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The present article deals with the problem of characterizing a widely large class of associative and possibly
non-commutative rings. So, we define and explore the class of rings R for which each element in R is
a sum of a tripotent element from R and an element from the subring ∆(R) of R which commute with
each other, calling them strongly ∆-tripotent rings, or shortly just SDT rings. Succeeding in obtaining
a complete description of these rings R modulo their Jacobson radical J(R) as the direct product of a
Boolean ring and a Yaqub ring, our results somewhat generalize those established by Koşan-Yildirim-Zhou
in Can. Math. Bull. (2019). Specifically, it is proved that if a ring R is SDT, then the factor ring R/J(R)
is always reduced and 6 lies in J(R). Even something more, as already noticed before, it is shown that
the quotient R/J(R) is a tripotent ring, which means that each of its elements satisfies the cubic equation
x3 = x. Furthermore, examining triangular matrix rings Tn(R), we succeeded to classify its structure
rather completely in the case where R is a local ring and n ≥ 3 by establishing a satisfactory necessary and
sufficient condition in terms of the ring R and its sections, resp., divisions.
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Introduction and Motivation

Throughout this paper, all rings are assumed to be unital and associative. Almost all symbols,
notation and concepts are standard being consistent with the classical book [1]. The Jacobson radical,
the lower nil-radical, the set of nilpotent elements, the set of idempotent elements, and the set of units
of R are denoted, respectively, by J(R), Nil∗(R), Nil(R), Id(R), and U(R). Additionally, we write
Mn(R), Tn(R) and R[x] for the n×n full matrix ring, the n×n upper triangular matrix ring, and the
polynomial ring over R, respectively.

The core focus of this exploration is the set

J(R) ⊆ ∆(R) = {x ∈ R : x+ u ∈ U(R) for all u ∈ U(R)}
= {x ∈ R : 1− xu is invertible for all u ∈ U(R)}
= {x ∈ R : 1− ux is invertible for all u ∈ U(R)},

which was examined by Lam in [2; Exercise 4.24] and recently explored in detail by Leroy-Matczuk
in [3]. It was indicated in [3; Theorems 3 and 6] that ∆(R) represents the (proper) largest Jacob-
son radical subring of R that remains closed under multiplication by all units (resp., quasi-invertible
elements) of R, and it is an ideal of R exactly when ∆(R) = J(R).

In the contemporary ring theory, the class of strongly nil-clean rings possesses significant impor-
tance. A ring R is called strongly nil-clean if every element of R can be expressed as the sum of an
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idempotent in R and a nilpotent element in R that commute with each other (see [4–6]). Later on,
Chen and Sheibani generalized in [7] this concept and introduced the so-called strongly 2-nil-clean
rings: a ring R is defined as strongly 2-nil-clean if every element of R can be written as the sum of a
tripotent element of R (i.e., an element x ∈ R such that x3 = x) and a nilpotent element of R that
commute.

On the other hand, in a way of similarity, strongly J-clean rings are those rings in which every
element can be written as the sum of an idempotent and an element from the Jacobson radical that
commute [8, 9]. In this vein, Koşan et al. introduced in [10] the so-termed semi-tripotent rings R in
which each element is the sum of a tripotent element from R and an element from J(R).

Considering and analyzing these definitions, as well as the fact that ∆(R) is a (possibly proper)
subset of J(R), that is not necessarily an ideal, and which also does not have useful properties like the
set Nil(R), a question naturally arises about the properties of those rings R for which each element
is the sum of a tripotent element from R and an element from ∆(R) that commute with each other.
The main objective of the current article is namely to investigate these types of rings and to conduct
a comprehensive study of their structure.

Thereby, we come to the following key notion, motivated by the discussion alluded to above.

Definition 1. We say that R is a strongly ∆-tripotent ring, or just an SDT ring for short, if every
element of R is the sum of a tripotent from R and an element from ∆(R) that commute with each
other. Such a sum’s presentation is also said to be an SDT representation.

Our further plan in the organization of our study is the following: In the next section, we obtain
some crucial examples and principal properties of such rings establishing their connection with many
standard properties – e.g., such as uniquely clean (see Corollary 2). In the subsequent section, we
achieve the major result describing the algebraic structure of the SDT rings in an appropriate form
showing that these rings modulo their Jacobson radical are the direct product of a Boolean ring
and a Yaqub ring (see Theorem 1). Some other closely related statements are also proved such as
Propositions 2 and 6. In the fourth section, we study the behavior of the given SDT concept under
various ring extensions and, specifically, we characterize when Tn(R) is an SDT ring by finding a
necessary and sufficient condition, provided that R is local and n ≥ 3 (see Theorem 2). In the final fifth
section, we conclude with some commentaries and two challenging open problems (see, e.g., Problems 1
and 2) which, hopefully, will stimulate a future intensive examination of the present subject.

1 Examples and Basic Properties

The following claim can easily be proven, so we omit the details leaving them to the interested
reader for check.

Lemma 1. (1) Suppose R =
∏

i∈I Ri. Then, R is an SDT ring if, and only if, for each i ∈ I, Ri is
an SDT ring.

(2) Suppose R is a ring and I is an ideal of R such that I ⊆ J(R). Then, R/I is an SDT ring.

We proceed by proving the following three technical assertions.

Lemma 2. For every e = e3 ∈ R and d ∈ ∆(R), we have (e± e2)d, d(e± e2), 2e2d, and 2ed ∈ ∆(R).
Proof. For every e = e3 ∈ R, we have

((1− e2)− e)((1− e2)− e) = 1 = ((1− e2) + e)((1− e2) + e).

Therefore, (1 − e2 ± e) ∈ U(R), so it follows from [3; Lemma 1(2)] that, for every d ∈ ∆(R), both
((1 − e2 ± e)d and d((1 − e2 ± e) ∈ ∆(R). Since ∆(R) is a subring of R, we have (e ± e2)d and
d(e± e2) ∈ ∆(R). This implies that 2ed and 2e2d ∈ ∆(R), as required.
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Lemma 3. Let R be an SDT ring, and a ∈ R. If a2 ∈ ∆(R), then a ∈ ∆(R).
Proof. Assume that a = e+d is an SDT representation. We have a2 = e2 +2ed+d2. By Lemma 2,

it must be that
e2 = a2 − 2ed− d2 ∈ ∆(R) ∩ Id(R) = {0},

which implies e = 0. Thus, a = d ∈ ∆(R), as expected.

