u/ Z(VUQ)de — / 5% Z UZdx =
Br a=1 OBr a=1

Br

3 3
QM/Z(VUQ)de—zu / gfdx—Qu/Z(VUa)de,
Br a=1 Br a=1

OBr

because [ g—ﬁdx = 0 by harmonic property functions E, where 0BpR is the spherical surface of the
OBRr
ball Bg (imaginary, of course). Third term [ UVEdx = 0 by virtue of orthogonality of spaces J(BR)
Br
and G(Bg). The right side (28) is estimated by Cauchy-Bunyakovsky inequality and as a result we

get:
d 5 :
dt/\U|2dx+2u/Z(VUa)2dx§2</\U\de)2</\f|2dx) .
Br Bp @1 Bgr Br

N

(29)
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From here

d 1 1
dt/U\?dxg2(/|U|2dx 2 /|f| dx 2.
Br Br

d
2 10 o <1 £0) o (8r) -

We integrate the last inequality ranging from 0 to ¢ and will find

Whence it follows that

sup | U®) 2.Bo) <l @ llro(r) +5up || £(2) [|1y(Br)= Aa- (30)
>0 >0

Now, integrating (29) over ¢t € (0, 00) and taking into account (30), we find

t 3
DA CACT M( 19 1, 50 +As 8D IF(E) o)) (31)
0 a=1
Lemma 3. Occurs 5
IrotUMI, 5 = 3 IVUalBI, (55, ¥t € (0,00). (32)
a=1
Proof. Follows from identity
3
2 2
Z a—%VUa = ;(VUQ) — (rotU)2.

It suffices to integrate this identity over the domain Bg with orthogonality of spaces J(Bg) and G(Bg).
From (31), using (32),we obtain an estimate for the curl vector

/ [rorU (), g < Re(( 1 15y 41500 IED) o) (33)

where Re— is the Reynolds number. Hence it is not difficult to notice that with the Re — oo curl
vector is destroyed. O
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O.III. Akprmn (Akpiies)

Haspe-Crtokc Tengeynepine Kommn ecebi

Ch. Feffermann xymbicrapeiaga Hasbe-Crokce rengeynepine (HCT) exi ecen kolibuiran, onbiy 6ipeyi Komn
eceli ykoHe 071 «(PUBNKAJBIK TYPFBIJIAH OMJIACTBIPBIIFAH TEK IIeKCi3 Teric pyHKIusaap OO TabblIaThIH
HIemiMAep» Jen TYKbIpbIMAai bl ABTOpabH ochkl Makaiackinga Ch. Feffermannbin xkorapbiiarst ataaran
ecebine om kayan asbiarai. Hasbe-Croke Tengieysiepi yinin Kormm ecebiniy, »Kajikpl meKci3 Teric mentyinin
OapJIbIFbL JpJtesiieHreH. Horukecinie aBTOPABIH epTepeKTe KOPCETKEH, KBICHIM MEeH KHHETUKAJIBIK SHEPTUs-
HBIH apacbIHIaFbl OaitytanbicKa Herizaenren. Hasre-Croke Tenmeynepi yimnia Ko ecebin TepeHipek 3eprrey
HoTHKeciHe F PyHKIUSICHIHBIH, TYHBIK y3iaiccizmiri Jlammac Tenieyin KanararTanabIpaibl KoHe ¢ OOWbIH-
mia GipiHIT, a KeHICTIK alHBIMAJIBLIAPEI X OOMBIHINA €KIHIII TYbBIH/IbIIAPBIHBIH 6aPJIBIFBIHBIH Y3laicci3mir
KepceTimin ykoHe R3 KeHICTIriHIe peryssp rapMOHUSIBIK, (DYHKIUS €KEHIIri KepceTiireH. F—HiH aflKblH
Typi TabbuIbIl, OHbIH KeMmeriMeH Habe-CTOKC TeHieyiepi KbLIJaM IbIK, BEKTOPBIHBIH, KYPayIIbLIapbl 60ii-
BIHINIA CBI3BIKTHI MMapaboJialbIK TeHJeysepre Kearipitin, Oypbe Typ/eHaipyiHiH 9JiciMeH ecenTiH, t KoHe
KEHICTIK aiffHbIMAJIBLIAPHI X OOMBIHIIA MIEeKCi3 Teric o mrernyi Tabburran. Kyiibin BekTOpbIHBIH Peitnonac
caHbIMEeH OaMJIaHBICTBLIPATHIH OaraJiay aJIbIHFaH.

Kiam ce3dep: Hape-Crokc rtenpeyiepi yirin Komm ecebi, KHHETUKAJBIK SHEPIUs THIFBI3IBIFBIHBIH R3
KEHICTIriHe perysisip rapMOHUSAJIBIFBL, KYWBIH BEKTOPBIH PeifHoIbIc caHbIMeH OaillaHbICTBIPATHIH Harasiay.

AIII. Akerr (Akwrmes)

3amaga Kommu ajis ypaBaeHmnit HaBpe-CTokca

B paborax Ch. Feffermana craBarca nse 3amaun nys ypasuenunit HaBbe-CTokca: OMHON W3 HUX SIBJISIETCST
3amada Ko, u oH canTaer «(pU3NIECKH OCMBICJIEHHBIMH TOJBKO T€ PEIIeHUs, KOTOPbIE SBJISIOTCS OECKO-
HEYHO IVIQIKUMU (PYHKIUSIMU». B MaHHO# cTaThe aBTOP MOJIYYUJI MOJIOXKUTEIbHBIE OTBETHI Ha, YIIOMSIHY TYIO
Boimre 3amaay Ch. Feffermana. Vim moka3aHbl e ITMHCTBEHHOCTD M CYIIECTBOBAHUE TJIQJIKUX PEITEHUN 330291
Komm g ypasuennit HaBbe-Crokca. 3a OCHOBY B3sTO COOTHOIIEHHE MEXKJY JaBJieHneM P U IJIOTHOCTHIO
KUHETUYIECKOW sHeprun F, paHee yCTAHOBJIEHHOE aBTOPOM. B pesysbrare yriiyOJIEHHBIX MCCJIEIOBAHUN 3a-
naun Komm st ypasuenuit Hasbe-Crokca mokasano, 9ro Ff — orpaHwdeHHasi, HEPEPbIBHAsT (DYHKIHS,
VIOBJIETBOPSIONIas ypaBHeHMIO Jlamiaca, nMeroniast HeIpePbIBHbIE IPOU3BOAHBIE IIEPBOIO MOPSIAKA 10 t U
BCEBO3MOYKHBIE BTOPBIE ITPOM3BO/IHBIE 110 IMPOCTPAHCTBEHHBIM IMEPEMEHHBIM X U SIBJISIFOINASICS PEryJISPHOMN
rapMOHUYECKO# yHKIme B mpoctpancTee R3. Haiinen sBublif Bug F, ¢ TOMOIIBI0 KOTOPOTO yPABHEHUST
Hagbe-Crokca cBemeHbl K cucTeMe JIMHEHHBIX Mapabo/IMuecKuX yPaBHEHWI W BBIUCAHBI PEIIeHUs [IPeod-
pazoBanuem Pypbe, 6eckoHeUHO auddepeHIUpyemble o t u X. [loydeHa oneHkKa, CBS3bIBAIOIIAas BEKTO-
pBuxps ¢ guciaom PeitHobaca.

Kmoueswie caosa: 3amaaa Komm nis ypasuennit HaBbe-CTokca, rapMOHUYHOCTH MJIOTHOCTA KUHETHIECKOH
SHEPI'UH, eJMHCTBEHHOCTb U CYIIECTBOBaHUE IVIaJKuX perrenuil ypasuennit Hasbe-CroKca, OlleHKA, CB3bI-
BaOIasi BEKTOPBUXPsI C YUCJIOM PeitHosbaca.
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The first with displacement problem for a third-order
parabolic-hyperbolic equation and the effect of inequality
of characteristics as data carriers of the Tricomi problem

As part of this scientific work, we study a displacement boundary value problem for a third-order parabolic-
hyperbolic type equation with a third-order parabolic equation backward in time and a wave equation in
the domain of hyperbolicity. As one of the boundary conditions we have a linear combination including
variable coefficients of the sought function on the characteristic lines AC and BC. The present paper
reports following results: inequality between characteristics of AC and BC lines limiting the hyperbolic
part € of the domain 2 as carriers of data for the Tricomi problem as 0 < z < 27, as a matter of fact, the
solvability of the Tricomi problem with data on the characteristic line BC' does not imply the solvability
of the Tricomi problem with data on the AC; necessary and sufficient conditions for the existence and
uniqueness of a regular solution to the problem under study are found. Under certain conditions for the
given functions, the solution to the problem under study is written out explicitly. It is shown that under
violation of the necessary conditions established in this paper the homogeneous problem has innumerable
linearly independent solutions, while the set of solutions to the corresponding inhomogeneous problem can
exist only with additional conditions.

Keywords: mixed type equation, third-order parabolic-hyperbolic equation, Tricomi problem, Tricomi method,
first with displacement problem, Green’s function, Fredholm’s integral equation of the second kind.

Problem Statement. Results Summary
In a Euclidean plane with independent variables xand y consider the equation

O:{u;m:_uyy_flv y <0, (1)
uxmz+uy_f27 Z/>0,

where f1 = fi (z, y), fo = fa(z, y) — are specified functions, u = u (z, y) — is a sought function.
Equation (1) as y < 0 coincides with the inhomogeneous wave equation

Ugy — Uyy = i (l‘,y) ) (2)

while as y > 0 it coincides with the backward in time nonhomogeneous equation

Ugzr + Uy = f2 (a:, y) ’ (3)

of the third order with multiple characteristics [1; 9] of the parabolic type [2; 72].

Equation (1) is considered in the domain €2, bounded by characteristic lines AC : z+y =0
and CB: x —y = 27 of equation (2) as y < 0 starting at the point C' = (7, —7) and passing through
the points A = (0,0) and B = (2, 0) respectively, and by a rectangle with vertices at A, B, Ag = (0, h),
By = (2m,h), h >0, as y > 0. Denote Q; = QN {y <0}, Qo =0QN{y >0}, J ={(z,0): 0<z<r},
Q= U UJ.

Assume that a regular solution to equation (1) in the domain € is the function v = u (x, y) of the
class C (Q) N CH (Q) NC%(Q1) NC2(Q2), uz, uy € Ly (J) satisfying equation (1).
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The first with displacement problem...

Problem 1. Find a regular solution to equation (1) in the domain (2 satisfying the conditions

w(0,y) =1 (y), vwmy) =e2(y), us 2my) =¢3(y), 0<y<h, (4)
a(z)ulbo ()] + B (z) ulbx (z)] = ¢ (x), 0<z<2m, (5)
where 0y (z) = (%; %), 6-(z) = (¥+m £—m) — are the points for intersection of the

characteristic lines of equation (
vespectively; 1 (1), @2 (4), @3 (y); a
a?(x)+ 3% (x)#0 Vazelo,2n].

Formulated problem (1), (4), (5) belongs to the class of A.M. Nakhushev nonlocal boundary value
problems with displacement [3].

For the first time, a problem with a boundary condition relating the values of the desired function on
two characteristic lines from different families in the hyperbolic part of the domain for the Lavrentiev-
Bitsadze equation was formulated and studied in [4].

The concept for a boundary value problem with displacement was introduced in [5], [6], and a
number of nonlocal boundary value problems with various types of displacements were studied for
hyperbolic, degenerate hyperbolic, and mixed type equations. In particular, the posing of the first
Darboux problem for wave equation (2) with an initial condition

2), starting at (z, 0) with characteristics of AC and BC
(x), B (x), ¥ (x) — are the specified functions and what is more

u(z,0)=71(x), 0<z<l1 (6)

and non-local condition (5) was generalized in [5]. It was shown that the conditions: a? (1)+ 3% (0) # 0,
a(r)# p(xr) Yael0,1], a(x),B(x),(x), ¥ (z) € C0,1]NC%)0,1] for the given functions «a (x),
B (x), 7 (), ¥ (x) ensures the correctness of the investigated problem with displacement.

In [6], a method of posing of the nonlocal displacement boundary value problems for a degenerate
hyperbolic equation of the form

(—y)" Ugz — Uyy =0, m = const >0 (7)

with the Riemann-Liouville fractional operator. Criteria were found for the unique solvability of the
problem with conditions (6) and

o (2) D u b ()] + B () Diulf, ()] = ¥ (2), 0<w<r

for equation (7), where 6y (), 6, (x) were defined as the intersection points of the characteristic lines
of equation (7), as above, and what is more 2 (m + 2)e = m.

In [7], the first and second Darboux problems were studied for the class of degenerate hyperbolic
equations. Sufficient conditions for the given functions providing solvability to the problems were
established. It was also shown that the Darboux problem with the following data:

Uy (2,0) =v(z), u(z,y)|lac =9 (x), 0<z<r

is well posed for the equation
Vg, — Uyy + Uy =0, (8)

considered in the domain D, bounded by the characteristic lines
AC: 2 —y?>=0, BC: 2z +y*=2r, 0<z<r
and the segment I = AB of the straight line y = 0.

uy (2,0) =v(z), u(z,y)|ac =¢(x), 0<z<r
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At the same time, the homogeneous Darboux problem for equation (8) with
uy (2,0) =0, u(z,y)|pc =0, O0<z<r

has nonzero solutions of the form u (z, y) = ¢ (:c + % y2) —g(r), where g = g (x) is an arbitrary function
of the class g (z) € C! [g, r] N C’Q]g, 7“[, which indicates the inequality between characteristic lines
AC and BC as data carriers of the second Darboux problem for the equation (8) .

The displacement boundary value problems have found their important application in mathematical
modeling of biological processes, and transonic gas dynamics. Similar nonlocal boundary conditions
arise in the study of heat and mass transfer in capillary-porous bodies, in the mathematical modeling of
gas dynamics and nonlocal physical processes, in the study of cell propagation processes, in the theory of
electromagnetic field propagation into inhomogeneous medium |2, 8, 9]. Comprehensive bibliographies
of scientific literature devoted to the study of boundary value problems with displacements is presented
in [3], [10-18], as well as in thesis [19-23].

The displacement boundary value problem with condition (5) for a second-order parabolic-hyperbolic
type equation with a heat equation in the parabolic domain was studied in [24]; also a necessary and
sufficient condition for the existence of a unique regular solution to the problem under study was found.

In this paper, we study a displacement boundary value problem for a third-order parabolic-
hyperbolic type equation (1) with a third-order parabolic equation backward in time and a wave
equation in the domain of hyperbolicity. As one of the boundary conditions we have a linear combination
including variable coefficients of the sought function on the characteristic lines AC' and BC. The
present paper reports following results: inequality between characteristics of AC and BC lines limiting
the hyperbolic part €2 of the domain €2 as carriers of data for the Tricomi problem as 0 < z < 27.
As a matter of fact, the solvability of the Tricomi problem with data on the characteristic line BC
does not imply the solvability of the Tricomi problem with data on the AC. Necessary and sufficient
conditions for the existence and uniqueness of a regular solution to the problem under study are found.
Under certain conditions for the given functions, the solution to the problem under study is written
out explicitly. It is shown that under violation of the necessary conditions established in this paper
the homogeneous problem has innumerable linearly independent solutions, while the set of solutions
to the corresponding inhomogeneous problem can exist only with additional conditions. Among the
works closely related to our research there are [25-31].

Problem 1 as a(xz) =0

The study of problem 1 we begin as o (z) =0, f(z) # 0V z € [0,2n]. The following theorem is
true.
Theorem 1. Assume that for the given functions o (z), 8(z), ¥ (x), pi(y), i = 1,3, fi (z,y) and

f2 (:ZZ, y)

a(x)=0,5(x)#0 Yazel0,2n], 9)
B(z), ¢ (z) € Ct0,27], (10)
e1(y), p2(y), ¢3(y) € C[0,h], (11)
fi(z,y) € C (), f2(z,y) € C () - (12)

be satisfied.
Therefore there exists a unique solution to problem 1.
Indeed, let there exist a solution to problem (1), (4), (5) and let

u(z,0)=7(x), 0<x<2m uy(z,0)=v(r), 0<z<2m. (13)
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Passing to the limit as y — 40 in the equation (1), accepting notation (13), we obtain the first
basic relation between 7 (z) and v (z), transferred from the parabolic domain Q5 to the line y = 0:

™ (z) +v(z) = f2(2,0), 0<z<2m. (14)

Employing boundary conditions (4) as y — +0 we can get

7(0) = ¢1(0), 7(2m) = 92 (0), 7' (27) = 3 (0) . (15)

Next we can find basic relation between 7 (x) and v (), transferred from the hyperbolic part €; of
the domain €2 to the line of the type changing y = 0. Let condition (9) of Theorem 1 be satisfied. In
this case, the studied problem (1), (4), (5) becomes one of the analogues of the Tricomi problem for
equation (1) with (4) and

<

u(z,y) |pc =ulbx ()] = Emi, 0<z<2m. (16)

B (x

To find the relationship between 7 (x) and v (z) let us use representation of the solution to problem
(13) for equation (2) [32; 59]:

Tty Yy T+y—s

u(x,y):T(x—i_y);T(x_y)—i—;/I/(t)dt—;/ / f1(t,s) dtds. (17)
zty 0 z—y+s
By formulae (17) we can find:
2
M@@ﬂ:u<xz%]x;%>:7“”g“*”—;/ (dpﬂ;/ /"ﬁtde& (18)
x 2 2mts

Substituting value u [0 (x)] from (18) into (16) we can get

2m 0 =xz—s
rem 4@ - [veds [ /ﬁ(t?s)dtdsgg(gy
x Z—m 2m+s

hence

V@Z_H@+<

) /f1 T —s,S) (19)

5

Relation (19) is the basic relation between the sought functions 7 (z) and v (z) transferred
from the hyperbolic part ©; of the domain 2 to the line y = 0 of the type changing of equation (1) as
a(z)=0,8(x)#A0 Vazel0,2r].

By relations (14) and (19) for the sought function 7 = 7 (z) we arrive at the finding a solution to
the equation

/
>, 0<z<2m, (20)
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satisfying conditions (15). A solution to problem (20), (15), under conditions (9)-(12) for given
functions exists, is unique, and can be written out by the formula:

2
T(x)zﬁ (27r—:L‘)2+2/G(x,t) (t—27)dt| o1 (0)+
0
21
+$ 33(47T—$)—2/G(:13,t)(t—27r)dt o2 (0)+
0
2T 2T
+% m(a:—27r)—|—2/G(:U,t)(t—7r)dt @3(0)+/G(m,t)f2(t,0)dt+
0 0
2T 0 2T ; ,
+/G(:c,t) / fi(t—s,s) dsdt—2/G(:C,t) (%) dt,
0 o 0
B (1—=cht)(1—ch(2r—2))—(1—=ch(x—1t) (1 —ch(2m)), 0<uz<t,
where G (z, 1) = _1*0&2”) { (1—cht)(1—ch(2m — 1)), t <z <2m.

Problem 1 as B(x) =0

Assume that further specified functions « (z) and  (x) are such that
B(z)=0,a(x)#0 VYazel0?2n]. (21)

The following theorem is true.

Theorem 2. Let condition (21) be satisfied for the given functions «(x) and B (x), and
a(x) € C10, 2r]. This implies that the homogeneous problem corresponding to the problem under
study 1 has innumerable linearly independent solutions, while the inhomogeneous problem (1), (4), (5)
18 solvable if and only if the additional condition is satisfied.

Indeed let condition (21) be satisfied for a (x) and (8 (z). Then problem 1 becomes the Tricomi
problem for equation (1) with conditions (4) and

w(@,y) |ac = u 6o ()] = i’g; 0<z<om (22)
By (17) with condition (22) we can find:
0 —z/2 —s
ulpo @) = (%, ~2) = W + ;/u(t) dt — % / / i (L 5) dtds. (23)
! bl

Substituting value u [fg (x)] from (23) into condition (22) using differentiation, we arrive at a fundamental
relation

v(z) =1 (z) - /0 fi(z+s, s)ds—2<w(x)>,. (24)

a(x)
—xz/2

Taking out the function v (x) from (14) and (24) we can find a solution to the equation
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7" (z) + 7 (x) = F (2), (25)

satisfying conditions (15), where F' () = fa (z,0) + f fi(z+s,s)ds+2 (i >
—x/2
Problem (25), (15) corresponds to the homogeneous problem

N NI
~

7" (z) + 7' (x) =0, (26)

7(0) =0, 7(27) =0, 7 (27) = 0. (27)
The homogeneous problem (26), (27) corresponding to problem (25), (15) has the nonzero solution
T(x) =c(l —cosx), c¢= const.

The solution to the inhomogeneous problem (25), (15) in this case exists only under the additional
condition for the given functions

2
2 (0) — 1 (0) = / (1= cost) F () dt. (28)
0
If condition (28) is satisfied, then the set of solutions to problem (25), (15) is written out by the
formula:
27
= / [1 —cosxcost] F (t)dt + /sinx sint F' () dt 4+ 1 (0) cosz + @3 (0) + ¢ (1 — cosz) .
0

T

It follows from the above that the characteristic lines AC and BC' limiting the hyperbolic part Q1 of
the domain € are not equal as carriers of data for the Tricomi problem as 0 < x < 27w . And generally
speaking, the solvability of the Tricomi problem with data on the characteristic line BC' does not imply
the solvability of the Tricomi problem with data on AC.

Mean value theorem

Now find in general the basic relationship between 7 (x) and v (z) transferred from the hyperbolic
part €2y of the domain €2 on the line of type changing y = 0. For this purpose, prove the following
lemma (theorem) on the mean value for an inhomogeneous one-dimensional wave equation (2).

Lemma 1. Any regular solution to equation (2) satisfying the condition u (z,0) = 7 (x) possesses
the following property

2m+s
ulfo ()] +ufr (z)] = u(x,0) +u(mw, —m) / / fi(t,s)dtds—
0 21+s 0 a+s
—= / / fi(t,s) dtds—f / /f1 (t,s)dtds. (29)
2ln ass —x/2 s
Indeed, taking into account formulas (18) and (23), we find
27
ult ()] + ulfe (2)] = 7 (@) ZOETET 5 vt
0
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5T p—s —z/2 —s
1 1
D) / / Ji(t,s)dtds — 5 / / fi1(t,s)dtds. (30)
0 2m+s z+s

By (17) as (z,y) = (w, —m) it is easy to show that

2T —mT =S
7(0)+7(27) 1 1
———— = [v)dt =u(m,—7) + = f (t,s)dtds. (31)
2 2 0/ 2 O/ZWZS

By (30) and (31) we arrive at (29).
Now we employ formula (29) to take forward steps. Find the value of w (m; —). Using boundary
condition (5) as x = 0 and in view of the first condition of (15), we find

a(0) @1 (0) + 8 (0) u (m; —m) = ¢ (0),
whence as 5 (0) # 0 find

u(m;—m) = 50) (32)
Similarly as = 27 and a/(27) # 0 by (5) and (15) find
u (7‘(; —7'(‘) _ (U (27T) - (27T) ¥2 (0) ) (33)

a (2m)

Thus, if a? (27) + 82 (0) # 0, the value of the sought function u (z,y) at the point C' = (7; —7) is
found by formulas (32) or (33). Assume, for example, that o (27) # 0. Therefore, equality (29) can be
rewritten as follows

ulbo (z)] +u(0r (x)] =7 (x) + F1 (2), (34)
0 27+s 2m+s T+s
whereFMm)zW 5<f f—f f—f f)fltsdtds
] 5_71— T—S8 71/2 -8

Problem 1 as o (z) = 8 (x)

Next consider the case as o (z) = 5 (z) Vz € [0,7]. The following theorem is true.

Theorem 5. Let the given functions @1 (), ¢2 (1), 93 (4); @ (2), B (), ¥ (2); fi (,9), f2 (,9) be
such that:

a(z)=p(x)#0, Vaxel0?2n], (35)

a? (0) +a? (2m) #£0; (36)

e1(y), p2(y) s w3 (y) € C0,R] N CH0,A[; (37)
a(x), ¥ (z) € C1{0,27] N C310, 27 ; (38)
fi(z,y) € C* (Ql) , fo(z,y) € C (Qg) ) (39)

Then there exists a unique solution to Problem 1 that is regular in the domain Q.

Indeed, by (5) in view of (34) and (35) find

30 Bectnuk Kaparanmurckoro yHuBepcurera



The first with displacement problem...

Whence under conditions (38), (39) by (14) we have

v(@) = Fole.0) -7 (@) = @ 0) — (D) R )
2 Y 2 Y a (_’,U) 1 *
With values found for 7 (z) and v (x) the solution to the initial problem (1), (4), (5) in the domain §;
is written out by formula (17). While the solution to the boundary value problem in the domain o
for equation (3) with boundary conditions (4) and initial condition u (z,0) = 7 (x) is written out as
below:

Yy
/ G (2, —y; 0, ) @3 () dy — / Gee (2, —y; 0, =) 1 () diy +
0

Yy 27
+ | Gee (z,—y; =) w2 () dn+ | G (z,—y; £,0) 7 (&) d + x,—y; & —n) f (& n)dédn ¢,
/ / [[o

(10)
where G (z,y; §,n) =U (z,y; &,n)—W (z,y; £,1m) — Green’s function of the operator, U (z,y; &,n)
and W (z,y; ,n) are fundamental solutions to equation (2) [1; 135].

Thus, in contrast to the problem with conditions (5) and for a strictly hyperbolic equation (2) [6]
the problem with displacement (4) - (5) for equation (1) is uniquely solvable even as o (x) = () # 0

vz € [0,2n] with the functions o1 (y), 2 (y), 3 (y); a(x), B(x), ¥ (x); fi(z,y), f2(x,y) possessing
properties (36)—(39).

Problem 1, general case
Further assume that a(x) # f(z) Yz € [0,27]. The following uniqueness theorem holds for a

regular solution to the problem (1), (4), (5).
Theorem 4. Let the following conditions:

a(z), B(z) € Cto,2n] (41)

o (2)+ % (x) #0 Ve [o, 27] (42)
a® (2m) + 8% (0) # (43)

(z) # B (x) V:ce[O 2] (44)
[ +5 ]>0 Ve [0,27]. (45)

be satisfied for the given functions a( ) and S (z
Then the solution to problem 1 is unique wzthm the required class.
Proof. Under condition (44) of (5) and (34) arrive at the following system of linear algebraic equations

wlfo (2)] + ul0r (2)] = 7 (z) + F1 (2)
{ Gt o el (o] 2 1o
for the unknown u [0y (z)] and w [0 (z)]. When solving (46) we find that
LB B@AW -y
I E e @ T T - at o

On the other hand, by formula (17)
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T 0 xz+t
ulfo (x)] = prO+r(@ 1 v(s)ds+ - fi1 (s, t)dsdt. (48)
e ]

Substituting the value of w [0y (x)] (48) into (47), and differentiating the resulting equality, we arrive
at

v(z)=[a(z)T(2)] — Fy(z), (49)
0
where a (z) = 29580 ) (2) = [ fy (w0 +t,8) dt + 2 M}
a(z)—p(z) i a(z)—p(z)
Relation (49) is the basic relation between 7 (x) and v () when conditions (41)-(44) are met.
For the homogeneous problem (p; (y) = f;j (z,y) = ¢ () =0, i =1,3, j =1,2) corresponding to
the initial problem (1), (4), (5) consider the integral

J= 77 (2) v (z) dz.
0

In view of relation (14) under conditions (15) we have that the integral in question

2 2
J = /T(x)u(x)d:c = —/T(a;) " (x) dw = —% [~ (0)]* <0 (50)
0 0
And in view of relation (49) we have
J= /T (2) v (2) dz = /T (2)[a (z) 7 (@)] dz = % /a/ (2) 72 (2) da. (51)
0 0 0

Provided that conditions (41)-(45) of Theorem 2 are satisfied, by inequalities (50) and (51) we
have that 7 (z) = 0. Moreover, by relations (14) or (49) we have that v (x) = 0. Then by formula
(17) we can conclude u (z,y) = 0 in ©y, while by (40) u (z,y) = 0 in . Thus, it is shown that the
homogeneous problem corresponding to (1), (4), (5) under the conditions of Theorem 2 has only a
trivial solution w (z,y) = 0 in Q that implies the uniqueness of a regular solution to the investigated
problem 1.

Theorem 5. Let the conditions (11), (12), (41), (42), (43), (44), (45) be satisfied for the given

functions o1 (y), @2 (y), w3 (y); a(z), B(x), ¥ (x); fi (@,9), f2(z,y) and let:
Y (x) € CH0,2n]. (52)

Then there is a reqular solution to Problem 1.
Proof. To prove Theorem 5 return again to relations (14), (15) and (49). Take out from (14) and
(49) the sought functionv (z), and find for 7 (z) a solution to the ordinary second-order differential
equation of the form

™" (z) +a(x)r (z) +d ()7 (x) = fo(z,0) + F>(z), 0<z<2m, (53)

satisfying conditions (15).
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By integrating equation (53) three times from x 10 to 2w we arrive at the integral equation

2

T(x)—47lr2/K(w,t)a(t)T(t)dt—Fg(w), (54)
0
[ @r—ax)t—4n*(t—x), 0<uz<t,
where K (z,1) _{ (21 — z)°t, t <z <o
Fy@) = (1= ) o o)+ T2 0 0 TE22T 0 (0 4
(27-(-_1-)2 27 1 21
tga /t2 [f2 (£,0) + F2 ($)]dt — 5 /(t—:c)2 [f2 (£,0) 4+ Fy (t)] dt
0 T

corresponding to problem (53), (15).

Equation (54) is a Fredholm integral equation of the second kind with the kernel K (x,t) €
€ C([0,27] x [0, 27]) and with the right-hand side F3(z) € C'[0,27]. The unique solvability of
equation (54) under conditions (41) - (45) involving the functions « (z) and g (z) follows from the
uniqueness theorem proved above. Properties (11), (12) and (52) imply that the solution 7 = 7 (x) to
equation (54) belongs to the class 7 (z) € C[0,27] N C3]0, 27].

/
Problem 1 as {M] =0

a(z)—p(z)
Finally, consider the case as ' (z) = [%}/ =0 Vazel2n],ie.
a(x) = m =a=const Vz€]|0,2n]. (55)
Under condition (55) from (53) we can arrive at the following problem for 7 (z)
™ (z) +at’ () = fo(z,0) + F2 (), 0<uz < 2m, (56)
7(0) = ¢1(0), 7(2m) = 92 (0), 7' (27) = 3 (0). (57)

The solution to problem (56) - (57) is written out by the formula

27
T(a:):ﬁ (27T—x)2+2a/(27r—t)G(:c,t)dt 1 (0) +
0
2w
+4i7r2 1—(27T—x)2—2a/(27r—t)G(:E,t)dt 2 (0) +
0
2 2
+% 1:227Tx+2a/(7rt) G (x,t)dt 903(0)+/G(x,t) [f2 (t,0) + Fy (¢)] dt. (58)
0 0

The function G (z,t) in (58) is Green’s function of the operator L[ (z)] = 7" (z) + a7’ (z) with
condition (57), whose explicit form is determined depending on the sign of the number a by one of the
formulas below:
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1 [1—ch(vV=a@r—2))] [1-ch(vV-at)] -

G (z,t) = —[1=ch(2y=an)] [1 =ch(V=a(z—1))], 0<z <t asa<0;
a[l=ch(2V=am)] | (1= op (V=a@r = a)] [1 —ch (V_at)]. t <z <2m
B 2 (2r —z)* —4n2(t—xz)?, 0<z<t, N
G(x’t)_8772{t2(27rx)2, t<x<2m asa=0;
and
1 1~ cos (] 1 — cos (ya (2r — ) -
G (z,t) = —[1 = cos (2/am)][1 — cos (Va(z —1t))], 0<z<t,

all =cos(2Vaml | (1 _ cos(yat)] [1 - cos(va(2r—2))], t<z<om

asa>0and a#n? ncN.

In each cases considered above with the value found for the function 7 (z) within the fundamental
relations (14) or (49) we can also find a value for the function v (z). At that, the solution of the initial
problem (1), (4), (5) in the domain € is written out by the d’Alembert formula (17), while in Q9 the
solution to problem (3), (4) with u (z,0) = 7 () is written out by formula (40).

Provided that a(x) = % =a =n? Va € [0,27], n € N the homogeneous problem
corresponding to problem (56), (57) has nonzero solutions 7 (x) = ¢ (1 —cosnx), ¢ = const. The
function G (z,t) in this case does not exist, and a solution to problem (56)—(57) can exist with the
additional condition

27
/wuw+ﬁwmumﬂmwwwrwﬂwum—mmn (59)
0

be satisfied.

As condition (59) is satisfied the solution to problem 1 in the domain €;is written out by the
formula

11+y 1 y x+y—s
u(x,y)zg(ﬂf+y)‘;‘9($—y)+2/V(t)dt—Q/ / f1 (t, s) dtds,
=y 0 xz—y+s

while in the domain 25 the solution is written out as below

Yy Yy
/G(w,—y; 0,—n) @3 (n) dn — /Ggg (z, —y; 0,—n) @1(n) dn +
0

/ﬁ& )2 ®+/G €009 @+//G ;&) £ (€ m) dedn y
0
where g (z) is an arbitrary, fairly smooth function, and G (z,y; &,n) = U (z,y; {,n) — W (z,y; £,n),

as above, is the Green function of the operator Lu = uyzs — uy, U (z,y; §,n) and W (x,y; §,n) are
fundamental solutions to equation (2) [1; 135].
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KA. Bankuszos, 3.X. I'yqaesa, A.X. Koazokos

Yurianr perrti napaboJia-runep06oJiaiablK TUNTI TEHAEY
YIIIiH BIFBICYMeH OepijireH OipiHII TeHJey >KoHe
Tpukomm ecebiHiH TachIMaJIAayNIbICHI PETiHIET]

cUIlaTTayNIbLIaPAbIH TeH eMeCTIriHIH Jcepi

Maxkasaga yiriumi perti napabosa-runepbosaiblK, TUNTI TUIepOoIaiblK 00JIBICTa YAKBITKA KAPChI YKOHE
TOJIKBIHJIBIK, TEHEYJ/Il YIIHIIN peTTi mapabosaiblK, TeHAeY Il 6ipTeKTI eMec TeHJey VIIiH Oip mreKapaJsibik
mapr ecebinye AC xone BC xapakTepuCTUKAJIAPBIHA 131611l (DYyHKIUIHBIH MOHAEPIHEH ToyeJI il ailHbI-
MaJIbl KO3 MUIMEHTTI CHI3BIKTHIK, KOMOUHAIUSICHIMEH GEPLJITeH IIETTIK ecelt 3epTTesred. Keseci HoTrxkemep
aneragel: 0 < x < 27 6osranma Tpukomu ecebiHIH JEePEKTEPIH TACBIMAIAYIIBLIAD CUAKTHI {2 OOJIBICHIHIA
Q1 Geuririn mekreiitin AC xone BC' cunarraymibLiapblHbIH T€H MYMKIHIIKTI emectiri kepcerisi xkone BC
CHTIATTayIIBLIAPBIHIAFEL JlepekTepiMen Tpukomu ecebiniy, mmentyineH, »xkaansl agranga, AC cumarTayibi-
CBIHJIAFBI epekTepiMen Tpukomu ecebi MmermiaMei Ti; 3epTTeIi OTBIPFAH €CENTIH PEryJIsApPJIbl MIEITyiHiH 6ap
0OJIYBI KOHE KAJIFBI3/IBIFBIHBIH, KAXKETT1 »KoHe »KEeTKUIKTI maprrapsl Tabbliran. bepiiren dyHkiusra 6eJi-
rizi 6ip maprTapaa 3epTTeIeTiH ecelTiy menryi afKblH Typje *Ka3bligpl. Bepiaren dyHKIusIra »KyMbICTa
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TaOBLIFAH KAXKeTTi mapTrap Oy3blica, 3epTTEJIETIH ecernKe coiikec GIPTEKTI ecenTiH, IMeKci3 Kol mremntyi 6o-
JIATBIHBI KOPCETLINeH, CoMKec GIPTEKTI eMec ecemnTiH IIely/iep *KUbIHbI TeK KaHa OepiireH pyHKIusIapra
KOCBIMIIIA TajanTap O6oraHaa raHa 6ap 60a bl

Kiam cesdep: apajac TUNTI TeHJey, VIIHII perTi mapabosa-runepbosIaiblK, TeHaey, T pUKOMU TeHJeyl,
BIFBICYMeH Geplirer Gipiummi Termey, ['pun dyHKIMSACH, eKinmn TeKkTi PpearobMHIH HHTErPAJIILIK, TEHIEYI.

KA. Bankusos, 3.X. I'yuaesa, A.X. Koxzokos

IlepBas 3agavya co cmenieHueM A ypaBHEHUS
napaboJIo-ruIepoboJIMIEeCKOro TUMa TPEThEero nopsaKa
1 3¢pdeKT HepaBHONIPaBUSA XapaKTEPUCTUK
KaK HOCHUTEeJIW JaHHBIX 3a7a4du Tpukomu

B crarpe wmcciemoBama KpaeBasi 3amada CO CMENIEHHEM JJIsI HEOAHOPO/HOIO yPaBHEHHSI IapaboJIo-
rUATIEpOOJIMIECKOTO THUIIA TPETHETO MOPSAAKA C TApPabOJINIeCKUM YPABHEHHEM TPETHEro MOPsIKa C OOPATHBIM
XOJZIOM BPEMEHH U BOJHOBBIM ypPaBHEHUEM B O0JIACTH I'MIEPOOJIMYHOCTH, KOTJA B KadeCTBE OJHOI'O U3 I'Da-
HUYHBIX YCJIOBUII 3a/IaHa JUHENHHAS KOMOMHAINS C TIePEMEHHBIMA K0P MUIMEHTAMA OT 3HAYEHUH UCKOMOT
dyukuun Ha xapakrepuctukax AC u BC'. Tlosydens! ciefyonme pe3ybTaThl: IIOKA3aHO HEPABHOIIPABHE
xapakrepuctuk AC u BC, orpaHnvuuBaomux rurepbonieckyto 9acTs 2 obsractu {2 KaK HOCUTEJN JaHHBIX
zamaun Tpukomu npu 0 < z < 27, U U3 pa3zpemuMocTd 3aJa49u TpUKOME ¢ JaHHBIMHM Ha XapaKTEePUCTH-
ke BC, BoObIIe roBOpsI, HE CJIEJyeT Pa3pelnMoCcThb 3aa9u TpUKoMHU ¢ JaHHbIMU Ha Xxapakrepucruke AC,
HaliJIeHbl HEOOXOUMbIE U JOCTATOYHbIE YCJIOBUSI CYIIIECTBOBAHUS U €IMHCTBEHHOCTU PETYJISPHOTO PeIeHns
nucciaenyemoit 3agasu. IIpn onpeeseHHBIX yCIOBHUAX Ha 3aJaHHbIE (PYHKIUH DENICHHe UCCIeIyeMOR 3a1a-
9M BBINUCAHO B IBHOM Buje. [lokazano, 9To npm HapynieHnn HaiJeHHBIX B pabOTe HEOOXOMMMBIX YCIOBU
Ha 3aJlaHHble (DYHKINN, OJHOPOJHAs 3aJada, COOTBETCTBYIOIIAs NCCJIEyeMOil 3ajade, uMeeT OecuncseH-
HOE MHOXKECTBO JITHEIHO HE3aBUCHUMBIX DEIICHUH, & MHOXKECTBO PEIICHUNA COOTBETCTBYIOMIEH HEOTHOPOIHOMN
3a/a91 MOXKET CYIeCTBOBATH TOJILKO IIPU JOMOJHUTEILHOM TPeOOBAHUM Ha 3aJaHHble (OYHKIIIH.

Karoweswie caosa: ypaBHEHHE CMENIAHHOIO THIIA, Hapab0oJIO-IUIEePOOINTIECKOe yPABHEHNE TPETHErO ITOPsi/I-
Ka, 3amada Tpukomu, merorn Tpukomm, mepBas 3amada co cMmemenuneM, (yuknus ['puna, mHTErpasbHOE
ypasaenne ®pesirosibma Broporo poga.
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Generalization of one theorem of F. Riesz to some other spaces

It is known from the analysis course that in order a function to serve as an undefined integral of a summable
function, it is necessary and sufficient that it be absolutely continuous. Therefore, it is natural to raise the
question of the characteristic of a function which is an undefined integral of the function included in
Ly,p > 1 . The answer is well known theorem of F.Riesz concerning the conditions of representability
of a given function in the form of an integral with variable upper limit on the functions of Lebesgue
spaces. In the one-dimensional and multi-dimensional case, many mathematicians have generalized this
theorem for Lebesgue and Orlicz spaces. In this work we will prove theorem of F.Riesz for other functional
spaces. Generalization of the theorem of F.Riesz to the case when subintegral function from the weighted
Lebesgue spaces is obtained. Also, we prove a necessary condition for the above representation of a function
f € Lpp(Lyp).

Keywords: function, functional spaces, integral, theorem of F.Riesz, weighted Lebesgue space.
1 Introduction

In the theory of functions, the following theorem of F.Riesz is known (see, for example, [1], page
225): for the function F'(z) (a <z < b) to be representable as

Flz)=C+ / F(b)dt,

where f(t) € Ly(p > 1), it is necessary and sufficient that for every subdivision [a;b] by points
a=1x9<x1 < <..<uz,=>the inequality was executed

P (i) — F)?

i=1 ($i+1 - xi)p_l

<K < o0,

where K does not depend on the way [a;b] is subdivided.

In the future, a number of authors have proposed various generalizations of this theorem [2-5|. We
will prove this theorem for spaces, which are defined below.

Let W (x) is a non-negative function. Through L, y[a; b] we will designate the space of all measurable
by Lebesgue on [a;b] functions f, for which

D

b
1w = / F@)PW(@)de | < +o0,1 < p < +oo.

We assume that the function W (z) satisfies A,-condition [6] (or W € A4,), if

1
7

3 =
S

1 / 1 L 11
sup | [ W(z)dz| - /Wx P Tdr| < 4oo, -+ — =1
ICfast] |I|1 ) 1] / (Wiz)) p 7

Let the function ¢(t) satisfies the following conditions [7]:
a) (t) is an even, non-negative, non-decreasing on [0, +00);
b) ¢(t?) < Co(t), t € [0,00), C > 1;

c) @ J on (0, +00) for some € > 0.
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Measurable on [a; b] function f € Lyp(L,), if

b
J17@F e (r@P)ds < +oo

2 The results and their proofs

We proved the following theorem.
Theorem 1. For the function F(x)(a < z < b) to be representable as:

z) —C+/f(t)dt, (1)

where f(t) € L,wla;b](p > 1), it is necessary and sufficient that for every subdivision [a;b] by
points a = zg < 71 < ... < x, = b the inequality was executed

|F(zp41) — F(ag) P

k=0 Tk41 —p/ p—1
[ W (t)dt

Tk

< K, (2)

where K does not depend on the way [a;b] is subdivided.
Proof. Let’s prove the necessity of theorem. Suppose inequality (1) holds. Then by Holder’s inequality:

Th+1 Tr+1

|ﬂ%m—nmw=/fmﬁ= /ﬂmwmwﬁwﬁg

Tr+1 % Tr1 , o
< / |f(O)F W (t)dt / W (tdt | VE=0,..,n—1,
T zy
where p’ = 1%'
We obtain:

Th41

|F(2p41) = Fap)]”

— <
Th+1 —p p
(f W )dt) Tk
T

Therefore, folding of these inequalities, we will get:
b

Thk41 —p
’“O(pr )dt)
Tk

The necessity of condition (2) is proved.

Now we prove sufficiency of the conditions (2). First of all, note that inequality (2) can only increase
if we discard some components of its left part. Therefore, for any finite system of mutually not impose
intervals (ag, by), (k = 1,2,...,n) contained in [a, b] will be

Zn: |F(bg) — F(ag)l” <K

IFO)P W (t)dt, k =0,....,n—1.

n—1
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But because of the Holder’s inequality holds:

IA

by,
S IFb) - Fla)| = TM‘”WL-/waﬁ
= = < i Wé’/(t)dt> :

ak

P

v
n p

by,
<y |i(bk)TF(ak)I|)p_1 _ Z/Wﬁp(t)dt
= (j Wé’(t)dt) oy

ag

/

b
< VK- /Wi(t)dt

From the last inequality implies absolute continuity of the function F(x). Then this function is
representable in the form (1), where f is some summable function. It remains to prove that f(x) €
Lp,W [a; b]

With this goal in expanding the segment [a; b] into equal parts by the points a:,(gn) =a+ %(b— a), k=
0,1,...,n let us introduce the function f,(t), believing:

F(x(”) )_ F(x(n))

Ialt) = =y — Xk,
Thr1 — Tk

(n) (n) )

where xx(t) - a characteristic function of the interval (a:k s Tpiy

At the division points we believe f}, (x](cn)) =0,k=0,1,...,n.

It is easy to see that almost everywhere will be:
Tim (O W) = [FOF W),

Hence, by Fatou’s theorem:

b b
[isapwaa <o [150r W

For fy(t), since W € A, we get the following inequality:

(n)
b el Tri F({L‘(n) )_ F((li(n))
k+1 k
[1n@rwaa=3 [ =0 Wp‘ (1)t =
a k:()xk(n) (karl — Ty )
(n) ([P o
| F(af) - Flaf)
p W(t)dt <
= (o - o)
k=0 < k+1 k 2 ()

ot [P - P (ol - o)

S C D : P =
o (th-a)T e N
[ W (t)dt
mk(”)
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n n p
w1 [Py - Fal)
k=0 xk+1 —p/

[ W (t)dt

And it became,
b

[1sr Wit <+
a
ie. f(t) € Lowla;b).
The theorem is proved.
Remark. In the case of W(t) = 1, the theorem of F.Riesz follows from the proved theorem.
Now we will prove the necessary condition of representation (1), from the function of Ly,p(L,)
space.
Theorem 2. If F(z) can be represented as

m@:c+/jm@

where f € L,p(Ly), then for every subdivision of [a;b] by points a = z¢p < 1 < ... < z;,, = b the
following inequality holds:

n—1

F(x — F(z.)IP
xk|+1( kjl) ( k)| p—1 < K.
-0 ( / ww(!f(t)\p)dt>

Proof. Let F(x) represented as

ol

m@:c+/j@ﬁ

Then by Holder’s inequality we get:

Th+1 Th+1

|F(wrp1) — Flay)| = / f(t)dt| = / FOer (FOP) 7 (F@)P)de| <
< / FOPe (FOP) dt / ST (fOP) | VE=0,.n—1

Hence, for all k =0, ...,n — 1 we obtain

T+1

o) ZEOIE < [ (rop)a
(f sop_—l(lf(t)lp)dt> "

Now adding up these inequalities, because f € L,p(L,) we get

n—1

Flar) = Feol’ o

Z Tk+1l 4 p=l =
= ( / wvl(!f(t)\f’)dt)
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Remark. In the case of ¢(t) = 1, the necessary part of the theorem of F.Riesz follows from the

proved theorem.
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C. butnvxan, /1. T. Anmubuera

®. Puccrin 6ip TeopemMachbiH Kelibip Odacka
KEHICTIKTepre >KaJnbLIay

OyHKIMAHBIH KOCHIHIBIIAHATHIH (DYHKINAAH aHBIKTAJIMaraH WHTerpaJj TYPiHae 60yl yiIiH OHbIH abco-
JmoTTi y3imiceiz 6oyl KaykeTTi »KoHe KeTKIITKT] exeni aHasm3 KypcbiHaH Oesrimi. Ocbiran OailylaHBICTHI
Ly, p > 1 xenicririne kipeTiH dyHKIUSIHBIH aHBIKTAJIMAaFaH HHTErPAJIbl 60IaThIH (DYHKINUSAHBIH CHIATTaMa-
JIBIK, OesIrici TypaJibl cypak, KOWbLIybI 3aHbl. 2Kayabbr @.Puccrin 6epinren ¢yuknusiabiy Jleber keHicTiri
GbYHKIUSICHIHAH AJIBIHFAH YKOFAPFBI IMIeri aflHbIMAJIbI MHTETPAJ apKbLIbI XKA3bLIY IMapPThIHA KATBICTHI TEO-
pemachiiia. Bipestem;ii »koHe KomeJImeM/Ii Karaiiap/ia KerrereH MareMaTukrep 0yJ1 reopemansl Jleber
xoHe Opsnd KeHictikrepinge Tamaaasl. Ockl 2KymbicTa apropsaap @. Pucc reopemachia 6acka GyHKIIMOHAI-
IBIK, KeHicTikTep yirin masengeren. ®©.Pucc TeopeMachHbIH KAIMTBLIAMACH HHTEIPAJI ACTHIHIAFBI (DYHKIIHS
casiMakThl Jleber kenicririnen Gosran xKarjaiira aabHabl. CoHbIMEH Gipre, XKOFapbLIAFbl HHTEIPAJIIBIK, 2Ka-
3BLLY Il KaxkeTTl maptsl f € Lyo(Ly) dyHKIMsICH YIIiH goses1eH .

Kiam cesdep: dyukius, PYHKIUSAIBIK, KeHicTikTep, mHTerpas, P. Pucc teopemacsl, cammakTs! Jleber
KeHicTiri.
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C. burnvxan, /1. T. Anmubuera

O6o6mienue oxHoii Teopembl ®. Pucca
Ha HEKOTOpbIe ApYyrue IIPOCTPAHCTBA

W3 kypca anasmsa n3BeCTHO, UTO [JIst TOO YTOOBI (DYHKIUS CIIy?KUJIa HEOIPEIEJICHHBIM UHTEIPAJIOM CYM-
MUpPYeMOit DYHKITHH, HEOOXOINMO U JIOCTATOYHO, YTOOBI OHA ObLIa aOCOTIOTHO HEMpEpPhIBHA. B ¢BsA3M ¢ UM
€CTECTBEHHO ITOCTABUTDH BOIIPOC O XaPAKTEPUCTUIECKOM IIPU3HAKE (DYHKIMH, SIBJISIIOIIEHCS HEOIIPEIeIeHHBIM
naTerpasioM dyHKInU, Bxoadmei B Ly, p > 1. OrBeroMm ciyxut n3BectHas Teopema P.Pucca, kacaromasi-
Csl YCJIOBUIT TPEJCTABUMOCTHY 33IaHHOM (DYHKIINU B BUJE WHTEIPAJIA C IEPEMEHHBIM BEPXHUM IIPEIEIOM OT
dyHuKIuu npocrpancTa Jlebera. B ogHoMepHOM M MHONOMEDHOM CJIyYasiX MHOTME MaTeMAaTHKUA OOOOIIUIIN
3Ty Teopemy juist mpoctpancTB Jlebera u Opinya. B Hacrosmeit pabore aBTopamMu IpeIIIpUHATa HOIBITKA
nokasatb Teopemy P.Pucca mang apyrux QyHKIIMOHAIBHBIX TpocTpaHcTB. [losydeno ob6obmienne TeopeMbr
®.Pucca Ha ciayd4ail, Korja HoJbIHTerpajibHas (OYyHKIMS U3 BECOBOTO IpocTpaHcTBa Jlebera. Takke goka-
3aHO HEOOXOMMOe YCJIOBHE CKa3aHHOIO Bhllle npejcraBieHust or GyHkuun f € Lyo(Ly).

Karoueswie caosa: dyHKIms, GQyHKIMOHAJIBHBIE IPOCTPAHCTBA, nHTErpas, teopema ®.Pucca, BecoBoe mpo-
crpanctso Jlebera.
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A boundary jumps phenomenon in the integral boundary value
problem for singularly perturbed differential equations

The article is devoted to the study of the asymptotic behavior of solving an integral boundary value problem
for a third-order linear differential equation with a small parameter for two higher derivatives, provided
that the roots of the "additional characteristic equation" have opposite signs. In the work are constructed
the fundamental system of solutions, boundary functions for singularly perturbed homogeneous differential
equation and are provided their asymptotic representations. An analytical formula of solution for a given
singularly perturbed integral boundary value problem is obtained. Theorem about asymptotic estimates of
solution is proved. For a singularly perturbed integral boundary value problem, the growth of the solution
and its derivatives at the boundary points of this segment is obtained when the small parameter tends to
zero. It is established that the solution of a singularly perturbed integral boundary value problem has initial
jumps at both ends of this segment. In this case, we say that there is a phenomenon of boundary jumps,
which is a feature of the considered singularly perturbed integral boundary value problem. Moreover, the
orders of initial jumps were different. Namely, at the point ¢ = 0 , there is a phenomenon of the initial
jump of the first order, and at the point ¢ = 1, the order of the initial jump was equal to zero. The results
obtained allow us to construct uniform asymptotic expansions of solutions of nonlinear singularly perturbed
integral boundary value problems.

Keywords: singularly perturbed differential equation, asymptotic estimates, boundary functions, small
parameter.

Introduction

Equations containing a small parameter in the highest derivatives are called singularly perturbed
equations. Such equations are mathematical models of many applied problems. A significant contribut-
ion to the development of the theory of singularly perturbed equations was made by L. Schlesinger [1],
G.D. Birkhoff [2], P. Noaillon [3], W. Wasow [4], A.N. Tikhonov [5, 6], M.I. Vishik, L.A. Lyusternik
[7, 8], N.N. Bogolyubov, U.A. Mitropolsky [9], A.B. Vasilieva and V.F. Butuzov [10], Trenogin, V.A.
[11], R.E. O’'Malley [12], W. Eckhaus [13], K.W. Chang and F.A. Howes [14], J. Kevorkian and J.D. Cole
[15], P.V. Kokotovic [16], S.A. Lomov [17], M.I. Imanaliev [18]|, K.A. Kassymov [19-21] and others.

Initial problems with singular initial conditions for a second-order nonlinear ordinary differential
equation with a small parameter were first studied by M.I. Vishik and L.A. Lyusternik [8] and
K.A. Kassymov [20]. They showed that the solution of the original problem with initial values leads to
the solution of a degenerate equation with altered initial conditions when a small parameter approaches
zero. Such problems became known as Cauchy problems with initial jumps. The most general cases
of the Cauchy problem for singularly perturbed nonlinear systems of ordinary differential and integro-
differential equations, as well as for differential equations in partial derivatives of a hyperbolic type,
was studied by K.A. Kassymov. Then, singularly perturbed initial and boundary value problems with
initial jumps have been studied in [22-30|. In this paper, we consider general integral boundary value
problems for linear ordinary differential equations of the third order with a small parameter with two
highest derivatives, when the roots of an additional characteristic equation have opposite signs. It is
shown that there is a phenomenon of boundary jumps. Boundary value problems without integral
boundary conditions for singularly perturbed differential and integro-differential equations have been
considered in [31-33|.
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Statement of the problem and preliminaries

Consider the singularly perturbed differential equation

Ley = 2y + e Ao(t)y" + Ai(1)y + Aa(t)y = F(t),
with integral boundary conditions

Ly
hiy(t,e) = y(0,¢e) — /Z:aZ fz:edx—ao,
0

=0

th(t, 5) = y/(oa 5) -

o\H
MH

bi(x)y(i) (z,e)dx = ay,

~
|
o
—
[\
~—

hBy(t75) = y(175) -

o _
MH

Il
=)

ci()y W (e, e)de = B,

[

where € > 0 is a small parameter, ag, «1, [ are known constants independent of ¢
We will need the following assumptions

C1) A;(t) € C?[0,1], i = 0,2, F(t) € 0[0, 1].

C2) The roots u;(t), i = 1,2 of "additional characteristic equation"u?(t) + Ao(t)u(t) + AL (t) = 0
satisfy the following inequalities () < —v1 <0, pa(t) > v2 >0
C3)
L L
A= yo(ar y3o(1 /ZCZ x)dx | +y20(1) (1 —ci(1 /Zaz ygo # 0.
o =0 o =0

We consider homogeneous singularly perturbed equation associated with (1)

Loy =%y + eAo(t)y” + Ar(t)y + As(t)y = 0. (3)

The system of fundamental solutions of the homogeneous singular perturbed differential equation
(3) is as follows

t

W62 = oo | 1 [ mla)de | (udOmo(t) +0E). g

(@) _ 1 1
Yy (t,e) = o exp

yéq)(t,é) = yé%)( t)+ 0(e), ¢q=0,2,

here p1(t), pe(t) are roots of the additional characteristic equation p2(t) + Ag(t)u(t) + A1 (t) = 0, the
functions y;o(t), i = 1,3 are defined by these problems

Yio(t) + QNG Jrizo(%)“;(t) + As(t) yio(t) =0, 1:0(0) =1, i=1,2,
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A1(t)yso(t) + A2(t)yso(t) = 0, y30(0) = 1.
The asymptotic formula of Wronskian consisting of a system of fundamental solutions is expressed
as follows

m\r—t

t 1
1 1
Wit.e) = oo | 2 [mds = [ | (5)
0 t
(i (B) p2(t) (p2(t) — p1(8))y10(t)yao()yso(t) + O(e)) # 0.
Let’s enter the following functions
Po(t S 8) Pl(t,s,e) (6)
W(s,e) W(s,e)’
where Py(t,s,e) , Pi(t,s,e) are the third order determinant obtained from the Wronskian W (s,e¢)
by replacing the third row with y(t,¢),0,ys(t,e) and 0, y2(¢,€), 0 respectively. Sum of Ky(t, s,e) and
K;(t,s,e) is the Cauchy function. Therefore, these functions have the following properties
1. With respect to the variable ¢ satisfy equation (3), i.e.
L.Ky(t,s,e) =0, L:Ki(t,s,e) =0, te€]0,1], t#s.

