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Solution of the model problem of heat conduction with Bessel
operator
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In this work, a model boundary value problem for a parabolic equation with a Bessel operator was inves-
tigated. The solution to the problem under consideration is sought as a sum of thermal potentials: the
double-layer and volume potentials, which reduces the problem to a Volterra integral equation of the second
kind. The questions of existence and uniqueness of the obtained integral equation were investigated. The
existence condition for the solution to the given problem was found. It is shown that if this condition is
fulfilled, the problem has a single solution. The problem considered in this paper is called a model problem
because the region in which the solution of the problem is sought is cylindrical and its results will be used
in solving boundary value problems for the parabolic equation in noncylindrical regions having different
order of degeneracy of the solution region to a point at the initial moment of time.
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Introduction

In modern conditions, the rapid advancement of contact technology and increasing electrical device
speeds make precise temperature field measurement in contact systems particularly important. In
addition, it is important to study the dynamics of temperature field changes in time. When studying
temperature processes in high-current contacts, it is necessary to take into account changes in the
dimensions of the contact area, which occur both under the influence of electrodynamic forces and due
to melting of the contact material at high temperatures.

During the electrode opening process, the temperature at the contact surface reaches the melting
point, resulting in the formation of a liquid metal bridge between the electrodes. As further opening
occurs, the bridge separates, causing material transfer from one electrode to the other. This process,
known as bridge erosion, can significantly affect the performance of the contact system.

A distinctive characteristic of such problems, from a mathematical perspective, is the presence of a
movable boundary in the solution domain, along with the fact that, at the initial moment, the contacts
are closed, causing the solution domain to degenerate into a point. The solution of such thermal
problems requires the application of generalized thermal potentials and the subsequent transformation
of the initial boundary value problem to Volterra-type integral equations. In some cases, for example,
when the order of degeneration of the region to a point is high enough, the integral equations will be
singular, namely, the classical method of successive approximations is not applicable to them [1–14].

Earlier we considered boundary value problems for parabolic equations with Bessel operator in the
domain Q = {(r, t)| 0 < r < tω, t > 0} at ω > 1

2 . The problem considered in this paper is called a
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model problem because the domain in which the solution of the problem is sought is cylindrical and its
solution will be used in solving the problem in the case when the boundary of the domain will change
according to the law x = tω, 0 < ω < 1

2 .

1 Problem statement

In the region Q = {(r, t)| 0 < r < 1, 0 < t < T}, the following boundary value problem is consid-
ered:

∂u

∂t
= a2 · 1− 2β

r
· ∂u
∂r

+ a2 · ∂
2u

∂r2
+ f(r, t), (1)

u(r, t)|r=0 = 0, t > 0, (2)

u(r, t)|r=1 = 0, t > 0, (3)

u(r, t)|t=0 = 0, (4)

where 0 < β < 1, f(r, t) is a given function.

2 Fundamental solution for equation (1)

In the domain Q∞ = {(r, t)| r > 0, t > 0} consider the boundary value problem for the homoge-
neous equation

∂u

∂t
= a2 · 1− 2β

r
· ∂u
∂r

+ a2 · ∂
2u

∂r2
, (5)

corresponding to the inhomogeneous equation (1) of the basic boundary value problem, at boundary
conditions

u(r, t)|r=0 = 0, t > 0, (6)

u(r, t)|r=∞ = 0, t > 0, (7)

and the initial condition
u(r, t)|t=0 =

δ(r − ξ)
r1−2β

, (8)

where δ(z) is the Dirac delta function, ξ > 0. Applying to the problem (5)–(8) the Laplace transform
on the variable t, we obtain the boundary value problem for the ordinary differential equation

∂2û

∂r2
+

1− 2β

r
· ∂û
∂r
− p

a2
· û = −δ(r − ξ)

a2r1−2β
(9)

with boundary conditions
û(r, p)|r=0 = 0, (10)

û(r, p)|r=∞ = 0. (11)

This boundary value problem (9)–(11) has a single solution û(r, p) = Ĝ(r, p, ξ), where