Lemma 4. Let R be an SDT ring. Then, for every a ∈ R, a− a3 ∈ ∆(R).
Proof. Assume a = e+ d is an SDT representation. We calculate that

a− a3 = (d− d3)− (2e2d+ 2ed)− (e2d+ ed2).

Furthermore, according to Lemma 2, it suffices to show that e2d + ed2 ∈ ∆(R). But, Lemma 2
tells us that e2d + ed2 ∈ ∆(R) precisely when ed + e2d2 ∈ ∆(R). Consequently, we show that
ed+ e2d2 ∈ ∆(R).

To this target, assume ed = f + b is an SDT representation. Then,

e2d2 = f2 + 2fb+ b2.

Thus,
ed+ e2d2 = (f + f2) + (b+ 2fb+ b2).

Now, multiplying by d and d2 both sides of the previous relation, we have

ed2 + e2d3 = (f + f2)d+ (b+ 2fb+ b2)d ∈ ∆(R),

ed3 + e2d4 = (f + f2)d2 + (b+ 2fb+ b2)d2.

Owing to Lemma 2, we infer that ed2 + e2d3, ed3 + e2d4 ∈ ∆(R). Also,

ed2 + e2d3 = ed2 + e2d3 − ed3 + ed3 − e2d2 + e2d2 = e2d2 + ed3 + (e2 − e)d3 + (e− e2)d2.

Thus, in virtue of Lemma 2, it follows that e2d2 + ed3 ∈ ∆(R). Therefore, we get{
e2d2 + ed3 ∈ ∆(R),

ed3 + e2d4 ∈ ∆(R),
=⇒ e2d2 + e2d4 ∈ ∆(R).

We now have that
(ed+ e2d2)2 = e2d2 + 2ed3 + e2d4 ∈ ∆(R).

So, Lemma 3 enables us that ed+ e2d2 ∈ ∆(R), as pursued.

We now arrive at the following concrete application of the last lemma.
Example 1. Let R be an arbitrary ring. Then, R[x] is not an SDT ring.
Proof. Assume the contrary. Then, applying Lemma 4, we derive that x− x3 ∈ ∆(R[x]), and thus

1− x+ x3 ∈ U(R[x]), which is the wanted contradiction.

With the previous example in mind, the ring R[x] is surely not SDT. However, a logical question
arises about the form of elements with an SDT representation in the polynomial ring R[x]. We will
attempt to answer this question below.

Recall that a ring R is said to be 2-primal if Nil∗(R) = Nil(R). For instance, it is well known that
any commutative ring and any reduced ring are definitely 2-primal.

Likewise, for an endomorphism σ of R, the ring R is called σ-compatible if, for every a, b ∈ R, the
equality ab = 0 if, and only if, aσ(b) = 0 [11]. In this case, it is clear that σ is always injective.

We now manage to prove the following two pivotal statements.
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Proposition 1. Let R be a 2-primal and α-compatible ring. Then,

∆(R[x, α]) = ∆(R) +Nil∗(R[x, α])x.

Proof. Assuming f =
∑n

i=0 aix
i ∈ ∆(R[x, α]), then, for each u ∈ U(R), we have that

1 − uf ∈ U(R[x, α]). Thus, taking into account [12; Corollary 2.14], 1 − ua0 ∈ U(R) holds and,
for every 1 ≤ i ≤ n, it holds uai ∈ Nil∗(R). Since Nil∗(R) is an ideal, we deduce a0 ∈ ∆(R) and hence,
for each 1 ≤ i ≤ n, we obtain ai ∈ Nil∗(R). Since R is a 2-primal ring, [12; Lemma 2.2] applies to get
that Nil∗(R)[x, α] = Nil∗(R[x, α]), as desired.

Conversely, assume f ∈ ∆(R) + Nil∗(R[x, α])x and u ∈ U(R[x, α]). Then, employing [12; Corol-
lary 2.14], we have u ∈ U(R) + Nil∗(R[x, α])x. But, since R is a 2-primal ring, we receive
1− uf ∈ U(R) +Nil∗(R[x, α])x ⊆ U(R[x, α]), whence f ∈ ∆(R[x, α]), as promised.

Proposition 2. Let R be a 2-primal and α-compatible ring, and let e3 = e =
∑n

i=0 eix
i ∈ R[x, α].

Then, e30 = e0 and, for every 1 ≤ i ≤ n, the inclusion ei ∈ Nil(R) is true.
Proof. It is easy to see that e30 = e0, so it suffices to show that, for every 1 ≤ i ≤ n, the re-

lation ei ∈ Nil(R) is valid. Since e3 = e, we inspect that enαn(en)α2n(en) = 0. And because R is
α-compatible, [13; Lemma 2.1] is applicable to get that e3n = 0.

Now, set g := f − enx
n. Since f3 = f and en ∈ Nil∗(R), we have g − g3 ∈ Nil∗(R)[x, α], so

ḡ = ḡ3 ∈ R/Nil∗(R)[x, α]. Thus, one verifies that

en−1α
n−1(en−1)α

2n−2(en−1) ∈ Nil∗(R).

But, since R is an α-compatible ring, [13; Lemma 2.1] works to obtain that en−1 ∈ Nil(R). Continuing
in this aspect, it can be shown that, for each 1 ≤ i ≤ n, the condition ei ∈ Nil(R) is fulfilled, as asked
for.

To specify the elements with an SDT representation of the ring R[x, α], we need new notation. For
convenience of the exposition, we just put the set of elements with an SDT representation in the ring
R to be abbreviated as SDT (R).

So, we have the validity of the following.