2. When t = s satisfy the conditions

Ky(t,s,e) = , Ki(t,s,e) =

Ko(s,s,e) + Ki(s,8,6) =0, K{(s,s,e) + Ki{(s,8,6) =0, K{(s,s,€)+ K (s,s,¢) = 1.

By applying formulas (5), (6), for functions Ky (¢, s, ), K1(t, s,¢) are valid the following asymptotic
representations as € — 0

(i) i ’
D4 ¢ o) = g2 3/30( ) _ 11 (H)y10(t) ox 1 2 c
HKo'tt5¢) A(s)yso(s) e () (rez(s) — pa(s)wno(s) - ES/M( Jhe | OE)
t>s, i=0,2. (7)
Dt 50) 2 &2 ph(t)yao 1) N AR ‘i
K000 =2 | it ST 0 | 7z [ 12| +06) ) <0 =02

t

Let functions ®;(¢, ) re solutions of the following problem

=1,3a
( )—0, i=1,3, hkq)i(t,é“) Z(Ski, ]{?21,3, (8)
where §; is Kronecker symbol.
Functions ®;(t,¢),i = 1,3 are called boundary functions and can be represented in the form
Ai (tv 5)
Afe)

(pi(t, 8) =

where

hayi(t,e) hiye(t,e) hiys(t.e)

A(e) = | hayi(t,e) haya(t,e) hoys(t,e) |,

h3y1 (tv 6) h3y2 (tv 2’5) h3y3 (t7 5)
A;(t,e) is the determinant obtained from A(t, e) by replacing the i-th row by the fundamental system
of solutions y1 (¢, €),y2(t, €),y3(t,€) of the equation L.y = 0. By taking account formulas (2), (4), we
get asymptotic representation for determinant A(e):

AE) = 2 (m(0)B +0()), (10)

where A has the form as in condition (C3).
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For boundary functions q)gj)(t, £),j=0,2,7=1,3 from (9) in view (4), (10) we obtain asymptotic
representation as € — 0:

——ex
el P

_l’_

+7eXp ( i/lua(w)dHC)) ,

A
0.0 = Lo (1 /tm(x) dx) wOyolt) | exp( ) (O (t) Mo
0

, 11
) . 1 1 (t)y20(t) (y30 {Z;O ci(x ( )dﬂU)
—g/yg(x)dx

t

L) (1 —Zl(l))yé%)(t) o ( N ;exp (

11(0) 1 (0)A

M. (4) 1 1 t .
g:féJO)OA()JrO (52+€j26xp (8/M1( )dx ) +eXp( gt/m(m)df’f))’ j=02, (11)

0

t .
‘ 1 1 e AM
(I)i(’)])<t7€) = FeXp (E /Ml(l')d.%') MO()M_’_
0

p1(0)A
1 1 i
+§ exp (é_/m(f”)dx
t

(4) /
+a1(1)y 21)3130( ) +0 (5_1_ 6jL_Qexp (i/#l(:ﬁ)dm

0

. 11 .
) (0 (1= X alohnte) Vs
0

N—— —
_l_
@D
"
ol
|
M | =
ﬁ\H
=
>
o
U
8
N——
N——

where

=b1(D)y20(1)  y30(0) —

I~
&
&
N
wo—
3=
—~
8
~—
U
8

My =

-
£
—~
8
~—
<
8=
—~
~—
U
8

y20(1)(1 —c1(1))  yso(1) —

=) SN L
-
Il
o

[
+
e
—=
—
(=)
SN—
[
\
O—

o

5
NS
Il
o 1 MH
&
5
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o~
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9
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<
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From (11) we obtain the following asymptotic estimations

C

(4) o iy = =
| DY (t’g)’§0+€j_1e +€je J=0,2,
| C C
25t e)| < O+ e 4 e E, =02, 2

C t C 1—t
e 4 — E =
—c +5je , 7=0,2.

2 (t,9)] <
Main result. We seek the solution of the problem (1), (2) in the form

1

3
) = ;Cid)i(t € /KO (t,s,e)F(s)ds — ;/Kl(t,s,e)F(s)ds, (13)

where ®,(t,¢),i = 1,3 are boundary functions, Ky(t,s,¢), Ki(t,s,¢) are auxiliary functions expressed
by formula (6), C;,7 = 1,3 are unknown constants.

Now, we determine the unknown constants C;, i« = 1,3 in (13). For determining these constants
we substitute (13) into (2). Then, taking into account (8), we find that

C1 = oy — h1P(t, 6), CQ = ] — hQP(t,E), 03 = B — th(t,E) (14)
where

zm@_;/m@ww@@—;/mumw@@ (15)

The effect on the operator hy to function P(t,¢) is characterized by the following expression

1

L
1
h1P(t,¢) /Zaz VPO (2, ¢)dx = —Q/Kl(O,s,E)F(s)ds—
0

9
=0

1 T 1
1
—/ao(a:) €2/K0(:C,8,8 s)ds — = / (x,s,e)F(s)ds | de—
0 0

1 1
i 1
Zaz K( (x,s,e)dx ds——2/ (K1(0,s,¢e) +
£
0

1
+/ ai(x)KO()(x s, e)dx — /z:aZ (x,s,e)dx | F(s)ds.
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Then from (14) the constant C defined by the formula

1 1 1
1 (i ’ (i)
Cy = a0—|—€2/ 1(0,s,¢) /z;aZ z)Ky' (z, s 5)dﬂc—/ Zal VK7 (z,s,e)dx | F(s)ds. (16)
0 =

=

Using formula (7) to (16), we get for the constant C the following asymptotic estimation as ¢ — 0:

1 -
— a w yso dm F(s)
C = 0+0/ 1( +/1Z: i ys0(5 A (s )d s+ 0(e). (17)

In this way, the effect on the operators hy, hs to the function P(t,e), we define the constants
CQ, Cg:

1

1 ! ).T S
C=an+ ) ] (20 [ > hte) s ) S as 0@, as)
0

15(0) (12(0) — Sz use(s) ] Aus)
1 1
_a_ yso(1) o 930 33) F(s) s -
03 a B O/ y30 3 S/Z ' y30 S Al(s)d +O( ) (19)

Substituting (7) into (15), we have the asymptotic representation of the function PU)(t,¢), j = 0,2
as e — 0:

i o2 E)
G W) - e Yag (DEF(s)
P @@_a%mwfm@F@+J£%MWﬂ

 HOm@F©)  Hmee  doum@FQ) e
&7 3(0) (12(0) = 412(0)) B (Dya0 (1) (2(1) — pa (1)

Thus, the following theorem holds.
Theorem 1. Let the conditions (C1)-(C3) are valid. Then integral boundary value problem (1), (2)
on the interval [0, 1] has an unique solution and expressed by the formula

3
y(t,e) =Y Ci®i(t,e) + P(t,e), (21)
=1

where ®;(t,¢),7 = 1,3 are boundary functions, P(t,¢) is defined by the formula (15), C;,i = 1,3 have
the form (14) and are expressed by the asymptotic formulas (17), (18), (19).

Theorem 2. If conditions (C1)-(C3) are valid, then solution for integral boundary value problem
(1), (2) hold the following asymptotic estimates as ¢ — 0 :

. C i, :
99691 < € (Jaol + clonl + 181+ s 1P )+ S0 = (0] s (01 +

C ¢
Mg
#omr (lool + ol 18]+ guax [P0 e+

= .,j=02 (22)
0<t<1 F ol =04

¢ (|ao| T elan] + 18] + max |F(t >r> c

where C' > 0 is a constant independent of e.
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Proof. By applying formulas (17)-(19), (12), (20) in (21), we get asymptotic representations of the
solution of the problem (1), (2) ase — 0:

1 1 0)
Wit.e) = | a ai(s w(o¥30(@) ) Fls) ‘
¥ (t,e) = ( 0+/( 6+ [ S ale) B ) T +0<e>)

0

MOy My =] @i

() L () da L () da
+yzo<1>ygo<t><1c1<1>>+0(5+ ,172(;{“ ) +€,1 o Fdml ’d))+

A gl j—1
F(0) 1 [, i@ Fe)
b bi(x) 232 d ds+ O
|t g | (10 B ) st oo
_Hjl(t)ylo(t)Mmeiofﬂl(i’f)dz 125 (t)y20 (t) Moo —2 (@) Mzsygé)(?f)Jr
e~ i (0)A g7t py(0)A 1(0)A
é [ 1(z)dz —% [ 2(z)dz
+0 [+ e " + e {1 )>+ (23)
) ysol(s) " ys0(s) Ai(s)
J oo (4)
m (Byro(t) Ms: = g p@de t2(By20(?) (1 ] 2@ (:U)dx) S tfl paa)ds
ei=1. 1 (0)A SR

(i) L (o) da L1 (Ve L G)
L a1(Wy20(Mysp (t>+0< jl_ fmde 1z [l >d)> +/y30 ()F(s)

— e+ 3¢ gj—_l J Al(s)ygo(s) S+
i_9 i_o . 1 t
P 0 o i Oue®F©) e
(@) — @) T T 2 0)(a(0) - (0)) *
Oy F (1) s

, e
eIt 1 (1)y20(1) (u2(1) — pa (1))
From asymptotic representations (23), we obtain asymptotic estimations (22). Theorem 2 is proved.

The theorem 2 implies that the solution of the problem (1), (2) at point ¢ = 0 has the phenomenon
of the first order initial jump and at point ¢ = 1 has the phenomenon of the zero order initial jump, i.e.

y(0,¢) = 0(1), (0.2) = O(1), 4(0.6) = O (1)

9
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and
/ ]‘ i ]'
y(1,6) =0(1), y'(1,6) = O Z) (1,e) =0 =)
In this case, we say that the solution of the boundary value problem (1), (2) has the phenomenon of
the boundary jumps.

Conclusion

In this paper, we consider a three-point boundary value problem for a third-order linear differential
equation with a small parameter at two highest derivatives when the roots of the "additional characte-
ristic equation" have negative signs. Theorem about asymptotic estimates of solution is proved. It is
established that the solution of this integral boundary value problem has the phenomenon of boundary
jumps. This means that the points of the initial jump are not only the left, but also the right point of
the segment. The results allow us to construct uniform asymptotic expansions of solutions of boundary
value problems with boundary jumps with any degree of accuracy with respect to a small parameter.
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H.Y. Bykanait, A.E. Mupszakymosa, M.K. /laysuioaes, K.T. KonbicOaeBa

CuHryaspJbl aybITKbIFaH AuddepeHIma bl TeHaeyjepre apHaJraH
MHTErpaJIJIblK IIIETTIK ecenTeri IeKapaJbIK, ceKipicTep KYObLIbIChI

Maxkasia KochIMIIIa, CHTIATTAYIIBI TEHIEYIIH TYyOip/iepl KapaMa-Kapchbl OOJIFaH KAFIAMIaFbl €Ki KOFapFbI
TYBIHIBLIAPBIHBIH, AJIIbIH/IA Killli TapamMerpi 6ap YINHII peTTi ChI3BIKTDI JuddepeHIInalIbK, TeHIEY YIITiH
IIeKapaJibl CEKipiCTi 2KAJIIBI HHTErPaJIIbI IETTIK ecebin 3epTTeyre apHajran. 2KyMbICTa KOCBIMIIIA CUIIATTAY-
Bl TeHIEYiH TYOipJ/iepi KapaMa-Kapchl OOJIFaH KaFIaliTaFbl CHHTYJISPJIBI ayBITKBIFAH OipTeKTi muddepen-
IUAJIBIK TEeHJIEY/IiH ipreJi mmemriMaep »Kyiteci Kypbuirad. [presi memrimep »Kyieci apKbLIbl CHHTYJISIPJIbI
aybITKbIFaH 6ipTekTi nuddepennumannblk reugeyaiy K(t, s,€),i = 0,1 kemexun GyHKIUATAPHL XKOHE IIIe-
KapaJiblk (pyHKIustapsl 6epinren. 2KoHe oap/blH aCHMITOTHKAJIBIK, CUMATTAPHI MEH Oarasayiapbl KeJi-
Tipisired. Bepiiiren cHIYJISAp/IbI aybITKBIFAH »KaJIIIbl HHTEIPAJIJIbI IIETTIK ecell MEeNiMiHIH aHaTuTUKAJIBIK
dopwmynace! agbraFaH. [lenmiMHIH aCHMITOTHKAJBIK, 6aFajiaybl Ty paJbl TeopeMa JJesaeHre. CUHTYIIsIpIIbI
ayBITKBIFAH YKAJIIIBl HHTETPAJIIbI MIETTIK eCcell MentiMi KeCiHIIHIH eKi YKak IeTiHe e 6acTamKbl CeKipicke
e 6OJATHIHLI AHLIKTAJFAH. 3€PTTEY HOTUXKECIHIE ecell MIEMIIMIHIH, COJI »KaK »KoHEe OH KAk, HYKTeJepiHie
opTypJii perTi 6HacTanKpl CeKipic KyObLIbICTaAPBIH YKOHE aJIbIHFAH HOTHKeJIeP/IiH KOPBITBIH/IBICHIH 1A OepiireH
eTTiK ecenTiH mernmiMinig, ¢ = 0 HykTecinme Gipiumii perri, ain ¢t = 1 HyKTecinme HOMHII peTTi GacTamKb
cekipicrepi 6ap eKeHIIr aHBIKTAIAbI. AJIBIHFAH HOTUXKEJIEP CHISBIKTHI €MEC CHUHIYJISPJIbI aybITKBIFAH UHTE-
rpaJijibl METTIK ecenTep HientiMiepiniy 6ipKeIKi acCUMITOTHKAJIBIK YKIKTeIYiH KypyFa MYMKIHIIK Gepe/.

Kiam ceadep: CHHTYIISIPJIBL 8y BITKBIFAH b dDepEeHITUAIBIK TEHIEY, aCHMITOTHKAJBIK Harasiay, MeKapaIbIkK,
byHKIHAIAP, Kinm mapaMerp.
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H.V. Bykanait, A.E. Mupszakysmosa, M.K. /Taysuioaes, K.T. KonbicOaeBa

flBIeHMe rpaHUYHBIX CKAYKOB B MHTErpaJIbHOI KpaeBoil 3ajiave JiJisd

10

56

CUHTYJISPHO BO3MYMIEHHBIX JuddepeHnnaibHbIX ypPaBHEHU

CraTbsl TOCBSIIIEHA UCCIEJOBAHUIO ACUMIITOTHIECKOTO TTOBEJEHUs PEIIeHUs] WHTErPaJIbHON KpaeBoil 3a/1a-
qu TS JTUHEHHOro nuddepeHnnajibHOr0 yPaBHEHNsT TPETHEro MOPSIKA C MAJIbIM [apaMeTPOM IIPU JBYX
CTapIINX TPOU3BOJAHBIX IIPU yCJIOBUHU, KOT/JIa KOPHHU «JIOTIOJTHUTEIBHOI'O XapaKTePUCTUICCKOI0 ypaBHEHUA»
WMeIOT MPOTUBOIIOJIOXKHBIE 3HAKN. B pabore mocTpoeHa dyHIaMEHTAIbHAST CHCTEMA PEITeHU CHHTYJISIP-
HO BO3MYIIEHHOTO OJHOPOIHOTO MM depeHIHaJIbHOr0 YPABHEHUS C YI€TOM ITPOTHUBOIIOJIOKHOCTA 3HAKOB
KODHEH «JIONOJIHUTEILHOI'O XapaKTEPUCTUIECKOI0 yPABHEHUsI». 3aTeM C ITOMOIIBI0 (PyHIAMEHTAJILHON CH-
CTEMBI PEIeHNl CTPOSTCST BCIIOMOTATE/TbHbIE (DYHKIMN U T'PAHUIHBbIE (DYHKIINNA CAHTYJISPHO BO3MYIIIEHHO-
ro omHOpoaHOro JauddepeHnnaabHOro ypasHenus. [losydensl acuMOTOTUYeCKIE TPEICTABIEHNST U OIEHKHU
BCIIOMOT'aTeJIbHBIX U IpaHUYHBIX GyHKnuil. [lomydyena ananmuTudeckas opMmysia pelleHus pacCMaTpUBae-
MOU CHHTYJISIPHO BO3MYIIIEHHON WHTErpasibHON KpaeBoit 3agaun. Jlokazana Teopema 00 aCHMITOTHYECKUX
OIeHKax perenusi. J[71s CHHTYJISIPHO BO3MYIIIEHHOM MHTErPAIbHON KPAeBOi 33184 MOTyYeH POCT PEITeHNUsT
U €ero IIPOU3BOJHBIX B I'PAHUYHBIX TOYKaX JIAHHOI'O OTPE3Ka IIPU CTPEMJIEHHU MAaJIoro IlapaMeTpa K HYJIIO.
YcTaHOBJIEHO, YTO pEIIeHNEe CHHTYJISAPHO BO3MYIIEHHON WHTETPAJILHON KPAeBO 3aJlauil UMeeT HAYaJIbHbIE
CKa4dKM Ha 000MX KOHIIAX JAHHOTO OTpe3Ka. B 9ToM ciiydyae MBI TOBOPHMM, UTO MMEET MECTO sIBJIEHHE I'Da-
HUYHBIX CKAYKOB, YTO SIBJISIETCSI OCOOEHHOCTHIO PACCMATPUBAEMOl CUHTYJISIPHO BO3MYIIIEHHON WHTErpaaIbHOMN
KpaeBoit 3ajaun. [IpuyeM MOpsiIku HAYAIBLHBIX CKAYKOB OKA3AJIMCh PA3HBIMU. A UMEeHHO: B TOuke ¢t = 0
“MeeT MECTO SBJIEHNME HAaYaJIbHOI'O CKaJdKa IIEPBOIO IOpsJiKa, & B TOUKe ¢ = 1 Iops/I0K HaYaJIbHOIO CKadKa
oKa3aJicsi paBHbIM HYyJTiO0. [losryvueHHbIe pe3yIbTaThl TO3BOJISIIOT IIOCTPOUTH PABHOMEPHBIE ACUMIITOTHYECKUE
Pa3JIOKEHUA PEIICHUNA HeJINHEHHBIX CUHTYIAPHO BO3MYIIEHHBIX HHTEIDAJIbHBIX KPAaeBbIX 3a/1a4.

Karoweswie croea: CHHIYISIPHO BO3MYyIEeHHOe auddepeHnaabHoe ypaBHEHHE, aCUMIITOTHYIECKIE OIEHKH,
rpaHuYHbIE (DYHKIINK, MAJIBII TapaMeTp.
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On the parallel surfaces of the non-developable surfaces

In the differential geometry of curves and surfaces, the curvatures of curves and surfaces are often calculated
and results are given. In particular, the results given by using the apparatus of the curve-surface pair are
important in terms of what kind of surface the surface indicates. In this study, some relationships between
curvatures of the parallel surface pair (X, X") via structure functions of non-developable ruled surface
X(u,v) = a(u) + vb(u) are established such that a(u) is striction curve of non-developable surface and
b(u) is a unit spherical curve in E*. Especially, it is examined whether the non-developable surface X" is
minimal surface, linear Weingarten surface and Weingarten surface. X and its parallel X" are expressed
on the Helicoid surface sample. It is indicated on the figure with the help of SWP. Moreover, curvatures of
curve-surface pairs (X, a) and (X", 3) are investigated and some conclusions are obtained.

Keywords: parallel surfaces, non-developable ruled surface, striction line, Gaussian curvature, mean curvature,
curvatures of curve-surface pair.

Introduction

The parallel surfaces have an important place in the theory of surfaces. A parallel surface can be
defined as the locus of points at a non-zero constant distance throughout normal of surface from a
regular surface [1].

A surface composed by a singly infinite system of straight lines is called a ruled surface. A developable
ruled surface is a special ruled surface with the property that it has the same tangent plane at all
points on one and the same straight line. We know that a ruled surface is a developable ruled surface
if and only if its Gaussian curvature K is zero [2; 89]. If K # 0, the ruled surface is non-developable
[3; 32]. In 3-dimensional Euclidean space, a regular curve is defined by its curvature x and torsion
7 and also a curve-surface pair is defined by its curvatures kg, K, and 74, where kg, K, and 7, are
geodesic curvature, asymptotic curvature and geodesic torsion, respectively. The relations between the
curvatures of a curve-surface pair and the curvatures of the curve can be seen in many papers [4-8§].

We denote a regular parameter surface with the parameters u and v in E3 by X(u,v) and a
non-developable ruled surface by

X (u,v) = a(u) + vb(u), (1)

where b?(u) = 1 and the parameter u is the arc length parameter of b(u) as a unit spherical curve in
E3. Here, if a/(u).b'(u) = 0, a(u) is striction line of ruled surface [9-10].

In this paper, firstly, we obtain the parallel surface X" (u,v) of the non-developable ruled surface
X (u,v). Then, we calculate Gaussian and mean curvature of the parallel surface X" (u,v). Later,
we determine relations between Gaussian and mean curvatures of parallel surface pair by means of
structure functions of non-developable surface. Furthermore, we show that X" (u,v) is a Weingarten
surface. Finally, we give some theorems and results by calculating geodesic curvature, asymptotic
curvature and geodesic torsion of curve-surface pairs (X, a) and(X", 3).
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Preliminaries

Let a : I — X be a unit speed curve lying on X such that X is a regular surface in Euclidean
3-space. We know that the Frenet frame {T', N, B} correspond at each point of the curve a(u) because
a(u) is a space curve, where u is arc length parameter. Other than this frame, we can talk about frame
called Darboux frame of a(u) in E3. The Darboux frame is denoted by {T',Y,n} under the conditions
that 7' is the unit tangent vector of a(u), n is the unit normal of X and Y =n x T

Definition 2.1. The Darboux derivative formulas can be defined using the following matrix:

T 0 Kg Knp T
Yi|=|-ky 0 74 Y|,
n —kn —Tg 0 n

where £ is defined as geodesic curvature, &, is defined as normal curvature and 7 is defined as geodesic
torsion. Furthermore, it is known that [11; 248|

Kg = <a”(u)’ Y> ’ (2)
ki = (a"(u),n), (3)
Tg:—<n',Y>, (4)

and also

a) a(u) is a geodesic curve < k4 = 0.

b) a(u) is a asymptotic curve < &k, = 0.

c) a(u) is a line of curvature < 7, = 0.

Definition 2.2. Let X be a surface in E® with unit normal n. Parallel surface X" of X is
given by X" = {P+rnp: P € X,r € R and r = constant}, where for r € R, f(P) = P+rnp defines
a new surface X”. For all P on X, nf(®) = nP [1] Theorem 2.3. Let (X, X") be a parallel surface pair.
Suppose that the Gauss curvatures of X and X" be denoted by K and K" and the mean curvature of
X and X" be denoted by H and H", respectively. Then, we can write [12; 212]

K
K" =
1—2rH +1r2K’ (5)
H—-rK
H" = . 6
1—2rH +r2K (6)

Definition 2.4. A ruled surface in E3 may therefore be represented in the form
X(a,b): I x E — E3,

(u,v) = X(a,b)(u,v) = a(u) + vb(u)

such that a : I — E3, b: I — E? are differentiable transformations. Here, a(u) is called base curve
and b(u) is called the director curve [13; 190]

As stated previously, Gauss curvature is zero, the ruled surface is developable ruled surface.
Otherwise, the surface is non-developable [14].

Definition 2.5. Suppose that the non-developable ruled surface X (u,v) is given by the equation (1)
in E3. Let a(u) be the striction line of the X (u,v) and b(u) be a unit spherical curve, where u is the
arc length parameter of b(u). Then, if we write as z(u) = b(u), z'(u) = a(u), and y(u) = a(u) X x(u),
the spherical Frenet formulas of the curve b(u) can be given by
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o (u) = —2(u) + kg(u)y(u),
Y (u) = —kg(u)a(u),

where kq(u) is called the spherical curvature function and {x(u),(u),y(u)} is called the spherical
Frenet frame of b(u) [9-10].

Definition 2.6. Suppose that X (u,v) is given by the equation (1) in E® and a(u) is the striction line
of X (u,v) under the condition a'(u) = A(u)x(u) + p(u)y(u). Then, the surface X (u,v) can be given
by the triple {kq(u), A(w), u(u)} in E3. Here, kg(u), A(u) and p(u) are defined as structure functions
of the surface X (u,v) in E3 [9-10].

Definition 2.7. Suppose that X (u,v) is given by the equation (1) in E® and a (u) is the striction
line of X (u,v) under the condition a’(u) = Mw)z(u) + p(u)y(u). Here, {a(u), z(u) = b(u),y(u)} is the
spherical Frenet frame of b(u). If A(u) # 0, X (u,v) is described as pitched ruled surface [9-10].

Let X (u,v) be given by equation (1). In this case, the coefficients of the first fundamental form of
X (u,v)

E = ) (u) + p?(u) + %,

F = X\u)
G=1.

The unit normal of the surface X (u,v) is

w? (u) + v?
—p(u
. p(u) ’
w2 (u) + v?
g=0.
As a result of these calculations,
2
—p(u)
K (u,v) = 5 (7)

and

H(u,v) = kg(u)v2 + ¢/ (u)v + kg(U)LLQ(u) + )\(u),u(u)’ ®

24/ (u2(u) + v2)°

where K and H are the Gauss and mean curvature of X (u,v), respectively [9-10].

Proposition 2.8. Suppose that the surface X (u,v) is given by (1) such that A(u), p(u) and k4(u)
are the structure functions of X (u,v). If A\, i and kg are constants, the surface X (u,v) is a Weingarten
surface [10]

The curvatures of the parallel surface pairs

Suppose that X (u,v) is given by (1) in E3. By definition of parallel surface, we obtain

X" (u,v) = X (u,v) + rn(u,v),
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—p () a(u) + vy (u)

X7 (u,0) = a(w) + vb (u) + W2 (w) + 0

Theorem 3.1. Suppose that X (u,v) is given by (1) in E% and X" (u,v) is parallel surface of the surface
X (u,v). Then, the relationships between Gauss and mean curvature of X (u,v) and X" (u,v) are given,
respectively, by

K= 2 L )
(12 + v2)" = ry/p? 4+ 02 (kgv? + v + kgp® + M) — r2p?

and
V2 4 v? (kgv? + W'v + kgu? + M) + 2rp?

kgv? 4 p'v .
2012 4 v2)? — 2r/p2 + 02 ( I a — 2722

+ k:gu2 + Ap

H" — (10)

Proof. Combining the equations (5)-(8), we can easily obtain the equations (9)-(10).

Corollary 3.2. If ky = A = 0 and p is a constant, k,0? + /v + kgu® + A = 0. This mean that,
H = 0. In this case, X is minimal but X" is not minimal surface. Because, H" # 0 under the conditions
that k; = A = 0 and p is a constant.

Corollary 3.3. X is not a linear Weingarten surface. Because, a # 0 and b # 0 are not constants
satisfying e H + bK = 1. Similarly, X" is also not linear Weingarten surface.

Example 3.4. Let us consider that X (u,v) = a(u) 4+ vb(u) = (vcosu,vsinu,u) is a helicoid surface.
Here, we choose a(u) = (0,0, u),b(u) = (cosu,sinu,0) = z(u). Hence, we obtain

b (u) = 2’ (u) = (—sinu, cosu, 0) = a(u),

o' (u) = (= cosu, —sinu, 0) = —z(u) + kgy(u), (11)

Y (u) =0 = kya(u). (12)

From the equations (11)-(12), we find k; = 0. Moreover,

a'(u) = (0,0,1) = Az + py = A(cosu,sinwu, 0) + (0,0, —1) (13)
and from the equation (13), we find A = 0 and u = —1. Hence, we obtain unit surface normal as
follows:

1 .
n = ————(—sinu, cosu, —v)

V1402

In this case, we can write

r
V1+ 02

where X" (u,v) is parallel surface of X (u,v). For r = 1, the images of X (u,v) and X" (u,v) are shown
in Figure 1.

X" (u,v) = (vcosu,vsinu, u) + (— sin u, cos u, —v),
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Figure 1. X (u;v) and X" (u;v).

Theorem 8.5. Suppose that any non-developable ruled surface is given by (1) in E3 such
that a'(u) = AMu)z(u) + p(u)y(w), Then, X7 (u,v) is a Weingarten surface if and only if A, 1 and k,
are constants.

Proof. 1t is known that if X (u,v) is a Weingarten surface,

K,H,=K,H,, (14)

where K and H are Gauss and mean curvature of X (u, v), respectively. In this case, from the equations
(9)—(10), we find the following partial derivatives with respect to u and v:

(2114 _ 2,&4) M/ Iu2 + U2
(VP + o) + (—20% — vp?) (i)
— —2vtky — v2kypu? ,
o hgut — v2uA H
+ (12 + %) (B> +0°) k) + Np)

2 Y
V2 + 02 (r\/,u2 + v2w — pt 4 (r2 — 202) p? — 1)4)

2 ( 3kgp?v + 3k,v3 — 4p?\/p? + v )
K'r'

—4n/ 2 4 0203 4 20 + M

K] = (15)

v =

2
V2 +v? (\//AQ + 02w — pt 4 (r2 — 20%) p? —v4)
_ 2 1 24 _ _rwp
<\/M2+1;2w> TVRA VS
+2rp +4 (1% + 0%) p’ = 2r2

H, =~ / 1
U 2 <\/%+ /M2+U2t+4rﬂﬂl> ’ ( 7)

+ #2 +’U2

(2 +02)? = /2 ¥ 02w — 1242

wv 2 2 2
N (2 + %)

gr_t /12 4 02 (2kgv + 1) =/ + vt — 2

v 2 4(M2+7)2)1)— r;qu )

+ (\/,u2 —I—U2w+2r,u2) V24
/i 2y + )

where w = Ay + v2kg + plky +op/ t = pN + M + 2pkgp + v?ky + p?ky’ + vy, From the equation
(14), K] H) — K H], = 0. Here, if we use the equations (15)-(18) and make the necessary calculations,
we obtain that all the structure functions of X (u,v) are constants.

(18)
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Hence, from the Proposition 2.8. , we can write the following result:
Corollary 3.6. X" (u,v) is a Weingarten surface if and only if X (u,v) is a Weingarten surface.

The curvatures of the parallel curve-surface pairs

The striction line a(u) on X (u,v) generates a Darboux frame by the vector fields {T,n,Y}, the
unit tangent, the principal normal and their cross product, respectively. Hence, for n = =44

Vidro?
T = Az + py,

Y =nxT = pe — dva — \uy.

Using the equations (2)-(4) geodesic curvature of curve-surface pair (a, X)
kg =(a"Y) = (Na+ (\— pky) a+ 'y, plr — Ay,

kg =p(Np =), (19)

asymptotic curvature of curve-surface pair (a, X)

kn = (a",n) = (No+ (A= pkg)a + p'y, —a)
Kp = ng - A, (20)

and geodesic torsion of curve-surface pair (a, X)
7= —(nY) = = (z — kgy, i’z — Muy) ,

Ty = —p(p + Akyg). (21)

From the equations (19)-(21) and Definition 2.1, the following theorems can be written:

Theorem 4.1. Suppose that X (u,v) is given by (1) in E3 such that a'(u) = Az + py. a(u) is geodesic
curve if and only if % is a constant, where \ and p are the structure functions of X (u,v).

Proof. If the equation (19) equals to zero, a(u) is a geodesic curve. In this case, we get

Kg :u()\'u—)\//) = 0.

Here, since pu # 0, Ny — A/ = 0. If we solve this differential equation, we obtain that % is a constant.
This finishes the proof.
Theorem 4.2. Suppose that X (u,v) is given by (1) in E? such that a/(u) = Az + uy. a(u) is
asymptotic curve if and only if k; = %, where A, p and kg are the structure functions of X (u,v).
Proof. From the Definition 2.1., if the equation (20) equals to zero, a(u) is asymptotic curve. In
this case, we obtain
kp = pkg — X = 0.

From here, we can easily get k, = %
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Theorem 4.3. Suppose that X (u,v) is given by (1) in E? such that a/(u) = Az + uy. a(u) is line of
curvature if and only if k;, = —&, where A, p and k4 are the structure functions of X (u,v).
Proof. From the Definition 2.1., if the equation (21) equals to zero, a(u) is line of curvature. In this
case, we can write
Ty = —p(p+ Akg) = 0.

Since p1 # 0 in this last equation, we get ky = —£.
Now, the above calculations will be found for the parallel surface. By considering definition of
parallel surface, image on parallel surface of the striction line a(u) can be given by

B(u) = a(u) + rn.
In this case, we write Darboux frame elements 7", Y", n” of the parallel curve-surface pair
(L4 7N —pkg)) T+ r(p+ Akg)Y

VU= ko) + (74 kg)
=1+ Aeg) T + (L 4+ 17N — pky)) Y
VOO 1kg)? + (G + kN

n" =n,

T =

)

)2
o | )

and also we obtain geodesic curvature, asymptotic curvature and geodesic torsion, respectively as
following;:

— 12 (p+ kg A) [(N = kg = pk'g) = (N = 1A (1 + kg A)]
— (L4 r(h = phg)P(Np = \it)
—r(L+ (A — k) (i + K gA + kg N)

VU pikg))? 472+ kg ))?

K = —(A = pkg) (14 7(X = pkg)) = r(1 + k)%,
ro__ _(M + kg)‘)
Ty = - =.
VU7 (A= pkg))? 4+ 72+ kg)

Then, we have the following theorems:

Theorem 4.4. Suppose that X (u,v) is given by (1) in E® such that a/(u) = Az + puy. a(u) is line of
curvature if and only if the image on parallel surface of a(u) is line of curvature (Tg =0& 71, = 0) .

Theorem 4.5. Suppose that X (u,v) is given by (1) in E? such that a'(u) = Az + py. If a(u) is an
asymptotic curve, then

T _

g

N — ) (1 +72(p+ /\kg)2) — (W + MK g+ kgN)

Rg = )
\/1+7’2(,u—|—)\kg)2
Ky = —r(u+)\kg)2,
o —(p+ Akg)
g 5 5
\/1+'r (1 + Akg)

Theorem 4.6. Suppose that X (u,v) is given by (1) in E? such thata’(u) = Az + py. If a(u) is line
of curvature, then,

kg = £\ p— M) (147X — pikg))
Ky = (=A 4 pkg) (1 + 1A — rkgp),
Ty =Tg-
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Theorem 4.6. immediately gives the following results:

Corollary 4.7. Let a non-developable ruled surface be given by (1) such that A, u and kg4 are the
structure functions and the curve a(u) be both the striction line and the line of curvature. Then, the
image on parallel surface of a(u) is asymptotic curve if and only if ky = %(Kn =0< k), =0).

Corollary 4.8. Let a non-developable ruled surface be given by (1) such that A, p and k, are the
structure functions and the curve a(u) be both the striction line and the line of curvature. Then, the
image on parallel surface of a(u) is a geodesic curve if and only if a(u) is a geodesic curve
(% = constant).

Theorem 4.9. Suppose that X (u,v) is given by (1) in E® such that o’(u) = Az + py. If K, = 1,
then,

tg = FrNp— M) (1 + Mkg),

2
’%; = _T(M + )‘kg) ’
1
Corollary 4.10. Let a non-developable ruled surface be given by (1) and A, p and kg4 be the structure
functions of this surface. For k, = %, the image on parallel surface of a(u) is geodesic curve if and

A

only if a(u) is geodesic curve (ﬁ = constant).
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KaiimasanbaiiTeIH OeTTepre mapaJjieab OeTTep KaiJibl

Kucwikrap men 6errepis, quddepeHunaiIblK TeOMETPUICHIHIA KUCHIKTAP MEH OETTEP/IiH, KUCAIObI KO Ka-
PACTBIPBLIFAH YKOHE HOTHXKEJED KeaTipiareH. Aramn afTKaHIa, KUCBIK 6€T »KYOBIHBIH AIlIapaThIH KOJIIAHY
apKBIJIbl AJBIHFAH HOTHKeJep GeTTiH KaHIail TYpiH HYCKAWTHLIHIBIFBIHA MaHLI3AEL. 3epTrTreyae X (u,v) =
= a(u) + vb(u) KEeHEHTINTeH CHIBBIKTHIK GETiHIH KypBUIBIMILIK, (byHKIUAIapsl apkplibl (X, X”) xymrap
GeTTepiHiH MapasuIesbiK KUCHIKTBIKTAPBIHBIH apachbIHIArbl Kanaail na 6ip e3apa Gadnansic a(u) xKaiima-
JaHGafTeIH GeTTiH yiikesy KUCHIFDI, aj b(u) E® B-reri GipJIiK chepasibIK KUCHIK, OOIATBIHIAN eTiln KONbI-
graH. depbec xarmaiima, X' kaliMmananbaiiTein GeTi MUHEMAJIILI OeT, BeHrapTeH CBISBLIKTBIK, O€Ti >KoHe
Beiturapren 6eri 6oJsia ana Ma, oChl Kargail 3eprresred. X »KoHe OHLIH X' mapaJjiesi reJukous, OeTiHix
obpasbiaga Kearipiaren. Cyperre 6y (SWP) GeTTik TOJKBIHIADABI KOJJAARTHIH [IIa3Ma KOMeriMeH Kejl-
ripinren. Conbiven Katap, (X, a) xone (X', 3) KUCHIK-6eT »KYOBIHLIH KHUCBHIKTBIKTAPHI 3€PTTEJITCH 2KOHE
HOTHKEJIEP AJIbIHFaH.

Kiam ceadep: napasiens Gerrep, kaiiMalaHOANTHIH CHI3BIKTHIK, O€T, YIIKeJly ChI3bIFbI, [aycc KUCBIFBI, Op-
Tama KACBIKTHIK, KUCBIK-06T »KYOBIHBIH, KIUCHIKTHIFEI.

A. Cakwmak, FO. ditm

O IIapaJijieJIbHBIX ITOBEPXHOCTAX
Hepa3BePThIBAIOIIIMNXCA HOBerHOCTeﬁ

B muddepeHnmanbHoli reOMeTpUN KPUBBIX U TOBEPXHOCTEH MCKPUBJIEHUS KPUBBIX U TOBEPXHOCTEH dYa-
CTO PACCYUTBIBAIOTCS U JAIOTCA PE3YJLTATBL. B 9acTHOCTH, PE3y/IbTaThl, MOJYIEHHBIE C MCIOJIb30BAHUEM
anmapara mapbl KpUBasi — MMOBEPXHOCTD, BaXKHBI C TOUKHU 3PEHHS TOTO, HA KAKOTO POJIA TIOBEPXHOCTH YKA3bI-
BaeT MOBEPXHOCTh. B 3TOM MCCJIe/I0BAaHUN HEKOTOPHIE B3aMMOCBS3U MeXK/y KPUBU3HON MapaJlIeIbHOM 1mo-
Bepxuoctu mapbl (X, X") wepes cTpyKTypHBIE (DYHKIIMM HEPA3BEPTHIBAIOMIECHCS JTMHEHIATON TTOBEPXHOCTH
X (u,v) = a(u) +vb(u) ycranapausaiorcs Takum 06pa3oM, 9To a(u) sABJISETCS KPUBON TPEHUsT HEPA3BEPThHI-
Baomeiics moBepxHocTH, a b(u) — eammumuanoil ccepudaeckoit kpusoi B E°. B wacTHOCTH, HCCIELYeTCs, AB-
JIIETCS T HEPA3BEPTHIBAIOMIASACSA TOBEPXHOCTL X MUHUMAJBHON IIOBEPXHOCTHIO, JIMHEHHON MTIOBEPXHOCTHIO
Beituraprena n nosepxuocrrio Beiinraprena. X u ee mapaJsuiess X' BbIparkeHbl Ha 00pasIe IMOBEPXHOCTH
resimkonsia. Ha prucyHKe 9TO TOKA3aHO C TOMOIIBIO IJIA3MbI, TO/JIEPXKUBAEMON TTOBEPXHOCTHBIMU BOJHAMEA
(SWP). Kpome Toro, mccieioBanbl KpUBU3HBI Aap KpubBas — nosepxHocTsb (X, a) u (X", 8) u nomxyvenst
HEKOTOPBIE PE3YJIBTATHI.

Karuesvie crosa: IHapaJijieJIbHbI€ IIOBEPXHOCTHU, HEPa3BE€PTHIBAIOIIAACA JuHelvaTast IIOBEPXHOCTD, JIMHUA
TpeHud, KPUBU3HA Faycca, CcpeaHdad KpUBU3HA, KPUBU3HA IMapbl KpUBad — IIOBEPXHOCTD.
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On Solonnikov-Fasano Problem for the Burgers Equation

The paper is devoted to the questions of solvability in the Sobolev classes for boundary value problem
for the Burgers equation with boundary conditions of the Solonnikov-Fasano type in degenerating domain
with degenerate point at the origin. By applying the Galerkin methods and a priori estimates we prove the
Existence and Uniqueness Theorems for the solution of the considered boundary value problem, as well as
its regularity with increasing smoothness of given functions.

Keywords: Burgers equation, boundary value problem, Sobolev classes, degenerating domain, Galerkin
methods, a priori estimates.

Introduction

Studying of the Burgers equation has a long history, part of which is given in the works [1] and [2],
and also in the books [3| and [4].

In the works [1] and [2] were studied the solvability of the boundary value problems for the Burgers
equation in a non-rectangular domain. If in [1] it is required that it (a non-degenerate domain) be
transformed by regularly replacing (independent) variables into a rectangular domain; then in work [2]
this requirement is excluded (the domain of independent variables degenerates at the initial moment of
time). In Sobolev spaces, by using the Faedo-Galerkin methods and a priori estimates the existence and
uniqueness of a regular solution of the boundary value problems under consideration are established.

The paper [5] studies in the angular domain the boundary value problem for the heat equation with
the time derivative under boundary conditions. It is also noted there that the case of an nonhomogeneous
boundary value problem "... is useful for study of some problems with free boundaries". For example,
for single-phase problem "... Stefan under the following assumptions: the liquid phase with a positive
temperature u(x,t) occupies the segment 0 < x < s(t), at x = 0 a positive heat flow is given, and free
boundary x = s(t) starts at the solid boundary = = 0, i.e. the conditions(0) = 0 is satisfied". Note
that in the paper [5] the theorem on the unique solvability of the considered boundary value problem
in weight Holder spaces is established.

The range of application of boundary value problems for parabolic type equations in a domain
with a boundary that varies in time is quite wide. Problems of this kind arise: in the study of thermal
processes in electrical contacts [6], in the processes of ecology and medicine [7], in the solution of some
problems of hydromechanics [8|, thermomechanics during heat stroke [9], and so on.

Voluminous literature is devoted to the study of the solvability of linear and nonlinear parabolic
equations in cylindrical domains. However, regard to nonlinear boundary value problems in degenerate
non-cylindrical domains, they have been studied relatively little.

For angular domains in the Lebesgue classes, we studied boundary value problems of heat conduction
and established theorems on their solvability by reducing to the Volterra singular integral equations of
the second kind [10], [11].

In [12] we studied various cases of nonhomogeneous boundary. In these cases, it is shown that
takes place both unique solvability and non-unique solvability for the corresponding boundary value
problems.
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In this paper we study in the Sobolev classes issues of solvability of the boundary value problem
for the Burgers equation in angular (degenerate) domain with time derivatives in boundary conditions
(in some sense an analogue of the Solonnikov-Fasano problem [5] for the Burgers equation). In Sec. 1,
we give the statement of the boundary value problem, with respect to which in Sec. 2 we construct
a sequence of boundary value problems in non-degenerate domains. Here, using a transformation of
independent variables, we come to a family of problems in the corresponding rectangular domains.
A number of theorems on their unique solvability are formulated. Section 3 establishes a priori estimates
for solving the above boundary value problems. In the same section, we formulate the main result of
the work in the form of a theorem for the initial nonlinear boundary value problems in a degenerate
triangular domain. The proofs of these theorems are given in sections 4 and 5. The work finishes with
a brief conclusion.

1 Statement of the boundary value problem
Let Quy, = {z,t1]| 0 <z <t1, 0 <t1 <T) < oo} be a triangle domain, one of the vertices of which

is at the origin, and €, be a cross section of the domain @, for fixed temporary variable t; € (0,7}).
In domain @;¢, we consider the following boundary value problem for the Burgers equation:

Ot u + udpu — v02u = f, v >0, (1)
[0, u — Opu(z,t1)] |z=0 = 0, [On,u+ 20zu(z,t1)] |z=t, =0, (2)

where
f € La(Qaty) N C(Quyy ) (3)

In this paper we study the question of the existence and uniqueness of a solution to a boundary
value problem (1)—(2) in the Sobolev space (throughout the paper the notation of spaces corresponds
to those adopted in the book [13]):

we H* (Quty)/ Xty = {L2(0,T1; H2(0,81)) N HY(0,T1; La(0, 1)) } / Xooty, (4)

where (for space V') V/X,,, is a is the quotient space over the subspace X,;, consisting of all possible
constants k = const, defined on the set Q-

2 On a family of auxiliary boundary value problems
in quadrangular domains (in the form of trapezoids)

To the problem (1)—(4) we will put a family of boundary value problems, each of which is considered
in the domain representing the corresponding trapezoid.

So,let ne N*={necN:n>n;,1/n <T1}, Qf, ={z,t1: 0< 2z <t, 1/n <ty <Ti < oo}
be a trapezoid, and Q; be a cross section of a trapezoid for a given ¢t; € (1/n,T}). Note that at the
point ¢ = 1/n domain Q7 no longer degenerates to a point, in addition, between the original domain
Qqt, and the domains Q7 take place strict inclusions Q};} C Qutlc .. c Qz¢, and, obviously that

xty xty
lim Qn = (Q .
n xt1 xt1

In the non-degenerating domain Q7,, (for each finite n € N*) we consider a boundary value problem:

Dty Un + UnOptiy, — VO2Up = fin, (5)
[8t1u - 81“’(:["? tl)] |93:0 =0, [8t1un + 2a$un($v tl)] |fE:t1 =0, un($7 t1)|t1:1/n =0, (6)
fn € La(Qyy,) N C(@xtl)' (7)
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We want to transform the boundary value problem (5)-(7) so that it would be placed in a
rectangular domain. To do this we will transform the independent variables: let’s move from variables
{z,t1} to variables {y,t}. We have that

X
h=_—pv=int=n—i; (8)

v =1y, t: 0<y <1, 0<t<T}is arectangular domain, and €2 is a cross section of the rectangle
yi for any fixed ¢ € [0, 77,

1
tlzl/n@t:O, t1:T1<:>t:T:n—?.
1

() 2 () R0 = 5 (). )

n—t n— n—t n—t

Since

then for derivative with respect to ¢; from function u,(z,t1) (9) we have that
Onyun(z,t1) = (n — )04 (y, t) — (n — t)y Oyiin(y, ).
Now we find derivatives from function uy,(z,¢1) (9) with respect to variable z :
Optin, = (n — t) Oy, 8§un =(n— t)23§ﬂn.
We write down the boundary value problem (5)-(7) in domain Qy,:
Orin, + (n — ) iinOyiin — VO3t — y(n — t) ' dyitn = (n — ) fa, (10)
[0y, — (n — ) 1Oy tin(y,t)] |y:0 =0, [Oiin + (n—t)"9yiy] ]yzl =0, 0<t<T, (11)

n(y,0)=0, ye Q={y: 0<y<1}. (12)

Remark 1. The relations (8)—(9) are one-to-one, i.e. reversible. In the future, we will use this
property.
Instead of (10)—(12) in domain @y, we will consider more general boundary value problem:

O, + o (1) Oyl — VO3 itn, — V(Y5 £)Oylin = Bu(t) fu, (v >0), (13)
By, — €0 (1) Dy in (y,1)] |y=0 = 0, [Osiin + 0 (t)Dyiin] |y=1 =0, 0 <t < T, (14)
Un(y,0) =0, yeQ={y: 0 <y <1} (15)

where given continuous functions ay,(t), 5, (t), Yn(y,t), 0,(t) for each fixed number n € N* satisfy the
conditions

a1 < an(t) < aop, Bln < /Bn(t) < 627“ 6171 < ’fsn(t)’ < 52717 Vit e [O7T]7

(16)
e1n < len(t)| < ony (Y, )] < Yin, |8y'7n(yat)| < Yin, V{y,t} € QZtv

with given positive constants ai,, ®2n, Bin, B2ns Oins O2n, €ins €205 Vin-
Remark 2. For the coefficients of the boundary value problem (10)—(12) conditions (16) take place
and accordingly take the form:
1

1 1 1
0<E:a1n§an(t):m§a2n:TM 0<?251n§ﬂn(t):m§/@2n:TEv
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2 2 1 1
0<*:51n§5n(t): géQnZTh 0<*:51n§5n(t): §52n:Tla
n n—t n n—t

Y 1
[ (y, 1) = [ <vn=T1, [Oym(y,t)] = [ < Yin =T1.

The following theorem holds.
Theorem 1. Let n € N* be a fixed number. Thus, if

fa € L2(Qy) N C(Qy)
and
Oén(t), Bn(t)a 5n(t)7 'Yn(y>t)
satisfy the conditions (16), then boundary value problem (13)—(15) has a unique solution
in € H*1(Qy,) = Lo(0,T; H*(0,1)) N H'(0,T; L(0,1)), iin(1,t), @n(0,t) € H(0,T),
which satisfies the estimate:

liinll 21 + In (1 Dl 07y + 1300, DLz 0,77 < K (a0 Dlliaiyyo s Ba) s (17)

where K (0, v, Bn) = 0, Bn = {Oégn, ﬁgn,’yln, 52n752n}-

From Theorem (1) as a corollary, we obtain the following statement.

Theorem 2. Let n € N* be a fixed number. Thus, if f, € La(Qy:) N C(@;), then boundary value
problem (10)—(12) has a unique solution

in € H*Y(Q),) = Lo(0,T; H*(0,1)) N H'(0,T; L2(0,1)), in(1,t), @n(0,t) € H'(0,T),
which satisfies the estimate:
linllz= gy + (LDl oz + 13000, ) 07y < K (1l Ol oy B)» (18)

where K (0, v, B) = O, B = {T17T12,T1,T1,T1}.

On the basis of Lemmas 1, 3 and 4 established in Section 3 below, the proof of the theorem 1 can
be carried out by the Galerkin method (for example, like in [13]).

We give the correspondence of function spaces in terms of independent variables {y,t} € Qyt

and {z,t1} € Qp, :

fo € La(Qp) NC(Qyy) & fn € La(Q,) N C(Quy,); (19)
n(y,t) € H*NQy) < un(z,t1) € H*'(Qp,) = La(1/n, T1; H*(0,11)) N H' (1/n, Ty; Lo (0, t1)). (20)

Further, taking into account the correspondence of spaces (19)-(20), in accordance with Theorem
2, as well as transformation formulas (8)—(9), we can formulate the following statement:

Theorem 3. Let n € N* be a fixed number. Thus, if f,, € Lo ﬁtl)ﬂC’(@zl) (19), then boundary value
problem (5)—(7) has a unique solution u,, € H*(Q"%.) (20),

xty
Un(t1,t1), un(0,t1) € H (1/n,T}),
which satisfies the estimate:
lunllzea@z,,) + len (s )l mzs) + a0 ) L am iy < Ko (ILn(@s ) om0 B) 5 (1)
where Ko (0,v,B) =0, B ={T1,T, Ty, T1, T} }.

Theorem 3 is proved in Section 4.
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3 A priori estimates for solving the problem (13)-(15). Statement of the main result

Here we establish a number of lemmas on the basis of which by using the Galerkin method we can
prove the theorems (1)—(2) formulated in the previous section.

Lemma 1. There exists a positive constant K7 independent of @, (y,t), such that for all ¢t € (0,7
the following inequality holds:

ln(y, Ol 501y + 1@ (L7, 01) + N80 (0, )17, 0.1+

+/ Hayan(ya T)H%Q(O,l)d,]— < Kl <”fn(yut)HL2(Q’;t)7V7 Bn) )

where K3 (07 v, Bn) = O; B, = {042n752n7'71n>52n752n}~
Proof. Multiplying equation (13) scalarly in L2(0,¢1) by @, (x,t1) and taking into account (14), we
have that

1d
thHun(y, )”L2 0.1y 1 V[|0ytn(y, )HL2 0,1) =

= —an(t) (@ (y: 0 in (Y. 1) 0y, 1) ) + (305, )y (9, 8) (. 1) ) +
y=1

+6n (1) (fn(y,t),ﬁn(y,t)> + l/ﬂn(y,t)ay&n(y,t)‘ =

y=0
= —an(t) ({in(y: )y n (4,0), (1)) + (0 (9,0 (. 1), (3, 1)) +

v d v

+8(0) (Fut).0(0.0)) = 275 45 (L0 = - o100,

or
1 d 1% d - 2 14 d - 2 - 2
5 il Do+ 5 g (L0 + i (0,00 + ]0,in (v, D)0, <
< an | (i DOy, 1), 0 (9,6))| + 10 | (Oyfin( 1), @ 9,6))| + B2 | (a0, Tl 1)) | (22)
Since ) — 1
(i )0y (9,0, (. 1)) = 5 [ 0 | < 5 [[(L0F + [ (0.1) ) (23)

then using inequalities (23) and

.1 ~ E o L%n ~ 2
Yin | (Oytn(y, 1), tn(y,t) 2” Ui (Y, )”L2(0 1t o Hun(?/’t)”LQ(o,l)’

. ~ 1 - B2
Ban (fn(y,t),un(y,t)>’ < §an(yyt)H%2(o,1) + %Hun(yat)”a(o,n?
and integrating the relation (22) from 0 to ¢, taking into account (15) we get that

t

+ / 10y in s D)2, 01y < As + Ay / [50(r) + (E(r) 2] . (24)
0

0

where
T (t) = in (y, )7y 01y + |80 (1, 8)* + |8 (0, )],

2 2 2
A1=min{1;y;y;V}, A1A2:max{ San fhn /82n}7
2n &2n 3
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A1 A = an(?/ﬁ)H%z(Qyty
From (24) we will have the following inequalities:

<A3+A2/ b ))3/2} dr, te (0,7, (25)
0

t

J 10,0 oy < s+ s [ [5a(r) + ()2 ar, € (0,7,
0
For inequality (25) we will apply the following Lemma 2 from the work of Bihari I. [14] which we
cite in its original formulation.
Lemma 2. Let Y (t), F(t) be a positive continuous functions a < t < b and &k > 0, M > 0
(constants), further w(v) be a non-negative non-decreasing continuous function for v > 0. Then from
the inequality

where b/ < b,

G(v)—/j(sj) (vo >0, v>0)

and v = G~() is an inverse function for G(v): v — ¢ (G~(¢): ¢ — v exists due to monotonicity
G(v)).

It is obvious that variable ¢ may belong to a sub-interval (a,b’) from (a,b), so that the argument
v=G(k)+M f F(7)dr would belong to the function domain G~!(v)). Therefore, it may turn out that
condition (26) Will be satisfied only for a < t <V with some definable &’ < b.

In our case we have

Y(t) =0p(t), k=A3, M =Ay, F) =1, wlw) =v+0*2 a=0, b="T. (27)

First of all note that by (27) w(v) : (0,00) — (0,00) is a strictly increasing function. We calculate
the integral

v

dw [ dw w=r
v =G0) /W(w) /w+w3/2 [( +2f)]wv0 >
V0 V0
Taking into account (28), for the value 1 we have
w—ln[v]—ln[Ag}+At—G(A)+At (29)
T a2V T (1t 2vAs)? 2T s R
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Further, to find the inverse function G~!: v — v it is necessary to solve the following algebraic
equation with respect to v:

v

(NG ¢, where ¢ =exp{¢} >0. (30)
We reduce the equality (30) to the following quadratic equation (v = 2?2)
(1—4¢)z* —4¢z— (¢ =0. (31)
For the roots z1 and 29 of equation (31) the inverse functions G~': ) — v will correspond:
1/16, if1—-4¢ =0, ¢
vlz{(lzgoz’ i1 4¢ £0, vgszorCZO, (32)

where ¢ = exp{¢} > 0.

