
Bulletin of the Karaganda University. Mathematics Series, No. 1(117), 2025, pp. 24–33

https://doi.org/10.31489/2025M1/24-33 Research article

On the stability of the third order partial differential equation with
time delay

A. Ashyralyev1,2,3, S. Ibrahim4,∗, E. Hincal4
1Bahcesehir University, Istanbul, Turkey;

2Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian Federation;
3Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan;

4Near East University, Nicosia, TRNC, Mersin 10, Turkey
(E-mail: allaberen.ashyralyev@eng.bau.edu.tr, ibrahim.suleiman@neu.edu.tr, evren.hincal@neu.edu.tr)

In this paper, the initial value problem for a third-order partial differential equation with time delay within a
Hilbert space was analyzed. We establish a key theorem regarding the stability of this problem. Additionally,
we demonstrate how this stability theorem can be applied to the third-order partial differential equation
with time delay.
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Introduction

In physics, various problems give rise to third order partial differential equations (PDEs). In various
branches of engineering and science, such as applied mathematics, these problems have become a key
research area. Within the last 10 decades, interest towards nonlocal and local boundary value problems
(BVPs) for PDEs with space and time variables have increased significantly. Nonlocal and local BVPs
for third order PDEs have been investigated widely in a lot literature (for instance, see [1–3]).

One of the most frequently occurring phenomena in various engineering applications is time delay
(TD). A typical instance with regards to control theory can be seen in sampled-data control process.

Applications and theory of nonlinear and linear third-order differential and difference equations
comprising a delay term were investigated widely (for instance, see [4–11], and the included references).

Lastly, applications and theory of PDEs of the same order having delay operator term with respect
to the other operator term were studied for parabolic differential equations with delay term (for
example, see [12–18], and the included references).

However, the stability theory of third-order PDEs having a delay term is not well developed. In
this paper, our aim is to study the initial value problem (IVP) for the third order PDE having TD

d3y(s)
ds3

+B dy(s)
ds = cBy(s− z) + h(s), 0 < s <∞,

y(s) = k(s), −z ≤ s ≤ 0

(1)

in G, a Hilbert space, having self-adjoint positive definite operator (SAPDO) B, B ≥ λI, where λ > 0.
Here k(s) defined on [−z, 0] is the given abstract continuous function (ACF) with values in D(B), h(s)
defined on (0,∞) is the given ACF having values in G, and c ∈ R1.

The structure of the paper is as follows. In Section 1, we establish the main theorem on the stability
of problem (1). Section 2 presents theorems on stability estimates for the solutions of three problems
involving third-order PDEs. Finally, Section 3 provides the conclusion.
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1 Main theorem on Stability

If conditions i, ii, iii below are met, then a function y(s) is considered a solution to problem (1):
i. y(s) is twice continuously differentiable over the interval [0,∞), with the derivative at s = 0

taken as the unilateral derivative.
ii. The derivative dy(s)

ds lies in D(B) for every s ∈ [0,∞), and the function B dy(s)
ds is continuous

throughout the interval [0,∞).
iii. y(s) satisfies the primary equation and the initial conditions described in (1).

Throughout this paper, let {E(s), s ≥ 0} be an operator function, where E(s) = cos(sB
1
2 ), and is

defined by the formula

E(s) =
eisB

1
2 + e−isB

1
2

2
. (2)

From the operator function T (s) = B−
1
2 sin(sB

1
2 ), where T (s) =

∫ s
0 E(p) dp, it follows that

T (s) = B−
1
2
eisB

1
2 − e−isB

1
2

2i
. (3)

We refer to [19] for the theory of cosine operator functions. We now present an important lemma
below.

Lemma 1.1. The estimates that follows holds for s ≥ 0:∥∥∥exp
{
±isB

1
2

}∥∥∥
G→G

≤ 1, ||E(s)||G→G ≤ 1,
∣∣∣∣∣∣B 1

2T (s)
∣∣∣∣∣∣
G→G

≤ 1. (4)

The proof of the lemma above depends on the spectral representation of unit SAPDO B.
Moreover, for all dx(s)

ds ∈ D(B) we can write

d3x(s)

ds3
+B

dx(s)

ds
=

(
d2

ds2
+B

)
d

ds
x(s).

