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In the paper, the Gagliardo–Nirenberg type inequalities for smoothness spaces Bs τp q (Tn) of
Nikol’skii–Besov type and spaces F s τp q (Tn) of Lizorkin–Triebel type both related to Morrey spaces over
n-dimensional torus for some range of the parameters s, p, q, τ were proved. These spaces are natural
analogues of the spaces Bsτpq (Rn) and F sτpq (Rn) in the case of multidimensional torus Tn. The main re-
sults of the article are two theorems, each of which proves the Gagliardo–Nirenberg type inequality for the
Lizorkin–Triebel type spaces or the Nikol’skii–Besov type spaces respectively.
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Introduction

Multiplicative and additive inequalities for (partial) derivatives of functions play crucial role in
different areas of Analysis and Applied Mathematics, in particular, in Analysis of Partial Differential
Equations.

Multiplicative and additive inequalities for derivatives of functions in single variable (on an axis, a
semi-axis, a segment, or a unit circle) with exact constants are an extensive section of modern function
theory, originated from the classical works of J. Hadamard and A.N. Kolmogorov. The development
of this field can be traced in surveys [1, 2].

In the case of functions in several variables, E. Gagliardo and L. Nirenberg proved important
inequality, nowadays known as the Gagliardo–Nirenberg inequality (see [3; ch. III, sect. 15]):

Proposition 1. Let function u belong to Lq(Rn) and such that all its (distributional) derivatives of
order l(∈ N) belong to Lr(Rn), with 1 ≤ q, r ≤ ∞. Then for 0 ≤ j < l, the following inequality∑

|α|=j

‖∂αf |Lp(Rn)‖ ≤ C‖f |Lq(Rn)‖1−θ
( ∑
|α|=l

‖∂αf |Lr(Rn)‖
)θ

(1)

holds, where 1
p = j

n + (1 − θ)1q + θ
(
1
r −

l
n

)
for all θ in the interval [ jl , 1] (the positive constant C

depending only on n, l, j, q, r, θ), with the following exceptional cases:
1. If j = 0, rl < n, q =∞, then we make the additional assumption that either u tends to zero at

infinity or u ∈ Lq∗(Rn) for some finite q∗ > 0.
2. If 1 < r <∞ and l− j− n

r is a nonnegative integer then inequality (1) holds only for θ satisfying
j
l ≤ θ < 1.
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The multiplicative inequality (1) is equivalent to the corresponding additive inequality with an
arbitrary parameter ε > 0:∑

|α|=j

‖∂αf |Lp(Rn)‖ ≤ C
(
ε−

1
1−θ ‖f |Lq(Rn)‖+ ε

1
θ

∑
|α|=l

‖∂αf |Lr(Rn)‖
)
, ∀ε > 0.

Note that under some particular assumptions, the inequality (1) and its additive analogue for some
special cases of mixed Lp-, Lq- and Lr-norms were established by V.P. Il’in, L. Nirenberg and others;
further, M. Troisi, V.A. Solonnikov and others obtained analogues of inequality (1) for the anisotropic
case of specifying differential properties of functions in Lr (see details and general results in [3; ch. III,
sect. 15]).

The classical Gagliardo–Nirenberg inequalities and their generalizations mentioned above are a very
useful tool in connection with partial differential equations (see, for example, the monograph [3]). For
this reason, there is also some interest in their analogues in various non-classical situations.

In 2001 H. Brezis and P. Mironescu [4] proved the following Gagliardo–Nirenberg type inequalities
for the (isotropic) Lizorkin–Triebel spaces.