The first inverse function from (32) is non-negative on [0, 00), but is not suitable for our purposes,
since it has a discontinuity of the second kind at 1 — 2,/¢ = 0. The second is devoid of this feature, it
is continuous and bounded everywhere on [0, c0). Hence,

exp{¢}

=G '(y) = : 33
R (e T (7 %)
Now from (33) and (29) we have that
_ _ - As
v=Gty)=GHG(A +At:G1(ln[]+At>,
() = 67 (G As) + Aat) T
ie. )
v = A" expidat} , where 0 < A= 27143 < 00
4 (14 Aexp{Ast/2}) 1+ 2v/As
Now, applying the inequality (26) from Lemma 2 for (25), we have the estimate
. A% exp{Ast}
<
On(t) < 4(1+ Aexp{Aat/2}) —
A% exp{Aat}
< = .
= Oléltag}g“ 4 (1 n AeXp{Azt/2}) Cl (||fl/(y7t)HL2(Qyt)7 v, Bn) , e (O’T] (34)

¢
It remains to get the estimate for the summand [ |0yt (y, 7')”%2(0 1)d7. On the basis of estimate
0 7

(34) we get
t
/Hay@n(yﬁ)H%Q(o,ndT < G2 (I1£o (¥, Oll2@ye)» v> Bn) » € (0,7, (35)
0

Note that constants C1 and Cy in estimates (34)—(35) satisfy conditions
Ci1(0,v,B,) =0, Cy(0,v,B,)=0.

Therefore, estimates (34)—(35) complete the proof of the Lemma 1.
Lemma 3. For the positive constant K5 independent of @y, (y,t), for all ¢ € (0,7] the following
inequality holds:

t t

r@mwﬁ%mm+/@@ﬂme+/@@mnWm+
0 0
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+ [ 10880 ) 0y < K (1500 Olliag 14 Bn) (36)
0

where Ko (0, v, Bn) =0, B, = {042n7 Bons Yins 02n, 52n}~
Proof. Multiplying equation (13) scalarly in L (0,t1) by —02%,(z,t1) and taking into account (14),

we have that
1d

2dtH8 tn(y, )HL2 o1 T V(|95 (y, )HL2 0,1) =
= an(t) (n(y, )y (9 £), 03y, ) = (90 (y: DOy in . 1), iy, 1) ) —
~ y=1
~Bult) (Ful,0), 020, 1)) + Outin . )0y, 1) =

y=0
= an(®) ({in (Y DOy in(y: 1), Oiin(y: 1)) = (109 8)Dyin (9, 8), Oin (v, ) ) -
_6n(t) (fn(% ) a Un(% )) - % |atﬂn(1at)|2 - i |8tan(07t)|2>
2n €2n

1d 1 N 1 -
2 1m0 Do + 5 10 (L OF + - |04 (0. 0 +

018y, 17,01y < 02n

(fm(y, 1)y (4, 1), 02in (v, t)) ‘ N

110 | (tn (9,0), 02 (9.0) | + B | (Fu 0 ). BRin(1) ) |. (37)

First we consider estimate of nonlinear summand from (37). First, we have

[ (0 (9, )0y (9,£), 82000 (9,0)) | < i (0, D)0, 19y (0, ) 10 0.1 10y Dl a0y (38)
Next, given the interpolation inequality from ([15], Theorems 5.8-5.9, p.140-141)
1/2 -
g [|Bytin (Y, )| Ly (0,1) < CllOytin(y, )||H1(01 |8y (y. )17 0.1 Y Oyin(y,t) € H'(0,1),

from (38) we get

Qon

({10 (v, )00 (3, £), 900 (4.)) | <
< CHun(ya )HL4 0 1)”a un(y7 )H 10 1)”8 un( )||2/220 1)

*||a un(y, )HLQ(O T [ + Calltn(y, )HL4 01)} |0y tin (y, )||L2 0,1)" (39)

Here we used Young’s inequality (p~! +¢~ ! =1):

(al/pA> (al/qB)‘ < 24P+ - ¢ By,
a I qa

|AB| =

where
- 3/2 v 4
A= 0yin(y. D300 B = Cllin(: D)l 1,00 18y DIl 01y @ ==

Next, for the last two summands from (37) we have:

~ ~ 14 ~ ~
Yin | (Bytin . 1), 82 (4,1 )| < 10200y, )12, 0.1y + CollOyin ) 01
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~ - vV - ~
Bn | (Falys 0, 020, 1) ) | € 1020 () 0,1y + CallFa (0,010, (40)

From (37), (39)-(40) we get

d - 2 . 2 5 -
a”ayun(yat)H%Q(o,l) + S |Oiin (1, 1) + o |Oriin (0, ) + V(|05 (y, )17, 0.0) <
v

< 2C4an(yvt)H%2(071) + |:4

or, integrating (41) on ¢ from 0 to ¢, we obtain

+ 205y, )%, 0.1y + 203 1940 (3 )1, 0.1 (41)

t t
2 2
||3yfbn(y,t)||%2(0 nt— / ‘875%(1,7')‘2617'—1— — / ’a'ran(oaT)’2dT+
’ 52n 0 Eon 0

t t
+V/||85ﬁn(y77)||%2(0,1)d7 = 204”,1?71(11775)”%2(@&) —|—/A5(7)H8y&n(y,7-)||%2(071)d7-, (42)
0 0

where
v

4
From inequality (42) in the same way as in the proof of the Lemma 1 we get the required estimate
(36). Lemma 3 is completely proved.
Lemma 4. For the positive constants { K3, K4, K5} independent of {@,(y,t), @,(1,t), @,(0,t)}, for
all ¢ € (0, 7] the following inequalities hold:

Ay =2Cy, As(t) +2Co||n (y, )11, (0.1) + 2C5-

0rin (v, )13 ) < Ks (1l DIz v Ba)

18sian (1, )17, 0.1y < Ka (an(%t)HLg(Qgt), v, Bn> :

1842n (0, 8)17, 0.1y < K5 (an(yvt)HLg(Qgi), v, Bn> ,

where K3 (0, v, Bn) =0, Ky (0, v, Bn) =0, K5 (07 v, Bn) =0, B, = {042m Bans Yin, 02n, 52n}~

Proof. The statement of the Lemma 4 follows from Lemma 1 and Lemma 3, as well as from equation
(13) and boundary conditions (14).

Therefore, applying the Galerkin method [13], and using the Lemmas (1), (3) and (4) we directly
obtain the validity of the statement of Theorem 1 and a priori estimate (17), and with them the validity
of the Theorem 2 and a priori estimate (18).

Now we can formulate the main result of our work.

Theorem 4 (Main result). Let f(z,¢1) € La(Qqt,) N C(Qyy, ). Then problem (1)—(2) has a unique
solution (4)

u(z,t1) € H*N(Quty)/ Xt -

Moreover, traces of the solution satisfy the conditions wu(t1,t1), u(0,t1) € H(0,Ty).
Proof of the Theorem 4 will be given below (section 3).

4 Proof of the Theorem 3

Here we establish a series of lemmas, on the basis of which we will prove the Theorem 3 formulated
in Section 2. The following three lemmas are consequences of the lemmas 1, 3—4, respectively.
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Lemma 5. There exists a positive constant K; independent of uy(z,t1), such that for all
t1 € (1/n,T1] the following inequality holds:

||un(x7t1)||%2(07t1) + Hun(t17t1)“%2(0,t1) + ||un(0?t1)”%2(0,t1)+

t1
+ / H8$un('r7Tl)”%g(o,tl)dTl < K1 (an(ﬁf,tl)HLQ(Qgtl),% B> )
1/n

where K1 (0,v,B) =0, B={T1,T, Ty, T1, T} }.
Lemma 6. For a positive constant Ks independent of w,(x,t1), for all t; € (1/n,T] the following
inequality holds:
”axun($at1)"%2(0,tl) + |0ptn (1, 11)]? + [90un (0, 11) [+

t1
+ / 102 un (22, T2 5 1 oty A1 < Ko (an(%tl)HLz(Qgtl)W? B) ;
1/n

where K2 (0, v, B) = O, B = {Tl, T12,T1,T1,T1}.
Lemma 7. For positive constants {K3, K4, K5} independent of {un(z,t1), un(t1,t1), un(0,t1)},
for all t; € (1/n,T1] the following inequalities hold:

90 wn 00y, ) < B3 (It |1z B)

108w (b1, 00) 17 5 00) < K <||fn($,t1)||L2(Qgt1), v, B) ,

900,10 0.1y < K5 (Il 12) a4 B)

where Kg (0, v, B) = 0, K4 (0, v, B) = 0, K5 (0, v, B) = 07 B = {Tl,le,Tl, Tl,Tl}.
Based on the statements of the Lemmas 5-7, using the Galerkin method [13], we establish the
validity of the Theorem 3.

5 Proof of the Theorem 4

The proof of Theorem 4 is based on Theorem 3. In boundary value problems (5)—(7) each element
of sequences

{un(z,t1), falz, t1), {z,t1} € Qs unltr,t1), un(0,t1), t1 €

(1/n,T1); n € N*} continue with zero, respectively, over the entire triangle domain (4, and the interval
(0,T1). As a result, we obtain a sequence of functions denoted by

—_

{un(x,tl), Ful@rt), un(tn, t1), un(0,41), neN*}. (43)

Obviously, each four functions from the sequence (43) satisfies the boundary value problem
(1)—(2) according to the statement of the Theorem 3. In addition, we note that estimate (21) will be

strengthened if its on right side || fn(@, t1)|1,(Q..,) is replaced to expression || f(z, 1) 1,(Q,.,). Since

Ko (1@ 0)ll12(@uey > B) < Ko (15 @0 | a(@uey) v B)

where Ko (0,v,B) =0, B = {T1,T, Ty, T1, Ty }.
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Therefore, we obtain a bounded sequence of functions (43), from which we can be extract a weakly
convergent sequence, i.e. (for this subsequence, we keep the notation n for the index). We have that

up(z,t1) = w(x,t;) weakly in H2’1(th1), (44)
un(t1,t1) = w(t1,t1) weakly in Hl(O,Tl), (45)
um) — w(0,t;) weakly in H(0,T}). (46)

Since from (44) it follows that

un(x,t1) = w(z,t1) strongly in Lo(Qu, ), (47)

then by (44)—(47) we can pass to the limit as n — oo in integral identities

P P

0:/T&@EEWHMLM@%@m%w%%@h%ﬁ&wﬂ@@hMMﬁ%
Quty

— / [8t1w(x,t1) + w(z, t1)0pw(x, t1) — V@iw(:n,tl) — f(ac,tl)] o(x,t1)drdty, Yo € La(Quy),

tal
(48)
Ty
0= / [atlun(az,tl) — (%un(m,tl)} 0 (po(tl) dtl —
T
— / [atlw(x,tl) — (%Cw(x,tl)]\xzo QO(](tl) dtq V(po S LQ(O,Tl), (49)
0
T
Oz/PmM%m—%w@mﬂmtwmwh%
; 1
T
— / [atlw(a:,tl) — 6xw(x,t1)]\$:tl ng(tl) dtl V(pl S LQ(O,Tl). (50)
0

So, we have established that the boundary value problem (1)—(2) has a weak solution w(x,t1) in
the sense of integral identities (48)—(50).

Now we show the uniqueness. Let boundary value problem (1)-(2) has two different solutions
uM (z,t1) mwu® (z,t1). Then their difference u(z,t1) = u (z,t;) — u® (x,t;) will satisfy the homoge-
neous boundary value problem:

D, u + udpu — v02u =0, v >0, (51)

[0 u — Opu(z,t1)] |z=0 = 0, [0¢,u + 20,u(x, t1)]|z=t;, = 0. (52)

We establish that the boundary value problem (51)-(52) nwill not have a non-trivial solution that
differs from the constant. It is clear that

u(z,t1) € Loo(0,Ty; HY(0,t1)), u(ty,t1) and w(0,t1) € Loo(0,Ty). (53)
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Multiplying equation (51) by function u(x,t;) scalarly in L2(0,¢;) and taking into account (52), we
obtain

1 d
3t B o) vy b 0) + v (0,00 + v s, ), 1) =

— ([u(:c,tl)]z,8mu(1)(x,t1)> - <u(2)(a:,t1),u(:r,tl)azu(x,tl)) . (54)

Integrating by parts

t1

—2/u(l)(x,tl)u(a:,tl)amu(af,tl)da:,
0

x=t1

t1
/[u(x,tl)]Qamu(l)(x,tl)dw = Ju(z, t1)2u™M (z, 1) »
0

from (54) we have that

1 d d
3 ) B0 + v Tt )+ v a0, ) + vy, )]0y =
t1
— a0 (e, ) futtr, )P ~ a0, a0 )P+ [ (20D (a,01) = 0@ 1)) ula,t)Osu(a, ) da. (55)
0

Now we estimate the right side of the relation (55). Using the (53), we obtain

t1
u® () |ults, 012 — uD (0, £) (0, 1) + / [2u(1)(x,t1) @ (x,tl)] w(z, t1)dpu(z, 1) dz <
0

< ™ (trs 1) | oogo,r [t t1) [P+ [atD (0, 21) | oogo,my) [0, 1) P+

1
+o 2”u(1)(I’tl)HLoo(sz1)+”u(2)(x’t1)HLoo(szl)] e, )17 0,.0) + VI1Owu(@, 875040

From here and from (55) we get

t
/ v(m)dr, me. w(t)=0, Vt; € (0,T1],
0

where
o(t) = min{1, 20} | (@, 1)[13,0.,) + s, 01) P + (0, 1) 7]

. 1 2
C = min{1,2v} max {2 210D (@, 1) oo(@uey) + 142 @, ) Eooi@uny)]

2D (b1, 1) | ooz 2000, mnmm}

Therefore, the uniqueness of the solution of the boundary value problem (1)—(2) is established, and
together with it the Theorem 4 is completely proved.
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Conclusion

In the paper, we established in Sobolev classes the solvability theorems for boundary value problem
for the Burgers equation in a degenerating domain with degenerate point at the origin.

The results of the work can be generalized to case when we have a domain of independent
variables Qz, = {z,t1 : 0 < x < ¢(t1), 0 < t; < 11 < oo}, presented in a curved triangle whose
moving side can change according to the rule x = (1), t1 € [0,71], and the condition ¢(0) = 0
is satisfied. In addition, from the function ¢(¢;) some natural conditions are required. For example,
function ¢(¢1) must satisfy the following two conditions: 1°. in a sufficiently small time interval (0, ¢})
function ¢(t1)would have a representation ¢(t1) = pti, where p is a given positive constant (in our
work it was equal to unity); 2°. on the interval [}, T}] function ¢(¢;) would be continuous differentiable
and would have the property of monotonicity, providing a one-to-one transformation from independent
variables {z,¢1} to variables {y,t}.
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M.T. Jlxxenanues, M.I1. Pamazanos, A.A. Aceros

Bioprepc tengeyi ymiin CononankoB-Pa3aHo ecebi TypaJibl

Makasia HyKTere KoibuiaTbi 00sibicTa, CononHnkoB-PazaHo TUIITI IMIEKAPAJIBIK MAPTTAPMEH OeplireH
Broprepc tengzeyi yiimin mekapaJsblK ecernTiH cODOJIEBTIK KJIaCTapblHa IMIENIIyl CypakKTapblHa apHAJFaH.
OOGJIBICTBIH, JKOMBLTY HYKTECI KOoOpauHaTaJIap 6achlHIa OpHAJTACKAH. [ aJepKUH YKoHe alpUOpPJIbIK barasiay-
Jlap 9JiCTepiH KOJIJIaHy apKbLIbl KAPACTBIPBLIBII OThIPFaH IIEKapaJblK, eCelTiH, MeliMiHig 6ap O0JIybI XKoHEe
2KaJIFBI3/IBIFBI Ty paJibl TeOpeMaJiap, COHbIMEH KaTap OepiireH (pyHKIMsIap/IbIH TErICTIr apTKAHIa €CeITiH
PETYJISPIIBIFBL JIDJTEIIEHTEH.

Kiam cesdep: Broprepc Tenjeyi, IeKapaJiblK, ecell, cO60JEBTIK KJacTap, »KOWBLIATHIH 00JbIC, [ alepkuH
9JIici, aITPUOPJIBIK, barataysap.

M.T. JIxxenanues, M.I1. Pamazanos, A.A. Aceros

O 3amaue CosonnukoBa-Pa3aHo Jjiss ypaBHeHHsa broprepca

Pa6ora nocssiena BompocaM paspenrmMocT B COOOJIEBCKUX KJIACCAX MPAHUYHON 3aJa49M JIs YPaBHEHUST
Broprepca ¢ rparmynbivu yemoBusimu tuna CosonankoBa-®Pazano B BeIpoxkgarorieiicst obactu. Todka BbI-
pOKJieHusT 06JIaCTH HAXOAWTCsI B Hadajie KoopauHat. Vcnosib3oBanueM MeTofoB ['ajlepkuHa U alpruOpHBIX
OIIEHOK JOKa3aHBbI TEOPEMBI O CYIIECTBOBAHUM W €IMHCTBEHHOCTU PEIIEHUs PACCMATPUBAEMON T'PAHUIHON
334, & TAKXKE €ro PEryJIsipPHOCTD MIPU MOBBIMNEHUHN TVIAIKOCTH 3aJaHHBIX (DYHKIIHIA.

Karoweswie caosa: ypaBHenue Broprepca, rpanntdHas 3aja4da, cOOOJIEBCKUE KJIACCHI, BBIPOXKIAONIAsICH 00-
J1acTh, MeTos ['alepKuHa, alIpUOpHbBIE OIEHKH.
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Solvability of a semi-periodic boundary value problem
for a third order differential equation with mixed derivative

This article is devoted to the study of the solvability of a semi-periodic boundary value problem for
an evolution equation of the pseudoparabolic type. Nonlocal problems for high order partial differential
equations have been investigated by many authors [1-4]. A certain interest in the study of these problems is
caused in connection with their applied values. These problems include highly porous media with a complex
topology, and first of all, soil and ground. Such equations can also describe long waves in dispersed systems.
To solve this problem, new functions are introduced in the work and the method of a parameterizations
applied [5]. Then the boundary value problem for a third order differential equation is reduced to a periodic
boundary value problem for a family of systems of ordinary differential equations [6-18]. New constructive
algorithms for finding an approximate solution are proposed and in terms of the initial data, coefficient-like
signs of the unique solvability of the problem under study are obtained.

Keywords: partial differential equation, third-order pseudoparabolic equation, algorithm, approximate solution.

Introduction

On Q = [0,w] x [0,T] we consider the semi-periodic boundary value problem

O3u 0%u ou
FrorTae A(a:,t)@ + B(x,t)a + C(z,t)u+ f(z,1), (z,t) € Q, (1)
uw(z,0) = u(z,T), z€[0,w], (2)
u(0,t) + Ml’ =o(x,t), (x,t)€Q, (3)

ox

where (n x n) - are the matrices A(x,t), B(z,t), C(z,t), n-vector functions f(z,t), ¢(x,t) continuous

on , here [lu(z,t)|| = max |ui(z,t)], [|A(z,t)]] = max > |a; (2, t)].

i=1,n i=1,n j=1

Let C(€, R™) - be the function space u : 2 — R™ continuous on 2, with the norm

[ullo = max_[lu(z, 1)
(z,t)€

A function u(z,t) € C(Q2, R™), having partial derivatives

ou?(x,t) ou(z,t) " O3u(x,t) n
o2 —o € C(, R"), “ont0r € C(Q, R")

is called a solution to problem (1)—(3) if it satisfies system (1) for all (x,t) € 2, and conditions (2), (3).
2

To find a solution, we introduce the functions v(x,t) = g gg(caé’t) ,w(z,t) = augf’t) and reduce problem

(1)=(3) to a family of periodic boundary value problems for a system of ordinary differential equations

of the form

€ C(Q, R,

(3: = A(z,t)v+ B(z,t)w + C(x, t)u + f(x,t), (x,t) €, (4)
v(z,0) =v(z,T), z€[0,w], (5)
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functional relationships
z &

w(z, ) = ¢z, 1) + / / LD e, (6)
0 0

T

u(z,t) = art—i—/
0

To solve problem (4)—(7) we apply the method of a parametrization.

v(&1, t)dé1ds. (7)

o\m

N
By the step h > 0 : Nh = T we make fragmentation [0,7) = | [(r — 1)h,7h), N = 1,2,....
r=1
Moreover, the area 2 is divided into N parts. By v, (z, t), u,(z,t) we denote, respectively, the restriction
of the function v(z,t), u(x,t) in Q, = [0,w] x [(r — 1)h,rh), r=1,N.
By Ar(x) we denote the value of the function v,(x,t) at t = (r—1)h, i.e. A (z) = vp(z, (r—1)h) and
make the replacement v,(x,t) = v,.(x,t) — \.(z),r = 1, N. We obtain an equivalent boundary value
problem with unknown functions A, (x):

O A1), + Al 0 (x) + Bla, iy + (. e + £ (2.1), (3)
5@, (r—1h) =0, ze€l0w], r=T,N, 9)
M) = An(@) = lim Tv(e,t) =0, € 0w, (10)
Asf@)+ T Tyl t) = Aea(@) =0, z€[0w], s=TN-L (11)
wel,0) = gl ) + / j 1) ey (12)
x & x0€0
up(x,t) +/0/)\T & dfldf—l—/o/vr &1,t)dédé,  (z,t) €y r=1,N, (13)

where (11) is the condition for combining functions in the internal lines of the partition. Problem
(8), (9) for fixed A\.(z),w,(x,t),u,(x,t) is a one-parameter family of Cauchy problems for systems of
ordinary differential equations, where = € [0,w], and is equivalent to the integral equation

t

Up(z,t) = / A(z, 7)o, (2, 7)dT + _[) A(l’,T)dT')\r(l‘)—l—_{) F(x,7,wy,u,)dr, (14)

(r=1)h (r=1)h (r—1)h

where
t

t t t
F(x, 7, wp,up)dr = B(z, T)w,(x,7)dT + C(x, )up(z, 7)dT + f(z,7)dr.
] J j J

(r—=1)h (r—=1)h (r—=1)h (r—1)h

Instead of v,(z,7) we substitute the corresponding right-handed part of (14) and by repeating this
process v (v =1,2,...) times we obtain

Up(x,t) = Dyp(x, t) A\ (2) + Fpr(x, t,wr, up) + Gup(x, t,0), 7 =1,N, (15)
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where
v—1 ¢ i
Dy, (x,t) = Z / A(z,m1)dTy ... / Az, Tj41)dTjq1 . .. dry,
7=00: 1) (r—1)h

For(z, t,we,u,) = / [B(z, m)wr(z,m1) + C(z, 71)ur(z, 1) + f(z,71)]dn+
(r—=1)h
+Z / Az, 7). .. / Az, ) / [wp (@, 7j41)+C (@, Tjp1 )ur (@, Tjg1)+ f (@, Tj41) | dTjgadr;

=1 "1)n (r—1)h (r—1)h

t Tv—1
Gur(z,t,v,) = / (z,71) / Az, 1y-1) / A(z, 7)) (x, 7))dTydTYy—1 - . . dT1,
(r—=1)h (r=1)h (r=1)h

170 =t,r = 1, N. Passing to the limit as ¢ — rh — 0 in (15) we have

lim o, (x,t) = Dyp(x,rh) A\ (2) + Fup(x, rhy Wy, uy) + Gup(z, mh, 0,),

t—rh—0

z € [0,w],r = 1, N. Substituting in (10), (11) instead oft 11%1 Oiz)(x,t),r =1, N, the corresponding
—rh—

right-handed parts for unknown functions A\, (z),r = 1, N, we obtain the system of functional equations:

Qu(x7h))\(x) == _FV($7h7w7u) _GV(x7h7:6)7 (16)
where Qu(w,h) =
I 0 0 U + Dyn(z, NB)|
I+ Dyi(z, 1) 1 0 0
B 0 I + Dya(, 2h) 0 0
o 0 0 0 0 ’
0 0 oo T4+ Dyy1(z,(N —1)h) I

F,(xz,h,w,u) = (=F,n(x, Nh,wn,un), F1(x, h,wi,u1), ..., Fyn—1(z, (N — 1)h,wy_1,un—1)),
GV(SL‘, h,i) = (—GVN({L‘, Nh, 5]\[), Gyl(l‘, h, 51), ey GV,N_l(ib, (N — 1)h,€7N_1)),

I— is the unit matrix of dimension n.

To find a system of five functions {A.(z),v,(x,t), w,(z,t), uy(z,t)}, r = 1, N, we have a closed
system consisting of equations (16), (15), (12) and (13).

Assuming the invertibility of the matrix @, (z, h) for all z € [0,w], from equation (16), where

Up(z,t) = 0,ur(z,t) = p(x, 1), w(z, 1) = pi(z,1),
we find A0 (z) = A (2), AP (@), ..., AP (@) :

A (@) = =[Qu(z, W) {F, (2, h,¢},0) + Gu(x,h,0)}.

Using equation (15), for A\, (z) = )\540)(33) we find the functions {E(«O) (z,t)}, r=1,N, ie.

'ﬁﬁo) (x,t) = Dw(x,t))\go) () + Fyr(,t, 05, 0) + Gup(w,t,0).
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(0)

The functions wy "’ (z,t), u © (x,t),r =1, N, are determined from the relations

z &
~(0)
wfﬂo)(:c,t) —gp;(a:,t)—i—//a (€1,%) déde,
0 0

w0 () = p(z, 1) + /

0 0

3 z &
O (&) dede + (&1, t)d&rdE,  (x,t) € Q.
[

For the initial approximation of the problem (8)-(13) we take the system ()\50) (x), 550)(x,t),

u7(~0) (z,t)), r =1, N and successive approximations are constructed according to the following algorithm:

Step 1. A) Assuming that w,(z,t) = wﬁo) (x,t), up(z,t)= uq(no) (z,t), r=1,N, are first approxi-
mations in A.(z),v,(z,t),r = 1, N, we find by solving problem (8)-(11). By taking

AL (2) = AO(2), 21 (z,1) = 2O (1),
the system couple {)\9) (z), e (x,t)},r =1, N, we find as the limit of the sequence AlLm) (x), oebm) (x,t),

are defined the next way:
Step 1.1. Assuming the invertibility of the matrix Q,(z, h), z € [0,w], equation (16), where

(@, t) = 00 (x, 1),
we find A0V () = WD (@), A8 (@), .. AG Y (@) -

NOD (@) = =[Qu (e, W) { Fua by 0, @) 4+ G, b, 5OO) .

Substituting the found )\1(},1)(33)’ r=1,N, in (15) we find

o)

L (2,t) = Dyp(x, )OAIV (@) + Fp(z, £, 0, u©) + Gy (2, 1, 500,
Step 1.2 From equation (16), where v,(x,t) = otk (x,t), we define

AD(a) = ~[Qu(x. W] B, b0, ) + Gy (o, 500 |,

By using expression (15), again, we find the functions {'177(01’2) (x,t)}, r=1,N,
2 (z,t) = Dy (2, OAID (2) + By (2, t, w0, uO) + G (2, ¢, 50D).

At the (1,m) step, we obtain the system of couple {Afnl’m)( ), b (x,t)},7=1,N.

Let’s suppose that the solution of problem (8)—(11) is a sequence of systems of
couples {Aﬁl’m) (x), Hﬁl’m) (x,t)} is defined and for m — oo converges to continuous, respectively, on
z € [0,w], (z,t) € Q, functions )\7(})(56), ’51{1)(;5,@ ,r=1,N.

B) The functions wV (x,1), uq(nl)(x, t),r =1, N, are determined from the relations

P or)( 5
wi(z,t) = ¢}(z,t) // For 10 ge, ge,

0
z & z &
uD(z,t) = p(a,t) + [ [ XO(€)derde + [ | T, )dede,  (w,t) € Q.
[ [ [ [
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Step 2. A) Assuming that

we(z,t) = wW(2,1), up(z,t)=uV(z,t), r=1,N,

are the second approximations in A.(x),v,(z,t),r = 1, N, we find solving problem (8)—(11). Taking
ACO(z) = D), 529z, 8) = 70z, 1),

the system of couples {)\7(?)(1’), 57(«2)(:1:,t)}, r = 1, N, we find as the limit of the sequence AZm) (x),

oeam) (x,t), that defines in the following way:

Step 2.1 Assuming the matrix @, (z, h), x € [0,w], is invertible, from equation (16), where
O, t) = 029 (2, 1),

r

we find XD (z) = APV (@), A&V (@), .., GV ()«

AED(a) = ~[Qu(a. W { B, b o, u®) + Gy (o, 1,52 }.

By substituting the found Az 1)( ), =1,N, in (15) we find
32D (2, 1) = Dy (2, OA®V (2) + Fyp (2, t, w0 + G, 1, 730,
Step 2.2 From equation (16), where
(2, t) = 0D (a, 1),

we define

B2 (@) = —[Qu () { B, hy ™ ulD) + G a, h, 53D) .

Using expression (15), again, we find the functions {552’2) (z,t)}, r=1,N:
522 (2, 1) = Dy (2, OA>D (2) + Fyp (2, t, w0V + Gy (2, 8, 73D),

At the (2,m) step, we obtain the system of couples

AR (2), 5™ (2, 1)}, r = TN,

Let’s suppose that the solution to problem (8)—(11) is a sequence of systems of couples {)\(2 m)( ),
'17(2’m) (x,t)} are defined and at m — oo converges to {)\7(?)( ), '1)7(:2)($,t)}7 r=1,N.

B) The functions w? )(CL‘, t), u'? (z,t), r=1,N, are determined from the ratios

z & el &
W () = (1) + / / o 11 e, ge,
0 0

z &

£
ul? (z,t) = p(x,t) + A2 (&))de de + 02 (&, t)dede,  (z,t) € Q.
[ [ [ [

xT

By continuing the process, at the step k we obtain the system {)\T (x), 5tk (x,t), w (&) (x,t), u (k) (z,t)},
r=1,N.

The conditions of the following statement provide feasibility and convergence of the proposed
algorithm, as well as unique solvability problems (8)—(13).
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Theorem 1. Let’s suppose that for some h > 0: Nh =T,N = 1,2,..., and v, v € N, (nN x nN)
the matrix @, (z, h) is invertible for all z € [0,w] and the inequalities are carried out
D [Qu (2, )] HI < (2, )
(a(2)h)" ~ (a(@)h)!
2) g, B LD < 4y < 1, where g (2, h) = 1+ 7, (z,h) 3 @
j=1
Then there is a unique solution of problem (8)—(13) and the estimates are valid

H aur(x,t) o0 (x,1)
ot ot

a) max{ max sup ,

r=1,N te[(r—1)h,rh)

max | A} (z) = AV (@)[| + max  sup  [[olP) (2, ) — 0P (x, t)l}

r=1,N r= 1Nt€[(r 1)h,rh)
<aoie) > ([ auterte) [ [ [ max{asa).ar o) paderdemax{ il o 11
J=k=1""7% 000
pmac{ ma s uilet) - w0l mox s i) - o] <
=L N te[(r—1)h,rh) r=LN te[(r—1)h,rh)
// { “85:(§1a 1) on" (&)
max4q max sup y
r=L,N te[(r—1)h,rh) ot ot

max [[A7(&) = AP (@)l + max  sup 75 (E,0) —57(~k)(gvt)||}d€, k=12,...
r=1,N r=1,N te[(r—1)h,rh)

where

() = max A0, Alr) = max |B.0), o(x) = max [Cla. )],

ax { [ (@15 + ol i 5(@) + a@]},
0

1+ (z,h) (a(a;)h)“ 1 a(x)h)?
(a(x)!h)u QV(CU, h) + 'y,,(x, h):| [h Z M

dl(l‘) = -
1 —q(z,h)= iz0 J!

v—1 z &

J a(z)h)” 2 (a(2)h)?
sy Y o / [ st migde + O gy @y, n 3 CERE,
0

J=0 J=0

3

da(x) :]‘ [ /02 &)p1(&)dé + o(&) 770 0, (&2, h d§2d§1} d¢.
0 0

0

Cepust «Maremarukas. Ne 2(98)/2020 89



A B. Keldibekova

Proof. We have the following inequality

a(z)h)?
1F G hw, ) <2 S SO e g (8@l DI + @l D] + 1 0],
A r=LN te[(r—1)h,rh)
Gl < PO e sup (e

r=LN te[(r—1)h,rh)

v h j
max sup | Dyr(z,2)| < Z M‘
r=T,N te[(r—1)h,rh) =

The following estimates follow from the zero step of the algorithm:

v—1 .
a(x)h)?
mase [, O] < pr()te. S A ma o el 1710
r=1, =0 .
max  sup |00 (x,1)|| <
r=1,N te[(r—1)h,rh)
v ; v—1 ;
a(x)h)’ a(xz)h)?
< 50 O s 10, O+ (860) + o) + 130 3 O o el 7o b
2 g e 25

v—1 i
< pa(@laste. 3 P s et o 110

J=0

max sp[ul®en) — gl < [ p2<§>m<s>dsmax{||so;umusouo,nfuo},

r=1,N te[(r—1)h,rh)
x

0
13
max s [l 0) — ol )] < / / p<sl>eu<a,h)dadgmax{usoguo,usono,nfuo}.
0 0

r=LN te[(r—1)h,rh

The following estimates are valid:

max ||, (0 (2) = 2,0 ()] <

r=1,N
< (a(x)h)
<yw(z,h)h Y ~———Bx) max  sup [ (x,t) — @iz, )|+
=0 J: r=1L,N te[(r—1)h,rh)
v—1 j
(RS O oy e sup O, 8) — e, 0]+
=0 J: r=1L,N te[(r—1)h,rh)

+ (T, h)M max sup [0 (x, 1),
V! r=1,N te[(r—1)h,rh)

max sup [0 (1) — 500, 1)) <
r=1,N te[(r—1)h,rh)

Y o) max  sup O, ) — el )|+
=0 J: r=1,N te[(r—1)h,rh)
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J
+qu(x, h)h Z Ma(x) max sup
5 r=1,N te[(r—1)h,rh)

Il (2, ) = (. )|+

Fa ) @O s s 5O, 0]
r=1,N te[(r—1)h,rh)

Select the inequality

A(l’l)(x) = max sup |’5£1’1)($7t) - (
r=1,N te[(r—1)h,rh)

Y, )] + max A1 (@) = A0 (@) <

r=1,N o

xT

< 6,(z, () / (€ <s>dsmax{|so;uo, lello. Hfuo}+

£
/ / o (€00, (61, h d&dsmax{uso;no,Hso||o,|rfuo}+
0 0

(ot

1) (1) max{usoguo,usouo,ufuo}.

Thus,

max || A7) (@) = A0 ()] <
r=1,N

< %(x,h)M

o max sup [T () T (@, ),
v r=1,N te[(r—1)h,rh)
max  sup  |[5Y (2, ) — 5 (2, 4)| <

r=1,N te[(r—1)h,rh)

<a@n @M e s [ @) - 5D ).
vl =T N te[(r=1)hrh)

Due to the inequality qy(x,h)w
(x,t) € Qp, to e

< 1 follows the uniform convergence v(l’m+1)(x, t), at
A

N
(z,t) and the convergence of a sequence of systems of functions )\7(~1’m+1)(x)

to
continuous z € [0, w] functions )\1(})(90) forallr=1,N :

max  sup [ (@, 6) — 50 (2, 0)]) <
r=1,N te[(r—1)h,rh)

- (a(z)h)” )h)'/ 7 ~(1,1) _~(1,0)
SZ qv(x, h) max  sup [0, (@, ) — o (1) -

j= r=1,N te[(r—1)h,rh)

max || A7) (@) = 2,00 (2)] <

r=I,N " -
m h)Y J h)Y ~
<y [qy o.h) ”)] o ) EOM s sup [ED @, 1) — O, 1)+
=0 : v r=1,N te[(r—1)h,rh)

+ mal”Ar(l’l)(x> - )‘7’(1’0)(5’5)”-
r=1,N

max  sup [ (2, 8) = 00 (2, )] + max AT (2) = A0 (@) <
r=1,N te[(r—1)h,rh)

r=1,N -
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m v1J v
<3 oo O T S w0 0) < 500 )+
§=0 : v r=1,N te[(r—1)h,rh)

+ max |\, (@) = A0 ().
r=1,N

Moving to the limit at m — co, we obtain estimates:

AW(@) = max  sup o) (z,t) = 5 (2, )] + max ||\ (z) = A O ()] <
r=1,N te[(r—1)h,rh) r=1,N

< di(x) max{\sozuo, lelo. Hfuo}.

oo (e, t) o5l (et
NG DD ot ol 171 |

AW (z) = max sup‘
r=1,N

z &
mac s (e t) ~ 0ol < [ A0z,
0 0

r=1,N te[(r—1)h,rh)

T

max  sup [uld(z,1) - I < [ [ ate)dede
0

r=1,N te[(r—1)h,rh)

o\m

For difference systems A.*tD(z) — A% (z), 57(«“1)(:6,75) - vﬁk)(x,t), w£k+1)(:v,t) - w,(«k)(x,t),
u£k+1)(a:,t)— —uﬁk) (z,t), r=1,N, k=1,2,...valid estimates:

max [|A,#F0D (@) = A0 ()] <
r=1,N

o Be) max sup (w2, t) — w2, 0)]|+
J: r=LN te[(r—1)h,rh)

v—1 j
(RS M ) max  sup (e, 1) — w1,
=0 J: r=1,N te[(r—1)h,rh)

max  sup oD (2, 6) — 5RO (2 1) <
r=1,N te[(r—1)h,rh)

<o mh S SO g0y ma sup (1) - w0+
]:0 -7' T:13N te[(r—l)h,rh)
v—1 j
(e 3 LMYy e s @, ) — D)
]:0 j’ T’Zl,N te[(’l’—l)hﬂ‘h)

max || A, D (@) — A, B ()| <

r=1,N
<l ) XD e sup I 6y — D )
v r=1,N te[(r—1)h,rh)
max  sup  [FEHIED (g, 1) - B (g )| <

r=1L,N te[(r—1)h,rh)

92 Becrnuk Kaparanmurckoro yHuBepcurera



Solvability of a semi-periodic...

< g O sup [ (@, 1) — 5D (@, )
v r=1,N te[(r—1)h,rh)
max  sup LD (@, 0) - 5O (g, 1)) <

r=1,N te[(r—1)h,rh)

- (a(@)h)" 19 ~(k+1,1) ~(k+1,0)
< v(x, h max su DN x,t) — vy T (z, )]
<> [q (@, h)— } rzl,Nte[(r—II))h,rh)H (1) (z,2)]

7=0
max ||\, (k+1m+1)( ) — )\T(k-f—l,O)(x)” <
r= 1N
m—1 v »
o) CN 0y SO e qup 0 ) — 510 a4
i3 v vl =T N te(r—1)hirh)

+ maixn)\r(k—i_l’l)(x) - Ar(k—’—l’o)(x)H'
r=1,N

Moving to the limit at m — co, we obtain estimates:

max  sup [, 0) - T (o, ) <
r=1,N te[(r—1)h,rh)

v (z, h)h Z L B(x)
< =0 - max sup w,(nk) z,t) — wﬁkil) z,t)||+
1— gy (a,h)! (ﬁ),h) r=L,N te|(r—1)h,rh) o™ G 2) (@Dl
oo, 'S, L o(z)
+ = i max  sup [lul(,) — w7V (2, 1)), (17)
1—qy(z, ) r=L,N te[(r—1)h,rh)
max [|A, D (z) = A, W) ()] <
r=1,N
v—1
Yoz, h)h ) (a(ﬂjc?h)yﬁ(x)
< — Gy max s (@) - e D )+
— qu(z, h)=7 r=L,N te[(r—1)h,rh)
v—1 .
(@, Wh 3 S o (x)
+ =0 max sup Hu,(ﬂk) (x,t) — uﬁkil)(x, t)]]. (18)

1—q(x, h)(a(iﬂ r=1,N te[(r—1)h,rh)
z &

max s ol -w®e ) < [ [ mac s
r=1,N te[(r—1)h,rh) 9 r=1,N te[(r—1)h,rh)

ovt Ve t) v 51,
ot

deldéa

£

max o ) 0l < [ me s e, 06,0l
r=L1,N te[(r—1)h,rh) - r=1,N te[(r—1)h,rh)

Summing, respectively, the left and right parts of inequalities (17), (18) we have

AF (@) = max sup (D (@) = 3 (@, 1)) + max LD (@) - 4O (@) <
r=1,N te[(r—1)h,rh) r=1,N
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< ps(@B@) max  swp u® (@ 1) — w0+
r=1,N te[(r—1)h,rh)

+ps(x)o(r) max  sup [uf®(z,t) — "D (@, 1)) (19)
r=1,N te[(r—1)h,rh)

z(k-i-l) ((L‘) — max sup 8?)1’ ai& t) 87)7‘ 6(5 t) H

r=LN te[(r—1)h,rh)

s/m@mamu sup [P (e 1) — wkD(E, 1) de+

r=1,N te[(r—1)h,rh)

+/m ymax  swp [ul(E, 1) — ulbD(E 1) de. (20)
; r=1,N te[(r—1)h,rh)
z &
max  sup V(6 — / / AGHD (€))dy e,
r=1,N te[(r—1)h,rh) 0
z &
max  sup [ D(z6) — u® / / AFD (€)dgy de.
r=1,N te[(r—1)h,rh) 00

For the function {ﬁ(kﬂ)(x), A(k“)(x)} based on (19), (20) we establish the inequality

max{AFHD (@), AFH ()} <

x z £ &
Smw{{m@%@+d&%m@%(Hﬂ }/Zmemw@) D)) déaderdé <

z £ &
< do(z) / / / max{A® (&), AP (&) }Ydeadé, dE, (21)
0 0

z &£ &

max {304 (@), AW 2) } < (ZO_("?)!< 0/ do(g)d§>k_l O/ 0/ O/ max{ A0 (&), AW (&) ey de.

Establish inequalities

T

ot ot

i

H oo (@, t) o0 (a,t)

max{ max  sup
r=1,N te[(r—1)h,rh)

e N9 0) P+ e sup [ a,t) — o 0] | <
r=1,N r=1L,N te[(r—1)h,rh)

< max {E(kﬂ’) (z), A (x)} + max {ﬁ(k“’*l)(az), A(k“’*l)(:r)} + ...+ max {A(l)(x), A(l)(:v)} <
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k+p— j z & &
<do(a) Y. ,( [ d&) ] [ maxtB ). A0 @) deaderde <
J=k— 000
k+p—2 1 ;o £ &
<o) 3 % ( [anerte) [ [ [ max{ua).aslea) aaderdema{ 1o oo 110
J=k=1"""7%9 00 0
max{ max sup || w P (2, 1) — wF) (z,t)||, max sup  JJulF ) (@) — ugk)(x,t)H}g
r=1,N te[(r—1)h,rh) r=1,N te[(r—1)h,rh)
r &
/ / { oo () o (s t)
< maxq max sup ‘ )7
J r=L,N te[(r—1)h,rh) ot ot
max [\ (€) = AP ()] + max - sup ||5£’““’><51,t>—5£k><§1,t>|!}d€1d§,
r=1,N r=1,N te[(r—1)h,rh)

proceeding to the limit for p — oo, for all (z,t) € Q,, r = 1, N, obtain the estimates of Theorem 1.
We prove uniqueness. Let there be (A\*(z)+0 " (z, t), wi* (z,t), ui*(z,t)), r = 1, N, another solution
to the boundary value problem (8)-(13).

Similarly to relation (21) for the differences A, (x) =\ ** (z), vy (z, t)—v}* (x, 1),
r=1,N, for all (z,t) € Q we get:

vy (z,t)  0vi*(,1)
ot ot

vy (z,t)  9v7*(x,1)
ot ot

)

maX{ max sup ‘
r=1,N te[(r—1)h,rh)

max [[A;(z) = A" ()] + max sup [op (e, t) —@’f*(w,t)\,} <

r=L,N r=L,N te[(r—1)h,rh)
z § & - . e

< do(fﬁ)// max{ max sup H vy (€2, ) (52, t) ’
;5 r=1,N te[(r—1)h,rh) ot

max [[A7(&2) — A7 ()| + max  sup  |[or(&2,t) — 0 (&2, )H}d§2d§1df <
r=1,N r=1,N te[(r—1)h,rh)

max [AHE) ~ AT + max  sup (6 1) — ~**<,t>\}d5.
r=1,N r=1,N te[(r—1)h,rh)

2’ dup(6,t) 9o (&, 1)
< R r\S> )
> d0($) 6 O/max{rrgiii[ te[(rsj%)h’rh) H ot ot

Using the Bellman-Gronwall inequality [19] we have

vy (z,t)  Iv7*(x,1)
ot ot

bl

max{ max sup H
r=1,N te[(r—1)h,rh)

max [[Az(z) — A7 (2)]| + max  sup vy (z, ) — 0" (2, )], } =0.
r=1,N r=1,N te[(r—1)h,rh)
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ovy(x,t)  Ovy*(w,t)

Whence it follows that v} (z,t) = v (x,t), A5 (x) = A" (2), e % 0 = 1,N.
From the inequalities
P O (&4,
max  sup |wi(z,t) —w //m sup H Or(nt) 61’ Hdﬁldf,
r=1,N te[(r—1)h,rh) 0 r=1,N te[(r—1)h,rh) ot
max  sup [lur(e,) — ul (@) <
r=1,N te[(r—1)h,rh)
z &
S/ max sup [or(€1, ) — 07 (60, 0| + max [[A(&1) — AT (€)])dErdE
9 r=1,N te[(r—1)h,rh) r=1,N
we have wi(z,t) = wi*(x,t), ui(z,t) = u*(zx,t), r=1,N, forall (z,t) € Q,. Theorem 1 is

proved.

Because of the equivalence of problems (1)—(3) and (8)—(13) Theorem 1 implies

Theorem 2. Let’s suppose that the conditions of Theorem 1 are satisfied. Then problem (1)—(3) has
a unique solution u*(z,t) and the estimate are valid

ou(z,t)  Ou(z,t)
HMX{H or ot

et (@, £) - u<k><x,t>ro}s

0

x &1

¢
< O/O/do(fl ;<O/d0(§2 de) /max da(&2), d1(§2)}d§2d§1d§max{HcptHO,||¢H07Hf||0}
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A.B. Kesnmbexkosa

Apanac TybpIHABICHI Oap yIIiHIII peTTi aAuddepeHnnaablK TeHaey

YIIiH >KapThljail IePUOJITHI MIETTIK €CellTiH eIy

MakaJia 1iceBOmapabOJIaJIbIK, TUIITEr] SBOJIIONUSAIBIK, TEHJEY VIINH KapThLIAi MMePUOJITHI IETTIK €CeINTiH
mennisryin 3eprreyre apHasiraH. 2Korapel perti mepbec TyBIHABLIBL AuddEPEHITNAIIBIK, TEHIEYIeD YIIiH
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JIOKAJIbJII €MEC eCenTep/ii KoemrereH apropJap 3eprreret [1-4]. Myrnaii ecentepai 3epTreyre JereH KbI3bl-
FYIIBLIBIK, OJTAPIBIH, KOJIIAHOABI MaFbIHACKIHA GANIAHBICTHI TYBIHIaIbI. OChIHIal ecerrTepre Kypaesi TOmo-
JIOTHSICHI 6ap KATTHI KEYeKTi opTa, OipiHII Ke3eKTe TOMBbIpaK, kKoHe Kep kaTtaabl. CoHbiMeH 6ipre, MyHmait
TeHJeYJIeP IUCIIEPCUSIIBIK KYilesepaeri Y3bIH TOJIKBIHIAAP/IBI a CANATTaybl MyMKiH. Makantana ocblHmait
ecenrepai miemry yiniH »kaHa (QYHKIMsIAD €HII3LINeH »KoHe HmapaMeTpu3anusiiay dfici KosgaHburas [5].
Onpa yurinmi pertik auddepeHnuaiiblk, TeHyey YiliH MeTTiK ecel, KapamnaibiM 1uddepeHualiiblK, TeH-
JieyJiep Kyiiesiep TOObI YIIIH IEPUOJTHIK, MIETTIK ecebine Kearripineni [6-18]. ZKybIk memimai Taby 1biH, KaHa
KOHCTPYKTHBTIK AJIFOPUTMI YCBIHBLIFaH JKOHE OACTAlKbl €CEll TEPMUHJEPi Heri3iHje 3epTTesil OTBIpFaH
ecerrtig, 6ipmoHi mmerminyiHi KoaddurmenTTiK 6esriiepi aJabIHFAH.

Kiam cesdep: nepbec TybIHABI TEHIEY, YIIIHIII PETTI IICeBa0napaboIablK TEHIEY, AJITOPUTM, YKYbIK, IIEITiM.

A.b. Keanbexkosa

PazpenimmocTph 1osynepuoimdyeckoii KpaeBoii 3agaun
nnsa audpepeHnnaJIibHOTO YPaBHEHNS TPEThero MopsIKa
CO CMEIIaHHOM ITPOU3BO/IHOM

CraTbst HOCBSIIEHA UCCIEIOBAHUIO PA3PENINMOCTH IIOJIYIIEPUOINTIECKON KPAeBON 3a1a49n [JIsi SBOJIIOIINOH-
HOI'O ypaBHEHUsI THUIIA IIceBonapabondeckux. HemokaabHble 3ama4n st audepeHuaabHbIX ypaBHEHUH
C YaCTHBIMH IPOU3BOAHBIMU BBICOKOIO HODsIIKa OBLIM MCCJeN0BaHbl MHOruMmu apropamu [1-4]. Oupene-
JIEHHBIII WHTEpEC K M3YUEeHWIO JAHHBIX 33129 BBI3BAH B CBA3U C WX MPUKJIAIHBIMU 3HadYeHUsMHU. K Takmm
3a/la4aM OTHOCHATCS CHJIbHO IOPHUCTBIE CPEIbl CO CJIOXKHOM TOIOJIOrUe#, M, B MEPBYIO O4Yepe/lb, M0YBa U
moYBOrpyHT. Tak»Ke Takue ypaBHEHUsI MOI'YT OIKCHIBATH JJIMHHBIE BOJIHBI B JUCIEPCHBIX cucTtemax. JIjst
peIlleHus JTAHHOH 3aa9u B paboTe BBEJCHBI HOBbIe (DYHKIINYM M MPUMEHEH MeToJ napamerpusanun [5]. To-
rja Kpaesas 3ajada Jisd auddepeHnmuasbHOoro ypaBHeHHs] TPETHEro MOPSIKA CBOAUTCH K MEPUOIUIECKON
KPaeBoii 3a/iaue JJIsi CeMelCTBa CUCTeM OOBIKHOBEHHBIX JuddepeHnmaabHbIx ypasHennit [6—18]. [Ipeoxe-
HBI HOBbI€ KOHCTPYKTUBHBIE aJTOPUTMBI HAXOXKJICHWS MPUOJINZKEHHOTO PEIeHNsI, 1 B TEPMUHAX MUCXOIHBIX
JIAHHBIX TOJIyYeHbl KO3 UIUEHTHbIE TPU3HAKU OJJHO3HAYHON Pa3pPEIUMOCTH UCCJIEyeMO 3a/1a4un.

Karouesvie caosa: YpaBHE€HHE B YaCTHBIX IIPOU3BOJHBIX, HCGB,ILOHapaﬁOJ'[I/I‘IeCKOQ yYpaBHEHHE TPETLEro I110-
pdaKa, aJropuTMm, l'[pI/I6.HI/I}KeHHOe penreHue.
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On the solution to a two-dimensional boundary value problem
of heat conduction in a degenerating domain

The article considers a homogeneous boundary-value problem for the heat equation in the non-cylindrical
domain, namely, in an inverted pyramid with a vertex at the origin of coordinates, two faces of which
lie in coordinate planes.A solution to the problem is sought in the form of a sum of generalized thermal
potentials. There is a need to study the system of two Volterra integral equations of the second kind with
singularities of the kernel. It is assumed that densities (heat intensity) depend only on a time variable,
i.e. the density in each time section is considered constant. As a result, the system of integral equations is
reduced to the homogeneous Volterra integral equation of the second kind. It is shown that this equation
is uniquely solvable in the class of continuous functions.

Keywords: equation of heat conduction, Volterra integral equation, degenerating domain, thermal potential.

Introduction

It is shown [1-3]| that solving a homogeneous problem for the heat equation in the angular
domain G ={(z; t): t>0, 0<az<t}isreduced to solving the Volterra integral equation of the
second kind with a kernel

1 t+7 (75+7')2 1 t=7
K(t, 1) = QQﬁ{(t_T)g exp <_4a2(t—7)> + (t—'r)% exp (‘ 1a2 )} (1)

In these Refs, as well as in Refs [4-5] it is shown that the kernels of the integral equations are
“incompressible”, that is, the norm of the integral operator acting in the class of continuous functions
is equal to unity.

In all works, the boundary of the domain moves at a constant velocity. Attempts to study the
solvability of boundary value problems for the heat equation in non-cylindrical domains with a variable
velocity of changing the boundary were made in works [6].

We also note that boundary value problems for a spectrally loaded parabolic equation reduce to
this kind of singular integral equations, when the load line moves according to the law o =t or 22 =t
[7-11] and problems for essentially loaded equation of heat conduction [12].

In Ref [13] we have also investigated the Volterra integral equation with a singular kernel that differ
from kernel (1). A norm of an integral operator acting in classes of continuous functions is equal to 3
[14].

In [15], the two-dimensional Dirichlet problem for the heat equation with respect to the spatial
variable in an infinite dihedral angle was also considered. Using the Fourier transformation, the problem
was reduced to a one-dimensional boundary value problem with the parameter. In [16] the boundary
value problem for the heat equation was considered in an inverted cone. Assuming that the isotropy
property is fulfilled in the angular coordinate (axial symmetry), we have studied the problem for the
heat equation in polar coordinates, to which the two-dimensional problem in the spatial variable is
reduced.
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Now we are studying a homogeneous boundary value problem for the heat equation in the non-
cylindrical domain, namely, in an inverted pyramid with a vertex at the origin of coordinates. As in
papers [1-16], the boundary value problem of heat equation is considered in a degenerating domain,
and the problem is also reduced to the Volterra integral equation. But a kernel of the obtained integral
equation is differs from those considered by us earlier.

1 Formulation of the problem
In the domain (Fig. 1) Q = {(z,y;t), (x,y) € D;t > 0}, we consider a problem: find a solution to
the equation
ou o (0*u  *u
- — 4+ ") =0 2
o ¢ <8x2 Toz) = 2)

satisfying the condition on a lateral surface of the pyramid:

ulp = 0. (3)

Figure 1. Domain Q

where D = {(z,y),0<z<t,0<y<t},oD =T, (Fig. 2)

1Ty

. n)

T 1

Figure 2. Domain D
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2 Reducing the boundary value problem to a system of Volterra integral equations

We seek a solution to problem (2)—(3) using thermal potentials.
As is known, the thermal potential of the double layer has the form [17]:

7,/} o,7T) 8 r?
W (w,y;t ~or / t—71 n P (_4(12 (t—71) 4o, )

where an arc length o of the contour I' is counted from some fixed point, and 1 (o, 7) is a density
(intensity) is a functlon of a variable point o = (£, 1) of the contour I and of the parameter 7.

r= \/ (x — (y —n)? indicates the distance from the point (,%) to a variable point o of the
contour I', m is a dlrectlon of the external normal at the variable integration point. It’s obvious that
W (x,y;t) satisfies the heat equation (2).

