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The Laplace-Beltrami operator is studied on a stratified set consisting of two punctured circles and an
interval. A complete description of all well-posed boundary value problems for the Laplace-Beltrami op-
erator on such a set is given. In the second part of the paper, a class of self-adjoint well-posed problems
for the Laplace-Beltrami operator on the specified stratified set is identified. The obtained results can
be considered as a generalization of known results on geometric graphs. In particular, the stratified set
under consideration can be interpreted as graphs with loops. Studies on the spectral asymptotics of Sturm-
Liouville operators on plane curves homotopic to a finite interval are also closely related to the present
results paper. Since the punctured circle is diffeomorphic to a finite interval, the spectral methods applied
to differential operators on a finite interval can be modified to study the spectral properties of differential
operators on the punctured circle. The main results of this paper are obtained by modifications of methods
that were previously used in the study of the asymptotic behavior of the eigenvalues of the Sturm-Liouville
operator on a finite interval.
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1 Stratified set Ω and functions over Ω

We consider the stratified set Ω formed by two punctured circles C1, C2 and interval l = (0, 1) as
well as two points A and B. In this case, Ω is a connected set (Fig. 1), the role of one-dimensional
strata is played by C1, C2, l, and the role of zero-dimensional strata is played by single-point sets {A}
and {B}.

Figure 1. Stratified set Ω on the plane
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The facts given about the stratified set are sufficient for us; more general information about stratified
sets can be found in the works [1, 2]. According to the work [3], a measure Ω is introduced on the set
µ, as well as the corresponding function spaces. According to the specified work [4,5] Ω is represented
as a union of two non-intersecting parts: Ω0 = C1 ∪ l ∪ C2 and ∂Ω0 = {A,B}.

2 Correctly solvable problems for the Laplace-Beltrami operator on a punctured circle C1

For convenience, we assume that the punctured circle C1 is given by equation

C1 = {x1 = (x11, x
2
1) ∈ R2\{(0, 0)} : (x21)

2 + (x11 + 1)2 = 1}.

It is clear that the punctured circle C1 can be defined using one card{
x11 = cos t1 − 1,

x21 = sin t1.

Moreover, the local coordinate t1 runs through the interval (0, 2π). In C1, one can define classes
of functions and the Laplace-Beltrami operator as was done in work [4]. In particular, the Laplace-
Beltrami operator in this case represents the operator of twofold differentiation with respect to the
variable t1, if the function on C1, is represented as a function on the interval (0, 2π). If the function on
C1 is represented as a function of x ∈ C1 then the value of the Laplace-Beltrami operator coincides with
a two-fold tangent derivative. Since the Laplace-Beltrami operator is defined invariantly with respect
to local coordinates, then when solving the corresponding equations, the equation can be solved in
derivative local coordinates. Local coordinates can be chosen at one’s discretion, and then the solution
found in the chosen coordinates must be able to be written in other arbitrary local coordinates. From
the above reasoning, it follows that the statement is true.

Theorem 1. For any numbers a, b and any function f(x), defined on C1 and belonging to L2(C1)
the inhomogeneous equation

(I −∆C1)u(x) = f(x), x ∈ C1 (1)

with conditions at the point A(0, 0)

U0(u) = a1, U1(u) = b1 (2)

has a unique solution u(x) ∈W 2
2 (C1).

Remark 1. If a point P on a circle precedes a point Q on the same circle, we briefly write P ≺ Q.
If points P and Q belong to the same oriented map, then the precedence of one point over another
point of the same map is defined according to the orientation. Therefore, the notion of one-sided limit
lim
P→Q
P≺Q

f(P ) = f(Q− 0) is correctly defined.

In Theorem 1, ∆C1 denotes the Laplace-Beltrami operator on C1. Here, in conditions (1), (2) there
are linear functionals U0(·), U1(·), which are defined in the following way:

U0(u) = lim
x→A
x�A
x∈C1

u(x)− lim
x→A
A�x
x∈C1

u(x),

U1(u) = lim
x→A
x�A
x∈C1

∂u(x)

∂τ
− lim

x→A
A�x
x∈C1

∂u(x)

∂τ
,

where ∂u
∂τ -means the derivative along the tangent to C1 at point x. The proof of Theorem 1 can be

found in the work of [4]. From Theorem 1 and from the results of M. Otelbaev [5–7] the following
theorem follows.
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Theorem 2. (i) For any function f(x), defined on C1 and belonging to L2(C1) the inhomogeneous
equation

(I −∆C1)u(x) = f(x), x ∈ C1,

with conditions

U0(u) =

∫
C1

(I −∆C1)u(x)σ0(x)dlx, U1(u) =

∫
C1

(I −∆C1)u(x)σ1(x)dlx, (3)

has a unique solution u(x) ∈W 2
2 (C1), if σ0, σ1 ∈ L2(C1).

