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On two four-dimensional curl operators and their applications
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Academician O.A. Ladyzhenskaya emphasized the importance of constructing a fundamental system in the
space of solenoidal functions for simple domains such as squares, cubes, and similar regions. This article
examines the problem of constructing such fundamental systems for a four-dimensional parallelepiped and
cube. As is well known, applying the stream functions known from the two- and three-dimensional cases,
the spectral problem for the Stokes operator reduces to the so-called clamped plate problem, which, in
turn, has no solution in domains such as the square, cube, or parallelepiped. Thus, in higher-dimensional
cases, the necessity of an analogous stream function becomes evident. In this work, the authors propose
two curl operators that satisfy the above-mentioned requirements. Using the introduced curl operators, the
spectral problem for the biharmonic operator in a four-dimensional parallelepiped and cube is formulated.
Alternative approaches to constructing a fundamental system are presented, given the unsolvability of the
spectral problem. Furthermore, the growth orders of the obtained eigenvalues are established.
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Introduction

As is well known, the theoretical foundation of classical electromagnetic field (EMF) theory is
based on Maxwell’s equations, which generalize the experimental results obtained by the end of the
18th century. The development of classical EMF theory led to its description as an antisymmetric
second-rank tensor, from which Maxwell’s equations follow. These equations played a key role in the
development of theoretical physics and had a profound influence on the creation of the special theory
of relativity and other theories. By the early 20th century, classical electrodynamics was considered
a completed science, and the EMF theory received its further development in the form of quantum
electrodynamics.

In this work, we consider two four-dimensional curl operators. While the first curl operator is closely
related to electromagnetic field theory and Maxwell’s equations, the second curl operator is introduced
artificially. The first curl operator is introduced (theoretically well-founded) using an antisymmetric
second-rank tensor [1; 146, 149]. In fact, the four-dimensional curl operator is introduced on a six-
dimensional vector field. In contrast to the first, the artificially chosen four-dimensional curl operator is
introduced on a four-dimensional vector field. These operators are used by us to construct fundamental
systems in the space of solenoidal functions. These systems are not only important theoretically but
also computationally efficient for the approximate solution of boundary value problems for the Stokes
and Navier-Stokes equation systems.

It should be noted that spectral problems for the Stokes operator (with periodicity conditions) in
a cubic domain were also considered in the works [2–4]. In the work [2], the spectra of the curl and
Stokes operators in a cube for functions satisfying the periodicity condition are studied. The Cauchy
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problem for the 3-D Navier-Stokes equations with periodic boundary conditions in the spatial variable
was studied in [4].

First of all, let us formulate the spectral problem for the Stokes operator. Let x = (x1, ..., xd) ∈
Ω ⊂ Rd, d ≥ 2, be an open bounded (simply connected) domain with boundary ∂Ω. We seek nontrivial
solutions {~wk(x), pk(x), x ∈ Ω, k ∈ N} and corresponding values of the parameter {µ2

k, k ∈ N} for
the following boundary value problem [5; 38]:

−∆~w(x) +∇p(x) = µ2w(x), x ∈ Ω,

div{~w(x)} = 0, x ∈ Ω,

~w(x) = 0, x ∈ ∂Ω.

(A)

In the terminology of inverse problem theory for differential equations [6], problem (A) can be
interpreted as a coefficient inverse problem, where the condition of overdetermination is represented
by the requirement of the nontriviality of the solution {~w(x),∇p(x)}, corresponding to the sought
coefficient µ2.

Let us introduce the main spaces that will be used. Let x = (x1, ..., xd) ∈ Ω ⊂ Rd, d ≥ 2, be an
open bounded (simply connected) domain with a sufficiently smooth boundary ∂Ω, and m ≥ 0 be an
integer,

Wm
2 (Ω) =

{
v| ∂|α|x v ∈ L2(Ω), |α| ≤ m

}
, where ∂|α|x = ∂α1

x1 ...∂
αd
xd
, |α| =

d∑
j=1

αj , ∂xj =
∂

∂xj
,

◦
W

m
2 (Ω) =

{
v| v ∈Wm

2 (Ω), ∂j~nv = 0, j = 0, 1, 2...,m− 1, ~n is the outward normal to ∂Ω
}
.

Otherwise, in the notation of the spaces, we will follow the monograph [7].

1 The first four-dimensional curl operator

Let us consider the four-dimensional case of the spectral problem (A). We start from the case of
the four-dimensional rectangular parallelepiped.

Let Ω4 = {x0 < x < x1, y0 < y < y1, z0 < z < z1, ζ0 < ζ < ζ1} be a rectangular parallelepiped,
where x0, x1, y0, y1, z0, z1, ζ0, ζ1 are given.

