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Preface
About the conference ICAAM2018

This issue is a collection of 14 selected papers. These papers are presented at the Fourth International
Conference on Analysis and Applied Mathematics (ICAAM 2018) organized by Near East University, Lefkosa
(Nicosia), Mersin 10, Turkey. The meeting was held on September 6-9, 2018 in North Cyprus, Turkey.

The main organizer of the conference is Near East University, Nicosia (Lefkosa), Mersin 10, Turkey. The
conference was also supported by Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan.

The conference is organized biannually. Previous conferences were held in Gumushane, Turkey in 2012; in
Shymkent, Kazakhstan in 2014; and in Almaty, Kazakhstan in 2016. The proceedings of ICAAM 2012, ICAAM
2014, and ICAAM 2016 were published in AIP Conference Proceedings (American Institute of Physics) and in
some rating scientific journals.

Near East University was pleased to host the fourth conference which was focused on various topics of
analysis and its applications, applied mathematics and modeling.

The main aim of the International Conferences on Analysis and Applied Mathematics (ICAAM) is to
bring mathematicians working in the area of analysis and applied mathematics together to share new trends
of applications of mathematics. In mathematics, the developments in the field of applied mathematics open
new research areas in analysis and vice versa. That is why, we planed to found the conference series to provide
a forum for researches and scientists to communicate their recent developments and to present their original
results in various fields of analysis and applied mathematics.

This issue presents papers by authors from different countries: Albania, Bulgaria, France, Libya, Russia,
Turkey, Turkmenistan, USA, Kazakhstan. Especially we are pleased with the fact that many articles are written
by co-authors who work in different countries. We are confident that such international integration provides an
opportunity for a significant increase in the quality and quantity of scientific publications.

Finally, but not least, we would like to thank the Editorial board of the "Bulletin of the Karaganda
University. «Mathematics» series", who kindly provided an opportunity for the formation of this special issue.

July 2018

GUEST EDITORS:

Allaberen Ashyralyev
Department of Mathematics, Near East University, Nicosia, TRNC, Mersin 10, Turkey;
Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan;
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia;
allaberen.ashyralyev@neu.edu.tr,

Makhmud A. Sadybekov

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan;
sadybekov@math.kz

8 Bectnuk Kaparanmgurckoro yuupepcurera



MSC 35505; 656N22

V.B. Vasilyev

Belgorod National Research University, Russia
(E-mail: vbv57@inboz.Tu)

On some approximate calculations for certain
pseudo-differential equations

We consider discrete pseudo-differential operatots and equations as approximate operators and equations
for their continuous analogues. For this purpose we study a solvability for such equations in appropriate
discrete spaces and give some error estimates for discrete and continuous solutions. This approach is based
on the discrete Fourier transform and factorization tecnique which is used for special canonical domains in
Euclidean space.

Keywords: discrete pseudo-differential operator, periodic factorization, solvability, approximate solution,
error estimates

0.1 Introduction

A theory of pseudo-differential operators and equations is a very developed part of mathematics now
[1-3]. But almost there are results on an approximate solution for such equations and related boundary value
problems. Therefore one suggests to start a studying pseudo-differential equations and boundary value problems
on discrete structures for which is very convenient to construct computational algorithms. Here we will study
model operators and equations in special canonical domains. We are interested in a solvability of discrete
equations and a comparison of discrete and continue solutions.

Let A(€) be a function defined in R™ and satisfying the condition

I+ )" <A < ea(T+ €D, (1)

with positive constants c1, ca, and let S(R™) be the Schwartz space of infinitely differentiable rapidly decreasing
at infinity functions. Such a function A(§) generates a pseudo-differential operator

(Au)(z) = / / A(©)ei =€y (y)dedy, @ € R™, @)
Rm Rm

which is defined firstly for v € S(R™), and then it will extend on more general spaces. This function A(§) is
called a symbol of pseudo-differential operator A.
Remark 1. Usually they consider more general pseudo-differential operators

(Au)(z) = Az, €)e' "W Cy(y)dedy, x € R™,
1/

generated by the symbol A(x,€) defined in R™ x R™. But taking into account so-called «a local principle» our
nearest problem is studying more simple operator (2) and its discrete analogue.
Let A4(§) be a periodic function in R™ so that

a(1+GNE < [Aa(€)] < e2(1+ 6D 2, 3)

where (7 = h™2 3" (e~ ¢ — 1)2, and positive constants c;, ca do not depend on h.
k=1
Let D C R™ be a domain (finite or infinite). We will consider functions uq4(Z) defined in Dy = DNAZ™, h > 0,

and introduce the following operator

(Aqua)(@) = Y [ Aa©Qua(@e’ TP Ehmde, & € Dy,
GERLZ™ pivm

where h = h™1, T™ = [, 7]™.
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Definition 1. The operator Ag is called a discrete pseudo-differential operator or shortly h-operator. The
periodic function Aq(§) is called its h-symbol.
Let us remind that a symbol (operator) is called elliptic if

inf |A >0
ess inf |44(6)] >0,
and obviously all symbols under consideration are elliptic.
0.1.1 The discrete Fourier transform

If uy(%),% € hZ™ is a function of a discrete variable then we say «discrete function». For such discrete
functions one can define the discrete Fourier transform

(Faua)(€) = @a(§) = > e " tug(@)h™, &€ hT™,
TehzZm™

if the latter series converges. The obtained function @4(§) is periodic in R™ with basic cube of periods AT™.
Such discrete Fourier transform preserves all key properties of the integral Fourier transform, particularly the
inverse discrete Fourier transform is given by the formula

(F V) () = [ ecutera, zenzn.

hT™

(2m)™

The discrete Fourier transform is an isomorphism between the spaces Lo(hZ™) and Lo(RT™) with norms

1/2

1/2
||uallz = ( > Iucz(iﬁ)l%’") and  |[|dq|l2 = / |@a(€)[?d€

TERZ™ EERT™
0.1.2 Discrete spaces

Since a definition of Sobolev—Slobodetskii spaces uses patrial derivatives we will use their discrete analogues,
namely divided differences of first order

(Ag)ud>(i‘) = h_l(Ud(fI)]_, L, Tk + h; T axm) - ’U/d(l‘]_, R P axm))a

for which their discrete Fourier transform looks as follows

(A ua)(€) = (e ™% — D)ag(8).
For a divided difference of a second order we have obviously
(AP ug) (&) = h™2(ua(ar, - ap +2h, - T);

—2Ud(5€17"‘ ,I‘k+h,"' ,$m)+Ud($1,"' s Lhgyw e 71'm))7

and its discrete Fourier transform is

(A ua)(€) = (e ™8 — 1)%ig().
Then for the discrete Laplacian
m
(Aqua)(®) = D (AP ua) (@),
k=1

we have

—~—

(Aqua)(€) = ™) (e7" —1)%iy(9).
k=1
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Further we introduce the space S(hZ™) consisting of functions with finite semi-norms

[ual = sup (14 |2))'|AM uq ()|
TehzZ™

foralll e NNk = (k1,-+ ,km), kr € Nyr =1,---  m, where
AWy (&) = AN ARmay ().

In other words the space S(hZ™) is a discrete analogue of the Schwartz space S(R™).
Definition 2. By definition the space H*(hZ™) is a closure of the space S(hZ"™) with respect to the norm

1/2

lualle = | [ @+1G)laa@rae | (@)

hTm

Definition 3. The space H*(Dy) consists of discrete functions from H*(hZ™) with supports in Dg. A norm
in the space H*(Dg) is induced by a norm of the space H*(hZ™). The space H§(Dg) consists of discrete
functions (distributions from S’'(R™)) ug with supports in Dy, additionally these discrete functions must admit
a continuation £ onto H*(hZ™). A norm in the space H§(Dg) is given by the formula

[lual|§ = inf [[Cuqlls,

where infimum is taken over all continuations £.
Of course all norms (4) are equivalent to Lo-norm, but all equivalence constants will depend on h. That is
why we would like to note that all constants below do not depend on h.

0.2 Equations and approzimations

We will consider the pseudo-differential equation
(Au)(z) =v(z), =€ D, (5)

and suggest for its solution some computational schemes.

Since we know solvability conditions for pseudo-differential equations in R™ and R’} [3] we will select such
discrete pseudo-differential operators which reserve all needed properties of their continuous analogues.

Let Py, be a restriction operator on hZ™, i. e. for u € S(R™)

e ={ G

We tried this projector for simplest pseudo-differential operators, namely Calderon—Zygmund operators,
these operators can be treated as pseudo-differential operators of order 0, and we obtained very acceptable
results [4-7]. But now we will use another restriction operator.

A construction for the restriction operator @y, for functions v € S(R™) is the following. We take the Fourier
transform @(€), then its restriction on AT™ and periodically continue it onto a whole R™. Further we apply the
inverse discrete Fourier transform F; ! and obtain a discrete function which is denoted by (Qnu)(Z), % € hZ™.
In our opinion the projector @)y is more convenient than P}, although the projectors P, and @) are almost the
same according to the following result.

Lemma 1. For u € S(R™),VS > 0, we have

|(Phu)(Z) — (Quu)(8)| < ChP, Vi e hz™,

where the constant C' depends on u only.
Proof. Indeed, we need to compare two Fourier transforms. By definition

By = —1 ey
(Pa)(@) = (%)MR[ (€)de.
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and respectively

1 5

Q&) = g [ e Catepie,
’H‘m

thus this difference is given by the integral

iT-€ ~

e T a(€)de.

(Phu)(i‘) - (Qhu)(j) = (27r)m
R™\RT™

A conclusion of the lemma 1 follows from an invariance of the Schwartz class S(R™) with respect to the
Fourier transform and the simple estimate

[a(§)] < Cul€l™

for Vv > 0.

Further, the symbol A4(§) will be defined by the following way. We take a restriction of A(£) on the cube
AT™ and periodically extend it onto a whole R™. We consider such h-operator as an approximate operator for
A. So, to find an approximate discrete solution for the equation

(Aqua)(Z) = va(Z), T € Da, (6)
for D = R™ we can use the following discrete equation
Aqua = Qnv. (7)

Its solution is given by the formula

/ eTEATHED(E)dE, & e hZ™,

hT™

va®) = Trym

so that we do not need to find an approximate solution for an infinite system of linear algebraic equations like
[4, 5]. For our case we need to apply any kind of cubature formulas for calculating the latter integral and a
cubature formula for calculating the Fourier transform o(§).

According to the Lemma 1 one can compare discrete and continuous solutions for enough smooth right-hand
sides and symbols.

Theorem 1. If the symbol A(€) satisfies the condition (1) and is infinitely differentiable on R™, u is a solution
of the equation (5), uq is a solution of the equation (7) then for v € S(R™) we have the following error estimate

lu(Z) — ua(2)] < ChP, Vi € hZ™,
for arbitrary 8 > 0.
0.3 Equations in a half-space

This case is very different from R™, and an ellipticity condition is not sufficient for a solvability. A principal
role for the solvability is plaid by an index of the periodic factorization which is defined for an elliptic symbol.

Let us denote I+ = {(&', &, £i1),7 > 0},& = (£, &) € T™.

Definition 4. The periodic factorization for an elliptic symbol Ay(€) is called its representation in the form

Aa(§) = Aa+(§)Aa,—(8),

where the factors Aq 1+ (§) admit an analytical continuation into half-strips hILy with respect to a last variable
&m for almost all fived £ € RT™1 and satisfy the estimates

ES]
)

AT < a1+ EDTE, |AFLO] < eall + | *72

with constants ¢y, ca non-depending on h,

m—1
2= (Z (e7her —1)2 4 (e h(Emtim) _ 1)2> , Em +iT € Bl
k=1
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The number & € R s called an index of the periodic factorization.
Theorem 2. If the elliptic symbol Aq(&) admits the periodic factorization with the index & so that |&—s| < 1/2
then the equation (6) has a unique solution in the space H°(Dg) for arbitrary right-hand side vg € Hi™“(Dq),

ia(€) = Az} (O)PLT (A7 (©)lva(9)),

hm
(PE7 1O = 5 | 1@ + 5op. [ al€ ) ot o2y, | (8)
—hm

Remark 2. One can easily conclude that the solution does not depend on a continuation lvg.
Theorem 3. Let & —s = n+ d,n € N,|§| < 1/2. Then a general solution of the equation (6) in Fourier
images has the following form

1a(€) = 471 (€)X (€ PET (X (€ A3 1 (©a(€) + ;16 3 ()
k=0

where X,,(€) is arbitrary polynomial of order n of variables (i = h(e™™& — 1), k = 1,--- ,m satisfying the
condition (3), ¢;(¢'),j =0,1,--- ,n — 1, are arbitrary functions from H, (RT™ 1), 85 =5 —e+j—1/2.

For the case & — s = —n + d,n € N, |0] < 1/2, we consider the following general equation
(Aqug)(7) + ZK (53 © 6(Fm)) = va(@), &€ Da, 9)
with unknowns ud,Ej, j = 0,1,---,n, and K; are given pseudo-differential operators with symbols K;(§)

satisfying the condition (3) with power «;.
Remark 3. The operator K acts as follows. If we denote by Kj (Z) a kernel of the pseudo-differential operator
K;, we obtain
Ky (b)) ©8(m)) = Y K@ — @)y (i)

GERZM—1

Continuing the right-hand side onto a whole R™ and applying the discrete Fourier transform, we obtain the
system of linear algebraic equations

Ztkj fk(g)a kanL"'a”ﬂ
where .
f L[ et 1 K (€ )
€)= 3 [ (G ke,
—hm T o
1 e~them 1, —
AlE) = 5m [ (= A€ ) (B € )
27 h
—hm
Theorem 4. Let & —s = —n + 6,n € N, |§| < 1/2. Then the equation (9) has a unique solution ug €

Hs(Dd),Cj EHsj(thfl),Sj :S—Oé+01j+1/2,j20,1,"' M, Zﬁ

ess inf |det(tr; (€))% j=0 > 0.

&-/ehjrm—l
The following estimate
HUngSaHUst o3 ||b HGJ SaJ”vst a’ j:O,1,~~-,n,
holds with constants a,ay,- -+ ,a,, non-depending on h.
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0.8.1 A limit case

It is well-known [8] that
227\ By,
cotx—f—z | 2|2" L —r<a<m,

where Bs,, are Bernoulli numbers.
In the formula (8) a kernel of the operator P5", i. e. hcot hf7’" has the following representation

hfm 2 = 22n ‘B2n| (hgm ) -t
heot =m — 2 p o Z_1P2n] ((HSm ,
2 & n; (2n)! 2

so that we will obtain under h — 0 a well-known kernel of the Hilbert transform %E%n with respect to a last
variable. Also it is easily visible that under h — 0 all periodic polynomials in Theorem 2 transform to ordinary
polynomials with respect to the variable &,,. It is very correlated with a continuous case [3].

Unfortunately, for this case the estimates for a comparison of u and ug are not so simple as in the theorem
1; now we can assert that u4 converges to w under h — 0.

0.3.2 An error estimate

If we put strong enough restrictions on a right-hand side and factorization elements then one can give a
comparison between discrete and continuous solutions.
Lemma 2. If u € S(R™) then the following estimate

(F~Peit)(7) — (F; ' PR Quu)(#)| < CLP, & € hZT

holds for V3 > 0, and the constant C' depends on u only.

Proof. Here we need the description and comparison for two projectors related to the Hilbert transform,
both standard and periodic. Let us denote by x(«) an indicator of the half-space R’} and by x4(Z) an indicator
of the discrete half-space hZ7'. Then according to structural properties of two mentloned transforms we have
the following equalities -

F'Poii=x - u, F;ngerQhu = x4 - (Qnu).

Further one can apply Lemma 1. [J
Starting from Lemma 2 and the Theorem 1 we are able to compare discrete and continuous solutions in a
half-space. Below we give this comparison under conditions of the Theorem 2 when a unique solution exists.
Theorem 5. If the symbol A(€) satisfies the condition (1) and is infinitely differentiable in R™ with the
factors AL(€), u is a solution of the equation (5), ugq is a solution of the equation (7) then for v € S(R™) we
have the following error estimate
lu(Z) — ua(Z)| < Ch®, V7 € hZT,

for arbitrary 8 > 0.
Remark 4. To refine this theorem we will describe how we need to choose a right-hand side for solving the
equation (7). The solution of the equation (5) in Fourier images has the form

(&) = ATH(E) Per AZM(€)0u(€),

where P = %(I—l— Hyg/) is a projector defined by the classical Hilbert transform with respect to a variable &, [3]:

+oo
1 (€' n)dm
(Hea)() = — vp. / (gn_)nn

lv is an arbitrary continuation of v from R onto a whole R™ in corresponding functional space. Since the
right-hand side in the equation (6) is deﬁned in hZT only then one needs to choose Qp(lv) instead of fvg to
obtain the required estimate.
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0.4 Equations in a cone

Here we will consider briefly more complicated case than a half-space.

Let D be a sharp convex cone, and let 1*) be a conjugate cone for D, i.e.,
l*)Z{xeRmzm-y>0, y € D}.

Let T( ]3) C C™ be a set of the type T™ + 4 ]5 For T™ = R™ such a domain of multidimensional complex space

is called a radial tube domain over the cone D [9-11]. We introduce the function

By(z)= 3 ™, z=¢+ir, £€T™, TeD,
T€EDy

and define the operator
(Ba)(©) = limy [ Bulz = myualnian
’H‘m

This operator is roughly speaking a conical analogue of the periodic Hilbert transform H, g',er.

To describe solvability conditions for the equation (6) we introduce the following concept.

Definition 5. The periodic wave factorization for an elliptic symbol A4(€) is called its representation in the
form

Aa(€) = Aax(§)Aa=(S),

where the factors Ag£(€), Aq=(§) admit an analytical continuation into domains T(]B),T(— 1*)) respectively
and satisfy the estimates

[ATLEI < a@+I3NFE, [AZLE)] < (1 +13)*F,

with constants c1,co non-depending on h,

m

¢ =r (Z(e—ih@k“k) - 1)2> , €T 7€£D.

k=1

The number & € R is called an index of the periodic wave factorization.

Theorem 6. If the elliptic symbol Ay(€) admits periodic wave factorization with the index a so that |se —s| <
1/2 then the operator Aq : H*(Dg) — H*~*(Dy) is invertible and a solution of the equation (6) for arbitrary
right-hand side vqg € H§(Dg) in Fourier images is given by the formula

@4(€) = AZL(€) Ba(A7L (6)fva(6)), (10)

where Lvg is an arbitrary continuation of vq into H®(hZ™).
Using the latter formula (10) for the solution of the equation (6) and the previous considerations one can
obtain conical analogues of theorems 1 and 5. We hope to give more detailed analysis in forthcoming papers.
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B.B. Bacuanes

Apmnaiibl niceBaouddpepeHnmaabl TeHaeyJaep YITH
Kelbip >KybIKTay ecenrTeyJliep

MakaJrazia muckperTi riceBioaud depeHnual bl orepaTopiap MeH TeHIeYIIep/Ii OJIapIblH Y3/1iKCi3 aHaIorTa-
PBI VIIIH KYBIKTAY OIIEPATOPJIap MEH TEHJEY/IED peTiHe KapacThIpbLIabl. OChl MAKCATIIEH MYHIAN TEHJIEY-
JIEPJIiH, TIENTiMITIriHe CoMKeC MUCKPETTI KEHICTIKTep 3epTTesii, AUCKPETTI *KoHe Y3/KCi3 MIemTiMIepain
KaTesikTepin OGarasanabsl. Byur Tocin EBking kenicririning 6esrisi 6ip KapamnaibiM 00JIbICTAPBIHIA JTUCKPET-
Ti Oyphe TYpIeHIipyi XKoHe (haKTOPU3AINUIAY OJIICiHe HETi3/1e/reH.

Kiam cesdep: muckperTi nceBaoanddepeHImasaibl OePaTop, MEPUOATHI (DAKTOPU3AINST, IIETTI MK, XKy bl-
KTay IIeniiMi, Karejaepi baraay.

B.B. Bacuibes

O HEKOTOPBLIX MPUOJIMYKEHHBIX BBIYMCJICHUAX JIJIsI CIIEINAJIbHBIX
nceBaoan pepeHIMaaIbHbIX YPABHEHUIT

B craTpe paccMmoTrpenbl gucKpeTHbIE TIceBAOANMMEPEHIINATbLHBIE ONIEPATOPHI U yPaBHEHUsI KaK MPUOJIT-
2KEHHBIE OMEPATOPHI M YPABHEHUsI [IJIsI UX HEIPEPBHIBHBIX AHAJIOTOB. V3ydeHa paspenmMoCcTh TAKUX yPaB-
HEHUH B COOTBETCTBYIOIIMX JUCKPETHBIX IIPOCTPAHCTBAaX, U JIaHbl HEKOTODbIE OIEHKU IIOIPENIHOCTH J1JIs
JIUCKPETHBIX U HEMPEPBIBHBIX PEIeHUil. DTOT MOIX0/] OCHOBAH HA JUCKPETHOM mpeobpazoBannu Pypbe u
TeXHUKe (PaKTOPU3AINY, KOTOPAs UCIOIB3YeTCs s CIEINAIbHBIX KAHOHUIECKNX 00/1aCTell B €BKJINI0BOM
IPOCTPAHCTBE.

Karoueswie caosa: TucKpeTHbI ceBA0Aud GepeHIMaIbHbBIN 0LepaTop, HePUONIecKast (DaKTOPU3aIs, Pa3-
PEIUMOCTh, TPUOJIMKEHHOE PENTeHNe, OIEHKH MTOTPEITHOCTH.
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Some approximations of second order derivatives
complex-valued functions

In this paper, we generalize the well known finite difference method to compute derivatives of real valued
function to approximate of second order complex derivatives w,., and wszz for complex-valued function
w. Exploring different combinations of terms, we derive several approximations to compute the second
order derivatives of complex-valued function. Several second order of accuracy finite differences to calculate
derivatives are proposed. Error analysis in test examples is carried out by using Matlab program.

Keywords: finite difference, approximation, complex-valued function, approximation formulas.

Introduction

Boundary value problems for equations with complex-valued functions and partial derivatives with respect
to complex variables have important applications in various areas of mathematical modeling of real physical
processes [1-6]. The theory of finite difference method in case of real valued function and its applications to solve
boundary value problems for partial differential equations is described in [7]. In [8-10], a complex step method
for computing derivatives of real valued functions by introducing a complex step in a strict sense is developed.
Several finite differences to compute first order derivatives of complex valued function discussed in [7].

Let C be a set of complex numbers, let 21,Q5 C C, let w : Q2 — Qs be a complex-valued function.
For each z = z + iy € Q its image w(z) = w(x,y) € Qs can be rewritten as u(z,y) + iw(z,y) by introducing
pair of real-valued two-dimensional functions u and v. Second derivatives w,, and wzz at point z = x + iy are
defined by

_ 1 (0w - Ow _ 1 (9% - 9%w - 9%w Fw) .
Wzz (l‘,y) -2 (8a:z -1 6;) 4 (6w2 _Zayaa: _Zazé’y T 9y? )

(1)

_ 1 ( Ows Qws \ 1 [ 9%w - 92w - 9%w 82w
w%f(xay)7§<8x +18y>71<8x2+7’8y82:+18x8y78y2 .
Approximation of second order derivatives

. : . 0% 8% v 8% :
Theorem 1 ..Absume that. the functions 4025 93055 DB Dyooad ALC continuous and bounded on _Ql’ h
and 7 are positive and sufficiently small numbers. Then, the following second order of accuracy approximate

formulas for w,, are valid:

wzz(x,y):ﬁw(x+h,y)+(fﬁJr#)w(x,y)qL#w(x—h,y)f
—gmw@+hy+7)+gmw@—hy+7)+ gmw(@+hy—7)—

8iiww($_h’y_7—)_ﬁw(%y‘FT)—ﬁw(%y—T)—i—O(hQ—l—TQ);

r4iy,xth+iyc+h+i(ytre—h+i(lytr) €Q;

Cepust «Maremarukas. Ne 3(91)/2018 17



Ch. Ashyralyev, B. Ozturk

wzz(x,y):—M%w(z+3h,y)+%w(x+2h,y)—M%w(z+h,y)+
e — ) w@y) —grw@+hy+ 1)+ grw@—hy+ 1)+
+%%w(x+h,y—7')—Sh%w(:v—h,y—T)—i—ﬁw(x,y—i—ST)—
—T%w(x,y—i—%')—i—%w(x,y—i—ﬂ+O(h2+7'2);

x+ 3h +iy,x 4+ 2h + iy, x + h + iy, x + iy €0Qq;

c+h+ilytr),z+ily+3n)e+i(y+27),x+i(y+7) €

wzz(x,y):—ﬁw(m—Bh,y)—F#w(m—Zh,y)—%w(m—h,y}—l—
+(giz — =) w(@,y) = gizw (@ +hy +7) + glmw (@ = hyy +7) +
—I—ﬁw(m‘—l—h,y—r)—ﬁw(m—h,y—ﬂ—i—ﬁw(w,y—?ﬁ)—
—T—gw(a:,y—ZT)+%w(m,y—7)+0(h2+72);
x—3h+iy,x —2h+iy,x —h+iy,x +iy,c —h+1i (y+7),€Q;

x+h+i(lyx7),c+i(ly—3n)z+i(y—27),z+i(y—71) €0;

wer (2,y) = —p=w (4 3h,y) + 5w (2 + 2h,y) — 25w (z + h,y) +
+(giz —zr) w(@y) — grw @+ hy +7) + gw (@ — by +7) +
tgew(@+hy—7)— g=w(@—hy—7)+ pmw(z,y—37) -
—T%w(m,y—%')+%w(m,y—7)+0(h2+72);
z+3h+iy,z+2h+iy,c+h+iy,c+iy,c +h+i(y£71) €Qy;

x—h+i(lyxr)e+i(y—71),z+i(y—27),z+i(y—37) €Q;

W (2,7) :fﬁw(x73h,y)+#w(z72h,y)f%w(th,y)Jr
+(giz — o) w(@y) — grw (@ +hy +7) + gimw (@ —hy +7) +
tgzw(@+hy—7)— g=w(@—hy—7)+ p=w(z,y+37) -
—%w(m,y—l—%‘)—l—%w(m,y—i—ﬂ+O(h2+7'2);
x—3h+iy,x —2h +iy,x —h+iy,z +iy,z + h+i(y £ 7) €y;
x—h+ilyxrye+ily+7),x+i(y+27),z+i(y+37) €Q.
Proof. By using Taylor decomposition formula for g%;, %, ‘giy’;, giyg at point (x,y) € Q1 we have that there

exist real numbers cy, o, dy,ds such that
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G (w,y) = et Rgalinlenht) 4 4 (c), ) 15
B (o.y) = MeRDAGIRED | G ey )
32 U (g, y) = u(@,y+)— 2u(Tac,y)+u(z,y 7 4 d U (g, dl)%Q;
5 (w,y) = 2R ) 4 B (o, do) T

Thus

2

2 _ _ 3 .93
24 (v,y) = 2Cthn=teGuita=ha) (8 (¢ y) + % (c2,1)) 2

04 (a,y) = et 2iolos) (24 (o,d)) +iG8 (v, d)) -

(7)

Applying Taylor decomposition formula for % at points (x,y + 7) and (z,y — 7), we have that there exists

c3 such that
2
% (g,y +7) = Wethatrl w@ohatn) | gu (o) y 4 7) B

o) _ u(z+h,y—7)—u(z—h,y—71) 83 h2
J(IayfT)* 2h +373¢1?f(c37y77—)€'

By Taylor decomposition formula for a 5 at point (z,y), we have

*u Mwy+7)— P(@y—71) O 2
Oydzx (z,y) = 2 Oy30x (z,ds) 6

for some constant d3 between y — 7 and y + 7. From (8) and (9) it follows that

3227; (167 y) _ u(;c+h,y+7')—u(x—h,y+7—)4—hTu(9c+h,y—7)+u(a:—h,y—7—) +
3 2 3 2 4 2
b [0 ey +7) B — 5 (en,y— 1) B ]+ o ()
Since 55 55 o1 56 )
1 U Uu u u T
L (n y — - " (ea.ds) —
|:a 3 (c5vy+7—) o3 (Qi,:l/ T) :| 8y81’3 (C3vy)+ aygaxg (037 3) 6 )
we have
0%u () = u(x+hy+71)—ulr—hy+7)— u(m+h,y—7)+u(z—h,y—7)+
Oyox Y= 4ht
+O(h? +12).
In the similar manner it can be obtained that
920 (,y) = vie+hy+7)—vE@—hy+T1)— v(x+h,y—7)—|—v(x—h7y—T)+
OyOx Y= 4ht
+0(h? 4 72).

Therefore, from (1), (7), (11), and (12) we get (2).

From Taylor decomposition formula it can be showed that there exist numbers cq4, c5, d4, ds such that

r—h<cq,cs<x+3h,y—7<dyds <y+ 37;

2273’ (2,y) = *w<w+3h,y>+4w(w+2h};g>fSw(z+h7y)+zw(w,y) +
3 .93 2
+ (% (cary) +15% (65,y)) Uy

gy (z,y) = —w(r,y+37—)+4w(m7y+‘2r;)—5w(z,y+7—)+2w($7y)+

2

+ (‘33’7’; (x,ds) +i3% (x,d5)) =,
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Formula (3) follows from (1), (13), (11), and (12).
By Taylor decomposition formula, we can get that there exist numbers cg, c7, dg, d7 such that

r—3h<cg, cr <x+h,y—31r <dg,d7 <y—+T;

% (x,y) _ 7w(x73h,y)+4w(z72h};g)75w(x7h,y)+2w(z,y)+
(2 (g y) 42 2,
93 G,y) + r (077 ZU) 6 ?
2 4 2 2 (14)
24 (g,y) = “HEU=I Huley=2)Seley=r) 2ulea) 4

+ (558 (2. do) + %% (2, 40) ) %

So, from (1), (14), (11), and (12) we can obtain (4).
By Taylor decomposition formula, we can prove that there exist numbers cg, cg, dg, dg such that

r—h<cg,co<x+3h,y—3r<dg,dg <y+T,

8w

ca (Z‘,y) _ —w(m+3h,y)+4w(m+2h’;g)—5w(m+h,y)+2w(z,y)+
3u v fﬁ
+ Ox3 (687y) +Zam3 (697y) [
o? ( 37)+4w( 27) —5w( )+F2w(z,y) (15)
—w(Z,Yy—oT w(x,y—27)—dw(x,y—T1 w (T,
2 (a,y) = L2 v-20)-Sley o

2

+ (508 (e ) + 505 (2,2) ) %

Hence, (1), (15), (11), and (12) give us (5).
In the similar manner we show that there exist ¢iq, ¢11, d10, d11 such that

x — 3h < cig, 011<x,y<d10,d11<y+37;

—w(z—3h,y)+4w(z—2h,y)—bw(x—h,y)+2w(x
72

8m2 (l’ y) vU)_’_

2

3 .93
+ (5 (croy) + 1538 (en,w) &

52 _ —w(z,y+37)+4w(z,y+27) —bw(z,y+7)+2w(z,y)
6y‘§ (J),y) - T2 +

3 a3 2
+ (‘37’; (z,do) + 1273 (fadu)) 5

Finally, (1), (16), (11), and (12) give us (6). The proof of Theorem 1 is complete.

In similar manner it can established the following statement.

. 4 6 4
Theorem 2. Assume that the functions 8(281;3’ 8;;93 3“303, 33(%3, 8y3 (%3 are continuous and bounded on 1, h
and 7 are positive numbers. Then, the following second order of accuracy approximate formulas for ws; are

valid:

wsz (7,9) = gow (T + hy) + (—g5m + 32) @ (2,y) + gow (€ — h,y) +

tamw @+ hy+7) - grw@—hy+7) - gmw(@+hy—7)+

+827w(x7h,y77)fﬁw(x,y+7) 4720.)(30 y77)+0(h2+7)

r+iy,x th+iy,x+h+ilyxre—h+i(lyxr) €;
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wzz (2,y) = w (x4 3h,y) + 72w (z + 2h,y) — gr=w (z + h,y) +
+(ﬁ_%’%)w(w7y)+8hr (1’+hy+’7’) h7- (f_h»y'i‘T)—

—g=w(@+hy—7)+ g=w(@—hy—7)+ g=w(z,y+37) —

w(z,y+27)+ 4T2w(a: y—|—7')+0(h2+7') 1e)
x+ 3h +iy,x 4+ 2h + iy, x + h + iy, x + iy €Qq;
z+h+i(yt7),c+i(y+3n)c+i(y+27),c+i(y+71) €Qy;
wzz (T,y) = —pzw (T = 3h,y) + 75w (z — 2h,y) — pzw (z — h,y) +
+(opr — gm)w (@) + gow @+ hy+7) - gw(@—hy+7)—
—#w(x—i—h,y—T)+#w(w—h,y—7)+ﬁw(x,y—37)—
Lw(z,y—27)+ Zw(z,y—71)+ 0 (K2 +72); 1
x—3h+iy,x —2h+iy,x —h+iy,x +iy,x —h+i (y+7),€Q;
c+h+ilytr),z+i(y—3r)x+ily—27),z+i(y—71) €Q;
wgg(x,y):—ﬁw(x—i—Sh,y) hzw(m+2h y) — 4h2w( x+hy)+
+ (5 —sm)w@y) + g=w@+hy+7)— g=w(@—hy+7)—
—#w(x—i—h,y—r)—l—#w(w—h,y—ﬂ—i—ﬁw(z,y—?ﬁ)—

(20)

—w(a:,y—QT)+%w(m,y—7)+0(h2+72);
z+3h+iy,z+2h+iy,c+h+iy,c+iy,c +h+i(y£71) €Qy;
r—h+i(yxr)e+i(y—71),c+i(y—27),2+i(y—37) €Qy;
w:zz(:v,y)=—ﬁw(ﬂf—i’>h,y)+L (& = 2h,y) — g7zw (@ — hyy) +
+ (502 — 52)w (@) + g=w(@+ hy+71) — ﬁw(asfh,erT)f
—g=w@+hy—T)+ gmw(@—hy—7)+ gzw(z,y+37) - o

w(z,y +27) + 5w (2,y + ha) + O (h* +72) ;
x —3h+iy,x — 2h +iy,x — h+iy,x +iy,x +h+i(y £7) €Qy;

r—h+ilyxr)e+i(y+7),z+i(y+27),x+i(y+37) €.
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Numerical results

In this section, we give numerical results for the second order of accuracy finite differences to
calculate the second derivatives with respect to complex variables in test example by using Matlab program.
Let Q = {2z |z=a+iy,—-1 <2 <1,-1<y<1},w(z) = 2°Z + cos(z) + sin(z).

defined by

th’ = {Zk:,m =T+ 7'yma Tk = (k - l)ha k= LN + 11 Ym

—_ 2 — 2
h=%, 7=

Let S={0,1,...N}, @ ={0,1,..M}. Denote by
10 = 5~ {0}, J® = @ - {0};

a set of indices.

I®=85—{0,N-1,N},J® =Q—{0,M —1,M};

I® =5-40,1,2,N},J® =Q —{0,1,2, M} ;

I =8_—{0,N—-1,N},J® =Q —{0,1,2};

10 =8 -10,1,2},J® =Q - {0,1,2, M — 1, M},

In Table 1 an error of corresponding value of the derivative w,, is calculated by

(n)

szz — Wz

Here wglz), wg) (3 4

(n)

C(Qh,r)

y Wz y Wzz, Wzy

(5)

keI, meJj(n)

max

Wz (Zk,m,)

- 'LU,EJZ) (Zk,m)

(m—1)7r,m=1M+1},

,n=1234,5.