We will seek a solution to problem (2)—(3) in the form of a sum of generalized thermal potentials

t T T 33'2 2
u(z,y,t) = 4@127T/0 dr/o mexp (—M) pa (n,7) dn+
t T T —T T T 2 _ 2
47r/o dT/o U (‘( 4a)2 (j_(yﬂ ) )Mz (n, 7) dn+
Lo [T s
+4(127r/0 dT/O T exp <_4c12(t—7)> o1 (&, 7) dé+

a2 gy
€Xp <_ (ZL‘ 42)2 (—:_(y,r) ) ) ¥2 (57 T) dé-v (5)

where p; (z,y;t), ¢i(x,y;t), i=1, 2, are functions to be defined.
Note that expression (5) follows from formula (4) by directly calculating the normal derivative.
We use the well-known property of the generalized thermal potential of a double layer [18].
The function W (z,y;t) is discontinuous at the contour I', and the following formulas hold:

4a?m

. 1
Wi (20, y05t) = lm Wi (x4, yi5t) = W (20, y05t) + =9 (20, Y05 ),
($7?J)—>(1’07y0) 2

Wi (zo,y05t) =  lim  Wi(a,yi5t) = W (20, yo; t) — lw (20, Y03 1),
(z,y)—(zo,y0) 2
if ¥ (z,y;t) is a continuous function, where (xg,yo) is a point of the boundary T, a point (x;,y;) lies
inside the domain, and a point (x1,y;) lies outside the domain.
From the representation (5) and from the properties of the generalized thermal potential of the
double layer, we obtain

72 —n)?
x£m+u(x vt) = 7H1 4 27r/ / t—7’ <_4a—28/77']))> iz (1, 7) dir+

(—W) o1 (€.7) dE+

+m 0 o (t—7
2 )2
/ / (t—7) <_€4;_2g_7-))> p2 (€, 7)dE = 0. (6)
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. 1 72 N2
AU (@ 9,8 = —5u2 (4 1) / / e (‘M) pa (0, 7) dn+
T —€)? 2
T ), (—M) o1 (6,7) dE+
_£)? _ )2
da?m p <_ g 42)2 (Jtr_(yT) ) ) p2 (€, 7)dE = 0. (7)

Jim .y, ) = %@1 (,t) + 4;% /Ot dT/OT(t_wT)zeXp <_m> i (n, 7) di+

a T p<—m>u2( 7)dn+
46LQW/Oth/OT(t:TT)Qexp (—W) @2 (€,7)dE = 0. (8)
S exp (—W) p1 (n,7) dn+

—7'2 T —n)?
(_(CC 4(1)2(:__(7.) ) >M2( ) dn+

o (t—1
t T T r— 2 7'2
4(1271/0 d’i‘/o mexp <_(4a2ft)—+r)> ©1 (5,7) d{ =0. (9)

We get a system of four equations with four unknown functions.

If into equations (8) and (9) the variable x is replaced by the variable y and the integration
variable ¢ is replaced by 7, then we get that these equations coincide with equations (6) and (7), and
i (y, 1) = @i (y, 1), (1 =1,2).

Thus, it is possible to solve a system of two equations with two unknown functions uy (y,t) and
p2 (y,t). For this, it is enough into equations (6) and (7) to replace the integration variable ¢ with the
variable 1 and to replace ¢; (0, 7), respectively, with u; (n,7), (i = 1,2).

As a result, we get:

! ™+ (y— )’
- t T \y=-n dn—
2" W ~ da?n / / t—T ( 4a? (t — 1) w2 (0, 7) dip
—1/dT/Tyexp n +y? L ) dn—
da?m Jo 0 (t—7)2 4a2 t—1) o
(y—7)°
B ) d 10
TS th 4a2 t—7 | (n,7) dn, (10)
U R e S G = PR
2200 = 4 (t—7)° 4a2( T) 1 g
L[ [y (r—n)* +y°
—— | d — S VA N d
Jr46%277/0 T/o (t — 1) eXp( 402 (t — 1) o (0, 7) dig

_n)? _ )2
p<_(T 42)2 J_(yﬂ ) ) pz (1, 7) dn. (11)

1
lim u(x Y, ):_2902

y—7—0

4a27

2
da=m Jy
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3 Case of a constant density (intensity) of heat propagation

We assume the following.

Let the densities (heat intensity) i (n,7) and pe (n,7) not depend on the first variable, i.e. the
density in each section S, (Fig. 2) are constant (and depends only on the variable 7), then we write
equations (10) and (11) in the form:

et [ enarmia gt [ CEELY,
3w t) 2af 3/2 1a2(t—1)) """ 2a\f NI R

2
/ e —972 (1) /T eXp 4a2(t T))d dr—
2a\f _ 3/2 P\ T a2 (t—r1) H 2a\f Vit—T1 e

—7)? T exp — : =
2af/ 3/2 <_4(ag‘;<t_)7)> p2 (T) Qaf/ \/% ))dn dr. (12)

1 / _72+(y—7])2 (r) /T exp 422(t T))d drt
gh2 (v:1 zaf 3/2 P\ Tz )" Qa\f Vs

2
/ exp (——L V() / gl dn b dr+
2a\f — 3/2 P\ T 4a2 (t—71) H 2a\f Vi—T e

— )2 T €exp 22 7 )T
2a\f/ 3/2 (‘M) pz (T) 2af/ \/;_7; ))dn dr. (13)

We calculate the internal integrals in (12) and (13).

1 T 1 exp | — (y — 77)2 dn _
2a/T Jo t—T 4a? (t — 1)

e ot () —ert ()
= — e 2= |er —er ;
ﬁ 2th; 2 20t — T 2av/t — T ’

d
2:777 idz = "

20/t — T 2a+v/t — T

y=n_ ., ___
2a/t — T 2a+/t — T

Zz =

ooz ) o (St ) =

1 /QW P F T
=— e z=cerf| ——— | ;
ﬁ 0 2 20,\/t — T

(A T (= Ny _ .o 7=n_ .. dn
X _—— e = —_— - ——
2a T Jo Vt—T P ) g 20/t — 7’ 2a/t — T

1 /2\/T gy = Lo T
= — e z=—erf| ———|.
\/77' 0 2 2&\/t — T

Substituting these values into (12)—(13), we have:

100 = gage || e () [ () o () oo
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Ry e =

4a\r / 3/2 (M) erf (MZ_—);@(TW; (14)
ot S ) R o

el e e o

— T 2 T
4a\f/ 3/2 <_46(L:g(t—)7')> eTf <W> 2 (T) dr. (15)

Since we assumed that the heat intensity (density) depends only on the variable ¢, then in equalities
(14), (15) the variable y must be considered equal ¢

o e | 7 o g T

e /J o (i) o (s 0
W/ e () ot (g e a
2057 |, G <<>) ot (o= ) et () Jm s

w/ e (i) ()

S A P

Adding the equations (16) and (1 7) we obtain the following homogeneous integral equation

- /0 K (t,7)u(r)dr =0, (18)

where pu(t) = p1 (t) + p2 (1)

g e (e o ) o ()

Since

72 t—T t t—T1

Tl 4@ i i2i—-7)

we rewrite the equation (18) in the form:

_ /Ot K (t,7) 9 () dr = 0, (19)
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e ¥ (1) = exp {j} wr),
e oonl 5] el ) for{ ) ()]

Let us estimate the integral
t
/ Ky (t,7)dr > 0.

o</A3tﬂm< ;ﬁm<£QJ@y

We introduce the replacement
2 2

t 12 t
T = e T =t — ——,dT = ——dx.
T 102227 T 94253

- 7715 )
2a\/t — T T 10222

T ( 12 ) 40222 4a?
= = T a o T T Z _1

t—T1 4a?22 12
t
TZO?ZZK; T —t= z— +o00.
2a
Then ¢ + 2 3,42
T tT > t 8a°z°t
J(t):/ eXP{—Q}dT: (t_ 2 2)' 3 2,3%
0 (t—7)3/2 4a? (t — 1) 3 4a?z t3-2a2z
t [(4a® , t +oo t 1\ _.
Xexp{—4a2<tz —1>}dz=4atexp{4(12} % <1_4(12 22>€ ZdZ:
dzx

l O —22
= 4at - exp 12w z ¢ — —= e Fdz=
2

t oo g t y
= 4at - exp w2l . T2 m—@ -e *dx.
We have used the formula 2.3.6(6) from [19], when

a = _%7/8:271): 17

4a2
a+6—1=;a+5:‘

Then \[
t t t 3 t
J(t)—4atexp{4aQ} 2a ep{ 42}w<2,2,4a2>

We use the formula 7.11.4.(8) from [20] and formula II.8 from [21]. Then

t V2Vi
J()_2t\f227exp (8 2) -D_g4 <2a> —

o 55) () () e D) e

t
=8v2at — | =
V2at exp (8a2> 2 P\ 7842 ) dz

= 4v2at exp (i) {Z: erfe <\j§> - \/%exp (—’f) +
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1 z z 22 2z 22
+§erfc <\/§> - Eexp (—2> + Eexp <—2) }Z@ =

= 4v/2at exp <822> {(822 + ;) erfe (;/D + a\\//; exp <—422> } .

J(t) = 4v2at exp (822> {(822 + ;) cerfe (‘Q/j) + a\\//;exp (—422) } (21)

We substitute the expression (21) into inequality (20):

t 4
OS/O Ky (t,7)dr < a:/éexp <4tag> -at - exp (822>{<822+;> erfc<;/a%>+
Vi ¢
“ovree (i)
or

OS/OtKl(t,T)drg ‘i}f.t. <(822+;) exp{;’;}-erfc<£> + a\/\/];exp{SZ}). (22)

Taking the limit at ¢ — 0 from (22), we obtain

Thus,

t

lim [ K(t,7)=0.

4 Main results

Thus, the following lemma is proved.

Lemma 1. Integral equation (19) has a unique solution 1 (t) = 0 in the class of continuous functions
atte0, T], 0<T < +oo.

Since

v = 13 fulr)

and 1 (t) = py (t) + pa2 (t), then the system of equations (16) — (17) is also uniquely solvable.

Further. The functions p; (t) and o (t) are the density of thermal potentials under the assumption
that the heat intensity (density) depends only on the variable ¢. Torma u3 ¢ (t) = 0 cuemyer, aro
pa (t) = p2 (t) = 0.

Lemma 2. Boundary value problem (2)-(3) in the domain @ is uniquely solvable at a constant
density (intensity) of heat propagation.

This study was financially supported by Committee of Science of the Ministry of Education and
Sciences RK (Grant No. AP05132262).
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M.T. Kocmakosa, B.I'. Pomanosckmit, JI.M. Axmanosa,
2K.M. Tyneyraesa, A.FO. Bapramesuu

2KoibLIaTblH 00JIBICTAFBI 2KBIJTYOTKI3TIIITIKTIH
€Ki eJsimreM/Ii MeTTiK eceDiHiH ImentyiHne

2KymbicTa muIHHAPIIIK eMec 00JIBICTAFbI XKBITYOTKI3TIMITIK TeH ey YITiH 6ipTeKTi MmeTTiK ecern KapacThIPbLI-
FaH, OHBIH imiHze, Tebeci KoopauHATAIAp 6achl OOJIATHIH, €Ki 2Karbl KOOPAUHATAJIBIK Ka3bIKTBIKTAP/IA Ka-
TATBIH TOHKEpiareH nupamuia. Ecer mrenryi KasmblIaHFaH KbUTY TOTEHIINAJTAPBIHBIH KOCBIHBICHI TYPiH/Ie
izmecripinren. L apochIHBIH, CHHTYIAPIBIFBL Oap eKiHIi TeKTi eki naTerpasasl Bosbrepp TeHmeynep xyitecin
3epTTey KAXKeTTLMr TybiHaai bl THIFbI3ABIK (2KbULYy KAPKBIHIBIIBIFG) TEK YAKBITIIA AfHBIMAJIBIFA TOye-
i men GOJIKAHAIBI, SSFHU 9pOIp yaKbITIIa KIMAJIAFbl THIFBI3ILIK, TYPAKTHI 00BN caHaaabl. Hormxkecinae
VHTETPAJIIBIK, TEHIEYIep Kyiteci ekiumii Tekti Bombrepmin 6iprekTi nHTErpaiablK TEHIAEYiHEe KeaTipiarex.
Y3aikciz pyHKIusAIap KaIachlHa Oy TeHIeyaiH TeK Oip raHa »KOJIMEH IIelliJIeTiHi KopceTiireH.

Kiam cesdep: XKbLny OTKI3MIITIK TeHeyi, Boabrep i, MHTErpaJIbIK, TEHIEY], JKOMBLIATBIH 00JIBIC, XKBLILY
TMOTEHITAAJIBI.

M.T. Kocmaxkosa, B.I'. Pomanosckuii, JI.M. Axmanosa,
2K.M. Tyneyraesa, A.FO. Bapramesuu

K pemennio aByMepHOIl TpaHMYHON 3aJa9n
TEIJIONPOBOHOCTH B BBIPOXKJarorieiicsa odjacTtu

B crarpe paccMmoTrpena ogHOpOaHAS KpaeBas 3a/1a4a JJIsl YPABHEHHS TEIJIONPOBOJHOCTH B HEI[UINH/IPpUYe-
CKOI1 00JIACTH, a UMEHHO, B IIEPEBEPHYTOM MUpaMUIe C BEPIIUHON B HaYaje KOOPIUHAT, IBE TPAHU KOTOPOI
JIEZKAT B KOODJAMHATHBIX IJIOCKOCTSIX. Pelllenne 3a/1a9n UIMETCsS B BUJE CYMMBI OOODOIIEHHBIX TEIIOBBIX TI0-
TeHIaJIOB. Bo3HuKaeT HEOOXOAMMOCTD NCCIEOBAHNS CUCTEMBI IBYX HHTEIPAJILHBIX YpaBHeHui Boabreppa
BTOPOT'O POJIa ¢ CUHTYJISIDHOCTSIMU sijipa. ILoTHOCTH (MHTEHCUBHOCTD TEIIA) MPEJIIOJIATAOTCS 3aBUCSIIIN-
MU TOJBKO OT BPEMEHHOM IepeMeHHOM, T.e. IJIOTHOCTh B KaXK/IOM BPEMEHHOM CEYeHUU CUYUTAETCd IIOCTO-
AHHOI. B mTOre cmcrema MHTErpasibHBIX yDAaBHEHHUII CBe/lIeHA K OJHODPOJSHOMY MHTEIDAJIHLHOMY yDPABHEHHIO
Bousbreppa Broporo poma. Ilokazano, 4ro 3T0 ypaBHEHHE Da3pelIMMO €JUHCTBEHHBIM 00pa3oM B KJiacce
HEIMIPEPBIBHBIX (DYHKITHIA.

Kmouesvie caoea: ypaBHEHNE TEILIOMPOBOIHOCTH, HHTETPAJIbHOE YpaBHeHe BosbTeppa, BHIPOKIAIONIAICT
06J1aCTb, TENJIOBOM ITOTEHIIAAJ.
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On the spectral properties of a class of high-order
differential operators with operator coefficients

In this paper, we study one class of high-order differential operators. The main feature of these operators
is their nonsemi-boundedness. The dependence of operator coefficients on variables creates additional
difficulties in the study. In the course of the study, the conditions for the existence of a solution and
separability were first found. Also studied are the questions of the smoothness of solutions and on the
spectrum of boundary value problems for unbounded differential equations with variable operator coefficients

Keywords: a differential operator, nonsemi-boundedness, an operator coefficient, a spectrum.

1 Introduction. Formulation of the problem. Statement of the main results

Boundary value problems for differential equations with operator coefficients are studied in the
papers of B.M. Levitan [1|, M. Otelbaev [2], B.A. Suvorchenkov [3], V.I. Gorbachuk, M.L. Gorbachuk
[4], .M. Gehtman [5], V.A. Mikhlets [6], P.A. Mishnevsky [7], K.N. Ospanov [8] and others. Note that
in all these papers are studied differential operators with operator coefficients of even, first, and third
order, i.e. the so-called semi-bounded differential operators and operators with a coercive estimate

Y laa(@)s?| < clp(x, )],

jal<2m

where p(x,s) = Z\a|§2m aq(x)s* x € R", and s € R™ and p is a polynomial differential operator

Lu =37 j<om Dows = (a1, a2, ... an), la| = 3700 ai,

1 Ou ., 1 Ou
) (=

a +2
Nl T yany 2,
1 Ox i 8a:n) )i

However, in applications often appear differential equations with operator coefficients that do not
satisfy the above conditions. For example, in particular, unbounded differential equations with operator
coefficients that arise in the theory of differential equations of hyperbolic and mixed types. This case
was first studied systematically in the paper of M.B. Muratbekov [9]. In this paper of the author, the
case was studied when the operator potential is independent of variables. It is known that a completely
different situation arises in the study of differential equations with variable operator coefficients, i.e.
when operator coefficients depend on variables. In this case, the main difficulty lies in the fact that
the spectrum of the operator coefficient depends on variables, and therefore, the expansion of an
arbitrary function in a series of eigenfunctions becomes impossible. Therefore, the well-known methods
used in the works of the above authors turn out to be little adapted when studying the questions of
separability, smoothness of solutions, and the spectrum of boundary value problems for unbounded
differential equations with variable operator coefficients. this paper is devoted to these pressing issues.

We believe that our results are of theoretical interest and can find application in the spectral theory
of differential operators, in quantum mechanics and gas dynamics.
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Let H is the Hilbert abstract separable space. Denote by H; = La(R, H) the Hilbert space obtained
by the completion of the set of compactly supported infinitely smooth vector functions CS°(R, H)
defined on R = (—o00, +00) with value in H by norm

1
5
) o, = / )l

which corresponds to the scalar product

+o0,
<u(y),v(y) >m,= / < u(y),v(y) >g dy.

—00

In a given space the following differential equation is considered
Lu= —u"(y) + k(y) A(y)u +ia(y) A% (y) + cly)u = f € H, (1)

Here A is a positive definite self-adjoint variable-dependent operator with completely continuous inverse
operator, y € H, o € [%, 1], k(y) is a piecewise continuous and bounded function in R, k(0) = 0 and
yk(y) > 0 at y # 0.

By L we denote the closed operator corresponding to equation (1) in H;. By the solution of equation
(1) we mean the function u € Hj if there exists a sequence {u,},2; € C5°(R, H) such that

lun = ullg, =0, | Lun = fllz, — 0

as
n — oQ.

Hence it is easy to verify that finding a unique solution to equation (1) means proving the
invertibility of the operator L for all f € H;.

Further statements of the results are given in the language of operators and we will use the results
of [9].

Theorem 1. Let the following conditions are fulfilled:

a) |a(y)| > dp > 0 is a continuous functions in R;

b) sup %Sco<oo; sup C((Z;)) < < o0
ly—t|<1 ly—t|<1

c) ‘ SU|p 1(A%(y) — A*(0) A ||m < o(1),« € [5,1];
y—t|<1

d) c(y) < coa®(y), for all y € R, cg is any constant. Then for the operator L + AE for sufficiently
large A > 0 there exists a bounded inverse operator (L + A\E)~!
Theorem 2. Let conditions a)-c) are fulfilled. Then the estimate

o' W)y + llia(y) A% (W)ulla, + lle@)ulla, < ol Lulla,,

holds for all uw € D(L), where ¢ > 0 is a constant independent of u(y).

The following new results were obtained in the work:

— conditions are found on the coefficients of high-order differential operators with operator coefficients
that provide the following properties: a) discreteness of the spectrum; b) spectrum continuity;

— a criterion is obtained for the discreteness of the spectrum of a high-order differential operator
with operator coefficients;

— the relation L~! € 0, is proved, where 1 < p < o0;
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— the class of high-order unbounded differential operators with operator coefficients whose resolvents
are Hilbert-Schmidt operators is indicated.

In qualitative spectral analysis, a special place is given to the study of the existence of the
spectrum. In the case of its existence, problems of discreteness and continuity of the spectrum are
considered. Among the papers that are similar in theme and influenced these studies, we note the
papers of B.M. Levitan, I.S. Sargsyan, A.G. Kostyuchenko, M. Otelbaev, T.Sh. Kalmenov, E.I. Moiseev,
C.M. Ponomarev, M.B. Muratbekov, A.S. Berdyshev, K.N. Ospanov, K.Kh. Boymatov, W.N. Everitt,
M. Girtz et al.

It is known that spectral analysis of differential operators studies the nature of the spectrum
depending on the behavior of the coefficients, boundary conditions, and region geometry. As an
example, the last case includes the following facts: in a bounded domain, the spectrum of an elliptic
operator with smooth coefficients is always discrete, and in an unbounded domain, the spectrum of
the same operator with a bounded coefficient is continuous.

The most significant issue of spectral theory in the study of the spectrum depending on the behavior
of the coefficients is a sign of discreteness of the spectrum. The first significant result in this direction is
the Molchanov criterion on compactness of the resolvent of the singular Sturm-Liouville equation. This
result was then disseminated to an operator of Schrodinger type by M.Sh. Birman and B.S. Pavlov,
V.G. Maz’ya, M. Otelbaev and R. Oinarov, M.G. Gasimov obtained a criterion for the compactness
of their embedding in Lebesgue space studying the topologies of energy spaces of elliptic operators.
Based on this approach, the result of A.M. Molchanov was extended to new classes of semi-bounded
differential operators whose energy spaces are embedded in some Sobolev weighted spaces.

Now questions arise about the discreteness and continuity of the spectrum of unbounded differential
operators. Here, a significant difficulty is the question of the smoothness of elements from the domain
of definition of the operator in order to extract the necessary information regarding the structure of
the spectrum. These questions have not been investigated for the operator below.

By L we denote the closure in the norm Hj = Ly(R, H) of the differential operator

Lu = (—=1)™u®™ (y) + k(y) Au + ia(y) A% + c(y)u, (2)

defined on the set C°(R, H), where m is a positive integer, k(y) is a piecewise continuous and bounded
function in R, A is a some non-negative self-adjoint operator in the Hilbert space H with a completely
continuous resolvent.

We shall assume that the coefficients a(y), c¢(y) satisfy:

i) la(y)| > do > 0,¢(y) > § > 0 are continuous functions in R.

Theorem 3. Let the condition i) is fulfilled and ¢(y) is a bounded function and let A = 0 be an
eigenvalue of the operator A with finite multiplicity. Then the continuous spectrum of L is not empty.

Theorem 4. Let the condition i) is fulfilled. Then the discrete spectrum of L is not empty if the
equality

ytw

lim c(t)dt = oc. (3)
lyl—o0
Y

holds.
Theorem 5. Let the condition i) is fulfilled and let A be a positive definite operator with completely
continuous inverse. Then the spectrum of L is discrete iff
Ytw
lim c(t)dt = oo,

ly|—o0
)

or
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y+w

lim / la(t)|dt = oo
y

ly|—o0

for all w > 0. To prove the above theorems, we will use the following auxiliary statements and estimates.
2 On a one-dimensional high-order differential operator

Consider the differential operator
lu = (=1)"u®™ (y) + e(y)u,

initially defined on CS°(R), with further closure of this operator in La(R).

The following lemmas hold.

Lemma 1. Let the condition i) is fulfilled and let ¢(y) be a limited function. Then the spectrum of
the operator [ is purely continuous.

Proof. Denote by [; the operator defined by

I = (—1)™u®™ 4 tu

on CS°(R), where b = sup ¢(t). The operator [, admits closure in La(R). Introduce new metrics in
teR
the domains D(1), D(I;) of the operators 1,1, believing

lul; =< lu,u >, u € D(); |ul;, =< liu,u >,u € D(l);

and close the domains D(1), D(l;) in these metrics.

The resulting new Hilbert space we denoted by H;, Hj, .

It is easy to see that H;, C H; u |ul;, > |u|;. Therefore, we assume that I, > [. Where [ and [; are
positive operators.

From general compactness theorems it follows: if the spectrum of the operator [ is discrete, then
the spectrum of the operator [; is also discrete; if the spectrum of the operator I; is continuous, then
the spectrum of the operator [ is also continuous.

It is known from the spectral theory of differential operators that the spectrum of I; is continuous,
then the spectrum of [ is also continuous. The lemma is proved.

Consider the operator

= (—1)™uC™ 4 (th(y) + it®a(y) + c(y))u,

where u € D(ly).
Lemma 2. Let the condition i) is fulfilled. Then the estimate
+o0,
clllul3 = /[Iu(m)|2+6((y) +[t*ay) ) |ul*)dy,
holds for all u € D(l), where ¢ > 0 is a constant independent of ¢, u.

Proof. Here and below, without loss of generality, we assume |a(y)| > 1,¢(y) > 1. Consider the

scalar product
00,

Stiwus= [ [P+ (th(y) + ita0) + ) uPldy, (4)

—0o0

where u € C5°(R).
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Further, since a(y) does not change sign, we have:

“+00,
|<hu>|zww/'mwmfw. (5)

sing the Cauchy inequality with € > 0 from inequality (5) we obtain
1 € 1 ’ 1
el + Sl = 51 [ latw)Plufdy + a0l

From this inequality, by virtue of the condition i) and d < ¢t < co we obtain the following estimate

*”ltUHQ |t|°‘ / |a(y)*lul*dy. (6)

Further, it follows from equality (4) that

~+o0,
< luyu> | = /waﬁ+uuw+w%mn+dwwwuyz

—00
“+o00,

> | [ ™R+ (thty) + o)) fuPlay | >

+o0,
>\/|u Iy~ 11| [ (kwlhuPy].

Here, according to the Cauchy condition with € > 0, it is easy to verify that

+o00, +o00,
1 1 m
sl = 5 [ (P Py~ 1] [ bw)lluPdy. (7)

Using the Cauchy inequality and condition i), from inequality (5) we obtain

leewl3 > J¢*05 13 (8)
Combining (7) and (8), we find
+o0,
leull = 5 [ (™ + )l Q
oo
From inequalities (6) and (9), we have
+00,
c(e, do) [llrull3 > /Hu(m)!QJr(C(y)Hﬂ“\a(y)\)\u\z]dy,

where ¢(e, §g) > 0.
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Lemma 3. Let the condition i) is fulfilled. Then the estimate

C

s <

holds, where 0 < d < t,¢ > 0 are independent of ¢, € [%, 1).

The proof of Lemma 3 follows from Lemma 1.2.2. of paper [9].

Lemma 4. Let the condition i) is fulfilled. Then the operator [, Uis completely continuous iff the
equality (3) holds.

Proof. We will use the method proposed in the paper of M.B. Muratbekov [10] for mixed type
operators.

Necessity. Suppose that the condition of Lemma 4 is not satisfied. Then there exists a sequence of
intervals Q4(y;) C R such that

sup / c(t)dt < c,
Qal(yi)

where d > 0, i.e. when the interval Qq(y;), goes to infinity with keeping length.
Let w(y) € C§°(Q(0)). consider set of functions such that

uj(y) = w(y — vi)-
For these functions, it is easy to establish the following inequality
[0 ™ () + (th(y) + it aly) + c))ujl2 < ¢ < oc, (10)

holds as 0 < t < N, where N is a finite number, ¢ is independent of j.
It is not difficult to verify it follows from Lemma 3 that

i — 0

as t — oo.
The last property was taken into account in the proof of inequality (10).
It follows from inequality (10) that

Fj(y) € La(R), suppF;(y) C Qalyi),

where Fj = (—1)mu§-2m) + (tk(y) + it“a(y) + c(y))u.
Now it is easy to show that the sequence Fj(y) converges weakly to zero. Indeed

+o0,
| < Fiy),o> | = / Fy(y)o(y)dy| = / Fy(y)u(y)dy| <
—o0 a(y;)

<| [ Bwa| | [ Fona| el [ Pw ()
Qaly;) Qaly;) Qaly;)
for any v € Lo(R). Obviously [ v?(y)dy — 0 as j — oo, since v € Lo(R). Hence and (11) it follows

Qaly;)
that the sequence {F;(y)} — 0 converges weakly at j — oo.

It is easy to verify that
HUjHQ =c>0. (12)

Cepust «Maremarukas. Ne 2(98)/2020 115



M.B. Muratbekov, S.Zh. Igisinov, et al.

Since, if the operator [ !'is compact, then the sequence {u;} should converge to zero by norm
Ls(R). And this is impossible due to (12). The necessity is proved.
Sufficiency. Repeating the calculations and arguments used in the first part, we have

R(ly) € L (R, c(y)),
where L3 (R, c(y)) is a replenishment C§°(R) by norm

1
2

[ull Ly (rc() = (/(u(m)2+6(y)u2)dy

By the results of |9, 10|, any bounded set in L5*(R,c(y)) is a compact in Lg(R) if and only if the
condition of [9, 10] are satisfied, i.e.
C*(y) — oo, (13)
y+4
as |y| — oo, where C*(y) = inf{d~' : d'72™} > [ c(t)dt.
d
L)
It follows that it is sufficient to prove the equivalence of conditions (13) and (3).
Suppose that (13) is not satisfied. Then there exists a sequence of points y,,n = 0,1,2,... and
constants ¢ such that ¢*(y,) < c.
By virtue of equality

di=2m — c(t)dt,

it follows from the definition of ¢*(y), we obtain that there exist intervals A,, which go to infinity,
keeping the length and

/c(t)dt < < 00.
An
The last inequality shows that condition (3) is not satisfied.
Conversely, let condition (3) not be satisfied. Then there exist some disjoint intervals A,, which go
to infinity with keeping length.
From the definition ¢*(y) we obtain ¢*(y,) < ¢, where y,, is a centre of A,. This means that (13)
is not satisfied, therefore (3) and (13) are equivalent. The sufficiency of Lemma 4 is proved.
Lemma 5. Let the condition 1) is fulfilled and d < t < oo, d > 0. Then the operator I;” Lis completely
continuous iff for any w > 0:

ytw
lim c(t)dt = oo, (14)
ly|—o00
Y
or
ytw
lim a(t)dt = oo, (15)
ly|—o0
Y
Proof. Note that the coefficient of i(2 = —1) under any t does not vanish, since ¢ varies on the

interval (d, oo).

This means that when studying the spectral properties of the operator [, ! we must take into
account the behavior of both coefficients a(y) and ¢(y).

We consider first the case (14). In this case, repeating the arguments and calculations used in the
proof of Lemma 4, we obtain the proof of Lemma 5.
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Now we will consider the case (15).
Necessity. To prove this, suppose the contrary; let the conditions of the lemma not be satisfied.
Then there exists a sequence of intervals Q4(y;) C R such that

sup [ Jat)ldt <

Qa(yi)

where d > 0. The interval Q4(y;) goes to the infinity keeping length.
Let w(z) € C§°(Q(0)). Consider a set of functions such that u;(y) = w(y — ;). Then it is easy to
estimate
[0 + (th(y) + ita(y) + ()13 < e < oo,

where c¢ is independent of j.
Let

Fj = (—1)™d®™ + (th(y) + it*(a(y)) + c(y))u, suppF;(y) C Qa(y:).

Hence Fj(y) is converge weakly to zero.
The proof of necessity completes same as in Lemma 4.
Sufficiency. It follows from the results of Lemma 2 that

R(I;Y) € Wi o(R), (16)

where W3 _(R) is the function space with norm

N|=

[ W, (R = /[Iu(’")!2 + (la(y)| + c(y)) lul*)dy

It is easy to verify that
W3le(R) C W3, (R) (17)

Indeed, let u(z) € W3, .(R). Then the estimate

+00 too
/ [u™ ]2 + a(y)|[ul?)dy < / a2 + (Ja()] + e())|ulldy

holds. The last estimate proves inclusion (17). From here and (16) we have
R C WL (R). (18)

Further, from (18), using arguments similar to those of Lemma 4, we obtain a proof of sufficiency.
Proof of continuity and discreteness theorems.
Proof of Theorem 3. Denote by {e,,} complete orthonormal system of eigenvectors of the operator

A. Then the equality
= Z Un, (y)en,
n=1

()7, = leun )3

holds for all u(y) € H.
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Immediately following equality is easily verified

Au = i Antn (Y)en;

n=1

A% = Z At (Y)en.
n=1

This shows that the separation of the variables of the spectral problem

Lu = \u
reduces to the following spectral problems
—uZ™ (y) + (k(y) A + ia(y) Ny + e(y))un = Mun(y), (19)
n=123,..

If A is a spectrum point of L, then A is the spectrum point of one of the operators (19). And vice
versa, if A is a spectrum point of one of the operators (19), then A is the spectrum point of L.

Now, if we use the assumption of Theorem 1, that A = 0 is an eigenvalue of finite multiplicity, then
Theorem 3 follows easily from Lemma 1.

Proof of Theorem 4. Similarly reasoning and using Lemma 2 we obtain the proof of Theorem 4.

Proof of Theorem 5. In Theorem 5, we assumed that the operator A is the positive definite self-
adjoint with a completely continuous inverse, and this is due to the fact that the smallest eigenvalue
of this operator is nonzero. Now the theorem being proved follows from Lemma 4.

8 On the properties of a resolvent of a single unbounded high-order
differential operator with an operator coefficient

Let H is the separable Hilbert space. Denote by C§°(R, H) is the set of infinitely smooth compactly
supported functions defined on R(—o00,+00) with value in H.
Consider the differential operator

Lu = (=1)"u®™ (y) + k(y) Au + ia(y) A%u + c(y)u,

wherem = 1,2, ...,u(y) € C3°(R, H), A is the positive definite self-adjoint operator in the Hilbert space
H with a completely continuous resolvent, @ € [$,1),k(y) is the piecewise continuous and bounded
function in R, k(0) = 0 and yk(y) > 0 at y # 0.

Let the conditions

1) la(y)| > do > 0,¢(y) > 6 > 0 is continuous functions in R,

2) sup Z(—i)§6<oo, sup %§60<oo;

lz—t|<1 lz—t|<1
3) 0< 6 <2 at y € R hold.
The following theorems hold.
Theorem 6. Let conditions 1) -3) are fulfilled. Then the resolvent of the operator L belong to oy, if

p>1and

> b m(—p+1) .
Z/Q 2 (j,y)dy < oo,

=10

o0
where oy, is the set of all completely continuous operators such that ||All5, = > Sh(A4) < 0o, Sp(A) is
n=1

an eigenvalues of VA*A, Q(t,y) = |a(y)it™ + c(y)|?.
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Theorem 7. Let conditions 1) -3) are fulfilled and

[e.e]
Z n'A, 1t < oo,
n=1

forall 0 <1< 14 s,s >0, where A\, is an eigenvalues of A. Then the resolvent of the operator L is a
Hilbert-Schmidt operator if a="(y) € Li(R).

To prove the above theorems, we use the following auxiliary statements and estimates.

Consider the operator defined by the equality

o= (=1)"u®™ 1 (th(y) + it"aly) + c(y))u

in LQ(R),d <t <oo.
It is known from the results of the first part that, under conditions 1)-3), there exists a resolvent
l; and the estimate

(m) 2 Qo 2 2 2 9
|+ e atyyull + lletwyully < e (el + ul3) (20)

holds for all u € D(l;), where ¢ > 0 is independent of v and t.

Let A be a completely continuous operator. It is known that the eigenvalues of the operator (A*A)%
are called s—numbers of A. Nonzero s—numbers will be numbered in decreasing order, taking into
account their multiplicity, so

si(A) = A\((A*A4)2),5=1,2, ...

We introduce the following function N(X) = ) 1 is the number s; greater than A > 0. Let
Sj >A

M = {u € Ly(R) : |lleu]]3 + |[ul3 < 1.

Denote by dj, is the Kolmogorov k-width of the set M in La(R).
By definition

dr, = inf sup inf ||u— o],
{er} ue M VEPK

where "infimum"takes over all subspaces ¢ dimensionality < k.
Lemma 6. Suppose that the conditions of Theorem 4 are satisfied. Then the estimate

dy, < cAdy,
holds, where dj, is the Kolmogorov k-width of the set
M = {u € Ly(R) : [u®™ |3 + [le(y)ull3 + [[t*a(y)ull5 < 13,

where ¢ > 0 is any constant.
Proof. It follows from the hypothesis of the lemma that the estimate (20) holds for all u € D(l;).
Hence
™3 + llt*a(y)ull3 + le@)ulld < A(lleull3 + [lul3) < ¢,

for all w € M, where ¢ > 0 is a constant independent of ¢ and wu.
Therefore M C M_2.
Now, using the property of the widths, we have

di < 02d~k.

Lemma 6 is proved.
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Lemma 7. Let the conditions of Theorem 4 is satisfied. Then the estimate
N(\) < N(c2)),

holds, where N(A\) = 3 1 is the number of width dj, greater than A > 0, N(A) = 3 1 is the number
d>A dp>A
of width dj, greater than A > 0.
Proof. By virtue of Lemma 6 we have

=) 1< ) 1= > A=N(.

di>A 02d~k>)\ Cl;€>c_2

Lemma 7 is proved.

Denote by N(A\) = 3. 1 number of singular numbers s;(j = 1,2,...) of [, ! greater than A > 0.
Aj>A
Lemma 8. Let the conditions of Lemma 7 be satisfied, then the estimate

N\ < c)f%mes(y €ER:Q7Z(ty) <A™,

holds, where c¢ is a constant independent of Q(¢,y).
Proof. It is known

3j+1(lt_1) = d]?] = 1727 ceey
where d;, j is the width of M.
Denote by L?Q( 1y) SPace obtained by replenishment Cy(R) relative to the norm

+oo 2

w Lguy| = | [ [+ Qe pluldy

It is clear that N C LT Oty)
Now the proof of the lemma follows from Lemmas 6 and 7 and the results of [10].
Proof of the main theorems.
Denote by sj; singular numbers of [;,j = 1,2, .... It is easy to verify the inequality

DD si<ey Y di

holds. Let
F() =N,
where N(-) is the function of the distribution widths dj;,7 = 0,1,2, ... greater than A > 0. Note that
—0; _ 1
F()\)—Olf)\chjo—dJ—_o.
Since F()\;) = j at \; = d;;', then

Ji

oo >\n &)
I SEUD IS ST BED S ErlVED o) Py
j =1 J 0 J 0

We transform the internal integral like follows.
Let a; = dﬂH, where {aljer1 i2o- Then integrating by parts, we have
/)\ PAF( /A PAF(Nj) = A PF() — /)\jplF()\j)d)\j =

0
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=X PF(q) — 0;0F(8;0) — / APTER(N)d),
0
where 5]'0 = d%o So F(éjo) =0.
Due to the last equality, this equality takes the following form

Qg [e73
/ A PAF (M) = P F(ayi) — / APTLR(A)dA; . (21)
0 0

Using the condition of Theorem 6 we obtain

+oo
m(=pt1) m(=pt1)
/ Q=2 (Jydy > / Q2 (Jydy >
oo mes(yERQ™ 2 (y)>c))
—m(=p+1)
> / Q2 (ydy=
mes(yeR:Q™ 7 (j,y)>eN)
- / Q 2P Vdy > W lmes(y € R: Q2 (j,y) > c)).
mes(yeR:Q™ 7 (jy)=eN)
Hence 4
mes(y € R: Q7 (j,y) <eA™h) < S AN~
TR m(—pt1) .
where A= [ Q™ 2 (j,y)dy.
From th_e last inequality and Lemma 8, we have
N < e oanrHik
AP=D+5;
Hence we obtain .
A—0—5))
dfy, <c —
(k+1) p—(1— )]

This inequality shows that outside the integral term of equality (21) is equal to zero as k — oc.
o0
Now it remains to calculate the integral [ )\;p “'F (Aj)dA;. Directly calculating, taking into account
0

Lemma 8, we have
/Aj‘p‘lF(Aj)dAj < c/)\j_p_l)\jmes(y €R:Q7%(t,y) < cNd); =
0 0

(e o] oo

= cl/)\jpmes(y €R:Q% (t,y) < e)j)d)j = ¢ /mes(y eER:Q%(t,y) < c)\j)al/\;p+1 =
0 0

= cl)\;pﬂmes(y ER:Q%(t,y) <c)\j) — cl/)\jp+1dmes(y €R:Q%(t,y) < c\j).
0
All outside integral terms disappear.
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It remains to verify that

//\j_pﬂdmes(y eR:Q=(ty) < cAj) /QZL Pt y)dy. (22)
0 0

Indeed, this follows from the fact that for any sequence of points

<< <EHEL <G <

correspond to Darboux sums

S = Z MpmesQ;
k=1
S = kamest,

B
Il

1

where Q= {z € R: &1 < Q2 (t,y) < &},

My = sup Q2 PHU(¢, ) my, = inf Q% P (t,y).

€y, €
The inequality
e} o
> G mesy, < S <5 <Y & mesy (23)
k=1 k=

1
holds. If the right integral exists in (22), then, by virtue of (23), there exists the left integral and they
are equal.

Theorem 6 is proved.
Proof of Theorem 7. We have

1 1
< )
iAaly) + c(y)[™ = Aplaly)[™

\3

Q2 (ny) =

n=123,..
This and Lemma 6 it follows that

z/Q nydy@ma/‘ /mwdiA

Now, using condition 2), from the last inequality we obtain the proof of Theorem 5.
This work was done on grant financing of the Ministry of Education and Science of the Republic
of Kazakhstan on project AP05131080.
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OmnepaTopiibl KO3 PUIUEHTTI 2KoFrapbl peTTi auddepeHnna abIK,
ornepaTopJap/biH 6ip KJIACHIHBIH, CIIEKTPAJIbJIi KACUETTEPI TypPaJibl

Makasaga »xorapbl peTTi JuddepeHInalIbK, oepaTopaapAbiy, 6ip Kiaacel 3eprresred. Mynait oneparop-
JIApIBIH, HET13T1 epeKIesTiri oJap/IblH KapThlaail meneMeren 6orybiaaa. OmnepaTopsibl KoddduimenTTep-
JIiH, affHBIMAJIbLIAPFa Toye Il 60JIybl 3epTTeyie KOChIMIIA KUbIHJIBIKTAD TYFbI3abl. 3epTTey OapPBbICHIHIA €H,
aJabpIMEH MIeNnMHIH 6ap 601y maprrapsl koHe 6esikTeHyi aHbIKTaFaH. COHBIMEH KaTap alHBIMAJIBI OIle-
paTopsibl KO3hMUIIMEHTTI KapThLIail meneMerern nudepeHuasiIblK TeHIeYIep YIMiH MeniMHAIH TericTiri
JK9HE IIEKAPAJIbIK, €CENITEP/IiH CIIEKTPiHe KATBICTHI MOCEJIESIED 3ePTTE/€eH.

Kiam cesdep: muddepeHnnanabik OnepaTop, >KapThLaai IeHeIMereHIiK, OIepaTOPIbl KO3(MMUIMEHT, CIIEKTP.

M.B. Mypar6ekos, C.2K. Urucunos, 5.M. Mycuimmos, P.P. Makyn6exkora

O cneKTpaJIbHBIX CBOICTBaX OJHOIO KJjacca auddepeHImaabHbIX
OIepaTOpPOB BBICOKOTO IIOPSIKA C ONepaTOPHBIMU KO3(dUuImeHTaMmn

B craTbe uccnemoBan omun kiacce auddepeHImaibHbIX OTEPATOPOB BBICOKOTO MOPsiAKA. [JtaBHOI 0cobeH-
HOCTBIO JIAHHBIX ONEPATOPOB SBJISIETCs] UX HEIOJIYOIPDAHUYEHHOCTb. 3aBUCUMOCTH OIEPATOPHBIX KO3 du-
[IMEHTOB OT IIEPEMEHHBIX CO3/aeT JOIOJHUTEIbHbIE TPYJLHOCTH B HCCIEJOBAHMH. B Xole mccienoBaHus
CHavaJIa HaMJEHbl YCJIOBUS CYIIIECTBOBAHUS PEIIEHUs] U Pa3/IeTMMOCTH. TakKe M3ydeHbl BOIIPOCHI IVIAIKO-
CTH PeIeHn#l U O CIIEKTPe KPAaeBbIX 3aJad JjIs HEIOJyOIDAHUYEHHBIX AuddepeHnaabHbIX YPAaBHEHH C
IepeMeHHBIMU OI€PATOPHBIMUA KO3 PUITUEHTAMMU.

Kmouesvie cnrosa: nuddepeHInaabHbIi OIIEpaTOp, HEMOJIYOIPAHUYEHHOCTD, OIEPaTOPHbIA Kodd dburment,
CITEKTP.
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Multiperiodic solution of linear hyperbolic in the narrow
sense system with constant coefficients

There is researched existential problem of a unique multiperiodic in all independent variables solution
of a linear hyperbolic in the narrow sense system of differential equations with constant coefficients and
its integral representation in vector-matrix form. To solve this problem, based on Cauchy’s method of
characteristics, a constructing methodology for solutions of initial problem system under consideration with
various differentiation operators in vector fields directions of independent variables space has been developed
based on projectors. Using this method, Cauchy problems for linear system with integral representation
are solved. The introduced projectors by definition characteristic had significant value. By solving the main
problem necessary and sufficient conditions for existence of multiperiodic solutions linear homogeneous
systems other than trivial are established. The conditions are obtained for absence of nonzero multiperiodic
solutions of these systems. In absence of nonzero multiperiodic solutions linear homogeneous systems,
the main theorem on existence and uniqueness of multiperiodic solution linear nonhomogeneous system
with derivation of its integral representation depending on projection operators is proved. The developed
method has prospect of extending the results to quasilinear system under consideration, as well as to
multidimensional vector t = (¢1, ..., t ) and multiperiodic matrices at partial derivatives of unknown vector-
function.

Keywords: hyperbolic system in the narrow sense, multiperiodic solution, method of characteristics, projection
operators, differentiation operators by vector fields, integral representation.

Introduction

Solving many problems of modern science and technology, one often has to deal with oscillatory
processes, which are described by partial differential equations. In this regard, the study of oscillatory
processes described by single and multifrequency periodic solutions of differential equations systems
has important theoretical and applied value. It is known that the basis of theory oscillatory solutions of
differential equations originates from the classical works of A.M. Lyapunov, A. Poincare, N.M. Krylov,
N.N. Bogolyubov, Yu.A. Mitropolsky, A.M. Samoilenko, A.N. Kolmogorov, V.I. Arnold, Yu. Moser et
al.

Methods for integrating systems of quasilinear differential equations with the same main part
regarding this note are described in [1-6]. Note that the integration of quasilinear differential equations
systems with different principal parts refers to little-studied problems in the sections of the theory
partial differential equations. Therefore, the development of methods for solving problems of multi-
period solutions of such systems is at the initial stage of its development. It is known that the basis of
theory multiperiodic solutions of partial differential equations systems with one differentiation operator
was laid in [4-10]. Some ideas of the methods of these works, based on research [11-14]|, were extended
in [15-17] to the study of problems on multiperiodic solutions of quasilinear equations systems with
various differentiation operators along their characteristics.

In [15], the question of almost multiperiodic solutions of systems with small nonlinearity is studied,
when the matrix of coefficients of the linear part has a triangular form, and the differentiation operators
are row-wise different.

In the study [16], a quasilinear system with two differentiation operators is considered and the
conditions for the existence of unique multiperiodic solution this system are established in the noncriti-
cal case.
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In a note [17], multiperiodical in wide extent solutions of the periodic boundary value problem for
linear systems that decompose into linear subsystems with various differentiation operators along the
directions of vector fields of spatial variables are studied.

The issues of solutions of quasilinear equations systems that are almost periodic in time variable,
the linear parts of which decompose into independent subsystems with its differentiation operators,
were researched in the monograph [6] in terms of the matricant.

Splitting the linear part into independent subsystems is a very special case in which the problems
under consideration are solved. Consequently, these tasks remain open to the general case.

In [18-20], the problems on multiperiodic solutions are investigated by introducing a projection
operator. The aim of this paper is to substantiate the method of the projection operator for studying
an initial and a multiperiodic problems the linear hyperbolic in the narrow sense systems with constant
coefficients.

It is known that the basis of the general theory of partial differential equations systems are methods
for studying linear systems. Moreover, in the oscillations theory of continuous medium of noninteracting
particles, problems associated with the study of its vibrations mainly lead to the study of multiperiodic
solutions of linear equations systems. In most cases, linear equations, in comparison with nonlinear
ones, are considered to be studied quite widely and deeply. But these linear problems are so diverse
that among them there are either poorly studied or generally unstudied until today. The latter also
includes the problem that was posed above for linear systems.

Let the oscillatory process in the continuous medium be described by system of equations
%—FA% = By + ¢(1,1), (1)
where y = (y1,...,¥n) is unknown vector-function; 7 € (—oo,+00) = R and t € R; A and B are
constant n-matrices; ¢(7,t) is n-vector function.

The initial-boundary value problems for system in the form (1) have been studied in various
literature, in particular, in monographic works [1-3|, with constant and variable coefficients in terms of
solutions in the wide extent, and a detailed study has been carried out for systems in the scalar form.

In this paper, we consider the problem of existence and integral representation in the vector-matrix
form of a unique (€, w)-periodic solution of system (1) with the following assumptions:

19, The matrix A has various real eigenvalues \; = \;(A), j = 1,n:

)\j * e, J,k=1,n, )\j € R. (2)

System (1) under condition (2) is called hyperbolic in the narrow sense [2].
20, Matrix B satisfies the relation

det[Y (0) — E] # 0. (3)

Here Y (7) = exp[Br7], E is identity matrix.
Under condition (3), homogeneous system corresponding to system (1) has no (6,w)-periodic
solutions, except for the trivial one.
30. The vector-function o(7,t) has properties of (6, w)-periodicity and smoothness with respect to
(1,t) order (0,1):
o(t+0,t+ qw) = p(7,t) € C(%’l)(R xR), q€Z, (4)

T,

where 6 and w are rationally independent periods; Z is the set of integers; C’g)t’l)(R X R) is the class of
functions possessing the indicated smoothness properties in order (0, 1).
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Main Results

By linear replacement
y=_Czx (5)

with nondegenerate constant n-matrix C' the system (1) is reduced to form

Ox ox
5 +J§ Kz + f(7,t), (6)

where z = (21,...,4,); C YAC = J = diag[\1,...,\s]; C7'BC = K is constant n-matrix and
C~lp(r,t) = = f(r,t) is vector-function.
Matrix X (7) in the form of
X(7) = exp|K7] = exp|C ' BC1] = C~texp|Br|C = C7Y (7)C

is matricant of system

Ox Ox
—+J—=K 7
or Tar TR @)
and X(0) = E.
Denote vector-function f(7,t) = C~1¢(r,t), the same like o(7,t), has properties (#,w)-periodicity

and smoothness of order (0, 1):
Fr+0,t+qw) = f(r.t) € OV (R x R).

This can easily be verified on the basis of condition (4).
To study the main question, it is necessary to solve the problem for system (7) with the initial
condition

2lr—r, = u(t) € O}V (R). (7°)

Obviously, by virtue of the statement of problem (7)-(7"), we are dealing with differentiation
operators D = (D, ..., Dy), that coordinate-wise act on vector-function z(7,t) = (z1(7,t), ..., x, (7, 1))
with the property of smoothness (1, 1)) with respect to (7,¢) in the form

Dzx(1,t) = (Diz1(7, 1), ..., Dpzp(7,1)). (8)

As can be seen from system (7), on the left side these differentiation operators D;x;, j = 1,n are
defined as

ox; ox; .
Dja:jza—;—i— ja—tjzo, j=1,n, (9)
which in the directions of corresponding vector fields
dt .
i Aj, j=1n (10)

act like a normal differentiation operator with respect to 7.
Each of the equations (10), which determines the direction of differentiation, can be called the

characteristic equation of operator D; = + Aj—;. Then the general solution

ar Vot

t=0+X\(1—35)=hj(r,s,0), j=1n (11)

defines the characteristic h;(7, s, o) of operator D; coming from initial point (s,o) € R x R.
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Thus, for characteristics, we have a common notation h(r,s,o), which as values can take one of
the known characteristics h;(7,s,0), j = 1,n. Therefore, we have

h(r,s,0) € {hi(7,8,0), ..., hn(T,5,0)}, (12)

where hj(7,8,0)|;=s = 0.
d
Obviously, the operators D; move on to the total derivative operator e with respect to 7, along
T

the characteristics ¢t = h;(7, s, 0) defined by relation (11) and we have

Dl“t:h('r,s,a) = (D1m1|t:h1(’r,s,a)v SR Dnl‘n|t:hn(7',s,o)) =

d d d
= (—xl(T, hi(7,8,0)), ..., —p (T, hn(T,S,O'))) = —ux(7,h(1,8,0)). (13)
dr dr dr
Thus, a relationship is established that expressed by relation (13) between the differentiation

d
operator D acting by formula (8) and the total derivative . of the vector-function z(7,t) along
T

characteristics (11)—(12).
Next, to ensure output of function defined on characteristics h(7, s,0) € {h1(7,5,0), ..., hn(7,5,0)}
in the space of variables (7,t), from the characteristics (11) we determine the first integrals

hj(s,7,t) =0, j=1n (14)
of characteristic systems (10) and we have
h(s,7,t) € {hi(s,T,t), ..., hn(s,7,1)}.

It’s obvious that

Djhj(s,’l',t) = 0, j = 1,n. (15)

Moreover, if H;(t) an arbitrary differentiable function, then

DjHj(hj(S,T,t)):O, (S,T,t)ERXRXR, j=1n. (16)
Thus, if the function x(7,t) = (x1(7,t), ..., z,(7,t)) is defined along the characteristics (11)—(12):
(.%'1(7’, h1(8,7‘, U)),...,l’n(T, hn(87770)))1 (17)

then in respect that (14) from function (17) we obtain the function z(7,t) defined as (7,t) € R x R,
by virtue of the relations

h;(1,s,hj(s,7,t)) = hj(t,7,t) =t, j=1,n. (18)

The rightness of relations (18) is easily verified on the basis of (11) and (14).
We begin the integration of system (7) from the system

ox Ox

—+J—==0 19

or * ot (19)
with unknown vector-function = = (z1, ..., ).

By virtue of (8)—(9) and (13) system (19) can be represented as

or in scalar form

Djxj = 0, j = l,n. (21)
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Then, by virtue of identities (15)-16), we have the basic solution
:LI(S7 7—7 t) = (hl (S? T’ t)? M) hn(s7 T’ t))

with coordinates

xj = hj(s,7,t), j=1,n,

satisfying the initial conditions
hj(s, T, t)|;r=s =1t

and general solution
x(s,7,t) = H(h(s,7,t)) = (H1(h1(s,7,t)), ..., Hy(hn(s,7,1))) (22)

with arbitrary differentiable n-vector-function H(t) = (Hi(t), ..., Hy(t)).
Then the solution z of system (19) with the initial condition

‘T|T:TO = u(t) (190)
and the vector-function w(t) = (uy(t), ..., un(t)) € Ct(l)(R) is determined by relation (22) by choosing
an arbitrary vector-function H(t) = u(t )

Consequently,
(70,7, t) = w(h(7°, 7, 1)) = (u1 (R (7%, 7,1)), ooy tn (A (70, 7, 1)) (23)

represents a solution of the initial problem (19)-(19%), otherwise, relation (23) can be called the zero
of the operator D with initial condition (19°).

Thus, we have the following statement.

Theorem 1. A solution of the initial problem (19)—(19°) is determined by the relation (23).

Hence we have an obvious consequence.

Corollary. In the case of narrow hyperbolicity of system (1), the vector-function y = Cx(7%, 7,t) is
a solution of equation

or ot

satisfying the initial condition y|,—,0 = Cu(t),
where C' is the transformation matrix (5); (7%, 7,t) is the solution to problem (19)—(19).

Now we consider the system of homogeneous equation (7) with the initial condition (7°).

Let the matrix be represented in the form X (7) = [acjk(T)]?, k = 1,n. Then, using the n-vector-
functions X;(7) = (x1(7), ..., xjn(7)), j = 1,n, composed from rows of matrix X (7), we have its vector
representation

:()7

X1(71)
X(n=1 .. |. (24)
Xn(7)

Next, based on the initial vector-function u(t) = (ui(t), ..., un(t)) € Ct(l)(R), we compose a matrix
U(h) defined along the first vector-integrals (12) with a representation of the form

ul'(h1(79,7,1))
Uh(7%7,t) = =
ul (R (70, 7, 1))
(ur (h1(7°,7,1)), oo un (h1 (70, 7, 1)) Ui (hy (79, 7,1))
(1 (70,7, 0))s oes tn (70,7, 8))) ) \ U (B (70, 7, 8))

where u” is transposed vector w.
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Now we construct the vector-function (7%, 7,t) using the scalar product of vector components of
matrices (24) and (25), in the form

(X1(1 —79), Ur(h1 (70, 7,1)))
z(70,7,t) = . (26)
<Xn(T - TO)? Un(hn(Tov T, t>)>

By a direct check, we verify that the vector-function (26) is a solution to the initial problem (7)—(7°).

