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We consider a linear singularly perturbed differential system, one of the points of the spectrum of the
limiting operator of which goes to zero on some discrete subset of the segment of the independent variable.
The problem belongs to the class of problems with unstable spectrum. Previously, S.A. Lomov’s regular-
ization method was used to construct asymptotic solutions of a similar system. However, it was applied
in the case of absence of fast oscillations. The presence of the latter does not allow us to approximate the
exact solution by a degenerate one, since the limit transition in the initial system when a small parameter
tends to zero in a uniform metric is impossible. Therefore, when constructing the asymptotic solution, it is
necessary to take into account the effects introduced into the asymptotics by fast oscillations. In developing
the corresponding algorithm, one could use the ideas of the classical Lomov regularization method, but
considering that its implementation requires numerous calculations (e.g., to construct the main term of the
asymptotics in the simplest case of the second-order zero eigenvalue of the limit operator one has to solve
three algebraic systems of order higher than the first), the authors considered it necessary to develop a
more economical algorithm based on regularization by means of normal forms.
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1 Problem formulation and its reqularization

Consider the singularly perturbed Cauchy’s problem

d .
el = Ao () y+ho(H) + I (t) ¢!

B(t)
€ y(075) = y07 le [O7T] (10)

where y = {y1(t),...,yn (t)} is an unknown vector function, h; = {hy; (t),...,hn; (t)} are known
vector functions, y° = {y?, e yg} is the known constant vector, 3'(¢) > 0 is the frequency of rapidly
oscillating inhomogeneity, € > 0 is a small parameter. Let {)\j (t), 7= 1,771} be the spectrum of the
matrix A (). Assuming that the conditions:

1) Ag(t) € C*>([0,T],C™™), hj(t) € C>*([0,T], C"), j=0,1, B(t) € C*> ([0,T],C);

2) there exists the subset B C [0, 7] such that

T
a) A (t) =1 (t) H (t — tj)sj , 1 (t) <0, I4 (t) e 0> [O,T], S5 = ij €y, tj € [O,T] ,
j=1

Lr, M\ (t) #0 YVt € [0,T], k=2,n;

J
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b) N (8) AN (D), N ()8 (1), i £ i,j=Tn, Vtel0,1];

c) B (t) >0, Re\; (t) <0 Vte€[0,T], i=1,n
are satisfied, we develop an algorithm for constructing the asymptotic solution of the problem (1p).
The problem (1) belongs to the class of complex problems for the study of singularly perturbed
systems with unstable spectrum [1]. In [2], a regularization method is developed for the case when the
spectrum of the variable limit operator vanishes at individual points. In [3]|, the Cauchy problem, is
studied in the presence of a “weak” turning point of the limit operator, and estimates are provided that
characterize the behavior of singularities at ¢ — +0. A generalization of the ideas of the regularization
method for problems with a turning point at which the eigenvalues “stick together” at ¢ = 0 and
initializations are considered in works [4, 5]. An analytical method for solving a Burgers-type equation
in a Banach space is investigated in [6]. Namely, after artificially introducing a small parameter
into the equation, the existence of an analytical solution with respect to this parameter is proven.
The concept of a pseudoanalytic (pseudoholomorphic) solution introduced by S.A. Lomov initiated
the development of singularly perturbed analytic theory. In [7, 8], formally singularly perturbed
equations are considered in topological algebras, which allows one to formulate the basic concepts of
singularly perturbed analytic theory from the standpoint of maximum generality, and conditions for
the existence of solutions holomorphic in the parameter are found in the case when the perturbing
operator is bilinear. The study of finding conditions for the ordinary convergence of series in powers of
a small parameter, representing solutions to perturbation theory problems, is considered in [9]. Their
results were generalized to integro-differential equations in [10]. This paper is the first to apply the
normal form method to study such problems. The purpose of this paper is to develop this algorithm to

construct asymptotic solutions of the problem (1) in the presence of a rapidly oscillating inhomogeneity
:B(t)
h() (t) e e .