Lemma 5. Let R be a 2-primal and α-compatible ring. Then,

SDT (R[x, α]) ⊆ SDT (R) +Nil∗(R)[x, α]x.

Proof. Assume f =
∑n

i=0 fix
i ∈ SDT (R[x, α]) and f =

∑n
i=0 eix

i +
∑n

i=0 dix
i is an SDT represen-

tation. In accordance with Propositions 1 and 2, we have e0 = e30 and d0 ∈ ∆(R), and hence clearly
e0d0 = d0e0, so that f0 ∈ SDT (R).

Moreover, with the aid of Proposition 2, for every 1 ≤ i ≤ n, it must be that ei, di ∈ Nil∗(R),
whence fi = ei + di ∈ Nil∗(R), as required.

The next affirmation is crucial.

Lemma 6. Let R be an SDT ring. Then, R/J(R) is reduced.
Proof. Assume x2 ∈ J(R) ⊆ ∆(R). Thus, by Lemma 3, we have x ∈ ∆(R). Let r ∈ R. Since

1− r2x2 ∈ U(R), we may set u := 1− rx2r ∈ U(R). Therefore,

(1− rx)(1 + rx) = 1− rx+ xr − rx2r = xr − rx+ u.

It suffices to show that xr − rx ∈ ∆(R). To this goal, assume r = e+ d is an SDT representation.
Then,

xr − rx = x(e+ d)− (e+ d)x = xe− ex+ (xd− dx),
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and as x, d ∈ ∆(R), it is just sufficient to prove that xe− ex ∈ ∆(R).
Since [

e2x(1− e2)
]2

= 0 =
[
(1− e2)xe2

]2
.

Lemma 3 assures that {
e2x(1− e2) ∈ ∆(R) =⇒ e2x− e2xe2 ∈ ∆(R),

(1− e2)xe2 ∈ ∆(R) =⇒ xe2 − e2xe2 ∈ ∆(R).

However, because ∆(R) is closed under addition, we arrive at e2x− xe2 ∈ ∆(R). Consequently,

xe− ex = xe+ xe2 − xe2 − ex− e2x+ e2x = e2x− xe2 + x(e+ e2)− (e+ e2)x ∈ ∆(R).

Hence,
(1− rx)(1 + xr) ∈ U(R).

But R was arbitrary, and so x ∈ J(R), as needed.

Given the truthfulness of Lemma 4, we have that, for every SDT ring R, 6 = 23 − 2 ∈ ∆(R). This
raises a logical question: if R is an SDT ring, is 6 ∈ J(R)? We will answer this query in the following
lemma.

Lemma 7. Let R be an SDT ring. Then, 6 ∈ J(R).

Proof. Invoking Lemma 4, we know that 6 ∈ ∆(R), which implies 12 = 6 + 6 ∈ ∆(R). Letting
r ∈ R be arbitrary, and letting r = e+ d be an SDT representation, Lemma 2 ensures that

1− 12r = 1− 12e− 12d = 1− 2(6e)− 12d ∈ 1 + ∆(R) ⊆ U(R).

Thus, 12 ∈ J(R).
Furthermore, since 62 = 36 = 3 × 12 ∈ J(R), Lemma 6 helps us to conclude that 6 ∈ J(R), as

stated.

As a useful consequence, we deduce the following.

Corollary 1. Let R be an SDT ring. Then, the following two points hold:
(1) 2 ∈ U(R) if, and only if, 3 ∈ J(R).
(2) 3 ∈ U(R) if, and only if, 2 ∈ J(R).

Proof. The proof is pretty straightforward being based on Lemma 7, so we leave it voluntarily.

The next two assertions are worthy of documentation.

Proposition 3. Let R be an SDT ring such that 2 ∈ U(R). Then, ∆(R) is an ideal. In particular,
under these conditions, ∆(R) = J(R).

Proof. Since ∆(R) is closed under addition, it is sufficient to show that, for any d ∈ ∆(R) and
r ∈ R, the relations rd, dr ∈ ∆(R) are valid. Assume, for this aim, that rd = e+b and r = f+b′ are two
SDT representations. Exploiting Lemma 2, we know 2fd ∈ ∆(R). Since 2 ∈ U(R), [3; Lemma 1(2)]
teaches us that fd ∈ ∆(R). So, we have

rd = e+ b = fd+ b′d =⇒ e− fd = b′d− b ∈ ∆(R).

But, since fd ∈ ∆(R), it follows that e ∈ ∆(R), so e2 ∈ ∆(R) ∩ Id(R) = {0}, which forces e = 0.
Therefore, rd = b ∈ ∆(R). Similarly, it can be shown that dr ∈ ∆(R), guaranteeing the claim.

Mathematics Series. No. 3(119)/2025 129



A. Javan et al.

Proposition 4. Let R be an SDT ring with 3 ∈ U(R). Then, for any a ∈ R, we have a = f + b,
where f = f2 ∈ R, b ∈ ∆(R) and fb = bf .

Proof. Suppose a = f + d is an SDT representation. Then,

a− a2 = (f − f2) + (d− 2fd− d2).

Since 3 ∈ U(R) by Corollary 1, we get 2 ∈ J(R). Thus, (f − f2)2 = −2(f − f2) ∈ J(R) and, with
Lemma 7 at hand, we observe that f − f2 ∈ J(R). This gives a− a2 ∈ ∆(R).

On the other hand, since

a− f2 = (a− a2) + 2(a2 − f2 − fd)− d2 ∈ ∆(R),

by setting e := f2, we finish the proof after all.

A ring R is called an SDI ring if, for every r ∈ R, there exist e = e2 ∈ R and b ∈ ∆(R) such that
r = e+ b and eb = be. Recall also that a ring is called a ∆U ring, provided 1 + ∆(R) = U(R) [14].

The following closely related results are of some interest as well.

Lemma 8. Every SDI ring is a ∆U ring.

Proof. Suppose u ∈ U(R) and u = e+ d is an SDI representation. Then, we have

e = u− d ∈ U(R) + ∆(R) ⊆ U(R) ∩ Id(R) = {1},

as required.