Now, to represent the solution (26) of system (7) as the product of matrix and initial vector-function
(79), we introduce the operator P = diag[P}, ..., P,], where P; acts on the vector-function u(t) defined
along the first integrals in the form

Pjug(h(7%,7,t)) = up(h; (1%, 7,1)), 4,k =T1,n.
Therefore, solution (26) can be represented as
(70, 7,t) = PX (1 — 0 u(h(1%, 7, 1)), (27)

where the matrices on the right are determined by the relations
i,J=n

PX(t—7% = [xij (r— TO)BLJ:1

and
PX(tT— To)u(h(TO, T,t)) =
2,J=n

= {xij(r — 70 u;(hi(r°, 7, t))] :

Q=1

L,j=n

= [xij (1 — 7°) Py (h(7°, 7, t))}

Indeed, the equivalence of relations (26) and (27) is visible from the following chains of transformations

3,j=1

PX (1 — mu(h(°,7,t)) = diag[Py, ..., Py ([xz‘j(T _ TO)]?U(h(TO,T, t)))i’j:” _

ij=1
= diag[Py, ..., P, (Z zi (1 — 0 ug (h(7°, 7, t))) =
i=1
(P szk (1 — N (h(r°, 7 t))) (Z zi (1 — 7°) Py (h(7°, T, t))) =
i=1 =1

i=n

(lek 7 — 1y (hi(7°, 7, t))) =

=1

iz (X0 =70, Ui (70 7,1))
= (XKilr =), U7, 0))) =
B (Xn(1 =79, Upn(hy (72,7, 1))

Thus, based on the projector P, the solution of problem (7)—(7°) is determined by relation (27).

Lemma 1. The initial problem (7)—(7") has a unique solution x(7°,7,t), which with the help of
matricant X (7) and projector P is represented in the form of relation (27).

The existence of solution in the form (27) is justified above. Uniqueness follows from the existence
of the matricant X (7) of system (7).
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Theorem 2. Let system (1) satisfies condition (2). Then the system

% + A% = By, (28)
has a solution y = Cx(7°, 7,t), where is the transformation matrix (5), z(7°, 7,t) is the solution (27)
of problem (7)—(7°).
The proof of Theorem 2 follows from the reducibility of system (28) to system (7) based on
transformation (5).
Now we consider the initial problem for the nonhomogeneous system (6).
It is easy to verify that the vector-function

:U(TO, T, t) = PX(T)u(h(TO, T,t)) + /PX(T)Xl(S)f(S, h(s,T,t))ds (29)

70

is a solution of system (6) with the initial condition z|,—, = u(t) € Ct(l)(R).
Based on the transformation (5) from the representation (29), we have a solution of system (1) in
the shape of

y(19,7,t) = PCX(7)C Yo(h(r%,7,1)) + /PCX(T)Xl(s)Clgo(s, h(s,T,t))ds, (30)

70

where v(t) = Cu(t).

Obviously, CX(7)C~! = Y(7) is a matricant of the homogeneous system (28) corresponding to
system (1).

Then we obtain a representation of solution (30) using the matricant Y'(7) in the form

y(r°, 7,t) = PY (7)v(h(7°, 1,1)) +/PY(T)Y1(5)cp(s,h(s,T, t))ds, (31)

satisfying the initial condition
1
Ylr—ro = v(t) € CV(R). (1)

When deriving formula (31), all its constituent parameters are uniquely determined.

Therefore, the solution (31) of system (1) with the initial condition y|,—, = v(¢) = Cu(t) is unique,
where u(t) € C’t(l)(R).

Thus, the following Theorem 3 is proved.

Theorem 3. Let conditions (2) and (4) be satisfied. Then the initial problem (1)-(1°) is uniquely
solvable in the form of relation (31).

Note that the representation of solutions (31) implies the representations of solutions (23) and (27)
of systems (19) and (7), respectively.

The essence of Theorem 3 is that the general solution of initial problem is defined as product of
matricant and initial vector-function with certain directions of differentiation with respect to vector

fields.
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Multiperiodic solutions

Lemma 2. Suppose all eigenvalues A\;j(A), j = 1,n of matrix A are real and non-zero, moreover w,
A0, j = 1,n, rationally incommensurable:

Aj(A) #0, ;;egzcz, i=Tn, (32)

where @ is the set of rational numbers. Then, the (6, w)-periodic solutions of system (19), and, therefore,
systems (20) and (21), are only constants.

Indeed, in order for the solution x(7°, 7, ) be (6, w)-periodic, according to the structure of solutions
(23) and the linearity characteristics h; (7%, 7,¢) =t — X\j(7 — 7°), j = 1, n with respect to 7 and ¢ the
initial vector-function must be periodic with respect to ¢ both with the period pw and the period ¢;\ ;0
with integers p and g;. Then, by virtue of the incommensurability condition (32), u(t) should only be
constant.

Consider the set of solutions to system (7) with constant initial data u = ¢. Then we have solutions
of the form

z(t) = X(1)e, ¢ is constant. (33)

Theorem 4. Let condition (3) be satisfied. Then system (7) has only a zero (6, w)-periodic solution
of the form (33).
Indeed, since (6, w)-periodic solutions of the form (33) satisfy the condition

x(1+0)=X(1+60)c=X(1)X(0)c= X(1)c = z(1),
then the vector ¢ guaranteeing #-periodicity of solution (33) is determined by the relation
(X (0) — E]c=0. (34)

It follows from (34) that the (6, w)-periodic solution of the form (33) of system (7), under condition
(3), is only a trivial solution.
In fact, since Y (7) = CX(7)C~!, from condition (3) we have

det[Y(0) — E] = det[CX(9)C~! — E] = det C'det[X () — E] det C~" # 0.
Hence, det [X (0)— E] # 0. Consequently, system (34) has only a zero solution, and from representation
(33) we have z = 0.
Theorem 4 is proved.
Theorem 4 can be formulated differently in the form of the following theorem.
Theorem 4'. For the system (7) hasn’t a nonzero 6-periodic solution it is necessary and sufficient
that the following conditions are fulfilled

det[X(0) — E] # 0. (35)

Theorem 5. If the condition (3) is not satisfied; then for the solution (33) of system (7) with a
constant vector ¢ to be f-periodic with respect to 7 it is necessary and sufficient that the vector ¢ be
an eigenvector of the monodromy matrix X (6) corresponding to its eigenvalue p = 1.

Indeed, along with the nonzero solution (33), we consider the solution

z(t+0)=X(1+0)c (33")

of system (7). From the theory of periodic solutions it is known that in order for the two solutions (33)
and (33’) to coincide everywhere, it is necessary and sufficient that feasibility of condition
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Since z(f) = X(f)c and x(0) = ¢, from this we have condition (34), which takes place in the
presence of an eigenvalue p = 1 of the monodromy matrix X ().

Theorem 5 is completely proved.

Theorem 6. For system (7) to has (6,w)-periodic with respect to 7 solutions it is necessary and
sufficient that the system of functional-difference equations

PX(0)u(h(0,0,t)) = u(t) (36)
to be solvable in the space of continuously differentiable w-periodic n-vector-functions
u(t +w) = u(t) € CV(R) (37)

with the norm ||u|| = sup |u(t)|, where |u(t)| is the Euclidean metric of vector w.
teR

Indeed, at the same time with solution (27), we consider the solution
(T +0,t+qw) = PX(T+ 0)u(h(0, 7+ 0,t + qw)) =

=PX(1)X(0)u(h(0,7 +0,t) + qw), g€ Z.

From the definition of the (0, w)-periodic solutions (27) of system (7) with respect to (7, ), we have
PX(1)X(0)u(h(0,7 +0,t) + qw) = PX(7)u(h(0,7,t)), q€ Z. (38)

Supposing 7 = 0, taking into account equality Pu(h(0,0,t)) = Pu(t) = u(t), from relation (38) we
have PX (68)u(h(0,6,t) + qw) = u(t). By virtue of property (37), we have PX (0)u(h(0,6,t)) = u(t),
that is, condition (36) is established. Thus, the necessity of Theorem 6 is proved. Conversely, along
with the solution

xz(r,t) = PX(7)u(h(0,7,t)), (39)

consider a solution of system (7) in the form
2(1,t) = PX(7)X(0)u(h(0,0, (h(0,7,1))), (40)

where the initial conditions of these solutions are identical as 7 = 0 by virtue of condition (36).
Therefore, these solutions (39) and (40) coincide Z(7,t) = z(7,t), and

z(r,t) = PX(1)X(0)u(h(0,6,(h(0,7,t)))) = PX (1 + 0)u(h(0,6, (h(8,7 + 0,t)))) =

= PX (74 0)u(h(0,7+0,t)) = x(r + 0,1).

It follows from (36) that the solution (39) is #-periodic.

Theorem 6 is completely proved.

Now we have the opportunity to generalize the Theorem 4’ to the general case.

Theorem 7. Under condition (35), system (7) has no (#,w)-periodic solutions except zero.

We prove Theorem 7 by contradiction method, assuming existence of a nonzero (6,w)-periodic
solution z*(7,t) with initial function x*(0,t) = w*(¢), and v*(t + w) = u*(¢t) € C't(l)(R), |u*| = A* > 0.

Obviously, for t = t' and t = t” we have

ou*(t)
(Y — ur (¢! e /_”<* T
[ () = u*(t")] ‘ 5 '\t el < -1,
where T =t/ + (' =), 0 < a < 1, I* = a“@;”‘.
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Then, given that this solution is p;0-periodic with respect to 7 and g;w-periodic with respect to ¢,
on the basis of inequality (41) we have the estimate

| Pju”(h(0,p;0, 1)) — u” (1) = [u"(t = Ajp;0) — u” (1) =

= |u*(t + q;jw — )\jpjg) — u*(t)| S l* |qu — )\jpje‘ s q;5,Pj € Z. (41/)

Further, by virtue of rational incommensurable A;p;0 and w, can choose p; and g; so that the
estimate
|gjw — Ajp;f] <0

is satisfied for any constant § > 0.
Now, (0, w)-periodicity condition (36) for the solution x*(7,t) is written in the form

uw*(t) — PX(0)u*(h(0,0,t)) = wa —\ib) =
1=1
= [u; ()], = Dz O+ | D @ (0)u;(t) Z zi(O)uj(t —No) | =
j=1 i=1 J=1 i=1 i=1
> {615 — @i (0)yus(¢) me Huj(t = Aif) —uj(t)}|  =0.
Jj=1 i=1 =1

Therefore, from the last part of this identity we have

[E— X(0 Zx” {ui(t — \b) —ul(t)}

=1

By condition (35), we obtain

u(t) = [E wa Huj(t = Xif) —uj(t)}

Based on inequality (41’), we have

n

()] = (B = X | o @)l it = 26) - w0)] | <

j=1 i=1

< ‘[E . X(Q)]_l‘ ImodX (6)]§ < e.

Therefore, u* = 0 which contradicts |u*| = A* > 0.

The obtained contradiction proves the rightness of Theorem 7.

Theorem 8. If system (6) under condition (35) has a (6, w)-periodic solution, then it is unique.

Indeed, if the system under condition (35) has two different (¢,w)-periodic solutions z(7,t) and
z(7,t), then their difference z(7,t) — Z(7,t) = z(7,t) is a (0, w)-periodic solution of the corresponding
homogeneous system (7). Under condition (35), it is trivial: z(7,¢) = 0. Consequently, z(7,t) = §(7,t).
The resulting contradiction proves Theorem 8.
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Theorem 9. Under the conditions 1°-3°, system (6) admits a unique (6, w)-periodic solution z*(r, ),
which is integrally represented by the formula

T+6
(7, t) = [X_I(T +60)— X_I(T)]_IP / X_l(s)fg(s, h(s,T,t))ds, (42)

where vector-function fy(s, h(s,7,t)) is determined by the relation

f(s,h(s, 7,1)), T<s<0,

42!
Fsh(s, 7+ 0,1), 0<s<740 (42)

f@(Sa h(57 T, t)) = {

Indeed, suppose that (6,w)-periodic solution z*(7,t) has an initial function z*(0,¢) = ¢*, where ¢*
is constant vector. Then, according to Theorem 3, it can be represented as

z*(1,t) = X(7)c" + PX(7) /Xl(s)f(s, h(s,T,t))ds. (43)
-0
Along with this solution, we consider a solution
46
27 +0,1) = X(r +0)c* + PX(r +0) / XY(s) f(s, hls, ™+ 0,1))ds. (44)
-0

We write the system of representations (44) and (43) in the form

740
X_I(T +0)z*(t+0,t)=c"+ P / X_l(s)f(s, h(s, 74 0,t))ds, (44"

X Yr)z*(r,t) = + P/X_l(s)f(s, h(s,T,t))ds.

Further, by replacing s with s+ 6 under the integral (44’), we obtain the system

X7+ 0)a(r +0,8) = " + P / XY(s)f (s, h(s, 7+ 0,1))ds,

70-0
X Yr)z*(r,t) = ¢ + P/Xl(s)f(s, h(s,,t))ds.

Hence, taking into account that z*(7,t) = x*(7 + 0,t), excluding the constant vector ¢*, we have

[X\(r +0) - X \(1)] *(r8) = P / X~Y(s) f(s, h(s, 7. ))ds.
70-0

Consequently,

w(rt) = [X(r+0) - X ()] ' P / X1(s)f (s, h(s, 7 1))ds. (45)

706
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Since representation (45) is valid for all 79, it remains valid when replaced 7° with 7 + 6, and the
vector-function f(s,h(s,7,t)) is replaced by a vector function fy(s,h(s,7,t)), which is determined by
the relation (42').

Therefore, we have the final representation of the (6, w)-periodic solution (42).

From the conditions 1°-3° follows the fulfillment of all the requirements of Theorems 6-8. Therefore,
system (6) has no other (#,w)-periodic solutions except (42).

Thus, when replacement (5), we obtain a solution of the main problem about the existence of a
unique (0, w)-periodic solution y*(7,t) of system (1) in the form

T+60
yr(r,t) = [Y_l(T +60) — Y_l(T)]_l P / Y ~L(s)pg(s, h(s, T, t))ds. (46)

where Y (1) = CX(7), vector-function @g(s, h(s,7,t)) is determined by the relation

(s,h(s,7,t)), T<s<0,

(46)
(s;h(s,7+0,1)), 0<s<T+0.

2o(s,h(s, 7)) = {9”
¥
Note that, based on Theorem 9, we have a theorem on solving the main problem.
Theorem 10. Under the conditions 1°-3°, system (1) admits a unique (6, w)-periodic solution y*(7, ),
which is integrally represented by the formula (46)—(46").
In conclusion, we also note that the idea of work can be realized in the quasilinear case using the
principle of compressed mappings.
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2K A. Caprabanos, O.X. 2Kymarazues, [.A. A6aukanukoBa

TypakTbl K03 PUIIUEHTT] ChI3BIKTHI Tap MAaFbIHAJIAFbBI
rurepoO0J1aJIbIK, 2KYlieHIH, KONIepuoAThI IITentimi

Tap marbiHaIBI TUIEPOOIABIK, CHI3BIKTHI TYPAKTHI KO3MUImeHTTi nuddepeHInasiIbK TeHIeyaep Kyiteci-
HiH 0apJIbIK TOYeJICi3 aflHbIMAJIBLIAPHI OONBIHITA KOIIIEPUOATHI IIEIIMIHIH 6apbl MEH YKAJIFBI3/bIFbl YKOHE
OHBIH, MaTPHUIA-MHTErPAJIIBIK, GeliHere opHeKTey Macesesepi 3eprrenred. OcblHIail MaKCaTIIEH KAPaCThIPhI-
JIBITT OTBIPFaH, TOYEJICI3 affHbIMAJIBIIAD KEHICTITIHIEeT! BEKTOPJIBIK ©PiCTEePIiH OarbITTapbl OOMBIHITIA SPTYPJI
nuddepeHnraIay ornepaTopbl XKyitesep yiriH auddepenimaniay *KoHe HHTerpajIay KYpPeTiH XapaKTe-
PpUCTUKaJIAPBIH aHBIKTANTHIH TPOEKTOPJIapFa cyiiernren, Kommuain cunarraybimnrap o/ici Heriziuae 6acTankbl
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ecenrrepi mrenry Tociii Tysinren. Ochbl gaicreme GOMBIHINA GIPTEKTI KoHE OIPTEKTI eMeC ChI3BIKTHI JKyHenep
ymin Komu ecenrepi mremnrisngi »xone muTerpasiiblk Oeitneci xesrripinai. Ocbl TycTa €HrisijireH xapakre-
pUCTHUKAJIAPAbl aHBIKTAYIIBI TPOEKTOPJIAPIAbIH, MaHbI3bI Trentyini 6osabl. Herisri ecernri mrerry 6apbichbin-
na nuddepeHInaIIbIK, OIIePATOPJIAPIbIH KOIIIEPUOATHI HOJIAepiMeH KaTap 6ipTeKTi ChI3BIKTHI KY€ Iep/IiH,
HOJIJIEH ©3re KOIIIEePHOATHI IIeriMIAepinin 6ap GOIybIHbIH KaXKeTT] »KoHe *KeTKITIKTI mapTrrapbl TarailblH-
nasael. OJrapasiH, Herisinme, ochl »KyHeaepais HOIIIK eMec KOIIIePUOATHI MemiMaepi 60IMaiThIH mapTTap
asbiaAbl. Horuzkecinge, 6ipTeKTi ChI3BIKTHI >KYHeIepIiH HOJIAIK eMec KOIIEPHOTHI MIelTiMaepi 60IMaiThIH
Karmaiiaa 6GipTEeKTi eMec ChI3BIKTHI XKYeIep/IiH, KOTIEPUOIThI MENTiMiHIH 6ap *KoHe YKaJIFbI3 60TYbI TYPaJIbl
Heri3ri TeopeMa [pJIeNIeHIeYIMEH KaTap, OHBIH MPOEKIINIAY OMePATOPIAPbIMEH OAMIAHBICTHI MHTEIDAJI-
JIBIK, ©DHET1 KOPBITBLIBII HIBIFapbLIAbl. Ko TaHbIIFaH 9/1icTeMEMEH aJIbIHFAH HOTUKEJIEP/l KapaCThIPbLIFaH
JKYeHIH, KaJIbIAHFAH KBa3UCBHI3bIKTHI YKAFIANbIHIA 114, COHaN-aK, keneameMil t = (1, ...tm,) BEKTOPHI
yiIiH xKoHe 6esrici3 BeKTOp-OYHKITUSHBIH 1epOeC TyBIHbLIAPBIHBIH, KAHBIHIAFbl KOIMMOUIINEHTTED] KOTIIe-
PHOATHI MaTpUnaIap OOJIFaH Ke3J€e /e OChI dJIiCTi KOIJAHBII aJIyFa 0OJIabl.

Kiam ce3dep: Tap MarbIHAIAFBl THIEPOOIANBIK 2KYiie, KOMIEPUOATHI IIMEIIiM, XapaKTePUCTUKATIAD 9JicCi,
MIPOEKITUSIIAY OIIEPATOPJIaPhI, BEKTOPJIBIK, ©picTep OoiibIHINa nuddepeHualiay onepaTopIapbl, THTEIPAJI-
IBIK OeiiHe.

2K A. Caprabanos, A.X. ?Kymarasues, ['A. A6 ukaankoBa

MHuoronepumoanvyeckKoe peleHne JUHENHOW rurepooamvIecKoil
B Y3KOM CMbICJIE CUCTEMBI C ITOCTOAHHBIMHU KO3 PUmeHTamu

WccnenoBana 3amada 0 CyIEeCTBOBAHUY W WHTETPAJIBHOM IMPEICTABICHUN B BEKTOPHO-MATPUIHON (opme
€/INHCTBEHHOI'0 MHOT'OIIEPHO/INYECKOrO 110 BCEM HE3aBHUCUMBIM II€PDEMEHHBIM DPeIeHHs JUHEWHON rumepoo-
JIMYECKON B Y3KOM CMBIC/IE CUCTEMBI AudDEepeHIINaIbHBIX YPABHEHUN C TOCTOSTHHBIMU KO3 MUIMEeHTAMY.
C 1esIbIo perneHnst MOCTABICHHOM 3319, Ha OCHOBE MeTo/ia Xapakrepuctuk Kormm, pa3zpaborana MeToau-
Ka IIOCTPOEHUs PelleHni HadaIbHOI 3a/lavu JIJId PacCMaTPUBAEMON CUCTEMBI C PA3JIMYHBIMU OllepaTOpaMu
nudHepEeHITITPOBAHIST TI0 HATIPABJIEHUSIM BEKTOPHBIX IMOJIEN TPOCTPAHCTBA HE3aBUCUMBIX ITEPEMEHHBIX, OC-
HOBaHHAsI HA IMIPOEKTOPAX, OMPEIEISIIONINX XapAKTEPUCTUKN, IO KOTOPBIM BeLyTCst AudHEepeHITMPOBAHIE U
nHTerpupoBanue. 11o sToit MeTromauke pertens! 3aga4n Kommu fjis guHeHON 0HOPOIHON U HEOTHOPOIHOMN
CHCTEM C MHTErpaJibHbIM IpeJcTaBjieHreM. [Ipu 3ToM cylecTBeHHOe 3HAUYEHUE UMEJH BBEJEHHBIE ITPOEK-
TOPBI IO OMPEJIEIEHUI0 XapaKTepucTuk. [1o permennio oCHOBHOM 3aa1un, HAPSAY ¢ MHOTOIIEPUOIIMIECKIMU
HYJISIMH OIIepaTopoB AuddepeHIInpoBaHusl, yCTAHOBIEHBI HEOOXOIUMbBIE U JIOCTATOYHBIE YCJIOBHUS CYIIECTBO-
BaHUsI MHOT'OIIEPUO/IMYECKUX PEIIeHUl JIMHEHHBIX OTHOPOIHBIX CUCTEM, OTJIMIHBIX OT TPUBHAJILHBIX. TaKuM
00pa30M, TOJIYIeHBl YCIOBUsI OTCYTCTBUAS HEHYJIEBBIX MHOTOIEPHOINIECKUAX PEITeHn 3Tux cucrteMm. B 3a-
KJIIOYEHUU, IIPU OTCYTCTBUM HEHYJIEBBIX MHOTONEPUOAUYECKUX DElIeHUH JTUHEHHBIX OJHOPOJHBIX CHUCTEM,
IIOKa3aHa OCHOBHAasI TeOpeMa O CYIIeCTBOBAHUM U €JUHCTBEHHOCTH MHOT'OIIEPUOANYECKOrO pElIeHUd JIUHEeH-
HOII HEONHOPOJHON CHUCTEMBI C BBIBOJOM €0 MHTEIDAJIbHOrO IPEIACTaBJICHUA, 3aBUCAIIECTO OT OIIEPaTOPOB
IpOeKTUpOBaHusd. PaspaboTaHHas METOIUKA HMEET IEPCIEKTUBY PACIPOCTPAHEHUS IIOJIYUYEHHBIX PE3YJIb-
TaTOB Ha KBAa3UJIMHEHHBIN Ccaydail pacCMaTpPUBaEeMOIl CUCTEMBI, a TaKKe Ha CIydal MHOTOMEPHOT'O BEKTOPa
t = (t1,..., tm) ¥ MHOrOIIEPHOUHUECKUX MATPHUI] IPHU YACTHBIX MPOU3BOJHBIX UCKOMOI BEKTODP-(DYHKIIUH.

Karoueswie caosa: runepboIndecKasi CUCTEMa B Y3KOM CMBIC/IE, MHOTOIIEPUOINYIECKOE DEIeHNe, METOJ, Xa-
PaKTEPUCTHUK, OMEPATOPHI MPOEKTUPOBAHNUS, ONEPATOPHI MM DEPEHITUPOBAHNS 10 BEKTOPHBIM ITOJISIM, WH-
TerpaJjbHOe IIpeJiCTaBJIeHUe.
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Bessel functions of two variables as solutions for systems
of the second order differential equations

In this paper, the systems with solutions in the form of degenerate hypergeometric Humbert functions of
two variables reduced to Bessel functions of two variables are established and studied. The connections
between the Humbert and Bessel functions of two variables are revealed, their differential properties are
investigated. The addition and multiplication theorems are proved. In future, these proven properties allow
us to establish recurrent relations between degenerate hypergeometric functions of two variables, similarly
to extend these properties to the case of many variables. The connection between type systems of Bessel
and Whittaker is shown. Using the Frobenius-Latysheva method, the singularities of constructing normal-
regular solutions of the newly established Bessel-type system are studied.

Keywords: Humbert function, system, Bessel function, properties, addition theorem, reducible, normal-
regular.

Introduction

Applications of Bessel functions of one variable are very diverse. They are widely used in solving
problems of acoustics, Radiophysics, hydrodynamics, nuclear and nuclear physics. In the theory of
elasticity the solution in Bessel functions covers all spatial problems solved in spherical and cylindrical
coordinates, various problems of vibrations of plates. There are also numerous publications, which
study a large number of different problems relating to all important sections of mathematical physics.
However, this work out has not received the development of the theory of Bessel functions of many
variables. Although there are works where the properties of Bessel functions of many variables are
studied, their relation to various special functions and orthogonal polynomials of many variables is
analogous to the Bessel function of one variable. It is a special case of the degenerate hypergeometric
Kummer function [1; 1]. It is known that the particular solution of the Kummer equation is a degenerate
Gauss function G(a,v; x):

H

(a "

oo
i m 2 = ; 1.

obtained by the limit transition. Similarly, you can get the function
1 -

lim P2 Ziiete) = 3 - o = J(52) (1.2)

m=0

J(7;x) is called the function reduced to the Bessel function, since equality is just

J, (x)—i(%)k J(k+1 ——mQ) (1.3)
YT D+ 1) T2 '
and d?J dJ,
20 JE k 2
k), =0 1.4
Sy +x dx+( )k (1.4)

where (1.4) is the basic Bessel equation.
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All known hypergeometric functions of two variables are solutions of some special systems consisting
of two partial differential equations of the second order. In Horn list there are 34 such systems
whose solutions are 34 hypergeometric functions of two variables. Out of them 20 are degenerate
hypergeometric functions of two variables [2, 3|. The connection of Bessel functions of two variables
with these degenerate functions of two variables is not studied properly. In several works [4; 138] it was
proven that a function of M.P. Humbert Wy(cv,v,7';x,y) is the most closest to the Bessel functions
[5; 129].

Definition 1.1. The degenerate hypergeometric Humbert function Wy («,v,v; z,y) two variables x
and y is determined by a series of

o0
(A)m-‘rn x;rln xg
Ua(ev, 7,721, 22) = Y2V ey (1.5)
m;() (Mm(y)n m! nl
The series (1.5) converges absolutely and uniformly if at |z1]| < ¢, |z2| < €.
Theorem 1.1. Series (1.5) is a particular solution of the Horn system
X1 g1z, + (Y — 1) 2y, — 225, — ANZ =0, (1.6)
X9 L powy + (¥ — @2) Zyy — 1122, — NZ =0,

which under the conditions of compatibility and integrability has four linearly independent partial
solutions [6.

In the monograph of Appell and Kampe de Feriet [5; 124] there is a list of 23 (I-XXIII) degenerate
hypergeometric functions of two variables derived from four Appell functions F; — Fj given by limit
transition. Some of them coincide, despite the fact that they are obtained from various hypergeometric
functions of Appell F; — Fy. Five functions of them: (XIII), (XVI), (XVII), (XVIII) and (XXIII) are
presented as a product of the function, which is reduced to the Bessel functions or functions of Bessel
and Kummer.

Example 1. A number of (XVI)

111
hm F2(77 ) 7771772) 62$1,€2x2) =
T7—0 e e’ e
(o)
1 xm o
=D o o = ome) T (i) (1.7)
m,n=0 (’Vl)m('}?)n m. n!

set by limit transition, where the functions J(v;;;), (j = 1,2) of the reduced to Bessel functions are
a particular solution of the system

{xlzmlrl + 71211 - Z =0, (1 8)

:EQZ.’ZQmQ + 72Z$2 - Z = 07

obtained by limiting the transition from the Horn system (F3).

The aim of this work is to establish and study systems with solutions in the form Bessel functions
of two variables, using the Horn systems (1.6), to establish the connection of Bessel functions to
the Humbert function and with other functions from the Horn list, to investigate their differential
properties, addition and multiplication theorems, based on the properties of the Humbert function.

2. Properties of degenerate hypergeometric series reducible to Bessel functions of two variables.

In the previous paragraph we defined Kummer function (1.1), as the degenerated Gaussian function.
A function reducible to the Bessel function of one variable [7; 21] was defined using the limit transition
(1.2). Similarly, the limit transition is just

1 1
FiGiyv;z) =14+ -2+ — 2’ +
Gv:2) v 2h(y+1)
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) az  alat+l) 2?
-1 1 d A H : 2.1
aLH;o[ + vya  2y(y+1)a? ] =J(v;z) (2.1)

We are interested in generalizing (2.1) in the case of a degenerate hypergeometric function of two

variables.
Theorem 2.1. The degenerated hypergeometric Humbert function Wo(A;v1,v2; 21, 22) of two variables

by means of a limit transition is reduced to the form

1520 = Wa (A1, 725 71, 72) = J(71521)J (25 72) (2.2)
where functions J(v;;;), (j = 1,2) are reduced to Bessel functions.
Proof. Indeed, there is the limit of a function of Humbert when A — oo
. xr1 T . A 21 A T9 )\()\ + 1) X1 T2
lim Wa(\; ;—,—) = lim [1 — —= ——=
B G w s WAL Lk T ol Wl Tonls Wl s T sty s s
AA+1) 22 AA+1) 22 1 1 1
b T AT T2 =y b 1o T179+
2y (71 + 1) A2 20(ya + 1) A2 ] My Al 2 Ay 2
1 ) 1 ) 1 1 )
2y + 1) 2p(pe +1)72 ( Uyt 2y (g + 1) )
1 1
(1 54 ) = J(y ) (yasw2) = J ; : 2.3
(1+ 2 T oy 2 ) = J () (v2322) = J (11,725 21, 32) (2.3)
Taking into account (2.1) and (2.2) we obtain a series of two variables
[o.¢]
1 A
J(y1521)J (25 22) = L t2 (2.4)
ml%;[) (71)m1 (72)m2 mil mo!
Theorem 2.2. The Bessel function of two variables of the first kind is represented as
e.)
(—1)ymatms L1y2 T2\2
J. x1, L) = S(ER)Emat L (ZE2)2mety2 2.5
2 (@1, 72) ml%;:() ma! - ma!l(y1 +my1 + 1) (y2 + ma + 1) ( 2 ) ( 2 ) (2:5)

Indeed, using (1.3) and the obtained functions by the limiting transition (2.3) and the series (1.7)
2

we have (2 (227 )
T1\71 T2
J =22 .2/ . 1,-21)7 1,-22) = 2.6
71,72(331,.%2) F(’Yl + 1) F(’}/Q + 1) ’Yl(’yl + 1 22) 72(’72 + 1 22) ( )
CONG L B a3
= . -J 1 1, ——. —=2) =
F(71+1) F<72+1) (71+ 772+ ; 227 22)
ICOURNNC DL ST SUE T SN B O
“Tm+1) T(e+1) U +1) 22 Uyp+1) 22 2y +1)(n+2) 22
1 2 a3 1 735
+ Y a2 (222 )=
Uy +1) (2 +1) (52)- (%) 202 +1)(72 +2) (32) )
_ (%)')’1 ‘ (172)72 i (_1)m1+m2(%)2m1_(%)2m2 _
|. |
F(’}/l + 1) F(’)/Q + 1) =0 mq! mg.F(ml + 1)F(’I7’L2 + 1)
_ i (—1)m1+m2 ) (E)le—‘,—’yl . (ﬂ)sz—Mz_
=gl mall (1 +my + D0 (2 +ma +1) 2 2

Cepusi «Maremarukas. Ne 2(98)/2020 143



Zh.N. Tasmambetov, A.A. Issenova

(2.6) shows the rightly of presentation (2.5).

Solutions of the system (1.8) are not difficult to build [8; 203].

Theorem 2.3. The system of differential equations (1.8) has four linearly independent partial
solutions in the form of series, which are reduced to Bessel functions,

oo
1 Ty

x
7 _ . . _ -0 2 2.
1(z1,22) = J(v1521)J (25 22) mzn;O o)l (2.71)
Zg(ml,fz’g) = :L’;_WJ(")/l; .771)J(2 — "}/Q;xz), (2.72)
Zs(x1,x9) = 1&771‘](2 —y1521)J (Y23 T2), (2.73)
Zy(x1,29) = xi_% . xlwa(? —y1;21)J(2 — Y25 22), (2.74)

Proof. Near the singularity (0,0) we look for a solution in the form of a generalized power series of
two variables

oo
Z = xfy° Z App-z™-y", (Ao #0) (2.8)
m,n=0
where p,0, Ay n(m,n =0,1,2,...) are unknown constants.
In (2.8) unknown constants p and o are determined from a system of defining equations regarding
features (0,0). It has four pairs of roots: (0,0),(0,1 —~2),(1 —~1,0),(1 — 1,1 — y2).
Unknown coefficients A, ,(m,n = 0, 1,2, ...) are determined from the system of recurrent sequences,

Z Afijlm,l/—n ) fr(r{,)n<p tu—m,0+v-— n) =0, (29)

m,n=0

(u,v=0,1,2...;5 = 1,2,...). Then, given (2.9) the values of the unknown constants, we obtain partial
solutions of the form (2.7;)(t = 1,4), where the first particular solution coincides with (2.4).

Various Appell F; — F; functions are used to obtain series of the form (1.7).

Theorem 2.4. Row (XIII)

o0

A e 22 2 _
V13725 € T, € (L.Q) - §

m,n=0

LI S
(V)m-‘rn m!  n!

lim Fy(

T—0

11
€ €

™ | =

= J(y;x1 + z2), (2.10)

) )

where the degenerate hypergeometric function J(v;x1 + x2) reduced to the Bessel function of two
variables is a particular solution of the system

xIZmlzl + xQZx1$2 +’)/le1 —Z = 07 (2 11)
:L‘2Z$2x2 + :BIleCL'Q + ,72Z$2 - Z = 0’
where Z = Z(x1,x2) is the total unknown obtained by the limiting transition from the system
1 1
.1‘1(1 — 621‘1)Zmlzl - .rl(l - 621‘1)le12 + |:’}’ — (* + -+ 1)6233‘1:| Ly, — €T Ly, — £ =0, (2 12)

2o(1 — e209) Zyowy — T2(1 — €229) Zy 0y + [’y — (g + B + 1)62.%2} Ly — €x2 2y, — Z =0,

By the Frobenius-Latysheva method, we establish that the joint system (2.11) obtained by the

limiting transition from the system (2.12) under the conditions of compatibility and
1-2. % g (2.13)

ry 2

has no more than three linearly independent solutions because (2.13) shows that the so-called integration
condition fulfilled [9; 85].
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Main results

2.1. Differential properties of the Humbert and Bessel function

The reasoning of the previous points shows that the Bessel function is mainly related to the Humbert
function Wo(\;71,72; 21, 22), which is a particular solution of the Horn system (1.6). Based on the
General theory of such systems, as stated in theorem 1.1, the following statement is true.

Theorem 2.5. The Horn system has four linearly independent solutions:

[e.9]

(/\)m1+M2 mrln1 ‘7;72712

Zl - Z ’ | ’ | = \:[12()\’ 71772;'1'17'7;2)7 (214)
mme=0 (V)mi (12)me ! mo!

2 :inﬂl “Wo(A+ 1 — 7132 — 1,725 21, 2) (2.15)

Z3 = 1’5_72 “Wo(A+1 =257, 2 — 2521, T2) (2.16)

Zy = .’L‘%_’Yl . .%é_72 . \Ifg()\ + 2=y — 722 — 71,2 — o5 .T}l,JIQ). (217)

As can be seen here, the first particular solution (2.14) defines the Humbert function ¥o. We find
the derivatives of this function.

Theorem 2.6. Derivatives of Humbert variables x1 and x5 presented in the form:

1) by variables z; and xg;

0 A
7\1]2(Aa 71,725 l’l,l’g) = %\IIZ(A + 1”71 + 1772; l’l,l’g),

81‘1
(2.18)
0 A
87‘1’2()\; V1,725 71, ¥2) = —Wa(A + 191,72 + 1; 21, 22),
€2 72
2) higher derivatives;
4
0?2 A +1
3 Wo (X1, 725 21, T2) = (7>‘I/2()\ + 2571 4+ 1,92 + L2y, 22),
1022 Y172
9?2 AA+1)
— U (A;v1, Y2521, 29) = ————— W (A 4+ 2,91 + 2,725 21, 2),
927 2(X;y1, Y23 @1, X2) Py 2( T V25 L1, T2)
0? AA+1)
—Uo(A; 71,7221, 22) = ———————Wo (A + 271,70 + 2; 21, T32),
923 2(Asv1, 723 21, 22) 2 1) 2( V1,72 1,%2)
am AA+1D)...A+m—1) (2.19)
L By(A 1, 9; - Wy(A+my : :
3$’1" 2( a/ylufYanLmZ) 71(71+1)(71+m71> 2( +m’71+m)727x17x2))
on AA+1)...A+n—1)
LWy (A 1, 72 = Ty(A+ s :
923 2(A; 71,72 @1, 22) 1) (o k= 1) 2(A + 171,72 + 1y w1, 22),
gmtn AMMA+1D)..A+m+n—-1
e Y2 (N 1,925 21, 22) = ( )| ) :
Ox" 0z} Y+ 1e(n+m—=1)-y(re+1)..(r2+n-1)

Wo(A+m+n;y1 +m,y2 +ny a1, 22).

Cepust «Maremarukas. Ne 2(98)/2020 145



Zh.N. Tasmambetov, A.A. Issenova

Similarly, it is possible to find derivatives of the other particular solutions of (2.15)-(2.17), using
the kind of derivatives (2.18), (2.19).

2.2. Differential properties of a function that reduces to the Bessel function of two variables

The degenerate system (2.6) based on theorem 2.1 has four linearly independent partial solutions
(2.71) — (2.74). The first particular solution defines a series that reduces to the Bessel function of two
variables

o0

1 " xl
o1 20) T (s 9) = R 2.20
(eI nie) = 3 or e (2:20)

The derivative (2.20) can be found as products of two functions J(y1;21) and J(y2;x2).
Theorem 2.7. Derivatives of functions reduced to the Bessel function of two variables are represented
as

0 1
1‘87[J(’Y1;371)J(72;$2)] = —[J(m + L;z1)J (72; 2)],
I 7
0 1
2.8—[J(71;x1),](72;x2)] = —[J(7;21)J (72 + 1, 22)].
T2 Y2
Second derivatives:
3 )T e)] = —— [T+ L) (s + L)
. [T 1r9)] = —— T 1 T2)],
02109 Y1521)J (25 22 - " 1)J (72 2
82
4. —— . . — 9: .
81‘% [J(71,$1)J(’727$2)] (71)2[‘](71 + ,l‘l)](’)’Q,l’Q)],
5. 0 s o) T (s 00)] = [T 20T + 222)]
-(%% 715,21 V25 T2 (72)2 71521 72 ;X2)]-
Higher derivatives:
6. [T (s 21)T (323 22)] = —— [T (1 + a3 20T (325 22)]
‘833’1”’“ 715 L1 Y25 X2 (71)m1 71 1;521)J (Y25 22)],
7 T 1) (2 22)] = —— [T (15 21) (33 + s 22)]
’8x;”2 71521 V25 L2 (72)m2 71521 72 2;22)],
g J J 1 J J 2.21
W[ (15 1) (727$2)]—m[ (71 +ma;21)J (72 + ma; x2)]. (2.21)

Similarly are determined by the derivatives of the particular solutions of (2.72)—(2.74), in particular
using (2.21). The main differential properties of the Bessel function of two variables were studied in
the works [10; 23]. The differential properties of degenerate hypergeometric functions of one variable
are given in the monographs of Lucy J. Slater [1; 15] and [11-13].

Let’s consider the addition property of a degenerate hypergeometric function (2.10):

o0

Jataa)= Y Lo % (2.10)
y L1 2) = T T .
o (V)m+n m! nl
obtained as a particular solution of a degenerate hypergeometric system (2.11).
Theorem 2.8. For the degenerate hypergeometric function (2.11) there is an equality:
J(yiar +a2) = JMW () - = (2.22)
n=0
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Proof. The formula is used to prove the theorem
yTL

applied by Lucy J.Slater [1; 22| in establishing the theorem of addition for the derivatives of the
Kummer functions of Fj[a;b; z]. So, on the basis of (2.23) we obtain rightly (2.22):

0 ’ X9
J(v; w1 + x2) § Jr 2 = JO(y;29) 0? +J (v L)
2 o0 1 I’
" . (n) . — 22 g(n)
+J (7+2,m1)2, o+ Sy F ) + _n§:0: o I (y + s xp).

Theorem 2.9. For a degenerate hypergeometric function J(v; 1, x2), there is equality:

2 (xg — 1)
J(viz1 - 22) ZZW'JW#L”;SM)-
n=0 n ’

The formula is used to prove the theorem

floy o) = 3 A DT gy,

n=0

obtained from (2.23) by substitution z2 for (z2 — 1)x; and by Taylor’s theorem.
Theorem 2.9 is related to the multiplication theorem for Kummer functions [1; 23].
3. Construction of normal-reqular solutions of Bessel-type system
Problem statement. From the Horn system (1.6) by converting the form,

€1 To, -1 —2

7Z = exp(? + ?)xl 2 xy 2 - U(x, 22) (3.1)

a system of Bessel-type is installed

{x%-Umlxl —$1m2-Ux2+{— 2x1x2+k:x1—|—a }U—O

1,2

171

2.U - U —1,2 k

x5 - Ugyzy — T122 x1+{ 375 — 2x1x2+ x9 + B(1 B}U—O

(3.2)

where k = o+ 8 — X and «, 8, A are some parameters, and U = U (z1, z2) is general unknown.

Using the Frobenius-Latysheva method [14] it is required to prove that the solutions of the system
(3.2) are functions that reduce to Bessel functions of two variables.

Theorem 3.1. The Bessel-type system (3.2) under the conditions of compatibility and integrability
[6] has four linearly independent partial solutions

Ui(z1,22) = exp(—%5 — ) - xf - 2 Ua(\, 2a, 2035 21, x2),

Us(z1,22) = exp(—% — 3) - of - mé 'B-\Ilg( A—26+41,20,28 — 2; 21, 2), (3.3)
Us(x1,x2) = exp(—%—%?)'x%_a- zh - Wo(A —2a+ 1,20 — 2,205 21, 2), '
Us(xy,m2) = exp(—F — F) - xi_o‘ . xé_ﬁ WA —2a— 20+ 1,200 — 2,283 — 2; 21, x2),

which are expressed in terms of the degenerate Humbert hypergeometric function reduced
when v; = 2a, v2 = 20 to the Bessel function of two variables by the limit transition
o
1 ot b
lim Uo(A, 2, 28; Az, Axa) = — =L .22 3.4
)\141’)% 2( y 40, ﬁa T, 1'2) Z (QO‘)m(QB)n m!  nl ( )

m,n=0
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The Frobenius-Latysheva method is used to prove the theorem [14; 160]. The studied system belongs
to the Whittaker-type system [5; 132]. The application of the Frobenius-Latysheva method to the
construction of a Whittaker-type system solution is described in the works [15; 27|. It was found out
that its solutions are normal-regular species,

Z(x1,x2) = expQ(x1, x2) - 2 - x5 Z App o255 (Agp #0), (3.5)

m,n=0
where p, 0, Ap, n(m,n =0,1,2,...) are unknown constants; @ = Q(x1,z2) polynomial of two variables:

[0 [0
Q(xl, xg) = T?Oxp %xg + ... +a112179 + (191 + @12, (36)

with unknown coefficients oy, agp, ..., @11, @10, @01

In the theory of ordinary differential equations with variable coefficients greater role will be played
by the notion of rank p = 1 + k introduced by H. Poincare, and the concept of antirank m = —1 — x ,
introduced by L. Tome. Professor of Kiev University K. Ya. Latysheva used these concepts: to determine
the polynomial ), as well as in the classification of regular and irregular points of a given equation
[16; 50].

The studied system (3.2) has a rank p = 1 > 0 and antirank m < 0 [16, p.53|. Therefore, the
singularity (co,00) is irregular , and the singularity (0,0) is regular and there is a normal-regular
solution of the form (3.5). The highest degree of the polynomial (3.6) is equal to the rank of the
system, that is p = 1. Then, the polynomial (3.6) turns into a polynomial of the first degree
Q(x1,x2) = a1 + ap1 2 and its unknown coefficients a1 and «; are determined from the auxiliary
system obtained from (3.2) by the transformation in form (3.1):

U = exp(ajor1 + agiz2) - (21, 22) (3.7)
where ®(x1,z92) is a new unknown function, by equating to zero coefficients at higher degrees of
independent variables x1 and x5 :

1 1 2
£ (a0, 001) = o3 - 1=0 1 (o0, 001) = 0y — 1-0 (3.8)

The resulting system of characteristic equations (3.8) has four pairs of roots:

1

NG 11 (@2 11
(039 a0r) = (5 ). (01 0) = (5 =5),

11 1 1
(off o)) = (=5 5): (@l o)) = (=5, —5): (3.9)

In (3.9) only a pair (oz%), a(()Ql)) = (—3,—1) defines a joint system

{:L’% Dy — x% Py, — xixe - Py, + [k + (1 — )] P =0, (3.10)

23 @y — 2% Dy — 2172 - Byy + [ko + B(1 — )] D =0,
where k = a+ 8 — X and «, 8, A are some parameters, and ® = ®(x1,x2) is unknown.

It has four linearly independent partial solutions, which are expressed in terms of the degenerate
Humbert hypergeometric function Wo(A;v1,v2; 1, 22) , (71 = 20,72 = 23):

Oy (21, x2) = ¥ - x’g - Wo (A, 20,285 1, x2),

Do(x1, 29) = 2 - :1:5_6 “Wo(A =264 1,20,208 — 2; 21, x2),

®3(w1, 12) = ] - acg WA —2a+ 1,200 — 2,20; 21, x2), (3:11)
(w1, 22) = 21

kP (A — 20— 28+ 1,20 — 2,28 — 2,21, 20).
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It should be noted that the system of defining equations relating the peculiarity (0,0) :

fio (o) = plp— 1) +ala—1) =0, [ (p,0) =o(o—1)+ B(B—1) =0, (3.12)

has four pairs of roots
(p1,01) = (o, B), (p1,02) = (a,1 = B3),
(an Jl) = (1 - av/B)v (1027 02) = (1 —a,1— ﬁ)
They identified the indicators of the series (3.11). We will draw some conclusions here.

Theorem 3.2. In order to have at least one solution of the form (3.5) for the auxiliary system obtained
from the system (3.2) by transformation (3.7), it is necessary and sufficient to perform equality (3.8).

(3.8) has four pairs of roots. This is the first necessary condition for the existence of a normal-regular
solution of the form (3.5) associated with the definition of unknown constants oy, ap, ..., @11, @10, @01
polynomial Q(x1,x2).

The second mnecessary condition is related to the definition of unknown constants
p,0, Amn(m,n=0,1,2,...) in (3.5).

Theorem 3.3. To have a solution in the form of a generalized power series of two variables for the
system (3.10), it is necessary that the pair (p,o,) to be the root of the system of defining equations
regarding features (3.12) obtained by substituting b (3.10) instead of the unknown ®(x1,z2) = 2/ - 23.

The fulfillment of two necessary conditions ensures the existence of four normal-regular solutions
of the form (3.3). The theorem is proved.

Summary.
1. Equality (3.4) on the basis of (2.2) and (2.3) when v, = 2« and 2 = 2 is represented as

J(y1,72; 1, 22) = J (20, 2B; 21, 29) =
N 1 o ap
2 o, ml w7 Gesm) (28, (3.13)

m,n=0

Then, on the basis of (2.5) the Bessel function of two variables of the first kind, we obtain in the
form

oo o (21, 22) = i (—1)mtn _ (ﬂ)2m+2a ) (@)2%25
2B = ml-nlTQ2a+m+ IR +n+1) 2 2 '

The course of proof as in (2.6).
2. The derivative (3.13) can be found as in 2.2. taking the meanings v; = 2« , 72 = 20 into account.
We give a General formula:
8m+n [ IB ] 1
 JCaz) (2B x)] =
Dy (20521)J (20 22)) = o5 a5,

Out of this we can derive various special cases of lower derivatives.

3. The solutions of the attached system (3.10) are expressed in terms of the Humbert hypergeometric
function, which is reduced to the Bessel function of two variables by a limit transition (3.4). We have
seen that in this case equality is true (3.13). Therefore,

[J(2a + m;x1)J (28 + n; z2)].

lim ®;(x1,z2) = lim [z - :c’g “U(A, 20, 285 w1, 22)] =

A—00 A—00

=zxf - 2% lim U (A, 20,285 1, x2) = J (20,285 x1, x2),
A—00

that is, in this case, in the limiting transition, all ®;(z1,x2),(j = 1,4) are expressed through the
function J(2a, 26; 1, x2). Similarly, all the particular solutions of system (3.2) are also expressed via

(3.13).
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Thus, we have established and studied a number of systems with solutions in the form of degenerate
hypergeometric Humbert functions of two variables, which reduces to Bessel functions of two variables.
The connection between these functions of two variables as solutions of systems of partial differential
equations of the second order is revealed. Their properties, as well as differential properties, addition
and multiplication theorems, have been investigated so far. Further, these properties make it possible
to establish recurrent relations between these functions, as well as between degenerate hypergeometric
functions of two and many variables as a whole. A system of Bessel-type has been installed and the
features of the application of the method of Frobenius-Latysheva for the construction of normal-regular
solutions installed by our system is shown. It is also shown that the Bessel-type system is related to
the Whittaker-type system, the features of the solution of which are studied by M.P. Humbert [5; 132].
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2K .H. Tacmamberos, A.A. lcenosa

Eki aiinbimaJsibiHbIH, Beccesb pyHKIusIaphl
eKiHIII peTTi gepdec TYBIHABLIBLI A depeHImanabIK
TeHaeyJep >KYieciHiH, merniMi peTiHae

Maxkamana exi aiftHBIMAJBIHBIH, Beccessb GyHKImsAMapblHa KEATIPiIeTIH TYBIHIAIFAH THIEPreOMETPHUSIIBIK,
eKi affHbIMaJIBLIAPBIHGIH, ['yMOepT dyHKIMAIAPh TYPiHAEri HmentiMaepi MeH Kyiiesiepi opHATBIIFAH YKOHE
zeprrenred. Exi aliapiMaibiabie ['ymbepr men Beccenb dyHKIusiapbl apaapblHIaFbl OaitlaHbIcTap Op-
HaTBUIFAH OJIAPBIH IruddepeHITnaIbIK, KacueTTepi 3eprresren. KochlHabLIAY KoHE KOOEHTY TeopeMaa-
PBI JpJieJijIeHreH. Opi Kapail oslap OyJl KacHeTTep aJjlJlafbl YaKbITTa €Ki allHbIMAJIBIHBIH, TYBIHAJFAH V-
MIepreoMeTPHUSLIIBIK, (DYHKIUSIAPHI apaiapblH/ia, becceb il eKi aifHbIMAIBIHBIH, (DYHKIUSIIAPH apajIapblH-
I3 ©3apa PEKYPPEHTTIK KATHLIHACTAD OPHATYFa, Opi aTajfaH KACHETTEPIl KON alHBIMAJIbLIAD KaFIailbIHa
Taparyfra MYMKIiHJIIK Oepejii. Yurrekep KoHe Beccesb Kyitesepi apaJjapblHIarbl OaiijlaHbICTap KOPCETLI-
ren. @pobennyc-JlaTbimeBa o/1iciHiH, KOMeriMeH KaHaJaH KypbLIFaH bBeccesb TekTi KyieHIH KaJbIIThi-
PerysspJIbl MIENIM/IEPiHiH KYPBLIYBIHBIH €pEeKIIeIiKTePl 3€PTTEreH.

Kiam coesdep: I'ymbept byHkuumsicol, x)yiie, Beccenb dyHKIMSICHI, KaCHETTEP, KOCY TeopeMachl, beccesb
BYHKIUSICHIHA KEITIPUITeH, KAJIBIITHI-PErYISpPJIb.

2K .H. Tacmamberos, A.A. lcenora

Oyakiuu Beccesisgs AByX IepeMeHHbBIX Kak
pelneHns cuctem anddepeHImaabHbIX ypaBHEHU
B YaCTHBIX ITPOU3BOJIHBIX BTOPOTO IOPSIKa

B crarpe ycraHOB/IEHBI M M3y4YEHBI CUCTEMBI C PEIIEHHUSIMA B BUJE BBIPOXKJIEHHBIX T'MIIEPIE€OMETPUYECKUX
byukmuit ['ymbepra AByX mepeMeHHBIX, CBOsAMEcsS K MYHKIusIM beccenst IByX mepeMeHHbIX. PacKphIThI
cBsi3u Mexy dyukuuamu ['ymbepra n Beccesst 1ByX nepeMeHHBIX, HUCCJIeI0BAHBI UX AuddepeHraibHbie
cBoiicTBa. JlokazaHbl TEOpEMBI CIIOYKEHUsI U YMHOXKEHUsI. B JajibHeieM OHM [O3BOJIAT YCTAHOBUTH PEKYD-
PEHTHBIE COOTHOIIEHUsT MEYKIY BBIPOXK/IEHHBIMU TUIEPTeOMETPUIECKUMHU (DYHKIIUSIMU JIBYX MEPEMEHHBIX,
a Takxke Oy/yT crrocob6CTBOBATh PACIPOCTPAHEHUIO 9TUX CBOMCTB Ha Cjlydail MHOrMX nepeMeHHbIX. [Toka-
3aHa CBsI3b MEXKJy CHCTeMaMM Tuila YuTTekepa u Beccens. Merogom Ppobennyca-JlaThineBoit n3ydeHbl
0COOEHHOCTH TIOCTPOEHUST HOPMAaJIBHO-PETY/ISPHBIX PEIIeHn BHOBb YCTAHOBJIEHHOM cucTeMbl TUIa beccerts.

Kmouesvie caosa: dpyukuumsa ['ymbepra, cucrema, dyukmus beccessi, cBoiicTBa, TeopeMa CJIOXKEHUS,
cBOJANIAsICS K PYHKIUSIM Beccesisi, HOpMaJIbHO-PErYJIsIpHOE.
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Solution of inhomogeneous systems for differential
equations in private derivatives of the third order

The possibilities of constructing inhomogeneous system solutions for partial differential equations of the
third order have been studied. The construction of general and particular solutions corresponding to
homogeneous system comprehensively investigated by using Frobenius-Latysheva method. Type of solutions
near the special curves are established. The number of linearly independent partial solutions is determined.
A theorem on the representation a general solution of inhomogeneous system is proved, and the application
of uncertain coefficients method for such systems is revealed. On a concrete example, it is shown that the
particular solutions of the inhomogeneous system constructed in this way are solutions of one inhomogeneous
third-order equation obtained by adding the two equations of the considered example. One of particular
solutions corresponding to homogeneous system relates to degenerate generalized hypergeometric series of
Clausen type with two variables. Properties of generalized hypergeometric series are still poorly understood.

Keywords: inhomogeneous system, regular solution, singularity, method of undetermined coefficients, system,
equations, theorem.

Introduction

Systems consisting of two partial differential equations of the second and third orders with a
common unknown have long attracted the attention of mathematicians. The American mathematician
E.J. Wilczynski used the system of second order to substantiate projective differential geometry [1].
Further research of such systems is associated with the study of generalized hypergeometric functions of
two variables, in particular the four Appell hypergeometric functions Fy — Fy [2; 155-169], [3; 210-231].

J. Horn studied the convergence of all 34 hypergeometric series in two variables and established
systems of partial differential equations of second order which they satisfy [4; 218-233].

In a number of works Zh.N. Tasmambetov [5, 6] proved that almost all Horn’s systems are special
cases of a regular joint system of second-order partial differential equations that consist of two equations

290 Zow + 2yg\V Zoy + 129D Zyy + 29 Z0 + ygW 2, + g Z =0,
v? ¢ Zyy + 2yq Zoy + 22¢P Zoo + 240 Zo + ygW 2, + ¥ Z = 0, (1.1)
with coefficients in the form of polynomials

99 (2, y) = aly + alfa",

¢V (z,y) = b(()zg + b(()li)yk.(i =0,5; k — integer).
The classification of their singular curves, the construction of solutions near singular curves and the
existence of logarithmic solutions, etc. were considered.
For different values of k from (1.1) we get a number of interesting systems.
1. When k = 0 from (1.1) we obtain a system of Euler type [6; 242-249].

2. When k =1, a%) =0, bgﬁ) = 0, then we obtain a hypergeometric type system, since the solutions
of such systems are the hypergeometric functions of two variables [5; 316-319].
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3. Transformation
¥ =u,y" =wv. (1.2)

leads the system to the previous view.

4. When k > 2 from system (1.1) as a special case, the systems are obtained whose solutions are the
orthogonal polynomials of two variables. They are expressed through the functions of Appell. Specific
examples of the application are shown in the works [2; 155-169], [7; 655-661].