(ii) Let us assume that we add some conditions to the inhomogeneous operator equation (1) with
conditions (2) so that equation (1) for all f ∈ L2(C1) has a unique solution u(x) ∈W 2

2 (C1).
Then the added conditions are equivalent to conditions (3) for some σ0, σ1 ∈ L2(C1).
Proof. Proof of Theorem 2. The first part of Theorem 2 follows directly from Theorem 1 if

a1 =

∫
C1

f(x)σ0(x)dlx, b1 =

∫
C1

f(x)σ1(x)dlx.

Now let us prove the second part of Theorem 2. By assumption, we add some conditions to
equation (1) so that equation (1) for all f ∈ L2(C1) has a unique solution u(x), and

‖u(x)‖L2(C1) ≤M‖f(x)‖L2(C1), (4)

where M does not depend on f .
So there is only one solution u(x), subject to inequality (4). It follows from the embedding theorem

that there exist values of linear functionals U0(u), U1(u). It is easy to understand that linear functionals
U0(·), U1(·) according to inequality (4), are also functionals bounded in L2(C1). Therefore, according
to F. Riesz’s theorem on the general form of a linear continuous functional in space L2(C1) there exist
functions σ0(x), σ1(x) ∈ L2(C1) such that

U0(u) =

∫
C1

f(x)σ0(x)dlx, U1(u) =

∫
C1

f(x)σ1(x)dlx.

Now it remains to replace f(x) with (I − ∆C1)u(x), from which the validity of the second part of
Theorem 3 follows.

3 Well-solved problems for the Laplace-Beltrami operator on a stratified set Ω

In the previous paragraph we wrote out correctly solvable problems for the Laplace-Beltrami op-
erator on a punctured circle C1. In the same way, one can write out all possible correctly solvable
linear problems for the Laplace-Beltrami operator on a punctured circle C2. Note that correctly solv-
able linear problems for the operator of twofold differentiation on the interval l = (0, 1) are well
known to [5–7]. Now, using the above results, we write out all possible correctly solvable linear prob-
lems for the Laplace-Beltrami operator on a stratified set Ω, consisting of C1, C2 and l. In this point,
the punctured circle C1 is defined as follows

C1 = {x1 = (x11, x
2
1) ∈ R2\({0, 0}) : (x11 + 1)2 + (x21)

2 = 1},

where the role of local coordinates is played by the variable t ∈ (0, 2π):{
x11 = cos t− 1,

x21 = sin t.
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The punctured circle C2 is defined as the following set

C2 = {x2 = (x12, x
2
2) ∈ R2\{(1, 0)} : (x12 − 2)2 + (x22)

2 = 1},

where the role of local coordinates is played by the variable τ :

x12 = 2 + cos τ, x22 = sin τ, τ ∈ (π, 3π).

Interval l is defined as the horizontal open segment

l = {x3 = (x13, x
2
3) ∈ R2 : 0 < x13 = S < 1, x23 = 0}.

Here the role of the local coordinate is played by the parameter S, which runs through the interval
(0, 1). An analogue of Theorem 1 can be formulated for a punctured circle C2 and interval l. As a
result, we have the following statement.

Theorem 3. For any numbers a1, b1, a2, b2, a3, b3 and any functions ~F = {f1(x1), f2(x2), f3(s) ∈
L2(Ω)} non-homogeneous system of equations

(I −∆C1)u1(x1) = f1(x1), x1 ∈ C1,

(I −∆C2)u2(x2) = f2(x2), x2 ∈ C2,

u3(s)− u′′3(s) = f3(s), s ∈ (0, 1),

(5)

with conditions
U0(u1) = a1, U1(u1) = b1,

V0(u2) = a2, V1(u2) = b2,

u3(0) = a3, u3(1) = b3

(6)

has a unique solution u = (u1, u2, u3) ∈W 2
2 (Ω).