Problem 1.1. Find the vector function ~U(x, y, z, ζ) for the given solenoidal vector function ~w(x, y, z, ζ),
i.e.

curl ~U(x, y, z, ζ) = ~w(x, y, z, ζ), div ~w(x, y, z, ζ) = 0, (x, y, z, ζ) ∈ Ω4, (1)

where ~U = {U1, U2, U3, U4, U5, U6}, ~w = {w1, w2, w3, w4},

Uk ∈W 2
2(Ω4), k = 1, 2, 3, 4, 5, 6; wj ∈W 1

2(Ω4), j = 1, 2, 3, 4. (2)

We introduce the first four-dimensional curl operator in the following way

~w = curl ~U =


−∂yU1 − ∂zU2 − ∂ζU3

∂xU1 + ∂ζU5 − ∂zU6

∂xU2 + ∂yU6 − ∂ζU4

∂xU3 + ∂zU4 − ∂yU5

 , div curl ~U = 0. (3)

Remark 1. The curl operator in equation (3) acts on a six-dimensional vector ~U , which, in par-
ticular, corresponds to the following vector composed of the intensity vectors of the electric field
~E and the magnetic field ~H: ~E = {E1, E2, E3}, ~H = {H1, H2, H3} [1; 149, 274] namely, ~U =
= {E1, E2, E3, H1, H2, H3}.
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We introduce the following notations

y = x1, z = x2, ζ = x3, x = x4,

Uk = Ek = icε0Ek, Uk+3 = Hk = 1
µ0
Bk, k = 1, 2, 3,

w4 = %
ε0
, wk = jk, k = 1, 2, 3,

(4)

where Ek, k = 1, 2, 3 are the components of the electric field intensity vector, Bk, k = 1, 2, 3 are
the components of the magnetic field intensity vector, c is the speed of light in a vacuum, ε0 is the
dielectric constant in a vacuum, µ0 is the magnetic permeability in a vacuum, % is the charge density,
~j = {j1, j2, j3} is the electric current density vector, and i =

√
−1.

Proposition 1. According to (3)–(4) and [1; 149] we will have Maxwell’s equations for the electro-
magnetic field in a vacuum: 

−icε0∂x1E1 + 1
µ0
∂x3B3 − 1

µ0
∂x4B2 = j1,

−icε0∂x1E2 + 1
µ0
∂x4B1 − 1

µ0
∂x2B3 = j2,

−icε0∂x1E3 + 1
µ0
∂x2B2 − 1

µ0
∂x3B1 = j3,

icε0∂x1E1 + icε0∂x2E2 + icε0∂x3E3 = %
ε0
,

(5)



∂x2B1 + ∂x3B2 + ∂x4B3 = 0,

∂x4B1 + i
c∂x3E2 − i

c∂x2E3 = 0,

∂x4B2 + i
c∂x1E3 − i

c∂x3E1 = 0,

∂x4B3 + i
c∂x2E1 − i

c∂x1E2 = 0.

(6)

Proof of Proposition 1. Indeed, if according to (3)–(4) and [1; 149] we introduce new independent
variables instead of the spacetime coordinates (x, y, z, t) as

x1 = x, x2 = y, x3 = z, x4 = ict, (7)

where c is the speed of light in a vacuum, one can observe a remarkable symmetry in Maxwell’s
equations describing the electromagnetic field.

With the notation (7), the equations satisfied by the electrodynamic potentials (V,A1, A2, A3) can
be written as: {

∂2
x1Ak + ∂2

x2Ak + ∂2
x3Ak + ∂2

x4Ak = −µ0jk,

∂2
x1V + ∂2

x2V + ∂2
x3V + ∂2

x4V = − %
ε0
,

where k = 1, 2, 3, and the Lorentz condition can be written as:

∂x1A1 + ∂x2A2 + ∂x3A3 +
i

c
∂x4V = 0.

Introducing the notation

Φk = Ak, k = 1, 2, 3; Φ4 =
i

c
V, (8)

the relations between the electromagnetic field vectors ~E = {E1, E2, E3}, ~B = {B1, B2, B3}, and the
potentials V, ~A = {A1, A2, A3}:

~E = −∇V − ~A, ~B = ∇× ~A,
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can be written as follows: {
Ek = −∂xkV + c

i∂x4Ak, k = 1, 2, 3,

Bj = ∂xkAl − ∂xlAk, j, k, l = 1, 2, 3,

or, taking into account (8), we will have{
− i
cEk = ∂xkΦ4 − ∂x4Φk, k = 1, 2, 3,

Bj = ∂xkΦl − ∂xlΦk, j, k, l = 1, 2, 3.
(9)

Considering the right-hand side of the relations (9), we will define the elements of the matrix Fµν
using Table 1.

T a b l e 1

Matrix Fµν

µ || ν 1 2 3 4

1 0 B3 −B2 −(i/c)E1

2 −B3 0 B1 −(i/c)E2

3 B2 −B1 0 −(i/c)E2

4 (i/c)E1 (i/c)E2 (i/c)E3 0

Therefore, we have
F12 = B3, F13 = −B2, F23 = B1,

F14 = − i
cE1, F24 = − i

cE2, F34 = − i
cE3,

and we confirm the validity of the conditions

Fµν = −Fνµ.

In these notations, the relations (9) will be written as:

Fµν = ∂xµΦν − ∂xνΦµ, µ, ν = 1, 2, 3, 4. (10)

From here, according to (3)–(4), we obtain the equations (5).
It remains to establish the equations (6). From (10), we obtain

∂xλFµν + ∂xνFλµ + ∂xµFνλ = 0, λ, µ, ν = 1, 2, 3, 4. (11)

It can be verified that, according to Table 1, the relations (11) are equivalent to the relations (6).