Ĝ(r, p, ξ) =


rβ ·ξβ
a2
·Kβ

(
ξ
√
p

a

)
· Iβ

(
r
√
p

a

)
, 0 < r < ξ,

ξβ ·rβ
a2
· Iβ

(
ξ
√
p

a

)
·Kβ

(
r
√
p

a

)
, ξ < r <∞,

where Iβ(z), Kβ(z) are cylindrical functions of imaginary argument of order β (Infeld and McDonald
functions). The function Ĝ(r, p, ξ) belongs to the class of Laplace transform images. Performing its
inversion [15; 350], we obtain

G(r, ξ, t) =
1

2a2
· r

β · ξ1−β

t
· exp

[
−r

2 + ξ2

4a2t

]
· Iβ

(
rξ

2a2t

)
.
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Let us replace the variable t in the function G(r, ξ, t) by (t− τ), then

G(r, ξ, t− τ) =
1

2a2
· r

β · ξ1−β

t− τ
· exp

[
− r2 + ξ2

4a2(t− τ)

]
· Iβ

(
rξ

2a2(t− τ)

)
,

which has the following properties:

lim
r→0

G(r, ξ, t− τ) = 0, τ < t, ξ > 0,

lim
r→∞

G(r, ξ, t− τ) = 0, τ < t, ξ > 0,

lim
τ→t

G(r, ξ, t− τ) = 0, r 6= ξ,

lim
τ→t

∫ ∞
0

G(r, ξ, t− τ) · r1−2βdr = 1.

This function will be used to construct the thermal potential of the double layer in the domain
Q = {(r, t)| 0 < r <∞, 0 < t < T} :

W (r, t) = 2a2
∫ t

0

∂G(r, ξ, t− τ)

∂ξ

∣∣∣∣
ξ=1

· g(τ)dτ,

and thermal volume potential in the region Q = {(r, t)| 0 < r <∞, 0 < t < T}:

F (r, t) =

∫ t

0
dτ

∫ 1

0
f(ξ, τ)·G(r, ξ, t− τ) · ξ1−2βdξ.

Remark 1. The density f(r, t) is defined and continuous in the domain {(r, t)| 0 < r ≤ 1, 0 < t < T},
and inside the domain there is an estimate:

|f(r, t)| ≤M · rγ , M = const, γ > −2 + β. (12)

The following properties are valid for the function F (r, t).
1. The function F (r, t) is defined and continuous in the domain Q = {(r, t)| 0 < r <∞, 0 < t < T}

and for any values t > 0 the equality is true

lim
r→0

F (r, t) = 0.

2. Everywhere in the region Q = {(r, t)| 0 < r <∞, 0 < t < T} there exists and is continuous the
derivative ∂F

∂r , which is defined as follows:

∂F

∂r
=

∫ t

0
dτ

∫ 1

0
f(ξ, τ)·∂G(r, ξ, t− τ)

∂r
· ξ1−2βdξ.

3. In the domain Q = {(r, t)| 0 < r <∞, 0 < t < T} there exists and is continuous the derivative
∂F
∂t , which is defined by the equality

∂F

∂t
=

∫ t

0
dτ

∫ 1

0
f(ξ, τ)·∂G(r, ξ, t− τ)

∂t
· ξ1−2βdξ + f(r, t).
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3 Reduction of the boundary value problem (1)–(4) to the Volterra integral equation

As we found out, the fundamental solution for equation (1) is the function

G(r, ξ, t− τ) =
1

2a2
· r

β · ξ1−β

t− τ
· exp

[
− r2 + ξ2

4a2(t− τ)

]
· Iβ

(
rξ

2a2(t− τ)

)
,

where ξ is a parameter, 0 < β < 1, Iβ(z) is a modified Bessel function of order β. The solution of
problem (1)–(4) is found as a sum of the thermal double-layer potential and the volume potential:

u(r, t) =

∫ t

0

∂G(r, ξ, t− τ)

∂ξ

∣∣∣∣
ξ=1

µ(τ)dτ +

∫ t

0

∂G(r, ξ, t− τ)

∂ξ

∣∣∣∣
ξ=0

ν(τ)dτ + F (r, t),

where

F (r, t) =

∫ t

0
dτ

∫ 1

0
f(ξ, τ)·G(r, ξ, t− τ) · ξ1−2βdξ,

and the densities µ(t) and ν(t) are to be defined. Using the fact that

∂G(r, ξ, t− τ)

∂ξ

∣∣∣∣
ξ=0

=
1

(2a2)β+1
· r2β

2β(t− τ)β+1
· 1

βΓ(β)
· exp

[
− r2

4a2(t− τ)