In Theorem 3 ∆C2 denotes the Laplace-Beltrami operator on C2. Also, linear forms determined by
limiting ratios are designated by V0(·) and V1(·):

V0(u2) = lim
x→B
x�B
x∈C2

u2(x)− lim
x→B
B�x
x∈C2

u2(x),

V1(u2) = lim
x→B
x�B
x∈C2

∂u2(x)

∂τ
− lim

x→B
B�x
x∈C2

∂u2(x)

∂τ
,

where B = (1, 0) and ∂u
∂τ -means the derivative along the tangent to C2 at point x.

Similar results for graphs without loops were studied in [8]. This theorem can be interpreted as
correctly solvable problems for the Laplace-Beltrami operator on graphs with loops. From Theorem 3
and the results [5–7] of the assertion follows.

Theorem 4. (i) For any function ~F = {f1, f2, f3} ∈ L2(Ω) inhomogeneous system of equations (5)
with conditions
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

U0(u1) =
∫
C1

(I −∆C1)u1(x1)σ1(x1)dl1 +
∫
C2

(I −∆C2)u2(x2)ρ1(x2)dl2 +
1∫
0

(u3(s)− u′′3(s))ϕ1(s)ds,

U1(u1) =
∫
C1

(I −∆C1)u1(x1)σ2(x1)dl1 +
∫
C2

(I −∆C2)u2(x2)ρ2(x2)dl2 +
1∫
0

(u3(s)− u′′3(s))ϕ2(s)ds,

V0(u2) =
∫
C1

(I −∆C1)u1(x1)σ3(x1)dl1 +
∫
C2

(I −∆C2)u2(x2)ρ3(x2)dl2 +
1∫
0

(u3(s)− u′′3(s))ϕ3(s)ds,

V1(u2) =
∫
C1

(I −∆C1)u1(x1)σ4(x1)dl1 +
∫
C2

(I −∆C2)u2(x2)ρ4(x2)dl2 +
1∫
0

(u3(s)− u′′3(s))ϕ4(s)ds,

u3(0) =
∫
C1

(I −∆C1)u1(x1)σ5(x1)dl1 +
∫
C2

(I −∆C2)u2(x2)ρ5(x2)dl2 +
1∫
0

(u3(s)− u′′3(s))ϕ5(s)ds,

u3(1) =
∫
C1

(I −∆C1)u1(x1)σ6(x1)dl1 +
∫
C2

(I −∆C2)u2(x2)ρ6(x2)dl2 +
1∫
0

(u3(s)− u′′3(s))ϕ6(s)ds,

(7)
has a unique solution u = {u1, u2, u3 ∈W 2

2 (Ω)}, if

σj ∈ L2(C1), ρj ∈ L2(C2), ϕj ∈ L2(0, 1), j = 1, 2, 3, 4, 5, 6.

(ii) Let us assume that we add some conditions to the inhomogeneous system of equations (5)
with conditions (6) so that equation (5) for all ~F = {f1, f2, f3} ∈ L2(Ω) has a unique solution
u = (u1, u2, u3) ∈W 2

2 (Ω)). Then the added conditions are equivalent to conditions of the form (7)
for some

σj ∈ L2(C1), ρj ∈ L2(C2), ϕj ∈ L2(0, 1), j = 1, 2, 3, 4, 5, 6.

The proof of Theorem 4 repeats the proof of Theorem 2, only the theorem of F. Riesz is used,
which concerns the Hilbert space L2(Ω).

The formulation of correct boundary value problems for the Laplace operator in a punctured ball
was discussed in the works [9–11]. A description of all possible well-defined problems for the Laplace-
Beltrami operator on a punctured sphere can be found [12–14]. Everywhere correctly solvable problems
for differential operators in punctured domains or in domains with cuts can be interpreted as singular
perturbations of regular differential operators. From this point of view, singular differential operators
are studied in the works [15–17], differential operators for the Dirichlet and Neumann problems are
studied in the works [18,19].

4 Examples of well-posed problems on a stratified set

In this section we will give specific examples that follow from the first part of Theorem 4. Let us
recall Lemma 1 from work [4].

