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Local and nonlocal boundary value problems (LNBVPs) related to fourth-order differential equations
(FODEs) were explored. To tackle these problems numerically, we introduce novel compact four-step
difference schemes (DSs) that achieve eighth-order of approximation. These DSs are derived from a novel
Taylor series expansion involving five points. The theoretical foundations of these DSs are validated through
extensive numerical experiments, demonstrating their effectiveness and precision.
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Introduction

In applied sciences, achieving high precision in numerical algorithms is crucial, particularly when
exact solutions are not feasible. Currently, a key focus is on developing and analyzing highly accurate
DSs for ordinary and partial DEs with variable coefficients. Previous research has extensively explored
the use of Taylor series expansions for constructing high-order compact finite DSs. For example,
on two and three points Taylor’s decomposition (TDs) has been used for approximate solutions of
linear ordinary and partial DSs, as detailed in sources [1], [2], [3]. Further advancements include
the use of three-step schemes with fourth-order of accuracy, derived from TDs on four points, for the
numerical solution of several LNBVPs related to third-order DEs, as discussed in [4], [5], and [6]. These
techniques have also been applied to third-order time-varying linear dynamical systems, as evidenced
by the numerical analysis conducted on an up-converter in communication systems.

Recent studies [7] and [8] have expanded this work to include four-step DSs with fourth- and
sixth-order accuracy, generated from TDFPs, specifically for linear ordinary DEs with boundary value
problems (BVPs).

BVPs for ordinary DEs are fundamental in both theoretical and applied contexts, modeling a
wide array of physical, biological, and chemical processes. Notable applications include Timoshenko’s
work on elasticity [9], Soedel’s analysis of structural deformation [10], and Dulacska’s research on soil
settlement effects [11].

The literature on BVPs for higher-order DEs is extensive, including recent contributions [12], [13],
and [14]. For a comprehensive overview of known results and additional references, see the monographs
[15], [16], and paper [17].
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Nonlinear FODESs, often termed beam equations, have also been studied under various boundary
conditions. Zill and Cullen [18] provide a clear discussion and physical interpretation of boundary
conditions for linear beam equations, contrasting with other conditions like conjugate [19], focal [12],
[20], and [21].

In this paper, we introduce new compact eighth-order finite DSs, derived from an innovative TDFPs,
for solving FODEs with variable coefficients.

We consider FSDSs of eighth-order approximation for the numerical solutions of three types of
BVPs

{ u®(s) + a(s)u(s) = F (s),0 < s < 7T, (1)
U(O) = QD,'LL(I) (O) =1nu T) =W, uV) (T) =0
{ u®(s) +a(s)u(s) = F(s),0 <s <7, @)
u(O) =¥, U(O) =1, U(T) = wvu(2)(T) =0
{ u®(s) +a(s)u(s) = F(s),0<s < T, (3)
U(O) - 907'”(3) (O) = nau(T) =w, u(S)(T) =0
and of the nonlocal BVP
{ u(s) + () (s):F(s),0<s<T,u(O):uT)+ , (4)
utD(0) = M () +17,u®(0) = (1) + w,u®(0) = u®(T) + 0

for the FODEs. We introduce the uniform grid space
[O,T]h = {yk = k‘h,/{ = 0,1,'-- ,N,Nh = T}

The primary objective of this paper is to develop highly accurate four-step DSs for solving local and
nonlocal FODEs. We introduce eighth-order accurate DSs generated by a new technique based on a
five-point stencil: yg+2, yr+1, and y within the interval [0, Y];,. The theoretical underpinnings of these
schemes are corroborated by numerical experiments. The structure of the paper is as follows: Section
1 details the construction of the new technique using five points. Sections 2 through 5 explore local

BVPs (1), (2), (3) and a nonlocal BVP (4).

1 A new TDFPs

The design of eighth order of approximation DSs for the numerical solutions of the LNBVPs (1),
(2), (3), and (4) is based on the subsequent theorem on new TDFPs.