The set of grid points are

are approximate value of w,, by formulas (2), (3), (4), (5), (6), respectively.
In Table 2 an error of corresponding value of the derivative ws; is calculated by

(n)
N — - —w =1,2,3,4
szz Wzz () kEI(T};I,laTZ?GJ("” Wzz (Zk7m> Wzz (Zk,m) , n 3 537 75a
where wi—? wg?, wi—‘? wgz, wi—? are approximately value of wzz by formulas (17), (18), (19), (20), (21),
respectively.
Table 1
Error analysis for w,,
Approximation N=10 N=20 N=40 N=80 N=160
formula M=10 M=20 M=40 M=80 M=160
(2) 2.02x107° [ 1.39 x 107°% [ 9.10 x 107® | 5.83 x 1079 | 3.70 x 10~ 1°
(3) 549 x 1073 [ 813 x107% [ 1.10 x 1072 | 1.44 x 107° | 1.83 x 10~©
(4) 481 x1073 [ 7.60x 107 [ 1.06 x 10~% [ 1.41 x 107° | 1.82 x 10~©
(5) 549 x 1073 [ 813 x 1072 [ 1.10 x 1072 | 1.44 x 107° | 1.83 x 107 ©
(6) 481 x1073 [ 760x 1077 [ 1.07x 1077 [ 1.41 x 107° | 1.82 x 10~©
Table 2
Error analysis for w;;
Approximation N=10 N=20 N=40 N=80 N=160
formula M=10 M=20 M=40 M=80 M=160
(17) 2.02x107° | 1.39x10°° | 910 x10°® | 583 x 1077 | 3.70 x 10~ 1°
(18) 549 x107% | 813 x107* [ 1.10 x10~* | 1.44 x 10~ | 1.83 x 10°°
(19) 481 x1073 [ 760 x 107 [ 1.06 x 10~% [ 1.41 x 107° | 1.82 x 10~©
(20) 549 x 1073 [ 813 x 1071 [ 1.10 x 107% [ 1.44 x 107° | 1.83 x 107©
(21) 481 x1073 [ 760 x 1077 [ 1.07 x 1077 [ 1.41 x 107° | 1.82 x 10~©
22 Bectnuk Kaparanmgurckoro yHuBepcureTa
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Conclusion

In the present work, we have generalized the finite difference method to compute derivatives of real valued
function to approximate the second order complex derivatives w,, and wss for the complex-valued function
w. Exploring different combinations of terms, we derive several approximations to compute the second order
derivatives of complex-valued function. Several second order of accuracy finite differences to calculate derivatives
are proposed. The error analysis in test examples is carried out by using Matlab program.

W N =

Tt

© 0 N O

10
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Y. Amipasnsie, b. O3rypk

KomMmmiaekcmonai pyHKOUsJIapablH €eKiHIIl peTTi
TYBIHABLIAPHI YIIIH Keii0ip »KYybIKTaYyJIap

MakaJjiaga HaKThl MOH/I1 (DY HKIMSIAPbIH eKiHII PeTTi TYBIHIBLIAPBIH €CelTeyre apHaJFaH 6eJIriji aKbIPIbl-
afbIpBIMIAP TOCLIl 2Kajmbl Kafjaiiaa maMbliThbFad. Cojl apKbLIBI KOMILUIEKC MOHJI W (DYHKIUSICHIHBIH
eKIHII PeTTi TYBIHIABLIAPBIH W,,, Wzz AINIPOKCAMAIUsIayFa OOaabl. TepMUHIAEPAIH, OpTYpPJi KOMOWHA-
MUSIJIAPBIH 3ePTTEy HOTHKECIHIe KOMILIEKC MOHI (DYHKIMSHBIH, €KiHII PEeTTi TYBIHIbLIaAPbIH eCenTey YIIiH
Gipremi »KybIkTay dopMysagapbl aiablHabl TybIHIBLIAPDABRI ecenTey YIIiH JRJAir exinnm perti GipHerre
AKBIPJIBI-ARBIPBIMIAP TOCLII YCBIHBLIABL. TecT TypiHaeri Mblcaiapaarbl KATETIKTEPre Taaaay Kacay VIIiH
Matlab 6armapiamach! maiiaaaHbLIIbL.

Kiam ce3dep: akbIpJIbI-aifibIPBIMIAD TACLIL, AIITPOKCUMAIINS, KOMILIEKC MOH/II (DYHKIIUs, XKybIKTay (hopmy-
JIajap.

Y. Ameipassie, B. O3rypk

HexkoTopbie npubimKeHns MPON3BOIHBIX BTOPOTO MOPSIKA
KOMILJIEKCHO3HAYHBIX (DYHKIIHi

B crarbe 0600111eH N3BECTHBIA METOJ, KOHEUYHBIX PA3HOCTEH /I BHIYUCICHNUS TPOU3BOIHBIX BEIECTBEHHON
(GYHKIIUH Ha ANIPOKCUMAIMIO KOMIIEKCHBIX MPOU3BOJIHBIX BTOPOrO IMOPSIJIKA Wz, W Wzz JJIsI KOMILIEKC-
HO3HAYHON dyHKIMYN w. V3ydass pasiudHble KOMOMHAIIMN TEPMIHOB, MOJIYY€HO HECKOJIBKO MPUOINZKEHU
JJIsI BBIYUCJICHUS TTPOM3BOIHBIX BTOPOTO MOPS/IKA KOMILIEKCHO3HAUHON dyHKImH. [IpeqmokeHbl HeCKOIb-
KO KOHEYHBIX PA3HOCTEH BTOPOTO MOPSIKA TOYHOCTHU JJIsi BBIYUCJIEHUS MPOU3BOAHBIX. AHaau3 omuboK B
TECTOBBIX NMPUMEPAX BBIMTOJHEH C UCIOIb30BaHmeM mporpamMbr Matlab.

Kmouesvie cro6a: KOHEIHAST PA3HOCTD, AlIIIPOKCUMAIINS, KOMILIEKCHO3HATHAsT DYHKITHS, (pOPMYJIBI TpUbIn-
JKEHUN.
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On the solvability of the boundary value problems for the elliptic
equation of high order on a plane

For the elliptic equation of 2l—th order with of constant (and only) real coefficients we consider boundary
value problem of the normal derivatives (k; —1) order, j = 1,...,1, where 1 < k; < ... < k; <2/—1. When
kj = j it moves into the Dirichlet problem, and when k; = j + 1 it moves into the Neumann problem. In
this paper, the study is carried out in space CQZ’“(E). We found the condition for Fredholm solvability of
this problem and computed the index of this problem.

Keywords: elliptic equation, boundary value problem, Dirichlet problem, Neumann problem, solvability
of BVP.

Introduction

From the viewpoint of an explicit description of the conditions of solvability of Fredholm and of index for
this problem has been studied [1] in the class

— 0%l —
21 211,
u e CH(D)NnC*"#(D), E ar,QlW € CH(D).

0<r<2l

In this paper, under the assumption that I' € C?!'# obtained in the paper [1] results extend to a standard
class C2:#(D), which no longer depends on the equation (1).

In [2-8], an explicit form of the Green function of the Dirichlet problem for a polyharmonic equation in
a multidimensional ball is constructed. The paper [9, 10| is devoted to the investigation of the solvability of
various boundary value problems for a polyharmonic equation in a multidimensional ball. In this paper we
obtain a necessary and sufficient condition for the problem to be Fredholm in terms of the original data, that
is, from the right-hand side of the inhomogeneous polyharmonic equation and from the right-hand sides of
the inhomogeneous boundary conditions. The correct restrictions of the stationary Navier-Stokes equation in a
three-dimensional cube are described in [11], and the correct boundary conditions for the pressure in the medium
are determined. In [12], initial-boundary value problems for the equations of motion of a viscous heat-conducting
gas are studied with allowance for a magnetic field with cylindrical and spherical symmetry. In this paper, we
prove theorems on the existence and uniqueness of solutions as a whole with respect to the time of initial-
boundary value problems. In [13], a brief summary of the theory of extensions and contractions of operators in
Hilbert space is given, and certain classes of well-posed boundary value problems for the bi-Laplace operator
are written out. The Green function of the Neumann problem for the Poisson equation in a multidimensional
ball is constructed in [14].

Formulation of the problem

In simply connected region D in the plane bounded by a simple smooth contour I', we consider the elliptic
equation

T _ weD
Z ark(z)m—g(z), fo'*‘lye s (1)
0<r<k<2l

with real coefficients a,, € C*(D), 0 < p < 1, constant at k = 2[. Without loss of generality we can assume
that Q21,21 = 1.
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The Generalized Dirichlet - Neumann problem for this equation is determined by the boundary conditions

oFi—1y
Onki—1

=f, j=1,...,1, (2)
r

where 1 < k1 < ky < ... < k; <2l, n =nq + ingy means the unit external normal and under normal derivative
k—th order we mean the expression

0 o\" N ;Y
<n1%+n26y) U—Z<r>n1n2 W

r=0

Fredholm solvability of the problem

As usual Fredholm property and the index of the problem are understood in relation toward its restricted
operator

l
C?#(D) — C*(D) x H Chat (). (3)

For derivatives of v € C™#(I"), 1 < r < 2] — 1, with respect to the parameter arc length we have the expression

a\" o™ n

— ) v=

ds der
where e = e +1iea = —in is the unit tangent vector to the contour I', tangential derivative of r— order 9"v/0e”
is understood as analogous (2) and the dots denote a linear differential operator of order r— 1, whose coefficients
are expressed through the function ey, e and derivatives of order » — 1 inclusive. In virtue of the assumptions

about the smoothness of the contour T' coefficients of the operator belong to the class C2~"#(I"). Therefore,
similar to [1] boundary conditions (2) can be rewritten in the equivalent form

o o 2l—k; P 9 kj—1 o o '
(elax‘f'egay) <nlax+n28y) U+Lju: jo 1§j§lﬂ (4)

with the right-hard side
=14 [ fa
r

where the symbol d;t is an element of arc length, and operators

0%u oki—1y
Lju= Z aj + dit
J J,TS — - ,
0<r<s<2l—2 Oz dy" r Onki
with some coefficients a;,s(z) € C*(T). It is clear that the operator L° = (LY,...,L?) is compact
C’zl’“(D) _)Ol,p.(]:\)'
Consider the map
an—lu

Du:(Ul,...,UQZ), UJZW,

that acts from C?!#(D) in the space C1#(D) of vector-functions satisfying the relations

oU; _ WUin

1<j<2l—1.
o9 5y 0 lsis2 (5)

The core of this operators ker D is the class Py;_o of all polynomials of degree at most 2] — 2, which is equal to
the dimension of /(2] — 1).
As in [1] introduce the right-hand operator D=1, so that any function v € C?#(D) uniquely represented
in the form
u=D"VU +p, p€E Py_o, (6)

where the vector-function U € C1#(D) satisfying the relations (5).

Cepust «Maremarukas. Ne 3(91)/2018 25



B.D. Koshanov, A.P. Soldatov

Substituting this representation in (1) and using (4), from the elliptic equation can come to the equivalent
first order system

ou ou
— —A—= + L' DVU =g 7
oy 5. T L +p)=y (7)
with 2] x 2[— matrix
0 1 0 0
0 0 1 0
A= : y  Qr = Qr21,
0 0 0 1
—ap —a; —a2 ... —ag91-1
with the right-hand side g' = (0,...,0, g) and the operator
kv
Ll'U = (07...,07[/%11}), L%Z'U = Z arkm.

0<r<k<2l—1

Note that the operator L! is compact C?\#(D) — C*(D).
With respect to the matrix C' = (Cj;,) € C?'=1#(T), the elements of which are defined by the relations

Zi; Cin(1)2F ™1 = [e1(t) + ea(t) 2] 5 [—ea(t) +ex(t)2] 1, 1 <5 <, (8)

the boundary conditions (4) can be written in the form
CUt + LY(DVU +p) = £°, (9)

where the symbol + indicates the limit value functions. Recall that appearing here the operator LD s
compact C*#(D) — CLH(T).
We write the characteristic polynomial equation (1) in the form

21 m

ZT:O ar 2" = Hk:l[(z — )z —7p)]", Imuy >0, (10)

and with each vector-function g(z) = (¢1(2),...,9n(2)), analytic in the neighborhood of the point vy, ..., vpy,.
We introduce block n x [— matrix

Wg(yla ) Vm) = (Wg(yl)a SRR Wg(ym))v
where the matrix W,(vy) € C**! is composed of column - vectors

9(vk), g (vk), -, ﬁg(l’“_l)(yk).

We introduce block 2! x 2[— matrix

B=(B,B), B=Wy(vi,...,vy,) € C?*x
(11)

J =diag(J,J) J=diag(Ji,...,Jm),

where h(z) = (1,z,...,2%7!) and

143 1 0 0
0 Vi 1 0
Jp = . .. . e Clexl
0 0 O 1
0 0 0 vk

is a Jordan cell, corresponding to the eigenvalue vy. B
As shown in [1], the matrix B is reversible and transfers in A to Jordan form J, i.e. we have the equality

B™'AB=J.
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Obviously, the operation of multiplication by a matrix B! transforms real 2/— vector-functions U in the
complex vector-function ¢ block form (¢, ¢). Wherein

(B™'LaB)¢ = (Ls, L), (12)
where for brevity
0 0 3] 0
La=2 a2 ,=2 72
A7 By ox’ T by Jax

Recall that the operator D!, appearing in (7), (8), is defined on 2/— the vector-functions U € C'*(D),
satisfying the conditions (5). In terms of projector @, acting according to the formula

_ U, 1<y <2-1
(QU); = { 0, j =2l

these conditions can be described in the form QLU = 0. As shown in [1], there is limited to C1+#(D) projector
P with the image im P = {U € C**(D), QLU = 0}. This operator is constructed as follows [1].

We choose p so large that the closed region D is contained in the disc Dy = {|z| < p}. Then there is a
bounded operator C*(D) — C*(Dy) continuation, denoted by ¢ — @, with properties

@’D =% ‘ﬁ‘apo =0.

To every non-zero complex number z = = + ¢y we associate an invertible matrix z; = x1 4+ yJ, where 1 is a
single [ X [— matrix. We introduce the integral operator

(I'e)(2) = = [ (t—2)7'@(t)dat, =€ D,

where dot is the area element. This expression is the bounded mapping C*(D) — C1#(D) and is a right-hard
inverse of Ly, i.e.
LiI'o=¢. (13)

Taking into account
(BTUB)g=(T'¢, I'p), ¢=(09),

obtain an operator I, acting in the space C*(D) of real 21— vector-functions, which in view of (12) has a similar
property in relation to L4. In our notation the desired projector P is defined by P =1 — IQL 4.
As in [1] via this projector from (7), (8) we can move on to the problem

LaU + L"(D"VPU +p)=g', CUT +LY(D"VPU +p) = f°, (14)

which is already considered in the whole space C1#(D). Since QL° = 0, from the first equation of this problem
it follows QL AU = Qf". Therefore, if the right side f' has the property Qf' =0, i.e. fj1 =0,1<j<2[—-1,
then any solution U problems (14) satisfies the condition (5). In other words, for the given right-hand side f!
problem (14) is equivalent to (7), (8).
We use further substitution L
U=B¢, ¢=(40), (15)
according to which we introduce the operators L) : C1#(D) x Py_5 — C*(D) and L(®) : C#(D) x Py_o —
— CH(T"), acting according to the formulas
(LD(,p), LO(¢,p) = B'L(D"VPB +p), L(6,p) = L*(D"VPBG +p).
Then, taking into account (11), (12) the substitution of (15) leads (14) to the following equivalent problem
Lyp+ LW (6,p) = f'. 2Re(CBe) + LO(g,p) = f°, (16)

where we put B~1g' = (f!, fT), which is considered in the class C'#(D) I— complex vector-functions ¢.
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So far all reviews have been carried out in the same way as [1] with the difference that in this work problem
(16) is considered in the class of functions ¢ € C*(D) N CY(D), for which L;¢ € C*(D). Following [2], we
introduce the generalized Cauchy type integrals

() = o [ (=27 dw(0, =€ D,
2w Jp
with a density ¢ € C1#(T"), where witch respect to the point ¢ = t; + ity on the curve dt; is a complex matrix
differential dt;1 + dtoJ and contour I' positively oriented with respect to D. It is important to note that it has
the property

LyI%" = 0. (17)

The Cauchy type integrals answer corresponding singular integral

(S%)(to) = — / (t —to); dtsut), to el
i Jp

which is understood in the sense of the Cauchy principal value. Note that in the case of a scalar matrix J =i
the operator S° becomes classic singular Cauchy operator, denoted by S. As shown in [3], operators S and S°
are bounded in the spaces C#(I"), C1#(T), and the difference S — S is a compact operator. In addition, by the
differentiation formulas given in [3] the operator LY is bounded C1#(I") — C1#(D) and just corresponds to an
analogue of Sokhotskii - Plemelj
(I'e)* = (¢ +5'9)/2. (18)
Based on these results, similarly to the classical theory of singular operators [4] we show that under the
assumption of

det[C(t)B] #£0, teTl, (19)
the operator
N% = Re[CB(y + 5%)], (20)
acting in the space of real [— of vector-functions ¢ € C1#(T'), is Fredholm and its index is given by
1
ind N? = ——[arg det(CB)]| .. (21)
0

Further arguments are similar to those given in [1]. As this paper shows any function ¢ € C**(D) can by
uniquely represented in the form

p=TI"0" +1°%° +i¢, ¢eR,
with some complex [— vector-function ¢! € C*(D) and real ¢ € C*#(T). The substitution of this representation
in (16) given (13), (17), (18) reduces the problem to an equivalent system of integral equations

o+ Ly (1% +i€) + LO (I + 1990 + i€, p) = [
Re [CB(¢° + S%)] + 2Re [CB(I'¢! +i€)] + LO(I'p* + i€, p) = f°.
In the notation (20) we write it briefly in the operator form
N+ MO" + MOt +T0p,6) = [7, ' + MO + Mol + T (p,€) = f, (22)
with the relevant operators T and
MOO 0 _ L(O)IOQDO, MOlgﬁl = 9Re (CBIlwl) +L(0)I1Q01,
MlO 0 _ L(I)IOQOO7 M11Q01 _ L(l)Ilng.

Since the operators L(®) and L(1) are compact, in the operator matrix

MOO MOI
M = ( M 1 ) )

acting in the space C**(T") x C*(D), all elements except M°! are compact. Therefore, by the general theory of
Fredholm operators [5] the operators N = diag (N, 1) and N + M are Fredholm equivalent and their indices
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coincide. Recalling that dim Py_o = (2] — 1) and ¢ € R!, taking into account (20) and the corresponding
properties of Fredholm operators we conclude that the next theorem is proved.
Theorem. Suppose that condition
det[C(t)B] #£0, teTl
is satisfied. Then the problem (1), (2) is Fredholm in the class C?#(D), and its index @ is calculated by the

formula )
_ 2
= ——larg det(CB)]| . + 217,

where the increment of a continuous branch of the argument on the contour I is taken in the counterclockwise
direction.
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B.J1. Komanos, A.Il. Conmaros

X(aBbIKTI:IK,Ta. 2Korapnbl ,z;apeme.ni AJIJINIITUKAJIBIK TE€HAeYJIeP
VIIiH IIeTTiK ecenTepAiH, MIEeITiMIIIr TypaJbl
Maxkasaia TypakThl (TeK KOFapbl gppexkesepi) HaKTbl Koddbdummentri 2[-mppexeni, mekapaga (k; — 1)-
JoperKesi HOpMaJI TYyBIHIBLIAPHI OepiireH IIeTTiK ecenTep KapacTeipbuiral, j = 1,...,0[, 1 < k1 < ... <

< k; <20 —1. Byn ecen k; = j 6onran ke3ne — upuxite ecebi, an k; = j+ 1 ke3ne Heitman ecebi 6omapl.
AgTopJiap ocbl ecenTiH (ppeAroabM Il MeniMIIriHiH IapThIH Taybll, MHIEKCIH eCernTerex.

Kiam cesdep: sTANITUKAJIBIK TEHIEYIED, TETTIK ecenrrep, lupuxiie ecebi, Heliman ecebi, meTTik ecenTepmiy,
TITeTTTi MTiTiT.
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O Pa3peIInmMoOCT KpaeBbIX 3aJa4 AJId 3JIJIMIITUIECKOI'O
YpaBHE€HHN: BBICOKOI'O ITOPA/JKa Ha IIJIOCKOCTH

B crarbe sl 9/IMIITHYECKOrO ypaBHEHUSA 2 [-T0 TOPs/IKA C HOCTOSHHBIMU (M TOJIBKO CTAPIIMMH) BEIIE-
CTBEHHBIMU KO3 DUIMEHTAaMI PACCMOTPEHA KpaeBas 3aJ1ada, 3aKJ/II0Yaloasics B 3a/IaHUM HOPMAJIbHBIX
npousBoaubix (k; —1)—ro nopsinka, j =1,...,01,tne 1 <k; < ... <k, <20—1. Ilpu k; = j ona nepexonur
B 3aja4y Jupuxie, a npu k; = j + 1 — B 3amaay Heilimana. ABropamu HaiiieHO ycsioBre (hpearobMOBOit
Pa3peIIMMOCTH TON 3a/[a9i U BBHIYUCJIEH UHIIEKC.

Karouesvie ca06a: 3JLITUIITHIECKOE YpaBHEHHE, KpaeBble 3a/la11, 3a/ia49a ,ZLI/IpI/IXJIe, 3aiavda HeﬁMaHa, pa3pe-
OINMOCTDb KPa€BbIX 3a1a9.

Bectnuk Kaparanmguackoro yHuBepcurera



MSC 35K20, 35R30, 35R10

A.S. Erdogan', D. Kusmangazinova?, I. Orazov®*, M.A. Sadybekov*

L Sigma Labs Florida, Orlando, USA;
2 Al-Farabi Kazakh National University, Almaty, Kazakhstan;
3M. Auezov South Kazakhstan State University, Shymkent, Kazakhstan;
4 Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
(E-mail: aserdogan@gmail.com,)

On one problem for restoring the density of sources
of the fractional heat conductivity process with respect to
initial and final temperatures

In this paper we consider inverse problems for a fractional heat equation, where the fractional time derivative
is taken into account in Riemann—Liouville sense. For the solution of this equation, we have to find an
unknown right-hand side depending only on a spatial variable. The problem modeling the process of
determining the temperature and density of sources in the process of fractional heat conductivity with
respect to given initial and final temperatures is considered. Problems with general boundary conditions
with respect to the spatial variable that are not strongly regular are investigated. The existence and
uniqueness of classical solution to the problem are proved. The problem is considered independent from
a corresponding spectral problem for an operator of multiple differentiation with not strongly regular
boundary conditions has the basis property of root functions.

Keywords: Inverse problem, heat equation, fractional heat conductivity, not strongly regular boundary
conditions, method of separation of variables.

1 Introduction

It is well-known that problems of determining coefficients or the right-hand side of a differential equation
simultaneously with its solution are called inverse problems of mathematical physics. These problems often arise
in various areas (seismology, exploration of minerals, biology, medicine, quality control of industrial products
etc.) that place them among the current problems of modern mathematics.

In this article, we consider a class of problems which model the process of determining the temperature and
density of heat sources with respect to given initial and final temperatures. Their mathematical statement leads
to the inverse problems for a fractional heat equation in which along with solving the equation we have to find
an unknown right-hand side depending only on a spatial variable.

The questions of solvability of various inverse problems for parabolic equations were studied in many articles.
The closest to the subject of this paper is [1], in which one case of regular but not strongly regular boundary
conditions was considered. The analysis was carried out by the Fourier method using a basis of eigenfunctions
and associated functions. In contrast to this (and other) article, we study the inverse problems for the fractional
heat equation with general boundary conditions with respect to the spatial variable which are regular but not
strongly regular.

Let @ = {(z,t), 0<zx <1, 0<t<T}. InQ we consider a problem of finding the right-hand side f(x) of
the fractional heat equation

D, (u(x,t) — u(x,0)) — Upe (z,8) = f(x) + F (2,1), (x,t) €Q (1)
and its solutions u (z,t) satisfying the initial and final conditions
u(z,0)=¢(z), u(@,T)=v¢ (), 0<z<1, (2)
and the boundary conditions
ajtg (0,t) + brug (1,t) + agu (0,t) + bou (1,t) = 0;

1ty (0,t) + dyug (1,t) + cou (0,t) + dou (1,¢) = 0.
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The coefficients ay, bx, cg, dp with k& = 0,1 in (3) are real numbers, Dg, stands for the Riemann-Liouville
fractional derivative of order 0 < a < 1:

o _ 1 d (" y(s)ds
DOer(t)_F(lfa)%/o (t_s)(,w
while ¢ (), ¥ (z) and F (z,t) are given functions.
Definition. By a regular solution of the inverse problem (1)—(3) we mean a pair of functions (u(z,t), f(zx))
of the class u(z,t) € C’itl (Q), f(z) € C[0,1] that inverts equation (1) and conditions (2)—(3) into an identity.
The use of the Fourier method for solving problem (1)—(3) leads to the spectral problem for the operator ¢
given by the differential expression £ (y) = —y” (z), 0 <z <1 and boundary conditions

a1y’ (0) + b1y’ (1) 4 aoy (0) + boy (1) = 0;
(4)
c1y’ (0) + diy’ (1) + coy (0) + doy (1) = 0.

These boundary conditions are called regular [2] if one of the following three conditions
1. ayd; —bjcq #0;
it. ardy —bicr =0, Jag| 4 |b1] > 0, a1dy + bicoy # 0; (5)
1. a; =by =c1 =dy =0, apdy — bgcg # 0

is satisfied. Regular boundary conditions are strongly regular in the first and third cases, while in the second
case this requires the additional condition

aico + bidy # £ [ardo + bico] . (6)

Particular cases of (1)—(3) were considered in [1] with boundary conditions (3) which are not strongly regular:
the case of conditions of Samarskii—Ionkin type

u(1,t) =0, wug(0,t) =u, (1,)
and the case of periodic boundary conditions
w(0,t) =u(l,t), u,(0,t) =u,(1,t).

However, the method of proof of [1] does not automatically carry over to problems with arbitrary not strongly
regular boundary conditions (3). This has essentially to do with the use in [1] of a basis of eigenfunctions
and generalized eigenfunctions of the corresponding problem (4) for the operator of multiple differentiation.
Unfortunately, not all problems of this type have the basis property. Therefore, in order to study the formulated
problem, regardless of the basis properties of the system of root vectors of the operator ¢, we use the method first
substantiated in our work [3]. In [3] a class of problems modeling the process of determining the temperature
and density of heat sources with respect to given initial and final temperature is considered. To solve direct
heat conductivity problems with general not strongly regular boundary conditions with respect to the spatial
variable, this method is described in detail in [4].

The solvability of various inverse problems for parabolic equations was studied in papers of Yu.E. Anikonov
and Yu.Ya. Belov, B.A. Bubnov, A.I. Prilepko and A.B. Kostin, V.N. Monakhov, A.I. Kozhanov, I.A. Kaliev,
K.B. Sabitov and many others.

These citations can be seen in our papers [3] and [5]. We note [6-28] as recent papers close to the theme of our
article. In these papers different variants of direct and inverse initial-boundary value problems for evolutionary
equations are considered, including problems with nonlocal boundary conditions and problems for equations
with fractional derivatives.

We solve the problem by the Fourier method. Some new variants for solving nonlocal boundary value
problems by the method of separation of variables were used in our papers [29-35].
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2 Case of Sturm-type boundary conditions

A particular case of strongly regular boundary conditions are Sturm-type conditions: by = by = ¢y = ¢; = 0:

ayug (0,t) + agu (0,t) = 0;

(7)
dlum (1,t) + dou (l,t) =0.

By £1 let us denote a corresponding ordinary differential operator arising when applying the method of separation
of variables to problem (1), (2), (7). Spectral problem ¢1y = Ay has the form

by)=—y'(2)=xy(z), 0<z <L ©
8
a1y (0) + apy (0) =0, diy (1) +doy (1) = 0.

Denote by Ag the eigenvalues of the operator ¢; enumerated in the increasing order of their absolute values,
and by yi (z), for k = 1, 2, ..., denote corresponding normalized eigenfunctions. It is known [2] that the
eigenvalues of these problems are real and simple, while the system of their eigenfunctions forms an orthonormal
basis in Ly(0,1). Thus, we can represent the solution u (z,t), f (x) to (1), (2), (7) as the series:

t) = Zuk )y (), f(2) = kayk (2). (9)
k=1 k=1

Substituting (9) into (1) and (2), we obtain the problems
Doy (un () — wr (0)) + Apur (6) = fr + Fi(t), uk (0) = @r, ur (T) = hx (10)

for finding the unknown functions uy (¢) and coefficients fj. Here Fy(t), ¢, and ¢y are the Fourier coefficients
of F (z,t), ¢ and ¢ with respect to the system {yx (z)}. Then we get

F(t) = (F (z,1), ye (), or = (0 (), yr (7)), and ¢ = (¢ (2), yx (2)).

The inverse problem (10) is investigated similarly, as in [1]. A solution to (10) exists, is unique, and can be
written explicitly. Without dwelling on the details, we write out its solution:

t
w= Lo OO e LA [ eten A + e b W)+, (1)
k 0

fi=T(1+a) L Uk(T)avfkea T Ak)a (12)

where Uy (t) is a solution of problem
Dg+ (Uk (t) — U (0)) + MUgk (t) = Fk(t), U (0) =0.

In (11) and (12) function e, (7, ) is expressed by the function of Mittag—Leffler:

€a (T, 1) = Eq (—p1® ZF T+ k) a € [0,+00),
k=0
T
Vi :/ (T —7)* ea(r, Ai)dr. (13)
0

The Mittag—Leffler function e, (7, p) for u > 0 and 0 < o < 1 is absolutely monotone function with respect to
7 (see [36; 268]). Since e, (0, Ax) = 1, then from (13) it is easy to see that there exists a constant 5 > 0 such
that

w>7>0,Vk=1,2,.... (14)

Inserting (11) and (12) into (9), we arrive at a formal solution to the problem. In order to complete our
study, it is necessary, as in the Fourier method, to justify the smoothness of the resulting formal solutions and
the convergence of all appearing series. Let us state the main result of this section.
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Theorem 1. If F(z,t) € C*(Q), ¢ (), ¥ (z) € C*0,1] and functions F(z,t), ¢ (), ¢ (z), ¢ (z) and
V" (x) satisfy (7), then there exists a unique classical solution u(z,t) € Cz,} (Q), f(z) € C[0,1] to the inverse

problem (1), (2), (7).

Proof. Since ¢” (z), 9" () € C?[0,1] and satisfy (7), by Steklov’s theorem [37; 41] they admit expansions
into absolutely and uniformly converging Fourier series in the eigenfunctions {y (x)}.

Thus, the series

o () == Mepwyn (2), ¥ () = =D Metow (2) (15)
k=1 k=1

converges absolutely and uniformly.
From (11), (12), taking into account (14), since

klim A = +00, |lea(T, Ak)| < My, |eq(t, k)| < Ma,
—00

it is easy to get uniform estimates with respect to k
[uk (O] < C (lprl + el +[U@)]) 5

| DEyuk ()] < C (w] + [l + [Us(O]) [ Al
el < C (opnl + [l + [UR(D) -

Hence, from the uniform and absolute convergence of series (15) there follow the convergence of series (9) and
the belonging of the solution of (1), (2), (7) to the classes u(x,t) € Citl (Q), f(z) € Cl0,1].

Let us prove the uniqueness of the solution. Suppose that there are two generalized solutions of the inverse
problem (1), (2), (7): (ui(z,t), fi(x)) and (u2(x,t), fy(z)). Denote

u(@,t) = u (,t) —ug (2,t), f(2) = fi(x) = f2(2).

Then the functions (u(x,t), f(x)) satisfy equation (1), the boundary conditions (7) and the homogeneous
conditions (2):
u(z,0)=0, uw(z,T)=0, 0<zx<1. (16)

Let us show that the inverse problem (1), (7), (16) has only zero solution. Let us introduce notations

1 1
Uk(t):/o u(z, t)yp (z) de, fk:/o f@y (@) de,  (k=1,2,...). (17)

We apply the operator Dg, to uy (t). Then, using equation (1), by integrating by parts, we obtain a problem
given by
the equation
Dy uk () + Ak (1) = fi, (18)

and the boundary conditions
ug (0) =0, ug (T) = 0. (19)

General solution of equation (18) has the form (see [1], Eq. (25)):

fra ) /Ot (t— T)aflea(ﬂ AR )dT 4+ ug (0) eq (t, Ar).

Uk (t) = 7F(1+oz

Using the first of conditions (19), from here we have

Jra ) /0/ (t — T)a_lea(r, A )d. (20)

ug (1) = Tlta)

Substituting this into the second condition of (19), we get

(0% T 1
1_‘<{k+a)/0 (T — 1) “eq(r, Ai)dT = 0. (21)
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Since for g > 0 and 0 < a < 1 the function e, (7, ) is absolutely monotone with respect to 7 [36] and since
eq (0, A\x) = 1, then the integral in (21) is a strictly positive value. Consequently equation (21) holds if and
only if fr = 0. But then from (20) we get uy, () = 0.

Therefore, using this result, from (17) we find

1 1
/ u (z, t)y (x) de = 0, / f(x)yg (x)dz =0, (k=1,2,...).
0 0

Further, by the completeness of system {y, (z)} in Ly (0,1) we obtain u (z,t) = 0 and f (z) = 0 for all (x,t) € Q.
The uniqueness of the generalized solution of the inverse problem (1), (2), (7) is proved. Theorem 1 is completely
proved.

8 Regular, but not strongly reqular boundary conditions

In [3] a class of regular but not strongly regular boundary conditions was described in a convenient form.
Lemma 1 [3]. If the boundary conditions (4) are regqular but not strongly regular then the boundary conditions
(8) reduce to
arug (0,t) + brug (1,t) + agu (0,) 4+ bou (1,¢) = 0;

laq| + |b1] > 0; (22)
cou (0,t) + dou (1,¢) =0,
of one of the following four types:
I. a; + by =0, Cofd()#o;
II. al—b1:0, Co—f—do#o; (23)

III. ¢cy+dyp=0, a3 —b #0;
1V. C()—d()zo7 a1+b1750.

Also in [4] the following result was proved.

Lemma 2 [4]. We can always equivalently reduce the solution of the problem (1)-(3) in the case of regular
but not strongly regular conditions to solve successively two problems with strongly regular Sturm boundary
conditions.

Using Lemma 2, we can obtain the existence of the solution of (1)—(3), as well as its uniqueness and
smoothness, from Theorem 1 for the corresponding problems with strongly regular Sturm-type boundary
conditions. In the next four sections, we will outline this method in more detail.

The method of solution, consisting in reducing the initial problem to a sequential solution of two initial-
boundary value problems with homogeneous boundary conditions of the Sturm type with respect to a spatial
variable, will be formulated separately for each of types mentioned in Lemma 1.

4 Reduction of the problem of type I to a sequential solution of two problems
with homogeneous boundary conditions of the Sturm type

Consider a problem of type L. Since a; +b; = 0, and herewith |a1| + |[b1| > 0, then without loss of generality we
can assume a; = —b; = 1. Since ¢y — dy # 0, then without loss of generality we can assume ¢y — dy = —1. To
simplify writing (omitting additional indexes) we denote ¢y = ¢. Then dy =1+ ¢.

Therefore the problem of type I can be formulated in the form:

In Q={(z,t):0<2x<1,0<t<T} find a solution u(z,t) of the fractional heat equation (1) satisfying
the initial condition (2) and boundary conditions of type I:

ug (0,) — ug (1,8) + au (0,t) + bu (1,¢) =0,

(24)
cu(0,t) + (1 +c)u(l,t) =0.
Here the coefficients a, b, ¢ of the boundary condition are arbitrary complex numbers.
To solve the problem we introduce the auxiliary functions:
U(.Z‘,t):[U(l‘,t)ﬁ*u(l*l‘,t)]/Q, (25)
w(z,t) =u(x,t) = [1— (14 2¢) 2z — )] v (x,t). (26)
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Note that if the solution has been searched in the form of the sum of even and odd parts
u(z,t) = C(x,t) + S (z,t) in the initial version of the method (see [3]), then now in a variant suggested by us:

— the function v (z,t) is even on the interval 0 < x < 1, and is the even part of the function u (z,t);

— and the function w (x,t) is not the odd part of the function u (z,t), though it is the odd function.

The last follows from the fact that w (x,t) can be represented in the form

w (z,t) :%[u(x,t)—u(l—x,t)]+(1+20) 2z — 1) v (z,t), (27)

that is, in the form of the sum of the odd part % [u (z,t) — u (1 — z,t)] of the function u (z,t) and of the summand
(14 2¢) (22 — 1) v (x,t), which (it is easy to verify) is also the odd function on the whole interval 0 < = < 1.