Lemma 1. [4] For any smooth 2π-periodic function F̂ (t) the integral identity is valid

t∫
0

F̂ (t)dt =

∫
γ1x

F (ξ1, ξ2)(ξ1dξ2 − ξ2dξ1),

where γ1x positively oriented arc of a punctured circle C1
1 , connecting the dots (0, 0) and

x = (x1, x2) ∈ C1.
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Here the function F (x) for x ∈ C1 is generated by the function F̂ (t) for t ∈ (0, 2π) as follows: first,
we expand F̂ (t) into a trigonometric series

F̂ (t) =
a0
2

+
∞∑
k=1

(ak cos kt+ bk sin kt), t ∈ (0, 2π)

and then according to the formulas x1+1 = cos t, x2 = sin t we move from t to variables (x1, x2) = x ∈ C1

F (x) =
a0
2

+
∞∑
k=1

(akTk(x
1 + 1) + bkx

2Uk−1(x
1 + 1)),

where Tk and Uk−1 Chebyshev polynomials of the first and second kind, respectively. Similarly, the

integral
τ∫
0

σ̂(τ)dτ at τ ∈ (π, 3π) we can rewrite it through the integral

∫
γ2x

σ(ξ1, ξ2)(ξ1dξ2 − ξ2dξ1),

where γ2x positively oriented arc pierced circle C2, connecting points (−1, 0) and x = (x1, x2) ∈ C2.
Here also σ(x) for x ∈ C2 is generated by the function σ̂(τ) for τ ∈ (π, 3π) as follows:

First, we expand σ̂(τ) for τ ∈ (π, 3π) into a trigonometric series

σ̂(τ) =
c0
2

+
∞∑
k=1

(ck cos kτ + dk sin kτ), τ ∈ (π, 3π),

and then according to the formulas x1 − 2 = cos τ, x2 = sin τ we move from the parameter τ to the
variables (x1, x2) = x ∈ C2

σ(x) =
c0
2

+
∞∑
k=1

(ckTk(x
1 − 2) + dkx

2Uk−1(x
1 − 2)).

In conditions (7) the integrals
∫
C1

f1(x1)σ1x1dl1 and
∫
C2

f2(x2)σ2x2dl2. These integrals can be rewritten

in terms of local coordinates t and τ , respectively:

∫
C1

f1(x1)σ1(x1)dl1 =

2π∫
0

f1(cos t− 1, sin t)σ1(cos t− 1, sin t)dt =

2π∫
0

f̂1(t)σ̂1(t)dt,

∫
C2

f2(x2)σ2(x2)dl2 =

3π∫
π

f2(2 + cos τ, sin τ)σ2(2 + cos τ, sin τ)dτ =

3π∫
π

f̂2(τ)σ̂2(τ)dτ.

Now we are ready to rewrite the integral
∫
C1

(I −∆C1)u1(x1)σ1(x1)dl1 in a form convenient for us

∫
C1

(I −∆C1)u1(x1)σ1(x1)dl1 =

∫
C1

f1(x1)σ1(x1)dl1 =

2π∫
0

f̂1(t)σ̂1(t)dt =

2π∫
0

(
û1(t)− û′′1(t)

)
σ̂1(t)dt.
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We apply the integration by parts to the last integral, assuming that σ̂1(t) is twice continuously
differentiable function. As a result, we have

2π∫
0

(
û1(t)− û′′1(t)

)
σ̂1(t)dt =

2π∫
0

û1(t)
(
σ̂1(t)− σ̂′′1(t)

)
dt− û′1(t)σ̂1(t)

∣∣∣t=2π

t=0
+ û1(t)σ̂′1(t)

∣∣∣t=2π

t=0
=

=

2π∫
0

û1(t)
(
σ̂1(t)− σ̂′′1(t)

)
dt−û′(2π−0)σ̂1(2π − 0)+û1(2π−0)σ̂′(2π − 0)+û′1(+0)σ̂1(+0)−û1(+0)σ̂′1(+0).

Now, as a result of the change of variables from the local coordinate t to the variables (x11, x
2
1) = x, we

have ∫
C1

(I −∆C1)u1(x1)σ1(x1)dl1 =

∫
C1

u1(x1)(I −∆C1)σ1(x1)dl1 −−
∂u1
∂τ

(≺ (0, 0)σ1(≺ (0, 0))+

+ u1(≺ (0, 0))
∂

∂τ
σ1(≺ (0, 0)) +

∂u1(≺ (0, 0))

∂τ
σ1(≺ (0, 0))− u1(≺ (0, 0))

∂σ1
∂τ

(≺ (0, 0)), (8)

where
g(≺ (0, 0)) = lim

x1→(0,0)
x1≺(0,0)
x1∈C1

g(x1), g(� (0, 0)) = lim
x1→(0,0)
x1�(0,0)
x1∈C1

g(x1),

∂g(≺ (0, 0))

∂τ
= lim

x1→(0,0)
x1≺(0,0)
x1∈C1

∂g(x1)

∂τ
,
∂g(� (0, 0))