On the other hand, taking into account the notations (4) we can now write the spectral problem
for the Stokes operator corresponding to the equations (5). We have

−∆~w(x) +∇p(x) = µ2w(x), x ∈ Ω4,

div{~w(x)} = 0, x ∈ Ω4,

~w(x) = 0, x ∈ ∂Ω4,

(12)

where, when returning from the notation of independent variables (x1, x2, x3, x4) to the notation
(x, y, z, ζ):

x = x1, y = x2, z = x3, ζ = x4,
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we get

w4(x, y, z, ζ) =
%(x, y, z, ζ)

ε0
, wk(x, y, z, ζ) = jk(x, y, z, ζ), k = 1, 2, 3,

p(x, y, z, ζ) is the scalar function of the artificial pressure.

Let us introduce the notation for the spaces

W2
2(Ω4) =

(
W 2

2(Ω4)
)6
, W1

2(Ω4) =
(
W 1

2(Ω4)
)4
. (13)

Proposition 2. In the notation (4), the following equality of the sets holds [5; 470]:

curl
{
W2

2(Ω4)
}

= W(Ω4) =
{
~w ∈W1

2(Ω4), div ~w = 0
}
. (14)

Proposition 3. If U1 = U2 = U3 = U4 = U5 = U6 = U(x, y, z, ζ) ∈ W 2
2(Ω4), then instead of (14)

we obtain:
~w ∈W0(Ω4) = curl{~U}|U1=U2=U3=U4=U5=U6=U∈W2

2(Ω4) ⊂W(Ω4).

The following statement has been proven.

Proposition 4. For each four-dimensional vector function ~w(x, y, z, ζ) ∈ W(Ω4) (14), there exists
a six-dimensional vector function ~U(x, y, z, ζ) ∈W2

2(Ω4) (13) that satisfies the relations (1)–(3). The
converse statement is also true: for each six-dimensional vector function ~U(x, y, z, ζ) ∈W2

2(Ω4) (13),
there exists a four-dimensional vector function ~w(x, y, z, ζ) ∈W(Ω4) (14) that satisfies the relations
(1)–(3).

Now we turn to the case of the four-dimensional cube Ω = {0 < x, y, z, ζ < l}.
Let U1 = U2 = U3 = U4 = U5 = U6 = U,

~U = {U,U, U, U, U, U}, (x, y, z, ζ) ∈ Ω, (15)

then we have:
~U(x, y, z, ζ) = {U,U, U, U, U, U},

~w(x, y, z, ζ) = {w1, w2, w3, w4}.

We introduce the curl operator (3) for the “four-dimensional cube” Ω under the condition (15) in
the following way

~w = curl ~U =


(−∂y − ∂z − ∂ζ)U

(∂x + ∂ζ − ∂z)U
(∂x + ∂y − ∂ζ)U
(∂x + ∂z − ∂y)U

 , div curl ~U = 0.

In this case, the spectral problem for the Stokes operator (12) takes the form:

(−∆)2U = λ2(−∆)U, (x, y, z, ζ) ∈ Ω,

U = ∂~nU = 0, (x, y, z, ζ) ∈ ∂Ω,

where λ2 = 3µ2 and ~n is the outward unit normal to ∂Ω.
The spectral problem (A1), along with its extensions to polyharmonic operators, has been the

subject of extensive research [8–11]. It has been shown that an explicit solution for a square domain
is unattainable due to the failure of the separation of variables method in this case. The only known
exceptions are circular and spherical domains [12–14]. In [15], lower bounds for the first eigenvalue
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of problem (A1) were derived for various manifolds. Numerical approximations of problem (A1) are
provided in [16,17]. Various issues of biharmonic operators were also studied in [18–20].

Let us replace the biharmonic operator in the problem (12) with a fourth-order differential operator.
Problem 1.1.

(∂4
x + ∂4

y + ∂4
z + ∂4

ζ )U = λ2(−∆)U, (x, y, z, ζ) ∈ Ω, (16)

U|∂Ω = ∂~nU|∂Ω = 0. (17)

The spaces V1(Ω) and V2(Ω), with dim = 4. Let V1(Ω) and V2(Ω) denote the spaces equipped with
the scalar products: (∇u,∇v)L2(Ω) ∀u, v ∈

◦
W1

2(Ω) and ((u, v))
def
=
(
∂2
xu, ∂

2
xv
)
L2(Ω)

+
(
∂2
yu, ∂

2
yv
)
L2(Ω)

+

+
(
∂2
zu, ∂

2
zv
)
L2(Ω)

+
(
∂2
ζu, ∂

2
ζ v
)
L2(Ω)

∀u, v ∈
◦
W2

2(Ω).

We will show that the set of “generalized eigenfunctions” of the inverse operator T−1 to the operator
from (20), belonging to the space V2(Ω), forms an orthonormal basis in the space V1(Ω).

For this purpose, we will consider the following auxiliary boundary value problem.(
∂4
x + ∂4

y + ∂4
z + ∂4

ζ

)
u(x, y, z, ζ) = (−∆)h(x, y, z, ζ) in Ω, (18)

u(x, y, z, ζ) = ∂~nu(x, y, z, ζ) = 0 on ∂Ω, (19)

which, in operator form, is expressed as:
Tu = B1h, (20)

T ∈ L (
◦
W

2
2(Ω);W−2

2 (Ω)), B1 ∈ L (L2(Ω);W−2
2 (Ω)).