From (26) it is easy to see that if we find the functions v (z,t) and w (z,t), then the solution of the initial
problem can be reestablished by the formula

u(z,t) =w(x,t)+[1—(1+2c) 2z —1)]v(x,t). (28)

Thus, if in the previous variant the solution is represented in the form of the sum of even and odd parts of
the solution, then in the new variant suggested by us it is not quite so. In representation (28) the first summand
is even on the interval 0 < x < 1, and the second summand is neither even, nor odd for 1 + 2¢ # 0.

It is easy to make sure that the functions v (x,t) and w (x,t) are solutions of the fractional heat equations,
satisfy the initial and homogeneous boundary conditions in €.

For the function v (z,t) we obtain the initial-boundary value problem which we need to solve first:

Dgy (v(z,t) — v(2,0)) = vaa (2,1) = fo (2); (
( z, ) 900( )v U(va):¢0(x) 0<z <1, (
vy (0,8) +[a(14+¢) —bc]v (0,t) =0, 0<t<T, (31
v (Lit) —[a(l+¢)—bcv(l,t)=0, 0<t<T. (
Here we use the notations

fole) =5 [f (@) + f (1 -a)],
vo(z)=3lp @)+l -2)], vo(x)=3[(x)+v(1-a).

Having the solution v (x,t) of this problem, for the function w (x,t) we get the initial-boundary value
problem which we need to solve second:

(33)

Dy, (w(x,t) — w(x,0)) — was (x,t) = fr(x) + Fi(z,t); (34)
w(az,O):gol(:r), w(va):wl(x)a 0<z <1, (35)
w(0,t) =0, 0<t<T; (36)

w(l,t)=0, 0<t<T. (37)

Here we use the notations
fi(@)=f(@)—[1-(1+2c) 2z —1)] fo(z), Fi(z,t)=—4(1+2c)vy(,1); (38)
p1(z) =¢(z) —[1—(1+2c) (22— 1)] po (2);

Y1 (2) = () = [1 = (14 2¢) (22 = 1)] o (2).

By direct checking from (33) and (39) it is easy to make sure that if the initial and final data ¢ (z) and
¥ (z) of problem (1), (2), (24) satisfy necessary (classical and well-known) consistency conditions, then the
initial and final data ¢ (x), 1 (x) and g (x), ¢ (z) also satisfy the necessary consistency conditions of their
corresponding problems.

Thus the solution of the problem of type I (1), (2), (24) is reduced to the sequential solution of two problems
with homogeneous boundary conditions of the Sturm type with respect to the spatial variable:

(39)
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— At first for the function v (z, t) we solve the initial-boundary value problem (29)—(32) with the homogeneous
boundary conditions of the Sturm type with respect to the spatial variable;

— Then, using the obtained value v (z, t), for the function w (z, t) we solve the initial-boundary value problem
(34)—(37) with the homogeneous boundary conditions of the Sturm type (in this particular case they are the
Dirichlet conditions) with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of the problem of type I (1), (2),
(24) in classical and generalized senses follows from Theorem 1 on corresponding solvability of boundary value
problems with conditions of the Sturm type. We will formulate this main result at once for all the four types of
not strongly regular boundary conditions at the end of the paper.

5 Reduction of the problem of type II to a sequential solution of two problems
with homogeneous boundary conditions of the Sturm type

Consider a problem of type II. Since a; — by = 0, and herewith |a;| + |b1| > 0, then without loss of generality
we can assume a; = b; = 1. Since ¢g + dy # 0, then without loss of generality we can assume ¢y + dyp = 1. To
simplify writing (omitting additional indexes) we denote ¢y = ¢. Then dy =1 —¢.

Therefore the problem of type I can be formulated in the form:

In Q ={(x,t): 0<2z<1,0<t<T} find a solution u(x,t) of the fractional heat equation (1) satisfying
the initial condition (2) and boundary conditions of type II:

ug (0,8) + ug (1,8) + au (0,) + bu (1,t) = 0;

(40)
cu(0,t) + (1 —c)u(l,t)=0.
Here the coefficients a, b, ¢ of the boundary condition are arbitrary complex numbers.
We introduce the auxiliary functions:
1
v(‘r7t):i[u(l‘at)fu(li‘r,t)}, (41)
w(z,t) =u(x,t) —[1 —(1—2¢) 2z — D]v(x,t). (42)

Note that if the solution has been searched in the form of the sum of even and odd parts
u(z,t) = C(z,t) + S (z,t) in the initial version of the method (see [3]), then in a new variant suggested by us:

— the function v (z,t) is odd on the interval 0 < z < 1, and is the odd part of the function u (z,t);

— and the function w (x,t) is not the even part of the function u (x,t), though it is the even function.

The last follows from the fact that w (x,¢) can be represented in the form

w(z,t) == [u(x,t) +u(l—z,t)]+ (1 —2¢) 2z — 1) v(z,t), (43)

NN

that is, in the form of the sum of the even part % [u (z,t) — u (1 — z,t)] of the function u (z,t) and the summand
(1 —2¢)(2x — 1) v (x,t), which (it is easy to verify) is also the even function on the interval 0 < z < 1.

From (42) it is easy to find the functions v (z,t) and w (z,t), then the solution of the initial problem can
be reestablished by the formula

u(z,t) =w(x,t)+[1—(1—-2¢) 2z —1)]v(z,t). (44)

Thus if in the previous variant of the method the solution is represented in the form of the sum of the even
and odd parts of the solution, then in the new variant suggested by us it is not quite so. In representation (44)
the first summand is even on the interval 0 < x < 1, and the second summand is neither even, nor odd for
1—2c#0.

For the function v (z,t) we obtain the initial-boundary value problem which we need to solve first:

Dg—‘,- (U(.ﬁ,t) - U(Z‘,O))—wa (x7t):f0 (.13), (
( €T, ) 900( )’ U(%T)Zlbo(l‘) 0<x <1, (
vy (0,8) +[a(l—c)—be]v(0,t) =0, 0<¢t<T, (47
v (Lt) —[a(l—c)—bcv(l,t) =0, 0<t<T. (
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Here we use the notations
fo@)=35[f(z) = f(1-=)],
po(2) =5 [p (@) —p (1 —2)], vo(x)=3[ () —¢(1-1).

Having the solution v (z,t) of this problem, for the function w (x,t) we get the initial-boundary value
problem which we need to solve second:

(49)

DS—i— (w (:L',t) - UJ(.%,O))f’LUzm (lL’,t) :f1($)+F1(CE,t), (50)
w(x,0)=¢1(z), wx,T)=19(x), 0<z<]1, (51)
w(0,t)=0, 0<t<T, (52)

w(l,t)=0, 0<t<T (53)

Here we use the notations
fi(@)=f(2)—[1-(1—-2c)2z—1)] fo(z), Fi(z,t)=—-4(1-2c)vs(x,1), (54)
p1(z) =¢(z) —[1—(1-2c) (22 —1)] po (2)

Y1 (x) =1 () —[1 = (1—2¢) (22 — 1)] o (2).

By direct checking from (49) and (55) it is easy to make sure that if the initial and final data ¢ (z) and
¥ (x) of problem (1), (2), (40) satisfy necessary (classical and well-known) consistency conditions, then the
initial and final data @ (x), @1 () and g (x), 11 (x) also satisfy the necessary consistency conditions of their
corresponding problems.

Thus the solution of the problem of type IT (1), (2), (40) is reduced to the sequential solution of two problems
with homogeneous boundary conditions of the Sturm type with respect to the spatial variable:

— At first for the function v (z,t) we solve the initial-boundary value problem (45)—(48) with the homogeneous
boundary conditions of the Sturm type (in this case they are the Dirichlet conditions) with respect to the spatial
variable;

— Then, using the obtained value v (z, t), for the function w (z, t) we solve the initial-boundary value problem
(50)—(53) with the homogeneous boundary conditions of the Sturm type (in this case with conditions of the
Dirichlet problem) with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of the problem of type II (1), (2),
(40) in classical and generalized senses follows from Theorem 1 on corresponding solvability of boundary value
problems with conditions of the Sturm type. We will formulate this main result at once for all the four types of
not strongly regular boundary conditions at the end of the paper.

(55)

6 Reduction of the problem of type III to a sequential solution of two problems
with homogeneous boundary conditions of the Sturm type

Consider a problem of type III. Since ¢y + dy = 0, and herewith |co| + |dg| > 0, then without loss of generality
we can assume ¢y = —dg = 1. Since a; — by # 0, then without loss of generality we can assume a; — b; = —1.
To simplify writing (omitting additional indexes) we denote a; = ¢. Then by =1+ c.

Therefore the problem of type III can be formulated in the form:

In Q= {(z,t):0<2<1,0<t<T} find a solution u(z,t) of the fractional heat equation (1) satisfying
the initial condition (2) and the boundary condition of type III:

cuz (0,8) + (14 ¢)u, (1,t) + au (0,t) = 0;

(56)
u(0,t) —u(1,t) = 0.
Here the coefficients a, b, ¢ of the boundary condition are arbitrary complex numbers.
We introduce the auxiliary functions:
1
vz t) = 5 ulz,t) —u(l—ab)]; (57)
w(x,t) =u(x,t) —[1—(1+2c) 2z —1)]v(x,t). (58)
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Note that if the solution has been searched in the form of a sum of even and odd parts u(x,t) =
= C (z,t) + S (z,t) in the initial version of the method (see [3]), then in a variant suggested by us:

— the function v (x,t) is odd on the interval 0 < z < 1, and is the odd part of the function u (z,t);

— and the function w (x,t) is not the even part of the function u (z,t), though it is the even function.

The last follows from the fact that w (x,t) can be represented in the form

[u(z,t) +u(l—2a,t)]+ 1 +2c)(2z—1)v(x,t), (59)

DO =

w(z,t) =

that is, in the form of the sum of the even part § [u (z,t) + u (1 — x, )] of the function  (z,t) and the summand
(14 2¢) (22 — 1) v (x,t), which (it is easy to verify) is also the even function on the interval 0 < z < 1.

From (58) it is easy to see that if we find the functions v (z,t) and w (x,t), then the solution of the initial
problem can be reestablished by the formula

u(z,t) =w(x,t)+[1—(1+2c) 2z —1)]v(x,t). (60)

Thus if in the previous variant of the method the solution is represented in the form of the sum of the even
and odd parts of the solution, then in the new variant suggested by us it is not quite so. In representation (60)
the first summand is even on the interval 0 < x < 1, and the second summand is neither even, nor odd for
(14+2¢) #0.

For the function v (z,t) we obtain the initial-boundary value problem which we need to solve first:

Dg, (v(z,t) — v(2,0)) — Vs (z,t) = fo ()3 (61)
v (z,0) = (x), v(z,T)=1vp(x) 0<z<1; (62)
v(0,) =0, 0<t<T; (63)
v(1,6)=0, 0<t<T. (64)

Here we use the notations
fo(@)=35[f(z) = f(1—2)];
po(2) =5lp (@) =91 —-2)], vo(z)=3(z)—¢(1-1).

Having the solution v (z,t) of this problem, for the function w (x,t) we get the initial-boundary value
problem which we need to solve second:

(65)

Dy, (w(x,t) — w(x,0)) — was (x,t) = fr(x) + Fi(z,1); (66)
w(IvO):QM(x)a ’LU(Q?,T):l/)l(I), 0<z<1, (67)
wy (0,t) —aw (0,t) =0, 0<t<Ty (68)
wy (1,8) +aw(1,t) =0, 0<t<T. (69)
Here we use the notations
fi@)=f(z) =1 = (1+2c) 2z -1)] fo(z), Fi(z,t)=—4(1+2c)v,(z,1); (70)

p1 () =@ (x) = [1 = (14 2¢) (22 — D] po (z) ;

P (2) = ¢ (2) = [1 = (14 2¢) (22 — 1)] o (z) -

By direct checking from (65) and (71) it is easy to make sure that if the initial and final data ¢ (z) and
¥ (z) of problem (1), (2), (56) satisfy necessary (classical and well-known) consistency conditions, then the
initial and final data @ (x), @1 () and 1o (x), 11 (x) also satisfy the necessary consistency conditions of their
corresponding problems.

Thus the solution of the problem of type III (1), (2), (56) is reduced to the sequential solution of two
problems with homogeneous boundary conditions of the Sturm type with respect to the spatial variable:

(71)
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— At first for the function v (z, t) we solve the initial-boundary value problem (61)—(94) with the homogeneous
boundary conditions of the Sturm type (in this case with conditions of the Dirichlet problem) with respect to
the spatial variable;

— Then, using the obtained value v (z, t), for the function w (z, t) we solve the initial-boundary value problem
(66)—(69) with the homogeneous boundary conditions of the Sturm type with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of the problem of type III (1), (2),
(56) in classical and generalized senses follows from the Theorem 1 on corresponding solvability of boundary
value problems with conditions of the Sturm type. We will formulate this main result at once for all the four
types of not strongly regular conditions at the end of the paper.

7 Reduction of the problem of type IV to a sequential solution of two problems
with homogeneous boundary conditions of the Sturm type

Consider a problem of type IV. Since ¢ — dy = 0, and herewith |¢o| + |dp| > 0, then without loss of generality
we can assume ¢y = dg = 1. Since a; + by # 0, then without loss of generality we can assume a; + b = 1. To
simplify writing (omitting additional indexes) we denote a; = ¢. Then by =1 —c.

Therefore the problem of type IV can be formulated in the form:

InQ ={(z,t),0<x <1,0<t<T} find a solution u (x,t) of the fractional heat equation (1) satisfying the
initial condition (2) and the boundary conditions of type IV:

cug (0,t) + (1 —c)u, (1,t) + au (0,t) = 0;

(72)
w(0,t) +u(l,t) =0.
Here the coefficients a, b, ¢ of the boundary condition are arbitrary complex numbers.
We introduce the auxiliary functions:
1
v(z,t) = 5 fulz,t) +u(l -z b)]; (73)
w(z,t) =u(x,t) —[1—(1—-2c) 2z —1)]v(x,t). (74)

Note that if the solution has been searched in the form of the sum of the even and odd parts
u(z,t) = C (z,t) + S (z,%) in the initial version of the method (see [3]), then in the variant suggested by us:

— the function v (z,t) is even on the interval 0 < « < 1, and is the even part of the function u (z,t);

— and the function w (x,t) is not the odd part of the function u (z,t), though it is the odd function.

The last follows from the fact that w (x,¢) can be represented in the form

w(z,t) == [u(zx,t) —u(l—z,t)]+ (1 —2¢) 2z — 1) v (z,t), (75)

NN

that is, in the form of the sum of the odd part % [u (z,t) — u (1 — z,t)] of the function u (z,¢) and the summand
(1 —2¢)(2x — 1) v (x,t), which (it is easy to verify) is also the odd function on the interval 0 < < 1.

From (74) it is easy to see that if we find the functions v (z,t) and w (z,t), then the solution of the initial
problem can be reestablished by the formula

u(z,t) =w(x,t)+[1—(1-2c) 2z —1)]v(z,t). (76)

Thus if in the previous variant of the method the solution is represented in the form of the sum of the even
and odd parts of the solution, then in the new variant suggested by us it is not quite so. In representation (76)
the first summand is odd on the interval 0 < x < 1, and the second summand is neither even, nor odd for

(1 =2¢)#£0.
For the function v (z,t) we obtain the initial-boundary value problem which we need to solve first:
Dg+(11(.13,t) - U(x70))_U.L.L(x7t):f0(x)7 (
v(z,0) =¢o(z), v(@T)=1o(z) 0<z <L (
(0,6) =0, 0<¢t<T, (79
(L,t) =0, 0<¢t<T. (

v

v
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Here we use the notations
fo@)=35[f () + (1 —2)],
po(x)=3lp@)+e(l—2)], vo(z)=5[(2)+¢(1-2).

Having the solution v (x,t) of this problem, for the function w (x,t) we get the initial-boundary value
problem which we need to solve second:

(81)

Dy, (w(x,t) — w(x,0)) — was (x,t) = fr(x) + Fi(z,1); (82)
w(x,0)=¢1 (), wx,T)=19(x), 0<z<1; (83)
wy (0,8) +aw (0,t) =0, 0<t<T; (84)

wy (1,8) —aw (1,t) =0, 0<t<T. (85)

Here we use the notations
fi(@)=f(@)=[1-(1-2c)2z—1)] fo(x), Fi(z,t) =—4(1—2c)ve(x,1); (86)
p1(z) =¢(z) —[1—(1-2¢) (22— 1)] po (2);

P (2) = ¢ (2) = [1 = (1= 2¢) (22 = 1)] o (z).-

By direct checking from (81) and (87) it is easy to make sure that if the initial and final data ¢ (x) and
¥ (z) of problem (1), (2), (72) satisfy necessary (classical and well-known) consistency conditions, then the
initial and final data @ (x), @1 () and g (x), 11 (x) also satisfy the necessary consistency conditions of their
corresponding problems.

Thus the solution of the problem of type IV (1), (2), (72) is reduced to the sequential solution of two
problems with homogeneous boundary conditions of the Sturm type with respect to the spatial variable:

— At first for the function v (z,t) we solve the initial-boundary value problem (77)—(80) with the homogeneous
boundary conditions of the Sturm type (in this case with boundary conditions of Dirichlet) with respect to the
spatial variable;

— Then using the obtained value v (z, t), for the function w (z, t) we solve the initial-boundary value problem
(82)—(85) with the homogeneous boundary conditions of the Sturm type with respect to the spatial variable.

Therefore the main result on the existence and uniqueness of the solution of the problem of type IV (1), (2),
(72) in classical and generalized senses follows from the Theorem 1 on corresponding solvability of boundary
value problems with conditions of the Sturm type. We will formulate this result as well as the results of sections
4, 5 and 6 at once for all the four types of not strongly regular boundary conditions in the next section.

(87)

8 Formulation of the main result on solvability of the fractional heat equation
with not strongly reqular boundary conditions

For completeness of exposition we once again formulate the problem under consideration:
In Q={(x,t),0<2<1,0<t<T} find a right-hand side f(x) of the fractional heat equation

Dgy (u(z,t) — u(2,0)) = uge (2,t) = f (2) + F(a,t), (88)
and its solutions u (x,t) satisfying the initial and final conditions
u(z,0)=¢ (), u(@T)=¢(=), 0<z<1, (89)
and not strongly regular boundary conditions of the general form
AUy (O, t) + blum (17 t) “+ apu (0, t) + bo’u (l,t) = 0,
(90)
cou (0,t) + dou (1,t) = 0.

The coefficients ag, b, ck, di (k = 0,1) of the boundary condition (90) are arbitrary real numbers, and
p(x), ¥ (x) and F (x,t) are given functions.
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We consider boundary conditions which are regular, but not strongly regular, that is, cases when one of the
conditions holds:

1. a1+b1:0, Co—d()?éo;
II. a1 —b1 =0, co+dy#0;
III. ¢y—dy=0, ay+b #0;
1V. co+dy =0, al—blyéO.

(91)

As shown in sections 4 — 8, the solution to the problem with the not strongly regular boundary conditions of
all the four types has been reduced to the sequential solution of two problems with the homogeneous boundary
conditions of the Sturm type with respect to the spatial variable. Herewith one of these problems has the
Dirichlet boundary conditions with respect to the spatial variable, that is, it is a classical first initial-boundary
value problem.

On the basis of this fact, using the results from Theorem 1, now we can easily formulate a theorem on
well-posedness of the general problem with the not strongly regular boundary conditions with respect to the
spatial variable.

Theorem 2. Let one of conditions (91) hold. That is, the boundary conditions (90) are regular, but not
strongly regular. If F(z,t) € C*(Q), ¢ (2), ¢ (x) € C*0,1] and the functions F(z,t), ¢ (z), ¥ (z),¢" ()
and V" (z) satisfy (4) then there exists the unique classical solution u(x,t) € Cﬁtl (Q), f(z) € C[0,1] to the
inverse problem (1), (2), (90).

Note that by this method, problem (1), (2), (90) has been solved regardless whether the corresponding
spectral problem for the operator of twofold differentiation with the not strongly regular boundary conditions
(4) has the basis property of root functions.

This research is financially supported by a grant AP05133271 and by the target program BR05236656 from
the Science Committee from the Ministry of Science and Education of the Republic of Kazakhstan.
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A.C. Dpmoran, /1. Kycmanrasunosa, 1. Opazos, M.A. Caipibekon

Beuaniek >KbLITyOTKI3TIINTIK YP/Aici KO3iHIH THIFBI3ABIFbIH OACTAITKbI
2K9He aKbIPFbI TeMIlepaTypaJjiapbl OONBIHIIIA
KaJIIILIHA KeJITipy ecebi TypaJibl

Maxkamama KyMbIcTa GOJIIITEK KBUIYOTKI3TIIMITIK TEHAEY1 YIITiH Kepi ecenTep KapaCThIPhLIFAH. YaKbIT OOii-
piama PuMan-JInyBusin MarsiHaCHIHAAFBI OOJIIIIEK PETTI TYBIHAbLIAD HalIaIaHblIAbl. Bepiiren TeHaeyain
mernriMiMeH KaTtap, TEHIEY/IiH OH, KaFbIHIaFbl 6eJIrici3 GOJIbII OTBIpFaH (DYHKIMSHBI AHBIKTAY MOCeJIeCi IIre-
miMiH TankaH. Bysr xKepjie TeHEyMiH OH YKaFbIHIAFBI Oe/rici3 MYHKINS YaKbIT afHBIMAJIBICHIHAH TOYEJICI3
Oostaibl. Bacrankpbl »KoHe aKbIPFBI TEMIIEpaTypajiapra KATBICTBI OOJIIIEK >KbIIYyOTKIBMIINTIK ypIici Ke3iHiH
TBIFBI3/IBIFBIH XKOHE TEMIIEPATYPAChIH aHBIKTay MOCEJIECIH MO/JIEJIBIEHTIH ecell 3epTTesred. Karay perysisp-
JIBI GOJIMANTHIH KEHICTIKTET1 affHbIMAJIBIIAp OONBIHINA YKAJIBI TYP/Eri MIETTIK eCcenTepre KATBICThI MoCe-
JleJiep KapacThIpblIraH. EcenTiH KacCUKaJbIK MIENMiHiH 6ap »KoHe »KaJIFbI3 00JIATBIHIBIFBI KOPCETIITEH.
Ecenke karbicThl ecesien quddepeHnmaiay onepaTopbl YIIiH MIETTIK MAPTTapbl KATAH PEryJspibl eMec
CITIEKTPAJIZIBIK, €CENTIH, MEHITIKTI (hyHKIMsTapbl 6a3nc 60IMaiThIH 60JICa /1a, eCenTiy merriMi TabbLIFaH.
Kiam ce3dep: Kepi ecem, KBUTYOTKI3TIMITIK TeH €Y, OOJIIEK KBUIYOTKI3TIMITIK, KaTaH PEryyspibl eMecC
MIETTIK MAapTTap, alfHbIMAJIbLIAPIbI AUbIPY TOCLI.

A.C. Dpmoran, /1. Kycmanrasunosa, . Opazos, M.A. Capioekon

OO0 omHOIT 3a1a1e BOCCTAHOBJIEHNUS IIJIOTHOCTH MCTOYHUKOB
mporiecca ApoOHOIT TEeIJIONPOBOHOCTH IO HAYAJILHON 1
KOHEYHOII TeMmnepaTypaM

B crarnpe paccmorpensr obpaTHbie 3a1a49n s APOOHOTO yPABHEHUST TEILIOIPOBOIHOCTH, T APOOHAT TPO-
M3BOJIHAS IO BPEMEHM IOHMMaeTcs B cMbiciie Pumana-JIuysusuis. Bmecre ¢ pemennem sroro ypaBHeHUst
HEOOXOMMO HANTH HEW3BECTHYIO MPABYI YACTh, 3ABUCSIIYI0 TOJHKO OT MPOCTPAHCTBEHHOW MEPEMEHHOIA.
Paccmorpena 3amaga, Momemmpyoias mporecc OmpeIeeHnst TEMIIEPATYPhI U IVIOTHOCTH UCTOYHUKOB B IIPO-
1ecce JPOOHOI TENJIONPOBOAHOCTH OTHOCUTEILHO 3a/IaHHBIX HAYAJIbHBIX M KOHEYHBIX TeMieparyp. Vccie-
JIOBAHBI IIPOOJIEMBI C OOIIMMHU IPAHUIHBIMU YCJIOBUSIME OTHOCUTEBHO MIPOCTPAHCTBEHHOM MEPEMEHHOIt, KO-
TOpBIE HE SIBJISIOTCS] YCUJIEHHO PEryJIsIpHBIME. /{0Ka3aHbl CyNIeCTBOBAHNE U €IMHCTBEHHOCTH KJIACCHIECKOTO
pelenust 3aa49u. 3a/1ada Peraercs: He3aBUCHMO OT TOI0, YTO COOTBETCTBYIOIIAsI CIIEKTPAIbHAs 3a,1a4a J1JIs1
omepaTropa KpaTHOro audEepeHIpOBaHUs ¢ HEYCUJIEHHO PETYASPHBIMUA TPAHUIHBIMU YCJIOBUSIMU MOYKET
HE UMEeTh CBOMCTBa GA3MCHOCTH KOPHEBBIX (DYHKITHIA.

Kmouesvie caosa: obpaTHas 3amada, ypaBHEHNE TEIJIOMPOBOIHOCTH, APOOHAS TEIJIONPOBOIHOCTD, HEYCH-
JIEHHO DeryJisipHble IDaHUYHbIE YCJIOBUS, METOJ, Pa3/esIeHus IIePEeMEHHBIX.
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A criterion for the existence of soliton solutions of telegraph equation

In this paper we consider a telegraph equation. In the case of a rectangular domain for the Cauchy potential
the lateral boundary conditions obtained. When considering the equation in the first quadrant a criterion
for the existence of soliton solutions is obtained.

Keywords: telegraph equation, telegraph potential, fundamental solution, soliton solution, nonlocal boundary
conditions, convolution.

Introduction

Many studies have been devoted to the study of classical potentials: the Newton potential, the volume heat
potential and the wave potential. In the equations of mathematical physics Newton’s potentials are used to
solve classical problems (the Dirichlet problem, Neumann problem, Robin problem) for the Laplace equation
and other elliptic equations. It should be noted that for the first time the exact nonlocal boundary conditions
of the Newton potential, the volume heat potential and the wave potential have been found recently [1-3].
After, boundary conditions of surface potentials that satisfy homogeneous equations were studied [4, 5]. Further
applying these results, the boundary conditions for the volume elliptic-parabolic potential were found and so
on [6-19].

Boundary conditions of Telegraph Equation

In the band Q = {t >0,0<z< %} we select a limited subdomain Q; = {0 <t<
consider the Cauchy problem for a one-dimensional telegraph equation

N

0u(z,t) B 0%u(x,t)

Lu(z,t) = 92 R Au(z,t) = f(x,t); (1)
w(x,t)|i=o = 0, (2)
Ou(z,t) B
—5 =0 =0. 3)

In the characteristic coordinates { = x +t, = 2 —t the band 2 turns into a band ﬁ, and the subdomain
) turns into a subdomain 2; with bounded segments:

1 1
AoBo:n=¢ 0=&=<o; Apdin=-¢ 0=<&<o;
1 1
as t > 0, then n < £. Equation (1) also turns into equation
Pu(€,n) | A
L = —> 4+ - = 4
and the Cauchy data (2) and (3) are expressed in
u(&;m)ly=¢ =0, (5)
9u(&,n) 3u(§ﬂ7)>
— =0. 6
( o€ o ), ©)
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It is well known that the Riemann function R(&,n,&1,m1) (see [20; 92]) of the telegraph equation (4) is
representable in the form

R(&n&m) = Jo (VAE = &)t —m)) . (7)

where Jy(2) is a zero-order Bessel function (see [20; 91]).
A fundamental solution of the Cauchy problem (4)—(6) in the domain Q is given by the formula:

(€ —&,m—n)=—0(—E)0(n —n) x R(En,&,m). (8)

In contrast to [21; 256], here the fundamental solution is taken with a negative sign and the second argument
(m — n) in accordance with the domain (.
The telegraph potential in the domain € is called the integral

u(€,m) =cx* f= /55(5 —&m —n) f(&,m)déndn =

3 n
=/ dé, . R(&m, &) f(&x,m)dm =
n 1

3 n
- / ¢, /5 Jo(v/NE = &) — ) (v mn ). (9)

It is easy to verify that the telegraph potential (9) satisfies the homogeneous initial Cauchy conditions for
n=¢0<E<1/2 i

u(;m)ly=¢ =0, (10)
u(§n)  Ou(&,n) _
(%2250 o ay

and equation (4) (see [21]).
Let us find a lateral boundary conditions of the telegraph potential (9) for AgA: &= —n, 0<E< % and
1

ByB:&=1-1n, 3 <¢<1, which is equivalent to = 0, and = 1 in the original coordinates (z, ).

Theorem 1. Let f(£,m) € C! (6), then the telegraph potential u(¢,n) € C? (6) satisfies the following
lateral boundary conditions:

£
Nl 4,4 = Nallo__, = / Jol 4A(€—§1)2)§7;L1(€17—771)d§1+

CA/ANE-ED) o
+2/\/0 (V—ANE=&1)?) ulbn, ~61)ds = 0; (12)
¢ u
Nldlpgp = Nldle—y = = [ Joly/~INE— ) 61,1 - €0)des+
CN((V/IAE-6)Y)
27 / o e €@ - =0, (1)

where Ji(z) is a Bessel function of the first order.

Conversely, if u(¢,n) € C? (Q) is a solution of the telegraph equation (4), satisfying the initial conditions

(5)-(6) and the lateral boundary conditions (12)-(13), then u(&,n) is given by the telegraph potential (9).
We note that for A = 0 the lateral boundary conditions of the telegraph potential coincide with the boundary
conditions of the one-dimensional wave potential which is given in [3].

Proof. We continue the function f(£,7) outside of the square Qy with zero, i.e. f(&,7) =0 in R2/Q;. Then
the telegraph potential

§ n
U(fﬂ?):E*f:/ dfl/E R(&,n,&1,m) f(E,m)dm

n

46 Bectnuk Kaparanmguackoro yHuBepcurera



A criterion for the existence of soliton solutions ...

gives a solution of equation (4) for all (¢,7) € R? and u(¢,n) € C2(1) satisfies the homogeneous initial Cauchy

conditions (5)—(6) for the whole straight line £ =7, —co < £ < +00. The value of the function u(£,n) at the point

(&, ) is determined by the value of f(&1,71) in the characteristic triangle, i.e. Ag , = {n <& <&, n<m <&}
Therefore the value of the function u(§,n) on u|aga—n=—¢ = u(§, —§) is defined by the formula

1 —£

ue.~) = [ de [ RE—€6m)s ). (14)
—£ &1

As f =0 outside & < 0 and 77 < —¢&;, then the integral (14) takes the form
&
ulapa = u(§ / d§1/ R(&, =& &,m) f(§r,m)dm =
3 =&
= [Fde [ aAER= =) e m ). (15)

Now, in (15) instead of the function f(&1,71) we put %5;21) + 2u(&,m), e

= [Fae [ aevnemarme ) (Tl uiesm) ) an -

06,0m

=1 + I, (16)
where
A 13 =1
-7 / des [ oA €~ mu, m)m a7)
61

I, = dfl Jo(WVAE — &) (—€ - 771)) (51,771)dm' (18)

0&10n

Integrating by parts the 1ntegral 15, we obtain

_ [ T AU SEU DA R

¢ B, ou(&,m) ,
- [P [ /A e ) 2 =

¢ U(G1, =61
= [ A= €t - ) g -
0 1

¢ Uu{S1,81
- [ ntvaE= e an 2 g -
0
& "
[ [ A ) e, (19)

From the initial Cauchy condition (5) it follows that %gfl) = (. Taking this into account, the integral I,
can be rewritten as
au(fla _gl)

3
b= o~ oo = [ B(V/AE— & - )= ag-
31
[ [ A e My, (20)

In the integral I 2 we change the order of integration and the limits in the domain n>0:0 <n; < ¢ and
in the domain n < 0: —¢ <n; <0, then we obtain
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3 I o ,
Ba= [ [ S (AE= =€) P, =

/dm/ *Jo (VAE =) (=€ = 2L m) g

061
"o u(&1,m)
v f i [ o (VNG €€ m) Gy
Using the formula %Jo(z) = —J1(2) (see [21]), we conclude that
0 0 0
G P VNE—ENE—m)) = 5 do() g =
— —h(e) g (VNE— E(E =) = a(a) ) (21)

2/ A= &)(=E—m)

Taking into account the last relation from (21), integrating by parts the integral I5 2, we find

P / J(VMNE= &) (€ —m)(E — &)
T2/ VAE=&)(=E—m)

42 /f J(WVAE= &) (=€ —m))(€ — &)
2.Jo \/Af—&)(—ﬁ—m)

u(&1, 771)| M dn, +

u(é-la 771)|Zld771*

0 m
/ dTh/ 8§ am \//\ (& = &1)(=€ —nu))u(&r,m)dnm+

[ [ 5 o NE G € muten e ~

u(—n1,m)dni+

:A/ J1(V/=ME+n)(E+m))(E +m)
2 )¢ J AE+m)(E+m)

# [ an [ /e G uter -

1
[ (/N G E s, m (22)
0 ¢ 0&0m
In the first integral of (22) replacing the variables —n; = &1, = &£, we have

A SN =AE-6)P)
2o VAAE-&)?

Taking into account the integrals I, I3 5 and formulas (17), (22), we have that

316(51, *fl)
&1

Iy, = (€ — & )ulér, —€1)dér . (23)

£
Ul agn = u(6, —€) = / JoVMNE—E)E — ) e, —

ARG e
2 )y, T —gE & e —adat

3 —&1 52 A
w [ [ (G NEEt ) + LA AE =BT m) ) . (24)

As Jo(v/A(€ — &) (n —m)) is the Riemann function of the telegraph equation (4), then
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0? A
96,01, Jo(VAE = &) —m)) + ZJo(\/A(f — &) —m)) =0. (25)
Therefore, we have
_ _ [ u(&r, €1
aoa = ul~9) = [ IoVAE =8 O gt
ARG, _
2 J, Ne_6)? (€ = &)u(&r, —&1)déa. (26)
It is easy to verify that the total derivative
d _(Ou(&,—&)  Ou(&,—&)
diflu(glv _51) - < 8&1 6771 ) |77:*517
e duler.—€) _ du(6r.—€) _ou(er.—&)
UlG1;, —¢1) _ auU(Q1, —Q1 1, —S1
o6, de T om (27)

Taking this into account, from (25) integrating by parts, we obtain

¢ du(fla _51) au(glv _51) _
[ wAE=aiE - oy (M o 2 e

¢ U(GQ1, 71
= [ niVAEEam ) ae

0

€
ol /NE= P Iulr, €0l — | e ol v/AE — EPTulér, —6)ds =

L Ji(v =M€= 61)?)

=) - 28

e e (28)
as Jo(0) = 1.
From the last relation it follows that

w(€, —8) = uf g 4 + Nlul g4 = u(§, =&) + N[ul|,__, (29)

i.e.

E u
Nfu] = / o(VANE &))am wlE, —m)l, _edrt

CT(V—ANE=&)? f 51) )

The boundary condition (29) is the lateral boundary condition of the telegraph potential on AgA: n = —¢,
0<é<1/2

If A = 0, then from (29) by differentiating by parts, we obtain the lateral boundary conditions for the
one-dimensional Cauchy wave potential in the case of T.Sh. Kalmenov, D. Suragan [3].

Similarly, we find the boundary conditions on ByB:

6 u
Nl =~ [ DE 6 2 61— e)dert

: ¢

S N(V-AAE-6)?)
1/ ANME - 6)?

Thus, the lateral boundary conditions N[u] on AgA and ByB are given by formulas (29), (30), respectively.

+2A

(& =&)u(é,1 =& )dé = 0. (31)
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Conversely. Let ¥ € C?(2) satisfy equation (4), homogeneous initial conditions (5)—(6) and the lateral
boundary conditions(29)—(30). Let u(&, n) be the telegraph potential defined by (9), then w = u — o satisfies the
homogeneous equation (4) and the homogeneous initial conditions (5)—(6).

