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A boundary value problem for a loaded heat conduction equation is considered, when the loaded term has
the form of a fractional Riemann-Liouville derivative with respect to a spatial variable, and the loading
point moves with a variable velocity. The problem is reduced to a Volterra integral equation of the second
kind, the kernel of which contains a special function, namely, a Wright-type function. The kernel of the
resulting integral equation is estimated, and it is shown, under certain restrictions on the line along which
the load moves, that the kernel of the equation has a weak singularity, which is the basis for the assertion
that the loaded term in the equation of the problem is a weak perturbation of its differential part. The
study is based on the asymptotic behavior of the Wright function at infinity and at zero.
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Introduction

The heat conduction equation plays a key role in modeling thermal processes in various physical
systems. In the classical formulation, it describes the temperature distribution in a medium subject
to heat transfer. However, to more accurately account for complex physical effects, such as anomalous
diffusion or material memory, generalized models are introduced that include additional terms, for
example, containing a fractional integro-differentiation operator.

Fractional derivatives, unlike integer derivatives, make it possible to take into account memory
effects and nonlocality of processes. Their application in heat conduction modeling has been actively
developing in recent decades. The works [1, 2] consider the fundamentals of the theory of fractional
calculus and its applications in mathematical physics. The application of fractional derivatives in
heat conduction equations was investigated in [3], where it was shown that such models describe
anomalous diffusion processes well. Fractional derivatives can also take into account spatial correlations
and coordinate nonlocality in systems where the influence on the state at a given point in space depends
not only on neighboring points, but also on more distant ones [4].

Boundary value problems for heat equations with fractional derivatives represent a separate area
of research. They require the development of new approaches, since the presence of a fractional term
leads to a complication of the mathematical structure of the problem. In [5], the spectral properties
of operators with fractional derivatives are analyzed, and in [6, 7] boundary conditions for fractional
models are studied.

Problems with loaded terms involving fractional derivatives are of particular interest. These problems
arise in the context of modeling processes with heat sources or sinks that depend on time or spatial
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coordinates. A loaded differential equation is an equation with a loaded term, which can contain
differential or integrodifferential operators. This loaded term can be expressed as a function containing
both the variables themselves and their derivatives.

Loaded equations allow you to model more complex physical or mathematical systems that cannot
always be described by simple equations. For example, in problems of mathematical physics or control
theory, loaded differential equations can be used to take into account the influence of external factors
or additional conditions on the dynamics of the system. It is obvious that the presence of a loaded term
gives rise to new, still unexplored problems in the theory of boundary value problems, therefore there
is a need to develop new methods for solving the evolving theory of loaded differential equations [8].

Loaded differential equations can be considered as weak or strong perturbations of differential
equations. In some cases, boundary value problems remain correct in natural classes of functions,
where the loaded term is interpreted as a weak perturbation [9]. If the uniqueness of the solution to
the boundary value problem is violated, then the load can be considered as a strong perturbation [10].
It turns out that the nature of the load (weak or strong perturbation) depends both on the order of
the derivatives included in the loaded (perturbed) part of the operator, and on the manifold on which
the trace of the desired function is specified.

The study of boundary value problems with loaded terms, presented in the form of integrals or
fractional derivatives, can lead to different results depending on the specifics of the equation and the
conditions of the problem. There may also be difficulties associated with the analysis and evaluation of
integral operators in the resulting integral equations, since their kernels contain special functions. In
[11,12], the intervals for changing the order of the fractional derivative, that is contained in the loaded
term, are determined, for which the theorems of existence and uniqueness of solutions to boundary
value problems and arising integral equations are valid. We also note that the boundary value problems
of heat conduction and the Volterra integral equations arising in their study with singularities in the
kernel, similar to the singularities in this paper, were considered in [13,14].

Also, integral equations with singularities in the kernel arise when studying boundary value problems
in non-cylindrical domains that degenerate into a point at the initial moment of time [15–20].

Fractional derivatives in equations add new aspects and difficulties in the study of boundary value
problems, since they take into account not only the previous state of the system, but also its history. The
fractional order differentiation operation is a combination of differentiation and integration operations.
Recently, work has appeared on the study of inverse boundary value problems with a load of fractional
order. In [21], the inverse problem with a nonlinear gluing condition for a loaded equation of parabolic-
hyperbolic type is studied for solvability. The problem is reduced to the study of the nonlinear Fredholm
integral equation of the second kind. In [22], as an application of the analyticity of the solution, the
uniqueness of an inverse problem in determining the fractional orders in the multi-term time-fractional
diffusion equations from one interior point observation is established.