Lemma 9. ([14; Proposition 2.3]) The ring R is a ∆U ring if and only if U(R) + U(R) ⊆ ∆(R);
and then, U(R) + U(R) = ∆(R).

Recall that a ring R is said to be uniquely clean, provided that each element in R has a unique
representation as the sum of an idempotent and a unit [15].

The next valuable consequence gives some transversal between the notions of SDI rings and unique
cleanness.

Corollary 2. Let R be a ring. Then the following are equivalent:
(1) R is uniquely clean.
(2) R is SDI and all idempotents are central.

Proof. (1) ⇒ (2). Assume R is a uniquely clean ring. Consulting with [15; Lemma 4], every
idempotent in R is central. Besides, by virtue of [15; Theorem 20], for every a ∈ R, there exists a
unique idempotent e such that a−e ∈ J(R) ⊆ ∆(R). Thus, there exists d ∈ ∆(R) such that a = e+d.
Since all idempotents are central, we have ed = de.

(2) ⇒ (1). Assume R is an SDI ring, and let a ∈ R be arbitrary. Suppose a + 1 = e + d is
an SDI representation. Then, a = e + (d − 1), which is a clean representation. Assume now that
e + u = f + v are two clean representations. So, Lemma 9 informs us that e − f = v − u ∈ ∆(R).
Since all idempotents are central, we find e − f = (e − f)3, and so (e − f)2 ∈ ∆(R) ∩ Id(R) = {0}.
Therefore, e− f = (e− f)3 = (e− f)(e− f)2 = 0. Hence, e = f , as it must be.
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2 The Main Characterizations

We start our considerations here with some relationships between certain classes of rings.

Proposition 5. Suppose R is an SDT ring and a domain. Then, R is a local ring.

Proof. Let a ∈ R. We want to show that either a ∈ U(R) or a ∈ ∆(R). To that end, suppose
a = e + d is an SDT representation. If e = 0, then a = d ∈ ∆(R). If e 6= 0, then as e3 = e it must
be e(1 − e2) = 0. But, since R is a domain, (1 − e)(1 + e) = 1 − e2 = 0, so either e = 1 or e = −1.
Therefore, either a = 1 + d ∈ U(R) or a = −1 + d ∈ U(R). It can next easily be shown that R is a
local ring if, and only if, R = U(R) ∪∆(R), as required.

As an immediate consequence, we yield:

Corollary 3. Suppose R is a strongly 2-nil clean and local ring. Then, R is an SDT ring.

Proof. It is pretty easy, because in a local ring the containment Nil(R) ⊆ J(R) always holds.

The next assertion is of some importance by giving some close relevance between the notion of a
semi-tripotent ring as stated in [10] and the new concept of an SDT ring given above.

Proposition 6. Suppose R is a semi-tripotent and local ring. Then, R is an SDT ring.

Proof. Since R is a local ring, either 2 ∈ J(R) or 2 ∈ U(R). If 2 ∈ J(R), then in virtue of
[10; Theorem 3.5] the factor-ring R/J(R) is Boolean. On the other hand, as R is local, it has to be
that R/J(R) ∼= Z2, and so R = J(R) ∪ (1 + J(R)), yielding R is an SDT ring. If, however, 2 ∈ U(R),
then again [10; Theorem 3.5] works to get that the quotient-ring R/J(R) is a Yaqub ring. However,
because R is local, it must be that R/J(R) ∼= Z3, and thus R = J(R) ∪ (1 + J(R)) ∪ (−1 + J(R))
implying R is an SDT ring, as asserted.

It is well known that a ring is Boolean if and only if it is a subdirect product of copies of Z2.
Analogously, in [7], Chen and Sheibani called a non-zero ring R a Yaqub ring if it is a subdirect
product of copies of Z3. They proved that R is a Yaqub ring if, and only if, 3 is nilpotent and R is a
tripotent ring (that is, each of its element is tripotent).

We are now ready to attack the chief characterizing result, thereby completely describing the
structure of the SDT rings.

Theorem 1. Assume R is an SDT ring. Then, R/J(R) is a tripotent ring, i.e., R/J(R) ∼= R1 ×R2,
where R1 is a Boolean ring and R2 is a Yaqub ring.

Proof. Referring to Lemma 7, we have 6 ∈ J(R). Set R̄ := R/J(R). Thanks to the famous Chinese
Remainder Theorem, we write R̄ ∼= R1×R2, where R1 := R̄/2R̄ and R2 := R̄/3R̄. Since R is an SDT
ring, Lemma 1(2) guarantees that R̄ is an SDT ring too. Therefore, again in view of Lemma 1(1),
R1 is an SDT ring. Since 2 = 0 in R1, we have 3 ∈ U(R1). Thankfully, Proposition 4 yields R1 is
an SDI ring. Also, Lemma 6 implies that R1 is reduced, and thus all idempotents in R1 are central.
Therefore, Corollary 2 shows that R1 is a uniquely clean ring. Note that, as J(R) = 0, it must be that
J(R1) = 0. Using now [15; Theorem 19], we conclude that R1 is a Boolean ring, as formulated.

On the other hand, since 3 = 0 in R2 6= {0}, we have 2 ∈ U(R2). Knowing Proposition 3, we
obtain J(R2) = ∆(R2). This means, with the help of Lemma 4, that, for any a ∈ R2, the relations
a− a3 ∈ ∆(R2) = J(R2) = 0 are true. Thus, for any a ∈ R2, we get that a = a3. Furthermore, using
[7; Lemma 4.4], we infer that R2 is a Yaqub ring, as given.
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It is worthwhile noticing that the extra requirement on the first direct component R1 and the
second direct component R2 to be not simultaneously {0} can be freely ignored here, as opposed to
what was shown in [16], where an analogous shortcoming was unambiguously detected for the main
result of the paper [17].

Let R be a ring, and let a ∈ R. Suppose annla := {r ∈ R : ra = 0} and annra := {r ∈ R : ar = 0}.
We continue by verifying the following two needed technicalities.