By virtue of (24) and (31), we have

w+ Nw][4,4 = w|ay4 =0,

w—i—N[w]\BOB :w|BOB =0.

From the uniqueness of the solution of the mixed Cauchy problem we have w = u — 9 =0, i.e. u = 9. By
continuation of the solution outside the square under consideration, we see that N[u]|;=o = 0, and Nu}|yz=1 = 0.
Theorem 1 is completely proved.

Telegraph potential solitons

In a quarter of the plane Q = {z > 0, ¢t > 0} we consider the Cauchy problem for a homogeneous telegraph
equation

Lu(x,t) = Ou(z, t) — Mu(z,t) = (;2 - 881:2) u(w,t) — du(z,t) = 0; (32)
u(:c, t)‘tzo = T(Cﬂ), (33)

Ou(x,t) _
8oy = vla). (34)

We assume that 7(x) = v(z) = 0 at < 0 and we seek a solution in the whole half-space ¢ > 0. It is natural,
that it is determined by the Cauchy data 7(z) and v(z) at x > 0.
By 7(x) and 7(z) we denote the functions

o ={ o IZp (35)
P(x) = { 3“) ;fig (36)

The solution of the Cauchy problem wu(z,t) is determined by the Riemann formula (see [22; 174])

1 1
u(z,t) = §U($0,0)R(=’E0,0,$7t) + 5“(11,0)3(%,07%%)+

o (€. ORE1,0,0.) ~ u(€1,0) - (61, 0.2.1) ) ds =
= %T(IO)R(‘T(% O,Z,t) + %T(xl)R(zl’ O’ :Zf,t)+
), (M.~ e Rie0.0.0 ) de o

where zg =z —t, ©1 =x+1.
At 21 =0, xop = —t < 0, taking into account that 7(z¢) = 0 and v(z) = 0, from (37) it follows that

1
7(t) = u(0,t) = 5T(:c +t)R(x+t,0,2,t)|z—0+

w3 ) (MR 00— e g RiE0..0) dileno =

%T(t)R(uQ 0,t) + %/0 (V(fl)R(&,0,0,t) — 7(51)887711%(51,070,0) dé;. (38)

Equality (38) is the lateral boundary condition for the surface wave potential.
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It follows

Lemma. Suppose that the Cauchy data 7(z), v(z) € C?(—o00,00) and 7(x) = u(z,0) = 0,
v(z) = w =0 at z < 0. Then the surface telegraph potential u(x,t) for z = 0 satisfies the lateral boundary
condition (38).

It is easy to verify that for A = 0 the condition (37) becomes a boundary condition of the surface wave
potential.

Theorem 2. Suppose that the hypothesis of Lemma holds and A = 0 for x > d > 0. Then the surface
telegraph potential u(z,t) at £ — oo turns into a soliton solution, i.e. lim,_, o u(z,t) = @(z — t) if and only if
the condition is fulfilled

(gt - 51) (@, )] o—a = 0. (39)

Proof. 1t is not difficult to show that if A = 0 at x > d > 0, then the solution of the homogeneous telegraph
equation given by (37) can be represented in the form

u(x,t) = Pz +t) + oz —t). (40)
Then 5 9
(5~ 52 ) westlema = (a+ Dlama =0 (41)

Taking this into account, from (40) it follows that lim, ,.c u(x,t) = p(r —t).
Theorem 2 is proved.

This paper was published under projects AP05133239, AP05134615, BR05236656 of the Science Committee
of the Ministry of Education and Science of the Republic of Kazakhstan.
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T.II. Kommenos, [.JI. Apemnosa

Tenerpad TeHAeyiHIH COMTOH MIENIiM/IePiHIH, 0ap OOJIYBIHBIH,
KaXKeTTi YKoHe YKeTKIJIKTi IMapThl

MakaJrazia Tesierpad Teseyi kapacToipbliarad. TeopTOypbImThl 00JIbIC 2KaF1aiibiaa Kol moTeHIuaIbIHbIH
Oyifip mekapaJjapblHIa [EKAPAJBIK MapTTapbl TabbLtran. TeHgaeyai OipiHIT KBaJpaHTTa KapacTbIPFAHIA
COJTUTOH MIEeMTiMIepiniy 6ap OOMYBIHBIH KAXKETT] YKOHE XKETKITIKTI 1MapThl aJbIHFAH.

Kiam cesdep: Tenerpad TeHzeyi, Tenaerpad MOTEHIUABI, ipresi IIemiM, COJUTOH MIeiMi, JOKAJIIbl eMeC
IIeKapaJbIK IapThl, YHIPTKI.

T.II. Kanmemenos, I'.JI. Aperosa

Kputepuii cyniecTBoBaHUsI COJIMTOHHBIX pPellleHunid
TejierpadHOT0 ypaBHEHUS

B craTthe paccmorpeno Testerpaduoe ypasuenue. st cirydast mpsiMOyToOJIbHOM 00JIaCTH HaIEHBI KpaeBble
ycsioBus norennuasia Komm #a 60KOBbIX rpanunax. [Ipu paccMoTpeHun ypaBHEHUsI B IIEPBOM KBaJpaHTe
MOJTyYeH KPUTEPHUii CyIIeCTBOBAHUS COJTUTOHHBIX PEIIeHMUIA.

Karoueswie caosa: TenerpadHoe ypaBHeHHe, TeaerpadHblil moTeHna, MyH aMeHTaIbHOE PEIIeHNE, COH-
TOHHOE peIlleHue, HEeJIOKAJIbHbIE I'PDAHUYHbBIE YCJIOBUS, CBEPTKA.
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Nonlocal spectral problem for a second-order differential
equation with an involution

For the spectral problem —u”(z) + au’(—z) = Au(z), —1 < = < 1, with nonlocal boundary conditions
uw(=1) = Bu(l), v/ (=1) = w/(1), where o € (—1,1), 5% # 1, we study the spectral properties. We show
that if r = /(1 — «)/(1 4+ «) is irrational, then the system of eigenfunctions is complete and minimal in
L2(—1,1) but is not a basis. In the case of a rational number r, the root subspace of the problem consists of
eigenvectors and an infinite number of associated vectors. In this case, we indicated a method for choosing
associated functions that provides the system of root functions of the problem is an unconditional basis in
Lo(—1,1).

Keywords: ODE with involution, nonlocal boundary-value problem, spectral problem, basicity of root
functions

1 Introduction

In the present paper, we carry out a complete spectral analysis of the problem

Lu=—-u"(z)+ au’(—x), -1<2x <1
(1)
u'(=1) = (1), u(=1) = pu(1),

where the differential expression contains an involution transformation of the independent variable in the highest
derivative and the boundary conditions are nonlocal.

Throughout the following, the parameter « in problem (1) is an arbitrary number in the interval (—1,1).
The case 8 = 1 (when the boundary conditions of the problem are periodic) was investigated in [1]. The case

when 8 = —1 leads to a degenerate problem. In this case, as it is easy to see, any number A is an eigenvalue.
Therefore, in this paper we assume that 8 is an arbitrary real number for which 5% # 1.
If « = 8 = 0, then problem (1) becomes the well-known nonlocal problem of the Samarskii- Ionkin

type [2], which is an example of a nonself-adjoint problem whose set of root functions contains, in addition
to eigenfunctions, infinitely many associated functions. I'in [3] dubbed such problems essentially nonself-
adjoint and pointed out their typical instability both under the choice of associated functions and under small
perturbations of the operator. For details, see [4] and also [5-9].

We show that problem (1) has all specific features of essentially nonself-adjoint problems and that its spectral
properties can change fundamentally under arbitrarily small variations of the parameter a.

We note that the case § = 0 was investigated in detail in [10] for the space Lo and in [11] for the space L,
1<p<oo.

The main result of the present paper is stated in the following theorems.

Theorem 1. Let r = /(1 —«a)/(1+ «) be irrational. Then the system of root functions of problem (1)
contains only eigenfunctions; moreover, it is complete and minimal in Ly(—1,1) but is not a basis.

Theorem 2. Let v = /(1 — a) /(1 + «) be rational. Then the spectrum of problem (1) splits into two sequences
{A} U{N:}. For each A = A, there exists only one eigenfunction, and for each X = X\, there exists one
eigenfunction and one associated function. The system of root functions is complete and minimal in Lo(—1,1),
and the associated functions can be chosen in such a way that the entire system is an unconditional basis in
Ly(—1,1).

Note that functional-differential equations similar to the equation in (1) were studied by numerous authors.
The algebraic and analytic aspects of the theory of ordinary differential equations with involution were discussed
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in the monographs [12, 13]. Spectral problems arising in connection with differential operators with involution
were considered in [14-18] for first-order operators and in [19, 20] for second-order operators. Spectral problems
for ordinary differential operators with non-strongly regular boundary conditions and their applications for
parabolic problems were investigated in [21-25].

2 Case of irrational r

The problem adjoint to (1) has the form

Lu(z) = —v"(x) + av”(—2), -1 <z < 1;
(2)
(a =B (=1) = (af = 1)V'(1), v(=1)=w(1).

By a straightforward computation, one can readily show that the spectra of problems (1) and (2) coincide and
o(L) = {0; (14 a)n*n?| n € N}, (3)

while the eigenfunctions of the direct problem (1) have the form (here and in what follows, y is the arithmetic
value of the root v/))

po=0: up=(1-pB)x+1+p;
Wi =V1+anrl: ul(l)(ac) =sin(rwlz), l€N; (4)
W' =+1—ark: u,(f) (x) = (14 B) sin(nrk) cos(nkx) + (1 — B) cos(wk) sin(nrkz), k€N
and eigenfunctions of the adjoint problem (2) have the form
o =0: vo(z) =1;
W'y =1—ark: v](f) () = cos(mkz), keN; (5)

pr=+v1+anl: vl(l)( ) = (L+ B)rsin Z sin(nlz) + (1 — B) cos(rl) cos 2=, [ € N.

Lemma 1. Let r be irrational. Then each of systems (4) and (5) is complete and minimal in Lo(—1,1).
Proof. Let us carry out the proof, say, for system (4). Consider an arbitrary function f(xz) € Lo(—1,1)

orthogonal to all functions of system (4). Since it is orthogonal to the functions ul(l)(x),l € N, we see that it
coincides almost everywhere with an even function. Thus,

0= / f(z 2) x)dx = (1 + B) sin(nrk) / f(z) cos(mkz)dx.

Since r ¢ @ and (14 3) # 0, it follows that the function f(z) is orthogonal to the functions cos(wkz), k € N,
and hence f(x) = const almost everywhere on [—1,1]. Finally, from the relation (f,uo) = 0, since (1 + ) # 0,
it follows that f(x) = 0 almost everywhere on [—1,1].

Since systems (4) and (5) are complete, it follows that they are closed in Ly(—1, 1); and since they correspond
to mutually adjoint problems, we find that they are minimal. The proof of the lemma is complete.

Let us modify the eigenfunctions so as to ensure that systems (4) and (5) form a biorthonormal pair in
L2(—1,1). Since

l
(woyv0) =21+ ), (ufofV) = (14 Brsin ==, (uf? o) = (1 + B)sin(rrk), (6)
it follows that the modification should have the form
~ 1-p6 5
to(x) = 1 +5w—|— 1, vo(x) = 2
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(1) . (1) 1 — B cos(m ) mwlx
— sin(rlz), — sin(rlz) + ——1 LS
@, (v) = sin(nlx), v, (v) = sin(wlx) 175 ren cos —
1—
71](62)(35) = cos(mkx) + 1+§scos((7rkk>) sin(mrrkz), 51(3)(37) = cos(mkx).
in(7mr

Let us compute the norms of these functions in LQ(_ ,1). We have

-2
o =1, o 1>H (=8 (e ™ T 2
Hul 1, =1+ 1+5 rsin - 1+ 9] sin " ;

| = (Hg)z@im)—a(H%jrksmmk) o] =1

Lemma 2. Let r be irrational.

H ~(2)

n

ﬁl(i)H — 00 and

— 00, as n — 00.

Proof. By virtue of the theorem on the approximation of real numbers by rational fractions [26; 25], the
inequalities

l
r— -
s

1
siza

1k 1
r g )

r oq q @)

have infinitely many solutions [, k, s, ¢ € N. We denote these solutions by l,,, ky,, S, and ¢,,. Then from inequality
(7) we have |% — 7sp| < 5— and hence

. o Ty . i, T
sin? =2 =sin? [ =2 — 7s,, | < sin? —.
r r TSy

In a similar way, we obtain the inequalities |71k, — mg,| <3 I and

sin?(nrk,) < sin’ .
an

2 2 —2
2110 (152) 3 (i) el (150) 3 (0
Hvln >14+ <1+ﬂ 3 7 sin . >1+ 155 3 T sin “ .

The proof of the lemma is complete, because the right-hand sides of these inequalities infinitely increase as
n — oo.

Lemma 2 essentially completes the proof of Theorem 1, because it follows from the lemma that the considered
biorthonormal pair of function of these systems does not satisfy the condition of uniform boundedness for the

product of norms:
[l ] < o ] 2] < ®)

which is necessary for the basis property [27] in La(—1,1).

Therefore,

3 Case of rational r

Let r = /(1 — @)/(1 + @) be a rational number, which can be represented by an irreducible fraction r = Z—;
where mqy, mo € N.
Then a merging effect is observed for the following points of the spectrum o (L)

.Ulrmn = N”mzna neN. 9)
We denote the sequence extracted in (9) by u) and note that the eigenfunctions corresponding to the eigenvalues

A= \: = (ur)? are linearly dependent,

n —
U (@) = (1) (1 = B)"'ui3), (2) = sin(mminz) = ujy(2);

(=)™ = B) ol (2) =02 (x) = cos(rmanz) = v} (z).

m1n m n

Therefore, the systems of eigenfunctions (4) and (5) become incomplete in Lo(—1,1).
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We supplement the eigenfunctions corresponding to A = A}, by associated functions, that is, the solutions
of the inhomogeneous problems

Lu(x) = Nu(z) +ul(z), —1<az<I;
(10)
u'(=1) = u'(1), w(=1) = Bu(l);

Lo(x) = Xjo(a) + vj(a), —1<az<L;

(a=pB'(-1) = (af —1)v'(1), v(=1) =wv(1).

By straightforward computations, we find the functions

u:l71(x) =21+ a)wmln)71 [9: cos(mminx) + %(71)(’”1“”2)” COS(WTI'LQTLZE):| + anu) (x); (12)
% . 1 . 1+ ﬁ (mi+ma)n *
thala) = (201 @)mmam) ! | ~asin(mmans) + 15 (=) sin(omn) | - 4, (13

which are solutions of problem (10) and (11), respectively, for arbitrary a,, € R.

Note that if we substitute u, ; (x) for uj,(x) into the right-hand side of (10) and v}, ; () for v}, (x) into (11),
then problems (10) and (11) have no solutions. It follows that the corresponding problems have no associated
functions of the second or any higher order.

Lemma 3. Let r = mq/mqy be rational. Then each of the systems of root functions obtained by the following
procedures is complete and minimal in La(—1,1):

— for problem (1), one takes the union of the eigenfunctions (4) corresponding to X # X
uy, (z), and the associated functions uy, 1(x), n € N;

— for problem (2), one takes the union of the eigenfunctions (5) corresponding to A # X, the eigenfunctions
vy (), and the associated functions vy, (x), n € N.

Proof. The proof is similar to that of Lemma 1. Consider the system of root functions of problem (1) and

suppose that a function f(z) € La(—1,1) is orthogonal to all functions of that system.

*
n?

the eigenfunctions

Since the function f(z) is orthogonal to all eigenfunctions ul(l)(a:)7 [ € N, we find that it coincides almost

everywhere with an even function. In addition, the function f(z) is orthogonal to all eigenfunctions u,(f) (), k=0
(mod mg), and all associated functions u} ;(x), n € N. By virtue of its evenness, in this case, the function f(z)
is orthogonal to all functions cos(mkz), k € N, as well. Therefore, it is equal almost everywhere to a constant,
which, just as in Lemma 1, implies the assertion of the lemma. The proof of the lemma is complete.

Let us now modify the root functions of problem (4) and (5) so as to ensure that they form a biorthonormal
pair.

If A # A%, then the corresponding eigenfunctions satisfy the same relations (6), where { = 0 (mod my) and
k =0 (mod msy). Therefore, I = lymq + lo, where l1,l3 € N, 1 <ly <mj — 1, and the number % =Ilimg + 12%
is not an integer; consequently,

l l l
sin? r_ sin? <7r ( - l1m2)> = sin? <7727n2> > sin? T (14)
r r mi mq

Likewise, we have k = k1ymgy + ko, k1, ko € N, 1 < ks < mg — 1, and the number rk = kymq + k‘g% is not an
integer; consequently,

k
sin?(rrk) = sin®(w(rk — kymy)) sin® <7r 2m1) > sin® —. (15)
mo mo
Consider the eigenvalues A = A). We have
1+5

(_1)(m1+m2)n

(up,vn) = (un 1,05 0) =0, (up, v 0) = (up ,0n) = (2(1+ @)mman) ™

1-—

=

Therefore, biorthonormal pairs in Ly(—1,1) are formed by the function systems

to(x), 121(1)(33), 1 #0 (mod my), 12,(62)(1‘), k # 0 (mod mo); 16)
16

*

Uy (z) = sin(mrmynz), 4, 4(r) =uy (), n €N,
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for problem (1) and
Bo(x), 57 (x), 1#0 (mod my), 5 (x), k#0 (mod my);
or(x) =201+ a)wmln(—l)(ml"’m?)"% cos(mmanz); (17)

¥ (x) = —r~ (= )(mﬁ-mz)ni gxsm(ﬂmgmc) + sin(mminx) — ap v} (z), neN,

for problem (2) with arbitrary constants a,, € R.

Let us evaluate and estimate the product of norms of root functions. By virtue of the relations presented
before Lemma 2 and the estimates (14) and (15), the products of norms of the corresponding eigenfunctions are
uniformly bounded for A # A’. If A = A%, then we have

n?

2
- - 1-—
la|® =1, f;]* = (2(1 +a)mmin B)

1+5
s [* = (1/3) + 1+ﬁ B+ (2m2m3n?)~! B a,n=2 o
m1 (2(1 + a)mmyn)? 2(1 + a)m2m? "
1/3) — (27?m3n®) " (1-B\° 1-
|17n1H = 0 (r2 ) (1+§) +1+2(1+a)%an+(2(1+a)7rm1)2ain2.

Therefore, each of the products ||@ 2 |5]|* has the form

nl?
c3(n) + cqan + csa’n?, (18)

where ¢4, c5 > 0 are constants and c3(n) satisfies the inequality 0 < ¢’3 < ¢3(n) < ¢’3 for all n € N.

Lemma 4. The products of Lo-norms of the respective root functions in the biorthonormal pair are uniformly
bounded if and only if

an=0(Mn"") as n— cc. (19)

Proof. Indeed, if a,, = O(1), then (18) is uniformly bounded provided that a,n = O(1). If the sequence
a, is not bounded, then (18) is equivalent to csa2n? as n — oo and hence is again uniformly bounded under
condition (19). The proof of the lemma is complete.

Let us show that, in a sense, condition (19) is a rule for the selection of associated functions which provides
the basis property of considered systems of root functions in La(—1,1).

Lemma 5. If condition (19) is satisfied, then each of systems (16) and (17), after the normalization in
Lo(—1,1), satisfies a Bessel type inequality and hence forms an unconditional basis in Lo(—1,1).

Proof. For example, consider system (16) of root functions of problem (1). If A # A%, then the normalization

—1/2

gives the system
3 1-8\? 1-5 . .
5 [3 + (1—"—5) ( 1 +6I) , Sln(ﬂ'll‘),

—1 _
Hﬂ,(f)Hz <cos(7rkm) + L= B cos(mk) sin (Wmlkx>) ;

1+ Bsin(mrk) Mo

where [ # 0 (mod my), k # 0 (mod ms), and, as was shown above, 1 < Hﬂ,(f) H < cg.
For A = X}, we have ’
()

[l

(|, 1|| (z) = AL {z cos(mminz) +

= sin(rmyne);

T L g( 1)(mitma)n cos(wmznx)] + AP sin(rmnx),
where 0 < ¢7 < ASP,ASIQ) <cg,n €N.
Thus, to justify the Bessel property, it suffices to prove the Bessel property of the following three systems
(n € N):
sin(mnzx), cos(mnx), (20)
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cos (wmlnm) ; (21)
mao

x cos(mmin). (22)

System (20) is orthonormal in Ly(—1,1) and hence satisfies the Bessel type inequality with constant B = 1.
The Bessel property of system (22) follows from the Bessel property of system (20), because the factor z is
bounded. Finally, system (21) is a Bessel system by virtue of the following assertion.

Lemma 6. Let {y} be a sequence of complex numbers such that

sup [Im (yx) | < oo, sup E 1< 0. (23)
k t>1
k:IRe('yk)ft|§l

Then each of the systems {sin(yxx)} and {cos(yxx)} is a Bessel system in La(—1,1).
Proof. By virtue of the estimates (23), v = mn + d,, where

sup |Im (dpx) | < 00, sup E 1< 0.
n,k n
k| Re(8n)| <1

Therefore,

/_1 f(z) sin(ygx)dx = cos(dnk) /_1 f(z) sin(mnx)dx + sin(dn) /_1 f(z) cos(mnx)dx+

1 x 1 T
—|—(5nk/ sin(5nkx)/ f (&) sin(mn&)dédx — 5nk/ cos(dnkx)/ (&) cos(mné)dédz,
—1 -1 -1 —1
which implies a Bessel type inequality for the system {sin(y;z)}.

System (21) satisfies condition (23), because

Im (v;) = 0, > < 2my + 1.
ki Re(ve)—t|<1

The unconditional basis property of system (16) follows from the well-known Bari theorem [28]. The proof
of the lemma is complete.

Theorem 2 is completely proved.

We note that using the proven basis property of the system of root functions in the case when the parameter
r is a rational number, the problems describing the process of heat propagation in a thin closed wire wrapped
around a weakly permeable insulation can be considered by the method of separation of variables. Such problems
with periodic boundary conditions with respect to the space variable were considered in [1].

This research is financially supported by a grants AP05131225 (L.V. Kritskov and A.M. Sarsenbi) and
AP05133271 (M. A. Sadybekov) from the Science Committee from the Ministry of Science and Education of the
Republic of Kazakhstan.
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JI.B. Kpunkos, M.A. Cagsibexkon, O.M. Copcenbi

NMuBomonusckl 6ap ekiuimi perTi nuddepeHnnasabl TeHIeY
YIIiH JIOKAJIJIBIK €MeC IIEeTTIK ecell

[lerrix maprraper u(—1) = Bu (1), v (—1) = u’' (1), B? # 1, TOKAIIBIK eMec MbIHAIAH CIIEKTPAJIIBIK,
ecenrin —u” (z) + au” (—z) = Au(z), -1 <z < 1, a € (—1,1), cuexrpanipx Kacuerrepi seprresi. Erep
r=+/(1—a)/(1+ «) uppammonan can 6osca, OHIA €CENTIH, MEHITKTI (DYHKIUAIAPHI TOJNBIK KOHE MU-
HUMaJIIBL XKyiie Kypaiiapl, anaiiga 6asuc emec. Ocbl TY>KBIPBIM JpJlelleHreH. Erep r panuonas can 6oJca,
OHJIa €CENITiH, aKbIPChI3 KOCBIMINA ajiblHFaH (byHKIUAIapbl 6ap. Bys »karmaiiia KocbIMIIa aJblHFaH DyHK-
OUSTApALI TAHIAM ajy KOJIapbl KearipisreH. 2KoHe TaHIam aJibIHFAH TYNKUTIKTI GyHKOUSIAp *Kyieci
Ly (—1,1) xenicriringe 6a3uc KypaiTbIHbI KOPCETLITEH.

Kiam cesdep: muBosonuschl 6ap xKail auddepeHnnanabl TeHAeyIep, JOKAIALIK, eMeC MIETTIK €Cell, CIeK-
TPAJJIBIK, ecell, 6a3Kc, TYNKITKTI DYHKIUIIAP.

JI.B. Kpunikos, M.A. Canpioexon, A.M. Capcenbu

Henokanpuasa KpaeBasd 3a1a49a JJjist JuddpepeHInmaIbHOTro
ypaBHEeHUsI BTOPOro IopsiJiKa ¢ MHBOJIIOIUE

B crarbe u3yueHbl CcleKTpajibHBIE CBOHCTBa st crekTpasibHoil sajgaun —u’ (x) + au” (—z) = Au(z),
-1 < & < 1, ¢ HejokagbHbIMH TrpaHmuHbiMu ycaosusamu u(—1) = Bu(l), u'(=1) = u/(1), rme
a € (—1,1), B # 1. Tloxkazano, uro ecin 1 = /(1 — ) /(1 + ) UppPAIMOHAILHO, TO CHCTEMA COBCTBEHHBIX
dyuxmii nonaa u MuauMasabna B Lo(—1, 1), HO He 06pasyer 6asmuca. B ciaydae panmoHaIbHOrO 9ucaa r
KOPHEBOe IMOJIIIPOCTPAHCTBO 3a/1a9U COCTOUT U3 COOCTBEHHBIX BEKTOPOB U BGECKOHEYHOTO YUCJIA TIPUCOE]IN-
HEHHBIX BEKTOPOB. B 9TOM CiIy9ae yKa3aH METOJ| BRIGOpa MPUCOEINHEHHBIX (DYHKIM, TPH KOTOPOM CHCTEMA
KOPHEBBIX (DYHKIMI 3871891 aABIAeTC 6€3yCaoBHbIM 6aszucoM B La(—1,1).

Karoueswie caosa: OJIY ¢ unBosonuei, HeJIoOKaJIbHAs KpaeBasl 3aja4a, ClIeKTpajbHas 3aja4a, 6a3uCHOCTD
KOPHEBBIX (DYHKITUIA.
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New singular solutions for the (3+1)-D Protter problem

For the nonhomogeneous wave equation with three space and one time variables we study a boundary
value problem that can be regarded as a four-dimensional analogue of the Darboux problem in R?. Unlike
the planar Darboux problem, the R*-version is not well posed and has an infinite-dimensional cokernel.
Therefore the problem is not Fredholm in the framework of classical solvability. On the other hand, it is
known that for smooth right-hand side functions, there is a uniquely determined generalized solution that
may have a strong power-type singularity at one boundary point. The singularity is isolated at the vertex
of the characteristic light cone and does not propagate along the cone. In the present article we announce
new singular solutions with exponential growth.

Keywords: wave equation, boundary value problems, generalized solution, singular solutions, propagation
of singularities, special functions.

Introduction

In this paper we consider some boundary value problems for the wave equation with three space and one
time variables that were proposed by M.H. Protter. From a historical perspective, Protter formulated these
problems in connection with BVPs for mixed-type equations that describe transonic flows in fluid dynamics.
The topic was extensively studied in the 1950 s and 1960 s with the development of supersonic aircrafts. In
particular, the classical two-dimensional Guderley-Morawetz problem for the Gellerstedt equation of hyperbolic-
elliptic type models flows around airfoils and is well studied. Regarding 2-D mixed-type boundary value problems
and their transonic background we refer to the recent survey by Morawetz [1]. In 1954 Protter [2] formulated
some multi-dimensional analogues of the planar Guderley-Morawetz problem. Initially, expectation was that the
methods used in the 2D case could be applied, with minor modifications, for the problems in higher dimensions.
However, the multi-dimensional case turns out to be quite different and the situation there is still not clear.
Some of the difficulties and differences with the planar BVPs are illustrated by the related Protter’s problems
in the hyperbolic part of the domain, also formulated in [2]. In particular, for the wave equation in R*, with
points (z,t) = (21, x2, x3,t),

Ug oy T Uzozy T Uzgzy — Ut = f(l',t) (1)

Q{(az,t):0<t<1/2,t<\/x%+x§+x§<1t}.

The boundary of €2 consists of two characteristic cones

21_{(I,t):0<t<1/2,\/m_1t}7
22:{(m,t):0<t<1/2,\/m:t}

Zoz{t:O,\/xf—l—x§+x§<1}.

Let us point out that the origin O : x = 0,¢ = 0 is both the center of the non-characteristic part of the boundary
Y9, and the vertex of the characteristic cone 5. We will study the following BV Ps.
Problem P1. Find a solution of the wave equation (1) in Q which satisfies the boundary conditions

the domain is

and the ball

Pl: u|g, =0, ulg, =0.
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One can regard the domain 2 as a four-dimensional analogue of the characteristic triangle
D = {(z1,t) € R?: 0 < t < zy < 1—t} for the string operator Ouv(x1,t) := vy,z, — vy in R? with points (z1,1).
The boundary of D consists of two characteristic —l; = {z1 =1-t,0 <t < 1/2} andly = {z1 =1,0 <t < 1/2},
and a non-characteristic segment — lp = {t = 0,0 < z; < 1}. In fact, the domain Q can be constructed by
revolving D in R* about the t-axis. Then the segments Iy, I; and Iy form 3o, X1 and 3o, respectively. In this
context the Protter problems P1 and P1* are four-dimensional variants of the classical Darboux problems for
the string equation in D C R?: the data are prescribed on one of the characteristics and on the non-characteristic
part of the boundary. On the other hand, unlike the planar Darboux problem, the Protter’s problems in R* are
not well posed. Actually, the homogeneous adjoint problem P1* has smooth classical solutions and the linear
space they generate is infinite dimensional (see Lemma 1 in the next section). Thus, in the frame of classical
solvability the Protter problem P1 is not Fredholm, since it has infinite-dimensional cokernel. Naturally, a
necessary condition for the existence of a classical solution for the problem P1 is the orthogonality of the right-
hand side function f to the cokernel. Alternatively, to avoid imposing an infinite number of conditions on f,
the notion of generalized solution have been introduced.

Definition 1 [3]. A function v = u(x,t) is called a generalized solution of the problem P1 in Q, if the
following conditions are satisfied:

1) ueCt (Q\O), ulspo =0, uls, =0, and

2) the identity

/ (UpWp — Ugy Wy — Ugy Wary — UgyWey — fw) dxdt =0
Q

holds for all w € C1(€2) such that w = 0 on ¥y and in a neighborhood of Y.

Notice that this definition allows the generalized solution of the problem P1 to have singularity on Ys. Now,
it is known that when the right-hand side f is smooth, there exists a unique generalized solution of the problem
P1 and it turns out that its singularity is isolated at only one point, that is, the origin O. In [4] it is shown
that for each n € N there is a generalized solution that behaves like || =™ near O. The existence of a solution
with exponential growth is announced in [5]. It is interesting that these singularities are isolated at the vertex
O and do not propagate along the characteristic cone Ys. This differs the conventional case of propagation of
singularities, like in Hérmander [6, Chapter 24.5].

In this paper we discuss for right-hand sides f € C'(Q) the behavior of the generalized solution of problem
P1 and the rate of its growth at the point O.

In the special case when the right-hand side function f is a harmonic polynomial, the exact behavior of
the generalized solution of problem P1 is found in [3]|. In [7] the semi-Fredholm solvability of problem P1 is
discussed. A short historic survey and a comparison of various recent results for Protter problems can be found
in [8-10]. Garabedian [11] proved the uniqueness of a classical solution for the problem P1. According to the
classical and singular solutions let us mention here a series of papers by Aldashev (see [12-15]). Some other
multi-dimensional versions of the planar Darboux problem for the wave equation are studied in [16-19]. For
Protter problems for the wave equation but with lower order terms see [20, 21| and references therein. The
existence of bounded or unbounded solutions for some other connected equations is considered in [13, 22].
Regarding results for degenerated hyperbolic equations we refer to [14, 23, 24] for Keldysh-type equations see
[24, 25], and for BVPs for multi-dimensional mixed-type Lavrent’ev-Bitsadze equation see [12, 15]|. For the
Protter’s mixed-type hyperbolic-elliptic problems, uniqueness results for quasi-regular solutions are proved in
[26]. There are a recent series of results concerning existence or nonexistence of nontrivial solutions of related
quasi-linear problems of mixed hyperbolic-elliptic type in the multi-dimensional case, see [27, 28§].

In the present paper new singular solutions of problem P1 with exponential growth at the origin O are
announced. The main Theorem 6 is formulated in the last section. It is based on some previous results from
[10] for the existence and the behavior of the generalized solution, that will be presented and discussed in the
next section.

Ezistence of generalized solutions

Naturally, the behavior of the generalized solution of problem P1 is affected by the correlations of the right-
hand side function f with the solutions of the homogeneous adjoint problem P1*. In order to construct the
latter, we will use in R? the orthonormal system of spherical functions Y, (n € NU{0}, and m = 1,...,2n+1).
The spherical functions are introduced commonly on the unit sphere S? := {(x1,22,23) : 23 + 23 + 22 = 1}
with spherical polar coordinates (see [29]). Expressed in Cartesian coordinates here, one can define them by
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dk
Yfk(xl,xg,xg) = C’n,kd—kPn(xg)Im {(J:l + img)k}, for k=1,...,n
T3
2k+1 ¥ Y
Yo (2, 20, 23) = Cnykﬂpn(.’tg) Re {(xl +ixa) } , for k=0,...,n
T3

where C,, j, are constants and P, are the Legendre polynomials. The Legendre polynomials are given by the
Rodrigues formula as
(3]

1 d"
P,(s) := Zan o s" 2k,

with coefficients
(2n — 2k)!

27kl (n — k)!(n — 2k)!

o = (~1)F (2)
The constants C,, ,,, are such that functions Y, form a complete orthonormal system in L(S?). For
convenience in the discussions that follow, we extend the spherical functions out of S? radially, keeping the
same notation Y™ for the extended function, i.e., Y, (x) := Y,™(z/|x|) for x € R3\O.
Now, let us define for n, k € NU {0} the functions

3

kp 5774‘8

n

Following Lemma 1 from [10] and Lemmas 1.1 and 2.3 from [30] we can construct solutions of the homogeneous
adjoint problem.
Lemma 1 [10]. The functions

n _ |+t |z -1 m
Vg m (T, 1) = |2 Y n—2k—2 ("2, ||2> Y. (x).

are classical solutions from C°°(2) N C(Q) of the homogeneous problem P1* for n € N, m =1,...,2n + 1 and
k=0,1,...,[(n—1)/2] — 2.

Solutions for the homogenous adjoint problem were first found by Tong Kwang—Chang [31]. Some different
representations of the solutions of the homogeneous problem P1* and the functions v}, are given by Khe Kan
Cher [22].

Next we will present some useful conditions from [10] for the function f that are sufficient for the existence
of the generalized solution of problem P1.

Since the spherical functions form a complete orthonormal system in Ly(S?), generally, a smooth function
f(x,t) can be expanded as a harmonic series

oo 2n+1

=Y > el )Y (@) 3)

n=0 m=1

with Fourier coefficients

(e, t) : /fxt z) do, (4)

where S(r) is the three-dimensional sphere S(r) := {x = (x1,22,23) € R3 : |z| = r}. The results from [10]
ensure the existence of the generalized solution of problem P1 assuming that the Fourier series (3) converges
fast enough. They also give a priori estimates for the singularity of the solution. In fact, the behavior of the
generalized solution depends strongly on the Lo(Q)-inner product of the right-hand side function f(x,t) with
the functions vy, (v,t) from Lemma 1 (see also [20, 3]). Accordingly, we denote by 3., the parameters

Bu . = / of (@, 0)f (2, ) dadt, 5)

Q
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where n =0,...,1; k=0,..., [”Tl} and m =1,...,2n + 1. In order to formulate the general existence result,
we need also to introduce for p > 0 and k € N the series

2n-+1

> el v @)

17575 C* 2= (1780 D] oo +Z””

or Q)

and the power series
2n+1 [(n—1)/2]

:i:l Z Z |BEm] | 5

Apparently, the convergence of || f; n?; C¥|| gives information on the rate of convergence of the Fourier series (3).