∂τ
= lim

x1→(0,0)
x1�(0,0)
x1∈C1

∂g(x1)

∂τ
,

where ∂
∂τ is derivative along the tangent to C1 at point x1. In the same way, for any two sufficiently

smooth C2 functions on u2(x2), ρ2(x2) the following identity holds∫
C2

(I −∆C2)u2(x2)ρ2(x2)dl2 =

∫
C2

u2(x2)(I −∆C2)ρ2(x2)dl2−

− ∂u2(≺ (−1, 0))

∂τ
ρ2 ≺ (−1, 0)) + u2(≺ (−1, 0))

∂ρ2(≺ (−1, 0))

∂τ
+ (9)

+
∂u2(� (−1, 0))

∂τ
ρ2(� (−1, 0))− u2(� (−1, 0))

∂ρ2(� (−1, 0))

∂τ
,

where ∂
∂τ is derivative along the tangent to C2 at the point x2. The given auxiliary statements

allow us to obtain consequences of Theorem 4. Now we will specify the choice of boundary functions
σj(x1), ρj(x2), ϕj(x3) for j = 1, 2, 3, 4, 5, 6 from Theorem 4. Let for j = 1, 2, 3, 4, 5, 6 the functions
σj(x1), ρj(x2), ϕj(x3) be chosen so that

(I −∆C1)σj(x1) = 0, x1 ∈ C1,

(I −∆C2)ρj(x2) = 0, x2 ∈ C2,

ϕj(s)− ϕ′′j (s) = 0, s ∈ (0, 1).
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Then, from relations (8) and (9) we have∫
C1

(I −∆C1)u1(x1)σj(x1)dl1 = −∂u1(≺ (0, 0))

∂τ
σj(≺ (0, 0))+

+u1

(
≺ (0, 0)

)∂σj(≺ (0, 0))

∂τ
+
∂u1(� (0, 0))

∂τ
σj(� (0, 0))− u1(� (0, 0))

∂σj(� (0, 0))

∂τ
,

∫
C2

(I −∆C2)u2(x2)ρj(x2)dl1 = −∂u2(≺ (−1, 0))

∂τ
ρj(≺ (−1, 0))+

+u2

(
≺ (−1, 0)

)∂ρj(≺ (−1, 0))

∂τ
+
∂u2(� (−1, 0))

∂τ
ρj(� (−1, 0))− u2(� (−1, 0))

∂ρj(� (−1, 0))

∂τ
,

1∫
0

(u3(s)− u′′3(s))ϕj(s)ds = −du3(1− 0)

ds
ϕj(1− 0) + u3(1− 0)

dϕj(1− 0)

ds
+

du3(+0)

ds
ϕj(+0)− u3(+0)

dϕj(+0)

ds
.

Thus, the boundary conditions (7) from Theorem 4 take the form for j = 1, 2, 3, 4, 5, 6

Uj = σ̂j(+0)
[
û′1(+0)− cosh 2π û′1(2π − 0) + sinh 2π û′1(2π − 0)

]
+

+σ̂j
′(+0)

[
cosh 2πû′1(2π − 0)− sinh 2π û′1(2π − 0)− û′1(+0)

]
+

+ρ̂j(π + 0)
[
û′2(π + 0)− cosh 2π û′2(3π − 0) + sinh 2π û′2(3π − 0)

]
+

+ ρ̂j
′(π + 0)

[
cosh 2πû′2(3π − 0)− sinh 2π û′1(3π − 0)− û′2(π + 0)

]
+ (10)

+ϕj(+0)
[
u′3(+0) +

cosh 1

sinh 1
u3(0)− 1

sinh 1
u3(1− 0)

]
+

+ϕj(1− 0)
[cosh 1

sinh 1
u3(1− 0)− u′3(1− 0)− 1

sinh 1
u3(+0)

]
,

where
U1(u1) = û1(+0)− û1(2π − 0), U2(u1) = û′1(+0)− û′1(2π − 0),

U3(u2) = û2(π + 0)− û2(3π − 0), U4(u2) = û′2(π + 0)− û′2(3π − 0),

U5(u3) = u3(+0), U6(u3) = u3(1− 0).