Proposition 2. (i) Let a tempered distribution f belongs to both Lizorkin–Triebel spaces F s0p0q0(Rn)
and F s1p1q1(Rn), with 0 < p0, p1 <∞, 0 < q0, q1 ≤ ∞, −∞ < s0 < s1 <∞. Then for any θ : 0 < θ < 1
and q : 0 < q ≤ ∞, the following inequality

‖f | F spq(Rn)‖ ≤ C‖f | F s0p0q0(Rn)‖1−θ‖f | F s1p1q1(Rn)‖θ (2)

holds, where 1
p = 1−θ

p0
+ θ

p1
, s = (1− θ)s0 + θs1 (the positive constant C depending only on n, s0, s1,

p0, p1, q0, q1, q, θ).
(ii) Let a tempered distribution f belongs to both the Lizorkin–Triebel spaces F s0p0q0(Rn) and

F s1∞∞(Rn), with 0 < p0 < ∞, 0 < q0 ≤ ∞,−∞ < s0 6= s1 < ∞. Then for any θ : 0 < θ < 1 and
q : 0 < q ≤ ∞, the following inequality

‖f | F spq(Rn)‖ ≤ C‖f | F s0p0q0(Rn)‖1−θ‖f | F s1∞∞(Rn)‖θ (3)

holds, where 1
p = 1−θ

p0
, s = (1−θ)s0+θs1 (the positive constant C depending only on n, s0, s1, p0, q0, q, θ).

The analogues of the inequalities (2) and (3) for the (isotropic) Besov–Nikol’skii spaces are as
follows.

Proposition 3. Let a tempered distribution f belong to both Nikol’skii–Besov spaces Bs0
p0q0(Rn) and

Bs1
p1q1(Rn), with 0 < p0, p1 <∞, 0 < q0, q1 ≤ ∞, −∞ < s0 < s1 <∞. Then for any θ : 0 < θ < 1, the

following inequality

‖f | Bs
pq(Rn)‖ ≤ C‖f | Bs0

p0q0(Rn)‖1−θ‖f | Bs1
p1q1(Rn)‖θ (4)

holds, where 1
p = 1−θ

p0
+ θ

p1
, 1
q = 1−θ

q0
+ θ

q1
, s = (1− θ)s0 + θs1 (the positive constant C depending only

on n, s0, s1, p0, p1, q0, q1, θ).
The inequality (4) is a classical result of J. Peetre, proved in middle of 1960s.
Note that for the Nikol’skii–Besov spaces the Gagliardo–Nirenberg type inequality (4) is estab-

lished for full natural range of parameters n, s0, s1, p0, p1, q0, q1, θ, in contrast to that inequality for
the Lizorkin–Triebel spaces: here, there is a gap for the case where 0 < p0 < ∞, 0 < q0 ≤ ∞,
p1 =∞, 0 < q1 <∞.

Moreover, as can be seen from the inequalities (2) and (3), the result (Gagliardo–Nirenberg type
inequality for the Lizorkin–Triebel spaces) is completely independent of the values of the “microscopic”
parameters q, q0, q1. Unlike Lizorkin–Triebel type spaces, in the inequality (4) the parameter q is
strictly connected with q0 and q1 like the other parameters.

The gap mentioned above was fulfilled by W. Sickel [5]:
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Proposition 4. Let a tempered distribution f belongs to F s0p0q0(Rn) ∩ F s1∞q1(Rn), with 0 < p0 <∞,
0 < q0 ≤ ∞, 0 < q1 < ∞, −∞ < s0 6= s1 < ∞. Then for any θ : 0 < θ < 1 and q : 0 < q ≤ ∞, the
following inequality

‖f | F spq(Rn)‖ ≤ C‖f | F s0p0q0(Rn)‖1−θ‖f | F s1∞∞(Rn)‖θ (5)

holds, where 1
p = 1−θ

p0
, s = (1−θ)s0+θs1 (the positive constant C depending only on n, s0, s1, p0, q0, q, θ).

