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Bipartite Digraphs with Modular Concept Lattices of height 2
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This paper investigates the interaction between Formal Concept Analysis (FCA) and graph theory, with a
focus on understanding the structure and representation of concept lattices derived from bipartite directed
graphs. We establish connections between the complete formal contexts and their associated bipartite
digraphs, providing a foundation for studying modular lattices. Particular attention is given to the structure
of concept lattices arising from such contexts and their relationship to the combinatorial properties of the
corresponding graphs. The results show that the concept lattice of a complete formal context is isomorphic
to a modular lattice of height 2 if and only if its associated bipartite digraph is a disconnected union
of bicliques. This establishes a precise correspondence between a specific class of formal contexts and
well-studied objects in graph theory. Several examples are presented to illustrate these properties and
demonstrate the application of the obtained results. The analysis opens the way for further exploration of
lattices associated with more complex graph structures and contributes to a deeper understanding of the
relationship between discrete mathematics and formal methods of knowledge representation.
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Introduction

Formal Concept Analysis (FCA) is a powerful mathematical framework for data analysis and
knowledge representation, based on the duality between objects and attributes within a formal con-
text. FCA was introduced in the early 1980s by Rudolf Wille as a mathematical theory [1, 2]. This
framework provides a systematic method for deriving concept lattices, which capture hierarchical rela-
tionships between object-attribute pairs. These lattices have applications spanning fields such as data
mining, machine learning, and ontology engineering [3, 4].

Graph theory [5], on the other hand, offers a complementary perspective by modelling relationships
as vertices and edges. The interplay between FCA and graph theory has been a subject of growing
interest, particularly in the study of bipartite graphs. In FCA, the incidence relation of a formal
context corresponds naturally to a bipartite graph, establishing a direct link between these domains.

This paper investigates the structural properties of concept lattices derived from bipartite graphs,
with an emphasis on modular lattices. By characterizing the graph-theoretic properties of bipartite
digraphs corresponding to such lattices, we aim to deepen the understanding of their formation and
representation.

The main contributions of this work are as follows:
1) We introduce and formalize the notion of full formal contexts, which simplify the study of concept

lattices by reducing redundancy in object-attribute relations.
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2) We establish a bijective correspondence between full formal contexts and bipartite digraphs,
showing that the concept lattice of a context is determined by its graph structure (Theorem 1).

3) We prove that the concept lattice of a full formal context is isomorphic to a modular lattice
of height 2 if and only if the associated bipartite graph is a disjoint union of complete bipartite
graphs (Theorem 2).

4) We provide examples, including the graph of a function and its context lattice, to demonstrate
the practical implications of our results.

For more information on the basic notions and results of FCA, lattice theory and graph theory
introduced below, and used throughout this paper, we refer the reader to [2, 5, 6].

1 Preliminaries

First, we provide the main definitions.
Definition 1. A graph is an algebraic structure G = (V,E) where E is a binary relation on V . The

set V is called a set of vertices (or nodes), and E ⊆ V ×V is a set of edges. A graph is called undirected
if (a, b) ∈ E then (b, a) ∈ E, and it is called directed or a digraph if (a, b) ∈ E then (b, a) /∈ E.

Definition 2. A digraph G = (V,E) is called bipartite if its vertex set V can be partitioned into
two disjoint subsets V1 and V2 such that:
• Every edge e ∈ E connects a vertex in V1 to a vertex in V2.
• No edge exists between two vertices of the same subset.
A complete bipartite digraph (biclique) G = (V,E) is a bipartite digraph in which the vertex set

V can be partitioned into two disjoint subsets V1 and V2 such that every vertex in V1 is connected to
every vertex in V2 and there are no edges within V1 or within V2. Remark. Usually, a biclique is a
complete bipartite undirected graph (see [5]).

Definition 3. A formal context K = (G,M, I) consists of the set of objects G, the set of attributes
M , and the incidence relation I ⊆ G×M .

For a formal context K = (G,M, I) and A ⊆ G, B ⊆M we put αK(∅) = M , βK(∅) = G and

αK(A) = {m ∈M | (∀g ∈ A) [ (g,m) ∈ I ]},

βK(B) = {g ∈ G | (∀m ∈ B) [ (g,m) ∈ I ]}.