5. The general condition for the compatibility of such systems is established [1]. In addition, the
integrability condition must be satisfied

CORCY

- W * @ (1.3)

6. Under these important conditions, system (1.1) has four linearly independent particular solutions
[1]. The overall solution is represented as the sum of these four solutions

4

If condition (1.4) is not satisfied, then the system has at most three linearly independent particular
solutions. Until now, inhomogeneous systems of the form

POz + P(l)Zmy + Pz + P(3)Zy +pWz = pO (2,y),

QU Zyy + QW2 + QP 2, + Q¥ 272, + QWZ = Q¥ (x,y), (1.5)

still insufficiently investigated, where P4 = P (m,y),Q(i) = QW (z,y) analytic functions of two
variables. Although the works of Zh.N. Tasmambetov and M.Zh. Talipova (8, 9| are studied the
possibilities of constructing solutions for inhomogeneous systems of the form (1.5) and some special
cases of it. As in the ordinary case [10; 146], the rightness of assertion is proved |[8§].

Theorem 1.1. The general solution of the inhomogeneous system (1.5) is represented as the sum of

the total solution (1.4):
4

7=3"CiZi(w,y),( = 1,2,3,4)
j=1

corresponding homogeneous system and particular solution Zy(x,y) of inhomogeneous system (1.5):

4

Z(w,y) = Z(x,y) + Zo(w,y) = > C;Zj(w,y) + Zo(x,y).
j=1

Disseminate previous results obtained from second-order system case to the case with system
consisting of two third-order equations. Determine the number of solutions corresponding to homoge-
neous system, near singular curves. Carry out classification of singular curves and establish the type
of inhomogeneous system solutions. Develop specific examples.

Main results

2. Construction of homogeneous system solutions consisting two equations of third order
Problem statement. A nonhomogeneous regular system consisting two third-order partial differential
equations near the singularity is considered.

2390 Z i + 22ygW Zogy + 229D Zpw + 299 Zoy + 2gW 2, +ygD 2, + 997 = g7 (2, ),
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¥34 9 Zyyy + 224V Zoyy + 24P Zyy + 2yqP Zoy + 2¢V 20 + 9D 2, + 92 = ¢ (2,y),  (21)

where Z = Z(x,y) total unknown, coefficient

9" = gD (z,y) = aff) + affa",

¢ = ¢ (z,y) = bgg + bgfyk (i=0,6) (2.2)

and the right parts ¢(7) (z,y), q\" (z,y) analytic functions or polynomials of two variables. Required to
construct a general solution of inhomogeneous system (2.1) with coefficients in type (2.2) and show
that it is represented as the sum of total solution Zy(x,y) corresponding to homogeneous system and
particular solution of inhomogeneous system (2.1).

2.1. Construction of reqular solutions corresponding to homogeneous system

Construction features of regular solutions corresponding to homogeneous system

2%9" Zsww + &2yg\" Zoay + 229" Zow + 2yg® Ziy + 129 25 +yg© 2, + 9O 7 = 0,

ygq(O)Zyyy + $y2q(1)nyy + y2q(2)Zyy + xyq(S)ny + $q(4) Zy + yq(S)Zy + q(G)Z =0, (2.3)

where Z = Z(x,y) total unknown, not studied enough.

This system requires the establishment of a general method for constructing solutions near regular
singularities (0, 0) and (0o, 00), determining the number of linearly independent solutions, as well as the
classification of regular and irregular singularities, compatibility conditions and integrality. Systems
(1.1) and (2.3) differ only in orders. Therefore, to construct a third-order system solution (2.3), it
is advisable to use the Frobenius-Latysheva method [6], which has proved itself well in studying the
second-order system (1.1).

The use of this method involves the fulfillment a number of conditions:

1. Suppose that system (2.3) is joint and the integrality condition is also represented in type (1.3).
However, these concepts need further clarification.

2. Special curves at k = 1 determine by equating the coefficients at higher derivatives to zero Z,,,
and Zyyy: (0,0), (0, ~bog /857). (~agg /agy’,0), (~agg /agy), (=g /b4). (0, ), (00,0), (00, ~bgg /).
(—ag%)/ a((ﬁ), 00). As before, single out two pairs of features (0,0) and (0o, c0) at building a solution.

3. In case under consideration, the coefficient (2.2) is reduced to the form of the previous case,
using the transformation (1.2).

4. The solution near the feature (0,0) is represented as

Z(‘Tv y) = l,pya Z Am,nxmynv AO,O 7’é 0 (24)
m,n=0
a near the feature (0o, 00) in form
Z(IE, y) = xpya Z Bm,nximyina BO,O 7& 0 (25)
m,n=0

where p,0, Ay, n, Byyp(m,n =0,1,2,3,...) unknown constants.

The application of the Frobenius-Latysheva method assumes [6] compilation characteristic functions
system and determination systems of defining equations for the singularity (0,0):

1 0 1 2 3 4 5 6
féo)(Pa o) = aéo)P(P -1(p-2)+ at()o)P(P - 1o+ at()o)P(P -1+ aéo)pa + aéo)/) + aéo)a + aéo) =0,

5 (p.0) = b o(0 = 1)(0 = 2) + b o (0 — Do+ b o (0 — 1) + b por + bl p + b5 o + b = 0, (2.6)
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and concerning feature (0o, 00) :

(1 )( (0) 3) (4) (5) (6) 0,

1 2
p,o) =ayyp(p—1)(p—2)+ ago)P(P —1)o + ago)P(P —1)+ajypo+aygp+ago+ayy =

@ p.0)=bo(o—1)(0—2)+bVo(o—1)p+bPa(c = 1)+ 5 po + bV p+ 5o + b8 = 0. (2.7)

From (2.6) have been determined indicators of the series (2.4), and from (2.7) row indicators (2.5) as
pairs (pt, o¢). It is important to determine the index ¢, since the number of such pairs allows determining
the number of linearly independent particular solutions of system (2.3) near the singularities (0,0) and
(00, 00).

Theorem 2.1. If the system (2.3) with coefficient type (2.2), where coefficient a © # 0,

b(o # # 0,h = 1 meet compatibility conditions. Then the system (2.3) near the smgularlty (0,0)
has nine linearly independent regular particular solutions in type (2.4), where row indicators (p¢, 0¢),
(t =1,9) are determined from the system of defining equations (2.6), and unknown coefficients

Agfl),n(m, n=0,1,..; t =1,9) series (2.4) determined from recurrent sequence systems
t
Z AD iy nEDalp+ =m0 +v—n) =0, (2.8)
m,n=0

(u,v=0,1,2,....,;5 = 1,2;t = 1,9) obtained by substituting a series (2.4) to the original system (2.3)
with coefficients of the form (2.2).

Proof. In general, to establish compatibility conditions is very difficult. If the system is hypergeo-
metric type, then compatibility conditions are determined by the Kampe de Feriet method [2; 155-159].
The method for hypergeometric type of equations is shown in [11; 21]. Determine how many roots have
the system of defining equations (2.6) and (2.7). To this end, write down system (2.6) in expanded

form, using (2.5). From the second equation f(%)(p, o) = 0 we have discovered

B bé%)a(a —1)(oc—2)+ b(2) (c—1)+ bé%)a + b(()%)
b(()%)) (c—1)+ b(3)0 + b(4)

and substituting in the first equation féé) (p,0) = 0 systems (2.6), after exclusion o get the ninth degree
equation for p. In the case when only simple roots exist, it is possible to determine the nine roots of the
resulting equation. In the same way, we define nine simple roots oy, (t = 1,9 and make of them nine pairs
of roots (p¢, o¢), (t = 1,9). These indicators correspond to nine linearly-independent particular solutions
of the system (2.1) and (2.2), after determining unknown coefficient AﬁQn, (m,n=0,1,2,...;t =1,9)
from the system of recurrent sequences (2.8). Similarly, we can verify that system (2.1) and (2.2) also
has nine linearly independent particular solutions near the singularity (oo, 00).

Theorem 2.2. If systems (2.1) and (2.2), where coefficient ag%) # O,b((ﬁ) # 0,h = 1 conditions of
compatibility and integrability are satisfied (1.3). When systems (2.1) near the singularities (oo, 00)
have nine linearly independent regular partial solutions in type (2.5), where a number of indicators
pt,o¢(t = 1,9) determined from the system of defining equations (2.7), and unknown coefficients

Bg?n(m, n=0,1,2,..;t =1,9) series (2.4) determined from recurrent sequence systems

H,v
. A
> Bfﬁm,ufnféi,)n(p —p+m,o—v+n)=0,

m,n=0

(v =0,1,2,....;5=1,2;u—m > 0,v —n > 0,t = 1,9) obtained by substituting series (2.4) into the
original system ( ) (2.2).
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In Theorems 2.1 and 2.2, the conditions a(g%) # 0, bé%) # 0 and a%%) # 0, b[()ol) # 0 essential since the
ninth degree equations are relatively p and o turns out only when they are non-zero. This shows that
near regular singular curves (0,0) and (0o, 00) there are nine regular linearly independent particular
solutions Z(x,y), (t =1,9).

Theorem 2.3. Common solution of joint system (2.1), (2.2) in case of the integrability condition
(1.3) is satisfied, is represented as the sum

ZCZmy =1,9) (2.9)

where C;(t = 1,9) arbitrary constant.

Remark 2.1. Theorems 2.1 and 2.2 have been formulated for the case h = 1. This is due to the
classification of singular curves. They are true and generally, where £ > 2. Then particular solutions
are expressed through Z = Z (2%, y*), (k > 2).

Remark 2.2. Theorem 2.3 is also valid when the coefficients of system (2.1) are analytic functions
or polynomials of two variables.

2.2. Construction of inhomogeneous system solutions.

A theorem on the construction a general solution is formulated analogously to Theorem 1.1.

Theorem 2.4. The general solution of inhomogeneous system (2.1) is represented as the sum of
total solution Z(z,y) corresponding to homogeneous system (2.3) and a particular solution Zy(z,y) of
inhomogeneous system (2.1):

9
t=1

The form of the general solution (2.9) is established by Theorem 2.3. To construct a particular
solution near the singularity (0,0), we apply the method of undetermined coefficients generalized
for the case of two variables series. To this end, a series of the form (2.4) representing a particular
solution Z(x,y) substitute into the inhomogeneous system (2.1) and obtain the system of Frobenius
characteristic functions

2Py {Coof§3(ps o) + [Crofdy (p + 1.0) + Coo 3 (p, o))z + [Con fly (p, o + 1) + Confd (p, o)y +

+[Cl,1f(§,jg(P +1lo+1)+ C1,ofé, (p+1,0) + Coi f} 0(070 + 1)+ Co 0f1 DVp, o)y + .} = fi(x,y)

where f1(x,y) = ¢"(z,y), f2(z,y) = ¢"(z,y) and f(])( o), (j = 1,2) determines the system of defining
equations for the singularity (0,0) of the form (2. 6)

Further reasoning depends on form of right side representation fj(x,y),(j = 1,2). Let them be
represented as generalized power series of two variables in increasing degrees of independent variables
x and y :

fil,y) = 97 (2, y) = 2y° Z U na™y", (a0,0 # 0)
m,n=0

fo(z,y) = (@, y) =27y Y bmnz™y", (boo #0) (2.11)
m,n=0

Then a series of form (2.4) representing a particular solution

Zo(.ilf, y) = xpya Z Cm,nxmyna (CO,O 7& 0) (212)

m,n=0
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will be a formal particular solution only when uncertain coefficients Cy, ,(m,n = 0,1, 2, ...) satisfy the
following recurrent system

Coofd)(p.o) = o]
cwﬁ§@+1my+amﬁ?@md=a%
)
1

1
Corf8(pyo +1) + CoofP(p, o) = af

Crafs)(p+ Lo+ 1)+ Crofd (p+1,0) + Cor £ (p,0 + 1) + Coof (p, ) = o)

Cooff) (p+2.0) + Crof Q) (p+1,0) + Con sy (p,0) = o)
CoafD(p,o+2)+ Corf (0,0 +1) + Coo fD (p,0) = o)

.......................................................................................................................... (2.13)

The recurrent system determines the coefficients Cy, ,(m,n = 0,1,2,...) of series (2.12). When

j =1 and j = 2 it breaks down into two systems. When j = 1 in the right part (2.13) ag?n = Gmn

at j = 2 coefficients ag?n determines over by, ,(m,n = 0,1,...), where a, , and by, ,, coefficients of
generalized power series ¢(7)(z,) and ¢(7)(z,y). Coefficient Cmn(m,n = 0,1,2,...) determined at
j =1 and j = 2 of the two sequences of recurrent systems must be identical. From the recurrent
system (2.13) they are determined only under the condition (a+ k1, 8+ k1) and (v + k2, d + k2) where
k;j(j = 1,2) any natural numbers, are not indicators of homogeneous system (2.3) solution. Series
convergence f;(z,y)(j = 1,2) involves the convergence of right-hand side series (2.12). When fulfilling
the above conditions, particular solution Zy(z,y) the inhomogeneous system (2.1) with coefficients of
the form (2.2), when the singularity (0,0) can be constructed regularly.

Remark 2.3. If (a + k1,8 + k1) and (v + k2,0 + k2), where k;(j = 1,2) any positive integers are
indices of homogeneous system solution, then we obtain a more complicated «resonance» case. This
case requires additional investigation.

Remark 2.4. If in coefficients (2.2) constant k£ = 1, then in the recurrent sequence starting from
fl(Jl) (p, o) all expressions fg(jo) (p,o), 5]2) (p,0), 35‘70) (p,0), ... will be zero.

Remark 2.5. The transformation (1.2) of the considered case will lead to a simpler form k = 1.

Thus, based on the above reasoning, we can conclude that the statement is true.

Lemma 2.1. Let inhomogeneous system consisting of two third-order equations (2.1) with coefficients
in type (2.2), where the right-hand sides ¢(")(z,y) and ¢(7)(x,y) analytic functions of two variables
regular near the singularity (x = 0,y = 0). Then system’s particular solution (2.1) has the form of the
right-hand side (2.11), if (a+ k1, 8+ k1) and (77 + ke, d + ko) does not coincide with any pair of solution
indicators corresponding to the homogeneous system (2.3) for any natural k;(j = 1, 2).

2.8. Construction and study properties of specific system solutions

J. Kampe de Feriet [2; 155-162] provides a method for constructing systems of third and fourth
orders consisting of two equations, using the system

jtk=w+1
> (s — agua)zly*pip =0,
j+k=0

Jjtk=w+1

Y (k= Biwy)aly pjp = 0. (2.14)
j+k=0

This technique ensures the compatibility of two equations systems hypergeometric type (2.3). The
solutions of such systems are generalized by hypergeometric functions of two variables. Consider a
particular special case [2; 159] of such system and we will study the properties of its solutions.
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Theorem 2.5. The system of partial differential equations consisting two equations of third order
22 Zpuw + XY Zyay + (Y + 0+ )22y + 0yZyy + 702, — Z =0,
Y Zyyy + TY Zagy + (v + 8 + 1) yZyy + 8 &2y + 70 Zy — Z = 0, (2.15)
has nine linearly independent particular solutions
o

/ 1 ™y

m,n=0

_s T Y Ty
Zofw,y) =y {14 S T1=0)  EoE1=0) e - ra=0)

— Y Yy Ty
2 TSI W i Sl 7 Yo iy S ovarag sy B2

Za(w,y) =y {1+ 5+ 4 + 2 b s )

7 _ 15,15 1 x y
@) =yt o =) T @20 -0

+ Ll
2-0)2-0)y+2-86-8)(vy+3—-6-7¢)

T

— 1=, 1—y z Y zy
Aol =T S e 1) T @G-y 5)

+
)
X
Y+

4

2
e e [C RS Ty Bl o e ey ey

)

_ - — fU Y
Zs(ay) = 'y {1+ - NE-0)6rl—n) (a2

Ty
(2-0)22-70+1-7)(3-¢)

+ + ...}

_ _ x Yy
Zo(z,y) = 27y {1 + + +
) U epari-y T
Ty
2-7)3B-7)A+d-7)(1+5 —7)
Proof. The system is consistent in construction system (2.14). We will construct solutions using the

Frobenius-Latvian method, based on the results of clause 2.1. The system of defining equations for the
singularity (0,0):

1 +..} (2.16)

5 (p.0) = p(p—1)(p—2) + plp— D)o+ (v + 6+ D)p(p — 1) + 6po +76 =0,

Dipo)=c(c—-1)(0—-2)+po(c—1)+ (y+8 + Do(c—1)+ 5 po+~5 =0 (2.17)

has nine pairs of roots:
1.(p1 = 0,01 =0);2.(p1 = 0,00 =1 — 5/);3.(p2 =1-46,00 =0);
4(p1=0,05=1-7);5.(p2=1-08,00=1-0);6.(pp=1—,03=1—7);

T(p3=1-7,00=0);8.(p3=1—7,00=1-08)9.(p3=1—7,03=1—).
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Using the system of recurrent sequences (2.8), we determine the unknown coefficients of the series
(2.4) sequentially substituting the values of the roots pairs (p¢, ¢ )(t = 1,9) of system defining equations
(2.17).

In this way, we obtain nine linearly independent particular solutions (2.16). The theorem is proved.

Now we proceed to construct a particular solution of an inhomogeneous system

82 Zaww + 2Y Zwmy + (Y + 0 + )8 2y + 0y Zny + 7020 — Z = gD (a2, y),

yZZyyy + Y Zyyy + (v + 5 + )yZyy + 5/33ny + ’Y(S/Zy —-Z= 9(7) (z,y), (2.18)
where the right side has the type

/ 1 1
(7 2 L
g\ (x,y) =700 +’y§x+75,y,
¢ (z,y) = %66 + Lov Ly (2.19)
b 76 ’75/

Theorem 2.6. The general solution of the inhomogeneous system (2.18) with the right part (2.19)
is represented as the sum (2.10) of the total solution Z(z,y) the corresponding homogeneous system
(2.15) and a particular solution Zy(z,y) heterogeneous system (2.18).

Indeed, by virtue of Theorem 2.3, the general solution of the corresponding homogeneous system
(2.15) is represented as the sum of nine linearly independent particular solutions Z;(z,y), (j = 1,9)
(2.16):

Z(z,y) = Y CiZix,y), (i

m,n=0

1,9).

It remains to build a particular solution Zy(z,y) of heterogeneous system (2.18) with the right part
(2.19) using the method of uncertain coefficients described in clause 2.2 based on the right part of task
g (z,y) and ¢V (z,y) in view of

Zo(x,y) = Coo + Cr oz + Coay. (2.20)
Substituting (2.20) into (2.15) we determine the unknown coefficients: Cp g = —(7255/4—1), Cip= —%,
Cop = —ﬁ obtain a particular solution of the inhomogeneous system (2.18) with the right side
g (z,y) and ¢ (z,y) in view of
/ X y
Z = —(v%56 +1) - = — = 2.21
o(o9) = ~(788 1) = - & (2.21)

Therefore, the general solution of inhomogeneous system (2.18) with the right-hand side (2.19) is
represented as

9
_ ’ X
7j=1

where Z;(z,y), (j = 1,9) particular solutions corresponding to homogeneous system (2.16).

It is easy to verify that the sum of two equations (2.18) also satisfy the particular solution of the
inhomogeneous system (2.21).

Theorem 2.7. A particular solution of the inhomogeneous system (2.21) is also a solution of a
third-order partial differential equation

mQsz + mZ/Z:c:cy + yQZyyy + wyZ;tyy + ('7 +4+ 1>xZ$:L‘ + (7 + 5/ + l)yZyy+
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+@y+5@zw+7&@+75@_azzgw%5+§?+%g

obtained by adding the two equations of the inhomogeneous system (2.18).

Theorem 2.8. The general solution of the inhomogeneous system (2.22) is a solution of a third-order
partial differential equation (2.23) obtained by adding two equations of the inhomogeneous system
(2.18).

Conclusions: Thus, in this paper we have been studied the possibility of constructing solutions
uncharted inhomogeneous system of differential equations in partial derivatives, consisting of two third-
order equations.

1. To solve the corresponding homogeneous system (2.3) was applied the Frobenius-Latyshev
method. Theorems 2.1 and 2.2 on the number of linearly independent solutions of the homogeneous
system (2.3) have been proved. The main stages of building solutions by the Frobenius-Latyshev method
are given. It was found that when the roots of the defining systems (2.6) and (2.7) with respect
to characteristics (0,0) and (oco,00) simple, the homogeneous system has nine linearly independent
particular solutions of species (2.4) or (2.5) near the singularities of (0,0) and (oo, c0).

2. A theorem on the construction a general solution of the inhomogeneous system (2.1) with
coefficients in type (2.2) is formulated. To this end, for such systems, for the first time the method
of uncertain coefficients is used. Yu.l. Sikorskiy extended method of Frobenius-Latysheva to linear
ordinary inhomogeneous differential equations [12, 13]. It has been shown that for solving various
problems of thermoelasticity, the method of undetermined coefficients has an advantage over the
method of arbitrary constant [14]. For example, when solving the inhomogeneous Bessel equation,
particular solution is a linear combination of Lommel functions [15]. It should be noted that in this
monograph thoroughly studied the possibility of constructing the solutions known classical ordinary
differential equations with the right-hand side, the decisions of which are special functions and ortho-
gonal polynomials in one variable. In the case of the studied systems, the research has not reached
such a level.

3. A specific example is considered, where a homogeneous system is constructed by the method
of J. Kampe de Feriet [2; 155-169]. Nine linearly independent solutions (2.16) obtained by the Frobenius-
Latysheva. To build a general solution of system (2.18) with the right-hand side (2.19), the undetermined
coefficients method is applied.

4. It is also shown that application of uncertain coefficients method allows to obtain solutions of
one inhomogeneous partial differential equation of the third order (2.23) associated with the studied
specific system (2.18).

5. The first particular solution of homogeneous system (2.15) relates to degenerate generalized
hypergeometric series of two variables Clausen type

(2.23)

Ty 1 22

5 v+ 1) T E D) 2 T
2

/ 1 1
(7 ) ,’Y,l’,y) +6’)/x+5'}/y+
1
, v
(0" +1)y(y+1) 2!
The properties of this series remain understood. Consider the differential properties of the series (2.24).
Theorem 2.9. First m and n the of the series (2.24) are represented as:

2.24
+3 (2.24)

9 , | ,
L2 P(56,6 vy y) = —F(564+ 1,8 7 + 1
837 (, ) 7%95,?/) (5’}/ (a + y a’}/—i_ 7x7y)7
0. 0 B(5.0 v y) = ——F(56,8 41,7+ 1:2,9)
‘ay ) ) 7,‘)/7 7y _5/7 ) ) 7’.}/ ) 7y7
3 O*F (56,8, vim,y) _ F(50+42,0,7+2,y)

Oa? 86+ y(y+1))
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LOPF (36,0 yiayy) _ F(50.8 +2,7+%a,y)

dy? G TGRS )
5 O*F (56,0, viwy)  F(;0+ 1,6 +1,v+2m,y)
' dxdy N 80" y(y+1) ’
6 8m1F(';5,5/,’7;$,y) _ F(-;5—|—m1,5/,7—|—m1;x,y)
' ox™ 6+ (SFm)y(y+ 1)y +2)]
7 amQF(’5’6/+17'y+m2’;p,y) _ F(';575/+m257+m2;x7y)
' oy 8 (6 +1)...(6" +ma)y(y + 1)...(y + m2)’
. oMM (56,8 iz, y)
' Ox™1Qym2 N

F(56+m1, 6 4 ma,y + mi + ma;z,y)
80 +1)c(64m1)d" (8" +1).(6" + ma)y(y + 1).cc(y + my + ma)

Confine ourselves with building a single solution corresponding to the indicator (p; = 0,01 = 0).
Similarly, the differential properties of the remaining series in (2.16) can be derived. The output of
these differential properties further facilitates the proof of theorem addition and multiplication, while
others recurrence relations associated with degenerate generalized hypergeometric series.

10
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Jlepbec TybIHABLIBI YINIHIN PEeTTi
audpdepeHIuaaabIK, OipTekTieMmec XKyiiesjep Iertimi

Yuriami perti mepbec TyBIHABLIBL OipTekTieMec muddepeHnnaiIbK TeHIEYIeD KYHeciHiy mermmaepin Ky-
py MywMmKingikTepi 3eprresiren. @pobennyc-JlarpimeBa omiciMer coiikec GIpTeKTi *KYHeHIH »KaJIbl YKOHE
nepbec menniMaepin Kypy *KaH->KaKThl KapacThIpbLIFaH. ChI3BIKTHI-TOYEJICI3 JIepOec MIenTiMaep CaHbl AaHbIK-
tasran. MyHzmail Kyitesepre aHbIKTaJMaraH KO(MMUIIMEHTTED OICIH KOJJAHY €pEeKelIeJTiKTepi alKbIH-
JAJIFAH 2KoHe OIpTEKTI eMeC »KYieHiH »KaJllbl MIEHIiMi TypaJibl TeopeMa JpJiesiieHreH. HakTel Mblcanina,
OCBIH/Iall YKOJIMEH KYPBLIFaH GIPTEKTI eMec XKYiieHiH 1epbec MelriMi, KapaCThIPBLIFaH MBICAIAFbl TEHJIEY-
Jiep KyheciHiH eki TeH/eyiH KOCBIHIbLIAYIAH aJbIHFaH YIMHIIN peTTi, 6ipTekTi emec Oip TeHAEYIH ae 1re-
miMi GoJstaThIHABIFBI KepceTiiren. Colikec GipTeKTi XKyiieHiH nepbec memtiMaepiniy 6ipi exi aiflHbIMAJIBIHBIH
Kitaysen TekTi TybIHIAIFaH KAJIBIJIAHFAH TMIEPreOMeTPUANIBIK KaTap TypiHe Karaibl. MyHtail »Kasirbl-
JIAHFAH THIEPTeOMETPUSIIBIK, KATaPJIapIbIH KACUETTEP] 93ipiine a3 3epTTe/reH.

Kiam ceadep: BIpTeKTI eMec XKyiie, Peryssipjbl IIEITM, epeKilie HyKTesep, bericis KoadduimenTrep o/1ici,
Kyle, Tegaeynep, TeopeMa.

7K .H. Tacmamberon, 2K.K. Vbaena

Pemenune neoHopogHbIX cucTteM JquddPepeHImaIbHbIX
YPaBHEHUIl B YaCTHBIX ITPOU3BOJHBIX TPETHETO IMOPAIKA

3ydenpl BO3MOKHOCTH IIOCTPOEHUS PENIEHNN HEOJHOPOIHON cHCTeMBbI nuddepeHITNaJIbHbIX yPaBHEHUI
B YACTHBIX MMPOU3BOIHBIX TpeThero mnopsaka. Meromom ®pobenmnyca-JlarnimneBoit BCECTOPOHHE HUCCIETOBA~
HO IIOCTPOEHWE OOIIEro W YaCTHBIX PENIeHUI COOTBETCTBYIOIIEH OJHOPOIHON CHCTEMBI. YCTAHOBJIEHBI BU-
Bl pernenus: B6uim3u 0coObix KpUBBIX. OIpeesieHo KOJIMIeCTBO JINHEHHO-HE3aBUCUMbBIX YaCTHBIX PEIeHHUIA.
JlokazaHna TeopemMa O MPeACTABJIEHUN OOINEro PelleHns HEOMHOPOIHON CHCTEMBI U PACKPBITHI OCOOEHHOCTH
MIPpUMEHEHUs] MEeTO/[a HEOIPEIETIEHHBIX KOIDMUIIMEHTOB 718 TaKuX cucteM. Ha KOHKpeTHOM mprMepe moKa-
3aHO, YTO IIOCTPOEHHBbIE TAKUM 00PAa30M YaCTHBIE PEIIeHUs] HEOTHOPOIHON CUCTEMBI SIBJISIOTCA PEIIEHUSIMU
¥ OJTHOTO HEOJHOPOIHOTO YPaBHEHHS TPETBHEro IOPsJIKA, MOJIYUYEHHOTO IIyTEeM CJIOYKEHUS IBYX ypPaBHEHUN
paccmoTpentaoro npumepa. OHO U3 YaCTHBIX PENIeHUil COOTBETCTBYIOINIEH OJJHOPOJIHOM CUCTEMBI OTHOCUT-
Csl K BUJYy BBIPOXKIEHHOIO ODOOIIEHHOIO TMIEPreOMEeTPUIECKOro psijia Tuna KiayseHa JABYyX MEepeMEHHBIX.
CaoiicTBa TaKUX 0OOOIEHHBIX THIIEPTEOMETPUIECKUX PSIIOB OCTAIOTCS MAJIO M3y IEeHHBIMH.

Karouesvie caosa: HEOTHOPOIHAS CHCTEMa, PEryJIIDHOE PeIleHne, OCOOEHHOCTH, METOJ, HEeOIpPeIeIeHHbBIX
K03 DUIMEHTOB, CUCTEMa, YPABHEHUs, TEOPEMA.
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Model-theoretical questions of the Jonsson spectrum

In this paper, new concepts are defined in the framework of the study of Jonsson spectrum. We consider a
spectrum with respect to the concept of cosemanticness, which is a generalization of elementary equivalence
in the class of inductive, generally speaking, incomplete theories. Also, with the help of Jonsson spectrum,
the actual directions of the study of Jonsson theories and their model classes are determined, namely,
the study of classical questions of model theory, such as the completeness, model completeness, model
companion of within the framework of the above conditions, which define a fairly wide subclass of inductive
theories, and which Jonsson theories. Therefore, in studying the model-theoretical properties of Jonsson
spectrum, we need to clarify the definition of those concepts that naturally arise when we move from the
concept of elementary equivalence to the concept of cosemanticness, moreover, both theories and models.
Some model-theoretical properties of the Jonsson spectrum are considered. When considering the Jonsson
spectrum, all the tasks that are posed in this article make sense and their solution can be useful for solving
related problems, because this problem is actively studied in the field of Jonsson theories.

Keywords: Jonsson theory, Jonsson spectrum, cosemanticness, completeness, similarity.

This article is devoted to the study of model-theoretical questions of the Jonsson spectrum. The
concept of the Jonsson spectrum arose in the study of the Jonsson invariants of abelian groups and
modules [1, 2]. This problem arises in the study of an arbitrary Jonsson theories of an arbitrary
signature. It is well known that Jonsson theories, generally speaking, are not complete theories. In this
regard, it becomes interesting to generalize the concept of elementary equivalence of two models. The
role of this generalization is played by the concept of cosemanticness of two models. The cosemantic
nature of models is a consequence of the cosemantic nature of Jonsson theories to the model classes of
which these models belong. In connection with the concept of cosemantics, the question arises of the
completeness of the theories under consideration, as well as their perfectness. Moreover, as is known
by virtue of the criterion of perfectness [3; 158| Jonsson theories, if the Jonsson theory is perfect,
the class of its existentially closed models is an elementary class. Perfect Jonsson theories are well-
arranged in the sense that their semantic invariant, namely their center, is a model companion. But
nevertheless, if we move from the Jonsson theory to an arbitrary Jonsson spectrum of one of the
models of this theory, then this spectrum can contain both perfect and imperfect theories. Therefore,
in studying the model-theoretical properties of Jonsson spectrum, we need to clarify the definition of
those concepts that naturally arise when we move from the concept of elementary equivalence to the
concept of cosemantics, moreover, both theories and models. It is clear that it would not be easy to
proceed directly to the study of Jonsson spectrum in a general form due to the above difficulties. In
this regard, we propose in a certain way to limit the studied class of problems to the framework that
seems to us natural and interesting from the point of view of this problem.

Thus, the main purpose of this article is to identify certain concepts that are new in the study
of Jonsson spectrum, and with their help we want to determine the actual directions of the study of
Jonsson theories and their model classes.

All the above concepts are directly related to the study of Jonsson theories and their classes of
models. This issue is being actively studied and in this article we cannot immediately cover all areas
of these studies. Nevertheless, here is a list of links that are related to the concepts considered in this
article [4-15].

We give the necessary definitions.
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Let o be some signature, L be the set of all formulas of signature o, i. e. a language of this signature.
Let A be an arbitrary model of signature o, i.e. A € Modo. Let us call the Jonsson spectrum of model
A a set:

JSp(A) = {T|T is Jonsson theory in language o and A € ModT}.

Denote by JSpr(A) = {T|T is I'-complete Jonsson theory in language o and A € Mod T}, where T’
is type of a prenex prefix after reduction a set of all sentences of signature o to a prenex normal form
of.

The relation of cosemanticness on a set of theories is an equivalence relation. Then JSp(A) /i is
the factor set of Jonsson spectrum of the model A with respect to b<. Similarly, we can consider the
factor set JSpr(A)/m.

Let [T] € JSP(A)/s. Since every theory A € [T] has Ca = Cr, then the semantic model of class
[T'] will be called the semantic model of a theory T": Cipy = C7. The center of Jonsson class [T'] will be
called an elementary theory [T]* of its semantic model Cizy, i.e. [T]* = Th(Cz]) and [T]* = Th(Ca)
for every A € [T].

Denote by Eirp = (J Ea the class of all existentially closed models of class [T] € JSp(A) /.
A€[T)
Note that () Ea # @, since at least for every A € [T] we have Ciy) € Ea.
A€(T)
Let A and B are models of the same signature.

Definition 1. We will say that a model A is Jonsson elementarily equivalent to a model B (A = B)
if JSp(A) = JSp(B).
Considering the factorization, we can give the following definition.
Definition 2. We say that a model A is JSp-cosemantic to a model B (A b B) if JSp(A)/w =
P

JSp(B) /. Accordingly, we say that a model A is JSp-cosemantic to a model B regarding I'" and write
down it AJ% B if JSpr(A) /o = JSpr(B)/se.
P

Definition 3. The class [T] € JSp(A)/x is called elementarily closed if V[T]) € JSp(A)/w: [T] #
[T] = = E[T] N E[T}’ =0.
Definition 4. The class [T] € JSp(A)/w is called locally convex if Thys( (] Ea) is a Jonsson
Ae[T
theory and convex if Thys(A) € JSp(A). .
Definition 5. The class [T] € JSp(A) /i is called companion-convex if the theory V = Thys( [ Ea)
A€g[T
is a Jonsson theory and has a model companion. .
We can define the completeness of the class [T] as follows (Definition 4), and all four types of
completeness are independent of each other and can combine. An interesting problem is the transfer
of results from the Jonsson theory to the Jonsson spectrum, when the completeness of the Jonsson
theory is replaced by the following types of completeness and their combinations.
Definition 6. The class [T'] is called a I'-complete class if the following conditions are true:
1) VA, B € E[T], A=r B;
2) VA, B € By, A JD§p B and VA € [T], A —I'-complete.

) Voel, VAe[T], A por Ak —p < VA Be ModA, YA € [T], A=r B;

4) Vo €T, VA,BEE[T],A)ZQD@B'ZQO.

It is well known that the concepts of completeness and model completeness do not coincide, but
as shown by [3] in the case of a perfect Jonsson theory, these concepts coincide for the Jonsson theory
under consideration. Therefore, in going over to the problem of the Jonsson spectrum, we must take
into account that in the case of an imperfect class these concepts do not coincide.

Definition 7. The class [T] is model complete = VA € [T], A is model complete.
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Theorem 1. The class [T] is model complete, if VA, B € Ejz), V monomorphism f : A — B is
elementary if and only if Vo € L, 3 e VNI : [T F (o ~¢) [TIF (o~ ) =S VA € [T]|,AF (p ~ ).

Lemma 1. If A € [T] and A is imperfect, then 3B € Ea, B € En for some A’ € [T].

Definition 8. [T]1, [T]2 existentially mutually model complete ([T <> [T]2) if VB € Ejqy,

B € By, : B 5 B’ and the converse is true.

Lemma 2. [T]l — [T]Q = ThV(C[T]l) = ThV(C[T}Q)-

Let us consider some properties of the Jonsson spectrum at fixed completeness (a special case of
Definition 6 (2)).

Let o be an arbitrary signature, A € Modo, JSp(A) /s, A € ModT;

Mod|T] ={A € Modo|A = T;,VT; € [T]}.

Mod(JSp(A)) = {B € Modo|B = T;,VT; € JSp(A)}.

Mod(JSp(A)/s) ={B € Modo|B = [T),V[T] € JSp(A)/w}

The E7 is elementary class < T has a model companion.

Definition 9. [T'] has a model companion if any E7, are an elementary class, T; € [T].

A 29 B & JSp(A) /oo = JSp(B) /o

JSp(A)/sa = {T|T — Jonsson theory, A = T}.
The [T is complete = VA, B € Eip, A Jbg B.
P
E[T} == UETZ
icl
The [T is perfect = Cpy is saturated.

The [T] is V3-complete = VA, B € Eiq, A JZSE] B.
P

A B3 B= JSpea(A)foa = JSpya(B) /e

JSpya(A) /s = {T|T — V3 — complete Jonsson theory, A = T'}

Recall the definitions [3] of syntactic and semantic similarity of Jonsson theories.

Definition 10. Let T7 and T3 are arbitrary Jonsson theories. We say, that 77 and 75 are Jonsson’s
syntactically similar, if exists a bijection f : E(T1) — E(T») such that

1) restriction f to E,(71) is isomorphism of lattices E,,(T1) and E,(T2), n < w;

2) f(aUnJrlSO) = H'UnJrlf(QD)v pE En+1(T)v n < w;

3) f(’Ul == ’()2) == (’U1 = ’U2).

Definition 11. The pure triple (C, AutC, SubC') is called the Jonsson semantic triple, where C' is
semantic model of T';, AutC is the automorphism group C', SubC is a class of all subsets of the carrier
C, which are carriers of the corresponding is existentially-closed submodels of C'.

Definition 12. Two Jonsson theories 77 and Tb are called Jonsson’s semantically similar if their
Jonsson semantic triples are isomorphic as pure triples.

Given these definitions, we define syntactic and semantic similarities of the Jonsson spectrum.

Definition 13. Let A € Modoy, B € Modog, [T) € JSp(A)/w, [T]2 € JSp(B) /. We say that the
S
class [T]; is J-syntactically similar to class [T]e and denote [T']; x [Ty if for any theory A € [T]; there

is theory A’ € [T]3 such that A >Sq A

Definition 14. The pure triple (C, Aut(C),E[TQ is called the J-semantic triple for class
[T] € JSp(A)/w, where C' is the semantic model of [T], AutC' is the group of all automorphisms of C,
E[T} is the class of isomorphically images of all existentially closed models of [T7].

Definition 15. Let A € Modoy, B € Modog, [T] € JSp(A)/w, [T]2 € JSp(B) /. We say that the
class [T; is J-semantically similar to class [T]2 and denote [T]; >b§ [T]2 if their semantically triples are

isomorphic as pure triples.
In the case when it is possible to determine a sufficiently good geometry on the subsets of the
semantic model of a class, we can use the technique of strongly minimal Jonsson sets. If we consider
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the enrichment, which will be hereditary, then we can consider the technique of central types, which
form an essential base in this geometry.

To determine pregeometry and, accordingly, geometry for the Jonsson spectrum, we will work
with subsets of the semantic model of each cosemanticness class of a given Jonsson spectrum. The
following definitions are given for fixed subsets X,Y, A, B of some semantic model C of the fixed class
[T] € JSp(A) /s

The following definitions (16-28) are taken from [11]. These definitions are consistent with the
above conventions regarding the subsets of the semantic model of each class of cosemanticness of a
given Jonsson spectrum.

Definition 16. If (X,cl) is a Jonsson pregeometry, we say that A is Jonsson independent if
a ¢ cl(A\{a}) for all a € A and that B is a J-basis for Y if B CY is J-independent and Y C acl(B).

Definition 17. We say that a J-pregeometry (X, cl) is J-geometry if ¢l(0) = 0 and cl({z}) = {z}
for any x € X.

If (X,cl) is a J-pregeometry, then we can naturally define a J-geometry. Let Xo = X \ cl(0).
Consider the relation ~ on Xy given by a ~ b iff cl({a}) = cl({b}). By exchange, ~ is an equivalence
relation. Let X be Xo/~. Define cl on X by cl(A/.) = {b/ ~: b € cl(A)}.

Definition 18. Let (X, cl) be J-pregeometry. We say that (X, cl) is trivial if cl(A) = Y eacl{a}
for any A C X. We say that (X,cl) is modular if for any finite-dimensional closed Jdim(A U B) =
= Jdim(A) + Jdim(B)— —Jdim(A N B).

We say that (X, cl) is locally modular if (X, cl,) is modular for some a € X.

Definition 19. We say that (X, cl) is modular if for any finite-dimensional closed A, B C X

dim(AU B) = dimA + dimB — dim(AN B)

Definition 20. If X = C and (X, ¢l) is a modular, then the Jonsson theory T is called modular.

We work actually with the following types of sets.

Definition 21. Let X C C. We will say that a set X is V — cl-Jonsson subset of C, if X satisfies the
following conditions:

1) X is V-definable set (this means that there is a formula from V, the solution of which in the C
is the set X, where V C L, that is V is a view of formula, for example 3,V, V3 and so on.);

2) cd(X) = M, M € Ep, where cl is some closure operator defining a pregeometry over C (for
example ¢l = acl or ¢l = dcl).

Definition 22. An enrichment T of the Jonsson theory T is said to be permissible if any V-type (it
mean that V subset of language L, and any formula from this type belongs to V) in this enrichment
is definable in the framework of T,-stability, where o/ = {P}J{c}.

Definition 23. The Jonsson theory is said to be hereditary, if in any of its permissible enrichment,
any expansion of it in this enrichment will be Jonsson theory.

Let S(vl)(X) be the set of all complete 1-types over the set X, formulas which belong to V. Let
XCM,MEeErp.

Definition 24. Type p € S(Vl)(X) is called essential if for any set Y, Y C N, N € Ep, such that
X CY in T exists only unique type ¢ € S(Vl) (Y') and the type ¢ is a J-nonforking extension of type p.

Let p,q € S(Vl)(X), A € Er and X C A. The relation p <4 ¢ is means that for any model B € Erp,
such that B D 2, from the realizability of ¢ in B\ A implies the realizability of p in B\ A. The relation
p = ¢ means that for any model %A € Ep, X C A, has p <4 ¢ and ¢ <4 p. We denote the set
{qlq € S(Vl)(X),p = ¢} by [p], and the set {[p]|p € S(Vl)(X)} denote by S(Vl)[X]. We write [p] <4 [q], if
p <4 q. The types p, q are called independent if for any 2 € Ep, X C A, don’t have a place neither
p <4 q, nor ¢ <4 p. If p and ¢ are independent, then we say that [p] and [g] are independent.

The following definition gives the concept of a basis among the above types.

Definition 25. The set B = {[p;] € S [ J|i € I'} is called base for sy )[ X] if:
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(1) [pi] and [g;] independent for i # j;
(2) for any [q] € S'(Vl)[X] and A € Ep, X C A, exists 7 € I such that [p;] <4 [q].

Definition 26. The base of the theory T is the base for S(vl)[g] (if it exists). The base B of T is
called essential if for any [p] € B exists an essential type ¢ € [p].

Definition 27. We will call the essential base of the types of Jonsson theory T geometric if the
following conditions are satisfied:

1) Vp e S(Vl)(X), where X C C, C as above and (C, ¢l) — J-geometry;

2) the concept of independence in the sense of geometry generated by a strongly minimal central
type will coincide with the concept of independence (C,¢l) — J-geometry (coincidence of the concept
of a base in terms of strong minimality, pregeometry and central types that form an essential base,
wherein the orbits of the central types are their solutions in the semantic model).

Definition 28. Let 91 be an existentially closed model of 7" and ¢(Z) be a non-algebraic V-formula.

1. The set p(M) is called J-minimal in 9 if for all V-formulas ¢)(Z) the intersection @(9) A ()
is either finite or cofinite in p(9MN).

2. The formula ¢() is J-strongly minimal if ¢(Z) defines a J-minimal set in all existentially closed
extensions of 9. In this case, we also call the definable set p(9) is J-strongly minimal.

3. A non-algebraic type in S(Vl )(T) containing a J-strongly minimal formula is called J-strongly
minimal.

4. A Jonsson theory T is J-strongly minimal if any its existentially closed model is J-strongly
minimal.

One of the interesting questions in the classical model theory is the characterization of algebraically
prime models. The complexity of this issue is that the concept of an algebraically prime model does not
have a syntactic characterization, as is the case with a prime model. Our proposal is the use of Jonsson
sets and the application of the rheostat principle. In the case of considering the Jonsson spectrum, all
these problems make sense and their solution may be useful for solving related problems.

Recall the basic definitions associated with different types of prime and atomic models in the study
of Jonsson theories.

The following definitions (29-34) are taken from [12].

Definition 29. The set A is called (V1, V) — ¢l atomic in the theory T, if

1) Va € A,Jp € V7 such that for any formula i) € Vs follows that ¢ is a complete formula for
and C' |= ¢(a);

2) cl(A)=M,M € Er,
and obtained model M is said to be (V1, Va) — ¢l atomic model of theory T'.

Definition 30. The set A is called weakly (V1, Va) — ¢l is atomic in T, if

1) Ya € A,3p € V; such that in C = ¢(a) for any formula ¢ € Vq follow that T' = (¢ — )
whenever ¢(x) of V3 and C' = ¢(a);

2) cl(A)=M,M € Er,
and obtained model M is said to be weakly (V1, Va) — ¢l atomic model of theory 7'

It is easy to understand that definitions 29 and 30 are naturally generalized the notion of atomicity
and weak atomicity to be Vi-atom and weak Vi-atom for any tuple of finite length from set A.

Let ¢ € {1,2}, M; = cl(4;), where A; = (V1,V2) is a cl— atomic set. ag,..., ap—1 € Aj,
boy ..., bp_1 € As.

Definition 31. (i) (M1, ag, ..., an—1) =v (Ma,bg, ..., by—1) means that for every formula p(z1, ..., £y—1)
of V, if My = p(a), then My = o(b).

(i) (My,a) =v (Ma,b) means that (My,a) =v (Mz,b) and (My,b) =v (My,a).

Definition 32. A set A will be called (V1, Va) — cl-algebraically prime in the theory T, if

1) If Ais (V1,Va) — cl-atomic set in T

2) cl(A) =M,M € APr,
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and obtained model M is said to be (V1, Va) — ¢l algebraically prime model of theory 7'

From the definition of an algebraically prime set in the theory T follows that the Jonsson theory T
which has an algebraically prime set is automatically existentially prime. It is easy to understand that
an example of such a theory is the theory of linear spaces.

Recall that the model A of theory T is called core if it is isomorphically embedded in any model of
a given theory and this isomorphism exactly one.

Definition 33. The set A will be called (V1, Va) — cl-core in the theory T, if

1) Ais (V1,V2) a cl - atomic set in the theory T

2) cl(A) = M, where M is a core model of theory T'
and obtained model M is said to be (V1, V3) — ¢l core model of theory T

Definition 34. (a) A - (V1, V) — cl-atomic set in theory T is said to be A - (V1, V) — cl-X-nice-set
in theory T', VA" : A’ - (V1,V3) — cl-atomic set in theory T, if

1) CZ(A) =M € EpN APy,
and obtained model M is said to be (V1,V3) — cl-X-nice model of theory T

2) for all ag,...,an—1 € A, bg,....;bp_1 € A", if (M, ag,...,an—1) =3 (M’ bg, ..., bp—1), then Va,, € A,
b, € A’ such that (M, ag, ..., a,) =3 (M’ bo, ..., by), where M’ = cl(A").

(b) A-(V1,Va)—cl—¥X*nice-set in theory T if the condition in (a) holds with '=3’ replaced both
places it occurs by '=3” and obtained model M is said to be (V1, Va) — cl-¥*-nice model of theory T.

(c) A-(V1,Va)—cl— A-nice set in theory T if the condition in (a) holds with '=-A’ replaced both
places it occurs by '=a’, where A C L, A=VN4.
and obtained model M is said to be (Vi, Va) — ¢l — A-nice model of theory T

Principle of «rheostats

Let two countable models A;, As of some Jonsson theory T be given. Moreover, Ay is an atomic
model in the sense of [13|, and X is (V1, V3) — ¢l -algebraically prime set of theory T and cl(X) = As.
Since Vi = Vo = L, then A; = As.

By the definition of (V1, V2) - algebraic primeness of the set X, the model As is both existentially
closed and algebraically prime. Thus, the model As is isomorphically embedded in the model A;. Since
by condition the model Ay is countably atomic, then according to the Vaught’s theorem, A is prime,
i.e. it is elementarily embedded in the model As. Thus, the models Ay, A5 differ from each other only
by the interior of the set X . This follows from the fact that any element of a € A2\ X implements some
main type, since a € cl(X). That is, all countable atomic models in the sense of [13] are isomorphic
to each other, then by increasing X we find more elements that do not realize the main type and,
accordingly, c/(X) is not an atomic model in the sense of [13]. Thus, the principle of rheostat is that,
by increasing the power of the set X, we move away from the notion of atomicity in the sense of [13]
and on the contrary, decreasing the power of the set X we move away from the notion of atomicity in
the sense of [14].

Let APC € {atomic, algebraically prime, core}. Thus, by specifying the set X as (V1,Vs) —cl —
APC, (where APC is a semantic property), we can also specify atomicity in the sense [14] in relation
to atomicity in the sense of [13]. And accordingly, according to the principle of "rheostat" after the
APC property is defined, we obtain the corresponding concepts of atomic models, the role of which is
played A, from the principle of "rheostat".

One of the new directions in the study of the Jonsson spectrum is the study of model-theoretical
properties of hybrids of the Jonsson classes of the spectrum under consideration. This problem is
interesting in many respects, one of which is the existential model compatibility of a fragment of the
algebraic construction of semantic models of these classes with the primordial theory.

The following definition 35 is taken from [15].

Let us define the essence of the operation of the symbol [ for algebraic construction of models,
which will be play important role in the definition of hybrids. Let [ € {U,N, x,+,®,[[,[]}, where

F U
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U-union, N-intersection, x-Cartesian product, +-sum and @-direct sum, [[-filtered product and []-

F U

ultraproduct.

Definition 35. A hybrid of classes [Ty, [Tz is the class [T]; € JSp(A)/w if Thys(Cy B Cs) € [T1];,
we denote such hybrid as H([T]1, [T]z2).

Note the following fact:

Fact 1. For the theory H([T]1,[T]2) in order to be Jonsson enough to be that (C1 [ C2) € Ejp

77

where [T]; € JSp(A) /.
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A .P. Emmkeen

MoHCOHIBIK CIIEKTP/IiH, MO/IeJIb/Ii-TE€OPETUKAJIbIK CypPaKTaphl

Makasaga TOHCOHIBIK CIIEKTPAl 3epTTey adChIHIA YKaHA YFBIMIAp aHbIKTaIraH. IHIyKTUBTI, *Ka/Imsl aifT-
KaHJla, TOJIBIK eMeC TeOpHslIap KJIaChIHIArbl 3JIEMEHTAPJIbIK, SKBUBAJIEHTTIIIKTIH, 2KaIIIbLIay bl O0JIBII TaObI-
JIATBIH KOCEMaHTUKAJIBIK, YFBIMBIHA KATBICTBI CIIEKTD KapacTbhIpbluirad. CoHmail-aK, HOHCOH/BIK, CIIEKTP/IIH
KOMeriMeH MOHCOHMBIK TEOPHUsiIap MEH OJIADILIH MOAEJbIACPIHIH KIaCTapblH 3€PTTEY/IiH HAKTLI OarbITTa-
PBl aHBIKTAJJIBI, aTall AUTKAH/IA WHIYKTUBTIK TEOPUSJIAP/IbIH KETKIUIIKTI KeH iITKi KJIACCHIH aHBIKTANTHIH
JK9HE TOJIBIKTBIK, MOJIEJIbJi »KOHE MOJIEJIb/i KOMIIAHBOH CHAKTBI MOJIEJIbJEP TEOPUSCHIHBIH KJIACCHKAJIBIK
cypakTapbiH 3epTTey Oosbin Tabblnanbl. COHABIKTAH, HOHCOHIBIK, CIEKTPAIH MOIEIbIi-TEOPETHKAIBIK Ka-
CHeTTepiH 3epTTeren/ie, 6i3 IeMEeHTaPIIbIK SKBUBAJIEHTTIK TY?KBIPBIM/IAMAChIHAH KOCEMAHTUKAJIBIK TY2KbI-
pbIMJIaMAaChIHA, COHBIMEH KAaTap TEeOpHsIap MEH MOJejbJepre KOIIKeHe Taburu Typje naiga 60sarTbiH
COJI YFBIMJAPABIH aHBIKTAMACBIH HAKTHLIAYbIMBI3 KaxkeT. CoHbiMeH Oipre, MOHCOHIBIK CIEKTPIIH Keibip
MOJICITB Ti-TCOPETUKATIBIK, KACHETTEP] KapacTHIPhLIFaH. VIOHCOHIBIK CIEKTPre KATHICTHI GapiblK, GepiireH
ecenTep/iiH MarblHACHI O6ap KoHE OJIap/AbIH IIENIMJIEepPIH IIbIFApy Haiaabl OOJIybl MYMKIiH, ©fTKeHI OyJI
Mocesie HOHCOHIBIK TEOPHUsIap CaJachlHIa OeICEeHIl TYyp/Ie 3€PTTereH.

Kiam cesdep: HOHCOHABIK TEOPUsI, HOHCOHIBIK CIIEKTP, KOCEMAHTTBLIBIK, TOJBIKTHIK, YKCACTHLIBIK,

A P. Emikeesn

TeOpeTI/IKO—MO,Z[eJIbeIe BOIIPOCHI MOHCOHOBCKOI'O CIIEKTpPa

B crarne onpesiesieHbl HOBBIE TOHATHS B PAMKaX U3ydYeHUsT HOHCOHOBCKHUX CIIEKTPOB. PACCMOTpEH CIIEKTP OT-
HOCHUTEJIbHO TOHATUS KOCEMAHTUIHOCTH, KOTOPBIH SIBJIAETCS 00OOIIEHNEM SJIEMEHTAPHON SKBUBAJIEHTHOCTH
B KJIaCCe MHIYKTHUBHBIX, BOOOIIE T'OBODsI, HEIIOJHBIX Teopuil. TaksKe ¢ IIOMOIIBIO HOHCOHOBCKHUX CIIEKTPOB
HU3y4YeHBI aKTyaJbHbIE HAIIPABJICHUA HOHCOHOBCKHUX TEOPHUI U X KJIACCOB MOJeJel, a UMEHHO KJIaCCHIECKUX
BOIIPOCOB TE€OPUH MOZEJIEH, TAKUX KaK IIOJHOTa MOJEJIM, KOMIIAHBOH MOJIEJIN B PaAMKaxX yIOMSAHYTBIX BBIIIE
YCJIOBUH, KOTOpBIE OIPEAeAI0T JOBOJIBHO MIMPOKHI MOJAKIACC NHIAYKTUBHBIX TEOPUN U KaKue Ha3bIBalOTCHA
ioHcoHOBCKUMH TeopusiMu. [lo 3Toil nmpuvnHe NpW M3yYEeHUN TEOPETHKO-MOJEIbHBIX CBONCTB HOHCOHOB-
CKUX CIEKTPOB MBI HYKJIA€MCsl B yTOYHEHUN OIPEICJICHNI TeX MOHATUM, KOTOPbIe €CTECTBEHHBIM 00pPa3oM
BO3HUKAIOT IIPHU IIepexo/ie OT IMOHATHAS 3JIEMEHTapHON 9KBUBAJICHTHOCTHU K ITIOHATHIO KOCEMaHTUYIHOCTH, IIPpU-
geM, KaK TeOpHil, Tak 1 Mojieseil. PaccMoTpeHbl HEKOTOPBIE TEOPETUKO-MO/Ie/IbHBIE CBOMCTBA MOHCOHOBCKUX
CIIEKTPOB. B ciydyae paccMOTpeHHs MOHCOHOBCKOTO CIIEKTPa BCE 3aJa4d, KOTOPbIE 33/IaHbl B JAHHON Pado-
Te, IMEIOT CMBICJI, I UX PEIIeHNe MOXKET OKa3aTbCs ITOJIE3HBIM JJI PEIIeHNs CMEXKHbIX 3a/1a4, IIOTOMY 4TO
JaHHAs MPOOIEMATHKA SIBJISIETCST aKTUBHO M3ydaeMOil B 00/1aCTH WOHCOHOBCKUX TEOPHIA.