Therefore, problem (1) be rewritten as the equivalent IVP
dy(s)

ds
= x(s),

d2x(s)

ds2
+Bx(s) = cBy(s− z) + h(s), 0 < s <∞,

y(s) = k(s),−z ≤ s ≤ 0

for the system of linear differential equations. Integrating these equations, we can write
y(s) = y(0) +

∫ s
0 x(r)dr,

x(s) = E (s)x (0) + T (s)x′ (0) +
∫ s

0 T (s− r) [cBk(r − z) + h(r)] dr

for all s ∈ [0, z] and
y(s) = y(mz) +

∫ s
mz x(r)dr,

x(s) = E (s−mz)x (mz) + T (s−mz)x′ (mz) +
∫ s
mz T (s− r) [cBy(r − z) + h(r)] dr

for all s ∈ [mz, (m+ 1) z] , m = 1, 2, . . .
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Applying (2) and (3), we can write∫ s

0
T (r)drx = −B−1 (E (s)− I)x.

From that and equation
dy(s)

ds
= x(s) it follows x (mz) = y′ (mz) , x′ (mz) = y′′ (mz) and

y(s) =



y (0) + T (s) y′ (0)−B−1 (E (s)− I) y′′ (0) +

+
∫ s

0 B
−1 (I − E (s− r)) [cBk(r − z) + h(r)] dr, s ∈ [0, z] ,

y(mz) + T (s−mz) y′ (mz)−B−1 (E (s−mz)− I) y′′ (mz) +

+
∫ s
mz B

−1 (I − E (s− r)) [cBy(r − z) + h(r)] dr, s ∈ [mz, (m+ 1) z] , m = 1, . . .

(5)

The main theorem is formulated below.

Theorem 1. Assume that k(s) be a twice continuously differentiable function and k0(s) ∈ D(B(3)/2),
k1(s) ∈ D(B(2)/2), k2(s) ∈ D(B(1)/2). Then the following estimates hold for the solution of problem (1):

max
0≤s≤z

∥∥∥∥B 1
2
d2y(s)

ds2

∥∥∥∥
G

, max
0≤s≤z

∥∥∥∥Bdy(s)

ds

∥∥∥∥
G

,
1

2
max

0≤s≤z

∥∥∥B 3
2 y(s)

∥∥∥
G

(6)

≤ (2 + |c| z) a0 +

∫ z

0

∥∥∥B 1
2h(r)

∥∥∥
G
dr,

a0 = max

{
max
−z≤s≤0

∥∥∥∥B 1
2
d2k(s)

ds2

∥∥∥∥
G

, max
−z≤s≤0

∥∥∥∥Bdk(s)

ds

∥∥∥∥
G

, max
−z≤s≤0

∥∥∥B 3
2k(s)

∥∥∥
G

}
,

max
mz≤s≤(m+1)z

∥∥∥∥B 1
2
d2y(s)

ds2

∥∥∥∥
G

, max
mz≤s≤(m+1)z

∥∥∥∥Bdy(s)

ds

∥∥∥∥
G

,
1

2
max

mz≤s≤(m+1)z

∥∥∥B 3
2 y(s)

∥∥∥
G

(7)

≤ (2 + |c| z) am +
m+1∑
j=1

∫ jz

(j−1)z

∥∥∥B 1
2h(r)

∥∥∥
G
dr,

am = max

{
max

(m−1)z≤s≤mz

∥∥∥∥B 1
2
d2y(s)

ds2

∥∥∥∥
G

, max
(m−1)z≤s≤mz

∥∥∥∥Bdy(s)

ds

∥∥∥∥
G

, max
(m−1)z≤s≤mz

∥∥∥B 3
2 y(s)

∥∥∥
G

}
,

m = 1, 2, . . .

Proof. Let s ∈ [0, z]. Then, applying (5), we get

y(s) = k (0) + T (s) k′ (0)−B−1 (E (s)− I) k′′ (0)

+

∫ s

0
B−1 (I − E (s− r)) [cBk(r − z) + h(r)] dr,

B
dy(s)

ds
= E (s)Bk′ (0) + T (s)Bk′′ (0)

+

∫ s

0
BT (s− r) [cBk(r − z) + h(r)] dr,

B
1
2
d2y(s)

ds2
= −B

1
2T (s)Bk′ (0) + E (s)B

1
2k′′ (0)
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+

∫ s

0
B

1
2E (s− r) [cBk(r − z) + h(r)] dr.