The mappings βK ◦ αK : P(G) → P(G) and αK ◦ βK : P(M) → P(M) are closure operators. The set
LK(G) (LK(M)) of the closed subsets of G (M) with respect to βK ◦αK (αK ◦βK) forms a lattice under
inclusion ⊆ (conclusion ⊇). And LK(G) is dually isomorphic to LK(M).

If K is clear from the discussion then we omit the subscript K — e.g., for example, we write α(A)
instead of αK(A).

Definition 4. A formal concept of the context K is a pair (A,B) such that A ⊆ G, B ⊆ M ,
B = αK(A), and A = βK(B). For a formal concept ∆ = (A,B), A is called the extent of ∆, and B is
the intent of ∆.

The ordering � of the concepts of K is defined as follows:

(A0, B0) � (A1, B1) ⇔ A0 ⊆ A1 ⇔ B0 ⊇ B1.

The Basic Theorem on Concept Lattices (see [1]) establishes that ordering � on the set of all concepts
of K induces a complete lattice which is called the concept lattice of K, and we denote it by L(K).

From the definition of the partial order �, one can see that for a formal context K = (G,M, I) the
mapping ϕ : L(K)→ LK(G) defined by ϕ((A,B)) = A, establishes an isomorphism between L(K) and
LK(G).
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For the sets A,B and a binary relation R ⊆ A×B, we put

πA(R) = {a ∈ A | ∃b [ (a, b) ∈ R ]}, πB(R) = {b ∈ B | ∃a [ (a, b) ∈ R ]}.

A formal context K = (A,B, I) is called full if πA(I) = A, πB(I) = B and αK(A) = βK(B) = ∅.
For a formal context K = (A,B, I) we define the graph GK = (A∪B; I) that consists of the set of

vertices A ∪B and the set of edges I ⊆ A×B. The graph GK = (A ∪B; I) is called a context graph
if A ∩ B = ∅. Such a graph we call a context graph. It is easy to see that GK is a bipartite digraph.
We also note that any bipartite digraph G = (A ∪ B; I) with I ⊆ A × B defines the formal context
KG = (A,B, I). Similar constructions occur in many papers (see for example [7, 8]).

For any graph G = (G,R) we define the formal context KG = (G,G,R) and the concept lattice
L(KG), respectively.

The next theorem, as the reviewer noted: “Theorem 1 is a simple observation which, seemingly,
is a “folklore” assertion. For example, in [7], the definition of a formal context is followed by the
remark that “The correspondence to a bipartite graph (network) is at hand”, brief description of this
correspondence, and the conclusion that “In the following we use the terms network, (bipartite) graph,
and formal context interchangeably in the sense above”. However, I have not found a published formal
proof of the assertion”. For convenience we provide the formal proof.

Theorem 1. Let K = (A,B, I) be a full formal context in which A ∩ B = ∅. And let G be the
corresponding context graph (A ∪B; I). Then L(K) ∼= L(KG).

Proof. By definition, KG = {A ∪B,A ∪B, I} and

αKG
(X) = {m ∈ A ∪B | (∀g ∈ X) [ (g,m) ∈ I ]},

βKG
(Y ) = {g ∈ A ∪B | (∀m ∈ Y ) [ (g,m) ∈ I ]}.

By αK(πA(I)) = ∅ and βK(πB(I)) = ∅, one can see that

αKG
(X) =

{
αK(X), if X ⊆ A,
∅, otherwise,

βKG
(Y ) =

{
βK(Y ), if Y ⊆ B,
∅, otherwise.

Therefore,

βKG ◦ αKG
(X) =

{
βK ◦ αK(X), if αKG

(X) 6= ∅,
A ∪B, otherwise,

αKG ◦ βKG
(Y ) =

{
αK ◦ βK(Y ), if βKG

(Y ) 6= ∅,
A ∪B, otherwise.

It means that a pair (X,Y ) is a concept of KG if and only if (X,Y ) is a concept of K for all X,Y 6= ∅.
Also (A∪B,∅) and (∅, A∪B) are the concepts of KG. Since the context K is full, (A,∅) and (∅, B)
are the concepts of K.

Hence the mapping ϕ : L(KG)→ L(K), defined by

ϕ((X,Y )) =


(X,Y ), X, Y 6= ∅,
(A,∅), Y = ∅,
(∅, B), X = ∅,

is one to one and onto. It is easy to see that ϕ preserves partial order�. Therefore, ϕ is an isomorphism.
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These allow us to study the concept lattices through the bipartite digraphs. We demonstrate this
approach in the next section.