This paper examines a boundary value problem (BVP) defined in the open right upper quadrant.
The problem is transformed into an integral equation, which, in certain instances, takes the form of
a pseudo-Volterra type. The solvability of this equation is influenced by the order of differentiation
in the loaded term and the behavior of the load line near the origin. In Section 1, we introduce
some necessary definitions and mathematical preliminaries of fractional calculus, special functions and
boundary value problems which will be needed in the forthcoming Sections. The problem statement for
a heat equation with a loaded term as the Riemann-Liouville fractional derivative in the right upper
quadrant (x, t) is given in Section 2. The initial conditions are homogeneous. Process of reducing a
boundary value problem to an integral equation is the content of Section 3. In Section 4, we estimate
the integral equation’s kernel and establish conditions under which it has a weak singularity. Estimating
the integral equation’s kernel is based on the asymptotic behavior of the Wright function at infinity
and at zero. This implies the solvability conditions for the BVP which are provided in Section 5.

Mathematics series. No. 1(117)/2025 93



M.T. Kosmakova et al.

In Section 5 the main results is formulated.

1 Preliminaries

Definition 1. [23] Let f(t) ∈ L1[a, b]. Then, the Riemann-Liouville integral of the order β is defined
as follows

rD
−β
a,t f(t) =

1

Γ (β)

∫ t

a

f (τ)

(t− τ)1−β
dτ, β, a ∈ R, β > 0. (1)

Definition 2. Let f(t) ∈ L1[a, b]. Then, the Riemann-Liouville derivative of the order β is defined
as follows

rD
β
a,tf(t) =

1

Γ (n− β)

dn

dtn

∫ t

a

f (τ)

(t− τ)β−n+1
dτ, β, a ∈ R, n− 1 < β < n. (2)

From formula (2) it follows that

rD
0
a,tf(t) = f(t), rD

n
a,tf(t) = f (n)(t), n ∈ N.

Taking into account formula (1), formula (2) can be rewritten as

rD
β
a,tf(t) =

dn

dtn
rD

β−n
a,t f(t), β, a ∈ R, n− 1 < β < n.

Information about the Mittag-Leffler function and the Wright function is taken from [24,25].

Definition 3. The entire function of the form

Eλ,µ(z) =
∞∑
n=0

zn

Γ(λn+ µ)
, λ > 0, µ ∈ C (3)

is called the Mittag-Leffler function.

Definition 4. The entire function of the form

φ(λ, µ; z) =

∞∑
n=0

zn

n!Γ(λn+ µ)
, λ > −1, µ ∈ C (4)

is called the Wright function.

Definition 5. A Wright-type function is a function eµ,δα,β(z) defined by the contour integral and the
Mittag-Leffler function (3)

eµ,δα,β(z) =
1

2πi

∫
γ(r,ωπ)

ett−δEα,µ

(
ztβ
)
dt,

where γ(r, ωπ) is the Hankel contour, the value of ω is chosen such that

1− ωβ > α

2
,

1

2
< ω ≤ 1. (5)

Inequalities (5) are always satisfied when

0 < α < 2, 0 < α+ β < 2, β < 1, δ + β > 0.
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For α > β, α > 0, for any z ∈ C the Wright-type function can be represented as a series

eµ,δα,β(z) =
∞∑
n=0

zn

Γ(αn+ µ)Γ(δ − βn)
, µ ∈ C, δ ∈ C.

When α = µ = 1 it coincides with the Wright function:

e1,δ1,β(z) = φ(−β, δ, z). (6)

For a Wright-type function, the following autotransformation formula is valid:

eµ−α,δ+βα,β (z) = zeµ,δα,β(z) +
1

Γ(µ− α)Γ(δ + β)
. (7)

If π ≥ | arg z| > π(α + β)/2 + ε, ε > 0, k = 0, 1, 2, . . ., then the following limit relations are valid
for large absolute values of z:

lim
|z|→∞

eµ,δα,β(z) = 0,

lim
|z|→∞

zeµ,δα,β(z) = − 1

Γ(µ− α)Γ(δ + β)
.

