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On a necessary condition for belonging of a function to periodic
generalized Nikol’sky-Besov-Morrey space in terms of strong
summability of Fourier series

This paper is dedicated to the investigation of strong summability in the generalized Morrey spaces. First,
we study boundedness of the Hardy-Littlewood maximal function on generalized Morrey spaces. We find a
necessary condition for belonging of a function to the periodic generalized Nikol’skij-Besov-Morrey spaces.
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First we recall the definition of periodic Morrey spaces. As usual, B(z,r) denotes the open ball
with center in z and radius r > 0.
By T? we denote the d-dimensional torus as usually represented by

T¢={x|] z€R? —n<z;<m j=1,..,d},

where opposite sides are identified.

Definition 1. Let 0 <p <ooand 0 < A < 1/p.

We say that a function f: R — C, 27-periodic in each component, belongs to the periodic Morrey
space MI;\ (T4) if f € Ly(B(z,7)) for all z € R? and all 7 > 0 and the following expression is finite

| £ llazy(ray := sup  sup 1B(z, ") 1 flln, (B - (1)
z€RY 0<r<2/dr

Obviously we have Mg("ﬂ‘d) = L,(T9) and M;/ P(T?) = Loo(T9) in the sense of equivalent
norms.

By periodicity it will be enough to restrict the supremum in (1) to x € [—m, x]?.

Generalized Morrey spaces have been introduced independently by Mizuhara [1] and by Nakai [2].
Here the parameter 7 is replaced by a function ¢ : (0,00) — (0,00).

Definition 2. Let 0 < p < oo and let ¢ : (0,00) = (0, 00).

Then the generalized periodic Morrey space M (T¢) is the collection of all functions f : R¢ — C,
2m-periodic in each component, such that f € L,(B(z,7)) for all z € R? and all 7 > 0 and

1

g == s s o) (o [ IflPay)” < oo,
P z€[-m,m|? 0<r<2vdr ’B Z,T ‘ B(z,r)

Clearly, if ¢(r) := |B(0, )| ’\+P r > 0, then we have coincidence M, (T?) = MI;\(Td), in particular,

1
if p(r) :=|B(0,7)|?, r > 0, then M (T?) = L,(T9).
In the definition of generalized Morrey space we assume, that ¢ € G,,.
Definition 3. Let 0 < p < co. Then ¢ : (0,00) — (0,00) belongs to the class Qp, if ¢ is essentlally

nondecreasing and there exist positive constants C’ such that the inequalities t, ” ¢(ts) < C't, * @(t1)
hold for all 0 < t; <ty < o0.
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Furthermore, ¢ € G, for some p implies that ¢ satisfies the doubling condition, that is, there exists
a constant C' > 0 such that é < i(r) < C, holds for all r, s such that % < 2 < 2.

As usual, the symbol C, Cl,C(’;),... denote positive constants which depend only on the fixed
parameters s, p,q and A and probably on auxiliary functions.

In the following statement we give boundedness of the Hardy—Littlewood maximal function on
generalized periodic Morrey space M (T9).

Let f be a complex-valued locally Lebesgue-integrable function on R¢. Then the Hardy-Littlewood
maximal function is given by M f(z) := supg @ fQ |f(y)| dy, z € RY, where the supremum is
taken over all cubes @) centered at x with sides parallel to the coordinate axes.

We have the following statements.

Theorem 1. Let 1 < p < oo and ¢ € G,. Then the Hardy-Littlewood maximal function M is

bounded from M} (T¢) to My (T¢). There exists a constant C' > 0 such that

Jass mogces] < agzms|

holds for all (f;); of measurable functions.
Proof of theorem 1. Let 1 < p < oo and ¢ € G),. We mention that the following inequality

1M fIME (RY)| < Cu (|10 (RY)|

holds for all f of measurable functions. This result was proved in [2] and [3, Theorem 2.3]. To adapt
this inequality to the periodic situation, we mention that for a periodic integrable function f we have

Mf(x) < Cy Mf(a:), T € [—7T,7T]d,
where

9

Py f((l?), if ze€ [_Waﬂ]d
fz) = . d

0, if z¢l[—mmn]
see in [4, 3.2.4 formula (7)]. This implies that the inequality ||M f;| My (T)|| < C1Cx || f;| My (T9)| is
valid for all measurable functions (f;);.

Now we give the definition of the generalized periodic Nikol’skij-Besov-Morrey space N£7p7q(Td).

Let D(T?) be the collection of all complex-valued infinitely differentiable functions on T¢. By D’(T%)
we denote the topological dual of D(T%).

We mention, that Z¢ = {k: k= (ki1,ka,...,kq) € R%, k; —integer}. We associate to f € D'(T¢)
it’s Fourier coefficients by

cx(f) = (27‘(’)70: » f(z) e~ ik) dzx, ke 74,

where (k,z) - scalar product. Every distribution f € D'(T%) can be represented by its Fourier series

f= Z cr(f) e (convergence in  D'(T9)).
kezd

Let p € C§°(RY) be a function such that

p(x) =1 if Jz| <1 and p(x) =0, if x| > g (2)
Then, with ¢ := p, we define
() == do(x/2) — Po(x) and pi(x) =277 x), jeN. (3)
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This implies Y 72 ¢;(x) = 1 for all 2 € R?. We shall call (¢4)520 a smooth dyadic decomposition
of unity.