2 Representation of Mn

For any n > 2, by Mn (Mω) we denote a modular lattice of height 2 with n (ω) atoms.

Theorem 2. Let K = (A,B, I) be a full formal context in which A ∩ B = ∅. Then the concept
lattice L(K) is isomorphic to Mn for some n ≤ ω if and only if the context graph GK = (A ∪B; I) is
a disjoint union of n complete bipartite digraphs.

Proof. ⇒ By L(K) ∼= L(A), we have L(A) ∼= Mn. Since β(B) = ∅, ∅ = 0L is the least element
of L(A). By α(A) = ∅ and β(∅) = A ∪ B, we get that A ∪ B = 1L is the greatest element of L(A).
Let S be the set of all non-empty proper closed subsets of A. Since L(A) ∼= Mn, A0 ∩ A1 = ∅ and
A0 ∨A1 = A ∪B for any A0, A1 ∈ S with A0 6= A1. Since πA(I) = A, ∪{C | C ∈ S} = A. Hence S is
a partition of A.

Let α(S) = {α(C) | C ∈ S}. By definition, α(C) is a closed subset of B. Since β(B) = ∅,
β(∅) = A, as K is full, and βα(C) = C, then α(C) is non-empty proper subset of B for all C ∈ S,
as well as α(C0) 6= α(C1) for all C0, C1 ∈ S and C0 6= C1. Since L(B) is dual isomorphic to L(A),
L(B) ∼= Mn. Let D = α(C0)∩α(C1), C0 6= C1. Then, by definition, β(D) ⊃ C0 and is a closed subset
of A. Since the height of L(A) is equal to 2, β(D) = A. It implies D = ∅, that is, α(C0)∩α(C1) = ∅.
Thus, α(C0) ∩ α(C1) = ∅ for all C0, C1 ∈ S, C0 6= C1.

Let D = B\ ∪ {α(C) | C ∈ S}. By definition of D, β(D) /∈ S. Also β(D) 6= ∅ because in this case
∪{α(C) | C ∈ S} is empty. Thus β(D) = A. It implies D is empty. Hence B = ∪{α(C) | C ∈ S}.
Thus, we establish that {α(C) | C ∈ S} is a partition of the set B.

Now we need to show that ∪{C × α(C) | C ∈ S} = I. First we note that α(c) = α(C) for any
c ∈ C. Indeed, assume that α(c) ⊃ α(C) for some c ∈ C and C ∈ S. Since α(c) is a closed subset in B
and L(B) ∼= Mn (because L(B) is dually isomorphic to L(A)), α(c) = B. Therefore, c ∈ β(B). Since K
is full, β(B) = ∅. Contradiction. Thus, α(c) = α(C) for any c ∈ C. Hence ∪{C × α(C) | C ∈ S} ⊆ I.
Let (a, b) ∈ I. Then a ∈ β(b) whence (a, b) ∈ C × α(C). Thus ∪{C × α(C) | C ∈ S} = I.
⇐ Since the graph GK = (A ∪ B; I) is a disjoint union of n complete bipartite digraphs,

GK = (∪i≤nAi,∪i≤nBi;∪i≤nIi) for some partitions {Ai | i ≤ n}, {Bi | i ≤ n} of the sets A and
B respectively, and I = ∪i≤nIi where Ii = Ai ×Bi.

The condition I = ∪i≤nIi = ∪i≤nAi × Bi give us that πA(I) = A, πB(I) = B and the sets
{b ∈ B | (a, b) ∈ I for all a ∈ A} and {a ∈ A | (a, b) ∈ I for all b ∈ B} are empty. These mean that
αK(πA(I)) = ∅ and βK(πB(I)) = ∅. Therefore, by Theorem 1, we get L(K) ∼= L(KG). Thus we need
to show that L(KG) ∼= Mn.

For the formal context KG we have

αKG
(X) =

{
Bi, if X ⊆ Ai,

∅, otherwise,

βKG
(X) =

{
Ai, if X ⊆ Bi,

∅, otherwise.

Thus, for any Ai and X ⊃ Ai, we have

βKG ◦ αKG
(Ai) = Ai,

βKG ◦ αKG
(X) = A ∪B.
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That is, Ai, 1 ≤ i ≤ n, and A ∪ B are the closed subsets in A ∪ B with respect to closure operator
βKG ◦ αKG

. Therefore, Ai ∨ Aj = A ∪ B. Since {Ai | i ≤ n} forms a partition of A then Ai ∩ Aj = ∅
for all i 6= j ≤ n. It means that L(A) ∼= Mn. Hence L(KG) ∼= Mn because L(KG) ∼= L(A).