Karoueswie ca06a: HOHCOHOBCKasT TEOPUsl, HIOHOHOBCKU CIIEKTD, KOCEMAHTHYHOCTD, IIOJIHOTA, 110/100H€.
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The hybrids of the A — PJ theories

When studying Jonsson theories, which are a wide subclass of inductive theories, it becomes necessary to
study the so-called Jonsson sets. Similar problems are considered both in model theory and in universal
algebra. This topic is related to the study of model-theoretical properties of positive fragments. These
fragments are a definable closure of special subsets of the semantic model of a fixed Jonsson theory. In this
article are considered model-theoretical properties of a new class of theories, namely A — PJ theories of
countable first-order language. These are theories that are obtained from A — PJ theories by replacing in the
definition of A — PJ theories of morphisms (A-continuities) with morphisms (A-immersions). A number of
results were obtained, A — PJ fragments, A — PJ sets, hybrids of A — PJ theories. All questions considered
in this article are relevant in the study of Jonsson theories and their model classes.

Keywords: Jonsson theory, A— PJ theory, A— PJ fragment, semantic model, hybrid of the A— PJ theories.

In this article we want to define the concepts of a hybrid for a special positive case of Jonsson
theories. Prior to this, we have defined the concepts of a hybrid of Jonsson theories, which are closely
related to some fixed Jonsson theory. To familiarize ourselves with this material, we refer the reader
to the following sources [1-5]. On the other hand, it is well known that the concept of Jonsson theory
can be considered in a more general context, namely in the framework of the study of positive model
theory. The main sources in this direction we would like to mention the following works: [6-8].

Further, as part of the study of the positive model theory, the study of Jonsson theories was begun
[9]. In this paper, we consider a special case of a positive model theory and note that this particularity
is related to the form of the formulas that are preserved during immersions; immersions, in turn, are
a special case of homomorphisms.

About Jonsson theories, more detailed information can be extracted in the monograph [10] and in
the works [11-15].

Let L be a first-order language. At is the set of atomic formulas of this language. B*(At) is a closed
set of relatively positive Boolean combinations (conjunction and disjunction) of all atomic formulas,
their subformulas, and variable substitutions. Q(B™(At)) is the set of prenex normal formulas obtained
by applying quantifiers (V and 3) to BT (At). A formula is called positive formula if it belongs to the
set Q(BT(At)) = LT. A theory is called positively axiomatizable if its axioms are positive. B(L™)
is an arbitrary Boolean combination of formulas from L*. It is easy to see that II(A) C B(L™) for
A = Bt(At), where IT = TI(A) = {Vy—p(z,y) : ¢ € A} = = {0 : ¢p € A}.

Following [6, 7] we define A - morphisms between structures. Let M and N be language
structures, A C B(L™). A mapping h : M — N is called a A - homomorphism (symbolically h : M —
N), if for any ¢(Z) € A, Va € M from the fact that M = ¢(a), follows that N = ¢(h(a)).

Following [6, 7], the M model is called the beginning in N and we say that M extends to N,
and h(M) is called the continuation of M. If the map h is injective, then it is said that the map h
immerses M in N (symbolically h : M <Z> N). In the future, we will use the term A-continuation

and A-immersion. In the framework of this definition (A homomorphism), it is easy to notice that
isomorphic embedding and elementary embedding are A-immersions when A = B(At) and A = L,
respectively.
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Consider the following necessary definitions.

Definition 1. If K is a class of L-structures, then we say that an element M of K is A positively
existentially closed in K, if every A is a homomorphism from M to any element of K is A-immersion.
The class of all A - positively existentially closed models is denoted by (E[A()Jr; if K = ModT for some
theory T', then by Erp, (]E’:,Aﬂ)Jr we mean, respectively, the class of existentially closed and A-positively
existentially closed models of this theory.

Definition 2. We will say that the theory of T admits A — JEP, if for any two A, B € ModT there
is C' € ModT and A-continuation hy : A X C,hy: B Z> C.

Definition 3. We will say that the theory T admits A — AP, if for any A, B,C € ModTl
such that hy : A X C,g1: A X B, where hy, g1 is a A-continuation, there is D € Modl and

ho : C Z} D,g: B Z) D, where ho, go — A-continuation such that ho o hy = g2 0 g5.

Definition 4. A theory T is called a A-positive Jonsson (A — P.J) theory if it satisfies the following
conditions:

1) T has an infinite model,

2) is positively V3-axiomatizable;

3) admits A — JEP;

4) admits A — AP.

Let C be a semantic model of some fixed Jonsson theory T

Definition 5. Let cl : P(C')) — P(C) be an operator on the power set of C. We say that (C,cl) is a
Jonsson pregeometry if the following conditions are satisfied.

If ACC, then A C cl(A) and cl(cl(A)) = cl(A).

If AC B CC, then cl(A) C cl(B).

(Exchange). AC C, a,be C, and a € cl(AU{B}), then a € cl(A),b € cl(AU {a}).

(Finite character). If A C C'\/ and a € cl(A), then there is a finite Ag C A such that a a € cl(Ay).

We say that A C C'is closed if cl(A) = A.

Definition 6. 1f (C, cl) is a Jonsson pregeometry, we say that A is Jonsson independent (J-independent)
subset in C, if a ¢ cl(A\ {a}) for all « € A and B is J-basis for Y, Y C C, if B-J-independent and
Y Cacl(B).

Lemma 1. If (C,cl) is a J-pregeometry, Y C C, By, By C Y and each B; is a J-basis for Y, then
| B1 |=| Bz |.

We call | B; | the J-dimension of Y and write Jdim(Y) =| B; | .

IfA C C, we also consider the localization cls(B) = cl(A U B).

Lemma 2. If (C,cl) is a J-pregeometry, then (C,cly) is a J-pregeometry.

If (C,cl) is a J-pregeometry, we say that Y C C' is J-independent over A if Y is J-independent in
(C,cla). We let Jdim(Y/A) be the J-dimension of Y in the localization (C,cla). We call Jdim(Y/A)
the J-dimension of Y over A.

Definition 7. We say that (C,cl) is a modular pregeometry if, for any finite-dimensional closed
A, B C C the following is true

dim(AU B) = dimA + dimB — dim(AN B).

Definition 8. If (C,cl) is modular, then the Jonsson theory 7' s called modular, where C is a
semantic model of theory T'.

Definition 9. Let X C C. We will say that a set X is A-positive Jonsson subset of C', if X satisfies
the following conditions:

1) X is A-definable set (this means that there is a formula from A, the solution of which in the C'
is the set X, where A C B(L™), that is A is a view of formula, for example 37,V V3" u 11.);

2) del(X) = M, M € (E2)*, where dcl is a definable closure operator and ¢l is an operator defining
pregeometry over C.
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All morphisms which we are considering below will be A-immersions.

Lemma 3. Let T be a A — PJ-positive perfect Jonsson theory, (E%)Jr is class of its existentially
closed models. Then for any model A € (E2)* theory Thyg+ (A) is a A — PJ theory.

Definition 10. The inductive theory T is called the existentially prime if: it has a algebraically prime
model, the class of its AP (algebraically prime models) denote by APp; class Ep non trivial intersects
with class APp, i.e. APp(Ep # 0.

Definition 11. The theory T is called convex if for any its model A and for any family {B; | i € I}
of substructures of A, which are models of the theory T, the intersection (,c; B; is a model of T'.

Let T be a A — PJ theory and C is a semantic model of A — PJ theory. Let X1, X2 be a A — PJ
subsets of C.

Fr(Xi), Fr(Xs) are A — PJ fragments.

Let My = dcl(X1), My = dcl(X2), where My, My € (E2)*.

Thys+ (My) = T1, Thys+ (Mz) = Ty,

C1 is the semantic model of A — PJ theory of T, C5 is the semantic model of A — PJ theory of

T1 = Thv3+ (Ml) = FT+(X1), T2 = Thv3+(M2) = FT+(X2),

We define the essence of the operation of an algebraic construction.

Let & € {U,N, x,+,®,[[,[]}, where U-union, N-intersection, x-Cartesian product, +-sum and
F U

@-direct sum, [[-filtered and [ [-ultra-production.
F U

The following definition gives a hybrid of two A — PJ fragments of the same signature.

Definition 12. A hybrid H(Frt(X1), Frt(Xs)) of A — PJ fragments Frt(Xy), Frt(X3) is called
the theory Thys+ (Ch [ Cy), if it is A — PJ theory, where C; are the semantic models of Frt(X;),
i=1,2.

Note the following fact:

Fact. For the theory H(Fr*(X1), Fr*(X3)) to be a A — P.J theory enough to (C1 0 Cy) € (ER)T.

The following examples will be examples of hybrids of A — PJ theories:

Let A = BT(At).

1) Let T be a A — PJ theory, C be a semantic model of A — P.J theory of T. A, B are the A — P.J
subsets, A, B C C. dcl(A) = My, dcl(B) = My, where My, My € (ER)*. Then Thys+ (M x Ma) will
be a hybrid of A — PJ theories.

2) Let Ty, T be the A — PJ theories of Abelian groups, C1, Cy be the semantic models of A — P.J
theories of T, T, respectively. Then Thys+(Cy x Cy) = H(T1,T3) will be a hybrid of A — PJ theories.

3) Let V be a linear space, Vi, V5 be the linear subspaces, Vi, Vo C V. Then Thys+ (Vi @ Va2) will be
a hybrid of A — PJ theories.

And also, there are a number of tasks that will be examples of hybrids of A — PJ theories.

1) Let G be a group, T = Th(G), Hy, Hy are normal divisors of the group G. X1, Xy C C, C is
the semantic model of A — P.J theory of T. Let Hy = cl(X1), Ha = cl(Xz), where Hy, Hy € (E2)*.
Thys+(Hy) = Th, Thys+(Ha) = To, Th,T5 are a A — PJ theory. Then their hybrid will be
H(Th,T>) = Thys+(C1 E Cy), where (4 is the semantic model of A — PJ theory of T7, Cy is the
semantic model of A — P.J theory of Ty,respectively. Then is there such a theory T3, T5 = H(T1,T2) =
= Thy3+(C1 [ Cy) and if there is a theory of T3, then which H (77, T») satisfy these conditions? Here
for the place of algebraic construction will be direct sum: [J = &.

2) Let Ty, Ty be a A— PJ theory and T3, Ty be a A— P.J theory. Then Cy, Cs are the semantic models
of A — PJ theory of 11,15, C3,Cy are the semantic models of A — PJ theory of T3, Ty, respectively.

If C1 =0y C3 =Cy, mo Cy x C3 = Cy x Cy, then are there such theories 375 : T5 = H(T1,T3) =
= Thv;|+ (Cl X Cg), E|T6 : T6 = H(Tg, T4) = Thvng (CQ X 04), which will be hybrids of A — PJ theories?

In the study of this class of theories, we obtained the following results:

Let A = BT (At).
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Theorem 1. Let Fr*(X) be perfect convex existentially prime complete for V31 -sentences a A— P.J
fragment. Xy, Xo are the A — PJ-sets of the theory Thys+(C), where M;=dcl(X;) € Epp(Th,4, (0))s
Fr(X;) = Thys+ (M;) are also perfect convex existentially prime complete for V3T -sentences a A— P.J
fragments. C, Cy are their semantic models, respectively. Then, if their hybrid H(Fr*(X1), Frt(X3))
is a model consistent with Frt(X;), then H(Frt(Xy), Frt(X3)) is a perfect A — PJ theories for
i=1,2.

Proof. Suppose the contrary. Then, since the hybrid H(Fr*(Xy), Fr™(Xs)) is a A — PJ theories
and has a semantic model M, by the assumption not perfectness of this hybrid H(Frt(Xy), Frt (X)),
the considered semantic model M will not be saturated in its power. And this means that there is such
X C M and such type p € S1(X), which is not realized in M, more precisely in (M, m),cx. By
virtue of the consistency of type p, this type is realized in some elementary extension M’ = M.y
virtue of the Jonssonness of hybrid A — PJ fragments H(Fr*(X;), Frt(X2)) and model consistency
with Fr*(X;), i = 1,2 there is a model A; € ModFr*(X;), i = 1,2 such that M’ is a submodel
of A. A in turn, is embedded in the semantic model C;, i € 1,2, but C; is a saturated model of
the theory Frt(X;), i € 1,2. By virtue of the A-immersion, suppose h from M’ in A, h(X) C A
and since the type of p is realized in M’ it will be realized in C;. But C; € Er+(x,) and since
Frt(X;) are existentially prime convex theories, there exists a countable model N; € EFT+( X,)s In
which the type p will be realized. By virtue of convexity, the model NN; will be a nuclear model, i.e. it is
algebraically prime embedded in other models from Mod(Fr*(X;)) exactly one time. But by virtue of
the model consistency of Fr™(X;) with the hybrid H(Fr*(X;)), N; A-immerse oneself in some model
from ModH (Fr*(X;)). Since Frt(X;) are perfect theories, their center is model-complete, i.e. any
monomorphism is elementary between the models of this center. And such, by virtue of perfection, are
all the models from Ep,+(x,). Then the above A-immersion will be elementary, i.e. type p is realized
in a countable submodel of model M. We got a contradiction with the assumption of imperfection.

Theorem 2. Let Frt(X), Frt(Xy), Frt(Xy) satisfy the conditions of Theorem 1 and Frt(Xy),
Frt(X3) be w-categorical A — PJ fragments. Then their hybrid H(Fr*(Xy), Frt(Xy)) is also a w-
categorical A — PJ theory.

Proof. We note that, by virtue of the above Theorem 1, the hybrid H(Fr*(X;), Fr(Xs)) will
be a perfect A — PJ theory. Suppose the contrary, i.e. the hybrid H(Fr(X;)) is not a w-categorical
Jonsson theory. Let A and B be two countable models from ModH (Fr*(X;)). Then there are A’
and B’ countable models from F H(Fr+(X,)) Such that A is isomorphically embedded into A’, and B is
isomorphically embedded into B’. This follows from the fact that in any inductive theory any model is
isomorphically embedded in some existentially closed model of this theory. But fragments of Frt(X;)
are mutually model consistent with H(Fr*(X;)) by virtue of the condition of the theorem. Then A’
and B’ are A-immerse oneself in some countable model D € Ep,.+ (x,), HO but as F’ r*(X;) are convex
fragments, then the image of A’ and the image of B’ in the model D intersects non-empty. Let this
intersection be a model R. y virtue of the above existential primeness and countable categoricity of
Frt(X;), since R € Er, it follows that in R = ¢(z) A =¢(z), where in A’ = (), and in B' = —¢(z)
But this is not true, as T; are w-categorical by condition. Consequently, we obtain a contradiction with
the assumption of non-w-categoricity H(Frt(X;)).
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A-P.J TeopusjiapabIH TuOpuaTEpi

MuaykTuBTi TeOpUsIapABIH KeH, KJachl OOJIBIN TaObLIATHIH HOHCOHIBIK, TEOPUSLIAPIbI 3epTTEreH/ 1, HOHCOH-
JBIK, iK1 KUBIHIAPIBI 3ePTTEy KaxkeT 60saabl. OCBIFaH YKCAC MOCeseep MOIEIbIAEP TEOPUSICHIHIA A, dM-
Oebarr aaredpajia J1a KapacThIpbLIFaH. Byl TaAKBIPBIIT TO3UTUBTI (PparMeHTTEPiH MOJIE/IbIi-TeOPETUKAIIBIK,
KACHETTEpIH 3epTTeyMeH OalJIaHbICThI, SIFHU (pparMeHTTep Geriai 6ip HOHCOHIBIK TEOPUSHBIH, CEMAHTUKA-
JIBIK, MOJIEJTIHIH, apHANDBI 2KUBIHIAPBIHBIH, TYHBIKTaMAChl 00BN TabbLTaabl. Makasaga Teopusiapably KaHa
KJIACBIHBIH, MOJIEJIb/Ii-TEOPETUKAJIBIK, KacuerTepi, aran aiitkanaa Gipinmi perreri ringeri A-PJ teopusi-
Japbl KapacTelpbuirad. Bysn A-PJ teopusicbiHan anbiaFad A-PJ mopdusmuep reopusicbi (A->Kaarachl)
mopdusmzaepmen (A - 6aTy) aaMacThIPy apKbLUIbI AJbIHFAH Teopusiap. COHbIMEH KaTap GEplIreH XKyMbBICTa
GipkaTap HoTHKeJsep aJblHbl, ogap: A-PJ dparmenrrep, A-PJ xubiagap, A-PJ Teopusiiapibis, rubpui-
Tepi. Makasaza KapacTbIpbLIFaH 0apJiblk, CypakTap HOHCOH/IBIK, TEOPUSIAD/IbI YKOHE OJIaP/IbIH MOJIEJIbIED
KJIACTAPBIH 3€PTTEY/IE ©3€KTi OOJIBIT TabbLIA b

Kiam ceadep: oncounpbik reopust, A-PJ reopusi, A-PJ dparMeHT, ceMaHTHKAJIBIK MOJieb, A-P J-reopusi-
JIapIbIH TUOPU/II.
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I'm6puapr A-P.J-Tteopmii

TIpu usyuenun HOHCOHOBCKUX TEOPHUIA, KOTOPBIE SIBJISIIOTCS NIMPOKUM IOJKJIACCOM UHIYKTUBHBIX TEOPUIA,
BO3HUKAET HEOOXOJMMOCTb M3Yy4YeHUsI TAK Ha3bIBAEMbIX MOHCOHOBCKUX MHOXKeCTB. [lomobHble 3aaun pac-
CMaTPUBAIOTC KaK B TEOPHUU MOjeJeil, TaKk U B yHHBepcaJbHON asrebpe. /laHHas TemMaTuka CBs3aHa C
U3YyYEHNEM TEOPETUKO-MOJE/IBHBIX CBONCTB MO3UTUBHBIX (DPArMEHTOB, KOTOPBIE ABJIAIOTCS OIPEIEeIUMbBIM
3aMbIKAHUEM CIIEIMAJIBHBIX TOAMHOYXKECTB CEMaHTUYIECKON MOoje/in (PUKCUPOBAHHON HOHCOHOBCKOM TEOPHUU.
B crarpe paccMOTpeHBI TEOPETHKO-MOE/IbHBIE CBOMCTBA HOBOIO KJiacca Teopuil, a mMmeHHO A-P.J-teopnit
CYETHOTO A3bIKA IEPBOroO MOPsIKA. DTO TEOPUH, KOTOPbIE ToJiydaiorcd u3 A- P J-Teopuii 3aMeHoili B onpee-
sennu A-PJ-reopuit Mmopdusmos (A-upogosmrkenuii) Ha Mopdusmer (A-norpyzkenus ). [Ipu sToM mosayden
psx pesyabraroB, A-PJ-bparmentsr, A-PJ-mu0XKecTBa, rubpuast A-PJ-reopuit. Cienyer 3aMeTUTh, 9TO
OCHOBHBIE CUHTAKCUYECKUE U CEMAHTUIECKUE aTPUOYTHI 3TUX HOBBIX KJIACCOB SIBJIAIOTCS HOBBIMU ITOHATHUS-
MW, U OHU IOSBUJIMCH [IPU M3YYEHUM [TO3UTHUBHBIX HOHCOHOBCKHMX KJIACCOB Teopwii. Bee Bompocs, paccmar-
pUBaeMble B CTaTbe, SIBJIAIOTCS aKTyaJbHBIMU B OOJIACTH M3yYeHMs] HOHCOHOBCKMX TEOPUN M HMX KJIACCOB
Mopeaeit.

Karouesvie crosa: HoHCOHOBCKast Teopusi, A- P J-teopust, A- P J-dpparMeHT, ceMaHTUYECKasl MOJIEIb, THOPUT,
A-P J-teopuit.
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Wayve field in a strip with symmetric located holes

In the linear formulation, the problem of the propagation of unsteady stress waves in an elastic body with
symmetrically located rectangular holes is considered. Formulated in terms of stresses and velocities, the
mixed problem is modeled numerically using an explicit difference scheme of the end-to-end calculation
based on the method of spatial characteristics. The wave process is caused by applying an external
dynamic load on the front border of the rectangular region, and the side boundaries of the region are
free of stresses. The lower boundary of the rectangular region is rigidly fixed. The contour of symmetrically
arranged rectangular openings is free of stress. Based on the numerical technique developed in this work, the
calculated finite - difference relations of dynamic problems are obtained at the corner points of a rectangular
hole, where the "smoothness"of functions "familiar"to dynamic problems is violated. At these corner points,
the first and second derivatives of the desired functions suffer a discontinuity of the first kind. The isoline
presents the results of changes in wave fields in an elastic body with symmetrically located rectangular
holes. The concentration of dynamic stresses in the vicinity of the corner points of a rectangular hole is
investigated. By numerical implementation, the stability of computational algorithms for a sufficiently large
time is established.

Keywords: elastic, wave process, stress, speed, plane deformation, numerical solution.

Introduction

In recent years, the problem of developing scientifically sound and effective numerical methods
for analyzing the health of structures with cuts, holes, foreign inclusions and other characteristic
features has become increasingly relevant. These features make it necessary to develop new and improve
traditional numerical methods for calculating and designing structures. This will make it possible
to take advantage of the enormous advantages of mathematical modeling — to combine a physical
experiment with a more economically viable numerical experiment and to provide answers to questions
of interest to engineers with the least expenditure of funds and effort. To realize this possibility, it is
necessary to solve a range of issues related to the construction of mathematical models of environments
that take into account the complex features of the environment. On the other hand, the second necessary
component of this approach is the creation of reliable and economical methods for the numerical
calculation of the corresponding dynamics problems. Prediction of the dynamic behavior of structural
elements taking into account a number of weakening factors (holes, cavities, cutouts, etc.) has not only
theoretical, but also applied value, determined by the demands of engineering practice [1-17]. The
methodological apparatus of scientific research is based on finite-difference methods based on the use
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of characteristic surfaces and compatibility relations on them. The research methodology is confirmed
by scientific and theoretical justification, the correctness and rigor of the mathematical formulation of
the investigated problems.

Formulation of the problem. Let the rectangular cross section of the strip, weakened by two equal
rectangular holes symmetrically spaced relative to the axis xo = 0 (Figure 1), be in an undisturbed
state at £ <0, i.e.

vi(z1,22,0) = va(x1, 22,0) = p(x1, 22,0) = q(x1,22,0) = 7(21, 22, 0) (1)
i + i il x2
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Figure 1. The study area

Wave processes in a strip with symmetrical holes are described by a system of differential equations
of hyperbolic type, containing dimensionless stresses p, ¢, 7, displacement velocities v1, v as unknowns
[1-2]:

Vg —pP1—q1—T2=0; vy —pa2+qga—711=0,
YO =1D) 7 pr—vig —va2=0; g —v11 +v22 =0, (2)
’YQT,t — V1,2 — V21 = 0.

Dimensionless variables are introduced by the formulas [1-2]:

—  ta B 1 Ou; .
t =—; X=—; U= ——F; 1=1,2
b ! b ! C1 ot ( )
011+ 022 011 — 022
2pc% 17 2[)6% ’ (3)
012 _a

pC% ’ ’Y - o 9
where b is the characteristic length, p is the density of material, c1,cy are the velocities of waves of
expansion and shear, 011,092,012 are the components of the stress tensor, v is a constant parameter.
In the future, the bar over dimensionless parameters is omitted.

The solution of the system of equations (2) with respect to the desired quantities vi,ve,p,q, T
constructed for zero initial (1) and the following boundary conditions (¢t > 0):

vy = f(t), wva=0 when x1=0, —L<ax9<0L. (4)
p—q=0, 7=0 when |xz] =L, 0<x <Y, (5)
vi =v2 =0 when |x1| =4, |xof <L, (6)
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p+q=0, 7=0 when z; =21, 29<|ro]<a) and ry =], 29 <o <adal, (7)

p—q=0, 7=0 when |zo|=2 20 <z <zl and |zo|=ai, 29 <z <ol (8)

Analysis of the calculation results. Numerical results are given for the rectangular region
0 <z <100-hq, |x2| < 100hy. Moreover, the accepted values of the steps along the coordinate
are the same h; = ho = h = 0.05. The body material has the following characteristics: elastic modulus
E = 200G Pa, Poisson’s ratio v = 0.3, density p = 7.9 - 103kg/m?, ¢1 = 5817m/sec, ca = 3109m/sec,
v = 1.87. The dimensions of the holes are taken as follows: 20 = 25 h, #1 = 75 h, 2| = 25 - h,
|z3| = 75 - h. The wave field parameters were obtained with the following initial data

fO)=A-t-e ' A=1,es =02,k =0.025h = 0.05.

Here A is a constant factor, the parameter s characterizes the rate of change of the external load.
Since the body under study has free boundaries o = 4100 - h and contains rectangular holes inside
itself, then over time reflection waves (diffracted) superimposed on each other determine the complex
nature of the manifestation of displacement, strain, and stress velocities in it. The corner points of the
rectangular region and the corner points of rectangular holes are sources of disturbance, causing both
longitudinal and transverse waves.

The study of the stability showed that a grid ratio k/h of 0.5 provides the stable results for a
sufficiently large period of time, with multiple reflections and diffraction waves. In fact, the calculation
was performed up to ¢ = 1000 - k. In the calculations at any time ¢, all boundary conditions are exactly
satisfied both at the corner points of the strip and at the corner points of rectangular holes. This
circumstance, unlike many approximate methods, ensures the reliability of the obtained solutions and
the corresponding results.

The solution of the system of equations (2) under initial (1) and boundary (4)—(8) conditions is
found by the method of spatial characteristics at the nodal points into which the entire studied area is
divided [1-2]. A feature of the body under consideration is that at the corner points (P, G, @, S) of the
rectangular hole, the “smoothness” of functions that is “familiar” to dynamic problems is violated. It
was precisely such features that were not extended, or in general, as we know, there was no method for
solving such problems. In addition to the known relations [1-2|, the calculated relations are obtained
at the internal corner points (P, G, @, S) of the rectangular hole [6].

The calculation results are presented by graphs in figures 2-3. Due to the symmetry of the location
of the rectangular holes and the nature of the loading, the desired parameters vy, p, q, are even, and
vo, T are the odd functions relative to the axis xo = 0 of the strip.

The construction of dynamic stress fields generated from the interaction of symmetrically located
holes will allow, using various strength criteria, to judge the shape and possible size of the fracture
zones. In Figs. 2-3, in the plane x1/h - zo/h for the time instant ¢ = 400 - k, the contours of normal
stresses p + ¢ = const, p — g = const are shown, respectively. The stress state due to the symmetry of
the problem relative to the axis x9 = 0 of the strip is shown only for positive values z(z2 > 0) near a
symmetrically located hole.

The presented graphs clearly illustrate the strong interaction of wave fields on the stress distribution
in the vicinity of the holes, which leads to the formation of a number of local extrema. The location of
the latter changes in time due to repeatedly reflected and diffracted waves from the boundaries of the
holes and strip.

Cepust «Maremarukas. Ne 2(98)/2020 183



N.K. Ashirbayev, Zh.N. Ashirbayeva, et al.

aon
—poooz
FO00E
FO00F
000G
-o0ng
0004
o008
-0006

oo

NN

T MDDDDL

\ 1 /r/ /77

OU0%  000v OO0 000 0007

1
=
e — =
%
T T

00007 0008 0008 0002 0009

Figure 2. Isolines of normal stresses p + ¢ = const at time t = 400 - k
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Figure 3. Isolines of normal stresses p — g = const at time t = 400 - k

It should be noted (Figure 2) the appearance of an extensive zone of tensile stresses p + g = const
in front of the hole. In the region behind the hole, the stress level is extremely low. Although the
maximum values of tensile stresses p + ¢ = const turned out to be lower by an order of magnitude
than the maximum absolute values of compressive stresses, nevertheless, for a number of materials
(such as soils, bulk material, etc.) they can pose a serious danger. Therefore, a detailed study of the
appearance and development of extension zones is an important applied problem. In the vicinity of the
front corner points (P, G) of the hole relative to the loading surface, the concentration of compressive
stresses p + ¢ = const at a given time is maximum. In the vicinity of the lower corner points (@, S),
where the stress amplitude is less, they remain compressive throughout the entire considered time.
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Slightly smaller stress gradients than in the vicinity of the corner points are observed near the lateral
free edges (PQ,GS) of the hole. The maximum concentration of compressive stresses p + g = const
is formed near the corner points (R, K) of the strip, in the vicinity of which the stress fields have the
greatest gradients.

Analysis of normal stress isolines p — ¢ (Figure 3) shows that the resulting zone of tensile stresses
on the lower free face (QS) of the hole is less extensive than on the front free face (PG). This is due
to the fact that a perturbation is specified on the surface 21 = 0, and the strip surface 1 = 100 - h is
pinched.

A small stretch zone is localized near the lateral face (PQ) of symmetrically located holes, as well
as near the front (M R) and lateral (RK) faces of a rectangular strip. Moreover, the zone of tensile
stresses is bordered by an isoline of zero stresses. The appearance of a large number of local maximums
of compressive stresses in the vicinity of the corner points of the symmetric hole is due to the complex
interaction of reflected, diffraction, and interference phenomena, which is characteristic of the stress
state. As a result of the reflection of the waves, a region of compressive stresses is formed near the
upper (M R), lower (NK), and lateral (RK) surfaces of the strip. From an engineering point of view,
when calculating and constructing structural elements with several holes, it must be borne in mind
that under dynamic loads, the stress concentration does not change monotonically when the holes
approach each other, as is the case in static, but is determined by a more complex dependence and
interaction of holes, corner points. In some cases, the stress concentration can even decrease as the
holes approach each other, which leads to the appearance of a class of problems for optimizing the
design with holes. When carrying out the calculations, it is necessary to take into account in advance
the possible frequency ranges and disturbances in which the structure will subsequently operate.
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CuMmMeTpusijibl OPHAJIACKAH TecikTepi 6ap JeHeaeri TOJKBIHABIK epic

186

2KywmpbicTa CBI3BIKTHI 2KaFmaiiia GepireH CHMMETPHUsIIBI OPHAJIACKAH TIKTOPTOYPHIMITH TecikTepi 6ap cep-
mMIi JieHeaeri craimoHap emMec TOJKBIHABIK IPOIeCTiH Tapajy ecebi KapacTblpblLiraH. Kepueyiep men
KBLUIJIAaMIBIKTap TEPMUHIH/E KOWBLIFAH apaJiac ecel afKbIH afbIPBIM/IBIK CXeMa, aTal alTKAHIa CAHIbIK
KEHICTIKTIK cunarraMaJjap oficiMeH mmemnijired. TOJKBIHABIK MPOIECC TIKTOPTOYPHIIITE JeHEeHIH OeTTIiK I1e-
KapaJblK HYKTeJIepiH/e ChIPpTTail JMHAMUKAJBIK KYIITiH OepinyineH naiiga 6osaabl, aj JgeHeHiH Oyiiip Ka-
ObIpraJlapblH/a KEPHEYIIK HeJre TeH. TiKTepTOYpPBIINTHl IeHEHIH TOMEHTI IIeKapaJsblK HYKTeJepl KaTaH
6ekiTisiren. CHUMMETpUSIBI OPHAJACKAH TIKTOPTOYPBIMITH TECIKTEP/IiH KOHTYDPBIHIA KEPHEYJIIKTED HOJI-
re TeH. OcCbl »KYMBICTa O3IpJIEHIEH CAHJIBIK TEXHUKAJIBIK HEri3iHje JUHAMUKAJIBIK, €CEITEPJiH aKbIPFbI-
aNBIPBIM/IBIK KATBIHACTAPBI JTUHAMUKAJBIK, €CEITEPTe «9/IeTTerl» IMEKTI (DYHKIUIIAPIbIH, OYy3bLIFaH TiK-
TOPTOYPHIMITHL TECIKTIH OYPBIITAPBIHAA AJbIHFaH. By OYPBINTHIK HYKTEIEpAe i37aemin/al, GyHKIusIIap-
JbIH OipiHimi »KoHe eKiHI peTTi TybIHAbLIAPbI 6ipinmi TekTi y3imicri. CuMMeTpHUsiIbl OPHAJIACKAH TIKTOPT-
OYPBIMITH TECIKTEpl 6ap cepmiMIi JeHeJeri TOJKBIHIBIK, OPIC ©3repiCiHiH HOTHUXKeIepl W30CHI3BIK, TYPIiHIe
kesrripinrer. Tik OypeIIITel TeCiKTiH, OYPBINITHIK HYKTEIEPIHIH MaHANBIHIA KEPHEYTIKTIH JHHAMIKAJIBIK,
KOHIEHTpaIusichl 3eprreired. CaHIbIK 9iCTI KOJJaHy HOTHUXKECIHIIE eCenTey aJrOPUTMIEPIHIH KETKIIIKTI
VJIKEH YaKbITKA TYPAKTBLIBIFbI AHBIKTAJIFAH.

Kiam ceadep: cepmimii, TOJKBIHIBIK, IPOIECC, KEPHEY, KBIIIAMJIBIK, KA3BIKTHIK, 1e(DOPMAIUACH, CAHIBIK,
IIEIITM.
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H.K. Amup6aes, 2K.H. Ammp6aesa, M.T. [llomanbaesa, L11.E. Anreirbekon

BoumHoBoe moJie B mmoJioce
C CUMMETPUYHO-PACHOJIOKEHHBIMI OTBEPCTUAMU

B JsiuHeiliHO MOCTAHOBKE pacCMOTPEHA 3aJlada O PaCIpOCTPAHEHUN HECTAIMOHAPHBIX BOJIH HAIPSXKEHU B
YIPYTOM TeJie ¢ CHMMETPUIHO-PACIIONIOKEHHBIMA MPSIMOYTOJMbHBIMI OTBepcTusivu. CdopmymnpoBaHHas B
TepMHMHAX HAIIPSI?)KEHUN U CKOPOCTell CMeIllaHHasl 3a/a9a MOJEJIMPYETCsl YUCJIEHHO € TIOMOIIBIO sIBHOM pa3-
HOCTHOI CXeMbI CKBO3HOTO CYeTa, OCHOBAHHOW Ha MeTOJleé TPOCTPAHCTBEHHBIX XapaKTEPUCTUK. BOJIHOBOI
MPOITECC BBIZBIBAECTCS MPUKJIAIBIBAHNEM BHEITHEH IUHAMHYECKON HATrPY3KM Ha JIMIEBOUW TPAHUIE TPSMO-
YroJIbHOM 06/1acTH, & GOKOBBIE IPAHUIIBI 00JIACTHA CBOOOIHBI OT Halpsi>KeHuil. HuKHsis1 rpaHuiia npsiMoyrosib-
HOIT 006JIACTHU YKECTKO 3aKperieHa. KOHTYyp CHMMETPUYHO-PACIIONIOKEHHBIX IPSIMOYTOJIBHBIX OTBEPCTHIA CBO-
6omen or HampsizkeHuit. Ha ocHoBe pazpaboTaHHO! B paboTe YHCIEHHOW METOIUKHU MOJIyIEHBI pacUeTHBIE
KOHEYHO-PA3HOCTHBIE COOTHOIIEHUSI JIMHAMUYECKUX 33/1a9 B YIVIOBBIX TOYKAX MPSIMOYTIOJIBHOTO OTBEPCTHUS,
IIe HApYIIaeTCs «IPUBBIYHASY JJTsT JUHAMHYECKUX 33189 TVIAJIKOCTh (DYHKIMIA. B 9TUX yIJIOBBIX TOYKAX
MepBBbIE U BTOPBIE ITPOU3BOIHBIE NCKOMBIX (DYHKITHN TEPIISIT PA3pbIB IEPBOTO pofa. B Bue nzommHun npe-
CTaBJIEHbl PE3YJIbTATHl W3MEHEHUsI BOJIHOBBIX IOJIEHl B YIPYrOM Tejle C CUMMETPUYIHO-PACIOIOKEHHBIMU
MPsIMOYTOJIBHBIMU OTBepcTUsAMU. VccaenoBana KOHIEHTpAIUsT JUHAMIYECKUX HAIPSI?KEHUI B OKPECTHOCTH
YIJIOBBIX TOYEK MPSIMOYTOJIBHOTO OTBepcTusi. IlyTem dWmCIeHHON pean3alinu yCTAHOBJIEHA YCTONIUBOCTH
PaCYeTHBIX aJITOPUTMOB JIJIsl JOCTATOYHO GOJIBIIIOIO BPEMEHH.

Kmouesvie caosea: ynpyrocTsb, BOTHOBOH IPOIIECC, HAIPSI?KEHNE, CKOPOCTh, IJIOCKas AedopMaIris, YncIeHHOe
peleHue.
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Fuzzy Multi-criteria Selection of Alternatives
by Quasi-best Case as the Basis for Choosing
Robotic Machine-Assembling Technologies

The process of choosing the robotic machine-assembling technologies (RMAT) is implemented as the
fuzzy multi-criteria selection of alternatives by the suggested previousely method of quasi-best case. The
basic concept feature of the given method is the developed specific correlations which are based on the
corresponding comparisons to better alternative P°nd to the most important criterion. All the mentioned
above determines the practical and scientific value of this paper. The results of strict ranking of the elements
of local criteria discrete set (LCDS) are input dP°ta. It is performed by the method of expert survey and at
the same time demonstrates RMAT phenomenon. The idea of selections the process of ordering constituents
of initially unordered LCDS elements which finally form ordered set. The selection is performed within the
set of these elements. The obtained ordering of RMAT phenomenon as a result of selection is recommended
to be analyzed in the process of choosing. The base of solving the task of RMAT selection is its formalized
description and on its base the generalized content formalisms of quasi-best case method are determined.
The performance of the presented the theoretical issues is demonstrated step-by-step with the real example
of the automated RMAT selection.

Keywords: alternative, automation, selection, local criterion, fuzziness, optimization, robotic machine-
assembling technology, quasi-best case.

1 Introduction

Industrial robots (IR) are widely used in modern automated machine - assembling enterprises
of machine and instrument engineering which implement robotic machine-assembling technologies
(RMAT). The International Federation of Robotics (IFR) reports that annual increment in release
and introduction of such universal and expensive means of industrial automation, which IR of various
design and technology performance are [1], is about (14-16)% [2, 3] for recent years. The conduct
of different by content and formulation researches is important and topical in order to improve the
effectiveness and further development of robotic machine-assembling enterprises. It is recommended to
develop either latest or using and modifying known approaches, methods and techniques by adapting
them to specifics of formulation and content of the tasks solved.
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One of the problems which occur here is the problem of proper RMAT selection taking into account
their final set that is generated before [4]. It implies the preliminary determination and analysis of the
ordered sequence of the selection local criteria (see further).

Every RMAT is presented with the set of phenomena which are local criteria discrete set
(LCDS) S = (S;]j = 1,m). Its components are the following [5]: Gm — geometric; Kn — kinematic;
Dn — dynamic; Ct — control; En — energy; Tr — trajectory; 7(Q) — time (productivity); Rl —
reliability; E'c — economy; Ac — accuracy; F¢ — force; Fopt — the component which is determined by
other types of optimization criteria (e.g. technical and economic [6] etc.):

S = (Gm,Kn,Dn,Ct,En,Tr,7(Q), Rl, Ec, Ac, Fc, Fopt). (1)

The complexity and content feature of RMAT selection tasks can be explained: by the necessity to
take into account the desired multi-criteria of the extremity of every LCDS criterion; by the obvious
ambivalence related to the ordering of LCDS elements consideration; by the necessity of decision-making
within the set with the obtained alternatives. It can be possible provided that there are various criteria
with different physical nature and different measurement scales (see above). The presented task is a
task of multi-objective optimization in terms of prior ambivalence. The methods of finding solutions
to such tasks are featured by variability and multiplicity [7].

The idea of many approaches to solving such tasks is in using information obtained from the
experts as a result of sampling by survey method [8]. Here, the calculated value of Kendall concordance
coefficient W [8] is the correlation of expert opinions. The ordered sequence (list) of local criteria is the
desired solution. This sequence is formed at the correlation of expert opinions W ~ 1 (ideally W = 1).
The using of rank correlation method is possible in other case [8]. The criterion for decision-making
here is also the value of W with its indicated interpretation. If W is < 1, using of other approaches is
possible. The examples of such approaches can be the method of pair-wise comparison of alternatives,
which is based on the ideas of Bellman-Zade [9, 10|, and Saaty hierarchies [11| and also fuzzy multi-
criteria selection of alternatives by worst-case suggested by Rotstein [12]. The first ones among them
(methods of Bellman-Zade and Saaty) are time-consuming and it is due to the performance of total
alternative enumerating at the pair-wise comparison and the long processing of matrix information with
the further computation of membership function as to every single expert as well as to every single
alternative. The latter approach (Rotstein method) does not require time-consuming matrix formation
of pair-wise comparison and further processing of this Information. Relatively simple computation a
ratios correlations are used instead. It is profoundly compared to the worst alternative and the least
important criterion [12].

The scale of corresponding rates in the given task is 12-score one (by the number of elements within
LCDS, see the expression (1). It is the scale used by every among 10 experts (n = 10) to estimate each
local criterion of LCDS without repeating estimations for various local criteria, i.e. the strict ranking
[8] of LCDS is performed. Here the least important criterion obtained score 1 and the most important
one got 12.

The result analysis of expert survey (see Table 1) as to consistency of experts by Kendall concordance
coefficient for the primary processing (W = 0,204) and by rank correlation (W = 0,271) demonstrates
the discordance of the experts’ opinions. Such discordance does not contradict the possibility of using
other methods of fuzzy multi-criteria selection of alternatives, e.g. by the method of the worst-case
[12], that has been already used while selecting RMAT fuzzy multi-criteria [13].

The main idea of the method of quasi-best case [14] applied here is the answer to the regular
question: why would not make another principle as the basis of the process of fuzzy multi-criteria
selection of alternatives, if the optimal solution used by any approaches at fuzzy multi-criteria alternative
selection is either de-jure or de-facto unknown. The principle of comparison of each from local criterion
of LCDS to other local criterion, for example, the best one, can serve as a solution. The method is
named as “quasi-best” due to the relativity of the term “best”.
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In general, the substantive features of the method of quasi-best case [14] used is the decrease of
subjectivity level at the process of forming the ordered set of LCDS criteria and using the corresponding
comparisons to the best alternative as well as to the most important criterion. It is the most important
while solving the given task.

Therefore, the adapted to the content of quasi-best case method, the content of the task for RMAT
multi-criteria selection becomes the fuzzy forming the ordered set of local criteria from LCDS for their
further analysis. It is performed within the set of alternatives (expertss ™ opinions) and their content
is determined by the results of strict ranking of LCDS elements. Taking into account all the mentioned
above, the purpose of the given paper is to increase feasibility and to decrease time-consuming factor
of decision-making at selecting RMAT. It is recommended to use scientific and methodological set
ordering of discrete local criteria of RMAT phenomenon by applying fuzzy multi-criteria selection of
alternatives with the method of quasi-best case.

2 Formalized task statement

In its general form the essence of fuzzy multi-criteria RMAT selection [14] comes to forming LCDS
element set S = (S;|j = 1, m) from initially unordered one into finally ordered set S~ = S;|j =1,m
as a result of execution of some certain computation procedures ¢ = (¢r|k = 1,1) with total number
[. In the given case [ = 7 equals the number of methodically determined steps P (see further).
Every ¢i-th computation procedure, as well as its corresponding step, implements the obtaining of
intermediate and final results. The latter ones are calculated within the information sets of input data,
namely, within the set of experts E = (E;|¢ = 1,n) and RMAT S = (S;|j = 1,m). Therefore, the
simplified form is:

(2K (E X S) — <S(j)maa:> (2)

Here — is the symbol of suractive reflection of input data with united by Cartesian product
(symbol Xx) to corresponding computation data [15], which are implemented by the mentioned above

set of computation procedures ¢ from [14]: ¢ = (pc, Pu, Par Prws Ppwes P(j)mazs P<>)-
Expression (2) obtains the form:

K1

(o= (ulk =1,1)) + ((((((E = (Eili = T,n)) x (S = (S;lj =1,m)) —>
(ie5) © Me)) =2 () € Ma)) = () € Ma ) = () € Mw)) = (3)
(™) & My ) ) 25 (05 7) € (SGymax) ) 25 (S0 ma) Vi = T ¥j = T,
Here Pw1, ... , Pa7 are the designations of methodically resulted steps that correspond the im-

plementation of the corresponding procedure set ¢ = (¢¢, Yw;, Pas Ppw, Ppwe, PG) _» P<>) With [14],
namely:

— Pw1 is in correspondence with the procedure ., that forms matrix M, of final results of strict
expert ranking, matrix M, elements (;c;) are integral natural numbers. The value and significance of
every number are determined by ranking conditions;

— P2 corresponds the implementation of procedure ¢,, which determines elements (;w;) of matrix
M, as the weight of all alternatives by relation of ranks of all E;-th alternatives to the rank of the
best alternative S max;

— step P8 (procedure ¢, ) is used to form elements (;a;) of matrix M, as fuzzy set taking into
account the significance of every Sj-th criterion due to its weight o; within the set of alternatives E;

— the content of step P4 is the implementation of procedure ¢, that determines the importance
of estimation of every E;-th expert from the set £ by determining the weights of alternatives related
to Sj-th criterion, i.e. finding elements (pw;) of matrix M.,

— Pa5 implements procedure ¢, e of determination of significance of alternative (of every Ej;-th

expert) by the weight pa of every of them within the set of criteria S forming elements (iwj(-iaj )maX>

max
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of matrix M« as fuzzy set; the very content of step K5 determines the significant peculiarities of
quasi-best case method;
. . (;a;) max

— by implementing Pw6, elements (iwj ’
for every local criterion Sjmax are formed. It means that unordered set of membership functions is
formed within the set of their highest values and this is the content of procedure ;) nax €xecution;

— P 7 is used to implement procedure ¢~ that orders elements of unordered set (S(j) max|] = 1,7m)
obtained within K6 into the ordered one S<= = (S(j)max|j = 1,m) by solving maz-maz task. This
is the final solution to the task of fuzzy multi-criteria selection of alternatives using the method of
quasi-best case.

All mentioned above matrixes and namelCr M., M,,, My, Mo and M, have the dimension

[n x m] and sets (S(]-) max)j = 1,m) and (S(j) max|d = 1,m) have dimension [1 x m].

) max of set (S(]-) max|] =1, m) of fuzzy estimations

8 Task solution

The process of fuzzy multi-criteria of RMAT selection is presented step by step Pwl, ..., Pn7
based on the results of actual strict expert sampling. It is performed by using the proposed method in
accordance with its content [14] and formalized statement of the given task (see expression (3)).

Pn1. Forming matrix M.[n x m] of the results of expert sampling. Every element ;c; of this matrix
is estimation (rank) of 12-score scale, which was used by every Ej-th expert to estimate every S;-th
criterion. Matrix M.[n x m], as well as other matrixes, has the form of a table in the given case Table 1.

K2. The calculation of weights ;w; of alternatives by ratio of ranks ;r; of all E;-th alternatives
(Table 1) to the rank of the best alternative ;w;max. The latter one for every Sj-th criterion is
determined as following:

iTj Max
2lim1 T

Here the nominator is actually the total of ranks (estimations) given by the experts of set E for every
Sj-th criterion. For matrix M.[n x m] (Table 1) this is the total of elements from its every column.
For example, the highest rank (score) 12 was given by expert E5 to S1 = Gm. It means that this
rating is the highest 5rg,, max = 12 by the given criterion within the set of all experts (alternatives).
Here and further the pre subscript specifies the reference number of expert (in the given case i=5) by
Table 1. The weight of the best alternative Gmswg.,, max within the set of estimations of all experts
(alternatives) taking into account (4) is determined with following expression:

jW; max = |Vi=1m. (4)

n
17Gm 2TGm 3TGm 4TGm 5TGm 6TGm
Z ity = + + + + +

5TGmMaxX  5TGgmMax  57GgmMax  5TgmMaxX  5Tgm Max 57y, Max

i=1
7TGm 8TGm 9TGm 107Gm
+ + +
5TGm MaxX  5TGgmMax  5TgmMax  57Gm Max
_1TGm T2 7Gm T3 TGm T4 TGm 15 T"Gm +6 TGm 7 TGm T8 T'Gm +9 T7Gm +10 TGm
57 G, THAX ’

1

w, max = =
5WGm 17Gm+2Tem+3TGm T4TGm+T57Gm+T6TGm+77Gm +87Gm +97Gm +107Gm

57 G MAaX
1 12
_ = — =10,1622.
11 5 9 5 12 3 9 7 4 9 ’
Dtptntotototntntots 7

Obtained similar to (4) weights for all other criteria of set S practically form matrix M[n x m]
and are added to Table 2.
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Table 2

Matrix M,[n x m| of alternative weights (;w;) for various criteria as fuzzy set

Gm | Kn | Dn C E T | 7(Q) | RI Ec Ac Fc | Fopt
Eq | 1487 | .1348 | .0556 | .1493 | .05648 | .1286 | .1127 | .0769 | .1053 | .0833 | .0435 | .0333
E5 | .0676 | .0449 | .0370 | .0448 | .0969 | .0857 | .1409 | .1385 |.1930 | .0952 | .0217 | .4000
Es | 1216 | .1124 | .1482 | .1045 | .0685 | .1714 | .0845 | .0615 | .0175 |.1310 | .0652 | .0667
Ey | 0676 | 1011 |.1852|.1791 | .0822 | .0571 | .0986 | .0462 | .1404 | .0119 |.2391 | .0667
Es |.1622 | .1236 | .0741 | .0746 | .0822 | .1000 | .0282 | .1231 | .0526 | .1071 | .2174 | .0333
Eg | .0406 | .0899 | .0741 | .0299 |.1644 | .0714 | .1549 | .1077 | .1579 | .1191 | .1304 | .0333
Er; | 1216 | .0899 | .1296 | .1493 | .0685 | .0571 | .0282 | .1846 | .0175 |.1310 | .1304 | .1000
Fg | .0946 | .1124 | .1111 | .0746 |.1644 | .1571 | .1268 | .0462 | .0351 | .0952 | .0217 | .1333
FEg | .0541 | .0562 | .1296 | .1194 | .1233 | .0143 | .0845 | .1846 | .1754 |.1310 | .0435 | .1000
Eip| 1216 | .1348 | .0556 | .0746 | .0959 | .1571 | .1409 | .0308 |. 1053 | .0952 | .0870 | .0333

Here, the following condition is met for every S;-th criterion (column of the table 2):

(Ziwﬂw = m) =1 (5)

=1

Obtained elements of matrix M, [n xm] (Table 2) are quantitative estimation of membership degree
for every Sj-th criterion from LCDS to fuzzy sets. They can be explanted as weights which are included
into fuzzy sets (4).

Obtained weights of alternatives for various criteria (see Table 2) allow to present criteria as fuzzy
sets that are given within the universal sets of alternatives. It enables every S;-th criterion forming set
D,, by selecting maximum element (underlined in Table 2). Here and further some data in brackets
|...] is not calculated but it is of informative character. Finally we obtain:

D, — (iwl max W max'”..iwmmax> _ <iwj max
J51] 1551 [Sml 1551

For the task of RMAT selection that is being solved in the given presentation for every S;-th
criterion, we obtain:

li=1,n;Vj = 1,m>.

5 _ (0.1622 01348 0,1852  0,1741 01644  0,1714  0,1549
S\ UGml 7 JKn T De[ 7 ]Gt JEal T T[T Q)

0,1846 0,1930 0,1310 0,2391 0,4000
JRI[ " 1Ec[ * JAc[ © |Fe[ 7 ]Fopt] )0

The elements (i.e. the numerators) ;w; max of obtained set D, can be explanted as a set of
potentially good solutions [12].

The obtained set D,, is a fuzzy one and it contains alternative membership in relation to optimal
in some sense solution. By analyzing elements of set D,, the ranking of its elements from maxto min
was performed and ordered set D, of local criteria form set S was formed. Maz-maz task is applied
to demonstrate the elements of matrix M, [n x m] (Table 2):

Dy <0,4000,0,2391‘ 0,1930 0,1846 0,1852 0,1741 0,1714 0,1644
W= NTFopt[” TFe[ * B[ JRI[ T 1Dn[ ]Gt JTr[  ]En[
0,1622 0,1549 0,1348 0, 1310>

Gm[ " 1T (@Q)[ TKn[ A

194 Bectnuk Kaparanmurckoro yHuBepcurera



Fuzzy Multi-criteria Selection of Alternatives...

Pn3. Determination of significance of every single criterion within set S. Let o; be the weight for
criterion S; C S that characterizes its significance. Taking into account the weights of criteria from
Table 2 the fuzzy set of solutions is formed as following [9]:

D= (iuq)al N (in)Oéz Nn...N (iwj‘)aj n...N (iwm)am |V] =1,m= ﬂ? (Z‘wj)aj ‘Vj =1,m.

Criteria are compared only to the most significant one (the best) among them at the next stage.
Here it is accepted that the more significant the weight «; for S;-th criterion is, the higher is its range
R; [12]:

(651 (65) N & O

B R TR T R

Let aj max and R; max be weight and rank correspondingly for the most significant criterion Sj.
If the requirement (5) is met regarding parameter ;a;, i.e. jo; (D14 ij [Vj =1,m) = 1 by the similar
way to ;w; (see expression (4)), the weights of criteria are distributed in accordance with the ranks as
following:

I 1 B 1 Rjmar )
veymax Ry R> R; R o m R; - m R~7
ijaac + ijaac +...ot ijax +...t ijaa: Zj:l ijam Z]:]- J
_ B Ri B,
i1 =i Ojmax yeees QG =i Ojmaz 305 i0m =i Ojmax (7)
ijaa: ijar ijam

As one can see in Table 1, the total of elements in column 2 equals 89 and is the biggest one in
relation to the totals of elements of other columns that characterize the ranks of other local criteria
as LCDS elements. It means that criterion Kn is the most significant one resulting from the expert
sampling being analyzed:

n
iQjmaz =i 02 =i OKn; Romaezr = 21‘52 = 89.
i=1
Weights of all other local criteria of set S are calculated by using (6) and (7):

1 89

iOKn =i ®2mar = 741801541671 731 70171165157 184146430 730 0,1141;
390

74 74
iOKn =i ®2max =i OKn * ]9 = 0,1141 x 39 =0,0949;...;
30 30
iQOpt =i OKn * @ =0,1141 * @ = 0,0385.

The obtained values of weights ;o ; for every Sj-th criterion within the set of alternatives (experts)
FE allow finding every fuzzy criterion within the set of alternatives as following:

i)
Sj= ]in[ i=TnVji=Tm]|,

where ;w; are the elements of matrix M,,[nxm] (see Table 2); ;a; is the power to which all corresponding
elements of matrix M, [n x m] are raised and it is expressed with (6) and (7).

Therefore:
iwgaGm)
Gm=|—"32—li=1,nVj=1m| =
1B | J
0 14870.0949 0 06760.0949 0 12160.0949 0 06660.0949 0 16220'0949 0 04050.0949
B ( JEr] |Es[ |E3[ |Esf |Es[ |Eg[
0,1216°0949 0,0946%0949  0,0541°0949 0, 1216094
B[ 7 |Es[ 7 |Eo[ 7 1E10[ )’
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otherwise we obtain:
G — (0, 8346 0,7744 0,8188 0,7744 0,8415 0,7378 0,8188 0,7995 0,7582 0, 8188>
JEA[ 7 OJER[ T |Es[ T JE4[ 7 B[ 7 B[ T JEf[ 7 JEs[ T |Ey[ T ]Ew[ )
The calculations for all the other local criteria within LCDS, i.e. within set S, are performed

similarly and they are transferred to Table 3. Matrix My[n x m| is formed and its elements are
significance of every S;-th criterion within LCDS due to its weight o within the set of alternatives E.