Lemma 10. Let R be a ring and a = e + d an SDT representation in R. Then, annl(a) ⊆ annl(e)
and annr(a) ⊆ annr(e).

Proof. Assume ra = 0. Now, Lemma 2 applies to ensure that there exists d′ ∈ ∆(R) such that
a2 = e2 + d′. Since ra = 0, we have re2 + rd′ = 0. Now, multiplying by e from the right, we get
re + red′ = 0, and so re(1 + d′) = 0. Since d′ ∈ ∆(R), it follows that 1 + d′ ∈ U(R) which forces
re = 0. Thus, r ∈ annl(e). Similarly, it can be shown that the inclusion annr(a) ⊆ annr(e) is too
valid, as required.

Lemma 11. Let R be a ring and e ∈ R an idempotent. If a ∈ eRe is an SDT element in R, then a
is an SDT element in the corresponding corner subring eRe.

Proof. Write a = f + d, where f = f3, d ∈ ∆(R) and fd = df . Since 1 − e ∈ annl(a) ∩ annr(a),
Lemma 10 is a guarantor that 1 − e ∈ annl(f) ∩ annr(f) implying (1 − e)f = f(1 − e) = 0. Thus,
f = ef = fe. Likewise, since a ∈ eRe, we receive a = ea = ae = eae. But, subsequently multiplying
a = f + d by e from the left and right, we obtain that a = efe + ede. Note that, since f = ef = fe
and f is a tripotent, efe is also a tripotent. So, it suffices to show that ede ∈ ∆(eRe).

On the other hand, since f = ef = fe = efe and a = ea = ae = eae, it is evident that

d = ed = de = ede ∈ ∆(R) ∩ eRe.

Now, we show that eRe∩∆(R) ⊆ ∆(eRe) always holds. To this purpose, assume r ∈ eRe∩∆(R) and
u ∈ U(eRe). Then, (u+(1−e))(u−1 +(1−e)) = 1, so u+(1−e) ∈ U(R). Since r ∈ ∆(R), there exists
v ∈ R such that (1−(u+(1−e))r)v = 1. But r ∈ eRe, so that (1−ur)v = 1. Furthermore, multiplying
subsequently by e from the left and right, we extract that (e−ur)eve = e forcing r ∈ ∆(eRe). Finally,
d ∈ ∆(eRe), and we are done.

As an automatic consequence, we yield the following.

Corollary 4. Let R be a ring, and let e ∈ R be an idempotent. If R is an SDT ring, then so is the
corresponding corner subring eRe.

Furthermore, in regard to the last corollary, a logically arising question is whether or not the
converse in its formulation holds, that is, if both eRe and (1− e)R(1− e) are SDT rings, is it true that
so does R? However, the next construction, suggested to us by Dr. Omer Cantor to whom we express
our sincere gratitude, illustrates that this question has a negative solution. In fact, let R := M2(Z2)
and set e := E11. An easy check shows that both eRe and (1 − e)R(1 − e) are isomorphic to Z2, so
they are obviously SDT rings. However, it is readily to verify that ∆(R) = (0) by direct computation
and, of course, some elements of R, such as E12, are not tripotent or even not n-potent for any natural
number n ≥ 3. Therefore, R is not an SDT ring, as suspected.

3 Triangular Matrix Rings

As usual, a ring R is termed local, provided R/J(R) is a division ring, that is, each element in
R \ J(R) is a unit, which set-theoretically means that R = J(R) ∪ U(R).

We begin here with the following technicality.
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Lemma 12. Let R be a local ring with 2 ∈ U(R). Then, R has only trivial tripotent elements.
Proof. Suppose that e = e3 ∈ R. If e ∈ J(R), then e(1− e2) = 0, whence e = 0. If now e ∈ U(R),

then e2 = 1, and so (1 − e)(1 + e) = 0. Since (1 − e) + (1 + e) = 2 ∈ U(R) and R is a local ring,
we have either 1 − e ∈ U(R) or 1 + e ∈ U(R). This, in turn, means that either e = 1 or e = −1, as
required.

Based on the above claim, we now considerably extend the well-known Workhorse Lemma (see [18;
Lemma 6]) as follows.

Lemma 13. (Generalized Workhorse Lemma) Let R be a local ring such that 2 ∈ U(R), n ≥ 2 and
A,E ∈ Tn(R). Suppose that, for all (i, j) 6= (1, n), (E3)ij = Eij and (AE − EA)ij = 0. Suppose also
that

A =

a α c
B β

b

 and E =

e γ z
F δ

f

 ,

where B,F ∈ Tn−2(R), a, b, c, e, f, z ∈ R, α, γ ∈ M1,n−2(R) and β, δ ∈ Mn−2,1(R). Then, the
following items are fulfilled:

(i) Given e = f = 1, then E3 = E if and only if z = −1/2(γFδ+ 2γδ), and in this case, AE = EA.
(ii) Given e = f = −1, then E3 = E if and only if z = −1/2(γFδ − 2γδ), and in this case,

AE = EA.
(iii) Given e = f = 0, then E3 = E if and only if z = γFδ, and in this case, AE = EA.
(iv) Given e = 1 and f = −1, then E3 = E. Further, AE = EA if and only if z satisfies the

equation az − zb = γβ − αδ + 2c.
(v) If e = −1 and f = 1, then E3 = E. Further, AE = EA if and only if z satisfies the equation

az − zb = γβ − αδ − 2c.
(vi) If e = 1 and f = 0, then E3 = E. Further, AE = EA if and only if z satisfies the equation

az − zb = γβ − αδ + c.
(vii) If e = 0 and f = 1, then E3 = E. Further, AE = EA if and only if z satisfies the equation

az − zb = γβ − αδ − c.
(viii) If e = −1 and f = 0, then E3 = E. Further, AE = EA if and only if z satisfies the equation

az − zb = γβ − αδ − c.
(w) If e = 0 and f = −1, then E3 = E. Further, AE = EA if and only if z satisfies the equation

az − zb = γβ − αδ + c.