(8)

Let c ∈ C. If µ > 0, then

Dν
0xx

µ−1eµ,δα,β (cxα) = xµ−ν−1eµ−ν,δα,β (cxα) . (9)

When µ = 0, the following formula is valid

Dν
0x

1

x
e0,δα,β (cxα) = x−ν−1e−ν,δα,β (cxα)− x−ν−1

Γ(−ν)Γ(δ)
.

When ν = n ∈ N, formula (9) is valid for all µ ∈ R

dn

dxn
xµ−1eµ,δα,β (cxα) = xµ−n−1eµ−n,δα,β (cxα) .

The following equalities hold∫ ∞
0

1

t
e0,δα,β(−λt)dt = − α

Γ(δ)′
,

∫ ∞
0

1

t
eµ,0α,β(−λt)dt =

β

Γ(µ)
.

Also the formulas for differentiating a Wright type function are valid

d

dz
eµ,δα,β(z) =

1

αz

[
eµ−1,δα,β (z) + (1− µ)eµ,δα,β(z)

]
.

It’s known [26; 57] that in the domain Q = {(x, t) |x > 0, t > 0} the solution to the boundary
value problem of heat conduction

ut = a2uxx + F (x, t) ,

u |t=0 = f(x), u |x=0 = g(x)

is described by the formula

u (x, t) =

∫ ∞
0

G (x, ξ, t) f(ξ) dξ +

∫ t

0
H (x, t− τ) g(τ) dτ+
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+

∫ t

0

∫ ∞
0

G (x, ξ, t− τ)F (ξ, τ) dξdτ, (10)

where

G(x, ξ, t) =
1

2
√
π a t

{
exp

(
−(x− ξ)2

4 a t

)
− exp

(
−(x+ ξ)2

4 a t

)}
,

H(x, t) =
1

2
√
π a t3/2

exp

(
− x2

4 a t

)
.

The Green function G (x, ξ, t) satisfies the relation∫ ∞
0

G (x, ξ, t) dξ = erf
(

x

2
√
t

)
,

where erf (z) is the error integral.

2 The problem’s statement

In the domain Q = {(x, t) : x > 0, t > 0}, we consider a BVP

ut = uxx − λ
{
rD

β
0,xu (x, t)

} ∣∣
x=γ(t)

+ f (x, t) , (11)

u (x, 0) = 0, u (0, t) = 0, (12)

where λ is a complex parameter, rD
β
0, t u(x, t) is the Riemann-Liouville derivative (2) of an order β,

1 < β < 2, γ(t) is a continuous increasing function, γ(0) = 0.
The problem is studied in the class of continuous functions.
For the right side of the equation, we require the following conditions to be satisfied:

f(x, t) ∈ L∞ (A) ∩ C (B) , (13)

where A = {(x, t) |x > 0, t ∈ [0, T ]}, B = {(x, t) |x > 0, t ≥ 0}, T = const > 0,

f1 (x, t) =

∫ t

0

∫ ∞
0

G (x, ξ, t− τ) f (ξ, τ) dξdτ ∈ L1 (x > 0) . (14)

Let us introduce the notation

Dν
atg (t) =

1

Γ (−ν)

∫ t

a

g (ξ) dξ

(t− ξ)ν+1 , ν < 0.

When ν = 0 D0
atg (t) = g (t) , then

Dν
atg (t) =

dn

dtn
Dν−n
at g (t) , n− 1 < 0 ≤ n, n ∈ N.

We consider the fractional derivative in the Riemann-Liouville sense with respect to the spatial variable.
If a = 0, n = 2, ν = β ⇒

rD
β
0xu (x, t) =

d2

dx2
Dβ−2

0x u (x, t) (15)

or

rD
β
0xu (x, t) =

d2

dx2

(
1

Γ (2− β)

∫ x

0

u (x, ξ) dξ

(x− ξ)β−1

)
. (16)

The derivative in the loaded term of equation (11) is determined by the formula (16).
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3 Reducing the BVP to an integral equation

According to the formula (10) a solution to BVP (11)-(12) can be represented as

u (x, t) = −λ
∫ t

0

∫ ∞
0

G (x, ξ, t− τ)µ (τ) dξdτ + f1 (x, t) , (17)

where
µ (t) =

{
rD

β
0,xu (x, t)

} ∣∣
x=γ(t) , (18)

f1 (x, t) =

∫ t

0

∫ +∞

0
G (x, ξ, t− τ) f (ξ, τ) dξdτ. (19)

In [9] it was proved formulas

e−ξ
2

=
√
πφ

(
−1

2
,
1

2
,−2ξ

)
, (20)

where φ (φ(λ, µ; z)) is the Wright function (4),

erf (z) = 2

∫ z

0
φ

(
−1

2
,
1

2
,−2ξ

)
dξ = 1− φ

(
−1

2
, 1,−2z

)
. (21)