Theorem 1.1. Let W (y) be a function defined on the interval [0, Y] with a continuous twelfth
derivative. Then the subsequent relation is satisfied:

W= (W (yry2) — AW (1) + 6W (yx) — 4W (gr—1) + W (yx—2)) (5)
76 9 1
2w (4) (4) (W9 4)
105V W) + =g (W (k1) + W ye-1)) + 750 (W (Wer2) + W (5—2))
T ap®) 8
Proof. By applying Taylor’s formula, we obtain
h=H (W (yky2) — AW (yrs1) + 6W (yr) — 4W (yx—1) + W(yk—Z)) (6)

1 1
= WO () + WO () 2 4+ WO () 4 OO (51) 2B 4 o).

716
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Applying the method of undetermined coefficients(MUCs), we will aim to find
W= W (yrra) — 4W (1) + 6W (yx) — 4W (yx—1) + W (yr—2))
—aW (y) = BOVD (gs1) + W (ye1)) = vy (WD (grey2) + WO (g—2)) — dn* WS () = o(h®).
Utilizing Taylor’s formula, we derive

aW W (y) + BV (ypei1) + WD (1)) + (WD (gr2) + WD (y5_2))

= (0 26+ 2) WO (i) + (5 + 40)WO () + (158 + 57 WO i)’

27
B W h + o).

Using formula (6) and above formula , we get
h™H (W (Yr2) — AW (yh1) + 6W (yx) — AW (yr—1) + W (y1—2))
—aW W () = BOVD (1) + WD (gr-1)) = vV () + W (- 2)) = dh'W® (yy)

=(1—a—28-2)WW(y) + (1 — B —4y)WO) (y)h2 + ($ B ﬁﬁ B 77 WOt
17 1
Cr i gv) WO ()10 + o(h®).

By setting the coefficient of the lowest power of h to zero, we derive the following system of algebraic
equations(SAEs).
a+268+2y=1,

%12,3 + %Q’Z +d ?é,
mﬁ + &7 = 76
Upon resolving this SAEs, we find o B = 9 = d il The relation (5) is
n resolvi i 5, W = = =—,d=———. relati i
p g ) 7 7 f)/ 1057 1680

obtained. Theorem 1.1 is established.

Theorem 1.2. Let W (y) be a function defined on the interval [0, Y] with a continuous fifth deriva-
tive. Then the subsequent relation holds:

o (W () = W (1)) — 17

Proof. By applying Taylor’s formula, we obtain

WO () = BW (1) = W (gr-1)) +7 (W (yrs2) = W (g-2)) + 0 (h?) .

Utilizing Taylor’s formula, we derive

W (yy) = (W (yrs2) — W (yi—2)) + o (h). (7)

(07— 28+ )W () it (o + )W (g4) B+ (5 +7)o(?).

By setting the coefficient of the lowest power of h to zero, we derive the following SAEs.

{ 2ﬁ+47 =h1,
315"‘ 317 0.

Upon resolving this SAEs, we find § = %h_l, v = —ﬁh_l. So, relation (7) is proved. Theorem 1.2 is
established.
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Theorem 1.3. Let W (y) be a function defined on the interval [0, Y] with a continuous sixth deriva-
tive. Then the subsequent relation holds:

4

775 W (Ukt1) + W (yg-1) — 2W (yx)) (8)

1

~ a7z W (iee2) + W (g1—2) = 2W (3) + o (1)

Proof. By applying Taylor’s formula, we obtain

W (y) = BW (Yrs1) + W (yr—1) — 2W () + 7 (W Wra2) + W (gr—2) — W (i) + 0 (h*) .

Utilizing Taylor’s formula, we derive

2 8 2 32
(W - (2,ﬁ + 2,7)) W (y) h? + (4,6 + N) W () " + (B +7)o(h°).
To obtain the SAEs, equate the coefficients of the smallest power of & in the above identity to 0.
{ 2!6 + 2|'7 hiQa
4!5 + 4!’}/ 0.

Upon resolving this SAEs, we find g = %h_ , Y= —%h_Q. So, relation (8) is proved. Theorem 1.3 is
established.