In fact, W. Sickel established the Gagliardo–Nirenberg type inequalities for two scales (of Nikol’skii–
Besov) Bsτ

pq (Rn) and (Lizorkin–Triebel) F sτpq (Rn) (with additional real parameter τ) of smoothness
spaces related to Morrey spaces over whole Euclidean space Rn in full range of parameters involved.
The inequalities from [5] contain the inequalities (2)–(5) as special cases because Bs0

pq(Rn) ≡ Bs
pq(Rn)

and F s0pq (Rn) ≡ Bs
pq(Rn) in sense of equivalent (quasi)norms.

Goal of the paper is to prove the Gagliardo–Nirenberg type inequalities for the spaces Bsτ
pq (Tn) and

F sτpq (Tn), which are natural analogues of the spaces Bsτ
pq (Rn) and F sτpq (Rn) in the case of multidimen-

sional torus Tn.
The rest of the paper is organized as follows. In Section 2 we introduce some notation, define the

spaces of distributions Bsτ
pq (Rn), F sτpq (Rn), Bsτ

pq (Tn) and F sτpq (Tn) and formulate main results of the
paper (Theorems 1 and 2). Section 3 contains the proof of crucial Lemma. Finally, in Section 4, we
give proofs of Theorems 1 and 2.

1 The Gagliardo–Nirenberg type inequalities for the smoothness spaces related to Morrey spaces

First we introduce some notation and give definitions of (the two scales of) spaces of distributions
under consideration.

Let n ∈ N, n ≥ 2, zn = {1, . . . , n}, N0 = N ∪ {0}. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn,
we put xy = x1y1 + . . . + xnyn, |x| = |x1| + . . . + |xn|, |x|∞ = max(|xν | : ν ∈ zn); x ≤ y (x < y)
⇔ xν ≤ yν (xν < yν) for all ν ∈ zn.

Let S := S(Rn) and S ′ = S ′(Rn) be the Schwartz spaces of test functions and tempered distribu-
tions respectively; f̂ is Fourier transform for f ∈ S ′(Rn); in particular, for ϕ ∈ S,

ϕ̂(ξ) =

∫
Rn
ϕ(x)e−2πi ξxdx.

For 0 < p ≤ ∞ and a measurable set G ⊂ Rn, as usual, let Lp(G) be the space of functions
f : G → C integrable in sense of Lebesgue to the power p (essentially bounded if p = ∞) over G,
endowed with standard (quasi)norm (norm if p ≥ 1)

‖ f |Lp(G) ‖ =
(∫

G
| f(x) |pdx

) 1
p

(p <∞),

‖ f |L∞(G) ‖ = ess sup(| f(x) | : x ∈ G).

For 0 < q ≤ ∞ let `q := `q(N0) be the space of (complex–valued) sequences (cj) = (cj : j ∈ N0)
with finite standard (quasi)norm (norm if q ≥ 1) ‖(cj) | `q‖.

Further, let `q(Lp(G)) (Lp(G; `q) respectively) be the space of function sequences
(gj(x)) = (gj(x) : k ∈ N0) (x ∈ G) with finite (quasi)norm (norm if p, q ≥ 1)

‖ (gj(x)) | `q(Lp(G)) ‖ = ‖ ( ‖ gj |Lp(G)‖) | `q ‖,

(‖ (gj(x)) |Lp(G; `q) ‖ = ‖ ‖ (gj(·)) | `q ‖ |Lp(G)‖

respectively).
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We choose a test function η0 ∈ S such that

0 ≤ η̂0(ξ) ≤ 1, ξ ∈ Rn; η̂0(ξ) = 1 if |ξ|∞ ≤ 1; supp η̂0 = {ξ ∈ Rn | |ξ|∞ ≤ 2}.

Put η̂(ξ) = η̂0(2
−1ξ)− η̂0(ξ), η̂j(ξ) := η̂j(ξ) = η̂(21−jξ), j ∈ N. Then

∞∑
j=0

η̂j(ξ) ≡ 1, ξ ∈ Rn,

i.e. {η̂j(ξ) | j ∈ N0} is the resolution of unity over Rn. It is clear that

η(x) = 2nη0(2x)− η0(x), ηj(x) := 2(j−1)nη(2j−1x), j ∈ N.

