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Solitary Wave Solutions of the coupled Kawahara Equation
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The field of nonlinear differential equations have made significant contribution in understanding nonlinear
dynamics and its complex phenomenon. One such evolution equation is Kawahara equation, which has
gained its importance in plasma physics and allied fields. Many researchers are interested to work on their
soliton, multi-solitons solutions and to study other properties such as stability, integrability, conservation
laws and so on. The aim of the paper is to study the Coupled Kawahara equation and to deduce its soliton
solutions. The coupled equation is treated with the ansatz method and the tanh method to compute soliton
solutions. The novelty of this work is to demonstrate the fact, that the derived system efficiently gives
two governing equations admitting solitary wave solutions. Further, in the coupled equation, one equation
has the nonlinear term vvx addition to the Kawahara equation, while the other is the modified Kawahara
equation. Scope for future works is also highlighted.
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Introduction

The study of nonlinear dynamics has significantly advanced our understanding of various physical
phenomena through nonlinear partial differential equations. One prominent area within this field is
solitary wave theory. The concept of solitary waves was first observed empirically by John Scott Russell
in 1844 [1]. Later, in 1965, Korteweg and de Vries formulated the mathematical representation of these
waves, now known as the KdV equation. This third-order nonlinear differential equation, involving
spatial derivatives, has found extensive applications in areas such as shallow water wave theory, ocean
engineering, optics, and related disciplines [2–5].

The Kawahara equation is a significant evolution equation used to model various physical phe-
nomena, including plasma dynamics and gravity waves on viscous liquid surfaces. It also describes
magneto-acoustic wave behavior in plasma and the dynamics of long water waves beneath ice-covered
surfaces [3–9]. Essentially, the Kawahara equation extends the KdV equation by incorporating a fifth-
order term. However, unlike the KdV equation, it is not integrable, as it does not appear in Hietarinta’s
classification of integrable systems [10].

In [8], the governing model for waves in dispersive media was introduced. In [11], travelling wave
solutions for the Kawahara equation and its modified form were derived. A comparison of two numer-
ical approaches for solving the Kawahara equation was presented in [12]. Solitary wave solutions for
the modified Kawahara equation were explored in [13], while the soliton solution for the generalized
Kawahara equation was provided in [14]. Additionally, solitary wave solutions for the Hirota-Satsuma
coupled KdV equation have been studied in [15,16].

There are many methods to solve the nonlinear evolution equations namely, the Adomian decompo-
sition method, the Homotopy perturbation method, the Hirota’s Bilinear method, the Bilinear neural
network method, Lie symmetry analysis, the tanh method and so on [17–19].
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In our work, first we obtain the coupled Kawahara equation by transforming it into a function of
complex variable. Further, the solitons of the coupled equation are computed using the ansatz method
and the tanh method. Computed solutions are simulated using Maple. Further, analysis of solutions
is carried out, which conveys that the transformed coupled equation resembles Kawahara type and the
modified Kawahara equation.

1 Soliton Solutions

The Kawahara equation is the extension of KdV equation with higher order dispersion term pxxxxx
which reads as [4, 8, 14] :

pt + 6ppx + pxxx − pxxxxx = 0 ; x, t > 0 ∈ R. (1)

By considering,
p(x, t) = u(x, t) + i v(x, t),

in equation (1) results in the coupled Kawahara equation:

ut + 6uux − 6vvx + uxxx − uxxxxx = 0, (2)

vt + 6uvx + 6vux + vxxx − vxxxxx = 0. (3)

If v = 0, the above system of equations (2) and (3) will reduce to the well known Kawahara equation.

To study this coupled system and its soliton solution, we use the ansatz method and the tanh
method in the following section.

1.1 The ansatz method

As noted earlier, v = 0 results in the Kawahara equation and its soliton solution is of the form
sech4 we begin with the ansatz,

u(x, t) = A sechMk(x− ct), (4)

v(x, t) = B sechNk(x− ct), (5)

where M,N ∈ N; k, c, A > 0 and B > 0 are scalars from the field R.
The restriction of A and B to be positive is to retain the coupled system.
By balancing the higher nonlinear term and higher linear term, we obtain M = 4 and N = 2.