Since the function ez?® satisfies the differential equation

c dynJrl (t7 5)
dt

then from the system (1p) of order n it will be necessary to pass to the system of order (n + 1):

E% (yner(lt ’(i)e)> - <A%(t) Zlﬁl’((tt))> <yny+(1t7(:,)s)> + (hoo(t)> ’ <3/34£?£7i)6)> * (eif(O))

5%:A(t)z+h(t), 2(0,6) = 20, te[0,7], (1)

= iB (Oyns1(t,2), Yu+1(0,) = €70,

or

where notations

are introduced.
Let’s denote by e; = {O, ..,0,1,0, ...,0} the i-th ort in C"*1 1 = {1,...,1} € R*"! is the vector
(1)
consisting solidly of units, A,41 (¢) = 8’ (t), and through A (t) = diag {1 (¢),..., Ant1 ()} is the
diagonal matrix with the spectrum of the matrix A (¢) on the diagonal. We regularize the problem (1)
with the vector v = {uq, ..., up, un41} of the regularizing variables satisfying the normal form*

5%:A(t)u+90(t)el+Z€jzgj(t)61’ u(O,&):I, (2)
j=1 =1

*On regularization by means of normal forms, see, for example, [10].
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where the functions g; (t) € C*° ([O, T) ,(Cl) are calculated in the process of constructing the asymptotic
solution of problem (1). The extended system corresponding to problem (1) will have the form

0z 0z - -
et o A+ go (b €1+Z€]Z§/J SAWE=h), F(w) o =o' )

where the function Z = Z (¢, u, ) is such that its contraction on the solution u = u (¢, &) of the normal
form (2) coincides with the exact solution z (¢, ¢) of problem (1). Since problem (3) is regular in € at
€ — +0, its solution can be sought in the form of series

Z (t,u,¢) Zezktu (4)

by non-negative powers of the parameter £. Substituting series (4) into (3) and equating the coefficients
at the same powers of ¢, we obtain the following iterative problems:

0z 0z -
Lag= 5 A()u—A(t) 20 =h(t) 5 g0 (t)er, 20(0,1) =2 (40)
0z 0z 0z _
Lz = ato - 87591 (t)er — aiulgo (t)er, y1(0,1)=0; (41)
k
0z 0z 0z -
Lz = _87: - afjgkﬂ (t)er— k Lg Z gk+1 —j () e1, 2p1(0,1) =0, k> 1. (4g41)

Here gi; (t) =0 at k > m + 1.

2 Solvability of the first iterative problem

Under the described conditions on the spectrum of operator A(t) there exists a matrix
Ct) = (c1(t),...,cng1(t)) with columns ¢j(t) € C*([0,T],C"*!) such that for all ¢ € [0,T] the
identity

CT B AWMC() = A(t) = diagM (D), -, Ansa (1) (5)

holds. Let’s denote by d;(t) the j-th column of the matrix [C~1(¢)]*, j = T,n + 1. It is clear that for
each t € [0, the following equality holds A*(t)d;(t) = \;(t)d;(t) (ci(t),d;(t)) = & (i,j = L,n+ 1),
where §;; is Kronecker’s symbol (here and below (x, %) denotes the scalar product in C"*!). Note that
identity (5) excludes the rotation points in system (1).

The solution of each iterative problem (4;) we will be defined in the space U of functions
z(t,u) = {z1,...2n4+1} of the form

n+1
z(tu) =Y zj () uj+20(t), zi(t) € C([0,T],C"), j=0,n+1 (6)
1

+

<.
I

in which the scalar product (at each ¢ € [0,7T])

n+1 n+1 n+l n+1
<w,z >= <Zw3 ) wj 4 wo (t ZZ] ) uj + 2o ( )>AZ(“}J‘ (t), 2 (t))EZw]-T(t)Zj (t)
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is introduced. Without developing the general theory of solvability of iterative problems (4r), let us
try to solve the problem (4y). By defining its solution as an element of the space U given by (6):

n+1
20 (tu) =3 27 (0w + 27 (1), (7)
i=1

we obtain the following system of equations for the coefficients zj(o) (t):

—AB W) =ht) —g0(t) AV (1), (8)
O T—AW®] " (1) =0, j=Tn+1. (9)

Solutions of the systems (9) are defined in the form z](-o) (t) = aj (t) ¢j (t), where aj (t) € C> ([0,T],C")

are arbitrary scalar functions, j = 1,n + 1. To compute these functions, we proceed to the iterative
system (41). Defining its solution in the space U as a function