We define the operator ∆η
j on S ′ as follows: for f ∈ S ′ put

∆η
j (f, x) = f ∗ ηj(x) = 〈f, ηj(x− ·)〉.

Let Q be the set of all dyadic cubes in Rn of the form

Q = Qjξ = {x ∈ Rn : 2jx− ξ ∈ [0, 1)n } (j ∈ Z, ξ ∈ Zn).

Denote by j(Q)(= j) and |Q|(= 2−jm) “level” and the volume of the cube Q = Qjξ respectively.
Now we recall important definition of the Lizorkin–Triebel space F s∞ q(Rn) (0 < q <∞), invented

by M. Frazier and B. Jawerth [6].

Definition 1. Let s ∈ R, 0 < q < ∞. The space F s∞ q := F s∞ q(Rn) consists of all distributions
f ∈ S ′ for which (quasi)norm

‖ f |F s∞ q ‖ =
(

sup
Q∈Q:j(Q)≥0

1

|Q|

∫
Q

∞∑
j=j(Q)

|2sj∆η
j (f, x)|qdx

)1/q
is finite.

Further, denote by S̃ ′ := S ′(Tn) the space of all distributions f ∈ S ′, 1–periodic in each variable
(i.e. such that 〈f, ϕ(· + ξ)〉 = 〈f, ϕ〉 for all ϕ ∈ S and any ξ ∈ Zn), and S̃ := S(Tn) the space of
all infinitely differentiable functions over Tn endowed with the topology of uniform convergence of all
partial derivatives over Tn. Then S ′(Tn) is identified naturally with the space topologically dual to
S(Tn). It is known that f ∈ S̃ ′ if and only if supp f̂ ⊂ Zn, i.e. f̂ = 0 on open set Rn\Zn. Here
Tn = (R/Z)n is n-dimensional torus.

Let g : Rn → C be an arbitrary function, then its periodization g̃ : Tn → C is defined as (at least
formal) sum of series

∑
ξ∈Zn

g(x+ ξ).

By the Poisson summation formula it is easy to verify that for ϕ ∈ S, ϕ̃ ∈ S̃, and, moreover,
ϕ̃(x) =

∑
ξ∈Zn ϕ̂(ξ)e2πiξx.

Now we define operators ∆̃η
j on S̃ ′ (j ∈ N0) as follows: for f ∈ S̃ ′, put

∆̃η
j (f, x) = f ∗ η̃j(x) = 〈f, η̃j(x− ·)〉 =

∑
ξ∈Zn

η̂j(ξ)f̂(ξ)e2πi ξx.

Let (0 = (0, . . . , 0),1 = (1, . . . , 1) ∈ Rn)

Q̃ = {Q ∈ Q |Q ⊂ Q0 := [0, 1)n} = {Qjξ | j ∈ N0, ξ ∈ Zn : 0 ≤ ξ < 2j1}.

In analogy with 1, we give
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Definition 2. Let s ∈ R, 0 < q < ∞. The Lizorkin–Triebel space F̃ s∞ q := F s∞ q(Tn) consists of all
distributions f ∈ S̃ ′, for which (quasi)norm

‖ f | F̃ s∞ q ‖ =
(

sup
Q∈Q̃

1

|Q|

∫
Q

∞∑
j=j(Q)

|2sj∆̃η
j (f, x)|qdx

)1/q
is finite.