Using these formulas, estimates (4) and the triangle inequality, we get∥∥∥B 3
2 y(s)

∥∥∥
G
≤
∥∥∥B 3

2k(0)
∥∥∥
G

+
∥∥Bk′ (0)

∥∥
G

+ 2
∥∥∥B 1

2k′′ (0)
∥∥∥
G

+2 |c| z max
−z≤s≤0

∥∥∥B 3
2k(s)

∥∥∥
G

+ 2

∫ s

0

∥∥∥B 1
2h(r)

∥∥∥
G
dr

≤ 2 (2 + |c| z) a0 + 2

∫ z

0

∥∥∥B 1
2h(r)

∥∥∥
G
dr,∥∥∥∥Bdy(s)

ds

∥∥∥∥
G

≤
∥∥Bk′ (0)

∥∥
G

+
∥∥∥B 1

2k′′ (0)
∥∥∥
G

+ |c| z max
−z≤s≤0

∥∥∥B 3
2k(s)

∥∥∥
G

+

∫ s

0

∥∥∥B 1
2h(r)

∥∥∥
G
dr

≤ (2 + |c| z) a0 +

∫ z

0

∥∥∥B 1
2h(r)

∥∥∥
G
dr,∥∥∥∥B 1

2
d2y(s)

ds2

∥∥∥∥
G

≤
∥∥∥B 1

2k′′ (0)
∥∥∥
G

+ |c| z max
−z≤s≤0

∥∥∥B 3
2k(s)

∥∥∥
G

+

∫ s

0

∥∥∥B 1
2h(r)

∥∥∥
G
dr

≤ (2 + |c| z) a0 +

∫ z

0

∥∥∥B 1
2h(r)

∥∥∥
G
dr

for s ∈ [0, z]. From that estimate (6) follows. Let s ∈ [mz, (m+ 1) z], m = 1, 2, . . . Then, applying (5),
we get

y(s) = y(mz) + T (s−mz) y′ (mz)−B−1 (D (s−mz)− I) y′′ (mz)

+

∫ s

mz
B−1 (I −D (s− r)) [cBy(r − z) + h(r)] dr,

B
dy(s)

ds
= D (s−mz)By′ (mz) + T (s−mz)By′′ (mz)

+

∫ s

mz
BT (s− r) [cBy(r − z) + h(r)] dr,

B
1
2
d2y(s)

ds2
= −B

1
2T (s−mz)By′ (mz) +D (s−mz)B

1
2 y′′ (mz)

+

∫ s

mz
B

1
2D (s− r) [cBy(r − z) + h(r)] dr.

Using these formulas, estimates (4) and the triangle inequality, we get∥∥∥B 3
2 y(s)

∥∥∥
G
≤
∥∥∥B 3

2 y(mz)
∥∥∥
G

+
∥∥By′ (mz)∥∥

G
+ 2

∥∥∥B 1
2 y′′ (mz)

∥∥∥
G

+2 |c| z max
(m−1)z≤s≤mz

∥∥∥B 3
2 y(s)

∥∥∥
G

+ 2
m+1∑
j=1

∫ jz

(j−1)z

∥∥∥B 1
2h(r)

∥∥∥
G
dr
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≤ 2 (2 + |c| z) am + 2
m+1∑
j=1

∫ jz

(j−1)z

∥∥∥B 1
2h(r)

∥∥∥
G
dr

∥∥∥∥Bdy(s)

ds

∥∥∥∥
G

≤
∥∥By′ (mz)∥∥

G
+
∥∥∥B 1

2 y′′ (mz)
∥∥∥
G

+ |c| z max
(m−1)z≤s≤mz

∥∥∥B 3
2 y(s)

∥∥∥
G

+

m+1∑
j=1

∫ jz

(j−1)z

∥∥∥B 1
2h(r)

∥∥∥
G
dr

≤ (2 + |c| z) am +
m+1∑
j=1

∫ jz

(j−1)z

∥∥∥B 1
2h(r)