Then, taking into account formulas (20) and (21) representation (17) can be rewritten as:

u (x, t) = −λ
∫ t

0
K

(
x

2
√
t− τ

)
µ (τ) dτ + f1 (x, t) , (22)

where
K

(
x

2
√
t− τ

)
= 1− φ

(
−1

2
, 1,− x√

t− τ

)
(23)

and µ(t) and f1(t) are defined by formulas (18) and (19) respectively.
To (22) we apply the fractional integro-differentiation operator by formula (15). Taking into account

formulas (23), (6), (7), and (9), we obtain, when 1 < β < 2:

rD
β
0x

(
K

(
x

2
√
t− τ

))
= x−β

(
1

Γ(1− β)
− e1−β,1

1, 1
2

(
− x√

t− τ

))
=

x1−β√
t− τ

e
2−β, 1

2

1, 1
2

(
− x√

t− τ

)
.

Indeed, according to the law of composition, we have

Dβ
0x(f(x)) = D1Dβ−1

0x (f(x))⇒

rD
β−1
0x

(
K

(
x

2
√
t− τ

))
= rD

β−1
0x

(
1− Φ

(
−1

2
, 1;− x√

t− τ

))
=

= rD
β−1
0x

(
1− e1,1

1, 1
2

(
− x√

t− τ

))
= x1−β

(
1

Γ(2− β)
− e2−β,1

1, 1
2

(
− x√

t− τ

))
.

Then, taking into account the autotransformation formula (7), we get

D1

(
x1−β

Γ(2− β)
− x1−βe2−β,1

1, 1
2

(
− x√

t− τ

))
=

=
1− β

Γ(2− β)
x−β − x−βe1−β,1

1, 1
2

(
− x√

t− τ

)
=

x1−β√
t− τ

e
2−β, 1

2

1, 1
2

(
− x√

t− τ

)
.
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Thus, BVP (11)-(12) is reduced to a Volterra integral equation of the second kind

µ(t) + λ

∫ t

0
Kβ(t, τ)µ(τ)dτ = f2(t), (24)

with a kernel

Kβ(t, τ) =
(γ(t))1−β√

t− τ
e
2−β, 1

2

1, 1
2

(
− γ(t)√

t− τ

)
, 1 < β < 2, (25)

and with the right part
f2 (t) =

{
rD

β
0,xf1 (x, t)

} ∣∣
x=γ(t) . (26)

4 Research of the integral equation

Since in the given problem (11)-(12) the line, along which the load is moving, has the form x = γ (t),
and γ (t) increases and γ (0) = 0, then there are different cases of behavior for x√

t

∣∣
x=γ(t) , when t→ 0.

Let 0 < x = γ(t) ∼ tω when t→ 0, ω > 0.
Let’s introduce a change of variable τ :

z =
γ(t)√
t− τ

⇒
√
t− τ =

γ(t)

z
.

Then
Kβ(t, z) = (γ(t))−βze

2−β, 1
2

1, 1
2

(−z).

Let’s consider the following cases:

a) 0 < ω <
1

2
⇒ |z| → +∞, when t→ 0.

Taking into account the limiting ratio (8), we get

lim
|z|→+∞

zeµ,να,β(−z) = − 1

Γ(µ− α) · Γ(δ + β)
⇒

lim
t→0

Kβ(t, τ) = lim
t→0

(γ(t))−βze
2−β, 1

2

1, 1
2

(−z) = lim
t→0

t−βω
1

Γ(1− β)
= +∞

b) ω >
1

2
⇒ |z| → 0, when t→ 0.

Taking into account the limiting ratio (8), we get

lim
t→0

e
2−β, 1

2

1, 1
2

(
− tω√

t− τ

)
=

1

Γ(2− β)
√
π
⇒ Kβ(t, τ) ∼ tω(1−β)√

t− τ
, when t→ 0.