+
Z v t) uj + Zol) (t),

we get similar systems
—AM) ) (1) = =2 (1) = 27 (®) g1 (1) — 90 (1) 21V (8)
N (T —AW®)2Y (1) =~ () e (t) —a; ()& (8), j=Tn+L (10)
For the solvability of systems (10) in the class C*° ([0, T],C"*1) it is necessary and sufficient that
(—ay () cj (t) —aj (t) ¢ (1), d; (t))

from where we find the functions

0, j=Ln+1

t

a; (£) = a; (0) exp —/(c'j(e),dj(e))de L j=TFl
0

The initial values for these functions are found from the condition zo (0,1) = 2°, which, taking into
account (7), is written in the form

nil a; (0)¢; (0)=20— 20 0) & a;(0)= (zo —24(0), d; (0)) , j=Tn+1 (11)
j=1

However, no function has yet been found in (11) Z((]o) (t). Substituting z( ) (t) =1 (t)cr (¢) in (8) and

&1
making in the obtained system the transformation z( ) t)=Ct)E=(c1(t),...,cny1 () ,

§n+1
we obtain the following equations for the vector components &:

=M1 (0) & = (h(t),di () — go () ar (t),

A1) & = (h(t),d; (1), j=2,n+1.
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Since A; (t) # 0 at j = 2,n + 1, then the last equations of this system have unique solutions

& () = — )4 ) (?]’ZJ()),jzznﬂ.

In view of condition 2a), the first equation of the above system is solvable in the class C*° ([O, T) ,(Cl)
then and only when

DY (a190) (tj) = D" (h,d1) (tj), j=1,r, v=0,s;—1

(here and throughout the following, D" (f) (¢;) denotes the v-th derivative of a function f (t) at the
point t;).
It follows that the function ay (f)go (t) is the Lagrange-Sylvester’s polynomial of the function

(h(t),dy (), Le

r Sj—

SN D () ) K ). (12)

7j=1 v=0

where {Kjl- (t),j=1r1=0,5 — 1} is the basis system of Lagrangian-Sylvester’s polynomials
T

constructed by the polynomial ¢ (t) = [] (¢t —1t;)™ [10; §9.2]. Suppose that the number o (0) =
=1

= (zo - z(()o) 0),d1 (0)) # 0. Then it follows from (12) that the function go () is represented as

ro Sj—
0 (0) = s ZZD"MI (4 v (1), (13)
1 ] 1 v=0
t
where p; (t) = exp{ [ (& (9)) d&}. From (8), taking into account formula (12), we find the
0

function z[()O) (t):

(), di () — g0 (D) (1) ), d; )
- = ! Al (t) 0 (t) - ; )\] (tj C] (t) = (14)
r s;—1
) _(h (t),dy (1)) —j; Vz:jo D” (h,dy) (tj) K, (t)c . _nf:l ). 4, (t))c'(t)
- N0) B P VI I

(0)

Hence, we can see that the function z;~ (¢) does not depend on «;(0). This allows us to find
values «; (0):

ag (0) = (zo — zéo) 0),dy (0)) = (zo, d1 (0)) +
-1 (15)

(R(0),d1(0))— Z Z DY (h,d1)(t;) K. (0)
+ =0
A1(t) ’
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(16)
h(0),d;
= (°,d;(0)) + ( (A)j(é)(

unambiguously and hence compute the solution (7) to problem (4¢) in the space U in a single-valued
way. We come to the following result.

Theorem 1. Let conditions 1), 2a), 2b) be satisfied and the number «;(0), defined by formula (15),
is not equal to zero. Then whatever the functions 21 (t,u) € U and gy (t) € C*> ([0,T],C"), there
exists a single function go(t) € C*°([0,7T],C"), computed by formulas (13), such that the problem (4)
under the additional condition

< Jz0 Oz 0z

ot %91 (t)elf—ulgo (t)el,dj (t)u]>:0 YVt € [O,T], ]:1,n+1

has a single solution in the class U. This solution is given by formula (7), where the functions «; () have

¢

the form «a; (t) = a; (0) exp { J(¢;(8),d;(9)) dH} , J=1,n+1, and the numbers o (0) calculated
0

by the formulas (16).