Theorem 2 [10]. Let the function f(xz,t) belong to C1(Q). Suppose that the series || f; n%; C°|| and || f; n*; C*||
are convergent and the power series ®(s) has an infinite radius of convergence. Then there exists a unique
generalized solution u(x,t) € C1(Q\O) of the Protter problem P1 and it satisfies in Q\O the a priori estimates

C _
el <o (L) + el irntsc?l]

ua,t)| < C [cb (| fH) 1m0 4 |1 01”]

3
> o) + (e 0] < Clal2 [ (22 ) 1 gsns ]
P o]+

where the constants C, C and Cy are independent of the function f(z,1).

In these estimates, the singularity of the generalized solution at the origin O is controlled by the function
®(s), while || f;n?; C*|| bounds the «regular part» of u(z,t).

Notice that the definition of ®(s) involves parameters 3, with index & > [251] — 2 also, and the
corresponding functions Uy, are not classical solutions of the homogenous problem P1*. Nevertheless, these
functions vy, still «control» some discontinuities of the generalized solution and cannot be omitted as seen
from the followmg result from [7]. At the same time, Theorem 3 also suggests that there are no other linearly
independent nontrivial classical solutions of the homogenous adjoint problem P1*.

Theorem 8 [7]. Let the function f(x,t) belong to C*°(Q). Then the necessary and sufficient conditions for
existence of bounded generalized solution u(zx,t) of the Protter problem P1 are

[ ol ) dea = o
Q

forallme N, k=0,..., ["?’1], m = 1,...,2n + 1. Moreover, this generalized solution u(z,t) € C*(Q\0O) and
satisfies the a priori estimates
u(z,8)] < Clfllgrogm)
3
D g (2, 6)] + Jug (2, 1) < C(l2* + )7 | fll crogay -

i=1
where the constant C' is independent of the function f(x,t).

In practice, it is not always easy to compute all the parameters 51?,771 from (5) and therefore to construct
and study the behaviour of the series ®(s). On the other hand, notice that we have

Bt | < C*/? 12" lcoqy -
since directly from the definition of the functions vy, (z,t) we get the estimate |v} | < [Y"| < Cn!/2. This
allow us to formulate the next direct corollary of Theorem 2.

Corollary 4. Let the function f(z,t) belong to C'(Q). Suppose that the series || f;n®; C°|| and ||f;n*; C1||
are convergent and the power series

oo

2n+1
> ||fr71||com)] $
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has an infinite radius of convergence. Then the unique generalized solution u(z,t) € C*(Q\O) of the Protter
problem P1 satisfies near the origin the estimate

Co

0] < 0o (72, (6)

where the constants C' and Cy are independent of the function f(x,t).

Remark. Although Corollary 4 is somewhat weaker than Theorem 2, it still gives better estimate than the
previously known general a priori estimates for the singularity of the solution. In particular, Protter problems
in the (2+1)-D case (two space and one time dimensions) were studied in [4]. According to [4, Theorem 5.3| the
sufficient condition for the existence of a generalized solution is the convergence of the series

—1_ (2n
5 110 () (1 lcogay + 12l cny) « or it e >0,

n=1

where Iy is the modified Bessel function of first kind, and f? are the Fourier coefficients for the right-hand side,
and could be viewed as the analogues of the functions f/* given by (4). Using the inequality Iy(s) < e® for s > 0,
one could paraphrase Theorem 5.3 from 4 in somewhat weaken form as follows. Suppose that the power series

32(5) 1= 3 (2l ooy * 1 ongey) 75"

n=1

is convergent for all s. Then for the singularity of the unique generalized solution u(z,t) for the (241)-D Protter
problem P1, near the origin we have the estimate

lu(z, 1)) < OBy (exp (mi])) . (7)

Notice that the exponent in the argument of ®5 in (7) is replaced now in (6) by simply a linear function.

Evidently, Theorem 2 gives only an upper bound, but the generalized solution does not necessarily grows
like ®(C/|z|) near the origin. The paper [3] considers the special case when the right-hand side function f
is a harmonic polynomial, i.e., (3) is a finite sum (f”* = 0 for large n), and the function ®(s) is simply a
polynomial. In [3] the exact asymptotic formula for the generalized solution at O is found. It shows that the a
priori estimate is sharp and the solution can indeed have a power-type singularity as ®(C/|z|). On the other
hand, in the general case f(z,t) € C'(Q) stronger singularities are also possible. Actually, a generalized solutions
with at least exponential growth at the origin was found in [5]. In the present article the existence of solutions
with stronger singularities is announced.

Singular solutions with exponential growth

Regarding the possible singularities of the generalized solution of problem P1 the next question naturally
arises. Given the function ¢(s), can we find a smooth right-hand side function f such that the corresponding
generalized solution grows like ¢(1/|z|) at O? As a possible answer, the following result is given in [10], that
provides a method for finding suitable functions f. Recall that a, o, are the coefficients (2) of the Legendre
polynomials.

Theorem &5 [10]. Let the function f(x,t) belong to C1(€2), the series || f;n%; C°||, || f; n*; C!|| are convergent,
and the power series ®(s) has an infinite radius of convergence. Let the numbers o, > 0, p =0, 1,2, ..., are such
that the series

o(s) := Z aps?

p=0
is convergent for all s € R. Suppose that there is 2* = (27, x5, 23) € R? such that

oo 2p+4k+1
Z Z pan,gkﬁﬁrﬁk pior(z™) > a, forall pe NU{0}. (8)
k=0 m=1
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Then there exists a number 6 € (0,1/2) that the unique generalized solution u(z,t) of problem P1 satisfies the
estimate

* * * 1
lu(tal, tas, tas, t)| > ¢ (2t>

for t € (0,9).

According to Theorem 5 one could try to construct a right-hand side f(z,t) € C*(Q) by choosing suitable
Fourier coefficients f™(r,t). They have to be «small enough» that the required series || f;n?; C*|| and ®(s) are
convergent, but at the same time, satisfy the inequality (8). The main result in the present paper is that it is
possible to apply this procedure to build an appropriate function f such that the corresponding solution grows
like exp(|z|~*) at O.

Theorem 6. Let k € N. Then there exist functions f € C*(Q2) and positive numbers d;, € (0,1/2) and Cy,
such that the unique generalized solutions uy(z,t) = ug(x1,22,23,t) € CH(Q\O) of the problem P1 for the
wave equation (1) with right-hand function fj, satisfy the estimates

u(0,0,t,t) > exp(t %) for t€(0,6),

and
lup(2,t)| < Crexp(2lz|~%)  for (z,t) € Q.

From [5] it is known that there is a right-hand side function f € C°°(Q) such that the generalized solution
grows at least like exp(|z|~!). Obviously this corresponds to the case k = 1 in Theorem 6. Unlike [5] here we
have also an estimate from above, that shows that the solution behalves «exactly» like exp(|z|~*) at O. On
the other hand, the functions f; are only C'-smooth, and is not clear whether, like in [5], one could construct
functions from C*°(Q) with the desired property.
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T.II. Ilouos

ITporrep (3+1)-D ecebiniy »kaHa CUHTYISPJIBIK, IITEMIiMIepi

VakbITKa 6ailTaHBICTHI Oip afHBIMAJIBICHI Oap, YIIT OJIIIEM/Ti KeHICTIKTe OiPTEeKT] eMeC TOJKBIH TeHIEY1 Kapac-
THIpBULIEL. Byi Tergey yimin R? kenicririnzgeri JapGy ecebinin aHAIOTBI GOJIBII TAOBLIATHIH TOPTOIIIEM/ I
eTTiK ecen 3epTTesreH. Bys ecenTiy Ka3bIKTHIKTarbl JlapOy ecebineH MbIHAAN abIPMAIIBLIBIFLL Hap:
R* kenicririnye KapacTHIPLUIATEIH GyJl ecell KOPPEKTLIL eMec yKoHe OHbIH, OJIMeMi aKbIPChI3 KOSLIPOCHL 6ap.
KiraccukaabIk mentiMaiiik TyprbICBIHAH MYHJIa ecell ppearoabMIiK eMec ecell OOJIbI TadbLIa bl ExKinri
JKaFbIHAaH, TEHJIEYIIH OH >KaFbIHJAFbl (DYHKIMsS Teric (DyHKIus OOJFaH Karmaiiza TeHaeyaiH Oearit Gip
JKaJImbLIaMa IerriMi 6ap KoHe Jie OJI MermiM 6ip MeTTIK HYKTele M9PeXkKeTiK TYpP/e €PeKIeIeHTeH OOTyb
MYMKiH. Epekiresnik HyKTeci XapaKTepUCTHKAJIBIK, KOHYCTBIH TOOECIH/Ie OKINayIaHFaH »KoHe KOHYC OONBIH 1A
Tapajmaiiael. By Makasaga 9KCIIOHEHTA TYPIHJIE ©CETIH KaHa CUHTYJISPJIBIK, IIENNM 0ap eKeHiH aHbIKTAJI-
JIBI.

Kiam cesdep: TONKBIH TEHJEY], MIETTIK €CENTep, XKAJINbLIaMa IIEIM, CAHTYJISPJIbIK, MENNMIED, €PEKIIeTiK-
TEPJIiH TapaIybl, apHAWBl DYHKITUSIIAP.

T.I1. Tlomos

Hosbie cunrynsipabie pemenns juis (3+1)-D 3amaun IIporrepa

115t HEOHOPOIHOTO BOJTHOBOTO YPABHEHUS C TPEMsI TPOCTPAHCTBEHHBIME U OJHOW BPEMEHHOM ITepeMEeHHbI-
MU U3ydeHa KpaeBas 33/1a9a, KOTOPYIO MOKHO PACCMaTPUBATH KaK YeThIPEXMEPHBIi aHaJIor 3a7a4u Japby B
R2. B ormmrane or miockoit 3amadu Jap6y, RY-Bepcus me sBsieTCst KOPPEKTHOMN 1 MMeeT GeCKOHETHOMEPHOE
kospo. [TosTomy 3a7ada He siBjisiercs ppearoabMOBOI B paMKax Kjaccuieckoil paspemumoctu. C apyroi
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CTOPOHBI, M3BECTHO, YTO JJIsI TVIAJKUX IIPABBIX YacTell ypaBHEHUsI €CTh OJJHOZHATHO OIpPE IeJIEHHOE 0000IIeH-
HOE DpeIlleHne, KOTOPOe MOXKET UMETh CHJILHYIO0 OCOOEHHOCTH CTEIIEHHOI'O THUIA B OJHONW I'DAHUYHON TOUKE.
OcobGeHHOCTh M30JIMPOBaHA B BEPIIMHE XapaKTEPUCTUYECKOTO CBETOBOI'O KOHYCA M HE PACIPOCTPAHSIETCS
BJIOJIb KOHyca. B HacTosIell crarbe aHOHCUPOBAHbI HOBBIE CHUHIYJISIDHBIE PEIIEHUsI C SKCIIOHEHIUAIbHBIM
pOCTOM.

Karouesvie caosa: BOJIHOBOE ypaBHEHNE, KpaeBble 3a7a4u, 00OOIEHHOE pellleHne, CUHTYJIAPHBIE DENIeHns,
pacopocTpaHeHre 0COGEHHOCTEMN, CIeIuaIbHbIe (DYHKIIAN.
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On the numerical solution of identification hyperbolic-parabolic
problems with the Neumann boundary condition

In the present study, a numerical study for source identification problems with the Neumann boundary
condition for a one-dimensional hyperbolic-parabolic equation is presented. A first order of accuracy
difference scheme for the numerical solution of the identification problems for hyperbolic-parabolic equations
with the Neumann boundary condition is presented. This difference scheme is implemented for a simple
test problem and the numerical results are presented.

Keywords: source identification problem, hyperbolic-parabolic differential equations, difference schemes.

Introduction

Partial differential equations with unknown source terms are widely used in mathematical modeling of real-
life systems in many different fields of science and engineering. They have been studied extensively by many
researchers (see [1-15] and the references therein).

Various local and nonlocal boundary value problems for hyperbolic-parabolic equations with unknown
sources can be reduced to the boundary value problem for the differential equation with parameter p

u'(t)+Aut) =p+ f(t), 0<t<1;
u'(t)+ Au(t) =p+g(t), —1<t<0;
w(0+) = u(0—), «'(0+)=1u'(0—);

u(=1)=¢, uN)=v¢, —-1<AI<1

(1)

in a Hilbert space H with self-adjoint positive definite operator A. The solvability of problem (1) in

the space C(H) of continuous H-valued functions wu(t) defined on [—1,1], equipped with the norm
lullccry = _max lw(t) ||z, was investigated in [16]. In applications, the stability inequalities for the solution of
t

three source identification problems for hyperbolic-parabolic equations were obtained.

The first and second order of accuracy stable difference scheme for the approximate solution of problem
(1) were constructed and investigated in [17] and [18], respectively. The stability estimates for the approximate
solutions of two source identification problems for hyperbolic-parabolic equations were obtained.

In this paper we consider the boundary value problem for hyperbolic-parabolic equations

uy — (a(x)ug)  +06u=p(x)+ f(t,z), 0<z<1, 0<t<I;
ur — (a(@)ug) , 4+ 0u=p(x) +g(t,z), 0<x<1, —1<t<0;
w(0+,z) = u(0—, z), u(0+,2) = w,(0—,2), 0<z<1I; (2)
u(=1,z) = %0(55)’“( ) =¢P(@), 0<z<l
ug(t,0) = uy(t,1) =0, —l<t<1,
where p(z) is an unknown source term. Problem (2) has a unique smooth solution {u(t,z),p(x)} for

the smooth functions a(x), ¢(x), ¥(z), f(t,x), g(t,z) and positive constant §. Note that the boundary
value problem (2) can be reduced to the abstract boundary value problem (1) in a Hilbert space H = L2[0, 1]
with a self-adjoint positive definite operator A* defined by formula A*u(x) = —(a(x)uw)z + du with domain
AT) = {u(z) : w(@), ue(x), (alx)us), € Ly[0,1], ug(0) = uy(1) = 0}.
We construct the first order of accuracy difference schemes for approximate solutions of boundary value
problem (2). We discuss the numerical procedure for implementation of this scheme on the computer. We
provide with numerical illustration for simple test problem.
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Numerical procedure for problem (2)
The solution of problem (2) can be written as following:

u(t,z) =v(t,z)+ 2(x), 0<z<1, —-1<t<1, (3)

where z(z) is the solution of problem
—(a(2)2' () +62(x) = p(x), 0<z<1;
{ Z(0)=2'(1)=0

and v(t, z) is the solution of boundary value problem
vy — (a(z)vg), +0v = f(t,z), 0<z<1, 0<t<I;
vy — (a(x)vgg)x +ov=g(t,x), 0<ax<l, —1<t<O0;
v(0+,2) = v(0—, z), v (0+,2) =v:(0—,2), 0<z<1; (5)
v(l,z) —v(=1,z) =¢(x) —p(x), 0<a<];
va(t,0) = vy (,1) =0, —1<t<1.

Note that from (2)—(4) we get
p(z) = (a(@)vs(L,2)), —6v(L,2) — (al2)y'(x)) +6¢(z), 0<z<1. (6)

Taking into account all of the above, the following numerical algorithm can be used for approximate solutions
of the boundary value problem (2):

1. Obtain approximate solutions of the boundary value problem (5);

2. Approximate the source p(z) by using (6);

3. Obtain approximate solutions of the boundary value problem (4);

4. Obtain approximate solutions of the boundary value problem (2) by using (3).

The first step of the algorithm

Let 7 = 1/N and h = 1/M. We define the grid points xz,, = nh, 0 <n < M and t;, = kr, —N < k < N. For
the approximate solutions of the boundary value problem (5) we construct the first order of accuracy difference
scheme in ¢

k—1 ko g ktl k41 k41 k1 _ kel
v =208 okt ] Upt1l — Up s k+1 _
a’(‘rnJr%) h - a(xnfé) L + 5vn -

T2 h

= f(tkt1,2n), 1<k<N-1 1<n<M-1;

k_ k=1 k k k_ ok
vy — v 1 Upyq — U vy — Uy _4 &
T ‘h<“<xn+;>w—a<xn;>”h" o+ 0up = g (th2n)
_N41<k<0, 1<n<M-—1 (7)
v =) 1 v — ol

0 0
n Unt+1 — Un n—1 0
g )L i = 1<n<M-1;
- h (a(mn+2) h a(xn——) h ) + 6’Un g (th xn) ) SN s )

ol — o N =(2,) — (z,), 0<n< M,

of =k, ok =9k, -N<E<N,

where v¥ denotes the numerical approximation of v(¢, z) at (¢, ¥,,). Note that (7) is the second order of accuracy
scheme in z.

The second step of the algorithm

Once the numerical solution of the boundary value problem (5) is computed, we use (6) to approximate the
source p(z) at grid points as following:
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1 N — ol oN — oV
pn= 4 (a($n+;)n+lhn — a(xn_é)nhnl) — ol —

—% (a(xn+§) . —a(xn_%)w(xn) _hw(xn_l)) +0(xn), n=1,2,...,.M—1.

The third step of the algorithm

For the approximate solutions of boundary value problem (4) we have

1 Zn+l — % Zn — Zn—1
_E (G/(xn-‘ré)nhn - a’(xn—l)nhn> + (52’” = Pn, n = 1727 cee 7M - 17
21 = 20y, AM = ZM-1-
Solving this system for zg, 21, 22,..., 2y and then using (3), we finally obtain the approximate solutions of
boundary value problem (2)

ub =ovF +2,, n=01,....M, k=-N+1,...,N—1. (8)

Numerical Illustration

We consider the initial-boundary value problem

Ut — Uge +u=p(x) + ((1* +2)e " —1)cosmz, 0<z<1, 0<t<l

Up — Uge +u = p(z) + (7T2€7t

u(0+, ) = u(0—, x), u(0+,2) = w(0—,z), 0<z<1; (9)

fl)cosmn, O<ax<l, —-1<t<O;

u(—1,z) = e' cosma, u(l,2) =e cosmr, 0<x<1;

ug(t,0) = uy(t,1) =0, —1<t<1.

The exact solution of the problem (9) is
u(t,r) =etcosma, 0<x<1, —1<t<1

with the source term p(x) = cosmz, 0 <z < 1.
The first order of accuracy auxiliary difference scheme (7) for the initial-boundary value problem (9) has
the following form

k—1 k k41 k+1 k+1 k+1
Un, — 2vn + Un+ _ Un—1— 2Un + Up41

2 h2
1<k<N-1, 1<n<M-1;

+oith = (7% +2)e” "+ — 1) cos Ty,

k_ k=1 k ko ok
v — Up_1 — 20 + 5y _
n n_ ndl oy gk = (7T26 B —1) cosTan;

T a h?
—N+1<k<0, 1<n<M-1; (10)
10 0 9,0 4,0
Un "% Un-1 h; n+1+’l)0=(7T26_t0—1)COS7T1'n, 1<n<M-1;
i
vflv—v;N—(e l—el)cosmrn, 0<n<M;

of —ob =0k, —ok, =0, —N<Ek<N,

which can be written in the matrix form

AVn+1+BVn+CVn71 =¢n, 1<n<M-1
Vi=VWo, Vu=Vu_i,
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where
0 0 0 0 0 0 T
0 a O 0 0 0
0 0 a 0 0 0O 0
0 0 0 a 0 0 O 0
A = C =
0 0 0 a 0 0 O 0
0 0 0 0 0 b O 0
0 0 0 0 0 0 b 0
L0000 .- 0000 - b (2N+1)x (2N +1)
-1 0 0 --- 0 0 0 o 0 --- 0 0 17
-1 ¢ 0 0
0 -1 ¢ 0 0 0 O
B 0 0 0 -1 ¢ 0 0 0 0 0 0
10 0 0 0 ¢ 1 0 0 0 0 0
0 0 0 0 1 -2 d 0 0 0 0
0 0 0 0O 0 1 -2 d 0 0 0
L 0 6o0.. 09090 00 - 1 -2d] (2N+1)x(2N+1)
TN M (e7! —el)cosmay, 1
v N+ 7(72e~t-N+1 — 1) cos ma,
v N2 T(WQe_t*N” — 1) COS Ty,
00 7(m%e~t — 1) cos may
Vi = 1 Pn = 2 —t
Uy, 7(77 e ' — 1) COS Ty,
v2 72((7r2 +2)e"t2 — 1) COS Ty
vl 72((7r2 +2)e b — 1) COS Ty
N 2((.2 —
L Un 4 (2N+1)x1 L T ((ﬂ- + 2)6 - 1) COSTTTn | (2N+1)x1
2 2 272 2
with a = f%, b= 2 c=1+ h—ngT, d=1+ % +72and o = 71+—72— + 7. To solve the matrix equation

(11), we use the modified Gauss elimination method [19]. We seek the solution of the matrix equation (11) by
the following form:

Vn:an,+1vn+1+ﬂn+la n:M717~'~7271;
Var = (I —an) ™" Bur,

where [ is a (2N 4+ 1) x (2N + 1) identity matrix, o, (1 < n < M) are (2N + 1) x (2N + 1) square matrices
and 3, (1 <n < M) are (2N + 1) x 1 column vectors, calculated as

{ i1 = — (B+Cay) " 4
Bus1 = (B + Cay) ™ (¢ — CB)

forn=1,2,...,M — 1. Here o is an identity matrix and /3; is a zero vector.
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The numerical solutions are computed using the first order of accuracy scheme (10) for different values of
M and N. With the obtained numerical solutions we approximate the source p(z) at grid points as following:
oN =208+l v cosmw, i —2cosma, + COS Tyt
v, —e

— 1
Pn = 2 — Un h2

+e

COSTTLy, n=1,....,M — 1.

Finally, solving the system

_Zn—l — 2Zn + Zn+1
h2

21 = 20, AM = ZM—1-

+2p=Pn, n=12,....M—1,

for zg, 21, 22, ..., 2y and then using (8), we obtain the numerical solutions of problem (9).
We compute the error between the exact solution of problem (9) and corresponding numerical solution by

”EUHOO =

) ||Ep||oo = max |p($n) _pn‘ ,

ok
|u(tk’ Tn) = Un 0<n<M

max
—N<k<N, 0<n<M

where u(ty, z,,) is the exact value of u(t,z) at (tx,z,) and p(x,) is the exact value of source p(z) at z = x,; uk

and p, represent the corresponding numerical solutions. Table shows the errors between the exact solution of
the problem (9) and the numerical solutions computed by using the first order of accuracy scheme for different
values of M and N. We observe that the scheme has the first order convergence as it is expected to be.

Table

The errors between the exact solution of the problem (9) and the numerical solutions computed
by using the first order of accuracy difference scheme for different values of h =1/M and 7 =1/N

| Epll oo Order | Bl oo Order
1.3246 x 107! - 2.1520 x 1071 -
7.4275 x 1072 | 0.8346 | 1.1722 x 10~ | 0.8764
4.0124 x 1072 | 0.8884 | 6.1093 x 102 | 0.9402
60 | 2.1234 x 102 | 0.9181 | 3.1190 x 10~2 | 0.9699
20 [ 1.1072 x 1072 | 0.9394 | 1.5758 x 10~2 | 0.9850

o

o

e I e el
I
SIS
I

Conclusion

In the present study, the numerical study for source identification problems with the Neumann boundary
condition for a one-dimensional hyperbolic-parabolic equation has been conducted. In particular, the first order
of accuracy difference schemes for the approximate solutions of the boundary value problem (2) has been
constructed and the numerical algorithm for implementation of this scheme has been presented. Numerical
example has been provided.

Finally, we note that the second order of accuracy difference schemes for the approximate solutions of
boundary value problem (2) can be constructed and implemented in the similar way.
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M.A. Ambipansiesa, M. Ambipasibies

IlIerTik maptel Heiliman Typinge 0oJiaThbiH MIeHTU(DPUKAITASAITBIK,

rmnep60ﬂa—napa60ﬂaﬂbn§ ecenTep,zLi CaH/ABbIK IIIEelly TYypPaJibl

IIlerTik mapter Heiiman Typingeri 6ip esmremai rurepbosia-miapaboJiaiblK, TYPAeri TeHaey VIIH Ke3Jep-
i maeHTUGUKAIUAIAY ecebiH CaHMBIK 3epTTey HoTmzKeci yeurablrad. [llerrik maprter Heftman Typiageri
runepboJIa-rapabosIaabIK TYPAEri TeHaeyep YIIiH Ko3Aepi uaeHTu(OUKaInsIay eceOiH CaHIbIK, eIy YIITiH
JRJIiTi OipiHIm peTTi alfbIpbIMABLIK opMyJIachl Kearipiired. By dopMyrna KapanaiibiM ecerr yIniH mnaiia-
JIAaHBIJIFAH, COHBIMEH KATap CAHJIBIK €CEeNTeyJIep HOTMKeci OepiireH.

Kiam cesdep: ke3nepai unentudukanusiay ecebi, rumepbosa-mapabosanbik auddepeHnnaiabpl TeHILY,
aMBIPBIM/IBIK, CXEMA.

M.A. AmpipasisieBa, M. Ambipaibies

O 4gucjgeHHOM peaiennnm I/I,HeHTI/ICl)I/IKaJ_[I/IOHHLIX

FHHGp6OHO—H&p&60HquCKHX 3aJa4 C I'PaHUYHbIM YCJIOBUEM Heiimana

74

B craTbe npencraBieHo unc/ieHHOE MCC/IE0OBAHNE 33191 UACHTU(MDUKAINI HCTOTYHUKOB C TPAHUIHBIM YCJIO-
BueM Heiimana /1151 0JTHOMEPHOIO TUIIEPOOIO-TTapaboImIecKoro ypasaenusi. [IpegcraBiiena pa3HoCTHAs CXe-
Ma IIePBOT'0 IOPsIKA TOYHOCTH JJIs YUCJIEHHOIO PENIeHNs 3024 HAeHTU(MUKAINY [T THIePO0I0-11apabosin-
YeCKUX YpaBHEHWII ¢ TPAHUYHBIM ycjoBrmeM Heiimana. DTa pasHOCTHAsI CXeMa PeaJM30BaHa JJTsi IIPOCTOM
TECTOBOH 3aa4u.

Kmouesvie carosa: 3aiada nAeHTU(MUKAIIMA UCTOYHUKA, THIEepOosIo-Tiapadbosmdeckue auddepeHiuaibHbie
yPaBHEHUsI, PASHOCTHBIE CXEMBI.
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Inverse source problems for a wave equation with involution

A class of inverse problems for a wave equation with involution is considered for cases of two different
boundary conditions, namely, Dirichlet and Neumann boundary conditions. The existence and uniqueness
of solutions of these problems are proved. The solutions are obtained in the form of series expansion using
a set of appropriate orthogonal basises for each problem. Convergence of the obtained solutions is also
justified.

Keywords: inverse problem, involution, nonlocal wave equation, Sturm-Liouville problem, existence of
solution, uniqueness of solution.

1 Introduction

In many physical problems, determination of coefficients or right-hand side according to some available
information (the source term, in case of a wave equation) in a differential equation is required; these problems
are known as inverse problems. These kinds of problems are ill-posed in the sense of Hadamard.

The purpose of this paper is to study inverse problems for a nonlocal wave equation with involution of space
variable x. We consider the nonlocal wave equation

Ut (1) — Uy (T, 8) + EULe (T — 2, t) = f (), (1)

for (z,t) e Q={0<z <m, 0<t<T}, where ¢ is a real number.

Wide opportunities for applying equations with deviating argument in mathematical models have increased
the interest of the study of new problems for partial differential equations [1-3].

Among differential equations with deviating arguments, a special place is occupied by equations with a
deviation of arguments of alternating character. Such deviations include the so-called deviation of involution
type [4]. To describe them, let T be an interval in R and let X € T be a real variable.

The homeomorphism

A (X)=a(a(X)=X

is called a Carleman shift (deviation of involution) [5].
Equations containing Carleman shift are equations with an alternating deviation (at X* < X being equations
with advanced, and at X* > X being equations with delay, where X* is a fixed point of the mapping « (X) ).
Concerning the inverse problems for partial differential equations with involutions, some recent works have
been implemented in [6-11].

2 Statement of problems

The paper is devoted to two inverse problems concerning the wave equation with a perturbative term of
involution type with respect to the space variable. We obtain existence and uniqueness results for these problems,
based on the Fourier method.

Problem D. Find a couple of functions (u (z,t), f (x)) satisfying the equation (1), under the conditions

u(z,0) =0, z €[0,n], (2)
u(z,T) =1 (z), z €[0,7], (3)
ug (,0) =0, x € [0,7], (4)

Cepust «Maremarukas. Ne 3(91)/2018 75



R. Tapdigoglu, B.T. Torebek

and the homogeneous Dirichlet boundary conditions
u(0,t) =u(m,t)=0, t 0,17, (5)

where ¢ (z) is a given sufficiently smooth function.
Problem N. Find the couple of functions (u (z,t), f (z)) in the domain € satisfying equation (1), conditions
(2), (3), (4) and the homogeneous Neumann boundary conditions

ug (0,t) = uy (m,8) =0, t €[0,T]. (6)

A regular solution of the problems D and N is the pair of functions (u (z,t), f (x)), where u € C? (Q) and
fec (o).

3 Spectral properties of the perturbed Sturm-Liouville problem

Application of the Fourier method for solving the problems D and N leads to a spectral problem defined by
the equation
y' () —ey’ (m—2)+ My (z) =0,0 <z <, (7)

and one of the following boundary conditions
y(0) =y (m) =0; (8)

y' (0) =y (m) =0. (9)

It is easy to see that the Sturm-Liouville problem for the equation (7) with one of the boundary conditions
(8) and (9) is self-adjoint. It is known that the self-adjoint problem has real eigenvalues and their eigenfunctions
form a complete orthonormal basis in L? (0,7) [12]. To further investigate the problems under consideration,
we need to calculate the explicit form of the eigenvalues and eigenfunctions.

It is easy to show that for |e| < 1 the problem (7), (8) has the following eigenvalues

Mo = (1+¢e)4k* k€N,

Aepr = (1—2) (2k+ 1), k € No = NU {0}

and eigenfunctions
yZDk = \/%Sil’leQ}, k eN;

(10)
yﬁ“ = \/%Sin(% + 1)z, k € No.
Similarly, the problem (7), (9) has the eigenvalues
A1 =1 +¢) 2k +1)%, k e N;
A = (1 —¢)4k? k € Ny,
and corresponding eigenfunctions
W =75
N o _ /2 .
Yohy1 = \/;cos(Qk—l-l)z, k € No; (11)

Yy = \/gcosﬂm, keN.

The following lemma is proved in [11].
Lemma 1. The systems of functions (10) and (11) are complete and orthonormal in L* (0, 7).
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4 Main results

For the considered problems D and N, the following theorems are valid.
Theorem 1. Let || < 1, ¢ € C*[0,7] and ¥ (0) =@ (1) =0, i =0,1,2,3,4. If

cosvVl—e(2k+1)T <d1 <1

and
cosV1+e2kT < 63 < 1,

then the solution of the problem D exists, is unique and it can be written in the form

X (L—cosyVI—e(2k+1)t)sin(2k + 1)z,
e =) S i@ DT @k T

N i (1 —cosv/1+e2kt)sin2kz , .
(1 —cos I+ e2kT) 16" 2"

. - (1_5)¢§k 1 .
/@) 7;0 (1—008\/1—5(2k+1—;T) (2k +1)2 sin (2% + 1) o+

> (1+¢e) s, .
+ 2%, 13
; (1 —cosv/1+ EQkT) 4k2 St e (13)

where ¢3) | = (@ (), y5 ) and ¢ = (@ (2), ¥

Theorem 2. Let || < 1, ¢ € C*[0, 7] and ¥ (0) = ¢ (1) =0,i =0,1,2,3,4. If
cosvV1l—eRk+1)T <01 <1

and
cosV1+e2kT < o9 < 1,

then the solution of the problem N exists, is unique and it can be written in the form

u(x t)_i (1—cosx/m(2k+1)t)cos(2k:+1)m
7 _k:O (I_COSM(2I§+1)T) (2k+1)4

¢3k+1+

+§: (1 —cosv1— 52kt) cos2kx

; 14
£~ (1 - cos I — e2kT) 16k" Y (1)

e (1+¢€) Y341 .
f(x)_,; (1—005\/1+E(2k+1—3T) kg SR Dt

e o]

+ Z (1—e) vy cos 2kx; (15)
— (1 — cos /T —e2kT) 4k?

where ¢g,t)+1 = (w(4) (z), yé\,fcﬂ) and 1/)5? = (¢(4) (), yé\lg) .

5 Proof of the uniqueness of the solution

Suppose that there are two solutions {u; (z,t), f1 (x)} and {usz (x,t), f2 ()} of the problem P. Denote
u (.’E, t) =u (xa t) — U2 (1'7 t)

and
fx) = fi(x) = fa(2).
Then the functions u (z,t) and f (x) satisfy (1) and the homogeneous conditions (2) and (5).

Cepust «Maremarukas. Ne 3(91)/2018 7



R. Tapdigoglu, B.T. Torebek

Let .
1
u(z,t (16)
|
ugg (1) = \/z/u (x,t) cos2kxdz, k € N; (17)
0
2 s
uggt1 (1) = \/;/u (x,t) cos(2k + 1)xdx, k € No; (18)
0
1 ™
= [ )z (19)
y
for = \/z/ f(x) cos2kxdz, k € N; (20)
0
fors1 = \/E/ f (z) cos(2k + 1)xdx, k € N. (21)
0

Applying the operator g—; to the equation (16) we have

// (e}
ug ( /D xtda:—f/umxt — EUgy (T — x,t)) dx + fo.

Integrating by parts and taking into account the homogeneous conditions (2) and (6) , we obtain

ug (t) = fo.

Hence it is easy to get fo = 0,uq () = 0.
In a similar way for the functions (17)—(21) it is easy to prove that

for =0, forg1 = 0,u2 (t) = 0, ugpy1 (£) = 0.
Further, by the completeness of the system (10) in L? (0, 7) we obtain
f@)=0u(z,t)=0,0<t<T,0<z <.

The uniqueness of the solution of the problem N is proved.
The uniqueness of the solution of the problem D can be proved similarly.

6 Proof of the existence of the solution
We give the full proof for the problem D. The existence of the solution of the problem N is proved analogously.

As the eigenfunctions system (10) of the problem D forms an orthonormal basis in L2 (0,7) (this follows
from the self-adjoint problem (7), (8)), the functions u (z,t) and f () can be expanded as follows

Z Ugg+1 (8)sin (2k + 1)z + Z ugg, () sin 2kx; (22)
k=1

x) = Z fokt1sin 2k + 1)z + Z for sin 2kzx, (23)
k=0 k=1
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where for11, for, usg+1 (t), usk (t) are unknown. Substituting (22) and (23) into (1), we obtain the following
equation for the functions usg11 (t), usg (t) and the constants for11, for

gy (1) + (1 —¢) (2k + 1) ugpeyr (t) = forras

uyy (1) + (1 +¢) 4k2ugg (t) = for

Solving these equations [13], we obtain

Ugpt+1 (t) = %2 + CipcosvV1 —e(2k+ 1)t + Copsin V1 —e (2k + 1) ¢t
(1-2)(2k+1)
ugg (1) = (14_{% + D1 cos V1 + €2kt + Doy sin /1 + £2kt,

where the constants Ciy, Cok, D1k, Dok, for+1, for are unknown. To find these constants, we use the condi-
tions (2). Let tak, ¥or+1 be the coefficients of the expansions of ¥ (z)

Yopt1 = \/Z/w (x) sin (2k + 1) xdz;
0

ok = \/i / 1 () sin 2kxdz.
0

for+1
Ugpa1 (0) = ——————— + C1 = 0;
2041 (0) 1-e)@k+1)? ™

Uy, (0) = Cap, = 0;

We first find Cyg, Coy :

U2k +1 (T) = (]-;)CQ(kM (1 — COS \/1 — & (2]@ + 1) T) = ¢2k+1'

The constant for1 is represented as

Fobas = (1—2) 2k +1)" Yo
A 1—cosyVT—e(k+1)T"

Now we find D1y, Doy:

f2k
gy (0) = (T +e)dk2 + D1k = 0;

uby, (0) = Doy, = 0;

f2k

v (1) = a1

(1 — cos V1 +e2kT) = oy
For the constant fsp, we find:

(14 ¢) 4kt
1 — cos\/1+ e2kT’

Substituting usg (t) , usk+1 (), for, for+1 into (22) and (23), we find

ka:

(2,) = f: (1—cos vI—e(2k +1)t)sin (2k + 1)
S T VT sk )T

> (1 — CoS m2kt) sin kaw
= (1—cosyIvekt)

Yog+1+

+
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Suppose that 4 ,
D 0)=0, O (1) =0,i=0,1,234

then

_ 1 (4) _ 1w
¢2k+1 - (2/€+ 1)4¢2k+17 7Z}2k - 16k4 .