Let h ∈ L2(Ω), i.e. B1h ∈ W−2
2 (Ω). Then the boundary value problem (18)–(19) (or (20)) can be

written as the following (highlighted) identity:

〈Tu, v〉 def
= ((u, v)) = 〈B1h, v〉

def
= (h,−∆v)

L2(Ω)
∀ v(x, y, z, ζ) ∈ V2(Ω), (21)

where

((u, v))
def
=
(
∂2
xu, ∂

2
xv
)
L2(Ω)

+
(
∂2
yu, ∂

2
yv
)
L2(Ω)

+
(
∂2
zu, ∂

2
zv
)
L2(Ω)

+
(
∂2
ζu, ∂

2
ζ v
)
L2(Ω)

, (22)

((u, u)) ≥ 1

2
‖∆u‖2L2(Ω). (23)

Remark 2. According to (24) from [7; 117, 125] for convex bounded domains x = (x1, ..., xd) ∈ Ω ⊂ Rd,
d ≥ 2, with a piecewise smooth boundary ∂Ω, the following inequality holds:

‖uxx‖L2(Ω) ≤ C‖∆u‖L2(Ω), ∀u ∈W 2
2,0(Ω) ≡W 2

2(Ω)∩
◦
W

1
2(Ω); (24)

(u, v)
(2)
2,Ω =

∫
Ω

(uv + uxvx + uxxvxx) dx, uxx =
(
uxjxk

)
, j, k = 1, ..., d,

therefore, due to the inequalities (24) and (23), the equivalent norm (22) is defined in the space
W 2

2(Ω)∩
◦
W1

2(Ω). This norm induces an equivalent norm on the subspace
◦
W2

2(Ω) ⊂W 2
2,0(Ω).

Theorem 1. Let h ∈ L2(Ω)), i.e. B1h ∈W−2
2 (Ω). Then the boundary value problem (16)–(17) has

a unique solution u ∈ V2(Ω).

Remark 3. The statement of Theorem 1 remains valid if h ∈ W 2
2,0(Ω), i.e., Bh ∈ L2(Ω), where

B ∈ L (W 2
2,0(Ω);L2(Ω)).
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Remark 4. According to (23) and (24) for the continuous bilinear functional ((u, v)) (22), the
condition of positive definiteness holds:

((u, u)) ≥ K‖u‖2V2(Ω) ∀u ∈ V2(Ω). (25)

Theorem 2. Let the operator B in the spectral problem (16)–(17) be defined as in Remark 3:
B ∈ L (W 2

2,0(Ω);L2(Ω)). Then the operator T−1:

T−1 : L2(Ω)→ V2(Ω) ⊂ L2(Ω)

is self-adjoint and compact, as it acts in the space L2(Ω), i.e. the set of “generalized eigenfunctions”
of the operator T−1, belonging to the space V2(Ω), forms an orthonormal basis in the space V1(Ω).

Proof of Theorem 1. The statement of Theorem 1 follows from (21), (23), (25), and the continuity
of the bilinear functional (22) in the space

◦
W2

2(Ω) [21; 629, 653]. Definition of condition (E) [22; 169]:
positive definiteness of the principal self-adjoint part of the system — the ellipticity condition for one
equation.

Proof of Theorem 2. To prove Theorem 2, let us consider the mapping T−1 : Bh→ u, defined from
the statement of Remark 3 to Theorem 1. It is linear and acts continuously from L2(Ω) to V2(Ω). Due
to the compact embedding V2(Ω) ↪→ L2(Ω), the linear operator T−1, considered as a linear operator
on L2(Ω), is compact. This operator is also self-adjoint (“relative to the operator B”) because

(T−1Bh1, Bh2)L2(Ω) = ((u1, u2)) =
(
Bh1, T

−1Bh2

)
L2(Ω),

where
T−1Bhi = ui, Bhi∈ L2(Ω), T−1Bhi∈ V2(Ω), i = 1, 2.

Consequently, the operator T−1 possesses a complete orthonormal sequence of “generalized eigenfun-
ction” (see the formulas below in (27)): vj ∈ V2(Ω),

T−1Bvj = λ−2
j vj , j ≥ 1, λ−2

j > 0, λ−2
j → +0, j → +∞. (26)

By multiplying equatio (26) scalarly by Tv, we obtain

vj ∈ V2(Ω), ((vj , v)) = λ2
j (∇vj ,∇v)L2(Ω), ∀ v ∈ V2(Ω), (27)

where j ≥ 1, λ2
j > 0, λ2

j → +∞, j → +∞, we indeed have

(vj , T v)L2(Ω) = ((vj , v)) = λ2
j (Bvj , v)L2(Ω) = λ2

j (∇vj ,∇v)L2(Ω).

From the underlined identity (which coincides with (27)), we obtain, as usual:

(∇vj ,∇vk)L2(Ω) = δjk, ((vj , vk)) = λ2
jδjk, ∀ j, k.

This completes the proof of Theorem 2.