Substituting this M and N in equation (4) and (5), we get

u(x, t) = A sech4k(x− ct),

v(x, t) = B sech2k(x− ct).
(6)

Now, substituting the above expressions u, v of (6) into the equation (2), we obtain,

[Ac− 6A2 + 14Ak2 + 376Ak4 + 3B2]

+ [6A2 − 30Ak2 − 120Ak4] tanh2 k(x− ct)

+ [6A2 − 1680Ak4] tanh2 k(x− ct) sech2k(x− ct) = 0.

As the set {1, tanh2 k(x− ct), tanh2 k(x− ct) sech2k(x− ct)} is linearly independent, it leads to,

Ac− 6A2 + 14Ak2 + 376Ak4 + 3B2 = 0,

6A2 − 30Ak2 − 120Ak4 = 0,

6A2 − 1680Ak4 = 0.
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Solving the above system gives the values of A and k as

A = 280k4, k = ± 1

2
√
13

, and c =
−1014B2

35
+

36

169
, with c <

36

169
.

Therefore, solutions are

u1(x, t) = 280k4sech4
{
± 1

2
√
13

(
x−

(−1014B2

35
+

36

169

)
t

)}
and

v1(x, t) = B sech2
{
± 1

2
√
13

(
x−

(−1014B2

35
+

36

169

)
t

)}
.

(7)

Now, using u and v of (6) in equation (3), we observe that

[Bc− 18AB + 8Bk2 + 136Bk4]

+ [18AB − 12Bk2 − 120Bk4] tanh2 k(x− ct)

+ [18AB − 360Bk4] tanh2 k(x− ct) sech2k(x− ct)) = 0.

This in turn implies the system of equations

Bc− 18AB + 8Bk2 + 136Bk4 = 0,

18AB − 12Bk2 − 120Bk4 = 0,

18AB − 360Bk4 = 0.

Solving the above system, we obtain

A = 20k4, B = B, c =
4

25
and k = ± 1

2
√
5
.

Therefore, the corresponding solutions for above values are given by

u2(x, t) = 20k4sech4
(
± 1

2
√
5

(
x− 4

25
t

))
and

v2(x, t) = B sech2
(
± 1

2
√
5

(
x− 4

25
t

))
.

(8)

1.2 The tanh method

In this subsection, we replicate the soliton solutions that are obtained using the ansatz method
using the tanh method. For more details refer [4, 20–23].

By introducing a new variable z = x− ct in (2) and (3), we obtain

− cU (1) + 6UU (1) − 6V V (1) + U (3) − U (5) = 0, (9)

− cV (1) + 6(UV )(1) + V (3) − V (5) = 0. (10)

The above equations (9) and (10) can be integrated once to get,

− cU + 3U2 − 3V 2 + U (2) − U (4) = 0, (11)

− cV + 3UV + V (2) − V (4) = 0. (12)
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Let U(Y ) =
M∑
j=0

ajY
j and V (Y ) =

∑N
j=0 bjY

j , where U (n) =
dnU

dZn
, Y = tanhZ, M,N ∈ N,

aj and bj are real coefficients need to be determined.
By balancing the power of highest order of the derivative and nonlinear terms: U (4) and U2 of (11),

we obtain M = 4.
Analogously, balancing powers for the equation (12), we obtain N = 2. So, we have

U(Y ) = a0 + a1Y + a2Y
2 + a3Y

3 + a4Y
4, (13)

V (Y ) = b0 + b1Y + b2Y
2. (14)

Using equation (13) in (9), we obtain the following system of equations:

−ca0 + 3a20 − 3b20 + 2a2k
2 + 16a4k

4 =0,

−ca1 + 6a0a1 + 6a3k
2 − 2a1k

2 − 16a1k
4 + 120a4k

4 =0,

−ca2 + 6a0a2 + 3a21 + 12a4k
2 − 8a2k

2 − 136a2k
4 + 480a4k

4 =0,

−ca3 + 6a0a3 + 6a1a2 + 2a1k
2 − 18a3k

2 − 576a3k
4 + 40a1k

4 =0,

−ca4 + 6a0a4 + 6a1a3 + 3a22 + 6a2k
2 − 32a4k

2 − 1696a4k
4 + 240a2k

4 =0,

6a1a4 + 6a2a3 + 12a3k
4 − 24a1k

4 + 816a3k
4 =0,

6a2a4 + 3a23 + 20a4k
2 − 120a2k

4 + 2080a4k
4 =0,

6a3a4 − 360a3k
4 =0,

3a24 − 840a4k
4 =0.