Proof. (i) It is apparent that E3 = E if and only if z = −1/2(γFδ+2γδ). We show that AE = EA.
Given the assumptions, we have

z = −1/2(γFδ + 2γδ), (1)

γF = −γF 2, (2)

Fδ = −F 2δ, (3)
α+ γB = aγ + αF, (4)
Fβ + δb = Bδ + β. (5)

In virtue of the above equations, we compute that

(EA)1n = c+ γβ + zb
(1)
= c+ γβ − 1/2γFδb− γδb

(5)
= c+ γβ + γ(Fβ −Bδ − β) + 1/2γF (Fβ −Bδ − β)

= c+ γβ + γFβ − γBδ − γβ + 1/2γF 2β − 1/2γFBδ − 1/2γFβ

(2)
= c− γBδ − 1/2γFBδ.
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(AE)1n = az + αδ + c
(1)
= −aγδ − 1/2aγFδ + αδ + c

(4)
= (αF − α− γB)δ + 1/2(αF − α− γB)Fδ + αδ + c

= αFδ − αδ − γBδ + 1/2αF 2δ − 1/2αFδ − 1/2γBFδ + αδ + c

(3)
= c− γBδ − 1/2γBFδ = c− γBδ − 1/2γFBδ.

Note that, since (AE − EA)ij = 0, we establish FB = BF .
(ii) The proof is similar to part (i).
(iii) It is obvious that E3 = E if and only if z = γFδ. We show that AE = EA. Given the

assumptions, we have

z = γFδ, (6)

γ = γF 2, (7)

δ = F 2δ, (8)
γB = aγ + αF, (9)
Bδ = Fβ + δb. (10)

From the above equations, we calculate that

(EA)1n = γβ + zb
(6)
= γβ + γFδb

(10)
= γβ + γF (Bδ − Fβ)

= γβ + γFBδ − γF 2β

(7)
= γFBδ.

(AE)1n = az + αδ
(6)
= aγFδ + αδ

(9)
= (γβ − αF )Fδ + αδ

= γBFδ − αF 2δ + αδ

(8)
= γBFδ = γFBδ.

(iv) Assume e = 1 and f = −1. Then, under the assumptions, we deduce that

γF = −γF 2, F 2δ = Fδ =⇒ γFδ = −γF 2δ = −γFδ =⇒ 2 γFδ = 0.

But, since 2 ∈ U(R), we have γFδ = 0. Thus, we get (E3)1n = γFδ + z = z = E1n and, therefore,
E3 = E. Moreover, it is clear that EA = AE if and only if

az + αδ − c = c+ γβ + zb,

which is equivalent to
az − zb = γβ − αδ + 2c.

(v) The proof is similar to part (iv).

134 Bulletin of the Karaganda University



Generalizing Semi-n-Potent Rings

(vi) Assume e = 1 and f = 0. So, under the given assumptions, we have

γF = −γF 2, δ = F 2δ =⇒ γFδ = −γF 2δ = −γδ.

Consequently, we derive (E3)1n = z + γδ + γFδ = z = E1n, and hence E3 = E. It is also readily
checked that EA = AE if and only if

az − zb = γβ − αδ + c.

Finally, one sees that points (vii), (viii) and (w) possess proofs which are similar to that of (vi).

The next preliminary facts are worthy of discussion: let a ∈ R. The mappings la : R → R
and ra : R → R represent the (additive) abelian group endomorphisms defined respectively by
la(r) = ar and ra(r) = ra for all r ∈ R. Consequently, the expression la − rb defines an abelian
group endomorphism such that (la − rb)(r) = ar − rb for any r ∈ R. According to [5], a local ring R
is classified as bleached if, for any a ∈ U(R) and b ∈ J(R), both la − rb and lb − ra are surjective. The
category of bleached local rings includes many well-established examples, such as commutative local
rings, local rings with nil Jacobson radicals, and local rings in which some power of each element of
their Jacobson radicals is central [18; Example 13].

Now, we need the following.

Lemma 14. Let R be a local ring such that 2 ∈ U(R), and suppose that A ∈ Tn(R). Write A as
(aij). Then, for any set {eii}ni=1 of tripotents in R such that eii = ejj whenever laii − rajj is not a
surjective abelian group endomorphism of R, there exists a tripotent E ∈ Tn(R) such that AE = EA
and Eii = eii for every i ∈ {1, . . . , n}.

Proof. Leveraging Lemma 13, the proof process mirrors that of [18; Lemma 7]. To avoid redun-
dancy, we omit the detailed proof.

We are now in a position to attack the main result in this section, in which the proof we shall apply
the established above Theorem 1.

Theorem 2. Let R be a local ring and n > 2. Then, the following conditions are equivalent:
(1) Tn(R) is an SDT ring;
(2) either
(2.1) R is a bleached ring and R/J(R) ∼= Z2;

or
(2.2) R is a bleached ring, R/J(R) ∼= Z3 and, if a, b ∈ R such that a− 1 ∈ ∆(R) and b+ 1 ∈ ∆(R),

then la − rb : R→ R is surjective.

Proof. Since R is a local ring, we have either 2 ∈ J(R) or 2 ∈ U(R). We prove the theorem for
both cases independently.

Case 1: If 2 ∈ J(R).
(1) ⇒ (2.1). Since 2 belongs to J(R), Theorem 1 discovers that R/J(R) is a Boolean ring. But,

since R is local, we must have R/J(R) ∼= Z2. Because Tn(R) is an SDT ring, Corollary 4 gives that
T2(R) is an SDT ring too. Moreover, Proposition 4 allows us to detect that T2(R) is an SDI ring.

Suppose now a ∈ U(R) and b ∈ J(R). We intend to show that la − rb : R → R is surjective.
Thereby, it suffices to prove that, for every v ∈ R, there exists x ∈ R such that ax − xb = v. Put

r :=

(
a v
0 b

)
. Assume r = g + j is an SDI representation, where g =

(
e x
0 f

)
and j =

(
d y
0 d′

)
.