Table 3

Matrix M,[n x m] of significance of every of its criteria due to its
weight o; within the set of alternatives E as a fuzzy set

Gm | Kn | Dn C E T |7(Q)| RI Ec | Ac Fe¢ | Fopt
Fy | .8346 | .7956 | .8187 | .8493 | .7620 | .8319 | .8198 | .8076 | .8483 | .7652 | .8312 | .8374
FEy | 7744 | 7019 | .7960 | .7658 | .2030 | .8021 | .8366 | .8481 | .8867 | .7763 | .7979 | .9654
FEs | .8188|.7792 | .8762 | .8236 | .7781 | .8536 | .7986 | .7927 | .7442 | .8034 | .8513 | .0667
By | 77441 .7699 | .8898 | .8627 | .7915 | .7735 | .8099 | .7739 | .8663 | .6205 | .9191 | .9011
Es | .8415|.7878 | .8351 | .8002 | .7915 | .8133 | .7226 | .8398 | .8064 | .7862 | .9139 | .8774
Eg | .7379 | .7597 | .8351 | .7396 | .8445 | .7891 | .8439 | .8305 | .8738 | .7952 | .8868 | .8774
FE; | .8188|.7597 | .8681 | .8493 | .7781 | .7735 | .7226 | .8687 | .7442 | .8034 | .8868 | .9153
Fg | .7995 | .7792 | .8589 | .8002 | .8445 | .8470 | .8286 | .7739 | .7829 | .7763 | .7979 | .9254
FEq9 | .7582 ] .7200 | .8681 | .8331 | .8221 | .6830 | .7986 | .8687 | .8806 | .8034 | .8312 | .9153
Fhp | .8188|.7956 | .8187 | .8002 | .8030 | .8470 | .8357 | .7482 | .8483 | .7763 | .8659 | .8774

Values of matrix M, [n x m] elements (see Table 3) give the possibility to form set Dy. Its elements
indicate the degree of membership as to optimal solution. It means that they contain maximum elements

of matrix M,[n x m] and they are underlined for every E;-th expert (see denominator of every element
in brackets | E;| of set Dy):

Dy — (0, 8774 0,9654 0,9011 0,9191 0,9139 0,8868 0,9153 0,9254 0,9153 0, 8774> ‘
JEAl 7 1Es[ 7 JEs[ 7 JE4[ 7O 1Es[ 7 JEg[ T JE7[ 7 JEs[ 7 ]Eo[ T ]Ew]
Ordering of elements of set Dy from maz to min gives ordered set Dy that characterizes ordered
significance of experts by the degree of membership of alternatives to optimal solution:

D <0,9654_ 0,9254 0,9191 <0,9153. 0,9153> 10,9139 0,9011 0,8868 <0,8774_ 0,8774)>
0 [Eo[ 7 1Es[ 1B\ 1Ef[  1Es[ )7 1Bl 1Es[  1Bsl '\ 1Ei ’ ]Euol

K. Determination of assessment significance (;w;) of every Ej;-th expert within their
set B = (Ez\z = 1,7), i.e. calculation of alternative weights regarding every S;-th criterion within
LCDS. The content of this step is similar to K8 execution taking into account the essence of step K2
and data of Table 1, but it relates every E;-th expert.

Table 1 is used to determine the biggest total of elements of columns for all local criteria within
LCDS. It means that elements of set S are taken to determine rank ;r; of corresponding S;-th criterion.
Obtained data is used for further calculation while performing step K4 .

Therefore, local criterion Kn 17jmax =1 "kn = 12 obtains the highest estimation for FE;-th expert
(lower left index in ;7; and in ;w;). It makes the following calculations determine weights of alternatives
for Fq possible:

1
1WKn = T =
TGm TKn TDn TCt TEn TTr 7(Q) TRIL TEc TAc TFc TFopt
TKn + TKn + TKn + TKn + TKn + TKn + TKn + TKn + TKn + TKn + TKn + TKn
TKn .
= m7|VZ = 1,7’];.
Zj:l i’y
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In general case we get the following for every E;-th expert:

s |Vi=T,n. (8)

The calculations for determining alternative weights for expert F4 for all local criteria, in other
words criteria being analyzed within set .S, are the following:

11
Wi = o = 0,1539; 1WGm =1 Win * 2™ = 0,1539 % — = 0,1410; and so on
78 TKn 12
1
1WFopt = 1WKny -+ 1WFopt = 1WKn * IFopt = 0, 1539 %« — = 070128 .
TKn 12

Other elements ;w; are calculated similarly following expression (8) for all criteria of set S for
every expert F; C E and are transferred to Table 4. Maximum values of elements in every line are
underlined.

K5. Determination of alternative significance (expert opinion) by determination of alternative
weights in relation to every criterion. The content of the given step is the actions similar to K& actions
and they relate not every S;-th criterion, but every E;-th alternative. Here every element of each i-th
line (fuzzy information from every FE;-th expert) of matrix Mpgw[n x m| (Table 4) is raised to power
which is maximum element of corresponding line (E;-th expert) of matrix M, [n x m], i.e. (;a;) max is
underlined (see Table 3). The following set is formed in such way

(o) 'wﬁiaj)max
plics)max _ ”7“7] =1,m:i=1,n|. (9)
! 15

Table 4

Matrix Mpgw[n x m] of weights of expert opinion ;w;
in relation to every criterion as fuzzy set

Gm | Kn Dn C E T 7(Q) | RI Ec Ac Fc | Fopt
Eq | 1410 |.1539 | .0385 | .1282 | .0513 | .1154 | .1026 | .0641 | .0769 | .0897 | .0256 | .0128
E5 | .0641 | .0513 | .0256 | .0385 | .0897 | .0769 | .1282 | .1154 |.1410 | .1026 | .0128 | .1539
Es | 1154 | (1282 | .1026 | .0897 | .0641 | .1539 | .0769 | .0513 | .0128 |.1410 | .0385 | .0256
E, | .0641 | .1154 | .1282|.1539 | .0769 | .0513 | .0897 | .0385 | .1026 | .0128 |.1410 | .0256
Es |.1539 | .1410 | .0513 | .0641 | .0769 | .0897 | .0256 | .1026 | .0385 | .1154 | .1282 | .0128
Eg | .0385 | .1026 | .0513 | .0256 |.1539 | .0641 |.1410 | .0897 | .1154 | .1282 | .0769 | .0128
E7 | 1154 | .1026 | .0897 | .1282 | .0641 | .0513 | .0256 |.1539 | .0128 |.1410 | .0769 | .0385
Eg | .0897 | .1282 | .0769 | .0641 |.1539 | .1410 | .1154 | .0385 | .0256 | .1026 | .0128 | .0513
E9 | .0513 | .0641 | .0897 | .1026 | .1154 | .0128 | .0769 | .1539 | .1282 |.1410 | .0256 | .0385
Eqp | 1154 |.1539 | .0385 | .0641 | .0897 | .1410 | .1282 | .0257 | .0769 | .1026 | .9513 | .0128

For example, each element in Table 4 of matrix Mpgw[n x m], i.e. 0,1410 for Gm (0,1539 for Kn and
so on) is raised to power (;a;) max = (1agm)max = 0,8774 for every expert Ej. Therefore, we have
the following for Fy:

(10) max _ (0,1410078774. 0,1539%877 0, 0385%577 (0, 12820877 051308774

1W;

J |Gm[ |Kn[ |Dn[ Ict |JEn[
0, 115408774 (0 10260877 (06410877 (076908774 () (89708774
|/ N (%) | JRI[ 7 B[ T JA
0,0256%8774 (), 012808774
|Fc] ; |Fopt[ )
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otherwise, after calculations have been performed:

(oj)max _ (0,1793 0,1935 0,0574 0,1649 0,0738 0,1504 0,1356 0,0878
1 _(]Gm[’ JKn[ " 1Dn[ " JCt[ 7 JEn[ " ]Tr[ T Q)] JRI[
0,1054 0,1206 0,0402 0,0219
B[’ A’ |Fe ]Fopt[)'

Similar calculations are executed for other experts of set E by expression (9) and all data is

transferred to Table 5. The elements of this table are (iwéiaj ) max

) and they form matrix Mo [n X m]

by implementing computation procedure of ¢, e [14].

K6. Obtaining the fuzzy sets (solutions) of matrix M« [n xm] for every Sj-th criterion. Maximum
value (iw](iaj )max) max is selected and underlined (see Table 5) for every Sj-th criterion of matrix

M

pwe [ X m]. Procedure ¢ ;) mayx is used to form ordered (in context of selection the maximum value

(iwj(»iaj )max> max for every S;-th criterion) set (S(j)max|j = 1, m) of solutions:

(iwj("aj ) max) max

(S(j) maxli = T,m) = Vj=T,mji=Tn
1551

We obtain the following for the example considered in Table 5:

o iy _ (01807 0,1935 0,1514 0,1790 0,1902 0,1851 0,1760
(S6masli =) = (g TRour Toul* o TEnl 0T @)1
0,1803 0,1526 0,1712 0,1653 0, 1642>
R B JAd JFel  Foptl)’

Table 5

Matrix M, [n x m| of weights of expert opinion ;w; in relation to every criterion as fuzzy

set Matrix M, ,[n x m| of significance of alternatives (expert opinions) by determining

weighs of alternatives regarding every S;-th criterion (iwj(-iaj )max> as fuzzy set

Gm | Kn | Dn C E T 7(Q) | RI Ec Ac Fec | Fopt
Ey | 1793 | .1935 | .0574 | .1649 | .0738 | .1504 | .1356 | .0898 | .1054 | .1206 | .0402 | .0219
Ey | .0705 | .0568 | .0291 | .0431 | .0976 | .0840 | .1377 | .1243 | .1509 | .1110 | .0149 | .1642
Es | 1429 | 1571 | 1285 | .1139 | .0841 | .1851 | .0991 | .0688 | .0197 |.1712 | .0531 | .0368
E, | 0801 | .1374 |.1514|.1790 | .0947 | .0652 | .1091 | .0501 | .1233 | .0182 |.1653 | .0345
Es |.1807| .1669 | .0662 | .0812 | .0959 | .1104 | .0352 | .1248 | .0509 | .1390 | .1530 | .0187
Eg | .0556 | .1327 | .0718 | .0388 |.1902 | .0875 |.1760 | .1179 | .1473 | .1618 | .1028 | .0210
E; | 1386 | .1244 | .1101 | .1526 | .0809 | .0660 | .0350 |.1803 | .0186 |.1665 | .0956 | .05078
Eg | .1074 | .1494 | .0931 | .0787 | .1769 | .1632 | .1355 | .0491 | .0337 | .1216 | .0177 | .0640
Eq9 | .0660 | .0809 | .1101 | .1244 | .1386 | .0186 | .0956 | .1830 | .1526 | .1665 | .0350 | .0507
Eip | 1504 | .1935 | .0574 | .0898 | .1206 | .1793 | .1649 | .0402 | .1054 | .1356 | .0738 | .0029

K7. Ordering of elements of set (S(j)maX] j= m) by implementing procedure ¢~ applying the
rule from maz to min in relation to fuzzy estimations (nominators of each from elements within set
(S(j)max\ j= m) of every S;-th criterion of LCDS. It means that maz-min task regarding elements
of matrix M, ,«[n x m] is solved by ordering elements of set (S(j) max|J = m) forming ordered set

<S(j)max‘j = 17m> :

| N
<S(j)max|.7 = 17m> = <T|vj = 17m;l = 17n>
J

198 Becrnuk Kaparanmurckoro yHuBepcurera



Fuzzy Multi-criteria Selection of Alternatives...

We have the following in the given case:

(S, j=Tom) = <O, 1935 0,1902 0,1851 0,1807 0,1803 0,1790
(7 maxld = 5 [Kn JEa[ e[ JGm[ IR C]CH
0,1760 0,1712 0,1653 0,1642 0,1526 O, 1514>
7@ JAc[ "~ [Fe[ "]Fopt[" ]Ec[ " |Dn]

Ordered list of local criteria in brackets | ... [ is the solution to the task being solved, which is the
task of multi-criteria of RMAT selection by the method of quasi-best case. It means that the final
result of solution to the task being solved taking into account (10) is the following (index QBM S
demonstrates the result obtained with the method of quasi-best case):

(10)

(S(ymaxld = 1L, m)qems = (Kn, En,Tr,Gm, Rl,Ct,7(Q) , Ac, Fe, Fopt, Ec, Dn). (11)
4 The results obtained and their discussion

The ordered set of LCDS elements is obtained by expression (11) after having solved the given task
using the method of quasi-best case (see item 3).

As it can be seen, the mapping of elements of sets (S) and (S(;j)maxld = 1,m)gBMs by expressions
(1) and (11) vary without coincidence in relation to places of local criteria within these mappings
excluding criterion 7 (Q). Obviously, it does not demonstrate infeasibility of the method used [14].

It makes sense to compare the obtained result (S(j)max|j = I,m)@Bums to the result of ordered set
(S(j)maxld = 1, m)wuns, which was obtained while selecting RMAT using the method of the worst case
[13] (to index WMS):

(SG)ymaxli = L m)wns = (Kn, En,Gm, Dn, 7 (Q) , Ct, Ac, Rl, Tr, Ec, Fopt, Fc). (12)

As it is seen, the places (order number) of only three criteria coincide within the sets
(S(jymaxli = = I,m)gBms and (S(jymaxli = 1,m)wrs. These criteria are: Kn, EnandCt. This does
not also demonstrate the infeasibility of quasi-best method used. The comparison of these sets in
general demonstrates different final results. It proves feasibility of both methods of fuzzy multi-criteria
of RMAT selection as well as the feasibility of quasi-best case method adapted to the particularity of
topical area.

Generally, the comparison of the elements of sets S = (Sj|j =1, m) by (1), {(S(jymaxld = 1,m)gBMms
by (11) and (S(j)max|j = 1,m)wms by (12) is not contradictory. The result of analysis of these sets
first of all reproduces the features of solving the tasks of such content and formulation (see item 3).

Therefore, it is recommended to make decision for stated input data taking into account the
obtained ordered set of LCDS elements by expression (11) at fuzzy multi-criteria selection of RMAT
using the developed and applied method of quasi-best case. It means that local criteria (RMAT
phenomena) have to be analyzed by the following ordered sequence: kinematics (KC,), energy com-
ponents (En), geometrical parameters (Gm) and so on, finishing with dynamics components (Dn).
It is obvious that the number of RMAT being analyzed by every local criterion may be significantly
decreased due to the selection of in feasible RMAT by every criterion. This occurs while analyzing
previously synthesized final set of RMAT [4] as a result of RMAT analysis by every local criterion in
sequence of set [11] elements. All the mentioned above causes complexity decrease and makes decision-
making rational even at non-automated solution of the task of fuzzy multi-criteria selection of RMAT
using the method of quasi-best case.

The results obtained demonstrate the achieved purpose of the given paper (see item 2).

The following directions of further researches have been determined as results of conducted researches:

e the development of set of related methods of fuzzy multi-criteria alternative selection based on the
results of strict and non-strict expert sampling and does not fundamentally contradict the possibility
to automate fuzzy multi-criteria selection of alternatives;
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e the known and the latest approaches related to fuzzy multi-criteria selection of alternatives are
automatically implemented in the form of computer software.

5 Conclusions

1. The approach of fuzzy multi-criteria selection of alternatives by quasi-best case was chosen as
theoretical and methodological basis to solve the task of RMAT selection taking into account its essence
and formulation. This approach was used because it is invariant one in relation to the content of the
task, to the origin and the number of discrete local criteria. The selection is performed within the finite
sets of the mentioned above criteria. One more reason to choose the described method is its ability
to provide the lower level of subjectivism and to increase the reasonableness of decisions made while
ordering criteria from their LCDS.

2. The key points of the method used are adapted to solving tasks of fuzzy multi-criteria selection
of RMAT. It was performed for the first time by applying the executed formalization of generalizations
of content features of the task components. The mentioned above task, in its turn, can be further
implemented in an automated way.

3. The performed formalization of RMAT selection task, which is being solved, is implemented
with meaningfully grounded steps. The content of these steps is the methodological basis of fuzzy
multi-criteria RMAT selection by the method of quasi-best case.
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PoboTTaHabIpblIFAH MEXaHUKAJIBIK, KYPaCThIPY
TEXHOJIOTUSIChIH TaH/Iay HeTi3iH/e O0ajlaMaHbl KBa3MU-XKAKCHI
Kargail oJliciMeH aHbIK eMeC KONMKPUTEPUJl TaHIay

PobGorTanapipbliiral MEXaHUKAJIBIK, KypacTeipy TexHonoruscoin (PMKT) rammay npomeci 6ypbIH yCBIHBLI-
raH OaJlaMaHbl KBa3U-?KAKCHI »KarJail 9/IiciMeH aHbIK eMeC KONKPHUTEPW/Ii TaHJayMeH Ky3ere acTbl. 2Ky-
MBICTBIH, TPAKTUKAJIBIK, YKOHE FBIIBIMU KYHIBLIBIFBIH aHBIKTANTHIH 9ICTiH HEri3ri Ma3MYHIbI €PEKIIEeTiTi O
HEFYPJIBIM ePeKIlle KPUTEPUIIMEH €H »KaKChl OalaMaMeH CAJIBICTBIPY apKbLIbI HETi3/1e/IreH apHaiibl 93ipJien-
reH KaTblHacTap OoJibil TabbLIa ibl. BacTtanksr mepekrep petinge PMKT kepinicrepi 60aThiH, 3KCIEepTTIK
cayaJHaMa 9J[ICIMEH OPBIHJIAFAH JIOKAJIbIbI KPUTEPUIIEPiH AUCKPETTIK *KublHbIHGIH, (JIK/I2K) snement-
TepiH KaTaH paHKuUpJey HOTIKesaepi 60sabl. Tanmay mMasMyHbI GOJBIN TaHIAY OPLIHAAJIATHIH YKUBIHIA
perrenren akbpipabl kublara JIK/I2K percis symemeHTTepiHiH 6acTalnKbl KypaylIbLIaApPbIH PETTEY IIPOIeCi
rabbiran. Anpiaran PMKT kepinicinig Ti36eri Tangay mpouecinie TaHiay HOTHXKEC! peTiHie capajayra
yebiablran. PMKT rangay ecebinin mentyiniy Herizi OOJIBIIT OHBIH KAJIBITTACTBIPBLIFAH KONBLIBIMBI >KOHE
OHBIH, HETi3iHJIe aJIFall PeT aHbIKTAJFAH KBa3U-YKAKCHI YKaFail oiCiHIH Ma3MYHBIHBIH, KAJIBLIBIHFAH (POp-
Masu3Maepi 6osabl. Kearipiaren TeopusIbIK, XKaraaiaapablH KagaM CaibiH »KyMbIc Kabigertiiiri PMKT
aBTOMATTAH/IBIPBUIFAH TAHAY/IbIH HAKTHI MBICAJIBIMEH KOPCETIITEeH.

Kiam cesdep: 6amama, aBTOMATTAHIBIPY, TAHIAY, JIOKAJIbIbI KPUTEPUil, aHBIK €Mec, THIM/IIey, poOOTTaH-
JBIPBLIFAaH MEXaHUKAJIBIK KYPaCThIPY TEXHOJIOTHUACHI, KBa3U-2KaKChl TaHIAY.

B.A. Kupunosuy, JI.B. dumurpos, IL.II. Mensauayk, JI.I'. Benbcknit,
B.A. Illagypa, B.B. Caskus, 1.B. Kpsrxannscbka

Heuérknit MHOroKpuTepuaJjJbHbIA BHIOOD aJIbTEPHATHUB
MEeTOJIOM KBAa3WJIydIIlero cjaydas KaK OCHOBa BbIOOpa
POOOTU3NPOBAHHBIX MEXaHOCOOPOYHBIX TEXHOJIOTMIii

IIponecc BoIGOpa poGoTH3MpPOBaHHBIX Mexanocbopounbix Texuosnoruit (PMCT) peanm3oBan Kak HEIETKHIA
MHOTOKPHUTEPHUAJIBbHBIN BLIOOD aIbTEPHATHUB IIPE/JIO’KEHHBIM PAaHee METOJIOM KBa3WILydInero ciydas. OcHOB-
HOI1 COJIepPKATEILHON 0COOEHHOCTDHIO TAHHOI'O METO/IA, OIIPEIEJISIONIEH TPAKTHIECKYIO M HayYHYIO [IEHHOCTD
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JIaHHON pabOThI, sIBJIAIOTCS pa3paboTaHble ClenuaIbHble COOTHOIIEHNs], OCHOBAHHBIE HA COOTBETCTBYIOIIUX
CPaBHEHUSIX C JIydIlleil aJIbTePHATUBON M ¢ Hambojiee BayKHBIM KPUTEPHEM. BXOMHBIMU JTAHHBIMU SIBJISI-
IOTCSI PE3y/IbTAThl CTPOTOr0 PAHXKUPOBAHUS JIEMEHTOB JMCKPETHOTO MHOXKECTBA JIOKAJIHHBIX KPUTEPHEB
(OIMJIK), sBsionuecst nposisieHusvMu PMCT, BBIIOJIHEHHBIX MeTOIOM 3KcneprHoro ompoca. Comeprxa-
HIEM BBIOOpA SBJISIETCS MIPOIECC YITOPSITOYEHUsT COCTABJISIIONINX N3HAYAIBHO HEYIIOPSIOYEHHBIX 3JIEMEHTOB
JMJIK, Ha MHOKECTBe KOTOPBIX BBIMOJIHSIETCS BHIOOD, B KOHEYHOE YIIOPSIOYEHHOE MHOXKeCTBO. [lomyden-
Has nociefoBarenbaocTs nposiiaennit PMCT kak pesysibrar BbIOOpa pEKOMEHI0BaHA K aHAJIU3Y B IIPOIECCEe
Beibopa. OcHOBOI pemrenust 3amaan Beicopa PMCT spisiercs ee (popmasm3oBaHHasT TOCTAHOBKA U BIIEp-
BBbIE€ OIPE/IeJIEHHBIE HA €e OCHOBE ODOOIIEHHBbIE (DOPMAIM3MBI COAEPXKAHUST METOa KBASUJIYUIIErO CJIydasi.
PaborociiocobHOCTh M3JI0’KEHHBIX TEOPETUYECKUX IIOJIOXKEHUI IOIIArOBO IIPOJIEMOHCTPUPOBAHA PeasIbHBIM
MPUMEPOM aBTOMATH3WPOBaHHOTO BhIOOpa PMCT.

Karouesvie caosa: aabTepHATHBA, aBTOMATU3AINSA, BBIOOD, JIOKAJIBHBIN KPUTEPHil, HEYETKOCTb, ONITUMU3a-
1usi, poGOTU3UPOBAHHAS MEXAHOCOOPOUYHAST TEXHOJIOTHS, KBA3UJIY Ul BBIOOD.
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Mapes of secondary sources in the problem of ERT probing
2D medium: numerical method and analytical solutions

The paper considers a mathematical model of electrical tomography above the media with local inclusions.
Numerical solutions of a system of integral equations for a medium with local inclusion are compared
against a numerical implementation of the analytical solution of the problem for a case of a sphere in
homogeneous space. The parameters of local inclusion and the depth of heterogeneity are varied. Maps of
secondary sources in the ERT (Electrical Resistivity Tomography) probing problem are constructed: for
local inclusion in the form of the ellipsoid, an ellipsoid in a homogeneous space (analytical solution of the
problem) and for two-layer half-spaces as well. Numerical results are presented, and maps of secondary
sources in the cases where the immersed heterogeneity is an insulator and a conductor are computed.

Keywords: map of secondary sources; analytical solution of the problem with immersed heterogeneity;
ellipsoid in a homogeneous space; the integral equation method.

Introduction

Modeling the problems of electrical exploration is very relevant nowadays. The solution of direct and
inverse problems of electrical tomography are the main subject of many works ([1-13| and references
therein). In solving the problems of electrical tomography [14, 15|, the finite element method is used;
the novelty of our work is the application of the method of integral equations [16-22| to the solution
of the problem specified below.

When modeling the electric field in complex media, it is important to take into account the
geometric parameters of the desired objects (shape, number of elements, depth and dimensions) [23, 24].
The listed geometric parameters strongly affect the amplitude and shape of the electric field anomalies
[23]. Theoretical calculations by analytical formulas and numerical algorithms should be performed for
models that are found in the practice of geophysical research.

In addition to the size and the depth, the resistivity of the heterogeneity and the peculiarity of
the medium such as angles of incidence of flat boundaries and the orientation of the buried object
have a great influence on the results of the work [24]. In our work, we consider a model containing
heterogeneity in the form of an ellipsoid located in a homogeneous half-space and full space (analytical
solution) and a two-layer horizontally layered medium.

The numerical results are obtained for two types of modeling:

1. Tests of the numeral solutions have been performed using the method of integral equations
against the analytical solutions by A. I. Zaborovsky [23].

2. The distribution of secondary sources on the earth’s surface and the internal contact boundary
are shown.

The study of the electrical field for such kind of media is important for isolating and tracing
local objects, their depth and surface shape. Approximate solutions are known for a sphere, and for
compressed and elongated ellipsoids in a homogeneous medium [23, 24].

A special case of an ellipsoid is a sphere in a homogeneous medium. Due to the complexity of
calculations by explicit formulas, for mass calculations of field parameters in the software,
approximate solutions of A.I. Zaborovsky are implemented [23, 25].
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The electrical potential inside the medium with a sphere near the surface of a half-space is
determined using the exact formulas [23]. Depending on the location of the source and receiving
electrodes along the measuring profile, which does not necessarily passes above the center of the
inclusion, there are four possible analytical formulas for the potential of the electrical field:
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where 7 is a distance from the source to the receiver; a is a radius of the half sphere; d, ¢ are the
distances between the supply and receiving electrodes and the center of the hemisphere, respectively;
6 is the angle between directions ¢ and d; P, (cosf) is the Legendre polynomial of the first kind of
the order n from cos 6 and

9:{2 , Pn(COSH):{ -

Using these formulas (1), we can numerically solve the problem with submerged heterogeneity in
the form of a ball and compare with the solution of the problem with immersed inhomogeneity obtained
by the method of integral equations [16] - [22].

The second part of our testing was the construction of distributions of secondary field sources.
Secondary sources of the anomalous field appear as a result of the excitation of the Earth’s surface by
a source electrode. Maps of secondary sources determine abnormal electric fields.

The authors constructed a map of secondary sources for a two-layer half-space, and for an immersed
inhomogeneity by the method of integral equations and for the analytical solution for a ball in a
homogeneous space according to A.I. Zaborovsky to show how secondary sources are distributed over
the surface.

Numerical solutions

As mentioned above, the algorithm was tested in two ways: comparing the solution obtained by
the method of integral equations with the analytical solution by A.I. Zaborovsky. For the best of
our knowledge there is no analytical solutions of the problem for the heterogeneity placed inside a
homogeneous half-space. On the other hand, we implement the method of integral equations for half-
space, whereas the Zaborovsky solution is obtained for full-space; therefore, to make a reasonable
comparison, the inclusion should be placed in such depth where the boundary of the half space does
not significantly impact on the electric field.

Comparison with the analytical solution has been carried out for different parameters of the
immersed heterogeneity, its size and depth. In the computations by the method of integral equations,
when we placed the ball to the lower depths than z = 1.5 r, the influence of the inhomogeneity on the
anomalies of the resistivity curves became very small, so we have to reduce the depth of the inclusion.
But in the analytical solution of A.I. Zaborovsky, the higher we lift up the ball from this depth, the
more the difference in models appears, namely, the reflection from the boundary of upper half-space
influences on the electric field.
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Figure 1. Comparison of a solution by the method of integral equations
with an analytical solution by A.l. Zaborovsky, (-) - a solution by the method
of integral equations, (- -) - an analytical solution by A.I. Zaborovsky

With the parameters of the sphere a=1 r, z = 1.5 r, it turned out that similar results are obtained.
With these data, a comparison result about of 5% is obtained.

To construct maps of secondary sources for each case, media models are considered for inclusions
that are an insulator or a conductor.

In Figure 2, the upper layer is flat, the parameters of local inclusion in taken the form
of an ellipsoid at a depth of z = 0.5 r with parameters ax = 0.21r, by = 0.2128 r, cz = 0.21 r
with layer resistivities pI = 10 Ohm-m, p2 = 100 Ohm-m. Although Matlab’s state-of-the-art math
package makes it possible to construct triangulations, for our purposes these triangulations turn to be
unacceptable. This is due to the fact that the thickening of the grid should occur in the vicinity of
the measuring line, and the source and measuring electrodes should be located at the vertices of the
triangles, in nodes with the same geometry of triangulation. Therefore, we have had to construct our
own algorithm of the triangulation. An example of a grid constructed for a case with spherical local
inclusion is shown in Figure 2.

Figure 2. Triangulation for spherical inclusion under the flat surface

Figure 3 shows the secondary sources for resistivities of the surrounding medium pI1 = 10 Ohm-m
and an inclusion with resistivity p2 = 100 Ohm-m.
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Figure 3. Map of secondary sources at pI = 10 Ohm-m and p2 = 100 Ohm-m

Figure 4 shows a map of secondary sources for the case of resistivity of the surrounding medium
pl = 100 Ohm-m and there is an immersed conductor with resistivity p2 = 10 Ohm-m.

Figure 4. Map of secondary sources for pI = 100 Ohm-m and p2 = 10 Ohm-m

Figure 5 shows a ball in homogeneous space, the parameters of the ball a=1 r. The triangulation
constructed for this case is shown in Figure 5.

ATATAVANANLY,

Figure 5. Triangulation constructed for a ball in a homogeneous space

Figure 6 shows a map of secondary sources projected on the plane (Oxy) for a ball in a homogeneous
space, for resistivities pI = 10 Ohm-m, p2 = 100 Ohm-m.
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Figure 6. Map of secondary sources at pI = 10 Ohm-m and p2 = 100 Ohm-m

Figure 7 shows a map of secondary sources projected on the plane (Oxy) for the resistivity of the
containing medium pI = 100 Ohm-m and the resistivity of the ball p2 = 10 Ohm-m.

Figure 7. Map of secondary sources at pI = 100 Ohm-m and p2 = 10 Ohm-m

Additional computations are performed for a two-layer medium in a half-space; both layers are
supposed to be plane. The triangulation constructed for this case is shown in the Figure 8.

Figure 8. Triangulation built for a two-layer environment

Figure 9 shows a map of secondary sources for the case when the second insulating layer has a
resistivity p2 = 100 Ohm-m and is contacting with the layer of p1 = 10 Ohm-m.
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Figure 9. Map of secondary sources at pI = 10 Ohm-m and p2 = 100 Ohm-m

Figure 10 shows a map of secondary sources for the resistivity of the upper layer p1 = 100 Ohm-m,
and the lower layer with p2 = 10 Ohm-m.

Figure 10. Map of secondary sources with p1 = 100 Ohm-m and p2 = 10 Ohm-m
Conclusion

Numerical solutions obtained by the method of integral equations are compared with analytical
solutions of A.I. Zaborovsky. It turns out that even the models are different (half space and full space)
the difference in apparent resistivity curves for the depth of inclusion a = 1.5r are above 5%. Maps of
secondary sources of the electric field for the following cases are constructed:

— buried inclusion by the method of integral equations,

— a sphere in homogeneous space according to A.I. Zaborovsky,

— a case of two-layer medium.

Calculations by the method of integral equations have shown that the distribution of secondary
sources on the surface of inhomogeneities that determine the structure of an anomalous electric field
is close to the solutions known in the theory of geophysics.

References

1 Dahlin T. On the Automation of 2D Resistivity Surveying for Engineering and Environmental
Applications / T. Dahlin // PhD thesis, Lund University. — 1993. — P. 187.

2 Dahlin T. 2D resistivity surveying for environmental and engineering applications / T. Dahlin //
First Break. — Vol. 14. — No. 7. — 1996. — P. 275-283.

Cepust «Maremarukas. Ne 2(98)/2020 209



D.S. Rakisheva, I.N. Modin, B.G. Mukanova

10

11

12

13

14

15

16

17

18

19

210

Dey A. Resistivity modeling for arbitrary shaped two-dimensional structures / A. Dey,
H.F. Morrison // Geophysical Prospecting. — Vol. 27. — No. 1. — 1979. — P. 106-136.
Alekseev A.S. Optimizational method for solving the inverse problem of geophysical prospecting
by electric means under direct current for vertically-inhomogeneous media / A.S. Alekseev,
V.A. Tcheverda, Sh. Niambaa // Inv. mod expl. geoph. — 1989. — P. 171-189.

Hasanov A. An inverse problem related to the determination of elastoplastic properties
of a plate / A. Hasanov, A. Mamedov // Inverse problems. — Vol. 10. — 1994. — P. 601-615.
Peng Y.J. An inverse problem in petroleum exploitation / Y.J. Peng // Inverse problems. —
Vol. 13. — 1997. — P. 1533-1546.

Orunkhanov M. Inverse resistivity problem: Geoelectric uncertainty principle and numerical
reconstruction method / M. Orunkhanov // Mathematics and computers in simulation. — Vol. 80.
— 2010. — P. 2091-2108.

Mukanova B. An inverse resistivity problem: 1. Lipschitz continuity of the gradient of the
objective functional / B. Mukanova // Applicable analysis. — Vol. 5. — 2009. — P. 749-765.
Mukanova B. An inverse resistivity problem: 2. Unilateral convexity of the objective functional
/ B. Mukanova // Applicable analysis. — Vol. 5. — 2009. — P. 767-788.

Orunkhanov M. The integral equations method in problems of electrical sounding / M. Orun-
khanov, B. Mukanova // Advances in high performance computing and computational sciences.
— Vol. 93. — 2009. — P. 15.

Orunkhanov M. Convergence of the method of integral equations for quasi three-dimensional
problem of electrical sounding / M. Orunkhanov, B. Mukanova // Compuutational science and
high performance computing II. — Vol. 91. — 2016. — P. 175.

Borcea L. Electrical impedance tomography / L. Borcea // Inverse problems. — 2002. — Vol. 18.
— P. R99-R136.

Geng Min. Numerical Simulation in Whole Space for Resistivity Logging through Casing under
Approximate Conditions / Geng Min. Liang Huaqing. Yin Hongdong // 2012 International
workshop on information and electronics engeneering. — Vol. 29. — 2012. — P. 3600-3607.
Klibanov M.V. Nanostructures imaging via numerical solution of a 3-D inverse scattering problem
without the phase information / M.V. Klibanov, L.H. Nguyen, K.J. Pan // Applied numerical
mathematics. — Vol. 110. — 2016. — P. 190-203.

Klibanov, M.V. Explicit solution of 3D phaseless inverse scattering problem for the Schrodinger
eqation: the plane wave case / M. V. Klibanov, V. G. Romanov // Eurasian journal of mathe-
matical and computer applications. — Vol. 3. — 2015. — P. 48-63.

Mukanova B. Modelling the Influence of Ground Surface Relief on Electric Sounding Curves Using
the Integral Equations Method / B. Mukanova, T. Mirgalikyzy, D. Rakisheva // Mathematical
Problems in Engineering. — 2017. — P. 217-228.

Mukanova B. A numerical solution to the well resistivity-sounding problem in the axisymmetric
case / B. Mukanova // Invers problems in science and engineering. — Vol. 21(5). — 2012. —
P. 767-780.

Pakummesa JI.C. Anmnpokcumaiiust oBepxHOCTH peibeda JiHeBHOM nmoBepxHocTu Metojgom RBF /

J.C. Pakumesna, T. Muprasukerser, B.I. Mykanosa // Becrn. Harmonasnbnoit akajgemun Hayk
Pecnybnuku Kazaxcran. — 2017. — T. 1. — Ne 365. — C. 210-215.

Mukanova B. Modeling the impact of relief boundaries in solving the direct problem of direct
current electrical sounding Communications in Computer and Information Science / B. Mukanova,

T. Mirgalikyzy // Mathematical Modeling of Technological Processes: International Conference.
CITech-2015. — Almaty: Proceedings. Springer. — 2015. — P. 117-132.

Becrnuk KapaFaHﬂI/IHCKOFO yHuBepCcuTeTa



Mapes of secondary sources...

20 Mirgalikyzy T. Method of Integral Equations for the Problem of Electrical Tomography in a
Medium with Ground Surface Relief / T. Mirgalikyzy, B. Mukanova, I. Modin // Journal of
Applied Mathematics. — 2015.

21 Mukanova B. Modeling the Impact of Relief Boundaries in Solving the Direct Problem of Direct
Current Electrical Sounding / B. Mukanova, T. Mirgalikyzy // In: Danaev N., Shokin Y., Darkhan
AZ. (Eds) Mathematical Modeling of Technological Processes. Communications in Computer and
Information Science, Springer. Cham. — Vol. 549.

22 Myxkanosa B.I'., Mupramukeissr T., Pakumesa /1.C. MogenupoBatue BiIdsiHUAsT pejibeda 3eMHOM
HOBEPXHOCTH Ha KPHUBBIE SJIEKTPUIECKOIO 30HAMPOBAHNS METOJOM UHTEIPAJIbHBIX ypaBHEHUN //
Nudpopmarnka u npukiagHas maremaruka: [I-s Mexaynap. Hayd. koud. — Y. II. — Ajmarsr,

2017. — C. 352-366.

23 Baboposckuit A.Jl. Duekrpopassenka / A.U. Baboposckuit // Toc. Hayu.-TexH. u3i-Bo HeDT.
u rop.-Torwaus. juT. — M., 1963.

24 dky6osekmit FO.B. Dnekrpopassenka / FO.B. fxy6oseknit, I.B. Penapn. — 3-e uzm. — M.:
Henapa, 1991.

25 Mukanova B. The Boundary Element Method in Geophysical Survey / B. Mukanova, I. Modin
// Springer. — T. 4. — 2017.

J1.C. Pakumena, I.H. Momun, B.I. Mykanosa

2D opraaapeinbiH, ERT 308aTay ecebingeri KaiiTajiaMma 3apsaaTapIblH
KapTaJjlapbl: CAHABIK 9/1C >KoHe aHAJUTUKAJIBIK, IIeIliMIep

Maxkasaa JToKaabIl KOCBLIYBI 6ap aHAJTUTUKAJIBIK, IIETM VITH 3JIeKTPJIK TOMOTPaOUSHBIH MATEMATHKA-
JIBIK, MOJIeJT KapacThIpbutral. HTerpaaabik TeHaeysep Kyilecine Heri3mesreH JITHICOn T TYPiHIe KOCBLIY b
0ap MaTeMaTHUKAJIBIK MOJIEJIb MeH OipTEeKTeC OPTaJarbl IIap aHAJIUTUKAJIBIK IIENIIMHIH CAHIBIK eCenTesryi
caJIBICTRIPBLLABI. EKi 2Karail yIniH JIOKaaIb/Ji KOChLIY/IbIH TapaMeTpJiepiMeH TepeHIiriH e3repTill, OIITUMAaJI-
bl Teperiik anbikTasbl. ConbiMen karap, ERT Gapiay ecebinje, /uIuncoiiy] koHe GiprekTec opTajarsl
map TYpiHJe JIOKaJIbIi KOCBUIYBI 6ap KoHe €Ki Ka0aTThl OpTa KaFrJailyiapbl YIIH KOCAJIKBI 3apsAnTap Kap-
Tachl KyPbIIFaH. AHAJUTUKAJIBIK, MIEMIIMMEH CAJIBICTBIPYbIH, CAHIBbIK, HOTUKEJEPIMEH aTajIbIll KETKEH YIII
2KAFIaJIbIH, ©TKI3TIII IeH U30JISITOP OPHAJIACKAH KOCAJIKBI 3apsiITap KapTaChl KeJITIPiJIreH.

Kiam cesdep: KocaKbl 3apsiiTap KapTachl, KOHIBIPBIIFAH 6ipTeKkTeci 6ap aHAIUTUKAJIBIK, IIEIIiM, HipTeKTec
OpPTaJIaFbl AP, UHTEIPAJIILIK, TEHJIEYJIEP O/IiCi.

J1.C. PakumeBa, I.H. Momun, B.I. Mykanosa

Kaprtbl BropniHbiXx UCTOYHNKOB B 3a7ade ERT 3onanpoBanus
2D cpena: yncaeHHBINT METO/1 U aHAJUTUYIECKNEe penieHus

B crarpe paccMmorpena maremaTHuecKas MOIETb JIEKTPUUECKON ToMorpaduu Ajs aHATIATHIECKOTO pe-
IIEHUsI C JIOKAJIbHBIM BKJIOYeHUeM. [IpoBesieHO cpaBHEHUME ¢ MATEeMaTUYEeCKON MOJEJIbI0, OCHOBAHHOU Ha
CHCTEME WHTETPAJIbHBIX YPaBHEHHH C JJOKAJIbHBIM BKJIIOYEHHEM B BHUJE IJJIUIICOUA, C YUCIEHHBIM PeIleHn-
€M aHAJIMTUYIECKOrO DeIlleHns 3a/a4u C IIapoM B OJHOPOJIHOM IIPOCTPAHCTBe. BapbupoBaauch mapamMeTpsl
JIOKAJILHOT'O BKJIFOUEHUSI U TJIyOWHA 3ajIeraHusl JIJIsT ONPEIEIEHUsT ONITUMAJIBHOM TUIYOUHBI JIJIsT 0O0UX CJIyda-
eB. [locTpoeHbl KapThl BTOPUYIHBIX UCTOYHUKOB B 3a1ade ERT 30HnpoBanus: 1jist JIOKAJIBHOTO BKJIIOUEHUST
B BHJIE SJUIMIICOUA, /Il SJUIUIICOUIA B OJHOPOJHOM IIPOCTPAHCTBE (AHAIMTUYECKOE DENIeHUe 33J(a4u) U
JBYXCJIOMHBIX TOJIYIPOCTPAHCTB. IIpuBeseHbl 4uCI€HHBbIE PE3yJIbTAThl JJIsi CPABHEHUS C AHAJIUTUICCKUM
peleHneM M KapThl BTOPUYHBIX UCTOYHUKOB B CJIydasdaX, KOIJIa IMOTPYyrKeH U30JIATOP WX IIPOBOJHUK.

Karouesvie caosa: KapTa BTOPUIHBIX UCTOYHUKOB, aHAJIMTUYECKOE DeIlleHne 33/1a9i C IOTPYKEeHHOM HeOJ-
HOPOJHOCTBIO, JIJTUIICOUT B OJTHOPOJHOM IIPOCTPAHCTBE, METO/I MHTETPAJILHBIX YPaBHEHUH.
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Development of an algorithm for calculating the concentration
of radiation defects during ion irradiation

The paper considers mathematical modeling of radiation defect formation processes in materials under ion
irradiation. Algorithms for calculating cascade probability functions (CPF) taking into account energy,
spectra of primary knocked out atoms (PKA) and the concentration of radiation defects during ion
irradiation loss are presented. The defect concentration was calculated for various incident particles and
targets of the periodic table. The regularities of the behavior of the concentration of defects depending on
various physical parameters are revealed. The calculation algorithm is presented in the form of flowcharts.
The work was performed as part of the cascade-probability method, the essence of which is to obtain and
further use CPF. CPFs have the meaning of the probability that a particle generated at a certain depth h’
will reach the detection depth h after the nth number of collisions.

Keywords: algorithm, calculation, probability, regularity, cascade probability function, concentration, radiation
defects, ion, results area.

Introduction

In recent years, much attention has been paid to the problems of mathematical modeling of
radiation-physical processes. The development of mathematical models, calculation algorithms, objects
of research allows us to describe many phenomena [1]. We consider computer simulation of radiation
defect formation processes in solids when they are irradiated with various charged particles, and
computer simulation features of cascade probability functions and radiation defects for ions. The
necessity for a such work is related to the problem of controlling the evolution of defects in a solid, in
order to obtain, ultimately, materials with desired properties. For metals, irradiation with ions is an
effective way to change properties such as metal strength, corrosion resistance, fatigue, deprecation,
etc. Without research in this direction, solid state radiation physics would remain a fairly academic
occupation that is not of interest for practical applications [1-11]. A lot of works have been devoted to
the problems of the interaction of particles with matter and the generation of radiation defects upon
irradiation of matter with ions [5-13]. Most of the work in this direction is carried out as part of the
cascade-probability method [14-17].

During the interaction of charged particles with matter along the path of their movement, continuous
energy losses occur. These losses lead to a strong dependence of both the energy spectra of the incident
particles themselves and of the initially knocked out atoms on the penetration depth. The range
of interaction for the formation of PKA substantially depends on energy, and therefore it became
necessary to obtain physical and mathematical models that take into account the real dependence of
various parameters of an elementary act on energy and depth. Previously, in most cases, in specific
calculations, the simplest cascade probability function (CPF) was mainly used, this is not always
justified, since the interaction path depends on the energy. It is necessary to study the behavior of
the obtained CPFs, taking into account the energy losses for ions, to prove the properties that they
must possess both from a physical and mathematical point of view, develop calculation algorithms and
calculate the CPF depending on the number of interactions and the penetration depth of the particles,
the primary knocked out atoms and concentration of radiation defects [18-20].
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1 Experimental

Calculation of radiation defect concentration at ionic irradiation is made by formula |21, 22]:
Es max
CulBosh) = [ W (Es Ex,h)aE )

Ec

AmycEmoc?

E -
2 max (mlc2 + m202)2

mac? — rest energy of ion. Cy(Ep, h) is determined taking into account of particle energy at depth h

is Fy(h). As Ey(h) = Eg — AE(h), that power waste on ionization and agitation is assigned by AFE,
found corresponding depths of monitoring h from Bete-Blokh [1] formula or Komarov-Kumakhov table
[22]|. Spectrum of primary expelled atoms is determined by following ratio:

h
us h—h\ w(Ey, Ey, 1) dN
W (Eo, Ea,h) = > /wn(h/)exp<— ~ ) MO (2)
T=10h kg

where ng, n1 — initial and finite value of interactions number from domain of cascade-probability
function. Cascade-probability function v, (h’), incoming to expression (2) is given by form:

1 By %o N (E EOkh’)
0 Oa —
)= (Eo = kh’) o <)\0> — M 3)

1 1
M(B) = -10%* (em), g = ——

oono [ ——t 1 T2
0\ @ (B — kW)

Section of o2 calculated by Rutherford formula, z; — atomic number of flying particle, zo — atomic
number of target. Spectrum of primary expelled atom (PEA) in elementary act is calculated by formula:

-10?* (cm).

do(FEh, E2)/dEs

w(El,EQ) = pu (El) . (4)

Substituting the expression (4) in formulae (1) and (2), we found:

E
EdE2 max / dEQ / h — h/ dh/
C(Eo, h) = . .
WEo b = 5 for Z Un(W)exp | === ) ST
E. N=10R kg

operating transformations, we get to following ratio:

By Bamax — h—hY\  dW
Eo, h n ;
Ck ( 0 ) E E2max - Ed ZO / 1/} exp ( )‘2 Al(h,))‘Z
=0h kg

where E; — average energy of displacement, F — initial energy of particle, E. — boundary energy, Eopqz
— maximum energy, transmitting to atom at head-on collision, ¥n(h’) — cascade-probability function.
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Concentration of radiation defects is made by formula (1). It is impossible to put expression in

the form of (3) instead of 1, (h’)as a repletion appears in every term of cascade-probability function
(CPF). Expression for ¢, (h’) used in the form [20]:

\Ifn(h/7h, EO) =
Ey
1 Ey h In <E07kh’>
= —_ | — —_ . _ N 7
exp( Inn! —nln Xy )\Oakln<E0—kh’)+)\0+nln< e h .

2 Results and Discussion

Results of calculations are given in 1-2 figures. Algorithm of calculations is given in the form of logic
diagram (1, 2). As the calculations show (Figure 1, 2), with an increase in the threshold energy, the
curves pass much lower, the transition through the maximum is realized smoother. The concentration

of radiation defects depending on the depth increases, reaching a maximum, then decreases to 0.
4_

4-
Ck* 105, ™ ck*105 , M
3 1 | 3 1 \
’ |
\ |
2 \‘ 2] \
\
| \
2
1-//\ \\ 11 2 q
30 /3’\ \
0 T T T L 0 !
0 4 8 12 16 j i :
h*10'4, ™ 0 4 8 h*10'4, ™ 12
(a)

(b)
Figure 1. Dependence of the concentration of radiation defects on depth upon irradiation of silicon
with silver ions at: (a) Fg = 1000keV, E. = 50keV (1), 100keV (2), 200keV (3);
(b) Ey = 800keV, E. = 50keV (1), 100keV (2), 200keV (3)

o* 104, em
N
o

15
10 1 \

1 2 3 a5

h+10*cm
Figure 2. Dependence of the concentration of radiation defects on depth during ion
irradiation for aluminum in iron at Ey = 1000keV; E. = 50 (1), 100(2), 200 (3) keV

The finding of area of result of radiation defect concentration at ionic irradiation has allowed
revealing the following regularities:

1. The interval of area of result displaces to the right with reduction of initial energy of primary
particle, values of radiation defect concentration increase.

2. Calculating time strongly increases and reaches tens of hours (table 1,2) at the great atomic
weight of a flying particle and small atomic weight of target.

216

Becrnnk KapaFaHﬂI/IHCKOFO yHuBepCcuTeTa



Development of an algorithm for...

Algorithmic logic diagram of calculation of CK (Ey, h) :
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1
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Logic diagram of calculation function f(h;) :

B Z=m-#11
declaration
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Table 1
Definitional domain boundaries of radiation defect concentration,
numbers of interactions and calculating time for
germanium in aluminium at E. = 50keV and Ey = 1000 keV
h-10%, em | Cy, em™' | Ep, keV no ni T

0,1 31453 1000 342 663 5" 80
2,0 34641 900 10319 | 11772 | 1’ 26"
4,0 38790 800 22509 | 24628 | 4’ 10”
6,0 44061 700 36526 | 39213 | 7' 26"
8,1 51426 600 53795 | 57102 |12 57"
10,1 61078 500 73611 | 77333 |19’ 31"
12,0 74085 400 96941 | 101215 | 29’ 03"
13,0 83450 350 111802 | 116424 | 36" 54"
14,0 95401 300 129231 | 134213 | 44’ 35"
14,3 99134 280 135104 | 140152 | 47" 20"
14,7 105238 260 143505 | 148774 | 53" 36"
15,1 112049 240 152665 | 158192 59

15,5 119653 220 162734 | 168361 | 1° 03’
15,8 124508 200 171000 | 176816 | 1° 09
16,2 133078 180 183184 | 189101 | 1° 14/
16,6 142065 160 197029 | 203203 | 1° 23’
16,9 144496 140 208809 | 215170 | 1° 30’
17,3 148840 120 226991 | 233671 | 1° 44’
17,6 135244 100 243135 | 250085 | 1° 55/
18,0 99266 80 269617 | 277085 | 2° 17
18,1 48552 70 277471 | 284876 | 2° 22/
18,3 0 60 295266 | 302961 | 2° 33’

Table 2

Definitional domain boundaries of radiation defect concentration,
numbers of interactions and calculating time
for silver in silicon at E. = 200keV and Ey = 1000 keV

h-10°, cm | Cy, em™ | Ey, keV no ny T
0,01 16563 1000 174 417 | 4" 35
1,81 17930 900 60299 | 63742 | 4" 38
3,60 19347 800 130090 | 135256 | 15
5,37 20642 700 210534 | 217106 | 46
7,11 21479 600 304159 | 311851 | 1° 33’
8,84 20904 500 | 416958 | 426047 | 2° 36
10,52 16167 400 553995 | 564515 | 4° 11/
11,35 10063 350 636131 | 647055 | 7° 39’
12,17 0 300 730486 | 742372 | 9° 33/

3. The interval of area of result greatly displaces to the right and increases with increase of atomic
number of a flying particle, value of concentration in a point of maximum and values of concentration
strongly increase. With an increase in the atomic number of the target for the same incident particle,
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the value of the function at the maximum point increases slightly, the depths decrease, i.e. more vacancy
clusters are formed in the heavier target, especially in the near-surface region.

4. Initial and final values of number of interactions increase depending on penetration depth, the
interval of area of result (ng, n;) also increases and displaces to the right.

5. Values of concentration abruptly increase and calculating time increases at the great atomic
weight of a flying particle and target, for the rest a behavior of area of result similar increases.

6. If the atomic weight of the incident particle is much less than the atomic number of the target,
then the concentration of radiation defects becomes zero at energies significantly higher than the
threshold energy. As a rule, the conversion to zero occurs at £ = 50, 60keV for a concentration
calculated at E. = 50keV.

7. When increasing threshold energy at the same penetration depth, the values of the concentration
of radiation defects decrease significantly, the boundaries of the result area do not change.

Conclusion

Thus, the work developed algorithms for calculating the CPF, PKA spectra, and the concentration
of radiation defects. Calculations were made for silver in silicon, germanium in aluminum, aluminum
in iron at various values of the initial and threshold energy. Regularities of the behavior and finding of
the region of the result of the concentration of radiation defects are obtained depending on the initial
ion energy, threshold energy, penetration depth, atomic number of the incident particle and target.
It should be noted that earlier in the calculations, energy losses were not taken into account and the
simplest CVF was used. In this work, we used the expressions for the CPF, PKA spectra, and defect
concentrations taking into account energy losses. The obtained models and calculation algorithms can
be used by specialists in the field of solid state radiation physics. Using the results obtained, they can
be used for calculations of various incident particles and targets of the periodic table.
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T.A. Imeiranesa, A.A. KonbicOaeBa

Nonapik coyieneyaeri paauanudaiblK aKayJ1apablH
KOHIIEHTPAIIUSICHIH €CellTey aJI'OPUTMAEPIH KYPacThbIPpy

2KyMbIC KacKaIThI-bIKTUMAJIIBI 9J1iC asiChIH/a YKaCAJIbIHFAH, OHBIH MOHICI — opTYypJIi OeJIIeKTepre apHaJIraH
KaCKaAThI-bIKTUMaJB! pyukuusicoH (KbID) amy »xoHe opi kapail Kosanybiaga 6omaaasl. KbI® bikTrMmal-
JBIFBIHBIH, MoHI — Gipchimbipa "h" TepenpikTe TybiHga Fan Geumek "n" peT COKTHIFBICYBIHAH KeitiH 6esrii
6ip "h" repemngirine xeryme. Makasiasa ecenrey canachbl MEH YAKbITTBI KbICKAPTY MAaKCATBIH/A OPEKeTTe-
cTikTep KoHe OOJIIIEKTEP/IiH, €Hy CaHbIHA, MOH/IBIK, COyJIeJIeH/ 1Py Ke3iHJieri paJnalnsyIblK aKkay KOHIIEHTPa-
IUSACHIHA, GANIAHBICTB KaCKaAThI-bIKTEMaIbl dyakmmscer (KbI®) ecenreyre apHasran aqropuTMiepsl
oHTalauappy yebiabLran. KbI®D rkome paananusiiiblk akayiap MIOFBIPJIAHYBIH €CeNTey VIIMiH HOTHXKE aii-
Marbl, OChI aiiMak, IeKapaJjJapbl MeH ecenrTey KajaMbl Tabbuiabl. [Ilekapasap/bl ipikTey »koHe ecenTey
KaJJaMbIH aBTOMATTAHIBIPBLIYBI OPBIHIAIFaH.

Kiam cesdep: anroputm, ecenrtey, bIKTUMAJIBIK, YAalbl, KACKATHI-BIKTUMAJIIBI (DYHKITUICHI, KOHIIEHTPA~
s, pagualusa/IbIK aKayjlap, UOH, HOTUKe aliMarsbl.

T.A. HImeiranesa, A.A. KonbicbaeBa

Pa3zpaboTrka aaroputmMoB pacueTa KOHIIEHTPaIuu
paanannoHHbIX AedEeKTOB TP MOHHOM O0JIydYeHUNn

Pabora BeImo/THEHA B paMKaX KaCKaHO-BEPOSITHOCTHOTO METOA, CYyTh KOTOPOTO 3aKJ/IF0YAETCsT B MOy YEHUN
1 JaJIbHEHIIEM NCIIOJIBb30BAHIN KACKAIHO-BepoaTHOCTHBIX dyuKnunit (KB®) musa pasmmansix gactun. KBO
WMEIOT CMBICJI BEPOSTHOCTH TOIO, YTO YaCTHIA, CPEHEPUPOBaHHAs Ha HEKOTOpPOi riybumue h, mocturaer
ompeesIeHHOM TTyOuHbL h TToce n-ro Yuciia coymapeHuit. ABTopaMu MpeioyKeHa ONTUMU3AIUST aJITOPUT-
MOB I pacdera KackagHo-sepoaTHocTHbIXx dynkmumit (KB®) B 3aBucumocTr oT 4mcIa B3aMMOJEHCTBHIA
¥ TIyOUHBI TPOHUKHOBEHUSI YaCTHUIl, KOHIIEHTPAIIMU PaJINAIMOHHBIX JeEKTOB IIPU MOHHOM OOJIyYeHHH C
1IeJIBI0 YMEHBIIIEHNsI BDEMEHN U KavuecTBa pacuera. st pacuera KB® u koHIeHTpaumn paIuaiioHHBIX JIe-
beKTOB HaXOAUTCA 00JIACTD PE3Y/IbTaTa, TPAHUIIBI TON O0JIACTH U IIar JJjis pacdyeTa. BolmogHeHa aBTOMATH-
3a1|sl MoA6OPa IPAHMI] U IIAra JJIsi pacdera.

Karouesvie cao6a: aJropuTM, pacdyer, BEPOITHOCTD, PErYJIsIPHOCTD, KACKAIHAS HKIIS BEPOSITHOCTH, KOH-
b b) b b )
[EHTPAINs, PAIHAIINOHHBIE TePEKThI, HOH, 0O0JIACTh PE3YIBTATOB.
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