Theorem 1.4. Let W (y) be a function defined on the interval [0, Y] with a continuous seventh
derivative. Then the subsequent relation holds:

896
159h3

W () = = (W (i) = W (1) = 20D () ) ©)

419

~rag (I (isa) = W (ya) =4 () ) 0 (1)

Proof. Applying the MUCs, we will aim to find

W () = B (W (gos1) = W (1) = 20D () ) 7 (W (er2) = W (2) = 4W D () 1)

Y (p <W(4> (Yogr) — W@ (yzH)) tq <W(4> (Yoya) — W@ (yH))) Lo ().

By applying Taylor’s formula, we obtain
-3 16 3) 3 64 5) 5 7
h3 - /3+3,’Y W (yy) h* + B+5,’y W (yr) h> + (B +7) o (h).

To obtain the SAEs, equate the coefficients of the smallest power of h in the above identity to 0.
{ %lﬁ + g, ’Y h=3,
5‘,17 0.
896 j—3 419

= ———h73. So, relation (9) is proved.

Upon resolving this SAEs, we find S = 159 , Y 1272

Theorem 1.4 is established.
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2 Local BVP (1)

Let us consider BVP (1). For the application of TDFPs (5), we have to give the eighth order of
approximation formulas for W) (0) and WM ().

Theorem 2.1. Let W (y) be a function defined on the interval [0, Y] with a continuous fifth deriva-
tive. Then the subsequent relations hold:

(2223 3735 1535
W0 (0) = 7 {2222 )~ W 0) = 3000 (0 (2h) = W (0) + 2 W (30) — W (0)
45 243 23
OV (4h) W (0) % o OV (51) = W (0)) = oo (W (6) ~ W (0)}
3 3
_ % (W (n) - W (0)) + % (W @n) — W (0)) +o (1), (10)
B 2223 3735
wO(r)=h 1{ Fg W (0 =h) =W (1)) + Jooe (W (X = 2h) = W (T))
—;;L—Q%(W(T—Sh) () 4 o (W (T — 6h) — W (T))

_ %(W(T-%) —W(T))+%(W(T—4h) W) + o (hY). (1)

Proof. Applying the MUCs, we will aim to find
W (0) = B (W (h) = W (0)) +~ (W (2h) = W (0)) +d (W (3h) — W (0))
o (W (4R) = W (0)) + q (W (5h) — W (0)) + w (W (6h) — W (0)
+him (W<4> (h) — W™ (0)) + hin (W<4> (2h) — w® (0)) +o(h?).
By applying Taylor’s formula, we obtain

To obtain the SAEs, equate the coefficients of the smallest power of h in the above identity to 0.

( 3d+4p+,8+2fy+5q+6w:h_1,

d+ 2,p+ 2|B+ 2|'Y+ 2uQ+ 21W—Oa

§’1d+ gpraf gt e =0,

iy 1'0£1+ 4'ﬁ+4'372+ gt a0

79d+45’96 5'ﬁ+5’4 +1 62(5J+ 2661:6+m+2n_0

2618;i+ 1é3€4+ '6+6'Y2;_ 67812;_ 6275%3}’3_ 2,m—|—2,n—0

Gg6ld+ 65536p+ 7'ﬁ+ 256 T 395'625 q+ 1677961116) M 3'm+ 3'7116_ 0

1568§l+ 3o 144 'B+5182' 7—1—195§125q+ 1007'769160—1_ 4,m+ 4'32 =5
d+ 9,B+ Y+ e g+ , w+5,m+ 22n =0,

Y i
59049 1048576 1024 9765 625 60466 176 64, _
for A+ —qor P+ 10!,6’—1— ot Yt 7o 4+ T o w+6'm+ an=0.
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2223 3735 1535 45 243
lving this SAE find 8 = — = —— = ——_
Uponzgeso e 1862 R P =51 7= T103en O Tmne P Tan U 25000
W= —gagry M= —preey M= e So, relation (10) is established. In a similar fashion, one can

derive the relationship (11). Theorem 2.1 is established.