5 Self-adjoint well-solved problems

In the previous paragraph, examples of correctly solvable problems that are set using boundary
conditions. Now we will select from them those problems that are self-adjoint. Correctly-solvable
problems correspond to operators whose resolvent sets contain λ = 0. At the same time, self-adjoint
well-solvable problems correspond to operators whose eigenvalues provide nonzero real numbers. Thus,
in this section, such well-solvable problems are distinguished whose spectrum is discrete and consists
of nonzero real eigenvalues. Recall that for any two sufficiently smooth functions u1(x1), u2(x2), u3(s)
and ϑ1(x1), ϑ2(x2), ϑ3(s) the identity holds

∫
C1

(I −∆C1)u1(x1)ϑ1(x1)dl1 +

∫
C2

(I −∆C2)u2(x2)ϑ2(x2)dl2 +

1∫
0

(u3(s)− u′′3(s))ϑ3(s)ds =
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=

∫
C1

u1(x1)(I −∆C1)ϑ1(x1)dl1 +

∫
C2

u2(x2)(I −∆C2)ϑ2(x2)dl2 +

1∫
0

u3(s)(ϑ3(s)− ϑ′′3(s))ds+

+(û′1(+0)− û′1(2π − 0))ϑ̂1(2π − 0) + û′1(+0)(ϑ̂1(+0)− ϑ̂1(2π − 0))−

−(û1(+0)− û1(2π − 0))ϑ̂′1(2π − 0) + û1(+0)(ϑ̂′1(2π − 0)− ϑ̂′1(+0))+

+ (û′2(π + 0)− û′2(3π − 0))ϑ̂2(3π − 0) + û′2(π + 0)(ϑ̂2(π + 0)− ϑ̂2(3π − 0))− (11)

−(û2(π + 0)− û2(3π − 0))ϑ̂′2(3π − 0) + û2(π + 0)(ϑ̂′2(3π − 0)− ϑ̂′2(π + 0))−

−u′3(1− 0)ϑ3(1− 0) + u′3(+0)ϑ3(+0) + u3(1− 0)ϑ′3(1− 0)− u3(+0)ϑ′3(+0),

where û1(t) = u1(cos t− 1, sin t) for t ∈ (0, 2π), û2(τ) = u2(2 + cos τ, sin τ) for τ ∈ (π, 3π).
Let D denote the set of functions u1(x1), u2(x2), u3(s) such that

(I) u1(x1) ∈W 2
2 (C1), u2(x2) ∈W 2

2 (C2), u3(s) ∈W 2
2 (0, 1).

Let us also introduce the set D0, consisting of functions u1(x1), u2(x2), u3(s) ∈ D such that
(II) û′1(+0) = û′1(2π − 0), û′1(+0) = 0, û1(+0) = û1(2π − 0), û1(+0) = 0,

û′2(π + 0) = û′2(3π − 0), û′2(π + 0) = 0, û2(π + 0) = û2(3π − 0), û2(π + 0) = 0,
u3(+0) = 0, u′3(+0) = 0, u3(1− 0) = 0, u′3(1− 0) = 0.
Let us introduce the operator L on D using the formula

L = (u1(x1), u2(x2), u3(s)) = ((I −∆C1)u1(x1), (I −∆C2)u2(x2), (u3(s)− u′′s(s))).

Let us denote by L0 the restriction of the operator L on D0. The operator L0 is Hermitian and
following the scheme from § 17 of the monograph [20] we write all possible self-adjoint extensions of
the operator L0. To do this, we need some properties of the operator L0.

Lemma 2. Let (f1(x1), f2(x2), f3(s)) ∈ L2(Ω). Equation

L0 = (u1(x1), u2(x2), u3(s)) = (f1(x1), f2(x2), f3(s))

has a solution if and only if (f1(x1), f2(x2), f3(s)) orthogonal to all solutions of the homogeneous system

(I −∆C1)ω1(x1) = 0, (I −∆C2)ω2(x2) = 0, ω3(s)− ω′′3(s) = 0. (12)

Proof. Let us denote by (u1(x1), u2(x2), u3(s)) the solution of the system

(I −∆C1)u1(x1) = f1(x1), (I −∆C2)u2(x2) = f2(x2), u3(s)− u′′3(s) = f3(s),

satisfying the condition
û′1(+0) = û′1(2π − 0), û1(+0) = û1(2π − 0),

û′2(π + 0) = û′2(3π − 0), û2(π + 0) = û2(3π − 0), u3(+0) = 0, u3(1− 0) = 0.