The kernel (25) of the integral equation (24) has singularities at t = 0 and t = τ .
Let us define the conditions under which the integral operator of the equation is compressible in

the class of continuous functions. Consider the integral∫ t

0
Kβ(t, τ)dτ = tω(1−β)

√
t = tω(1−β)+

1
2 →
t→0

0

if ω(1− β) + 1
2 > 0⇒ ω < 1

2(β−1) .
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c) ω =
1

2
⇒ Kβ(t, τ) ∼ t

1−β
2

√
t− τ

e
2−β 1

2

1, 1
2

(
−
√

t

t− τ

)
, when t→ 0.

Since e2−β
1
2

1, 1
2

(
−
√

t
t−τ

)
→
t→0

const, then

∫ t

0
Kβ(t, τ)dτ ∼ t

1
2
−β

2

√
t = t1−

β
2 →
t→0+

0,

as 1 < β < 2.

Figure 1. Graph of the kernel

Figure 1 presents the graph of the kernel which shows stability at small time values.

5 The main results

So, the following theorem has been proven.

Theorem 1. Integral equation (24) with kernel (25) for 1 < β < 2 and with γ(t) ∼ tω in the
neighborhood of t = 0 is γ(t) ∼ tω, ω > 0, γ(0) = 0 uniquely solvable in the class of continuous

functions for any continuous right-hand side f2(t), if ω <
1

2(β − 1)
and ω =

1

2
.

This result coincided with the result obtained in [12].
Let us introduce a class of functions

U =

{
u
∣∣ (x√t)−1u ∈ L∞ (A) ∩ C (B) ; ut − uxx ∈ L∞ (A) ∩ C (B) ;

{
rD

β
0,xu (x, t)

} ∣∣
x=γ(t)

∈ C([0;T ]), T = const > 0, 1 < β < 2

}
, (27)

where A = {(x, t) |x > 0, t ∈ [0, T ]}, B = {(x, t) |x > 0, t ≥ 0}, T = const > 0.
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Since the solution of the integral equation (24) µ(t) is a continuous and bounded function under
the conditions of Theorem (1), it can be shown that for the solution of problem (11)-(12), which has
the form (22), where f (x, t) belongs to the class (13), the following estimate is valid

|u (x, t) | ≤ C(λ)x
√
t,

where C(λ) = C1|λ|+ C2.
Also it can be shown that function (18) satisfies BVP (11)-(12) and belongs to the class (27).
The following main result follows from Theorem 1:

Theorem 2. Let the function f (x, t) satisfy conditions (13) and (14), the function µ(t) ∈ C([0;T ]) be
a solution of integral equation (24) with the right-hand side f2(t) ∈ C([0;T ]) defined by formulas (19)
and (26). Then BVP (11)-(12) with the load motion law γ(t) ∼ tω (in the neighborhood of the point

t = 0) has a unique solution (22) in the class (27), if ω <
1

2(β − 1)
and ω =

1

2
.

Conclusion

Under the conditions of the theorem, the kernel (25) of the integral equation (24) has a weak
singularity. Therefore, the method of successive approximations can be applied to find a unique solution
of the equation (24). Then the corresponding boundary value problems are correct in natural classes
of functions, i.e. the loaded term of the posed boundary value problem is a weak perturbation of the
differential equation.

Since the problem statement contains a fractional derivative, then the obtained results can be
applied in several domains such that:

Thermal processes: the study is particularly relevant to heat conduction problems where the
material exhibits memory effects or non-locality. For instance: heat diffusion in heterogeneous materials
with varying thermal properties, processes involving spatially moving heat sources or sinks.

Anomalous Diffusion: The fractional derivative approach effectively models systems exhibiting
anomalous diffusion, as encountered in porous media, biological tissues with complex transport
phenomena.

Engineering Systems: in mechanical and civil engineering, materials with hereditary properties,
such as viscoelastic materials, benefit from this approach.

Mathematical Physics: the results are applicable in studying boundary value problems in non-
cylindrical domains and domains with degeneracies, enhancing the analysis of complex geometries.

Now we will give a comparison with related studies, incorporating the comparative analysis.
References [9, 11] provide foundational insights into the behavior of fractional derivatives in heat
equations. Our study extends this by analyzing the effect of weak perturbations caused by the load
term. In contrast to [12], which focuses on specific fixed domains, our results address moving load
scenarios, offering broader applicability. Prior work, such as [13, 14], emphasizes integral equations
with singularities. Our approach diverges by providing a detailed kernel analysis under varying load
motion laws, as expressed through. Studies like [21] examine inverse problems for fractional equations
but do not address weak perturbations in moving loads. Our results bridge this gap, contributing to a
more comprehensive framework.
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