Now, we consider the application of Theorems 1.1-1.4 and Theorem 2.1 for the numerical solution
of the BVP (1). Using the equation (1) and formulas (5), (7), (8), (9), (10), (11), and disregarding
minor terms, we can present the eighth order of approximation DS

h~ (uk+2 — dupyq + 6up — dug_q + ug—2)

+ (17065 1680h4 ( )) alty)uk + %a(azk+1)uk+1
ta(zp—1)ur—1 + 105 (a(@pp2)upro + a(zp_2)up—2)

= (105 + 1680h4 (x )) F(zy) + 790 (F (Trq1) + F (23-1))
oz (F (Teso) + F (mr-2)) — 1osh F 3 (zy,),

( 5543 4 : ( )) up + (2223 + 51 ( )) Ul
(i%ggg + 1%%9 a(2h)) uz + 775“3 N 2 7iUa + 2590“5 - 3%38“6 12)

= hn + h* [5ig (F (21) = F (z0)) — {55 (F (a) — F(z0))] ,uo = ¢,

(% - @h44( )) UN — (252128312; 518h4 (hig UN—-1 043

+ (213(% + £xh (2h)2 éth 2 — TP UN-3 + 7] UN—4 — 5550 UN—5
+T0§“N 6=hp—"h 518 (F(zn-1) = F (zN))

_h4ﬁ18 (F(xn—2) — F(zN)),uny =w

for the numerical solution of the BVP (1).

3 Local BVP (2)

Consider the BVP (2). For the application of TD’s on five points (5), we have to give the eighth
order of approximation formulas for W) (0) and W ().

Theorem 3.1. Let W (y) be a function defined on the interval [0, Y] with a continuous tenth deriva-
tive. Then the subsequent relations hold:

6937573 26121217 21060241
2 gy = p2 222212 _ooer et 2N W(oh 1
W) - h {3439 828W ©) 5159 742 (k) + 5159 742 W (2h) (13)
892879 26209 24995 23426 639
- - h) 4+ ——"W (5h) p —h?————— W (o
859957 (3) 10319484 (4h) + 5159742 ( )} 206 389 680 ©

W (1) — h2 {gi;’gzggw (1) — %W (T —h) (14)
%W (T —2h) — Z?;S;iw (T —3h) — %W (T - 4h)}
_h725igg%w (T — 5h) — h? <m @ (1) + %W“) (T — )
%W“) (T —2h) — %W(‘” (T - 3h)) — o(h®).

Mathematics Series. No.4(116),/2024 23



A. Ashyralyev, .M. Ibrahim

Proof. Applying the MUCs, we will aim to find

W2 (0) = aW (0) + BW (k) +~W (2h) + dW (3h) + pW (4h) + W (5h)

+RAmW W (0) + WA W@ (R) + W FW W (2h) + W@ (3R) + o (hF) .

By applying Taylor’s formula, we obtain

9 9
W (0)=aW (0)+5> I;:W(l) 0 +v> (2;,‘)1 W (0)+d)° B—WW(” (0)
=0 =0

!

Ry (14+4) 4, x- (20) (14+4) i <= (30) (14+4) 8
+hnZﬁW (0)+hfZTW (0) + hrw > =W (0) + 0 (B5) .
=0 =0 =0

To obtain the SAEs, equate the coefficients of the smallest power of k in the above identity to 0.

d+p+a+B+y+q=0,
3d+4p+ﬁ+2v+5q—0

d"‘ 2|p+216+2|'}/+ 2lq_h72
§1d+6?p+3,5+3,v+12652g—0

d+ 4|p+416+ 4|7+ 4lQ+m+n+f+w_0
2§3d+1“?4p+5,ﬁ+ ST gt 2f £ 3w =0,
79d+4?6p+61ﬁ+ VB S+ 3 ,w—O
2187d+ 16384 7,58 + 172,87+ 78125q+ 3.n+ Sf+Zw=0,
d+ 8,p+8.6+ 8'7+ 8|q+ ln+ f+ w—O
d+9,p+9.ﬁ+9.7+9,q+5.n+ f+243w_0

Ubon resolvine this SAEs. we find a — 6937573 , 26121217 21060241 892879
P & ’ C T 3i39828°" T 5159742 0 | 5159742 ' ¢ T T 859957

26209 24995 . 23426 639 o 12741989, 5216939 o 1324691
10319484° 1~ 5159742 ~ 206389680° 20638968’ 7 29484240 103194840

So, relation (13) is proved. In a similar fashion, one can derive the relationship (14). Theorem 3.1 is

established.