From the results of the work [4] it follows that there is a unique solution (u1(x1), u2(x2), u3(s)) to the
indicated problem. In the work [4] the eigenvalues of the given problem are calculated and it is shown
that there is no zero among the eigenvalues. For the found solution (u1(x1), u2(x2), u3(s)) identity (11)
will take the form ∫

C1

f1(x1)ϑ1(x1)dl1 +

∫
C2

f2(x2)ϑ2(x2)dl2 +

1∫
0

f3(s)ϑ3(s)ds =
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=

∫
C1

u1(x1)(I −∆C1)ϑ1(x1)dl1 +

∫
C2

u2(x2)(I −∆C2)ϑ2(x2)dl2 +

1∫
0

u3(s)(ϑ3(s)− ϑ′′3(s))ds+

+ û′1(+0)ϑ̂1(+0)− ϑ̂1(2π − 0)) + û1(+0)(ϑ̂′1(2π − 0)− ϑ̂′1(+0))+ (13)

+û′2(π + 0)(ϑ̂2(π + 0)− ϑ̂2(3π − 0)) + +û2(π + 0)(ϑ̂′2(3π − 0)− ϑ̂′2(π − 0))−

−û′3(1− 0)ϑ3(1− 0) + û′3(+0)(ϑ3)(+0).

Now let’s choose V1 = (ϑ11(x1), ϑ12(x2), ϑ13(s)) so that the homogeneous equations (12) and addi-
tional conditions are satisfied

ϑ̂11(+0)− ϑ̂11(2π − 0) = 1, ϑ̂′11(2π − 0)− ϑ̂′11(+0) = 0,

ϑ̂12(π + 0)− ϑ̂12(3π − 0) = 0, ϑ̂′12(3π − 0)− ϑ̂′12(π + 0) = 0,

ϑ13(1− 0) = 0, ϑ13(+0) = 0.

In fact, ϑ13(s) ≡ 0, ϑ12(x2) ≡ 0, ϑ̂11(t) = e2π−t−et
2(e2π−1) . In this case, from relation (13) it follows∫

C1

f1(x1)ϑ11(x1)dl1 = û′1(+0). (14)

By choosing V2 = (V21(x1), V22(x2), V23(s)) in a reasonable way, we can obtain the relation∫
C1

f1(x1)ϑ21(x1)dl1 = û1(+0). (15)

Reasoning in the same way as in the monograph [20], we obtain the relations∫
C2

f2(x2)ϑ32(x2)dl2 = û′2(+0), (16)

∫
C2

f2(x2)ϑ42(x2)dl2 = û2(π + 0), (17)

1∫
0

f3(s)ϑ53(s)ds = −u′3(1− 0), (18)

1∫
0

f3(s)ϑ63(s)ds = u′3(+0). (19)

From relations (14)–(19) the assertion of Lemma 1 follows.

We will also need the following assertion.
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Lemma 3. Whatever the numbers

α1, α2, α3, α4, α5, α6, β1, β2, β3, β4, β5, β6

there exists a function (u1(x1), u2(x2), u3(s)) ∈ D, satisfying the conditions

û′1(+0)− û1(2π − 0) = α1, û
′
1(+0) = β1,

û′1(2π − 0)− û′1(+0) = α2, û1(+0) = β2,

û2(π + 0)− û2(3π − 0) = α3, û
′
2(π + 0) = β3,

û′2(3π − 0)− û′2(π + 0) = α4, û2(π + 0) = β4,

u3(1− 0) = α5, −u′3(1− 0) = β5

u3(+0) = α6, u
′
3(+0) = β6.

Proof. The proof of Lemma 2 repeats the reasoning that was used in the proof of Lemma 2 § 17 of
the monographs [20]. Now we can formulate the main result of this section, since the construction of
§ 17 of the monograph [20] in our case is carried out automatically.

Theorem 5. Every self-adjoint correctly solvable extension Lu of the operator L0 is determined by
boundary conditions of the form (10), and

(σ̂′j(2π − 0)− σ̂′j(+0))(σ̂k(2π − 0)− δk2) + (σ̂′j(+0) + δj1)(σ̂j(+0)− σ̂k(2π − 0))−

−(σ̂′j(+0)− σ̂′j(2π − 0))(σ̂k(2π − 0)− δk1) + (σ̂′j(+0) + δj2)(σ̂′j(2π − 0)− σ̂′k(+0))−

− (ρ̂′j(3π − 0)− ρ̂′j(π + 0))(ρ̂k(3π − 0)− δk4) + (ρ̂′j(+0) + δj3)(ρ̂j(π + 0)− ρ̂k(3π − 0))− (20)

−(ρ̂′j(π − 0)− ρ̂′j(3π + 0))(ρ̂k(3π − 0)− δk3) + (ρ̂′j(π + 0)− δj4)(ρ̂′j(3π − 0)− ρ̂′k(π − 0))−

−(ϕ′j(1− 0)− δj6)(ϕ1(1− 0)) + (ϕ′j(+0) + δj5)(ϕk(+0))+

+(ϕj(1− 0))(ϕ′j(1− 0)− δk6)− ϕj(+0)(ϕ′k(+0) + δk5) = 0.