∥∥∥
G
dr

∥∥∥∥B 1
2
d2y(s)

ds2

∥∥∥∥
G

≤
∥∥By′ (mz)∥∥

G
+
∥∥∥B 1

2 y′′ (mz)
∥∥∥
G

+ |c| z max
(m−1)z≤s≤mz

∥∥∥B 3
2 y(s)

∥∥∥
G

+

m+1∑
j=1

∫ jz

(j−1)z

∥∥∥B 1
2h(r)

∥∥∥
G
dr

≤ (2 + |c| z) am +
m+1∑
j=1

∫ jz

(j−1)z

∥∥∥B 1
2h(r)

∥∥∥
G
dr

for s ∈ [mz, (m+ 1) z], m = 1, 2, . . . Estimate (7) follows from it. Theorem 1 is proved.

According to Theorem 1, the following stability estimate holds for the solution of problem (1):

max
0≤s≤(m+1)z

∥∥∥∥B 1
2
d2y(s)

ds2

∥∥∥∥
G

, max
0≤s≤(m+1)z

∥∥∥∥Bdy(s)

ds

∥∥∥∥
G

,
1

2
max

0≤s≤(m+1)z

∥∥∥B 3
2 y(s)

∥∥∥
G

≤ (2 + |c| z)m a0 +

m∑
j=1

(2 + |c| z)m−j
∫ jz

(j−1)z

∥∥∥B 1
2h(r)

∥∥∥
G
dr.

.

2 Applications

The applications of Theorem 1 are considered in this section.
First, the initial nonlocal BVP for the third order PDE with TD
∂3x(s,u)
∂s3

− (b(u)xsu(s, u))u + ρxs(s, u) = c (− (b(u)xu(s− z, u))u + ρx(s− z, u)) + h(s, u),

0 < s <∞, 0 < u < 1,

x(s, u) = k(s, u), −z ≤ s ≤ 0, 0 ≤ u ≤ 1,

x(s, 0) = x(s, 1), xu(s, 0) = xu(s, 1), 0 ≤ s <∞

(8)

is considered. Problem (8) has a unique solution x(s, u), under compatibility conditions, for the smooth
functions b(u) ≥ b > 0, u ∈ (0, 1), ρ > 0, b(1) = b(0), k(s, u) −z ≤ s ≤ 0, 0 ≤ u ≤ 1, h(s, u),
0 < s <∞, 0 < u < 1, and c ∈ R1. This allows us to reduce the BVP (8) to the IVP (1) in a Hilbert
space G = L2[0, 1] with a SAPDO Bu defined by the formula:

Bux(u) = −(b(u)xu)u + ρx
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with domain

D(Bu) = {x(u) : x(u), xu(u), (b(u)xu)u ∈ L2[0, 1], x(1) = x(0), xu(1) = xu(0)} .

By utilizing the symmetry property of the spatial operator Bu, domain of which is D(Bu) ⊂W 2
2 [0, 1],

and incorporating the estimates from Theorem 1, the following theorem concerning the stability of
problem (8) is obtained.

Theorem 2. The solutions to problem (8) satisfy the stability estimates that follow:

max
0≤s≤mz

∥∥∥∥d2y(s, ·)
ds2

∥∥∥∥
W 1

2 [0,1]

, max
0≤s≤mz

∥∥∥∥dy(s, ·)
ds

∥∥∥∥
W 2

2 [0,1]

,
1

2
max

0≤s≤mz
‖y(s, ·)‖W 3

2 [0,1]

≤M1

(2 + |c|z)m a0 +

m∑
j=1

(2 + |c|z)m−j
jz∫

(j−1)z

∥∥∥B 1
2h(r, ·)

∥∥∥
L2[0,1]

dr

 ,
a0 = max

{
max
−z≤s≤0

∥∥∥∥d2k(s, ·)
ds2

∥∥∥∥
W 1

2 [0,1]

, max
−z≤s≤0

∥∥∥∥dk(s, ·)
ds

∥∥∥∥
W 2

2 [0,1]

, max
−z≤s≤0

‖k(s, ·)‖W 3
2 [0,1]

}
,

where M1 does not depend on k(s, u) and h(s, u).