Now we recall definitions of two scales (of Nikol’skii–Besov type) Bs τ
p q (Rn) and (Lizorkin–Triebel

type) F s τp q (Rn) of (inhomogeneous) smoothness spaces related to Morrey spaces and their periodic
analogues Bs τ

p q (Tn) and F s τp q (Tn) (below t+ := max{0, t} if t ∈ R).
Definition 3. Let s, τ ∈ R, 0 < p, q ≤ ∞. Then
I. the Nikol’skii–Besov type space Bs τ

p q := Bs τ
p q (Rn) consists of all distributions f ∈ S ′, for which

(quasi)norm

‖ f |Bs τ
p q ‖ = sup

Q∈Q

1

|Q|τ
‖(2sj∆η

j (f, x)(j + 1− j(Q))0+) | `q(Lp(Q))‖

is finite;
II. the Lizorkin–Triebel type space F s τp q := F s τp q (Rn) (p < ∞) consists of all distributions f ∈ S ′,

for which (quasi)norm

‖ f |F s τp q ‖ = sup
Q∈Q

1

|Q|τ
‖(2sj∆η

j (f, x)(j + 1− j(Q))0+) |Lp(Q; `q)‖

is finite.

Remark 1. Inhomogeneous spaces Bs τ
p q and F s τp q were introduced in [7] and have been studied

thoroughly (see, in particular, [5, 7–10]). We also noted that (local) Morrey spaces and Nikol’skii–
Besov–Morrey and Lizorkin–Triebel–Morrey spaces have been attracting a lot of attention, see, for
instance, [5, 7–14].

Definition 4. Let s, τ ∈ R, 0 < p, q ≤ ∞. Then
I. the Nikol’skii–Besov type space B̃s τ

p q := Bs τ
p q (Tn) consists of all distributions f ∈ S̃ ′, for which

(quasi)norm

‖ f |Bs τ
p q (Tn) ‖ = sup

Q∈Q̃

1

|Q|τ
‖(2sj∆̃η

j (f, x)(j + 1− j(Q))0+) | `q(Lp(Q))‖

is finite;
II. the Lizorkin–Triebel type space F̃ s τp q := F s τp q (Tn) (p < ∞) consists of all distributions f ∈ S̃ ′,

for which (quasi)norm

‖ f |F s τp q (Tn) ‖ = sup
Q∈Q̃

1

|Q|τ
‖(2sj∆̃η

j (f, x)(j + 1− j(Q))0+) |Lp(Q; `q)‖

is finite.

Remark 2. Obviously, the spaces B̃s 0
p q and F̃ s 0p q coincide with the isotropic periodic Nikol’skii–Besov

spaces B̃s
p q and Lizorkin–Triebel spaces F̃ sp q respectively. Furthermore, it is not hard to see that for

any τ ≤ 0, we have coincidence B̃s τ
p q = B̃s

p q and F s τp q = F̃ sp q in sense of equivalent (quasi)norms, in
contrast to the spaces Bs τ

p q and F s τp q : as known, Bs τ
p q = {0} and F s τp q = {0} when τ < 0 (see [7]).

We noted that periodic Morrey spaces and Nikol’skii–Besov–Morrey and Lizorkin–Triebel–Morrey
spaces have been attracting increasing attention as well, see, for instance, [15–18].
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First, we consider the Gagliardo–Nirenberg type inequalities for the Lizorkin–Triebel type spaces
F s τp q (Tn).

Theorem 1. Let 0 < q0, q1 ≤ ∞, −∞ < s0 < s1 <∞, τ0, τ1 ≥ 0.
(i) Let 0 < p0, p1 <∞. Then for any 0 < θ < 1 and 0 < q ≤ ∞, there exists constant C > 0 such

that the inequality
‖f | F s τp q (Tn)‖ ≤ C‖f | F s0 τ0p0 q0 (Tn)‖1−θ‖f | F s1 τ1p1 q1 (Tn)‖θ

is satisfied for all f ∈ S ′(Tn), where 1
p = 1−θ

p0
+ θ

p1
, τ = (1− θ)τ0 + θτ1, s = (1− θ)s0 + θs1.