Theorem 3. The spectral problem (16)–(17) has the following solution:

Un(x, y, z, ζ) = Xn(x)Yn(y)Zn(z)Υn(ζ), λ2
n, n ∈ N, (28)

where Xn(x) = Φn(σ)|σ=x, Yn(y) = Φn(σ)|σ=y, Zn(z) = Φn(σ)|σ=z, Υn(ζ) = Φn(σ)|σ=ζ are defined as
follows 

Φ2n−1(ζ) = sin2 λ2n−1ζ
2 , λ2

2n−1 =
(

2(2n−1)π
l

)2
, n ∈ N,

Φ2n(ζ) = [λ2nl − sinλ2nl] sin2 λ2nζ
2 − sin2 λ2nl

2 [λ2nζ − sinλ2nζ] ,

λ2
2n =

(
2νn
l

)2
, n ∈ N,

(29)

and {νn, n ∈ N} are the positive roots of the equation tan ν = ν, and µ2
n = λ2

n/3, n ∈ N.
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The arrangement of eigenvalues on the positive half-axis is shown in Figure 1 (here l = 2).

Figure 1. The positive roots of the equations (for l = 2):
tan νn = νn, νn = λnl

2 = λn; sinλn = 0, n ∈ N.

From Figure 1 we get:

0 < λ1 = π < λ2 =
3π

2
− ε1 < λ3 = 2π < λ4 =

5π

2
− ε2 <

< λ5 = 3π < λ6 =
7π

2
− ε3 < λ7 = 4π < ...

Next, from Theorem 1, we obtain:

Corollary 1. The eigenvalues {λ2n, n ∈ N} are ordered as follows:

0 < λ2n =
2νn
l
<

(2n+ 1)π

2
, ∀n ∈ N,

λ2n =
2νn
l
→ (2n+ 1)π

2
, n→∞,

where {νn, n ∈ N} are the positive roots of the equation tan ν = ν.

Theorem 4. The system of functions {Un(x, y, z, ζ)}∞n=1 ⊂ V2(Ω), defined by the relations (28)–(29),
forms a complete orthogonal sequence of “generalized eigenfunctions” in the space V1(Ω).

Let us introduce the notations:
◦
W

2
2(Ω) = (

◦
W

2
2(Ω))6 ,

◦
W

1
2(Ω) = (

◦
W

1
2(Ω))4 , (30)

◦
W(Ω) = {~w ∈

◦
W

1
2(Ω), div ~w = 0} . (31)
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Proposition 5. For each four-dimensional vector-function ~w(x, y, z, ζ) ∈ (V1(Ω))4, satisfying the
condition div~w(x, y, z, ζ) = 0, there exists a unique six-dimensional vector-function ~U(x, y, z, ζ) ∈
(V2(Ω))6. The converse statement is also true.

The validity of Proposition 5 directly follows from the proof of Proposition 4.

Proposition 6. The equality of sets holds [5; 470]:

curl{
◦
W

2
2(Ω)} =

◦
W(Ω).

Let H(Ω) denote the space of solenoidal functions, defined as follows:

H(Ω) = {~w| ~w ∈ L2(Ω), div ~w = 0, ~w · ~n|∂Ω = 0}, L2(Ω) = (L2(Ω))4, (32)

where ~w · ~n is the normal component of the vector ~w.

Proposition 7. If U1 = U2 = U3 = U4 = U5 = U6 = U(x, y, z, ζ) ∈
◦
W2

2(Ω), then we get

~w ∈
◦
W0(Ω) = curl{~U}

|U1=U2=U3=U4=U5=U6=U∈
◦
W 2

2(Ω)
⊂
◦
W(Ω).

Next, we introduce the extended system of functions
{
U1
m(x, y, z, ζ)

}∞
m=0

, where

U1
0 (x, y, z, ζ) ≡ 0, U1

m(x, y, z, ζ) = Um(x, y, z, ζ), m ∈ N,

and construct vector-functions

~U1
mjkqrs(x, y, z, ζ) =

{
U1
m, U

1
j , U

1
k , U

1
q , U

1
r , U

1
s

}
∈
◦
W

2
2(Ω), (33)

where m, j, k, q, r, s ∈ N0 = N∪ {0}, which, as is evident, will form a fundamental system in the space
V1(Ω) = (V1(Ω))6.

Theorem 5. By applying the curl operator from (3) to the extended system of vector-functions (33),
we obtain the desired fundamental system (m, j, k, q ∈ N0):

~wmjkqrs(x, y, z, ζ) = {w1,mjk, w2,mrs, w3,jsq, w4,kqr} ∈
◦
W(Ω) (34)

in the space of solenoidal functions H(Ω) (32), where

w1,mrs(x, y, z, ζ) = ∂xU
1
m + ∂ζU

1
r − ∂zU1

s , (x, y, z, ζ) ∈ Ω, m, r, s ∈ N0,

w2,jsq(x, y, z, ζ) = ∂xU
1
j + ∂yU

1
s − ∂ζU1

q , (x, y, z, ζ) ∈ Ω, j, s, q ∈ N0,

w3,kqr(x, y, z, ζ) = ∂xU
1
k + ∂zU

1
q − ∂yU1

r , (x, y, z, ζ) ∈ Ω, k, q, r ∈ N0,

w4,mjk(x, y, z, ζ) = −∂yU1
m − ∂zU1

j − ∂ζU1
k , (x, y, z, ζ) ∈ Ω, m, j, k ∈ N0,

div ~wmjkqrs(x, y, z, ζ) = 0, (x, y, z, ζ) ∈ Ω, m, j, k, q, r, s ∈ N0, (35)