]
,

and

∂G(r, ξ, t− τ)

∂ξ

∣∣∣∣
ξ=1

=
rβ(r − 1)

4a4(t− τ)2
· exp

[
− (r − 1)2

4a2(t− τ)

]
· exp

[
− r

2a2(t− τ)

]
Iβ

(
r

2a2(t− τ)

)
+

+
rβ+1

4a4(t− τ)2
· exp

[
− (r − 1)2

4a2(t− τ)

]
exp

[
− r

2a2(t− τ)

]
Iβ−1,β

(
r

2a2(t− τ)

)
+

+
rβ(1− 2β)

2a2(t− τ)
· exp

[
− (r − 1)2

4a2(t− τ)

]
· exp

[
− r

2a2(t− τ)

]
· Iβ

(
r

2a2(t− τ)

)
,

where the designation
Iβ−1,β(z) = Iβ−1(z)− Iβ(z),

we obtain the integral representation of the solution of the equation:

u(r, t) =

∫ t

0

{
rβ(r − 1)

4a4t(t− τ)2
exp

[
− (r − 1)2

4a2(t− τ)

]
exp

[
− r

2a2(t− τ)

]
Iβ

(
r

2a2(t− τ)

)
+

+
rβ+1

4a4(t− τ)2
exp

[
− (r − 1)2

4a2(t− τ)

]
exp

[
− r

2a2(t− τ)

]
Iβ−1,β

(
r

2a2(t− τ)

)
+

+
rβ(1− 2β)

2a2(t− τ)
exp

[
− (r − 1)2

4a2(t− τ)

]
exp

[
− r

2a2(t− τ)

]
· Iβ

(
r

2a2(t− τ)

)}
µ(τ)dτ+

+

∫ t

0

1

(2a2)β+1
· r2β

2β(t− τ)β+1
· 1

βΓ(β)
· exp

[
− r2

4a2(t− τ)

]
· ν(τ)dτ + F (r, t),

(13)

where
µ(t) ∈ L∞(0,∞). (14)
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Using the boundary condition (2) for (13), we determine that the density

ν(t) = 0.

Then

u(r, t) =

∫ t

0

{
rβ(r − 1)

4a4(t− τ)2
exp

[
− (r − 1)2

4a2(t− τ)

]
exp

[
− r

2a2(t− τ)

]
Iβ

(
r

2a2(t− τ)

)
+

+
rβ+1

4a4(t− τ)2
exp

[
− (r − 1)2

4a2(t− τ)

]
exp

[
− r

2a2(t− τ)

]
Iβ−1,β

(
r

2a2(t− τ)

)
+

+
rβ(1− 2β)

2a2(t− τ)
exp

[
− (r − 1)2

4a2(t− τ)

]
exp

[
− r

2a2(t− τ)

]
· Iβ

(
r

2a2(t− τ)

)}
µ(τ)dτ+

+F (r, t).

(15)

Using the boundary condition (3), we obtain the integral equation with respect to the unknown
density µ(t):

µ(t)−
∫ t

0

2∑
i=1

Ni(t, τ) · µ(τ)dτ = f(t), (16)

where

N1(t, τ) =
1− 2β

t− τ
exp

[
− 1

2a2(t− τ)

]
· Iβ

(
1

2a2(t− τ)

)
,

N2(t, τ) =
1

2a2(t− τ)2
exp

[
− 1

2a2(t− τ)

]
Iβ−1,β

(
1

2a2(t− τ)

)
,

f(t) = F (t, t).

The solution of this integral equation, if it exists in the class of functions (14), is singular and can
be found by the method of successive approximations, since the estimates [16] are valid:

0 < e−z · Iβ(z) <
C1√
z
, 0 < e−z · Iβ−1,β(z) <

C1√
z3
, C1, C2 = const.

To clarify the question of existence of a solution to equation (16), we use the method of integral
Laplace transform.