Definition 4. Let (¢;); be a smooth dyadic decomposition of unity as defined in (2), (3).

Let s € R, 0<p<o00,0<q<o0and ¢ € G, Then generalized periodic Nikol’skij-Besov-Morrey
space N2 (T?) is defined as the set of all f € D’(T¢) such that

®,p,q
LAV g (T —(Zw Z@ petiazg )" < .

Remark.
(i) Taking ¢(r) := |B(0, 7‘)\%, r > 0, we are back in the case of classical periodic Nikol’skij-Besov
spaces, i.e., we have ./\/:"2 », q( d) = B;vq(']Td). These spaces are studied systematically in the monographs
[5] (Nikol’skij-Besov spaces).
(ii) The spaces N3, q(']I'd) will be called generalized periodic Nikol’skij-Besov-Morrey spaces. They
represent the Nikol’skij-Besov scale built on the generalized Morrey space M, (T%). Kozono, Yamazaki
in 1994 and later on Mazzucato [6] have been the first who investigated spaces of this type in the
nonperiodic context. Nikol’skij-Besov-Morrey spaces with respect to generalized Morrey spaces have
been studied by Nakamura, Noi and Sawano [7].

Our main aim in this work is to find necessary condition for belonging a function to generalized
periodic Nikol’skij-Besov-Morrey space.

Let ¢ be a real-valued function defined on R?. We assume v(0) = 1. For a distribution f € D’(T¢)

we introduce associated means M;\b,f(x), N=1,2,..., by
k .
MY f(z) = (7) ke R, N=1.2,. ... 4
Nf(z) gzj v(5) e(f)e s (4)

Of course, (4) makes sense if 1) has compact support or if f € Ly(T%) and Y,z [¢(k/N)| < co. Then

the M}\p, f(x) are trigonometric polynomials.
f0<p<oo 0<qg<ooands > 0, we ask which smoothness properties of a function f €
L1(T%) N M (T9) are implied by the condition

(ZNSQ 1’ — ML f(x) ‘M” Td)‘ >l/q<oo. (5)

For a space L,(T%) such a theorem was proved by H.-J. Schmeisser and W. Sickel [8], in case
©(r) == |B(0,7)| /P and M}\/},f(x) = Sy f(x) was proved in [9].

To attack the described problem we need the following lemma which is taken from [8].
The symbol F refers to the Fourier transform, F~! to its inverse transformation.

Lemma 1. (see in [8]). Let 0 < u <1, £ < X\ < oo and let Cy, Cy constants. Let

(F 7)) <1+ )™ (6)

and suppn C {y| |y| < 2K}, where K =0,1,2, ... is fixed. If f;(z) = ZW:CQQJ- age** 5 =0,1,2, ...,
then there exists a positive constant Cs independent of j, K such that

|3 n@ I R)e(De " < Co 2N (M) @), ()
kezd

holds for all z € T<.
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Theorem, 2. Let (&) be a continuous real-valued function on R? with 1/(0) = 1 and having compact
support. Let 0 < p < 00, 0 < ¢ < 00, ¢ € G, and let A be a real number satisfying A > m. Let
0 < 0 < oo be such that

sup [FHIET7(W(E) = w (O (y) < 11+ |y (8)

1<7<2

for all y € R% If 0 < s < o, then there exists a positive constant Cy such that
> sq—1 P @ md 119 1/q d
(3 NI = MED@)IMETD) ™ < Coll FIN g (T (9)
N=1

holds for all f € N, (T N M (T?).
Proof of Theorem 2.

Step 1. Let f € N3, ,(T%) N M7 (T%). Then we have

Pyq
DN = M) (@) M (T =
N=1
co 20+l
=330 N = My + M f — M3 F)(@)[ Mg (T)7) <
j=0 N=2J
< Cy (D 2(f = Moo f)(@)| M (T)7-+ (10)
j=0
3 974 Mayjii f — MYy M#(T%)||7).
PP e N f =MD @IMET) )
Since s > 0 and f € N$7p7q(Td) N M7 (T?), we have
(f =My f)(@) = D (My, f = My f)(@), (11)
I=j+1

where the series on the right-hand side converges a.e. Let 0 < w < min(1,q). Then, considering
monotonicity of space l,, i.e., [, C Iy, by (11), applying generalized Minkowski inequality for sums
with respect ¢/u > 1, we have

> 20(f — My, f)(@)| Mg (T?)]|? <
=0

oo q/u
<3 (2O i f = M D@ M) <
j=0 =1

U/q>q/u <

< (; 27t ( Z% 20D (M., f = My, £) (@) Mg (T4 |7) (12)
- p=

<Oy Y 2|(My,, — MY f)() [ Mg (T,
j=1
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(11) and (12) lead to
Z NY|(f = MY ) ()| Mg (T 9 < Cs <