~wmjkqrs(x, y, z, ζ) = 0, (x, y, z, ζ) ∈ ∂Ω, m, j, k, q, r, s ∈ N0. (36)

Proof of Theorem 5. From the formulas defining the vector-function (34), we sequentially obtain:

|w1 − wε1|2 ≤ 3
[
|∂x(U1 − U ε1 )|2 + |∂ζ(U5 − U ε5 )|2 + |∂z(U6 − U ε6 )|2

]
,

|w2 − wε2|2 ≤ 3
[
|∂x(U2 − U ε2 )|2 + |∂y(U6 − U ε6 )|2 + |∂ζ(U4 − U ε4 )|2

]
,

|w3 − wε3|2 ≤ 3
[
|∂x(U3 − U ε3 )|2 + |∂z(U4 − U ε4 )|2 + |∂y(U5 − U ε5 )|2

]
,
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|w4 − wε4|2 ≤ 3
[
|∂y(U1 − U ε1 )|2 + |∂z(U2 − U ε2 )|2 + |∂ζ(U3 − U ε3 )|2

]
,

i.e.,
‖~w − ~wε‖L2(Ω) ≤ 2

√
3‖~U − ~U ε‖V1(Ω) ≤ 2

√
3 ε,

where, first, according to Proposition 4, for each vector-function ~w(z, y, z, ζ) ∈
◦
W(Ω) from (31), there

corresponds a unique vector-function ~U(z, y, z, ζ) ∈
◦
W2

2(Ω) (30).
Secondly, the finite sum

~U ε(x, y, z, ζ) =

Nε∑
n=0

an~U
1
n(x, y, z, ζ), Nε <∞,

ensuring the fulfillment of inequality

‖~U(x, y, z, ζ)− ~U ε(x, y, z, ζ)‖V1(Ω) ≤ ε

corresponds to the sum defined by the formulas:

~w ε(x, y, z, ζ) =

Nε∑
n=0

an ~wn(x, y, z, ζ), Nε <∞,

and satisfying inequality:

1

2
√

3
‖~w(x, y, z, ζ)− ~w ε(x, y, z, ζ)‖H(Ω) ≤ ‖~U(x, y, z, ζ)− ~U ε(x, y, z, ζ)‖(V1(Ω))6 ≤ ε,

due to the fact that equality

‖~w(x, y, z, ζ)− ~w ε(x, y, z, ζ)‖L2(Ω) = ‖~w(x, y, z, ζ)− ~w ε(x, y, z, ζ)‖H(Ω)

and identity
‖~w − ~w ε‖

H⊥ (Ω)
= 0, L2(Ω) = H(Ω)⊕H⊥(Ω)

hold. The relations (28)–(31) show that the system of four-dimensional vector-functions

{~wn(x, y, z, ζ)}∞n=0 ⊂ (V1(Ω))4,

forms a fundamental system in the space of solenoidal vector fields H(Ω), satisfying the condition

div ~wn(x, y, z, ζ) = 0.

This concludes the proof of Theorem 5.

Proposition 8. Any vector-functions of the form

~w(x, y, z, ζ) = {0, 0, 0, w4(x, y, z, ζ)} ,

~w(x, y, z, ζ) = {0, 0, w3(x, y, z, ζ), 0} ,
~w(x, y, z, ζ) = {0, w2(x, y, z, ζ), 0, 0} ,
~w(x, y, z, ζ) = {w1(x, y, z, ζ), 0, 0, 0} ,

from the space (
◦
W1

2(Ω))4 (where the functions w1(x, y, z, ζ), w2(x, y, z, ζ), w3(x, y, z, ζ) and w4(x, y, z)
are identically nonzero) cannot be solenoidal, i.e., they will not satisfy both the equation (incompress-
ibility condition of the incompressible fluid) div ~w(x, y, z, ζ) = 0 (35) and the boundary condition (36).

Thus, we have constructed a fundamental system in the space of solenoidal functions for a four-
dimensional “cubic” domain.
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2 The second four-dimensional curl operator for a 4-D domain

Let us formulate Problem 1.1 for the second four-dimensional curl operator. We start from the
case of the four-dimensional rectangular parallelepiped, dim Ω4 = 4.