Since e is an idempotent and a ∈ U(R), we deduce e = 1. However, since f is an idempotent and
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b ∈ J(R), we derive f = 0. Thus, g =

(
1 x
0 0

)
. Since rg = gr, we now have ax − xb = v. Therefore,

la − rb : R→ R is surjective. Similarly, we can show that lb − ra : R→ R is surjective, as desired.
(2.1) ⇒ (1). Since 2 ∈ J(R), we only have the case R/J(R) ∼= Z2. Thus, by [8; Theorem 4.4],

there is nothing left to prove.
Case 2: If 2 ∈ U(R).
(1)⇒ (2.2). Since 2 belongs to U(R), Theorem 1 demonstrates that R/J(R) is a Yaqub ring. But,

since R is local, we must have R/J(R) ∼= Z3. Because Tn(R) is an SDT ring, Corollary 4 gives that
T2(R) is an SDT ring too.

Suppose now a ∈ U(R) and b ∈ J(R). We intend to show that la − rb : R → R is surjective.
Thereby, it suffices to establish that, for each v ∈ R, there is x ∈ R such that ax − xb = v. Set

r :=

(
a v
0 b

)
. Assume r = g+ j is an SDT representation, where g =

(
e x
0 f

)
and j =

(
d y
0 d′

)
. Since

b ∈ J(R) and f is a tripotent, we detect f = 0. On the other hand, Lemma 12 allows us to conclude
that R has no non-trivial tripotents. Hence, since a ∈ U(R), e is simultaneously a unit and a tripotent

element, and thus either e = 1 or e = −1. If g =

(
1 x
0 0

)
, then since rg = gr, we have ax − xb = v.

If, however, g =

(
−1 x
0 0

)
, then again since rg = gr, we have a(−x) − (−x)b = v. Consequently,

la − rb : R→ R is surjective. Similarly, we can establish that lb − ra : R→ R is surjective.
We now show that under the given assumptions, the SDT representation of elements is unique. In

this light, suppose e+ d = f + b are two SDT representations in R. Note that, Lemma 12 manifestly
yields e, f ∈ {−1, 0, 1}, so that one easily sees that either e = f or e = −f . If e = −f , then
2e = b− d ∈ ∆(R). Since 2 ∈ U(R), we have e ∈ ∆(R). Thus, e2 ∈ ∆(R) ∩ Id(R) = {0}, which leads
to e = 0. Therefore, e = f = 0.

Suppose now that a = 1 + d and b = −1 + d′ are two SDT representations. Assume that

r =

(
a v
0 b

)
is an element of T2(R). Also, suppose that r = g + w is an SDT representation, where

g =

(
e x
0 f

)
and w =

(
d y
0 d′

)
.

Bearing in mind the above note, we can assume without loss of generality that e = 1 and f = −1.
Since gw = wg and 2 ∈ U(R), we deduce a(1/2)x− (1/2)xb = v. This obviously implies that the map
la − rb : R→ R is surjective.

(2.1)⇒ (1). Suppose A ∈ Tn(R). We show that A has an SDT representation such that A = E+D
in Tn(R). Since R/J(R) ∼= Z3, we see with no any technical difficulty that R = J(R) ∪ (1 + J(R)) ∪
(−1 + J(R)). First, we construct the elements on the main diagonal E. Suppose

eii :=


0 if aii ∈ J(R),

1 if aii ∈ 1 + J(R),

−1 if aii ∈ −1 + J(R).

Therefore, one inspects that aii − eii ∈ J(R) for each i. Notice that, since 2 ∈ U(R), it must be
that (1 + J(R)) ∩ (−1 + J(R)) = ∅. If eii 6= ejj , then we come to

(1) eii ∈ U(R) and ejj ∈ J(R),

(2) eii ∈ J(R) and ejj ∈ U(R),

(3) eii and ejj ∈ U(R).
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We prove that, in all three cases, laii − rajj : R→ R is necessarily surjective.
In fact, for case (1), aii ∈ U(R) and ajj ∈ J(R) and, because R is bleached, laii − rajj : R → R is

indeed surjective.
The case (2) is observed to be similar to case (1).
In case (3), with no harm of generality, assuming eii = 1 and ejj = −1, we obtain that aii − 1,

ajj + 1 ∈ ∆(R). Therefore, by the requested assumption, laii − rajj : R → R is surjective. Hence,
with Lemma 14 in hand, there is a tripotent E ∈ Tn(R) such that AE = EA and Eii = eii for each
i ∈ {1, . . . , n}. In addition,

A− E ∈ J(Tn(R)) ⊆ ∆(Tn(R)),

thus completing the proof.

The case when n = 2 can be considered separately in the following manner.

Example 2. Suppose R is an integral domain and an SDT ring. Then, T2(R) is an SDT ring.

Proof. Utilizing Proposition 2, R is a local ring. In the other vein, since R is a domain, arguing as
in the proof of Proposition 2, we can assume that R has no non-trivial tripotents.

Since R is local, we have either 2 ∈ U(R) or 2 ∈ J(R). First, we assume that 2 ∈ J(R), and let

A =

(
a β
0 b

)
∈ T2(R). Note that an SDT ring with 2 ∈ J(R) is always an SDI ring. We show that

T2(R) is also SDI. Precisely, we consider the following four cases:
1. If a, b ∈ J(R), then A ∈ J(R), so A = 0 +A is an SDI representation.
2. If a, b ∈ U(R), then since R is both SDI and local, we have a − 1 ∈ J(R) and b − 1 ∈ J(R).

Therefore,

A = I2 +

(
a− 1 β

0 b− 1

)
is an SDI representation for A.

3. a ∈ U(R), b ∈ J(R). Since R is an SDI ring, we obtain a− 1 ∈ J(R). Thus,

A =

(
1 α
0 0

)
+

(
a− 1 β − α

0 b

)
is an SDT representation, where α = β((a− 1) + (1− b))−1.

4. b ∈ U(R), a ∈ J(R). Since R is an SDI ring, we receive b− 1 ∈ J(R). So,

A =

(
0 α
0 1

)
+

(
a β − α
0 b− 1

)
is an SDT representation, where α = β((b− 1) + (1− a))−1.