N=1

<Cs 22”‘7 Lo (M5 f = My )| M (T (13)

-----

Step 2. Let p € S(R?) such that suppp C {¢] 1/2 < |¢] < 2} and
dop(279) =1, if ¢ > 1.
=0

We put
1r(§) = (&) —9(rE), 1<7<2
If j=0,1,2,...,and N =27, ...,27"L — 1 then it is easy to see that
(M f = MY (@)| < sup | ne(277  R)er(£)e™) (14)

1<7<L2 kezd

The function ¢ has compact support. Hence, there exists a natural number L such that

j+L L

(277 1k) = Zn @7 R)p27R) = Y (27T k) oy (R), (15)

l=—00

where py = 0,1 = —1,-2,..., and p(-) := p(271) if 1 = 0,1,2, ..
Let ¢ > 0. We put following function

=Y 27 R pu(R)er(f)eT, 1=10,%1, ... (16)
kezd
Combining (15) and (16) we obtain

L

> @ Rer(HerT < DT 21 ST 127 kT (27 k) e (i) (R)eRT], (A7)

kezd l=—0c0 kczd

for j = 0,1,2,.... We can choose a positive number u, such that 0 < v < min(1,p,q) and A > n/u.
Then it follows from (8), and applying Lemma 1, with |{|77n,(§) instead of (&), we have

L
> @7 e (Ne*F < Co Y 27(M | fial*) (@), (18)

kezd l=—00

Here the constant Cg depends on L. However, it is independent of 7, j, z and f. Hence, as consequence
of (13),(14),(15) we obtain

00 00 L
>N = MYD@IMEEDI < G Y02 ST 2 ) @l (1)

N=1 §=0 l=—0c0

Step 3. Let s < 0. Let ¢ < 1. Then

L

S S 2 (Mg @) <
j=0

l=—00
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(M[20FD8 50" (@) <

/\
]
=
o)
.
gk

=
<Oy S (M)
If ¢ > 1, we have B
[iysq(li 2o () ()] <
o0\
<y g [ g eyoin() < € [ S pee) .
— j=0 7=0

Applying boundedness of the Hardy-Littlewood maximal function on generalized periodic Morrey space
we have

[ (a1 1)) g | < s 2 slnng ().

Using Theorem 1 and (19) we obtain

(> s - arg @) < co (L2 als@paze) @)
N=1 Jj=0

with a constant C1y independent of f.
Step 4. (16) and the elementary inequality we get

=D 27T pulk) (@) + dioa (k) + iy (k) er(f) e

kezd

For brevity we put

2)= > duk)er(f)e*”,  xeR?, 1eNg.
kezd

Using Lemma 1 with n(§) = [£/2]|7 p(§) and g;(x) instead of fj(x) and Theorem 1, we obtain the
following estimate

(Z%Squg M) < o (S 2 algy ) P @laag o) <

=0
< Cua (X gy @) Mg (1) " = Cuo | FING (T
§=0

for some u < min(1, p). The proof is complete.
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K. 7K. Baiirysakosa

dypbe KaTapJIapbIHBIH, KYINTI KOCBIHABLIIAY T€PMUHIHIET]
b yHKIUSHBIH, TepuoATHI »KaanblianFaH Hukoabckuii-bBecos-Moppnu
KeHICTiriHe TuicTi 60J/1ybIHBIH, KAXKeTTi IapThl TYPaJbl

MakaJjra nepuoaTs! kasmblianran Moppu kenicriringeri @ypbe KarapJiapblH KYIITI KOCBIHIBLIAYFa ap-
HasraH. Ayrramkpeina Xapau-JIuTTiByn MakcuMmasiabl (DYHKIUSICBIHBIH, IIEHETeHIir 3epTresred. Keitin
GYHKIUSHBIH KaanbLianral nepuoarsl Hukonbekuit-BecoB-Moppu kericririne Tricti GOIyBIHBIH KaXKeT-
Ti IAPTHI TAOBLI/IbI.

7K. 7K. Baiityskosa

O HeoOXO0aMMOM yCJIOBUM IIPUHAIJIEXKHOCTH (PYHKIINN
IIePUOINIECKOMY 0OO0OIIEHHOMY ITPOCTPAHCTBY
Hukoabckoro-BecoBa-Moppu B TepMHUHAaX CHJIBHOII CyMMUPYEMOCTH
psigoB Pypbe
CraThst MOCBSIIEHA UCCIIEIOBAHNI0 CUIBHON CyMMUPYEMOCTH psiioB Pypbe B meprogndecKux 0606IEHHBIX
npocrpancrsax Moppu. CHauasia H3ydeHa OrpaHHUeHHOCTh MaKCHMAIbHON dbyHKiun Xapau-JIuTTisya.

3arem HaiteHO HEOOXOAMMOE YCIOBUE Il IPUHAJIEXKHOCTH (DYHKIUH TEPUOJTIECKOMY 0D0BIIIEHHOMY IPO-
crpanctBy Hukosbckoro-Becosa-Moppu.
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