Remark. If the right part h (t) of system (1) is such that the following equations

D" (h)(tj) =0 D" (h1)(t;) =0, j=1,r, v=0,s;—1 (%)

are satisfied, then, as can be seen from formulas (13) and (14), the function gg (¢) = 0, and the function
z(()o) (t) will have the form

n+1 ]
=) o RREO.40) )

3 Algorithm for constructing solutions to iterative problems (4y) at k > 1

Carrying out calculations similar to those used in constructing the solution of the first iterative
problem (4¢), we obtain the following algorithm for the sequential solution of the problems (4;), k > 1.
1) Each of the iterative systems (4), k > 1, is represented as

R 82’k ~ 85%71
L3, = 5 A(t)u— A(t) 2 TR (17)
02 0z 0z 20z
0 — 0 k
—At) 2 () = - gt . - Hu Tk (B er = "go(t) e1— 2= o gr—j (t) ex (18)

according to the representation of the solution z (¢t,u) € U as z = 2 (t,u) + z,(go) (t), where
g(tu) =Y W () e, 291 ev®=c(o,1],C").

2) We solve the system (17) in the space U. For its solvability in this space it is necessary and
sufficient that the identities <—%, d; (t) uj> =0, j=1,n+1 hold [10].
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n+1
3) Writing the solution of the system (17) in the form 2 (t,u) = > 2](-k) (t) uj, substitute it into
j=1

system (18) and find uniquely the function gy (t) (using Lagrange-Sylvester’s polynomials) and the

solution él(go) (t) € UO) of system (18) in the space U,

4) Let’s compose the function zy (t,u) = 2k (t,u) + z,(CO) (t); it is a solution of the system (4), but
is found ambiguously so far. To finally compute this function, we proceed to the following iterative
problem (4541).

The corresponding system LZpi1 = —‘%’“ will have a solution in U if and only if the following
conditions hold

0z
ot
These conditions and the initial condition zj (0,1) = 0 for the problem (4;), k > 1 allow us to find

the solution of z (t,u) € U in an unambiguous way.

,dj(t)Uj >=0, j=1,n+1.

4 Construction of the asymptotic solution of problem (1)

Let us proceed to the computation of the asymptotic solution of problem (1). Let the solutions
20(t,u),...2n(t,u) € U of the problems (4), ..., (4x) respectively be constructed by the above algo-
rithm. The functions go(t), ..., gn(t), participating in the formation of the normal form (2) (of order
m = N) will be uniquely found. This form has the following solution:

g1 ft)\j(s)ds

uj(t,e) =e 0 , J=2,n+1,
' a(e)d L e (o) N1t e () (19)
g~ 1(8)ds IS 1(8)ds — e 1(8)ds
ui(t,e) =e 0 1+ %fe 0 go(z)dz |+ > eF [e O r+1(z)dz.
0 k=0 0
N .
Let us make a partial sum Sy (t,u,e) = ) &’z;(t,u) of the series (4) and form a contraction of this sum
5=0

on the solution (19) of the normal form (2). We denote the obtained function by z.x(t). The following
statement holds (which is proved in the same way as the analogous statement in [10; Chap. 3|).

Lemma 1. Let a1(0), defined by formula (15), is not zero, and conditions 1), 2a) — 2¢) are satisfied.
Then the function z.y(t) satisfies the problem

dzen(t
gzN()

o = Azen(t) = h(t) + VR (t,e), 2en(0) = 2,

where ||[Ry(t,€)lcpo,r) < R, R > 0 is a constant independent of (¢,¢) € [0,T] x (0,20] (g0 > 0 is small
enough).

Using this lemma, we prove the following result as in [10; Chap. 3, §3.5].