(ii) Let 0 < p0 < ∞. Then for any 0 < θ < 1 and 0 < q ≤ ∞, there exists constant C > 0 such
that the inequality

‖f | F sτpq (Tn)‖ ≤ C‖f | F s0τ0p0q0 (Tn)‖1−θ‖f | Bs1τ1
∞∞(Tn)‖θ

holds for all f ∈ S ′(Tn), where 1
p = 1−θ

p0
, τ = (1− θ)τ0 + θτ1, s = (1− θ)s0 + θs1.

Remark 3. The proof given below is due to H. Brezis and P. Mironescu [4] for τ = 0 and W. Sickel
[5] for τ > 0 in the non-periodic case of Rn.

The Gagliardo–Nirenberg type inequalities for the Nikol’skii–Besov type spaces Bs τ
p q (Tn) are as

follows.

Theorem 2. Let 0 < p0, p1 ≤ ∞, 0 < q0, q1 ≤ ∞, −∞ < s0 < s1 < ∞, τ0, τ1 ≥ 0. Then for any
0 < θ < 1, there exists constant C > 0 such that the inequality

‖f | Bs τ
p q (Tn)‖ ≤ C‖f | Bs0 τ0

p0 q0(Tn)‖1−θ‖f | Bs1 τ1
p1 q1(Tn)‖θ

is valid for all f ∈ S ′(Tn) where 1
p = 1−θ

p0
+ θ

p1
, 1
q = 1−θ

q0
+ θ

q1
, τ = (1− θ)τ0 + θτ1, s = (1− θ)s0 + θs1.

Remark 4. If we replace Tn by Rn in Theorems 1 and 2, we obtain an exact formulation of above–
mentioned W. Sickel’s results for Bs τ

p q (Rn) and F s τp q (Rn).

2 Crucial Lemma

Key ingredient in what follows is the following inequality of F. Oru (see Lemma 3.7 in [4]).

Lemma 1. Let 0 < θ < 1, −∞ < s0, s1 < ∞, s = (1 − θ)s0 + θs1, 0 < q ≤ ∞. Then there exists
C = C(s0, s1, θ, q) > 0 such that for any sequence (aj)j of complex numbers the inequality

‖(2sjaj)j | `q‖ ≤ C‖(2s0jaj)j | `∞‖1−θ‖(2s1jaj)j | `∞‖θ (6)

holds true.

For completeness, we present the proof of Lemma 1 from [4].
Proof. Let C1 = sup 2s1j | aj |, C2 = sup 2s2j | aj |, so that C1 ≤ C2. We will assume that C1 > 0,

otherwise there is nothing to prove. Since s1 < s2, there exists some j0 > 0 such that

min

{
C1

2s1j
,
C2

2s2j

}
=

{
C1

2s1j
, j ≤ j0,

C2

2s2j
, j > j0.

Since C1

2s1j
≤ C2

2s2j
and C2

2s2(j0+1) ≤ C1

2s1(j0+1) , we find

C2 ∼ C12
(s2−s1)j0 .

Therefore,
‖(2s1jaj) | `∞‖θ‖(2s2jaj) | `∞‖1−θ ∼ C12

(s2−s1)j0(1−θ). (7)
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On the other hand, we have aj ≤ min
{
C1

2s1j
, C2

2s2j

}
, so that

aj ≤
C1

2s1j
for 0 ≤ j ≤ j0, aj ≤

C2

2s2j
for j > j0.

It follows that

‖(2sjaj) | `q‖ ≤

(∑
j≤j0

Cq12(s−s1)jq +
∑
j>j0

Cq22(s−s2)jq

)1/q

≤

≤ C

(∑
j≤j0

Cq12(s−s1)jq +
∑
j>j0

Cq12−θ(s2−s1)jq+(s2−s1)j0q

)1/q

.

Therefore,
‖(2sjaj) | `q‖ ≤ CC12

(s2−s1)j0(1−θ).

Finally, we find that the inequality

‖(2sjaj) | `q‖ ≤ CC12
(s2−s1)j0(1−θ). (8)

Now (6) follows from (7) and (8). Thus, Lemma 1 is completely proved.