Then we have (12).
Similarly,

O (1— )i |
71@2:0 (1—cos\/§(2]§+1)T) (2k+1)2 Sln(2k+1)x+

(I+¢) ¢§k
+ sin 2kx.
Z 1 —cosv/1+ EQkT) 4k2

Now for the convergence of the series, we have the following estimate

- > (1—cosv1l—c(2k+1)t)
2l ’;) (1—cosvV1—e(2k+1)T) (2k 4 1)

4
511+

+i (1 — cosv/1+ e2kt)

S| <
1 —cosy/1+ €2kT) 16k% -

=1

Wb (4)
CZ 2k+ 2,€+1|+CZ 16k4|¢ | < oo. (24)

Similarly for f (z) we obtain the estimate

> (1 =€) [apyq] = (1+¢) [ty |
<> S+ <
— (1—cosvVI—e(2k+1)T) (2k + 1)2 (1 — cos /1 + e2kT) 4k>

k=1

< CZ nglc)—s—l OZ | (25)
- (2k +1)2

k=0

Since by hypotheses of Theorem 1, the function () is continuous on [0, 7], then by the Bessel inequality
for the trigonometric series the following series converge:

> |ust] se v

26
L2(0 7\') ( )

!w%+J <0 o @), (27)

Ly(0,m)

which implies the boundedness of the set

{0} el

Therefore, by the Weierstrass M-test (see [14]), the series (24) and (25) converge absolutely and uniformly in
the domain Q.

Now we show the possibility of termwise differentiation of the series (24) twice in the variable x and twice
in the variable t. For this purpose, we prove that the series obtained by means of term by term differentiation
converge absolutely and uniformly on 2. Given the estimates (26) and (27) we have

> (1—cosv1l—c(2k+1)t)
Z (1—cosv1—e(2k+1)T) (2k + 1)?

[tz (2,t)]

SIS+
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+§: 1—COS\/1+62]€7§)

S| <
1 —cosv/1+ 52kT) 4k2 -

=1

1 (4) (4)
<C g +C E 00
= ~ (Qk 1)2 ‘¢2k+1| 4k2 ‘77[} | < )

(|sin\/1—€(2k‘—|—l)t|
1—cosv1—e(2k+1)T) (2k + 1)2

o .0 < VT=23 ¢ 5 [v6] +
k=0

> ‘sin V14 E?k;t|
Vi
A 5; (1 — cos /1 + 22kT) 4k?

5| <

§ : (4) § : L@
< +
— Ckzo (2k ) ‘¢2k+1| Ok:1 4](;2 ‘/IZJZIC
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P. Tanpurorny, B.T. Tepebek

MNuBomonusaabl TOJNKBIH TEHJAEY1 YIIIH JIepeKKe3ai Kepi ecernrep

Maxamnaga exi TypJii mekapaJibIk MIApTIEH, aTtal aiiTkanga, Jupuxie xoune Hefiman 1mexkapasbik mapTra-
pPBIMeH OepijireH MHBOJIIOIUSCH TOJIKBIH TEHIEY1 YIIiH Kepi ecenTep Kachl KapacThIPbLIIbl. OChl ecenrepiiy,
merriMinig 6ap 60Ty bl MEH >KaJIFbI3AbIFEL 1asesaer . Hlemim opbip eceniy coiikec opToronasas 6asucrepi
apKbLIBI 2KIKTEJINeH KAaTap apKpLIbl ajablHAbpl. Ol menriMaepain X KUHAKTBIIBIFDL JOJIeJIeH .

Kiam cesdep: kepi ecem, uHBOMIONUsI, OGeitokas TOaKbH TeHaeyi, [IItypm-Jluysumn ecebi, memmivHuin 6ap
OOJIYbI, IIENTIMHIH KaJIFbI3bIFbI.
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P. Tarmmurorsy, B.'T. Topebek

Oob6paTHble 331291 UCTOYHUKA JJ1 BOJTHOBOTO
YPaBHEHUsI C MHBOJIIOIIME

B crarpe paccmorpen kiracc oOpaTHBIX 3a7a9 IS BOJIHOBOTO YPAaBHEHUS C WHBOJIIOIUEN M1 CIy9Ia€B JIBYX
Pa3HbIX I'PAHUYHBIX YCJIOBHUI, a UMEHHO IpaHUYHBIX ycjiaoBuit Jupuxie u Heitmana. /lokazanbl cyIecTBo-
BaHUE U €UHCTBEHHOCTD PEIICHUH ITUX 3a/a4. Perenns norydeHbl B BUIe Pa3JI0KEHUsI PSAJIOB C UCIIOJIB30-
BaHUEM HabOPa MOJIXOIAIIIMX OPTOTOHAJLHBIX 0A3MCOB I KasKJIOW 3a1adu. TaksKe JI0Ka3aHa CXOAUMOCTD
TIOJIyY€HHBIX PEIIeHUN.

Karouesvie crosa: obpaTHas 3aja4a, MHBOJIONNSA, HEJOKAJIBPHOE BOJIHOBOe ypaBHeHHMe, 3anada [IlTypma-
JlnyBuiist, cyIecTBOBaHME pelIeHnsl, €INHCTBEHHOCTD PEITICHNS.

82 Bectnuk Kaparanmurckoro yHuBepcureTa



MSC 37C75, 93Dxx

E. Hincal!, M. Sayan?3, .A. Baba!, T. Sanlidag®*,
F.T. Saad!, B. Kaymakamzade!

! Near East University, Nicosia, Turkey;
2 Clinical Laboratory, Kocaeli University, Kocaeli- Turkey;
3 Research Center of Experimental Health Sciences, Near East University, Nicosia, Turkey;
4 Celal Bayar University, Manisa, Turkey
(E-mail: evrenhincal@yahoo.co.uk)

Dynamics of HIV-1 infected population acquired via different
sexual contacts route: a case study of Turkey

This paper aims to study the transmission dynamics of HIV/AIDS in heterosexual, men having sex with
men (MSM)/bisexuals and others in Turkey. Four equilibrium points were obtained which include disease
free and endemic equilibrium points. The global stability analysis of the equilibria was carried out using the
Lyapunov function which happens to depend on the basic reproduction number Ry. If Ry < 1 the disease
free equilibrium point is globally asymptotically stable and the disease dies out, and if Ry > 1, the endemic
equilibrium point is stable and epidemics will occur. We use raw data obtained from Kocaeli University,
PCR Unit, Turkey to analyze and predict the trend of HIV/AIDS among heterosexuals, MSM /bisexual,
and others. The basic reproduction number for heterosexuals, MSM /bisexuals, and others was found to be
1.08, 0.6719, and 0.050, respectively. This shows that the threat posed by HIV/AIDS among heterosexuals
is greater than followed by MSM /bisexuals, and than the others. So, the relevant authorities should put
priorities in containing the disease in order of their threat.

Keywords: HIV /AIDS, Basic reproduction number, Equilibrium point, Stability, Lyapunov function, MSM,
Heterosexual.

Introduction

One of the major factors leading to the prevalence and epidemics of HIV/AIDS is the increase in the
population of men having sex with men (MSM). Most of the countries affected are the United States, Canada,
Australia, and New Zealand. However, in some of the under-developed and developing countries, heterosexual
sex, injection drug use, and/or transfusion of contaminated blood remain the main mode of transmission of
the disease [1] and [2]. A sudden rise of HIV cases in MSM was detected in the continent of Africa, Asia,
South America, and Eastern Europe [3]. According to a report in China, the rates of HIV infection in MSM is
increasing dramatically, while other means of transmissions are either decreasing or remaining under control.
The rate among MSM increased from 12.2% in 2007 to 35.5% in 2009. As a result, China is declared as one of
the countries experiencing the rise of HIV epidemics in MSM [4].

In a report by the European surveillance network, Euro HIV, the number of new HIV cases in MSM rises
from 2538 to 5016 during 1999-2006 across 13 Western European countries. This signifies almost 100% increase
in new cases among MSM [5]. Central European countries experienced low prevalence of new HIV cases among
MSM, but a sudden increase started in the year 1999 with 130 cases. This number increases by more than
100% in 2006, where 295 new cases were recorded. The countries in this region contributed at least 50% of the
total number of HIV cases in MSM recorded across Europe. In Eastern Europe, not more than 1% of newly
reported cases were in MSM, and no increase was discovered over time [6]. The annual HIV incidence rate in
the Netherlands was 1.2% for a period of 6 years (1999-2005). However, a relative increase was noticed among
MSM [7].

In 2008, the US Centers for Disease Control and Prevention (CDC) reported that, around 1.1 million people
were infected with HIV/AIDS in 2006 in the United States. Almost half (48.1 percent) of this reported figure
were MSM. In the same year, CDC also stated that the number of new cases of HIV/AIDS in MSM increased
to 8.6% during 2001-2006. In black MSM, an increase in the number of newly HIV/AIDS infected individuals
was reported from 2001-2006. Most of the victims were young adults aged 13-24 years; which recorded a 93.1%
increase. Despite the fact that the blacks forms just 13% of the US population, the number of HIV/AIDS cases
diagnosed in black MSM aged 13-24 years (7658) was at least twice the number diagnosed in whites (3221) [8].
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According to a report in 2006, 56,300 new adult HIV infections were recorded, of which 53% were in MSM.
Among the new HIV infections in men, 72% were in MSM, and of new infections in MSM, 46% were in whites,
35% were in blacks and 19% were in Hispanics. Therefore, the estimated HIV incidence among black MSM was
5.9 times bigger than among white MSM [9].

Mathematical models help to study the dynamics, spread and control of infectious diseases. It highlights and
explains the possible outcome of an epidemic and aids in suggesting the various control measures. Kermarck and
McKendrick in 1927 formulated an SIR model which studied the dynamics of infectious diseases [10]. The most
important parameter that determines the outcome of an epidemic is the basic reproduction ratio (Rp). It is the
number of secondary infection caused by a single infective individual in a completely susceptible population. If
the basic reproduction ratio is less than one, then there is not going to be an epidemic, which means that the
disease will die out. Otherwise, an epidemic will occur [11] and [12]. Many mathematical models in literature
have studied the dynamics of HIV/AIDS [13].

Our aim in this research is to study the dynamics of HIV/AIDS among heterosexuals, MSM /bisexuals, and
others in Turkey. We use data obtained from Kocaeli University, PCR Unit, Turkey to analyze and predict the
trend of HIV/AIDS among these groups. This is because Kocaeli University has the largest HIV data collection
center in Turkey.

Model formulation

The model is given by the system of differential equations as follows, where the meaning of parameters/variables
is given in Table 1.
45 = A — B1SHy — B2SHy — B3SHs — pS;

dﬂl = p1SH; — (pn+v)S;

s = By SHy — (14 v)S;

Uls — B3 SHy — (1 + )8,

S(0) > 0, Hy(0) > 0, H(0) > 0, Hs(0) > 0.

Tablel

Meaning of parameters and variables of model (1)

Parameters/Variables | Meaning
S Population of susceptible
H, HIV positive of heterosexual population
H, HIV positive of MSM population
H; HIV positive of other population
A Recruitment rate
% Duration spent in the HIV stage
i Life expectancy
51 Incidence rate between heterosexuals
Bo Incidence rate between MSM
B3 Incidence rate between others

In our model, S(0) is considered to be the whole population in a specific year, Hy consists of both MSM
and bisexuals HIV positive population, and [, is the transmission rate of HIV through MSM or bisexuals.
Moreover, we refer to HIV positive of other population as those that acquire the disease through contaminated
blood transfusion, contact with infected sharp objects and so on.

Ezxistence of Equilibria

Equating the equations in (1) to zero and solving simultaneously we find four equilibrium points. They are
as follows. Disease free equilibrium point Ey = (%, 0,0,0), which always exists and endemic equilibria.
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_ (ptv ABi—p(ptv) _ (ptv ABo—p(ptv) _ [ ptv ABs—p(p4v)
B = ( Bi7 o Bipto) 0 0) B2 = ( 520 Bz(u+tv) O)’ and Eg = ( 5 0,0, Bs(pu+v) )

The endemic equilibria are blologlcally meaningful (exists) when

B1A B2 A
Iy Rl Sl prseey S and > 1, respectively.

u+v)

Basic Reproduction Ratio

Basic reproduction ratio is the number of secondary infections caused by a single infective individual in a
completely susceptible population. It is denoted by Ry. We use the next generation of matrix (NGM) method
to compute the basic reproduction ratio and it is given by

Ro = maa:[Rl, RQ, Rg] (2)

and Rz = #fv)

where R; = Ry =

u(#+v) ’ u(u+v) ’

Global Stability Analysis of the Equilibria

Theorem 1. Ey is globally asymptotically stable when Ry < 1.
Proof. We consider the following Lyapunov function;
V = (S = SyinS) + Hy + Hy + Hs + C, where C = SylnSy — Sg. Hence,

av. _ So 1 2 st _
U O e
—50)(A—B1SHy—B2SHy—P3SHs—pS)+ (B SH1— (u+v) Hy )+ (ﬁzSHQ—(M+U)H2)+(535H3—(N+U)H3):
= pSo ( -5 *) (B1So — (k+v)) Hi + (8250 — (1 +v)) Ha + (B350 — (1 +v)) Hs.

|
—~
i

Therefore 47 < 0if B850 — (1 +v) <0, B280 — (u+v) <0 and B35y — (1 +v) <0 which means Ry < 1.
Theorem 2. The endemic equilibrium point FE; is globally asymptotically stable when R; > 1, Ry < land
Ry <1
Proof. The proof is similar to Theorem 1 by considering the following Lyapunov function;

= (S — §*InS) + (Hy — HfInH,) + Hy + Hs + C, where C = S*InS* — S* — H} + HiInH}.

Theorem 3. The endemic equilibrium point F5 is globally asymptotically stable when R; > 1, R, > 1 and
R3 < 1.
Proof. The proof is similar to Theorem 1 by considering the following Lyapunov function;

= (S — S*InS) + Hy + Hy — HilnHy + Hs + C, where C' = S*InS — S* — Hj + HilnHj.

Theorem 4. The endemic equilibrium point Es is globally asymptotically stable when Ry < 1, Ry < 1 and
Rs > 1.
Proof. The result can be achieved using the following Lyapunov function;

= (S —S*InS)+ Hy + Hy + (Hs — HjinHs + C, where C = S*InS* — S* — Hi + HiinHj.
Numerical Simulations

We use the raw data obtained from Kocaeli University, PCR Unit, Turkey from January 2016 to March 2017.
This unit is a collection center for HIV in Turkey. Table 2, 3, Pictures 1 and 2 show the outcomes of the analysis
of the model.

The dynamics of the heterosexuals, MSM /bisexuals and others is given by Picture 1.

Table 2
Analysis of the model with incidence rates
H, Ho Hy
B B2 Bs

1.863 1.155 0.086
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Table 3
Analysis of the model with Basic reproduction ratios
Hy H, Hy
Ry Ry Rs

1.08 0.6719 0.050

population
T
.

0 5 10 15 20 25 30 35 40 45 50

Picture 1. Parameter values are (7 = 1.863, (2 = 1.155, (3 = 0.086, p = 0.055, A =0.023 and v = 0.063
Discussion and Conclusion

We constructed a mathematical model that studies the transmission dynamics of HIV/AIDS in heterosexuals,
MSM /bisexuals and others. The basic reproduction ratio was computed using the next generation matrix
method. Four equilibrium points were obtained which include disease free and endemic equilibrium points.
The global stability analysis of each of the equilibria was conducted using the Lyapunov function, and the
stability of the equilibrium points depends on the basic reproduction ratio Ry. If the basic reproduction ratio
is less than one, there will be no epidemic, which means the disease will die out, otherwise, an epidemic will
occur.

From table 3, the basic reproduction ratios of heterosexuals, MSM /bisexuals, and others are 1.08, 0.6719,
and 0.050, respectively. Based on the table and Picture 1, the epidemics will occur in the heterosexuals, while
no epidemics will occur in the MSM /bisexuals and others. Although no epidemics will occur in MSM, but the
basic reproduction ratio is close to 1, so if care is not taken in MSM /bisexuals epidemic may occur as time
goes on. The threat posed by HIV/AIDS through heterosexuals is greater, than followed by MSM, and than
the others. However, this is subject to the initial values which can change the nature of the graph, because,
normally the data is usually collected at the early stages of the infection (trauma stage), so patients may hide
their sexual status or refuse to give accurate information. We therefore recommend the use of IVD drug data in
any community with similar settings as that of Turkey like the Asian countries, African countries, and Islamic
countries for data collection.

The relevant authorities should put priorities in containing the disease in order of their threat. It is also
evident that the incidence rate plays a vital role in posing this threat as can be seen from Table 2, therefore to
contain the disease it is advisable to employ the appropriate measures in decreasing the incidence rates. Finally,
Picture 1 shows the prediction of these epidemics for the three cases in 50 years.

Istanbul is the most populous city and center for tourism in Turkey. It is one of the largest cities in Europe
and considered to be the home of immigrants. Hence, the population in Istanbul has more freedom, is well mixed,
versatile, and tolerant. These are among the major factors that give rise to the increase in MSM population in
Istanbul because people are not afraid to say their sexual status. Therefore, tourism, immigration, and increase
in MSM population make Istanbul the center for the spread of HIV infection in Turkey.
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25 T T T T

datal
data2
data3
datad

05 b | f

Picture 2. Parameter values are 1 = 4.44, (B =4.51, 3 =0.19, p=0.41, A=1.65 and v = 0.063

The aforementioned reasons and facts served as our motivation to consider the data collected for Istanbul only
and put it in our model in order to analyze the dynamics of the transmission route of HIV. Picture 2 shows this
dynamics and predicts what will possibly happen in the next 50 years. It can be observed that the transmission
of HIV in MSM is increasing while the transmission via heterosexuals and others is decreasing.
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9. Xunkay, M. Cagn, I.A. Baba, T. Cannunar, @.T. Caan, B. Kaitmakamzae

OPKWIbl »KbIHBICTBIK KaTbIHacTap apKblibl BIIY-1 nadekIiusachia
>KYKTBIPFaH XaJILIKTBIH AMHAMUKACHI: TYpKusaaa »KYpPri3ijireH 3eprrey

Maxkasa TypKuAIarsl reTepoceKcyasiap, ep aJaMIap MeH ep aJaMIap apachlHIarbl CEKCYaIbIK KATHIHAC
(ECE) /6ucekcyasnap »xoHe 6acka na agaMmaapasiy, apacbiaga BUY/CITN] nHdeKIUsICHIHBIE TapasLy Ju-
HAMUKACBIH 3epTTeyre apHaJra. AypyapaH Ta3a KoHe dHIEMUSJIbIK, Tele-TeHiK HyKTeJIePiH KAMTUTHIH
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TOPT Teme-TeH K HyKTeci Tabbuiran. Herisri kebeto canbiHan Ry Toyenai JIamyHOB yHKIUSCHIH maiiga-
JIaHy apKbLIbl Tele-TEHIIK OPHBIKTBIIBIFBIHA ayKbIM/IbI TAJIAay Kacaiaasl. Erep Ry < 1 6oJica, aypybl 2KOK
Tere-TeHIK HYKTeCI aCUMITOTHUKAJBIK TYPFBIIAH ayKbIMIbl OPHBIKTBI OOJIAJIbI 12, aypyjap KOMbLIAIbL.
An Ry > 1 6osca, 3HIEMHSIIBIK, TEIIE-TEHIIK HYKTECI TyPaKThI Kefinke ue 60Iaabl 14, SMUACMUIAD OOJIBIIT
typaapl. Lerepocekcyangap, ECE/6ucekcyanmap xone 6acka na agamuapaapibiy, apacsbiga BUY/CIIN L
WHOEKINICHIHBIH TapaJly TeHIEHIINSAChIHA TaIIay »KoHe OosrkaM »Kacay yiriH 6i3 Komkasnu yauBepcureri-
HeH, TypKusiiarsl OpTaJbIFGIHAH aJbIHFAH OHJEIMEreH MOJIIMeTTep Il maiigamanbuiasl. [eTepocekcyastgap,
ECE/6ucekcyannap »x)oHe 6ackaiapapiy keberoinin 6a3ansik, canbl Tricinme 1.086, 0.6719, 0.050 GonaTbiab!
aHbpIKTaAAB. By Momimerrepnen, 6acka Tonrapra kaparanna, BUIY/CIIN I kaTepi rerepocekcyaiiap apa-
CBIH/Ta 2KOFaphl eKeHi baiKkaapl. COHIBIKTAH THICTI MEKeMeiep aypy KO3IbIPFBIMITAPBIH TEXKEY MICeTeCiHIe
OachIMIBLIBIKTAp Oesriieyi Tuic.

Kiam coesdep: B /CITN/, xebero/in 6a3aJblK, CaHbl, TEHe-TEHIK HYKTECI, TYPAKTBUIBIK, JIamynos dyHK-
nusicel, ECE, rerepocekcyasisi.

9. Xunkas, M. Cagn, I.A. bBaba, T. Cammunar, @.T. Caan, B. Kaiimakam3zae

Jnnamuka HaceneHns, nHduimpoBanHoro BNIY-1, npuobpereHHoro
gyepe3 pa3HbIe IMOJIOBble KOHTAKTBI: nccjieoBanue B Typiun

Crarps HanpasjieHa Ha usydenue quHamuky nepegadn BUY/CIIV/la cpeam reTepocekCyasnoB, MyKUHH,
nmeromux cexce ¢ MyxunHaMu (MCM) /6ucekcyasnos u npyrux jui, B Typrmun. IToaydeHbl yeTblpe TOYKH
paBHOBeCHsI, KOTOPbIE€ BKJIIOYAIOT CBOOOHBIE OT OOJIE3HEN U SHIEMUIHBIE TOUYKYM paBHOBecusi. [ JT00aIbHBII
aHaJIU3 YCTOWYMBOCTYA DPaBHOBECUN MPOBOJWJICS C UCHOJb30BaHueM (byHKIuu JIsdmyHoBa, KOTOpas 3aBH-
CUT OT OCHOBHOI'O YHCJIa Bocupousserenusi Ro. Eciu Rg < 1, Touka paBHOBecusi 6e3 GoJsie3Heil sSIBIIsSIETCs
rI00AJIBHO aCHUMIITOTUIECKN YCTONYNBOIL, 60JIE3HDb BBIMUPAET, a eciim Ry > 1, TOYKa IHIEMHYIECKOTO paB-
HOBeCUs CTabUIbHA — Oy/IyT MPOUCXOANTD SMUAEMUN. ABTOpaAMU UCIOIB30BAHbBI HEOOPAOOTAHHBIE JAHHBIE,
noJsiyaeHuble u3 YHuBepcurera Komxkasim, I[P, B Typuun it anainsa 1 mporHO3UPOBAHUS TEHICHITAN
x BUY/CIIU/y cpenu rerepocekcyanos, MCM /6ucekcyanos n apyrux. Buuio ycranosjieHo, 9to 6a30B0€e
YHCJI0 BOCIIPOU3BEeHUs rerepocercyanoB, MCM /6ucekcyanos n apyrux 6puto 1.08, 0.6719 u 0.050 coot-
BETCTBEHHO. DTO CBUETEIBCTBYET O TOM, U4TO Yyrpo3a, KoTopyto npezacrasiser BITY/CIIU/I cpeau rerepo-
cekcyasios, Boime, yeM MCM /6ucekcyasnbr. Takum 06pa3oM, COOTBETCTBYIONIAE OPTAaHBI JOJKHBI TIOCTABATD
[IPUOPUTETHI B CJIEPYKUBAHUM OOJIE3HU B TIOPSJIKE UX YIPO3BI.

Karouesvie caosa: B /CIINI, 6a30BbIit HOMED BOCHIPOU3BOICTBA, TOUKA PABHOBECHS, CTabUILHOCTD, (DyHK-
nus Jlsmynosa, MCM, rerepoceKkcyaJibHBIH.
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Identification hyperbolic problems with
the Neumann boundary condition

In the present study, an identification problem with the Neumann boundary condition for a one-dimensional
hyperbolic equation is investigated. Stability estimates for the solution of the identification problem are
established. Furthermore, a first order of accuracy difference scheme for the numerical solution of the
identification problems for hyperbolic equations with the Neumann boundary condition is presented. Stability
estimates for the solution of the difference scheme are established. This difference scheme is tested on an
example and some numerical results are presented.

Keywords: source identification problem, hyperbolic differential equations, difference schemes.

Introduction

Identification problems take an important place in applied sciences and engineering, and have been studied
by many authors (see, e.g., [1-4] and the references given therein). The theory and applications of source
identification problems for partial differential equations have been given in various papers (see, e.g., [3, 5-8] and
the references given therein).

The well-posedness of the unknown source identification problem for parabolic and delay parabolic equations
have been well-investigated (see, e.g., [9-14], and the references given therein).

The solvability of the inverse problems in various formulations with various overdetermination conditions
for telegraph and hyperbolic equations were studied in many works (see, e.g., [15-18] and the references given
therein). Some new representations were given for the solutions and coefficients of the equations of mathematical
physics in [5, 19-23]. They gave such formulas for evolution equations of first and second-order in time, in
particular for parabolic and hyperbolic equations in the linear and nonlinear cases.

In this study, we consider the time-dependent source identification problem for a one-dimensional hyperbolic
equation with the Neumann boundary condition

Pui) — 2 (a(0) 24E2) = p (W) (@) + f (t), o € (0.0) L€ (0,T),
U(Oax):¢($)7Ut(0,$):¢(x),$€[075]7 (1)

Uy (,0) = uy (t,1) = 0, [ u(t,z) dz = (1) ,t € [0,T],

where u (¢t,2) and p(t) are unknown functions, a(x) > a > 0, f(¢,2),((t),¢ (x) and 9 (z) are sufficiently
smooth functions and ¢ (z) is a sufficiently smooth function assuming ¢’ (0) = ¢’ (I) = 0 and fol q(x)dz #0.

Our interest in this study is to investigate the stability of differential and difference identification problems.
The stability estimate for the solution of problem (1) is established. A first order of accuracy difference scheme
for the numerical solution of identification hyperbolic problems with the Neumann boundary condition (1)
is presented. The theoretical statements for solution of this difference scheme are supported by result of the
numerical experiments.
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Stability of differential problem (1)

To formulate our results, we introduce the Banach space C'(H) = C ([0,T], H) of all abstract continuous
functions ¢ (¢) defined on [0, 7] with values in H equipped with the norm

||¢HC(H) = og&XT & (O -

Let Lo [0,1] be a space of all square integrable functions «y () defined on [0,!] equipped with the norm

1
1 2
o = ( / Iv(a?)lzdx> ,

and let W3 [0,1], W2 [0,1] be Sobolev spaces with norms

1
2

l
|’Y||W2.1[0,l]</0 [v2 (2) + 77 ()] dx) ;

2

!
IVllwzio,q = </0 (72 (2) + 72, (x)] di’?) ;

respectively. We introduce the positive definite self-adjoint operator A defined by the formula

Au = —% (a (@) C“;ff)) 2)

with the domain
D (A) ={u:u,u" € Ly [0,1] ,u' (0) = (I) =0}.

Throughout the present paper, M denotes positive constants, which may differ in time and thus is not a subject
of precision. However, we will use the notation M («, 3,7, ...) to stress the fact that the constant depends only
on «, 3,7, ...

We have the following theorem on the stability of problem (1).

Theorem 1. Assume that ¢ € W2 [0,1],% € W}[0,]] and f(¢,z) is a continuously differentiable function
in ¢ and square integrable in z, ( (t) is a twice continuously differentiable function. Suppose that ¢ (z) is a
sufficiently smooth function assuming ¢’ (0) = ¢’ (1) = 0 and fé g (z) dx # 0. Then for the solution of problem
(1) the following stability estimates hold

02y
5 +lull o w20y < Mi(q) {HwH 201 T ¥ llwaon + 3)
H o2 C(Lalod]) c(wzlo,l]) W2[0,l] wi[o,l]
of
17O o+ 1o |
L2[0,l] at C(L2[07l]) C[O,T]

1Pl co,ry < M2 (q) [”()OHW,}[O,Z] + ¥l 0 + 1S o, + (4)

of

17O o+

0t o)
Proof. We will use the following substitution

u(t,z) =w(t,x)+n(t)q(x), (5)

where 7 (t) is the function defined by the formula

n(t) = / (t - 5)p(s)ds,n (0) = (0) = 0. (6)
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Tt is easy to see that w (¢, x) is the solution of problem

P — 2 (ale) 245) = £ (12) + 0 (1) [ (a (@) ()],

€ (0,0),t € (0,7),

(7)
w (0,7) = ¢ (z),w (0,2) =9 (z),z €[0,1],
Uy (t70) = Uy (tvl) =0,,t€ [OvT} :
Applying the integral overdetermined condition fol u (t,z) dx = ¢ (t) and substitution (5), we get
1
() = [yw(t,x)da
n(t) ;
fo q(x
From that and p (t) = n” (t) it follows
I 92
p(t) = e f o (b2)dv
fo
Applying fo x)dx # 0, we get the estimate
0%w (t,.
(0] < M (0 [c" o)+ ] ®
L3[0,1]
for all ¢ € [0,T]. From that it follows
1 62
1Pl o,y < M3 (q) |IIC ||COT +H : (9)
[0,7] [0,7] o2 C(Lalo)
Now, using substitution (5), we get
u(t,z) O*w(t,z)
Applying the triangle inequality, we obtain
0%u H 0w
vy < |77 + [l lall £ap0, - (10)
‘ I oo 19 lleson clomy T E=(00

Therefore, the proof of estimates (3) and (4) is based on equation (1), the triangle inequality, estimates
(9), (10) and on the following stability estimate

< My(q,a) |:||90||W22[0,l] + ”wHer[O,l] T (1)
C(L2[0,1))

+ 1< oo,y

O |l (Lo

17O gon + | 5

for the solution of problem (7). It was proved in [16] for the identification hyperbolic problem with the Dirichlet
boundary condition. The proof of (11) is carried out according to the same approach. This completes the proof
of Theorem 1.
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Stability of the difference scheme

To formulate our results on difference problem, we introduce the Banach space C; (H) = C ([0, T]
all abstract grid functions ¢™ = {¢ (tk)}ivzo defined on

H) of

T

0,T], = {tx = k7,0 <k < N,NT =T},

with values in H equipped with the norm

167 e, ary = max 16t -

Moreover, Loy, = L2 [0,1],, is the Hilbert space of all grid functions v" (z) = {’yn}ﬁio defined on

0,1, ={zn =nh,0<n< M,Mh =1},

equipped with the norm

1
M 3
"z, = {ZW‘Qh} !
i=0

and Wy, = W3 [0,1], ,W3, = WZ0,1], are the discrete analogues of Sobolev spaces of all grid functions
VY (z) = {'yn}ﬁio defined on [0,], with norms

711

s, = {z%

Yi+1 — 2'71 + vi-1

M—1 3
s, = {3 s X W

respectively. For the differential operator A defined by (2), we introduce the self-adjoint positive definite
difference operator Ay defined by the formula

M-1
1 n - ¥n n - ¥n—
Ane () = {_h (a (Zns1) % —a(zn) ‘ph@l> }n_l , (12)
acting in the space of grid functions " (z) = {9%}24:0 defined on [0,1], satisfying the conditions

v1— o =¢m —pmu-1=0.
M
For the numerical solution {{uﬁ}ivfo} of problem (1), we consider the first order of accuracy difference
- n=0

scheme

Wkl g k1 kL gkt

k+1_ o, k k—1
TSt ( (Tni1) == —a(zy) - h) = prq (@) + f (s 0) 5

tr=kr,x, =nh,1<kE<N-1,1<n<M-1,Nt=T,

(13)

n:(p(l‘n), ;.,- =¢(l‘n),0<n<M,Mh=l7

k+1 k+1 _ k41 k+1 _ Q.
uy ' —ug ' =uy — Uy =0;

211 f“h C(tgs1), -1 <k N-1.

Here, it is assumed that ¢ — g0 = qu — qpr—1 = 0 and Zz 1 ql # 0. We have the following theorem on the
stability of difference scheme (13).
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Theorem 2. For the solution of difference scheme (13), the following stability estimates hold

ahyy 2t N N1
; ' 5 -
7-2 + {uk"rl}k:l HC (W2 ) < (14)
k=1 ||, (Lan) A2k
T 2h
g N-1
h h h k k—1
<5 @) [ + 19y + 11, + {252 +
k=2 CT(LZIL)
" {Ckﬂ — 2Ck + Ch—1 }Nl
2 b)
T k=1 llco,1].
N-1 h h h
| RS oy, < M6 @ [0 g, + 1" g, + 152, + (15)
N-1 N-1
=t Cr1 — 2Ck + Cr—1
+ + .
T T b1
k=2 || (Lan) Clo,T],
Here and throughout this subsection fJ* (z) = {f (tx, xn)}ﬁio , 1<k<N-1
Proof. We will use the following substitution
Uy, = wy; + dn, (16)
where
an = q(zn)
and
k
Mes1 = (k+1—i)pir2, 1<k <N —1ng=n =0. (17)
i=1
N 1M
It is easy to see that {{wﬁ}kﬂ]} is the solution of difference problem
—Jn=0
W _ok Lopk—1 wﬁ+1 7w71z+1 warl*wﬁtll
. 2.,.2n+ = - % (a (xn—&-l) +1h 70‘(1'?1) ' h ' > =

= f (thy ) + F [0 (o) B — () 2

18
ISESN-L,1<n<M-1; (18)
w2=<p(xn),'”";“’3 =1 (x,),0 <n <M,

u’f'H ug'H uﬁjl u’f\jllzo,—lgng—l.

Applying the overdetermined condition Zf\izl uFTh = ¢ (t)11) and substitution (16), one can obtain that
M-
M1 = Ch1 = Dima fﬂh
= M—1
Zz 1 @il

1= -
D1 — =Nk T e—1 T"g’“Jr”" L and (19), we get

(19)

Then, using formulas pg =

» Cosr — 2Ck + Goor — M1 ( P 2wk 4wl h
k = ’

7—2 Z’L 1 Z
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Crr1 — 2Ck + Ch—1 Wity — 2wj +wp_
|pk‘ < My (q) [ ~ 72 — 72 - (20)
Lap,
forall 1 <k < N — 1. From that it follows
N-1
N-1 <k+1 — 2€k + Ck—1
00, 200 : g
k=1 llcio,7].
N-1
{wzﬂ ~ 20+ uf_ }
+ 2
-
k=1 Cr(Lan)
Now, using substitution (16), we get
k+1 k k—1 k+1 k k—1
U —2u; +u w — 2w, +w
n T2n n _ n T2n n + pryq (xn) )
Applying the triangle inequality, we obtain
N-1
h h h
Up gy — 2up +ug
{ - T2 S (22)
k=1 Cr(Lan)
N-1
h h h
w — 2wy +wi
< { k41 7—2k k—1 } I

k=1 Cr(Lap)
M
fotanal,

Therefore, the proof of estimates (14) and (15) are based on equation (13), the triangle inequality, estimates
(21), (22) and on the following stability estimate

#leeni= g,

wh o — 2wl + wh Nt
{ by = 0L+ } < Mi(g)x (23)
k=1 Cr(Lan)
7 I R
[, + 1 s+ 1]+ { } R
k=2

Cr(Lan)

_|_

{Ck+1 — 2Ck + Cp—1 }N_l

T2

k=1 {lcio,7].

for the solution of difference problem (18). It was proved in ([9]) for the identification hyperbolic problem
with the Dirichlet boundary condition. The proof of (23) is carried out according to the same approach. This
completes the proof of Theorem 2.