Problem 2.1. Find the vector-function ~U(x, y, z, ζ) for a given solenoidal vector-function ~w(x, y, z, ζ),
i.e.

curl ~U(x, y, z, ζ) = ~w(x, y, z, ζ), div ~w(x, y, z, ζ) = 0, (x, y, z, ζ) ∈ Ω4, (37)

where ~U = {U1, U2, U3, U4}, ~w = {w1, w2, w3, w4},

Uj ∈W 2
2(Ω4), wj ∈W 1

2(Ω4), j = 1, 2, 3, 4. (38)

We introduce curl operator [5; 141] in the following way

~w = curl ~U =


∂yU3 − ∂zU2 − ∂ζU2

∂zU4 − ∂ζU3 − ∂xU3

∂ζU1 + ∂xU2 − ∂yU4

∂xU2 + ∂yU3 − ∂zU1

 , div curl ~U = 0. (39)

We recall the notation for the spaces

W2
2(Ω4) =

(
W 2

2(Ω4)
)4
, W1

2(Ω4) =
(
W 1

2(Ω4)
)4
. (40)

Proposition 9. If U1 = U2 = U3 = U4 = U(x, y, z, ζ) ∈W 2
2(Ω4), then instead of (14), we obtain:

~w ∈W0(Ω4) = curl{~U}|U1=U2=U3=U4=U∈W2
2(Ω4) ⊂W(Ω4).

The following statement is true.

Proposition 10. For each four-dimensional vector-function ~w(x, y, z, ζ) ∈W(Ω4) (14), there exists a
four-dimensional vector-function ~U(x, y, z, ζ) ∈W2

2(Ω4) (40) that satisfies the relations (37)–(39). The
converse statement is also true: for each four-dimensional vector-function ~U(x, y, z, ζ) ∈W2

2(Ω4) (40),
there exists a four-dimensional vector-function ~w(x, y, z, ζ) ∈ W(Ω4) (14) that satisfies the relations
(37)–(39).

Now we turn to the case of the four-dimensional cube Ω = {0 < x, y, z, ζ < l}.
Let

U1 = U2 = U3 = U4 = U, ~U = {U,U, U, U}, (x, y, z, ζ) ∈ Ω, (41)

then we have
~U(x, y, z, ζ) = {U,U, U, U},

~w(x, y, z, ζ) = {w1, w2, w3, w4}.

The curl operator (39) for the “four-dimensional cube” Ω under the condition (41).

~w = curl ~U =


(∂y − ∂z − ∂ζ)U
(∂z − ∂ζ − ∂x)U

(∂ζ + ∂x − ∂y)U
(∂x + ∂y − ∂z)U

 , div curl ~U = 0.

In this case, the spectral problem for the Stokes operator (A) takes the form:

∆(∆− S)U = µ2(−∆ + S)U, (x, y, z, ζ) ∈ Ω, (42)
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U = ∂~nU = 0, (x, y, z, ζ) ∈ ∂Ω, (43)

S =
4

3

(
∂2
xz + ∂2

yz + ∂2
yζ − ∂2

xζ

)
, (44)

where ~n is the outward unit normal to ∂Ω.
In equation (42), let the operator S ≡ 0, and then replace the resulting biharmonic operator (−∆)2

with a fourth-order differential operator. As a result, instead of the spectral problem (42)–(44), we
obtain the spectral problem (16)–(17) with λ2 = µ2, for which Theorems 3 and 4 remain valid.

Let us introduce the notations:

◦
W

2
2(Ω) = (

◦
W

2
2(Ω))4 ,

◦
W

1
2(Ω) = (

◦
W

1
2(Ω))4 , (45)

◦
W(Ω) = {~w ∈

◦
W

1
2(Ω), div ~w = 0} . (46)

Proposition 11. For each four-dimensional vector-function ~w(x, y, z, ζ) ∈ (V1(Ω))4, satisfying the
condition div~w(x, y, z, ζ) = 0, there exists a unique four-dimensional vector-function ~U(x, y, z, ζ) ∈
(V2(Ω))6. The converse statement is also true.

The validity of Proposition 11 directly follows from the proof of Proposition 10.

Proposition 12. If U1 = U2 = U3 = U4 = U(x, y, z, ζ) ∈
◦
W2

2(Ω), then we get:

~w ∈
◦
W0(Ω) = curl{~U}

|U1=U2=U3=U4=U∈
◦
W 2

2(Ω)
⊂
◦
W(Ω).

Next, we introduce the extended system of functions
{
U1
m(x, y, z, ζ)

}∞
m=0

, where

U1
0 (x, y, z, ζ) ≡ 0, U1

m(x, y, z, ζ) = Um(x, y, z, ζ), m ∈ N,

and construct vector-functions

~U1
mjkq(x, y, z, ζ) =

{
U1
m, U

1
j , U

1
k , U

1
q

}
∈
◦
W

2
2(Ω), (47)

m, j, k, q ∈ N0 = N∪{0}, which, as evident, will form a fundamental system in the spaceV1(Ω) = (V1(Ω))4.