Now, suppose 2 ∈ U(R).
1. If a, b ∈ J(R), then A ∈ J(R), so A = 0 +A is an SDT representation.
2. Given a, b ∈ U(R). If the SDT representations of a and b are of the form a = 1 + (a − 1) and

b = 1 + (b− 1), then

A = I2 +

(
a− 1 β

0 b− 1

)
is an SDT representation for A.

If the SDT representations of a and b are of the form a = −1 + (a+ 1) and b = −1 + (b+ 1), then

A = −I2 +

(
a+ 1 β

0 b+ 1

)
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is an SDT representation for A.
If the SDT representations of a and b are of the form a = −1 + (a+ 1) and b = 1 + (b− 1), then

A =

(
−1 α
0 1

)
+

(
a+ 1 β − α

0 b− 1

)
is an SDT representation, where α = 2β(2 + (b− 1)− (a+ 1))−1.

If the SDT representations of a and b are of the form a = 1 + (a− 1) and b = −1 + (b+ 1), then

A =

(
1 α
0 −1

)
+

(
a− 1 β − α

0 b+ 1

)
is an SDT representation, where α = 2β(2 + (a− 1)− (b+ 1))−1. Note that 2 ∈ U(R) is assumed.

3. Given a ∈ U(R) and b ∈ J(R). If the SDT representation of a is of the form a = 1 + (a − 1),
then

A =

(
1 α
0 0

)
+

(
a− 1 β − α

0 b

)
is an SDT representation for A, where α = β((1− b)− (1− a))−1.

If the SDT representation of a is of the form a = −1 + (a+ 1), then

A =

(
−1 α
0 0

)
+

(
a+ 1 β − α

0 b

)
is an SDT representation for A, where α = β((1 + b)− (1 + a))−1.

4. Given a ∈ J(R) and b ∈ U(R). If the SDT representation of b is of the form b = 1 + (b − 1),
then

A =

(
0 α
0 1

)
+

(
a β − α
0 b− 1

)
is an SDT representation for A, where α = β((b− 1) + (1− a))−1.

If the SDT representation of b is of the form b = −1 + (b+ 1), then

A =

(
0 α
0 −1

)
+

(
a β − α
0 b+ 1

)
is an SDT representation for A, where α = β((1 + a)− (1 + b))−1, as claimed.

Now, we manage to examine the above stated example in a more general situation like the following
one.

Proposition 7. Let R be a ring that has no non-trivial tripotent elements. Then, the following
conditions are equivalent:

(1) T (R, V ) is an SDT ring.
(2) Either R/J(R) ∼= Z2 or R/J(R) ∼= Z3.

Proof. (1) ⇒ (2). If T (R, V ) is an SDT ring, it is easily verified that R is also an SDT ring.
Moreover, since R has no non-trivial tripotent elements, as shown in Proposition 2, we can prove
that R is a local ring. Therefore, according to a combination of the locality of R and Theorem 1, we
conclude R/J(R) ∼= Z2 or R/J(R) ∼= Z3.

(2) ⇒ (1). If R/J(R) ∼= Z2, then from [15; Theorem 15] we deduce that T (R, V ) is a uniquely
clean ring. Thus, it is an SDI ring and, consequently, an SDT ring.
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If, however, R/J(R) ∼= Z3, we so derive

R = J(R) ∪ (1 + J(R)) ∪ (−1 + J(R)).

Assume now that
(
a v
0 a

)
∈ T (R, V ) is fulfilled. So, we have:

(a) If a ∈ J(R), then
(
a v
0 a

)
∈ J(T (R, V )).

(b) If a ∈ 1 + J(R), then (
a v
0 a

)
= I2 +

(
a− 1 v

0 a− 1

)
,

which is an SDT representation.

(c) If a ∈ −1 + J(R), then (
a v
0 a

)
= −I2 +

(
a+ 1 v

0 a+ 1

)
,

which is an SDT representation, as claimed.

We finish our examinations with the following exhibitions which we leave to the interested reader
for a direct check.

Example 3. Let R be a ring in which all tripotent elements are central. Then, the following issues
hold:

(1) R is an SDT ring if and only if R[[x]] is an SDT ring.
(2) R is an SDT ring if and only if R[x]/(xn) is an SDT ring.
(3) R is an SDT ring if and only if T (R,R) is an SDT ring.

Concluding Discussion and Questions

As above noticed, in [10] the authors defined and investigated those rings R, calling them semi-
tripotent, whose elements are a sum of a tripotent element from R and an element from the Jacobson
radical of R which, generally, need not commute each other.

Now, regarding Proposition 6, one may ask whether the classes of semi-tripotent rings and SDT
rings are independent of each other; that is, does there exist an SDT ring what is not semi-tripotent
as well as a semi-tripotent ring that is not SDT? However, it was proved in [10; Theorem 3.5 (6)] that
R/J(R) has the same presentation as in our Theorem 1 plus the requirement that all idempotents of
R lift modulo J(R). That is why, it quite surprisingly follows that every SDI ring whose idempotent
lift modulo the Jacobson radical is always semi-tripotent. However, as the opposite claim of Theorem 1
is not at all guaranteed in order to be a satisfactory criterion, we do not know yet if any semi-tripotent
ring is SDT. Likewise, due to the lifting restriction of the idempotents, the reciprocal implication
cannot happen in all generality or, in other words, there is an SDT ring that is not semi-tripotent.

Our first intriguing query is related to the study in-depth of a generalized version of the SDT rings
like this, which presents a more general setting of the semi-n-potent rings as defined in [10].

Problem 1. Describe those rings R, naming them strongly ∆ n-potent, whose elements are a sum
of a n-potent element in R (i.e., an element a ∈ R such that an = a for some n ∈ N) and an element
from ∆(R) that commute with each other.

On the other side, in conjunction with [19], we close our work with the following interesting question.

Problem 2. Characterize those rings R, calling them C∆ rings, whose elements are a sum of an
element from the center Z(R) and from ∆(R).
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