Numerical Experiments
In this section, we study the numerical solution of the identification problem

827“552’”“') - 82;&’@ =p(t) (1 +cosz)+e tcosx,w € (0,7),t € (0,1);

w(0,z) =1+ cosz,u (0,2) = — (1 +cosx),x € [0,7];
(24)
Uy (£,0) = ug (t,m) =0, € [0,1];

fow u(t,z)dr =me 't €0,1]

for a hyperbolic differential equation. The exact solution pair of this problem is (u(¢,z),p(t)) =
= (et (1+cosz),e?).
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For the numerical solution of problem (24), we present the following first order of accuracy difference scheme
for the approximate solution for the problem (24)

ktl_ o,k k—1 uktl 72uk+1+uk+l B
Uy ;izn-‘run _ Una hn2 n-1 _ Dk (1 + cos xn) Te tkt1 cog T

tr =k, x, =nh,1<kE<N-1,1<n<<M-1;

)

=}

1
0 __ . U, —U
Uy = 1+ coszy, =—=

=—(l4cosxz,),0<n< M,Mh=mn,Nt=1; (25)

k+1 k+1 _  k+1 k+1 _ Q.
Uy~ —uy =uy — Uy =0;

Zf\ifl uf“h =qe~tt1, 1 <k N —1.
Algorithm for obtaining the solution of identification problem (25) contains three stages. Actually, let us define
uf = wk 4+ (14 cosz,),0<k<N,0<n <M, (26)
Applying difference scheme (25) and formula (26), we will obtain the formula

—tpp1 _ M1 ]-H_lh
Mgt = 2z Wi —1<k<N-1 (27)
Yoicq (I4cosx;)h

and the difference scheme

wﬁ+172wﬁ+w2_1 . wﬁii—2w2+1+wﬁtll + 2(cos h—1) COS T Zfi;l wf+1h o
T2 h? h2 n Zﬁvizl(1+cosmi)h B
= |1+ 213@10”71) e tticosa,, 1<ESN-1,1<n<<M-1;
h2 3T (14cos ;) h ’ ’ ’

1,0
w) =1+ cosay, 22 = — (1+cosz,),,0 < n < M;

k+1 k+1 k+1 k+1
w0+ —ler :wM+ —wMtl:O,—léng—l.

M
In the first stage, we find numerical solution {{wﬁ}kN_O} of corresponding first order of accuracy auxiliary
—“J)n=0

difference scheme (28). For obtaining the solution of difference scheme (28), we will write it in the matrix form as

AwFt 4+ Buk + Cuh ™t = b 1 <k <N - 1
(29)
w® = {1 + cos ﬂfn}i/[:o ywh={(1-7)(1+ Cosxn)}ano )

where A, B,C are (M + 1) x (M + 1) square matrices, w®,s = k, k41, f¥ are (M + 1) x 1 column matrices and

1 -1 0 . 0 0 -1
b a+c b+c - c1 c1 0
0 b4+c atco - Co Co 0
A= . . . ,
0 cyp—2 cCyp—2 - a+cpy—o b+cp—_o 0
0 ev—1 cem—-1 - bH+ey—1 atepy—1 b
0 0 0 . 0 -1 1
L 4 (M+1)x (M+1)
(0 0 0 - 0 0 O] [0 0 0 - 0 0 0]
0 e -0 00 0 g 0O- 0 00
0 0 e 0 0 O 00 g - 000
B = . . C = .. ’
0 0 O e 0 0 0 O g 0 0
0 0 O 0 e O 0 0 O 0 g O
0 0 O 0 0 O 000 - 000
L 4 (M1 x(M+1) L 4 (M1 x(M+1)
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0 0
ot wy
cpk: . w’® = . , for s=k,k+£1.
Phr—1 Wiy
(M+1)x1 (M41)x1
Here,
12 1 2 _
a:ﬁ—*—ﬁab:_ﬁae:_ﬁmg:ﬁa
M-—1
2 h—1
d= Z (1+c0sxi)h,cn:%cosxn,lgnngl,

i=1

& 1 2m(cosh — 1)

Op = = e*t""“cosxn,lgngfl,lgnngl.
h2y .~ " (14 cosz;h)

So, we have the initial value problem for the second order difference equation (29) with respect to k with matrix
M
coefficients A, B and C. Since w’and w'are given, we can obtain {{wﬁ}g_o} by (29).
= 0

n=

Now, applying formula (17), we can obtain

Mkl — 20K + Mk
= =

Pr J1<k<N-1 (30)

In the second stage, we obtain {pk}g;ll by formulas (27) and (30). Finally, in the third stage, we obtain
M
{{uﬁ}g_o} by formulas (26) and (27). The errors are computed by
= 0

n=

1

M 2
E, = omax, (2:0 |u (t, n) — qu|2 h) ; (31)

E = — .
» 1211<a§_1|p(tk) Prl s

N

o~

where u (¢, z) , p(t) represent the exact solution, u, represent the numerical solutions at (¢, z,) and py, represent
the numerical solutions at ¢;. The numerical results are given in the following Table.

Table
Error analysis
Error N=M=20 | N=M=40 | N=M =80 | N=M=160

E, 0.0501 0.0250 0.0124 0.0062
E, 0.0472 0.0244 0.0124 0.0063

As it is seen in Table, we get some numerical results. If N and M are doubled, the value of errors decrease
by a factor of approximately 1/2 for first order difference scheme (25).
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A. Ameipaseie, @. DIvmapab

IHlerTik miapTel Heiiman Typinge 6o/1aTbiH
NAeHTU(PUKAIMNSAIBIK I'MIepPO0JIajblK, ecernTep

MakauJra merTik maptel Heiiman Typingeri 6ip esmemM i rumepboJsiaiblK TYp/Ieri TeHaey Yo uaeHTuduKa-
nusiay ecebin 3eprreyre apHasral. Unenrndurkannsiay ecebiHiy memimMi yIiH OPHBIKTBLIBIK, Oaraiayiapbl
anprarad. [llerrik mapter Heitman Typinzeri rumepbostaabik TEHAEYIED VIMiH HAeHTUMUKAAAIAY eceOiH
CaHBIK IIEITy YIIH A9/Air 6ipiHi peTTi affbIPhIMIBIK, CXeMa YCHIHBLIFaH. ARBIPBIMJIBIK CXeMAHbBIH, IIEITiMi
VIIiH OPHBIKTBUIBIK, Oarasaysiapbl KeaTipiaren. Byi aflbIpbIMIbIK cxeMa KapaltaiibIM ecell YIIiH TeKcepisi,
CaH/IBIK, eCeNTeysIep HOTUXKECI KeJITipiyreH.

Kiam cesdep: ke3nepai nnentudukanusiiay ecebi, runepbosaibik, auddepeHnnaiibl TeHAeY, afibIPbIMIbIK,
CcXeMaJiaphl.
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N neaTudukanmoHHble TUIIEPOOJIMYECKE 3aJJa9n
c rTpaHNYHBIM ycjoBueM Heiimana

B crarbe nzyuaena 3ajava miaeHTHdUKAIMA C TPAHUYIHBIM ycjaoBueM Heiimana Jjisi OJIHOMEPHOTO T'UIEp-
GOJINYECKOr0 ypaBHEHUsI. YCTAHOBJIEHBI OIEHKM YCTONYMBOCTH DelleHus 3aja4u ujaeHTndurkanuu. Kpome
TOT0, MIPEJICTAB/IEHA PA3HOCTHAST CXEMa MEPBOTO MOPSIIKA TOYHOCTH JJjIsl YUCJIEHHOTO PEIeHus 3a/1ad UIeH-
TupUKAIIN [JIsT TUIIEPOOSINIEeCKUX yPABHEHUN € TPAHUYHBIM ycjioBueM HeiimaHa. YCTAHOBJIEHBI OIEHKHU
YCTORYUBOCTH PEIIeHUsI PA3HOCTHON CXeMbI. DTa PA3HOCTHAs CXeMa IIPOBEPEHA Ha IIPUMEPE U IIPEJICTABIIE-
HBI HEKOTOPBIE€ YUCJIEHHBIE PE3Y/IHTATHI.

Kmouesvie crosa: 3amada naeHTH(PUKAIIIN UCTOYHUKA, TUIepbondeckne auddepeHnuaibible ypaBHEHUS,
Pa3HOCTHBIE CXEMBbI.
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Numerical solution of the nonlocal boundary value problem
for elliptic equations

In the present paper a second order of accuracy two-step difference scheme for an approximate solution
of the nonlocal boundary value problem for the elliptic differential equation —v”(t) + Av(t) = f(t)

T
(0<t<T), v(0) =v(T)+¢, [v(s)ds =1 in an arbitrary Banach space E with the strongly positive

0

operator A is presented. The stability of this difference scheme is established. In application, the stability
estimates for the solution of the difference scheme for the elliptic differential problem with the Neumann
boundary condition are obtained. Additionally, the illustrative numerical result is provided.

Keywords: stability; positive operators; elliptic equation; numerical results, two-step difference scheme.
Introduction

The well-posedness in various Banach spaces of the local boundary value problem for the elliptic equation
—0"(t) + Av(t) = f(t) (0<t <T),v(0) = vg,v(T) = vr (1)

in an arbitrary Banach space F with the positive operator A and its related applications have been investigated
by many researchers (see, for example, [1-3] and the references given therein).

In mathematical modeling, elliptic equations are used together with local boundary conditions specifying
the solution on the boundary of the domain. In some cases, classical boundary conditions cannot describe
process or phenomenon precisely. Therefore, mathematical models of various physical, chemical, biological or
environmental processes often involve nonclassical conditions. The well-posedness of various nonlocal boundary
value problems for partial differential and difference equations has been studied extensively by many researchers
(see, e.g., [4-21] and the references given therein).

In the present paper the abstract nonlocal boundary value problem for differential equation of elliptic type

T
—0"(t) + Av(t) = f(t) (0 <t <T),0(0) = () + ¢, / o(s)ds = ¢ (2)
0

in the arbitrary Banach space E with the positive operator A is considered. The second order of approximation
two-step difference scheme

— U 2Bt o Aug = fi, fr = f(te), e = kT, 1<k < N —1,Nr=T);
(3)

N
g =uN + @, ) uiT =1
i=1
for the approximate solution of problem (2) is presented. The stability of this difference scheme is
established. In application, the stability estimates for the solution of the difference scheme for the elliptic
differential problem with the Neumann boundary condition are obtained. Additionally, the illustrative numerical
result is provided.
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Auziliary results

In this section, we give some auxiliary statements from [1] which will be useful in the sequel. We consider
the second order of accuracy difference scheme

U4l — 2up + up—1
2

+AUk:fk,fk:f(tk),tk:kT,lngN—l,NT:T, (4)
T

Uug = Vo, unNy = V7.

of the approximate solution of the boundary value problem (1). This problem is uniquely solvable, and the
following formula holds

up = (I — R*N)"H{(R" — R*" "up+ (5)
+(RN7F — RN yuy — (RN ™% — RNTF)(I + 7B) x
N—-1

x(2I+7B)"'B™' Y (RN — RNV firt
i=1
N-1
+(I+7B)2I +7B)"'B™' Y (R* — R fir 1 <k <N -1,
i=1
where
A A\?
B =B(r,A) = % + <T2) +AR=R(tB)=(I+7B)"%
Note that B(r, A) # A2 but then B(r, A) — A2 as 7 — 0 and it has same spectral properties of A2 under
some assumptions for A.
Let us denote by C-(E) = C([0,T], E) the normed space of grid functions ¢™ = {¢x}1_ for fixed 7 = %
with the norm

T p—
K% ”CT(E) = og}cang | er [l 5

From the formula (5) it follows that the investigation of the stability and well-posedness of difference scheme
(4) relies in an essential manner on a number of properties of the powers of the operator (I + 7B)~!. We were
not able to obtain the estimates for powers of the operator (I +7B)~! in the general cases of operator A. We
begin by deriving some estimates for powers of the operator (I +7B)~! with a strongly positive operator A4 in
a Banach space F.

Lemma 1. Let A be a strongly positive operator in a Banach space E. Then —A is a generator of the analitic
semigroup exp{—tA} (¢ > 0) with exponentially decreasing norm, when ¢t — +00, i. e. we have the following
estimates

lexp{~tA} |55 < M ™ (t > 0); (6)

[tAexp{—tA}|,_ . p <M et >0) (7)

for 1 < M < 400, 0 < d < +oo. Here M does not depend on 7.
Lemma 2. Let — A be a generator of the analytic semigroup exp{—tA} (¢ > 0) with exponentially decreasing
norm, when ¢ — +00. Then the following estimates hold for any & > 1 :

(M + 7B < M+ 72a(A)7F; (8)

—k
) HE—>E
l|k7B(I +7B)~*||g—p < M, (9)

where M does not depend on 7.

We have the following results.

Theorem 3. Let A be a strongly positive operator in a Banach space E. Then the difference problem (4) is
stable in C;(FE). For the solution of the difference problem (4) the following stability inequality is satisfied:

I u™ [le. < M e, ) + I uollg + llunll gl

where M does not depend on f7, ug, uy and .
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Stability of difference problem (3)

We consider the difference problem (3). Using formula (5) and the nonlocal conditions

N

up =un + @, Yy T =1,
i=1

we get

N-1
= (21 +7B)"Y(I — RN)"Y(I + R") {Bw ~(I+7B)B™' ) fﬂ'} - (10)

=1
—(I = RMYYI +7B)(I — RNTH (2 +7B) 1o+
N—-1
+H(I = RN MI+7B)2I +7B) ' B Y (RN + RNTY) fir.

=1
N-1
uy = (21 +7B)"'(I — RN)"Y(I + R") {B¢ (I+71B)B~ an} (11)
=1
—(I—R")y"Y(I—=RN"Y(2I +7B) o+
+(I =R ' I +7B)(2I +7B)"'B~! Z (RN=" + RNTY) f,7.
i=1

Actually, applying formula (5), we get

N-1 N
1/}—UNT+Z’UJI¢7'7 (I- RQN {Z — R*N- k ) (un + ) 7+

k=1 k=1

2

-1

N
+ Z(RN?IC — RN Myuyr — Z RN=F _ RN+kY(I 4+ 7B)x
k=1 k=1

N-1
x(2[+7B)"'B7' Y (RN - RN“)fn?} +
=1
N—-1N-1
+(I+7B)2I +7B) 7' B Y Y (R - RE £

i=1 k=1

By computing and interchanging the order of summation, we obtain

Y= -RM)TI-R) T {(R-RB"* — RN + R*™) (uny + )7+ (I — RN — RN*L 4 RPNF1) gy —

N-1
—(I=R*™M)™ (I-R)™'(I+7B)(2 +7B)'B~' (R— RN — RNt + R*N) Y (RN — RN fir24
i=1

N—
+(I =R (I+7B)2[+7B)7} Z (I - R +R— RN~ — R 4 RNTY) f,72,
It follows that
Y—(I+RV)Y'I-R"""Blo=(T+R")""(I-R")(2I+7B)B 'un—
N—-1 ) ]
—~(I+RY)"I+7B)2I+7B)'B (I - R""') Y (RN"'— RN ™) fir+
=1
N-1

+(I+7B)*(I+7B)"'B™* Y ((I+R)(I-R')—R"""+R"") fir.
=1
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Thus
uy = (2 +7B) "I - R")" "I+ RMB{y— I+ RY) "I -R""")B 'y +

N-1
+( + U+ +7B)" - N fir—
I+RYY ' I+7B)2[+7B)'B2(I-R 1)) (RN""— RN*T)f
i=1

N-1
~(I+7B)*@2I+7B)"'B™>> ((I+R)(I-R')— RN+ RN fn} =
i=1

=@2I+7B)"Y(I - RN *(I+ R")By — (I — RN) "I — RN"Y)(Q2I +7B) '+

+(I = RN) NI +7B)*2I +7B) 2B~  (R—RY) Y (RN — RV fir—

N-1
~(I=RY)"MI+7B)2I +7B)"'(I+RV)B™" ) fn} —~
1=1
N—
—(I — RN Y1+ 7B)*2I +7B)"2(I + RV)B Z (I+R)R' — RN~" + RN*) fn} =

:(2]+7-B)_1(I—RN)‘1(I+RN){Bw (I+7B)B 1Zfz }

—(I =RMY™YI = RN "YHY(2I 4+ B) o+
N-1 A
+(I = RN)"MI+7B)2I +7B)"' B~ Y (RN + RN*Y) fir.
i=1
From that there follow formulas (10) and (11).
N-1
Theorem 4. Let A be a strongly positive operator in a Banach space E and ¢p = A=t 3" f;7,¢ = 0. Then
i=1
difference problem (13) is stable in C,(F). For a solution of the difference problem (13) the following stability
inequalities holds

| u™ Mo < Ml 7 Ml e, ()5

where M; does not depend on f7 and 7.
Proof. By Theorem 3 we have the following estimate

e Nle. @< M7 lle, ) + 1 wolls + [lunll ] (12)

for solution of problem (4). Therefore, to prove the theorem it is sufficient to establish estimates for || vl 5 and
[lun]| 5. Applying formulas (10) and (11), the triangle inequality and estimates (8), (9), we get

luollp < Mill £7 e, (o)

lunllp < Mill F7 e, (&)

Theorem 4 is proved.
Application

Now, we will give the application of Theorem 4 to elliptic equations. Let {2 be the unit open cube in the
n—dimensional Euclidean space R” (0 < x < 1,1 < k < n) with boundary S, Q@ =QUS. In [0,T] x Q we
consider the nonlocal boundary value problem for the multidimensional elliptic equation
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a2 n a2
~ 2t — 3 ap(2) 5% + uly, ) = f(y,);

r=1

r=(21,...,2,) €EQ0<y < T,

T
u(0,2) = u(T,z), [u(s,z)ds =0, z €
0

) g pe

where o, (z) (z € Q) and f(y,z) (y € (0,T), = € Q) are given smooth functions and «,(x) >0, 6 > 0 is a
sufficiently large number. Here, 7t is a normal vector to S. The discretization of problem (13) is also carried
out in two steps. In the first step, let us define the grid sets
ﬁh = {J? =T = (hljla 7hm.7m)7 .] = (j17 7]m)7
0<jr <My, heMy =1, 7 =1,...m,};
Qy :ﬁhﬂQ, Sh :ths.

We introduce the Banach spaces Loy = Lo(Qn) and Cj = C(Qp) of the grid functions ¢"(x) =
= {p(h1j1,.--s hmjm)} defined on Qj, equipped with the norms

1/2

e, = | X 1" @) b b (14)

xeﬁh

and

" |, = sup |¢"(z) (15)

€N

respectively. To the differential operator A generated by problem (13), we assign the difference operator A7 by

the formula .

(ar(x)u%)zmjr (16)
r=1
acting in the space of grid functions u”(z), satisfying the condition %h(@ (V x € Sp). It is known that A7 is

a self-adjoint positive definite operator in L2(Q;) and C(Qy). With the help of A%, we arrive at the nonlocal
boundary value problem

P 4 At (1,2) = ()

r€eQ,0<y<T;

T - (17)
uh(0,2) = uM(T, z), [ul(s,2)ds = 0, x € Qp;
0
h
%(Q =0, ¢ €5y
In the second step, we replace problem (17) by the second order of accuracy difference scheme (3)
ul z)—2ul(z)+ul_ | (z
I A (o) = JL ) S @) = )
Yy = k1,1 <kE<N—-1,Nt=T,x € Qp; (18)

N
ul(z) = u’ﬁ,(x), S ul(z)r =0,z € Q.
i=1

Using the results of Theorem 4, we can obtain the following theorem.
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N-1
Theorem 5. Let T and h be sufficiently small numbers and > f"(y;,x) = 0. Then, solutions of difference
i=1

scheme (18) satisfy the following estimates

o H“ZHLQ;L = Ml1g§@n§aj§—1 Hf’?HLZ’L ;

o225y Ikl < M, e [172c,,

here M; does not depend on 7, h and f,?, 1<k<N-1.
The illustrative numerical result

When the analytical methods do not work properly, the numerical methods for obtaining approximate
solutions of partial differential equations play an important role in applied mathematics.
For numerical analysis, we consider the nonlocal boundary problem for the two dimensional elliptic equation

8%u o

— 3 — gz T u=3costcosu, O<t<2m 0<ax<2m
w(0,z) =u (2w, x); fOQﬂu(s,x) ds=0, 0 <z <2m; (19)
Ug (t,0) = uy (¢, 27) = 0, 0<z<2m.

The exact solution of this problem is
u(t,z) = costcosz.

For an approximate solution of the nonlocal boundary problem (19), we consider the set [0,27]_ x [0, 27], of a
family of grid points depending on the small parameters 7 and h

[0,27]_ x [0,27], = {(tk,2n) : t, = k7,0 <k < N,N7 =27, 2, =nh,0<n<M,Mh=27}.

For a numerical solution, we consider the difference scheme of the second order of accuracy in ¢ and the first
order of accuracy in x.

k+1 k k—1 k k k
Uy U, U, Uy 1+ Uy +Up g

= — 72 +uﬁ:3costkcosxn,1§k§N—l,lgngM—l;

ud) = ul, zg\]:_oluil:&0§n§]\4; (20)
u’f—u’ézuﬁ/l—uﬁ/[ﬂ:(), 0<Ek<N.

It is the system of algebraic equations and it can be written in the matrix form

Aun+1 +Bun +Cun—1 = D@nv 1<n< M — 17

(21)
Ug = U1, Up—1 = UM -
Here,
[0 0 0 0 0 0 0 O] [1 0 0 0 0 0 0 —1]
0 a 0 O 0 0 0 O c b c O 0 00 O
0 0 a O 0 0 0 O 0 ¢ b ¢ 0 0 0 O
0 0 0 a 0 0 0 O 0 0 ¢ b 0 0 0 O
A=C=]. .o e ,B=1. . . . e
0 0 0 O a 0 0 O 0 0 00 b ¢ 0 O
0 0 0 O 0 a 0O 0 0 0O c b c O
0 0 0 O 0 0 a O 0 0 0O 0 ¢c b ¢
0 00 0 . 0 0 0 0 (N4 X (N+1) o111 . 111 1_(N+1)X(N+1)’
where a =~y b= % + i +1, o=~
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cp? 0
oL 3costy cos
Pn = . = . )
oN-1 3costn_1COS Ty
Pn 1 (N+1)x1 0 (N+1)x1

and D = Iy is the identity matrix,

Ug = . , s=n—1, n, n+ 1.

N
s

IS

(N+1)x1

Therefore, to solve the matrix equation (21), we will use the modified Gauss elimination method. We seek
the solution of the matrix equation by the following form:

Up = Qpt1Un+1 T 5n+1; n=M-1,..,1,0, (22)

where up; = (I — cyM)_1 Bum,a; (j=1,....,M—1)are (N+1)x (N +1) square matrices, 8; (j =1,...,M—1)
are (N +1) x 1 column matrices, ay is the identity and /51 are zero matrices and

pi1 = — (B+ Cay) " 4;

Brs1 = (B+Can) (Do —CBp),n=1,...,M —1.

Now, we give the error analysis between exact solutions u(ty,z,) and the approximate solutions u* for the
different values of N and M. The errors are computed by the formula

M= e max  fulte wn) = (23)
The numerical results for the difference scheme (20) are given in the following tables 1, 2.
Tablel
Two dimensional | N, M = 20,20 | N,M = 40,40 | N, M = 80,80
Difference scheme 0.1329 0.0607 0.0290
Table 2

Two dimensional | N, M = 20,400 | N, M = 40,1600 | N, M = 80,6400
Difference scheme 0.0029 7.1859¢ — 04 1.7955e — 04

As it is seen in Table 1, if N and M are doubled, the value of errors decrease by a factor of approximately
1/2. Moreover, as it is seen in Table 2, if N is doubled and M > N2, the value of errors decrease by a factor of
approximately 1/4 difference scheme as the second order of accuracy.
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A. Amerpaseie, A. Xama

DJIJTATICTIK TeHAeyJep YHIiH JOKAJIIbIK eMecC
MIETTIK ecenTepai CAHJbIK IIMelry

Maxkasana katasn oH, A omepaTopel 6ap 3/UMICTIK TeHjey yimiH MmbrHa Typaeri —v” (¢)+Av (t) = f(t),

T

(0<t<T), v(0)=v(T)+¢p, [v(s)ds =1 TOKAIIBIK eMeC MIETTIK ECENT] KyBIKTAI IIEIIyTe ApHATFAH
0

eKiHIII perTi MpJIiri 6ap eKi aJbIMIbl alfpBIMJIBIK cxeMa KesTipiiren. Ecen kaunait na 6ip ' Banax keHicri-

riHze KapacThIPbLIALL. AMDPBIMIBIK CXeMaHbIH OPHBIKTEI 60JIATHIHBL KopceTiareH. Kocbiminana meTTik mapr-
Tapbl Heiiman typingeri auddepeHmanabl ecen YImH albIPbIMIBIK, CXeMa IIENNMiHiH OPHBIKTHLIBIFBIH
Garasaynap kepcerisiren. CoHpaii-ak, CaH/IbIK, eCenTeyJIep/IiH HoTHuKeyepi GepireH.

Kiam ce3dep: OPHBIKTBLIBIK, OH OMEPATOPJIAP, JJIIUICTIK TEHIAEY/IED, CAHIBIK HOTHKE, eKIHIII PETTi T2/ Iiri.

Bectnuk Kaparanmgurckoro yHuBepcureTa



Numerical solution of the nonlocal boundary value ...

A. Amerpaseie, A. Xama

YHucseHHoe pellieHUe HeJOKaJbHOW KpaeBoii 3ajadu
JJIs SJUTANTUYECKNX yYPaBHEHUM

B crarpe mpenacraBnena aByxmmaroBas Pa3sHOCTHAasl CXeMa BTOPOTO TMOPSIAKA TOYHOCTH JJIst PUOJIT-
JKEHHOT'O DeIlleHHs] HeJIOKAJbHON KPAaeBOU 3a/1a4yl IS JJIMNTUYECKOro nnuddQepeHnnaabHOro ypaBHEHNT

" (t) + Av(t) = ft) (0 <t <T), v(0) = v(T)+ p, fv(s)ds = 1 B IPOU3BOJLHOM GAHAXOBOM

0

npocrpascTBe E ¢ CHIIBHO 1TOJIOXKHUTENIBHBIM Oo1lepaTopoM A. YcTaHOBJIEHA YCTONYMBOCTD 9TOM Pa3HOCTHON
cxeMbl. B IpUIoyKeHNN oIy YeHbI OIEHKU YCTONINBOCTH PEIeHUs] pA3HOCTHONW CXEMBI JIJIsT SJITANTHIECKOMN
nuddepeHmanbHOM 3a1a49u ¢ TpaHnIHbIM yemoBueM Heitmana. Kpome Toro, mpuBesieH 7eMOHCTPAIIOHHBIH
YUCJICHHBIH PEe3yJIbTar.

Karouesvie crosa: yCTOMYIUBOCTD, IIOJIOKUTEIBHBIE OLIEPATOPHI, SJIMIITUYECKOE YPAaBHEHNE, YUCJIEHHbIE Pe-
3yJbTATHI, ABYXIIIAroBasl Pa3HOCTHAs CXEMaA.

Cepust «Maremarukas. Ne 3(91)/2018 107



MSC 35M12, 65N12

A. Ashyralyev! =3, O. Gercek?, E. Zusi®

! Near East University, Nicosia, Turkey;
2 Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan;
3 Peoples’ Friendship University of Russia, Moscow, Russia;
4 Girne American University, Kyrenia, Turkey;
% Luigj Gurakuqi University, Shkoder, Albania
(E-mail: allaberen.ashyralyev@neu.edu.tr)

A note on the second order of accuracy difference scheme for
elliptic-parabolic equations in Holder spaces

The present paper is devoted to the study of a second order of accuracy difference scheme for a solution of
the elliptic-parabolic equation with nonlocal boundary condition. The well-posedness of the second order
of accuracy difference scheme in Holder spaces is established. Coercivity estimates in Hélder norms for an
approximate solution of a nonlocal boundary value problem for elliptic-parabolic differential equation are
obtained. Results of numerical experiments are presented in order to support the aforementioned theoretical
statements.

Keywords: difference scheme, elliptic-parabolic equation, Holder spaces, well-posedness, coercivity inequa-
lities.

Introduction

In the last decades, boundary value problems with nonlocal boundary conditions have been an important
research topic in many natural phenomena. Methods and theories of solutions of the nonlocal boundary value
problems for elliptic, parabolic, and mixed type differential equations have been studied extensively in a large
cycle of papers (see, for example, [1-20] and the references given therein).

In paper [1], the well-posedness of the nonlocal boundary value problem

Lt | Au(t) = g(t),0 <t < 1,

d:l(tt) B Au(t) = f(t)a —-1<t<0, (1)

u(0+) = u(0-),u' (0+) = u'(0-), u(1) = u(~1) +p

in Holder spaces was determined. Furthermore, the coercivity inequalities for solutions of the nonlocal boundary
value problem for elliptic-parabolic equations were obtained.
In article [2], the first order of accuracy difference scheme

MR RO 4 Ay = gg, g = g(tk) tr = kT, 1 <k < N — 1,

T2

WUkt Ayg g = froo fo = fth_1) te = (k= 1)1, —(N = 1) < k < —1,

-
Uy —Up =U) — U1, UN = U_N + [
for an approximate solution of problem (1) was constructed. Also the well-posedness of the difference scheme in

Holder spaces was proven. Moreover, coercivity estimates in Hélder norms for the solutions of difference scheme
for elliptic-parabolic equations were derived.
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In this study, the well-posedness of the following second order of accuracy difference scheme

_Mw“ + Auk = 9Gk,9k = g(tk)v

T

tr=k1,1<kE<N-—-1,Nt =1,
st — S (Aug + Aug—r) = fi, fr = () (2)

t_1=(k—-H7, —~(N-1) <k <0;

1
b 2

uo —4ug + 3ug = —3ug +4u_1 —U_9, UN =U_N + [

for the approximate solution of nonlocal boundary value problem (1) in Hélder spaces is presented. In addition
coercivity inequalities for solutions of difference schemes are obtained.

The rest of this paper is organized as follows. In section 2, the main theorem on well-posedness of the
difference scheme (2) will be presented. In section 3, an application of the main theorem will be given. In section
4, the numerical results are presented. Finally, in section 5, the conclusion will be given.

Well-posedness of the difference scheme (2)

Throughout this paper, we have adopted the following symbols. H denotes a Hilbert space and A = 41,
where 6 > g > 0, is a self-adjoint positive definite operator. I is an identity operator, B = %(TA—F VA4 4+ T2A)
is a given self-adjoint positive definite operator and B > 62 I. In addition, R = (I+7B)~! is a bounded operator
defined on the whole space H. The following operators

TA TA

P=(1-15),G=(+%

5 ) LK = (I+2¢A+Z(TA)2)*1

exist and are bounded for the self-adjoint positive operator A.
Lemma 1. The following necessary estimates for P*, R¥ and T, are satisfied in [3] and [4]:

1P| r—m <1, ||Gllaom <1, k7||[AP*G?||gom < M, k> 1, 6 > 0; (3)

|R¥ || < M(1+7B)™%, kr||BR®||gomg <M, k>1, § >0; (4)
where A is a self-adjoint positive operator and M is independent of 7.
From these estimates it follows that

T2A

(I + B_lA(I+TA+ %G_2)K(I _ R2N—1) + K(I- T)G—2RQN—1_ (5)

2
~K(I - %)G‘Q(ﬂ +7mB)RYN PNy )| gy < M.

Here, we will study well-posedness of (2) in Holder space. Consider F,(H) = F([a,b],, H) as the linear space
of mesh functions ¢ = {@k}%i defined on [a,b], = {tx = kh, N, < k < Ny, N, = a, Ny7 = b} with values in
Hilbert space H.

Let C([a,bl,, H),C*([-1,1],, H),C*([-1,1],,H),C% ([-1,1],, H),C*([0,1],, H) be Banach spaces with
the norms

e le(ab, o) = N pax llox|lm,
e oo (=1,11,,m) = €7 leq-1,11,,m) + I T loktr — @rlla(rr) "2+
+ sup | ortr — erllE(rm) ™%,
1<k<k+r<N-1
o™ gy, = 97 oo, + e loks2r — erlla(2rr) %+
+ sup lok+r — @rlla(rm)™,

1<k<k4+r<N-1
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|\¢T|\@%([_170]T7H) = le"lleq-1,0,.0) + _Ngksil]gméo llokrar — prlla(2rT)” 2,
||50T||éu([o,1]T,H) = l¢"lleqo,.m) + sup lon+r — rllm (rm) ™.

1<k<k4+r<N-1
Recall that the Banach space E, = E, (B, H), where 0 < a < 1 counsists of v € H, for which the following norm
is finite [5]
lolle., = Sulgzo‘llB(z +B) ||,
z>

The following holds for all 5 < « :
D(B) C E,(B,H) C Esg(B,H) C H.

Theorem 1. Assume that (I +7B)(f-n+1+9N-1) € Ea, (I +7B)(fo+g1) € Fg, and Au € E,. Then, the
solution of difference problem (2) obeys the coercivity inequalities

{772 (1 — 2up + uk—l)}iv_lnca([o,l] m T (RO “k—l)}gNHHé%([q,o],,H) +

T

0
<

+[|fAm |
C% ([~1,0],,H)

{;(Auk +Auk_1)}

_|_
C«([0,1],H) | _N+1

< My {|4ul

Ea HIT+7B)(fo+9)lleg +II(T+7B)(f-nt1 +9v-1)llE. +

1 T T
tam—ay et gorol,m * 1l llew ot m]

and
H{T_z(ukﬂ — 2uy + “kfl)}ivilHoa([o,u H) + H{T_l(“k - “kfl)}OfNJrlHc%([_Lo]T,H) +

T

0
<

[T
€% ([~1,0],,H)

{;(Auk + Au“)}

_|_
ce([0,1],,H) ‘ N41

< M {IIAMHEQ +III+7B)(fo+ 9)lleg + (I +7B)(f-ns1+9n-1)lg, +

TAN . 0
H <] 4 2) f . +llg ca([o,l]T,H)] } )
C2 ([-1,0],,H)

Here M; and M, do not depend on f7, g7, u, 7, and a.
Proof. By [6], we obtain

+

o
a(l —a)

0
~1 _ 0 H lA A < 6
H{T o Ukil)}fNH @{5([—1,0]77H)+H{2( k- Aui) —N+1&3 (-1, H)_ )
< M- L T A
>~ 1 M”f ||C%([—1,0]7—,H)+|| U/OHE%
and
H{Tﬂ(u —up-1)} H 1L Ay + Auge ) ’ < o
v mlet o 2 o “N+1{| % < (21,0, H) -
1 A
SM“HO+T>W + Il Auol |y
Oé(l - 5) 2 C%([fl,O]T,H) a

for the solution of an inverse Cauchy difference problem
TNk — uk—1) — 5 (uk + up—1) = f,

—(N —-1) <k <0, upis given.
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By [3] and [7], we get

- N-1 B
H{T S = 2w}y ’ca([o oy T IHAw  llen o) <
< M|—|lg" a A A
< [a(l—a)”g llco o], 1) + [[Auo|| £, + |[Aun|| £, (8)

for the solution of boundary value problem
772 (up 1 — 2ug + up—1) + Aug = gi,
1<k<N-—1, ug, un are given.