3 Proofs of Theorems 1 and 2

Proof of Theorem 1.
Proof. As mentioned above, the line of argument follows [4]. First, we prove (i). Successively

applying Lemma 1 with aj = |∆̃η
j (f, x)|, Holder’s integral inequality (with exponents P0 = p0

(1−θ)p and
P1 = p1

θp) and Jensen’s inequalities (‖ · | `q0‖ ≥ ‖ · | `∞‖ and ‖ · | `q1‖ ≥ ‖ · | `∞‖), we find

‖f | F sτpq (Tn)‖ ≤ c‖f | F s0τ0p0∞(Tn)‖1−θ‖f | F s1τ1p1∞(Tn)‖θ ≤

≤ C‖f | F s0τ0p0q0 (Tn)‖1−θ‖f | F s1τ1p1q1 (Tn)‖θ,

thus part (i) is established.
Now we turn to proof of part (ii). It follows from the condition that p1 = ∞,

p0 < p < ∞. Therefore, successively applying Lemma 1 with aj = |∆̃η
j (f, x)|, the inequality

‖ g |Lp(Q)‖ ≤ (‖ g |Lp0(Q)‖)1−θ(‖ g |L∞(Q)‖)θ and further arguing as in case (i), we obtain

‖f | F sτpq (Tn)‖ ≤ c‖f | F s0τ0p0∞(Tn)‖1−θ‖f | F s1τ1∞∞(Tn)‖θ ≤

≤ C‖f | F s0τ0p0q0 (Tn)‖1−θ‖f | F s1τ1∞∞(Tn)‖θ ≡

≡ C‖f | F s0τ0p0q0 (Tn)‖1−θ‖f | Bs1τ1
∞∞(Tn)‖θ,

Thus, part (ii) is also obtained.

Proof of Theorem 2.
Proof. Here, successively applying the Holder inequality for integrals (with exponents P0 = p0

(1−θ)p

and P1 = p1
θp), the Holder inequality for series

(
with exponents Q0 = q0

(1−θ)q and Q1 = q1
θq

)
and using

elementary properties of suprema, we obtain

‖f | Bsτ
pq (Tn)‖ ≡ sup

Q∈Q̃

1

|Q|τ

{ ∞∑
j=j(Q)

[∫
Q

2jsp|∆̃η
j (f, x)|pdx

]q/p}1/q

≤
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≤ sup
Q∈Q̃

1

|Q|τ

{ ∞∑
j=j(Q)

[∫
Q

2js0p0 |∆̃η
j (f, x)|p0dx

](q(1−θ))/p0[∫
Q

2js1p1 |∆̃η
j (f, x)|p1dx

]qθ/p1}1/q

≤

≤ sup
Q∈Q̃

1

|Q|τ

{ ∞∑
j=j(Q)

[∫
Q

2js0p0 |∆̃η
j (f, x)|p0dx

]q0/p0}(1−θ)/q0

×

× sup
Q∈Q̃

1

|Q|τ1θ

{ ∞∑
j=j(Q)

[∫
Q

2js1p1 |∆̃η
j (f, x)|p1dx

]q1/p1}θ/q1
≤

≤ sup
Q∈Q̃

1

|Q|τ0(1−θ)

{ ∞∑
j=j(Q)

[∫
Q

2js0p0 |∆̃η
j (f, x)|p0dx

]q0/p0}(1−θ)/q0

×

× sup
Q∈Q̃

1

|Q|τ1θ

{ ∞∑
j=j(Q)

[∫
Q

2js1p1 |∆̃η
j (f, x)|p1dx

]q1/p1}θ/q1
=

= ‖f | Bs0,τ0
p0,q0(Tn)‖1−θ‖f | Bs1,τ1

p1,q1(Tn)‖θ.

Thus, Theorem 2 is completely proved as well.
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