4 Solution of the integral equation (16)

Let us apply the Laplace transform to both parts of the integral equation (16):

µ̂(p)
{

1−
[
N̂1(p) + N̂2(p)

]}
= f̂(p), Rep > 0,

µ̂(p) =
f̂(p)

1−
[
N̂1(p) + N̂2(p)

] . (17)

In order to find the image of the function N̂1(p) + N̂2(p) we will use:
1) formula (29.169) [15; 350];
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2) the property: let f(t) : f̂(p), then 1
t f(t) :

∫∞
p f̂(p)dp [17; 506]. Then we have:

N̂1(p) = 2(1− 2β)Kβ

(√
p

a

)
Iβ

(√
p

a

)
, Rep > 0,

N̂2(p) =
1

a2

∫ ∞
p

[
Kβ−1

(√
p

a

)
Iβ−1

(√
p

a

)
−Kβ

(√
p

a

)
Iβ

(√
p

a

)]
dp =

= 1− 2

√
p

a
Iβ

(√
p

a

)
Kβ−1

(√
p

a

)
, Rep > 0.

Let us show that the homogeneous integral equation

µ(t)−
∫ t

0

2∑
i=1

Ni(t, τ) · µ(τ)dτ = 0 (18)

has only zero solution in the class of functions µ(t) ∈ L∞(0,∞). For this purpose, let us find the roots
of the equation

1−
[
N̂1(p) + N̂2(p)

]
= 0

or

2Iβ

(√
p

a

)
·
{√

p

a
Kβ−1

(√
p

a

)
− (1− 2β)Kβ

(√
p

a

)}
= 0. (19)

Let Iβ
(√

p
a

)
= 0 in equality (19). According to the definition of Bessel function of imaginary

argument Iβ
(√

p
a

)
= e−

π
2
βiJβ

(
i
√
p
a

)
, where Jβ

(
i
√
p
a

)
is a cylindrical Bessel function of the first kind.

The function Jβ

(
i
√
p
a

)
has infinitely many valid roots for any valid β; if β > −1, all its roots are

valid and equal to i
√
pk
a = αk, pk = −a2α2

k, αk ∈ R, k ∈ Z\ {0} [18], which contradicts the Rep > 0
condition.

It is clear that the second multiplier at 1
2 < β < 1

√
p

a
Kβ−1

(√
p

a

)
− (1− 2β)Kβ

(√
p

a

)
6= 0,

and at 0 < β < 1
2 it has a single root p = p0 > 0. It follows that in this case the solution of the

homogeneous equation (18) is the function µ0(t) = C · ep0t, which does not belong to the class (14).
Thus, it is shown that the homogeneous integral equation (18) has only zero solution.

It follows from equality (17) at 0 < β < 1
2 that if the function f̂ (p) goes to zero at the point p0,

then the expression
f̂(p)

1−
[
N̂1(p) + N̂2(p)

]
has no poles and in this case equation (16) will have a single solution in the class of functions (14).
Thus, for solvability of equation (16) at 0 < β < 1

2 it is necessary and sufficient to fulfill the condition∫ ∞
0

e−p0tf(t)dt = 0.

If 1
2 < β < 1, then equation (16) is unconditionally solvable.

76 Bulletin of the Karaganda University



Solution of the model ...

Let this condition be satisfied. Let us find the solution of the inhomogeneous integral equation.
For this purpose, let us represent (17) in the following form:

µ̂(p) = f̂(p) + R̂(p) · f̂(p),

where

R̂(p) =
N̂1(p) + N̂2(p)

1−
[
N̂1(p) + N̂2(p)

] =
1− 2Iβ

(√
p
a

) [√
p
a Kβ−1

(√
p
a

)
− (1− 2β)Kβ

(√
p
a

)]
2Iβ

(√
p
a

) [√
p
a Kβ−1

(√
p
a

)
− (1− 2β)Kβ

(√
p
a

)] .

Let us use the properties of [15; 191]:
1. If ϕ(t) : ϕ̂(p), then

ϕ(αt) :
1

α
ϕ̂(
p

α
), α > 0. (20)

2. If ϕ̂(p) : ϕ(t), then

ϕ̂(
√
p) =

1

2
√
π
· 1

t
3
2

∫ ∞
0

τ · e−
τ2

4t ϕ(τ)dτ. (21)

For convenience we introduce the notation
√
p
a = z and find the original expression

R̂∗(z) =
1− 2Iβ(z) [zKβ−1(z)− (1− 2β)Kβ(z)]

2Iβ(z) [zKβ−1(z)− (1− 2β)Kβ(z)]
.