Theorem 2. Let all conditions of the lemma be satisfied. Then the following statements are true:
1. If the right-hand side h(t) of problem (1) does not satisfy the requirement (x), then there is an
estimate
12(t,€) = 2en ()l oy < One™, (20)

where z(t, €) is the exact solution of problem (1), and z.n(t) is the above constructed constriction of
the N-th partial sum of the series sum of series (4) on the solution v = u(t, €) of the normal form (2) of
order m = N +1, Cy > 0 is a constant independent of (¢,¢) € [0,7T] x (0,&0], €0 > 0 is small enough.
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2. If the right-hand side h(t) of problem (1) satisfies the requirement (*x), then the estimate

I2(t, ) — ZsN(t)Hc[o,T] < Onpre™

where z(t,¢) and z.n(t) are the same functions as in (20) Cy41 > 0 is a constant independent of
(t,e) € [0,T] x (0,e0], o > 0 is quite small.

5 Ezample
Consider the differential equation
ey = —t2lo (£)y + ho (t) + ha (£) 2P0, y(0,6) =4°, t€0,T), (21)
where y = y(t,¢) is a scalar function, the coefficient a(t) = —t2ly (t) goes to zero only at the point t = 0

and lo(t) < 0, Vt € [0,T], lo(t), ho(t), h1(t) € C([0,T],R). For this equation we can write out
the exact solution, but it will be very difficult to obtain the asymptotics at € — +0. Let’s attempt to
apply the algorithm developed above to extract the leading asymptotic term in this problem’s solution.
Denoting, as before,

p o= ("4} MO =al) =P, 20 =5 @),

we obtain the system

s%:A(t)z+h(t), 2(0,2) = 20, te[0,7]. (22)

Calculating the eigenvalues and eigenvectors of the matrices A (¢) and A* (¢), we’ll have:

! e
— — —a(t)+ t
at)=(g). @0 o |
1 0
dy (t) = ho(t) , da(t) = (1> .
OSSO

By Theorem 2, in the case of (h(t),d; (t)) Z 0 < hy(t) #Z 0 solution of the first-order normal form
2) (m=1):
ein = Ai(t)ur + (go(t) +€g1(t)), w1 (0,1) =1,
(23)
Eﬂg = /\g(t)UQ, u9 (0, 1) =1

contains a negative degree ¢! since go(t) = o '(t) (h(t),d1(t)) # 0. Thus the solution of problem (23)
tends to infinity at € — +0. The physical content of the problem corresponds to bounded solutions,
so we will consider problem (22) under the condition (h(t),d; (t)) = hy (t) = 0, Vt € [0,T]. Then
go(t) =0, and the leading asymptotic term in the solution to problem (22) is given by (7)

gfxl(o)de / -1 [ Aa(6)do
zeo (t) =1 (t) 1 (t)e © l—i—/e 0 g1 (s)ds| +

104 Bulletin of the Karaganda University



Singularly perturbed problems ...

where the functions «a; (¢) and ag (t) are calculated from the solvability condition of the problem (4;)
in the space U. Given our notations, we write the main term of the asymptotics of the solution of
problem (21) in the following form

i t t s i
(o ho(0) e2B8(0) gofa(e)de / —gga(e)da ho (t) e=P®
yeo (t)= (y + ~(0) — 8" (0 0)— 7 (0) e 1+ [ e g1 (s)ds —i——_a ®iF @ (24)

0

Conclusion

From (24) we see that if ho(t) # 0 on the segment [0, T, the exact solution y (¢, ) of problem (24)
has no limit at & — 40 due to the oscillatory inhomogeneity e<?® included in (24). If ho(t) = 0,
Vt € € [0,T7], then the main term of the asymptotics (24) takes the form of

1 j 2 ¢ 1 H 2
—1 [ 0219(6)do L [ 6214(6)do
yeo(t):yoe 0 1+/e 0 g1(s)ds
0

The zero of t = 0 of the function a(t) = —t2ly (t) affects that the summand

t t s
0 —1 [6%15(0)do L [6%15(0)do
ye 0 e o g1 (s)ds
0

outside the boundary zone [0, (¢)] of length of order /¢ “slows down” the tendency of the exact
solution y (¢,¢) of problem (21) to the limit g (¢) = 0.

In the case of an exponential boundary layer occurring at a (t) < 0, V¢ € [0, 7], the exact solution
y (t,e) differs from the limit outside the boundary layer by an order of magnitude of ¢ [11]. Thus, the
effect of the slowed limit transition (as the small parameter approaches zero) in a singularly perturbed
problem is associated with the point wise features of its spectrum.
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