In this context,W 1
2 [0, 1], W 2

2 [0, 1] andW 3
2 [0, 1] are Sobolev spaces consisting of all square integrable

functions φ(u) defined on the interval [0, 1], endowed with the following norm:

‖φ‖
W ζ

2 [0,1]
=

 1∫
0

ζ∑
j=0

(
φ(j)(u)

)2
du


1
2

, ζ = 1, 2, 3.

Next, let Ω represent the unit open cube in the n-dimensional Euclidean space Rn, where
u = (u1, . . . , un) and 0 < uζ < 1 for ζ = 1, . . . , n. The boundary of this domain is denoted by P ,
and we define Ω = Ω∪P . Within the domain [0,∞)×Ω, we consider the initial BVP for a third-order
multi-dimensional PDE with a TD, subject to Dirichlet boundary conditions.

∂3x(s,u)
∂s3

−
n∑
t=1

(bt(u)xsut(s, u))ut = −c
n∑
t=1

(bt(u)xut(s− z, u))ut ,

0 < s <∞, u ∈ Ω,

x(s, u) = k(s, u), −z ≤ s ≤ 0, u ∈ Ω,

x(s, u) = 0, u ∈ P, 0 ≤ s <∞

(9)

is considered. Here bt(u) ≥ b > 0, (u ∈ Ω), k(s, u), −z ≤ s ≤ 0, u ∈ Ω, h(s, u), 0 < s <∞, u ∈ Ω are
given smooth functions, and c ∈ R1.

We consider the Hilbert space L2(Ω) of all square integrable functions defined on Ω, equipped with
the norm

‖ h ‖L2(Ω)=

 ∫
u∈Ω

|h(u)|2du1 · · · dun


1
2

.

Problem (9) has a unique solution x(s, u), under compatibility conditions, for the smooth functions
b(u) ≥ b > 0, u ∈ Ω, ρ > 0, k(s, u), −z ≤ s ≤ 0, u ∈ Ω, h(s, u), 0 < s <∞, u ∈ Ω, and c ∈ R1. With
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this problem (9) can be reduced to the IVP (1) in the Hilbert space G = L2(Ω) with a SAPDO Bu

defined by the formula

Bux(u) = −
n∑
t=1

(bt(u)xut)ut (10)

with domain

D(Bu) = {x(u) : x(u), xut(u), (bt(u)xut)ut ∈ L2(Ω), 1 ≤ t ≤ n, x(u) = 0, u ∈ P} .

As a result, we can establish the following theorem concerning the stability of problem (9).
Theorem 3. The following stability estimates are derived for the solutions of problem (9):

max
0≤s≤mz

∥∥∥∥d2y(s, ·)
ds2

∥∥∥∥
W 1

2 (Ω)

, max
0≤s≤mz

∥∥∥∥dy(s, ·)
ds

∥∥∥∥
W 2

2 (Ω)

,
1

2
max

0≤s≤mz
‖y(s, ·)‖W 3

2 (Ω)

≤M2

(2 + |c| z)n b0 +

m∑
j=1

(2 + |c| z)m−j
∫ jz

(j−1)ω

∥∥∥B 1
2h(s, ·)

∥∥∥
L2(Ω)

ds

 ,
b0 = max

{
max
−z≤s≤0

∥∥∥∥d2k(s, ·)
ds2

∥∥∥∥
W 1

2 (Ω)

, max
−z≤s≤0

∥∥∥∥dk(s, ·)
ds

∥∥∥∥
W 2

2 (Ω)

, max
−z≤s≤0

‖k(s, ·)‖W 3
2 (Ω)

}
,

where M2 does not depend on k(s, u) and h(s, u). Here, W 1
2 (Ω),W 2

2 (Ω) and W 3
2 (Ω) are Sobolev spaces

of all square integrable functions φ(u) defined on Ω, equipped with the norm

‖φ‖
W ζ

2 (Ω)
=

∫ · · · ∫
u∈Ω

ζ∑
j=0

n∑
t=1

φut · · · ut︸ ︷︷ ︸
j times

(u)

2

du1 · · · dun


1
2

.

The proof of Theorem 3 is based on Theorem 1 and the symmetry property of the operator Bu

defined by formula (10) and the following theorem on the coercivity inequality for the solution of the
elliptic differential problem in L2(Ω).