Then, the proof of Theorem 1 is based on coercivity inequalities (6)—(8) and estimates

1 T T
sollz, <0 { s (157 1y + 197 o n] + o)
Al + 1+ 7B)(o + g)lls + 110+ 7B)f 1lls.)
and )
[[Aun|| g, < M{a(l—g) [||fTHCﬂ([—1,0]T,H) + |||9T||Ca([o,1]T,H)] + (10)

+HApl 2o + (T +7B)(fo + 91)lle. }
for the solution of the boundary value problem (2). Estimates (9) and (10) follow from the formulae

0

1
Augy = 5:rTKG—Q X {(21 —724) {(2 +7B)RN | =1 Y~ APTNTIG(f, — foni1) + Ap| —

s=—N+1
N—1 N-1
—RNTMABT' Y T RN (g —gn )T+ RNTTABTN Y D RV (g — g7+
o—1 s=1

N-1
+(I - R*M)AB™! Z R (g, — 91)7}} +

s=1
+(I — R*N)(I +71B)(tB 'Agy — 4GB 'Afy + PGB 'Afy + GB™*Af_1)+
+2I = 2A) 2+ 7B) RN (PN —I)f N1+
+A32(RN—1 — 1) [RN—lgNil + (R2N _ R2N-1 1)91]}
and
0

-7 Z APNTIG(fy = fonga) + Ap
s=—N+1

1
Auy = §PNT7'KG_2 X {(2]— T2 A) {(2 +7B)RY

N—1 N-1
—RNTABTN Y RN (g, —gn )T+ RYTTABTE Y T RN (g, — gl)T} +

s=1 s=1
N—1
+(I = R*™)AB™" Y BR'(gs — g1)T}+

s=1

+(I = R*™)(I +7B)(tB 'Agy — 4GB~ 'Afy + PGB ' Afy+ GB ' Af_ 1)+
+2I =72 A) 2+ 7B) RN (PN — ) f-nia+
_|_AB2(RN71 _I){RNilgN—l 4 (RQN _ R2N71 _I)gl}} _
0
-7 Z APS+N71G(fS_f—N+1)+A:u+(PN_I)f7N+1a

s=—N+1
for the solution of problem (2) and estimates (3)—(5). The proof of Theorem 1 is complete.
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An application of main theorem

In this section, an application of Theorem 1 is presented. Let €2 be a unit cube in the n-dimensional Euclidean
space R" (0 < z < 1,1 < k < n) with boundary S, & = QU S, in [-1,1] x Q. A nonlocal boundary value

problem
n

—ug — Y (ap(X)Ug, )z, = g(t,2),0 <t < 1,2 € Q,

r=1
w4+ Y. (ar(®)ug, )z, = f(t,2), -1 <t <0,z €Q,
= (11)

U(O—i—,ﬂ?) = u(0_7$)aut(0+ax) = ut(O—,a:),x € Q:

u(t,zr) =0,x €S, -1 <t<1lu(l,z) =u(-1,2),r € Q

is considered, where a,.(z) (z € Q), g(t,z) (t € (0,1),z € Q), f(t,z) (t € (=1,0),x € Q) are given smooth
functions and a,(z) > a > 0 is a sufficiently large number.
The discretization of problem (11) is carried out in two steps. In the first step, the grid sets

QO ={x =2, = (himi, ... hymy), m = (M1, ma, ..., my),

0<m, §N7hTNT:1,T:17...,7’L},Qh:QhﬁQ,Sh:QhﬂS

are defined. )
We introduce the Hilbert space Laj = Lop(€2) of the grid functions oM (x) = {p(himy, hama, - - -, hymy,)}
defined on 2, equipped with the norm

e lan = | D " @Ry b |
xGQh

and the Hilbert spaces W, = W3 (Qy,), W3, = W2(,) defined on Q, equipped with the norms

2

hy b |

e lws, = | D D 1",

zeQy, r=1

2

n

h h h

19" llwz, = 1" zan + | D2 D N@"arzem, PRy - b
ZEEQh r=1

It is known that the differential expression

n

Aju = =Y (ar(@)uf s, (12)

r=1

defines a positive operator A acting in the space of grid functions u”(z), satisfying the condition u"(z) = 0,
for all x € Sj. With the help of A7, we arrive at the nonlocal boundary value problem

h
dzudt(;’m) + AFul(t,z) = g"(t,2),0 <t < 1,2 € Qp,

% — Aful(t,x) = fM(t,x), -1 <t <0,z € Qp,

u (04, 2) = ul(0—, ), d“h(doj’“") = d"(?l;’z),m € Oy,

uh(1,2) = uh(~1,2),2 € Q4
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for an infinite system of ordinary differential equations. In the second step problem (13) is replaced by the
difference scheme (2) (see [7]).

_ u£’+1(m)72u2(m)+u271(:v)
)

+ Afup(z) = gp (@),
gh(@) = g"(te, ), ty = kT, 1 <k <N —1,N7r =1,z € Q,

up(z)—uf_ (z) A7
S = e (up (@) +uf_ (2) = fl(2),
f,’;(a:) = fh(tk_%,zn),tk_% = (k- %)T,—NJr 1<k<0,2€Qp,

—ul(z) + 4uf (z) — 3ul(z) = 3ul(x) — 4ul, (z) + uly(x), 2 € Qp,

uly(z) = ul y(2),2 € Q.

Theorem 2. Let 7 and |h| be sufficiently small numbers. Then, the solution of difference scheme (11) obeys
the coercivity stability estimates

72 (uftr — 20 + w3 Hloa (o1, 2oy + {7 (uft = UZA)}QNH||(j~%([_1,o]T,L2,L)+

0
_ 1
+||{UZ}{V 1‘|C(’<([0,1]1—,W22h)+|| {Z(UZ + u21)} HC"%([*LO]T,WQ%L) <
—N+1
< M {Ilf(? +0tllwy, + 7l + aMllwz, + 2N + gh—allwy, + 7l v + N llwz, +
1 h h1N-1
ey M2 alles oo, + MO leoqoar, zan]
{2 (s = 20 + )R Mlew o1, 2o + {7 (il = 0¥ niallo oz T
_ 1
I om0, wz,) + K5k + wbo Y sl oo way <

<M, {IlféL +0tllwy, + 7l + gt llwz, + 12N + gh—allwy, + Tl N + R llwz, +

2h
1 R0 h10 h\N—1
+a(1 —O[) |:H{fk) }_N+1||C%([—170]1—,L2h) +T||{fk}—N+1‘|C%([_110]77W22h) + H{gk}l ||CG([O)1]T,L2h):| ?
where M3 and My do not depend on 7, h, «, f,?, —N+1<k<0,and gﬁ(;zc)7 1<k<N-1.
Applying the symmetry properties of the difference operator A% acting in the space of grid functions u" (),
Theorem 1, and the theorem on coercivity of elliptic difference problem [8] conclude the proof of Theorem 2.

Numerical results

We have not been able to obtain a sharp estimate for the constants figuring in the inequalities in order to
support theoretical statements. So, we will give the following results of numerical experiments of the following
nonlocal boundary value problem

2 2 2
?,t;‘ + ‘37? + gy”j = (1 -2rH)elsinmwsinmy,0 <t <1, 0 <mx,y<1;

ou 8%u 9?2
5 T

5o 557 = (1 -2n)etsinmrsinTy, —1<t<0, 0<z,y<1; (14)

u(l,z,y) —u(=1,2,y) = (e — e ) sinmwsinmy, z,y € [0,1]
for a two dimensional elliptic-parabolic equation with the following Dirichlet conditions

u (0—,x,y) =u (0+,x,y) , Ut (0—,2771/) = Ut (O+7xuy);
u(t,0,y) =u(t,l,y) =0, ye[0,1], t€[0,1];

u(t,z,0) = u(t,z,1) =0, z €[0,1], ¢t € [0,1].
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The exact solution of problem (14) is u(t, z,y) = e’ sin wx sin 7y.

Now, we give the results of the numerical analysis in order to compare and conclude the accuracy of solutions
for the first and second order of accuracy difference schemes. The numerical solutions are recorded for different
values of N and M and Uﬁ,m represents the numerical solutions of these difference schemes at w(tx, T, Ym)-

Table is constructed for N = M = 10, 20, 30, respectively and the error is computed by the following formula

= _ .k
b= N<k<NAZmm<M-1 [t Ty Ym) =t -

The results of the exact and numerical solutions are given in the following Table.

Table
Error analysis
Method N=M=10 | N=M=20 | N=M=30
1%t order of accuracy d. s. 0.0938 0.0459 0.0237
27? order of accuracy d. s. 0.0122 0.0031 0.0014

Therefore, the results confirm that the second order of accuracy difference scheme is more accurate comparing
with the first order of accuracy difference scheme.

Conclusion

In the present work, the second order of accuracy difference scheme for the approximate solution of problem
(1) has been presented. Also, the theorem on well-posedness of this problem in Holder spaces has been established
and the coercivity estimates for the solution of the second order difference schemes for the approximate solution
of the nonlocal boundary value elliptic-parabolic problem have been constructed. Furthermore, the numerical
experiments have been given. Some of results of the present article were presented in the conference proceedings
[20] and [29] as extended abstracts without proofs and without numerical results of error analysis, respectively.
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A. Ammbipassies, O. I'epcek, E. 3yc

I'ébaep KeHicTiKTepiHgeri 3J/JIMIICTiK-TIapadoJIaJIbIK TYPAeri
TeHJaeyJep VIIiH I9JIAIrl eKiHIII peTTi albIPbIMIbBIK cXeMaJiap
2KOHIH/Ie ecKepTIiie

Makauta meTTiK mapTTapbl JJOKAIIBIK eMeC SJIIUIICTIK-1apa0doJIasIbIK, TYP/Eri TeHIeyIep/i ety YIIiH 1971
Oiri exiHni perTi afBIPBIMIBIK cxeMaJjapabl 3epTTeyre apHasraH. lpsairi ekinmi peTTi albIDBIMIBIK, CXe-
MaHbIH [eJibjiep KeHiCTiKTepiHie OPHBIKTEI 60JIaTBIHALIFBI KopceTiired. [IleTTik mapTrapbl JOKAJIIBIK, €MEC
JLTUIICTIK-TIapabosIabIK TYPAEri TeH ey il »KYbIK, IerniMi yiria [eabaep HopMachIHa KOIPIUTUBTI Oara-
Jlaynap aJblHFaH. TeopussbIK TYKBIPBIMIAP YKYMBICTA KeJITIPIIreH CAaHIBIK, eCeNTeyIepMeH PacTaIIbl.

Kiam cesdep: aflbIDBIMIBIK CXeMa, JIIUICTIK-TIapaboJIaIblK, Typ/eri TeHey, [eabnep KeHicTikTepi, KOdp-
IIUTUBTI TEHCI3IIKTED.

A. Ammrpaseies, O. I'epcek, E. 3yc

3amMedaHne 0 pa3HOCTHOII cxeMe BTOPOro IOPsSAKa TOYHOCTH JIJIsI
JIJTAIITUKO-IIapado/IndecKNX ypaBHEeHN B mpocTpaHcTBax [éabaepa

CraTbsl TMOCBSIIEHA U3YUYEHUIO PA3HOCTHOUW CXEMBI BTOPOTO MOPSIIKA TOYHOCTH JIJIsI PEIIeHUsT SJIIAMTHKO-
MapaboIMIeCKOTO YPABHEHUs] C HEJIOKAJBHBIM T'DAHUIHBIM YCJIOBHEM. YCTAHOBJIEHa KOPPEKTHOCTH Pa3-
HOCTHOIN CXeMBbI BTOPOIO HOpsIIKa TOYHOCTH B mpocrpaHcrBax lésbaepa. [losydeHbl OleHKM KOSPIUTHB-
HOCTH B HOpMax [énbaepa /st TpuOIMKEHHOTO PEINTeHUs] HEeJIOKAJIBHOW KPaeBOil 3a/a4u JIJTsT SJLIUIITHKO-
mapabomaeckoro auddepeHnnaabHOr0 ypaBHeHns. Pe3yIbTaThl YNCIEHHBIX SKCIIEPUMEHTOB MIPEICTaBIIe-
HBI JIJIsI TOAJEP?KKHU YIIOMSIHYTBIX BBIIIE TEOPETUIECKUX YTBEPXKIEHUIA.

Karouesvie crosa: pasHOCTHAsI CXeMa, IJIJIMNITHUKO-IIApabOIMdecKoe YpaBHEHHE, IIPOCTPAHCTBa l€sbaepa,
KOIPIHUTUBHbIE HEPABEHCTBA.
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Unconditional basicity of eigenfunctions’ system of Sturm-Liouville
operator with an involutional perturbation

In this paper the question on unconditional basicity of the system of eigenfunctions of the involutive
perturbed Sturm-Liouville operator is investigated. The Green’s function of the operator under consideration
in the case of constant coefficients is constructed. The estimates of the Green’s functions are obtained. The
existence of the Green’s function is shown in the case when the operator under consideration has a variable
coefficient. The theorem on the equiconvergence of expansions with respect to the eigenfunctions of the
indicated operators is proved with the help of the Green’s function. The basicity of the eigenfunctions of
the operator under consideration in the class L2 (—1,1) is proved. It is established that the basis from the
eigenfunctions of the involutive perturbed Sturm-Liouville operator is the unconditional basis.

Keywords: Involution, eigenfunction, eigenvalue, basis, Green’s function.

Introduction
In the present paper we study a spectral problem of the form
Lu=—u"(z) + au"(—z) + q(x)u(z) = Mu(z), —1<x<1, u(-1)=0, u(l)=0, (1)

where ¢(z) € C[—1, 1] — is complex-valued function. The parameter « belongs to the interval (—1,1). If ¢(z) = 0,
then the spectral problem (1)

—u"(z) + au’ (—z) = Mu(z), u(-1)=0, u(l)=0 (2)

is well-known [1], it has eigenvalues

2
1
M1 = (1—a) <k + 2) 72, A2 = (1 4+ )k*7?, k=0,+1,42, ... (3)
and eigenfunctions
1 .
{u;ﬂ(:n) = cos <l + 2) mx, k1 =0,1,2,..; uge(x) =sinkrz, ky=1,2, } , (4)

which form a Riesz basis in Lo(—1,1).

We show that the eigenfunctions’ systems of the spectral problem (1) forms a basis in La(—1,1).

Results on the spectral properties of one-dimensional differential operators with involution (we use the
simplest one, that is, with reflection v(x) = —x on [—1,1]) are actively applied in research of PDE. The recent
papers by Aleorov, Kirane, and Malik [2], Kirane and Al-Sati [3] give natural examples. Various applications of
differential operators with involutions can be found in [4].

Spectral theory of differential operators with involution forms a specific niche in the study of ODE.
Eigenfunction expansions for the first-order differential operators with involution are considered in [5-7]. An
example of second-order differential operators with involution are discussed in [8-10]. A specific example of
a boundary-value problem for the second-order differential operator with involution that produces an infinite
number of associated functions is given in [11, 12]. We also note valuable results on the Green’s function for
the boundary value problems related to functional-differential operators with involution (see Cabada and Tojo
[13, 14]) and new types of non-classical Sturm-Liouville problems (see Aidemir, Mukhtarov et al. [15, 16]).
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Green’s function of the boundary value problem with involution

Along with the boundary value problem (2), we consider the non-homogeneous boundary value problem
—u" () + o (—x) = du(z) + f(z), —-l<z<lI;

u(=1)=0, wu(l)=0, (5)

where —1 < « < 1, with the arbitrary continuous function f (). We note that equation in (5) contains an
involution and corresponds to the homogeneous boundary value problem (2). It is clear that the functions

uy (z) = cos (appz), us(z) =sin(apzr), p=VA;

1 1
Qg = 1*6%7 a1 = ]_+Oé,

give linearly independent solutions to the homogeneous equation (2).
As usual, the Green’s function G (z,t, A) of the boundary value problem (2) is the kernel of the integral

1

M@:/Gume@ﬁ

-1

that provides a solution to the problem (5).
Theorem 1. If X is not an eigenvalue of the problem (2), then the non-homogeneous boundary value problem
(5) is solvable for any continuous function f (z) and its solution can be represented in the form

1 ag sinagp

1
u(x) cos (appzx) | cos(appt) f (t) dt—
/

2 p cosagp

1 oy cosayp

1
3 smorp sin (aq px) /sin(alpt) f (@) dt+
21

—x

1
+to / [cg cos (appz) sin (cppt) — aq sin (o px) cos (a1 pt)] f (¢) dt—
N
- / [ cos (appt) sin (agpx) — aq sin (ay pt) cos (aqpx)] f (t) dt—
1
- / [ cos (appx) sin (opt) — aq sin (o px) cos (g pt)] f (t) dt
Proof. Since the functions cos (agpz), sin (agpx) are solutions to the homogeneous equation in (2), it is
sufficient to show that the function

1
1
go(z) =5 [ g(@,t,\) f(t)dt =
2/1\

—x

= 2ip / [arg cos (op) sin (appt) — aq sin (a1px) cos (apt)] f(t) di+
1

L
2p

—T

[—ap cos (agpt) sin (appx) + a1 sin (aq pt) cos (aqpx)] f () dt+
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1
1
2—/ —a cos (appr) sin (appt) + a1 sin (aq pz) cos (agpt)] f (t) dt

satisfies the equation in (1). The direct calculation of its first derivative

—X

Jo(x) = % / [ (cos (appz)) sin (appt) — a1 (sin (a1 px))’ cos (aipt)] f (t) dt+
1 [ [—ag cos (appt) (sin (aopz))’ + aq sin (aq pt) (cos (a1 pz))'] f (t) dt+
+ )

1
%/ —ayg(cos (appz)) sin (aopt) + a1 (sin (a1 px))’ cos (crpt)] f (t)dt.

and its second derivative F s
() = BT D)

1 " . . 1"
—l—% / [ao(cos (appz))” sin (appt) — ay(sin (a1 pz))” cos (o pt)] f (t) dit+

x

% [—ag cos (aopt) (sin (appz))” + aq sin (e pt) (cos (arpz))”] £ (t) dt+

-l-% / [—ao(cos (anpz))” sin (appt) + a (sin (a1 pz))” cos (arpt)] f (t) dt

verify the equality in (5). The boundary conditions in (5) can be checked directly. The theorem is proved.
The theorem implies the following corollary.
Corollary 1. The Green’s function of the boundary value problem (2) has the form

1 ag sinagp

G(z,t,\) = (cos agpx) (cos agpt) —

2 2p cosagp

1 oy cosayp

(sin o px) (sinaq pt) +

22psinayp
ag (cos appx) (sinagpt) — aq (sin g pz) (cos agpt) , t < —x;
1
ooy (cos appt) (sin agpx) + ay (sinaypt) (cosapx), —x <t < x;
p

—ap (cos agpr) (sin agpt) + oy (sin oy px) (cosaqpt), t > .

Using the explicit form of the Green function one can write down the expansion of an arbitrary function
f(z) from L;(—1,1) in the eigenfunctions of the spectral problem (2). The poles of the Green’s function are
the zeros of the functions cos agp, sinajp:

1
pklzy/)\klzyl(l—a)<k+2>’ﬂ" k:0,172,-..;

P2 = \/ A2 = \/ (1+Oz)k’ﬂ', k=1,2,...

If the number is not even, then all eigenvalues are single. On the complex p-plane we consider the

1+
circles Py, k=0,1,2,...; Py, k=1,2, ..., with a common center at the origin and respective radius:
1 1 1
1:|p|:\/1—a<k‘+2)ﬂ'+8; 2:|p|:\/1—|—o¢k7r+§.
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These circles do not overlap and do not pass through the points py; and pgo. When A = p? the circles P,
Pio turn into the circles

1 1\ = 1\?
k1:|)\|(\/1a<k+2>7r+8>; Pk22|)\|<\/1+0£k7r+8>

in the A-plane, respectively. For any function f(z) € L;(—1.1), the partial sums of the eigenfunctions’s
expansions for the spectral problem (2) can be written as [17]

om ( /( G (z,t,\) f(t)dt d/\——— /G a:tp f @) dt | 2pdp,
2 2772

where P,, — is the circle with the radius p,, = max {pm + %, Pr2 + %}
Further, changing the order of integration and using the residue theorem, we calculate the integral over the
circle Py,

1
1

27ri

o (f) = — /Gxt)\)2pdp F(t)dt =

—1 -

1 m
:/ZCOS <k+ >WICOS(k+;>7th()dt+
7 k=0

1 m
+ / Zsm krx sinknt f (t) dt = (/ ft cos k: + ) wtdt | co <k + ) T+
-1

k=1

—|—Z /f (t) sin kmtdt | sin km.
k=1 \7;

Thus, the partial sums of the eigenfunction expansions for the spectral problem (2) of the arbitrary integrable
function f(z) has the form

" 1 L
= I;)ak cos <k:+ 2) T + Zbk sin km, (6)

k=1

where
1 1

ay :[ f(t)cos (k + ;) wtdt, by :/1 f (t) sin krtdt.

Note that the system {sin kmx, cos (n + %) mc}, k=1,2,...,n=0,1,2..., is a complete orthogonal system in
L2(—1,1). Therefore, for all f (x) € Ly (—1,1) the partial sums o,, (f) of the form (6) converge to the function
f(x) with respect to the norm of the space Lo (—1,1).

Further we need an estimate of the Green’s function.

Let p = Rp + i Sp and denote py = Sp.

Let Oc (pr) = {p: |p— pri| < e,i=1,2} be a circle of sufficiently small radius e.

Lemma 2. If p ¢ O (pr), then the Green’s function G (x,t,\) of the boundary value problem (2) satisfies
the following uniform estimate

G (2,8, 0)] < Clo| s (,1,p)

with —1 <z, t <1, where

r (2.t p) = (efazmo\(zfmfm) Jre*az\Po\(HI|*|t||)>’ a2 = min {a1, ap} -
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Proof. In the case when t > x the Green’s function can be rewritten in the form

ag e~ top iaop(z4t) i p(t—)
G(xvt’”—zlip{_eiaoueiw [0 4 teant=2]

elaop [eiaop@*t) Jreiaop(fzft)} } +

eiaof) + e—iaop

—taip ) .
~o ) e 7 {emlpwm _ ewzlp(t—af)} _
4ip etorp — g—ianp

elaip

_ [_eialp(w—t) + eialp(—a:—t)] } )

etaip _ pg—ia1p
For sufficiently large |p| the Green’s function satisfies the following inequality

o —e@opo

|G (x,t,\)] < {

|p| {e—aopo(ﬂf-ﬁ-t) 4 e—aopo(t—ﬂf)} +

‘e*aopo — e®0pPo |

e @0po

|€_040P0 — eOtOPO‘ |:e_a0p0($_t) * e_aDPO(_w_t):| } -

Q1p0
_A'_& e |:e—0‘190(1+t) _|_e—a1po(t—m):| +
4 |p| I@*QIPO — ealp0|
e Q1po

[emmmta=n) | gmeum(-s=0] } ,

‘e—onpo — e@1p0 |

Since t >z > 0,one hast+xz >t —x, xt —t > —x — t. Therefore,

|G(m7t’)\)| < %o [efaopo(Qfa:ft) + efaopo(tfz)} + o1 |i670¢1p0(27x7t) + efalpo(tfaj):|
41p| 41p|
if po > 0 and
G (2,1, )] < -2 [eaopom—w—t) + eaopou—w)] L™ [ealpom—w—t) + emm(t—w)]
41p| 41p|

Thus, for ¢t > x > 0 the Green’s function satisfies the following estimate

|G(Z‘,t,)\)| < % (efa2\Po|(2fmft) 4 efa2|P0‘(t7I)> , Qg = min{a()’al}.
p

In the case of —x <t < x the proof of lemma is similar to the previous case while the estimate of the Green’s
functions takes the form
G (z,t,\)] < ‘32‘ {e*a2|P0|(2*1*|t\) +e,a2|po\<x,m)} ,
p

In the case of t < —z the estimate transforms into the following inequality

G (.8, \)] < “/;3‘ {e—azw(z—m—r) +e—a2|Po\(\t|—f)} .
p

The last three inequalities provide the desired estimate

G (2,8, A)] < |C| {e*azlpo\@*lw\*\t\) +e—a2\po\\\z|—|t||] ,
P

Lemma is proved.
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Theorems on the basis property of the eigenfunctions of the spectral problem (1)

We are interested in the possibility of expanding the arbitrary function f(x) € Ls(—1,1) in converging
series related to the spectral problem (1) in the case when the complex-valued coefficient ¢ () is continuous
over the interval (—1,1).

We assume that there exists the Green’s function G, (z,t,\) of the boundary value problem (1). Let
G (z,t,\) be the Green’s function of the problem (2). Since almost everywhere on the interval (—1,1) we
have the relations:

LG (n,t,)) | 9C(~a,t,))
0x? @ 0x?

%Gy (z,t, A 9%G, (—x,t, \
_ qa(;;a ) )_|_a qéxfa ) )+q(.’lﬁ)Gq(LL‘7t7)\):)\Gq(x,t7)\)

= MG (z,t,\);

then
O (Gy (2, t,\) — G (x,1,)) PGy (2, t,0) =G (x,t, ) ,__,
— + « —
Ox? 0x?
“AGy (2,6, A) = G (2,1, 0) = —q () Gg (2,1, 7).

The difference G, (z,t,\) — G (x,t, A) clearly satisfies the boundary condition (1). Therefore outside the poles
of the function G (z,t, ) the Green’s function G, (z,t, \) satisfies the equality

Gy (N = G (a8, \) = — /G(m,s,)\) 0 (s) Gy (5,1, \) ds. (7)

-1

Existence of the Green’s function for the boundary value problem (1) is equivalent to the existence of a solution
to the integral equation (7). We come to the following theorem.
l1—a

Theorem 3. If the number /175 is not even, then for all sufficiently large p, p ¢ O (pr), then there exists

a solution to the integral equation (7).
Proof. Let Gy (z,t,A) =0 and

Gyp+1 (x, t,N) =G (z,t, ) — /G (x,8,X)q(s)Gq(s,t,\)ds (8)

for all sufficiently large |p|.
For the Green’s function G (x,t, \) of the problem (2) the estimate holds

|G (z,t,\)| < |C|7" (x,t),
p

where
r(z,t) = e—azlpolllzl=t]l 4 o—azlpol(2=Ilz|=[t]])

Relation (8) with p = 0 yields the estimate

G (2,1 0)] = |G (.1, )] < fp]r(x,t).

For brevity, we introduce the notation
max [Gy1 (2,8, )] o] 7" (2, £) = Coy
(9)
max ‘quﬂrl (I,t, )‘> - Gq,’D (l‘,t, )‘)| ‘,0‘ rt (.’L‘,t) = C:m

where the maximum is taken with respect to xz € [—1, 1], for fixed ¢ and sufficiently large |p| laying outside the
poles of the function G (z,t, \).
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Let us show that o
C; < % j=0,1,2,...p. (10)

For j = 0 estimate (10) follows from the first estimate (9). Let us assume that estimate (10) holds in the
case j = 1,2, ...p and prove it for j = p + 1. Taking into account the notation in (9), we get the inequality

1
Cpt1 £C- C’p|p|_1 max/r (z,5)r (s,t)r ™1 (x,t) |q (s)| ds. (11)

21
Here we have the relation

r(x,s) - r(s,1) = (e,a0|p0|(2,‘z|,|s\) n ewolpoHIrHsH) »

% (e—ao\po|<2—|s\—\t|> +e—ao\poms|—m|) —

= e—aolpol(d=lz[=2ls|=It]) | o—aolpol(2—lz|=Is|+Is|=[tll)

e aolpol@=Is[=t|+le|=[s|l) 4 g—aolpol(lzl=Isll+IIs[=¢[])

The triangle inequality yields
| = [¢]] < || = Isl] + lIs] =[] -

The inequality
[t = [t] + [s] = [s| = |s| = [[t] = |s]]

implies
|z + [t = || + [s] — [[t] = [s]|;

and the inequality
|| = [s] = [|=] = [s]];

implies
|z 4 [t] = [t] + |s| = [lz| = |s]]-

Therefore
[lz| = |t]| =z =1+ 1=Jt|]| < 1—|z|+1—|t| <1—l|z|+1—|t| +2—2]|s| =4 — |z| — |t| — 2]s].

Hence
r(z,s)-r(s,t) <2r(z,t).

This inequality and the inequality (11) imply

1
Cyor 226G, 1pl ™" [ la)lds.
—1

For sufficiently large |p|, the inequality

N |

1
2Cp ! / g (s)|ds <
21

holds true.
Consequently, Cpi1 < % for any p and hence the desired inequality (10) is verified.
It follows from the inequality (10) that the series

Z (Gq7p+1 (.13, i, /\) - G(JP (.13, L, /\))
1
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uniformly converges and hence its partial sum
Sy (2) = Gy ptn (2, t,N) — G (x,t,X)

converges also.
Therefore the sequence Ggp (x,t, A) uniformly converges to its limit G, (z,t,A) which satisfies the equa-
tion (2). The theorem is proved.

Let
1

om (f) = —L. /G(;mt,)\)dep f(t)dt

2mi
1 -
be the partial sum of eigenfunction expansions related to the spectral problem (2), where f(z) € Li(—1,1).

Denote by
1
1
S () =55 | | [ Guler-t.N20do | 10 a1
i
-1 m
the partial sum of the eigenfunction expansion related to the spectral problem (1).
The sequence Sy, (f) is said to be equiconvergent with the sequence o, (f) on an interval —1 < 2z < 1 if the

difference S,,, — 0,, vanishes uniformly on the interval as m — oo.

Theorem 4. If the number ,/%;—g is not even, then for any function f(x) € Li(—1,1) sequence Sy, (f)

equiconverges with the sequence o, (f) on the interval —1 < x < 1.
Proof. Consider the relation

1

/ Gy (2,4, 0) — G (2, £, N)] £ () dt b 2pdp. (12)

P -1

1
211

Sm(f)_o'm(f):_

It follows from the proof of Theorem 2 that

Gy (2.t 0)] < er(m).

This estimate and the equality (7) yield that

1
G (0t.0) = G (@t V)] £ 2211 (2.) [ la(o)lds:

-1

Then the equality (12) gives the estimate

1 1
S () = (Nl < 2= [ | [r@ols @) Qp'i'dp~/|q<s>|ds=
1

m
P, -1

402/|q |ds/ jr(x,t>f<t>|dt 2.

_4ce
/Iq )| ds,

S () = om (D=0 [ /17’<$vt>f<“'dt &

Py,

If we use the notation

then
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Let us divide the interval (0,1) = A; + A, into two parts:

Al=(-146-2—-0)U(—z+dxz—-5U(x+61—10);

Ay=(-1,-14+0HU(—xz—0,—z+)U(x—dz+d)U(l-41)

with a sufficiently small positive value of § > 0. Then

1S (F) = o ()] Scl//(e—ao\pomm—ltu +e—ao|po|(2—uw|—|tu>) y

P,, A1
dp
><|f(t)|dt‘ ; +2017TA/|f(t)|dt. (13)
Since
—1+68 —z+6 z+0 1
Jlrola= [ iraias [ o [iroas [
As -1 —z—6 z—6 1-6

the choice of § can make the second term in (13) less than §.
If p,,, is the radius of the circle P,,, then the partition of the integral

/ e—aolpold

m

1
dp‘ — /efaoépm\sint\dt+ 6*a05ﬂm\COSt|dt+
p

0

ISEl \.A‘if

5 @ 27
+/e—a06pm\sint\dt+/e—aoépm\cosﬂdt_’_/e—aoépm\sint\dt
3x 5m Tn
4 4 4
provides the estimate
/e*a(ﬂpo\‘; df" < &
Pl lpmld

Pm

With sufficiently large value of m, the first term in (13) can be made less than §.
The theorem is proved.
Remark. In [18, 19] the boundary value problem

—u" (—2) +q(2) u(z) = Mu(2);
u(=1)=u(l), o (-1)=4

is considered and the theorems similar to Theorems 2 and 3 are obtained.

Theorem 5. If the number /122 is not even, then the system of eigenfunctions of the spectral problem (1)

14+«
forms the basis in La(—1,1).
Proof. Let ||-||, denote the norm in Ly (—1,1). Then for any function f(x) € Ly (—1,1), one obtains the
estimate
1f = Smlly < f —omlly + llom — Smlly <€

as the first term is less than § by virtue of the basis property of the eigenfunctions of the spectral problem (2),
and the second term is less than § by virtue of the equiconvergence Theorem 3. Theorem 4 is proved.

Unconditional basicity of the system of eigenfunctions of the spectral problem (1) does not follow from
Theorem 4. By Theorem 4 the system of eigenfunctions of the spectral problem (1) forms a basis in La(—1,1).
It is well-known that for any basis wuy in a Hilbert space La(—1, 1) the estimate

lukllo-1,0) 1okl Ly—1,) £ C
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holds [20], where vy, is biortogonally adjoint system to wy. Since the system of eigenfunctions of the spectral
problem (1) forms a basis in La(—1,1), then by Theorems of L.V. Kritskov and A.M. Sarsenbi [21] this basis is
an unconditional basis in the same space. Thus, we get the following result

Theorem 6. Let all the conditions of Theorem 4 be satisfied. Then the system of eigenfunctions of the spectral
problem (1) forms an unconditional basis in La(—1,1).

This work was supported by the Committee of Science of the Ministry of Education and Science of the
Republic Kazakhstan, project no. AP0531225.
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9.9. Copcendbi

NMuBomoruBTi TONKBITHLIFaH IIITypMm-JInyBuiiin ommepaTopbIHbIH,
MEHIIIKTi (pyHKIMAIapbIHBIH MIAPTCHI3 0a3uc 0Oy bI

MakaJtaza merTik maprrapbl Jupuxiie Typinge 6osarbin naBosonusicol oap HItypm-JIlunyBuin onepaTopbr
MeHIMKTI QYHKIUSIAp XKyieciHin 6as3uc 6oIybl TypaJsbl Macese 3epTrered. KoaddurmenTrepi TypakTh
naBostorusicel 6ap Ltypm-Jlnysumn oneparopsiubiy ['pun dyHKIHACH Kypbuibin, I'puH QyHKIMACH! VITiH
barasaynap ajbiarad. Koaddummenrrepi aftnbimastsbl naBostonusicol 6ap IItypm-JIuyBust ornepaTopbIiHbIH
na I'pun dyuKnuscbiHbIE 6ap 60Iybl Typasbl TeopeMma JosesaeHreH. OCbl HOTUZXKETEPIiH KOMeriMeH aii-
TBLJIBIIT OTBIPFAH €Ki OIepaTop/IblH, MEHITIKTI (DyHKIMIapbl OONBIHINA KIKTeyIepi 61pKAJIBIITE KabaTTaca
JKUHAKTAJATBIHIBIFEI KopceTinren. KoadduimenTi aitHbiMasibl nHBoOJOIUsICH 6ap LIITypm-JInysuit onepa-
TOPBI MEHMTIKTI (DyHKIUSIAPLIHGIH Kyiieci La(—1, 1) kenicriringe 6asuc 601aThHABIFB KOpceTinren. 2Kome
MyHJ1all 6a3uCTiH MapTCchi3 6a3uc 60JIATHIHIBIFBI JIJIEJIIEHIeH.

Kiam cosdep: nHBOJIIONMS, MEHINIKTI (pyHKIMAIAD, MEHIIIKTI MoHAED, 6asuc, ['pun pyHKIMACHL.

A.A. Capcenbn

BesycioBaass 6a3uCcHOCTH COOCTBEHHBIX (DYHKITNIT MHBOJIOTHBHO
Bo3MYyIlieHHOro oneparopa Illtypma-JInyBusis

B crarpe mccimemoBan Bompoc 0 6e3yC/IOBHON 0Oa3MCHOCTH CHCTEMBI COOCTBEHHBIX (DYHKIIMI WHBOJIIOTUB-
HO BO3MyIeHHOoro omneparopa lrypma-Jluysunns. Iloctpoena dyukmusa ['puna msydaemoro omeparopa B
cJIydae MOCTOAHHBIX Ko duimenTos. [lomydensr onenku dyuknuit ['puna. [Ipu Haaunaun nepeMeHHOr0O KO-
addunmenTa y u3yIaeMoro omeparopa mokasaHo cylnecrBoBanue dyuxkunn ['puna. /lokazanbl Teopema o
PaBHOCXOJIUMOCTH PA3JIOYKEHUH 110 COOCTBEHHBIM (DYHKITUAM YKA3AHHBIX OIIEPATOPOB € MOMOIIBLIO (DYHKIIUN
I'puna, a Takke 6a3UCHOCTL COOCTBEHHBIX (DYHKIuiT B Kiaacce Lo (—1, 1) m3ydaemoro oneparopa. YCTaHOB-
JIeHO, 9TO 6a3uc n3 cOOCTBEHHBIX (DYHKIMIT MHBOJIIOTUBHO BO3MYIeHHOTO omneparopa llItypwma-Jluysusmis
ABJIIETCSI OE3yCJTOBHBIM H6a3UCOM.

Kmouesvie crosa: MHBOJIONUs, cOOCTBeHHAs (DYHKIMs, COOCTBEHHbIE 3HAaYeHns, Oa3uc, dyukius ['puna.
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