Theorem 6. By applying the curl operator from (39) to the extended system of vector-functions (47),
we obtain the desired fundamental system (m, j, k, q ∈ N0):

~wmjkq(x, y, z, ζ) = {w1,kjj , w2,qkk, w3,mjq, w4,jkm} ∈
◦
W(Ω) (48)

in the space of solenoidal functions H(Ω) (32), where

w1,kjj(x, y, z, ζ) = ∂yU
1
k − ∂zU1

j − ∂ζU1
j , (x, y, z, ζ) ∈ Ω, j, k ∈ N0,

w2,qkk(x, y, z, ζ) = ∂zU
1
q − ∂ζU1

k − ∂ζU1
k , (x, y, z, ζ) ∈ Ω, k, q ∈ N0,

w3,mjq(x, y, z, ζ) = ∂ζU
1
m + ∂xU

1
j − ∂yU1

q , (x, y, z, ζ) ∈ Ω, m, j, q ∈ N0,

w4,jkm(x, y, z, ζ) = ∂xU
1
j + ∂yU

1
k − ∂zU1

m, (x, y, z, ζ) ∈ Ω, m, j, k ∈ N0,

div ~wmjkq(x, y, z, ζ) = 0, (x, y, z, ζ) ∈ Ω, m, j, k, q ∈ N0, (49)

~wmjkq(x, y, z, ζ) = 0, (x, y, z, ζ) ∈ ∂Ω, m, j, k, q ∈ N0. (50)
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Proof of Theorem 6. From the formulas defining the vector-function (48), we sequentially obtain

|w1 − wε1|2 ≤ 3
[
|∂y(U3 − U ε3 )|2 + |∂z(U2 − U ε2 )|2 + |∂ζ(U2 − U ε2 )|2

]
,

|w2 − wε2|2 ≤ 3
[
|∂x(U3 − U ε3 )|2 + |∂z(U4 − U ε4 )|2 + |∂ζ(U3 − U ε3 )|2

]
,

|w3 − wε3|2 ≤ 3
[
|∂x(U2 − U ε2 )|2 + |∂y(U4 − U ε4 )|2 + |∂ζ(U1 − U ε1 )|2

]
,

|w4 − wε4|2 ≤ 3
[
|∂x(U2 − U ε2 )|2 + |∂y(U3 − U ε3 )|2 + |∂z(U1 − U ε1 )|2

]
,

i.e.,
‖~w − ~wε‖L2(Ω) ≤ 2

√
3‖~U − ~U ε‖V1(Ω) ≤ 2

√
3 ε,

where, first, according to Proposition 11, for each vector-function ~w(z, y, z, ζ) ∈
◦
W(Ω) from (46), there

corresponds a unique vector-function ~U(z, y, z, ζ) ∈
◦
W2

2(Ω) (45).
Secondly, the finite sum

~U 1ε(x, y, z, ζ) =

Nε∑
n=0

an~U
1
n(x, y, z, ζ), Nε <∞, (51)

ensuring the fulfillment of inequality

‖~U1(x, y, z, ζ)− ~U 1ε(x, y, z, ζ)‖V1(Ω) ≤ ε, (52)

corresponds to the sum defined by the formulas:

~w ε(x, y, z, ζ) =

Nε∑
n=0

an ~wn(x, y, z, ζ), Nε <∞, (53)

and satisfying inequality:

1

2
√

3
‖~w(x, y, z, ζ)− ~w ε(x, y, z, ζ)‖H(Ω) ≤ ‖~U1(x, y, z, ζ)− ~U 1ε(x, y, z, ζ)‖(V1(Ω))6 ≤ ε, (54)

due to the fact that equality

‖~w(x, y, z, ζ)− ~w ε(x, y, z, ζ)‖L2(Ω) = ‖~w(x, y, z, ζ)− ~w ε(x, y, z, ζ)‖H(Ω),

and identity
‖~w − ~w ε‖

H⊥ (Ω)
= 0, L2(Ω) = H(Ω)⊕H⊥(Ω)

hold.
The relations (51)–(54) show that the system of four-dimensional vector-functions

{~wn(x, y, z, ζ)}∞n=0 ⊂ (V1(Ω))4,

forms a fundamental system in the space of solenoidal vector fields H(Ω), satisfying the condition

div ~wn(x, y, z, ζ) = 0.

This concludes the proof of Theorem 6.
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Proposition 13. Any vector-functions of the form

~w(x, y, z, ζ) = {0, 0, 0, w4(x, y, z, ζ)} ,

~w(x, y, z, ζ) = {0, 0, w3(x, y, z, ζ), 0} ,

~w(x, y, z, ζ) = {0, w2(x, y, z, ζ), 0, 0} ,

~w(x, y, z, ζ) = {w1(x, y, z, ζ), 0, 0, 0} ,

from the space (
◦
W1

2(Ω))4 (where the functions w1(x, y, z, ζ), w2(x, y, z, ζ), w3(x, y, z, ζ) and w4(x, y, z)
are identically nonzero) cannot be solenoidal, i.e. they will not satisfy both the equation
(incompressibility condition of the incompressible fluid) div ~w(x, y, z, ζ) = 0 (49), and the boundary
condition (50).

Thus, we have constructed a fundamental system in the space of solenoidal functions for a “four-
dimensional cubic” domain.

Conclusion

The paper considers two four-dimensional curl operators. The first is the classical one, which is used
in the description of Maxwell’s equations for electromagnetic fields. The second curl operator is new and
has not been known before. Based on these operators, an explicit construction of a fundamental system
in the space of solenoidal functions for the “four-dimensional cube” is obtained. This fundamental
system of functions can be used for the approximate solution of boundary value problems for stationary
and evolutionary Stokes and Navier-Stokes equations. It is worth noting that in the works [23] and [24],
the solution to the spectral problem (A1) for the biharmonic operator in the domain Ω, represented
by a 3-D sphere, was found.
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