Now, we consider the application of Theorems 1.1-1.4 and Theorem 3.1 for the numerical solution
of the BVP (2). Using the equation (2) and formulas (5), (7), (8), (9), (13), (14), and disregarding

minor terms, we can present the eighth order of approximation DS
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(1 + ﬁhlla(xk—?)) Ug—2 + (*4 + %h4a($k_1)) Uk—1

+ (6 + (%65 — %hzla(xk)) a(xk)h4) Uk

+ (=4 + FHhta(zpi)) wee + (1+ gshla(@rgo)) upgo

= Wt [(fa + masshia(@)) F (o) + =5 (F (@r1) + F (251))
gz (F (Thso) + F (24-2)) — 1osgh*F D(zp)], 2<k < N -2,

6937573 23426639 1.4 26121217 |, 1274198914
(3439828 ~ 306389680 a(O)) Up — ( 5159742 T 50638968 a(h)) U1

21060241 _ 5216939 14
+ ( 5150713 — 294842401 a(2h)) U2

892879 1324691 7.4
- (859957 — 03104840 a(3h)) us3

26209 24995 . __ 12 23426639
031048744 + 5159743 %5 = PN — 356380680/ (0)

(15)

12741989 5216 939 1324691 —
o [20638968 (h) + 29484240f(2h) ~ 103 194840f(3h)] yUo =¥,

6937573 _ 23426639 ;.4
(3439 828 — 206380680 @ (T)) un

26121217 |, 12741989 1.4
- ( 550712 + ao6ssoest (T — h)) UN-1

21060241 5216939 7.4
+ ( 5150742 — 2o asaziot (T — Zh)) UN -2

892879 1324691 14 26 209
(_859957 + 1031028307 (T — Sh)) UN—-3 — 10319484 UN—4

24995 _ 12 1423426639 12 741 989 _
5507 UN—5 = h"p—h [206389680F(T)+ soeasoast (T —h)

5216939 1324691
+orision !l (Y —2h) — 3550w F (T —3h)] ,un = w,

for the numerical solution of the BVP (2).

4 Local BVP (8)

Let us consider BVP (3). For the application of TD’s on five points (5), we have to give the eighth
order of approximation formulas for W) (0) and W) (7).

Theorem 4.1. Let W (y) be a function defined on the interval [0, Y] with a continuous eleventh
derivative. Then the subsequent relations hold:

126630131 78574591

W ) - { R v () w 0) - T (v (26) - W 0) (16)
I 0 (3h) — W (0) ~ 20D I (W (ah) — W (0)) + S (W (5h) — W (0)
~aags (¥ (o) =W (o) + S22 (v (1m) — w (o)
+h {—% (W () - W (0)) + % (W (2n) - W (0))
—% (W @) - W (0))} =0 (h%),
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W) - 47 {_m (W(Y —h) =W (1)) (17)
%(W(T—Qh)—W(T))—%(W(T—Bm—W(’I‘))
%(W(T—ﬁlh)—w(ﬂ)—%(W(T—M) — W (1))
o (O (T = 61— W (1)) — S0 2% (i (1~ 70) W (1))}

h {m (W (1 =) - W (1)) - % (W r —2m) - w (1))

1173833
21090999 (@) (p _3p) — @ —o(B®
+ 00640 (W (T —-3h)—W (T))} =o(h°).