According to [17; 519]:

R̂∗(z) =
A(z)

B(z)
:

+∞∑
−∞

A(zk)

B′(zk)
e−zky,

where zk are zeros of the function

B(z) = 2Iβ(z) [zKβ−1(z)− (1− 2β)Kβ(z)] .

1) Let yβ(z) = zKβ−1(z)− (1− 2β)Kβ(z) = 0. This equation, as noted earlier, has one root z0 at
0 < β < 1

2 .
2) Let Iβ(z) = e−

π
2
βiJβ(iz) = 0. Therefore, izk = αk or zk = −iαk, where αk ∈ R.

Then

R̂∗(z) =
A(z)

B(z)
:

+∞∑
−∞

A(zk)

B′(zk)
e−zky =

∑
k∈Z\{0}

A(zk)

B′(zk)
e−zky +

A(z0)

B′(z0)
e−z0y = R∗−(y),

where
B(z) = 2Iβ(z) [zKβ−1(z)− (1− 2β)Kβ(z)] ,

B′(z) = 2Iβ−1(z) [zKβ−1(z)− (1− 2β)Kβ(z)] + 2(1− 2β)Iβ(z)Kβ−1(z)+

+

(
4β(1− 2β)

z
− 2z

)
Iβ(z)Kβ(z).

Thus, we obtained that at 0 < β < 1
2 :

R∗(y) =
∑

k∈Z\{0}

e−zky

2Iβ−1(zk) [zkKβ−1(zk)− (1− 2β)Kβ(zk)]
+

e−z0y

2Iβ(z0)Kβ−1(z0)
[
1− 1

1−2β z
2
0

] . (22)
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Let us introduce the following notations:

Aβ,k =
1

2Iβ−1(zk) [zkKβ−1(zk)− (1− 2β)Kβ(zk)]
, Aβ,0 =

1

2Iβ(z0)Kβ−1(z0)
[
1− 1

1−2β z
2
0

] .
From equality (22) and properties of (20) and (21) we have:

R̂

(√
p

a

)
: R(t) =

a2

2
√
πt

3
2

·
∑

k∈Z\{0}

Aβ,k ·
∫ ∞
0

τe−
τ2

4t
−ia2αkτdτ +

a2

2
√
πt

3
2

·Aβ,0 ·
∫ ∞
0

τe−
τ2

4t
−z0a2τdτ,

where αk are zeros of the function Jβ(z). For the resolvent R(t) the following estimation is valid

R(t) ≤ a2π

4
√
t
.

Remark 2. At 0 < β < 1
2 it follows from the equality (17) that for solvability of the integral

equation (15) it is necessary and sufficient to fulfill the condition∫ ∞
0

e−p0tf(t)dt = 0, (23)

where f(t) = limr→t F (r, t).

Theorem 1. For any function f(t) ∈ C(0, T ), equation (16) has a single solution if 1
2 < β < 1.

When 0 < β < 1
2 , it is necessary and sufficient for the solvability of the integral equation (16) that

condition (23) is satisfied. In this case, for any function f(t) ∈ C(0, T ), the integral equation (16) has
a single solution.

Remark 3. If at 0 < β < 1
2 condition (23) is not satisfied, then equation (16) has no solutions in

the chosen class of functions. However, this result does not contradict the well-known fact that the
Volterra equation always has a single solution. Equation (16) belongs to the class of Volterra-type
equations of the second kind and, therefore, in case the condition (23) is not satisfied, it will also be
solvable, but in a wider space of functions with exponential growth.

5 Solution of the boundary value problem (1)–(4)

Theorem 2. For any function f(r, t) from the class (12), the boundary value problem (1)–(4):
1) for 1

2 < β < 1 it has a single solution u(r, t) ∈ C(0, T );
2) when 0 < β < 1

2 , it is necessary and sufficient to fulfill condition (23) for the existence of
a solution. If this condition is satisfied, the problem has a single solution in the class of functions
u(r, t) ∈ C(0, T ).

Conclusion

In this work we study a model boundary value problem for a parabolic equation with a Bessel
operator. The existence condition for the solution to this problem at 0 < β < 1

2 is found. It is shown
that if this condition is fulfilled, the problem has a single solution. If 1

2 < β < 1, the problem is
unconditionally solvable. The results of this work will be used in solving boundary value problems
for parabolic equations in non-cylindrical regions having different order of degeneration of the solution
region to a point at the initial moment of time.
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