Theorem 4. For the solution of the elliptic differential problem [10]:{
Bux(u) = µ(u), u ∈ Ω,

x(u) = 0, u ∈ P,

the following coercivity inequality holds:
m∑
t=1

‖xutut‖L2(Ω) ≤M3‖µ‖L2(Ω).

Here, M3 does not depend on µ(u).

Third, in [0,∞) × Ω, the BVP for the multi-dimensional Schrödinger equation with TD and
Neumann boundary condition is considered:



∂3x(s,u)
∂s3

−
m∑
t=1

(bt(u)xsut(s, u))ut + ρxs(s, u) = c

(
−

m∑
t=1

(bt(u)xut(s− z, u))ut + ρx(s− z, u)

)
,

0 < s <∞, u ∈ Ω,

x(s, u) = k(s, u),−z ≤ s ≤ 0, u ∈ Ω,
∂x(s,u)
∂ ~m = 0, u ∈ P, 0 ≤ s <∞.

(11)
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Here, ~m is the normal vector to P , bt(u) ≥ b > 0, (u ∈ Ω), k(s, u), −z ≤ s ≤ 0, 0 ≤ u ≤ 1 and
h(s, u), 0 < s <∞, 0 < u < 1 are given smooth functions, and c ∈ R1.

Problem (11) has a unique solution x(s, u), under compatibility conditions, for the smooth functions
ϕ(u) and bt(u). This enables us to simplify problem (11) into the IVP in the Hilbert space G = L2(Ω)
with a SAPDO Bu, defined by the following expression:

Bux(u) = −
m∑
t=1

(bt(u)xut)ut + ρx

having domain:

D(Bu) =

{
x(u) : x(u), xut(u), (bt(u)xut)ut ∈ L2(Ω), 1 ≤ t ≤ m, ∂x(u)

∂ ~m
= 0, u ∈ P

}
.

Therefore, estimates of Theorem 1 with G = L2(Ω) allow us to state the following theorem on
stability of problem (11).

Theorem 5. The following stability estimates hold for the solutions of problem (11):

max
0≤s≤mz

∥∥∥∥d2y(s, ·)
ds2

∥∥∥∥
W 1

2 (Ω)

, max
0≤s≤mz

∥∥∥∥dy(s, ·)
ds

∥∥∥∥
W 2

2 (Ω)

,
1

2
max

0≤s≤mz
‖y(s, ·)‖W 3

2 (Ω)

≤M4

(2 + |c| z)m b0 +
m∑
j=1

(2 + |c| z)m−j
∫ jz

(j−1)z

∥∥∥B 1
2h(r, ·)

∥∥∥
L2(Ω)

dr

 ,
b0 = max

{
max
−z≤s≤0

∥∥∥∥d2k(s, ·)
ds2

∥∥∥∥
W 1

2 (Ω)

, max
−z≤s≤0

∥∥∥∥dk(s, ·)
ds

∥∥∥∥
W 2

2 (Ω)

, max
−z≤s≤0

‖k(s, ·)‖W 3
2 (Ω)

}
,

where M4 does not depend on ϕ(u).

The proof of Theorem 5 is based on the stability estimates from Theorem 1, where G = L2(Ω),
as well as the symmetry property of the operator Bu defined in formula (11) together with the next
theorem regarding the coercivity inequality for the solution of the elliptic differential problem in L2(Ω).

Theorem 6. For the solution of the elliptic differential problem [20],{
Bux(u) = µ(u), u ∈ Ω,
∂x(u)
∂ ~m = 0, u ∈ P,

the coercivity inequality that follows holds:

m∑
t=1

‖xutut‖L2(Ω) ≤M5‖µ‖L2(Ω).

Here, M5 is independent of µ(u).

3 Conclusion

In this paper, we examine the IVP for a third-order PDE with TD in a Hilbert space. We establish
a key theorem concerning the stability of this problem and demonstrate its applications. Additionally,
some of the results discussed here, albeit without proofs, were previously published in [21].
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Using this method, we can investigate the IVP for the nonlinear third order PDE with TD
d3y(s)
ds3

+B dy(s)
ds = h(s, y(s− z)), 0 < s <∞,

y(s) = k(s), −z ≤ s ≤ 0

in G, a Hilbert space, having SAPDO B, B ≥ λI, where λ > 0. Here k(s) defined on [−z, 0] is the
given ACF with values in D(B).
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