Solving the above system of equations, we obtain

c = − 1

39

[
495040k8 + 31360k6 + 280k4 + 117b20 − 117a20

a0

]
,

a1 = 0, a2 = −
1120

3
k4 − 140

39
k2, a3 = 0, a4 = 280k4,

b1 = 0, a0 6= 0, b2, and b0 are arbitrary constants.

By fixing a0 = a4, a2 = −2a4 and b2 = −b0, results in k = ± 1

2
√
13

and c =
36

169
− 1014

35
b20, which

agrees with the ansatz method.

u1(x, t) = 280k4sech4
{
± 1

2
√
13

(
x−

(−1014b20
35

+
36

169

)
t

)}
and

v1(x, t) = b0 sech2
{
± 1

2
√
13

(
x−

(−1014b20
35

+
36

169

)
t

)}
.

Now, using (14) in (12), we obtain system of equations:

−cb0 + 6a0b0 + 2b2k
2 + 16b2k

4 = 0,

−cb1 + 6a0b1 + 6a1b0 − 2b1k
2 − 16b1k

4 = 0,

−cb2 + 6a0b2 + 6a1b1 + 6a2b0 − 8b2k
2 − 136b2k

4 = 0,

6(a1b2 + a2b1 + b0a3) + 2b1k
2 + 40b1k

4 = 0,

6(a4b0 + a2b2 + a3b1 + b2k
2) + 240b2k

4 = 0,

6(a3b2 + a4b1)− 24b1k
4 = 0,

6a4b2 − 120b2k
4 = 0.
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Solving the above system of equations, we obtain

a0 =
8

3
k4 +

1

3
k2 +

1

6
c, a1 = 0, a2 = −(20k2 + 1)k2,

a3 = 0, a4 = 20k4, b1 = 0,

b0, b2, and c are arbitrary constants.

By fixing a0 = a4 and a2 = −2a4, will result in k = ± 1

2
√
5
and c =

4

25
. Hence,

u2(x, t) = 20k4sech4
(
± 1

2
√
5

(
x− 4

25
t

))
and

v2(x, t) = b0 sech2
(
± 1

2
√
5

(
x− 4

25
t

))
.

2 Plots of the Solutions

In this subsection, we simulate the solutions of the coupled equation using maple package [24].

Figure 1. Plots of (7) with b =
1

2

Figure 2. Plots of (8) with b =
1

2
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3 Analysis of Solutions

We observe that, the solutions u(x, t) and v(x, t) are related by u = A
B2 v

2, then equation (3) will
reduce to vt + 18 A

B2 v
2vx + vxxx − vxxxxx = 0.

So, the coupled equation (2) and (3) will be of the form,

ut + 6uux − 6vvx + uxxx − uxxxxx = 0, (15)

vt + 18
A

B2
v2vx + vxxx − vxxxxx = 0. (16)

Equation (15) is the Kawahara type equation with the additional term vvx to the Kawahara equation
and equation (16) is the modified Kawahara equation. Further, one can observe that the solutions

simulated in Figure 1 and Figure 2, for a particular choice b =
1

2
. The solution given in equation (7)

indicated by Figure 1 has a slightly high amplitude compared to the solution given by equation (8),
which is depicted in Figure 2.

4 Discussion

In conclusion, transforming the Kawahara equation to a coupled system results in two different
governing equations in which one is Kawahara type equation and the other is the modified Kawahara
equation. As a scope for further work, one can compute the other solutions such as periodic solution,
shock solution and singular solution to the discussed system.
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