Recall that a bipartite dimension of a graph is the minimum number of complete bipartite graphs
whose union is the given graph. Thus

Corollary 1. Let K be a formal context and L(K) ∼= Mn. Then the bipartite dimension of the graph
GK is equal to n.

3 Examples

Here we provide some examples.
Example 1. (cf. [9, 10]) Let f : A→ B be a function from A onto B and

gr(f) = {(x, y) | f(x) = y for all x ∈ A , y ∈ B}

the graph of function f . Consider a formal context K = (A,B, gr(f)), where A represents objects, B
represents attributes, and the incident relation is gr(f). Then the concept K = (A,B, gr(f)) satisfies
Theorem 2. Hence L(K) ∼= M|B| where |B| is the size of B, and the bipartite dimension of the graph
GK is equal to |B|.

Indeed, let, for any b ∈ B,
Ab = {x ∈ A | f(x) = b} ⊆ A.

Since f is a function and maps A onto B,

A =
⋃
b∈B

Ab, Ab ∩Ac = ∅,

for any b, c ∈ B, b 6= c. Moreover, (Ab ∪ {b}, gr(f|Ab
)) forms a complete digraph (biclique) (Fig. 1).

Thus, K = (A,B, gr(f)) is a disjoint union of the bicliques (Ab ∪{b}, gr(f|Ab
)), b ∈ B. By Theorem 2,

L(K) ∼= M|B|.

{b}

Ab

Figure 1. Bipartite digraph (Ab ∪ {b}, gr(f|Ab
))

More general
Example 2. Let f : A → B be a many-valued function from A onto B and gr(f) = {(x, y) | y ∈

f(x) for all x ∈ A} the graph of the many-valued function f . And let the set of images of points of A
forms a partition of B, that is the set of all proper subsets of B of the form {f(a) ⊂ B | a ∈ A} is a
partition of B. Then the concept K = (A,B, gr(f)) satisfies Theorem 2. Hence L(K) ∼= Mn, where n
is the bipartite dimension of the graph GK.
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Conclusion

In this paper, we explored the interplay between Formal Concept Analysis and graph theory, focus-
ing on the structural representation of concept lattices through bipartite digraphs. The introduction
of full formal contexts allowed us to establish a bijective correspondence between these contexts and
bipartite digraphs, providing a framework for studying modular lattices. We demonstrated that the
concept lattice of a full formal context is isomorphic to a modular lattice of height 2 if and only if its
corresponding bipartite digraph is a disjoint union of complete bipartite graphs. This result not only
advances the theoretical understanding of FCA but also provides practical tools for analyzing data
structures in diverse applications. Future research may investigate the extension of these results to
other types of lattices and exploring their computational implications.

Acknowledgments

The authors are grateful to the referee for useful remarks. The authors thank A.M. Nurakunov
for his attention, useful remarks, and constructive comments, which made it possible to improve this
manuscript.

Author Contributions

All authors contributed equally to this work.

Conflict of Interest

The authors declare no conflict of interest.

References

1 Wille, R. (1982). Restructuring lattice theory: An approach based on hierarchies of concepts.
Ordered Sets, 445–470. https://doi.org/10.1007/978-94-009-7798-3_15

2 Ganter, B., & Wille, R. (1999). Formal Concept Analysis: Mathematical Foundations. Springer
Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59830-2

3 Ganter, B., & Obiedkov, S. (2016). Conceptual Exploration. Springer Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-49291-8

4 Ferre, S., Huchard, M., Kaytoue, M., Kuznetsov, S.O., & Napoli, A. (2020). Formal Concept
Analysis: From Knowledge Discovery to Knowledge Processing. A Guided Tour of Artificial
Intelligence Research: Volume III: Interfaces and Applications of AI, 411–445. https://doi.org/
10.1007/978-3-030-06167-8_13

5 Bondy, J.A., & Murty, U.S.R. (1976). Graph Theory with Applications. New York: Elsevier
Science Ltd/North-Holland. https://doi.org/10.1007/978-1-349-03521-2

6 Grätzer, G. (2003). General lattice theory. (2nd ed.). Basel: Birkhäuser. https://doi.org/10.1007/
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