Proof. Let us consider a well-posed problem defined by conditions (10). For convenience, we rewrite
conditions (10) as

−(σ̂′j(2π − 0) + δj1)(û1(+0)− û1(2π − 0)) + (σ̂j(2π − 0)− δj2)(û′1(+0)− û′1(2π − 0))−

−(ρ̂′j(3π − 0) + δj3)(û2(π + 0)− û2(3π − 0)) + (ρ̂j(3π − 0)− δj4)(û′2(π + 0)− û′2(3π − 0))−

−(ϕ̂′j(+0) + δj5)u3(+0) + (ϕ̂′j(1− 0)− δj6)u3(1− 0)+

+(σ̂j(+0)− σ̂j(2π − 0))û′1(+0) + (σ̂′j(2π − 0)− σ̂′j(+0))û1(+0)+

+(ρ̂j(π + 0)− ρ̂j(3π − 0))û′2(π + 0) + (ρ̂′j(3π − 0)− ρ̂′j(π + 0))û2(π + 0)+

+ϕj(+0)u′3(+0)− ϕj(1− 0)u′3(1− 0) = 0, j = 1, 2, 3, 4, 5, 6.

Let us introduce for j = 1, 2, 3, 4, 5, 6 a function ϑj1(x1), ϑj2(x2), ϑj3(s) such that

ϑ̂j1(2π − 0) = σ̂j(2π − 0)− δj2, ϑ̂j1(+0)− ϑ̂j1(2π − 0) = σ̂j(+0)− σ̂j(2π − 0),

ϑ̂′j1(2π − 0) = σ̂′j(2π − 0) + δj1, ϑ̂
′
j1(2π − 0)− ϑ̂′j1(+0) = σ̂′j(2π − 0)− σ̂′j(+0),

160 Bulletin of the Karaganda University



Well-posed problems for ...

ϑ̂j2(3π − 0) = ρ̂j(3π − 0)− δj4, ϑ̂j2(π + 0)− ϑ̂j2(3π − 0) = ρ̂j(π + 0)− ρ̂j(3π − 0),

ϑ̂′j2(3π − 0) = ρ̂′j(3π − 0) + δj3, ϑ̂
′
j2(3π − 0)− ϑ̂′j2(π + 0) = ρ̂′j(3π − 0)− ρ̂′j(π + 0),

ϑ̂′j3(+0) = ϕ′j(+0) + δj5, ϑj3(1− 0) = ϕj(1− 0),

ϑ̂′j3(1− 0) = ϕ′j(1− 0)− δj6, ϑj3(+0) = ϕj(+0).

According to Lemma 2, such functions exist. In order for conditions (10) to be self-adjoint, according
to theorem 4 from § 18 of the monographs [20], the following requirements must be met for any
j, k = 1, 2, 3, 4, 5, 6 :

∫
C1

(I −∆C1)ϑj1(x1)ϑk1(x1)dl1 +

∫
C2

(I −∆C2)ϑj2(x2)ϑk2(x2)dl2 +

1∫
0

(ϑj3(s)− ϑ′j3(s))ϑk3(s)ds =

=

1∫
0

ϑj3(s)(ϑk3(s)− ϑ′′k3(s))ds+

∫
C1

ϑj1(x1)(I −∆C1)ϑk1(x1)dl1 +

∫
C2

ϑj2(x2)(I −∆C2)ϑk2(x2)dx2.

The above requirements can be written down using the Lagrange identity (11) in the form of the
relation (20).

Conclusion

In this paper, the reasoning refers to a special stratified set Ω. The results presented can be
extended to more complex stratified sets composed of one-dimensional and zero-dimensional manifolds.
In this paper, an important tool is the transition from one-dimensional smooth manifolds defined by
a single chart to intervals. In intervals, the theory of the Sturm-Liouville operator is quite advanced.
Therefore, a reverse transition from the Sturm-Liouville operators on a system of intervals to the
Laplace-Beltrami operators on stratified sets composed of one-dimensional smooth manifolds and zero-
dimensional manifolds is possible.
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