Proof. Applying the MUCs, we will aim to find
W (0) = B(W (h) = W (0)) + v (W (2h) — W (0)) + d (W (3h) — W (0))
+p (W (4h) = W (0)) + g (W (5h) = W (0)) + w(W (6h) — W (0)) + f (W (Th) — W (0))
Thim (W(4) (h) — w® (0)) R (W@ (2h) — WO (0)) + rls (W<4> (3h) — W@ (o)) — o (h¥).
By applying Taylor’s formula, we obtain
10

10 l l 10 l
=8y %W(l) 0 +7> (2;?) W (0)+d) (?’l’f)w(” (0)
=1 ' =1

=1

10 l
w3 w003 w0 0+ 3= w0
=1 =1 =1

+fz ‘W(’ +h4mzl' WD

5 l 5 l
4 (2Rh)" (44 4 (3Rh)" (4t 8
+h nZTW( D (0) +h SZTW( (0) + o (h®).
I=1 =1
To obtain the SAEs, equate the coefficients of the smallest power of h in the above identity to 0.

3d+4p+5q+6w+pL+2y+7f =0,
9d+8p+Bq+Suwt LB+ 4y+2f =0,
d+4|p+4|q4‘41w+4|5+4|7+ f_O

d+ 5ép+5'Q+5éw+5.5+5é7+5,f—|—m+2n—|—35—0
d+6,p+6,q—|—6,w+6,6+6.7+6,f+2,m+2,n+2,8—0
d+ 7|p+ 7IQ+ 7|w+7|5+ 7|'Y+ 71f+31m+3|n+ 3|3_0
d+ %.p+5q+ Sow+ HB+ v+ G f + dm+ Xn+ 35 =0,
d—|—9.p+9,q+9,w+9,5+9.7+9,f+ ,m+35?n+5,s—0
10'd+10'p+1O'q+10'w+10'ﬁ+10'7+10'f+6'm+6'n+6'5_0
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126630131 78 574591 45949 355
lving this SAE find = o0 oo _ _fo0f%odh -, RYRII99
Upon resolving this SAEs, we find - f = “=oz0ers, 7 1501 92043 90115283
24699239 _ 1667173 4609391 _ 309293 597497
T Topisend’ 1T 214560n3 4505 760R3’ 4505 760h3’ ©1501920R3°
n = 1528979 5 = _ M73833 So, relation (16) is proved. In a similar fashion, one can derive
= 50064037 © T T 500640R3° O proved. ’

the relationship (17). Theorem 4.1 is established.

Now, we consider the application of Theorems 1.1-1.4 and Theorem 4.1 for the numerical solution
of the BVP (3). Using the equation (3) and formulas (5), (7), (8), (9), (16), (17), and disregarding
minor terms, we can present the eighth order of approximation DS

A (up o — 4upry + 6up, — dup_1 + up_o) + brug (18)
+epugpy1 + dpug—1 + hpugo + grug—2 = @, 2 <k < N =2,
a1,0up + a1,1U1 + a12ug + a1,3u3 + a1 4U4 + a1 5U5 + a1 6Us = —a1,7 + 1,
ug = ¢, uUN = W,
A1, NUN + a1 N—1UN—-1 + @1 N—2UN-2 + Q1 N—3UN—3

+a1, N—4UN—4 + Q1 N-5UN—5 + G N—6UN—6 = —Q1,N—7 T P,

where

— ﬁ_ 97 4 _97 4 _(4) _6974// 20
"= <105 1680 “(y’“)> a(yr) Wa () = aagh " (k)6 AL,

1680 1680
9 97 4, 30 1 20 " 10
9 97 4 / 30 " 20 " 10
1 97 4 , 30 I 20 " 10
hi = TosUkt2) = Togah [0/ (k) D + 60" (ye) Dy + 4a™ (y) D]

1 97 4 30 20 10
9 = 705 WWk—2) = Jeoh” [40'(uk) B + 6a” (y) B + 4a” (ye) ]

(716 9T 9
o = <m5 + 1es0" a(yk)> Fyw) + =g (F Wren) +F (yr-1))

97

1
+ﬁ (F (Yrr2) + F (Yr—2)) — 1630

W F @ ()

for the numerical solution of the BVP (3).

5  The nonlocal BVP (4)

Now, we consider the application of Theorems 1.1-1.4 and Theorems 2.1, 3.1, and 4.1 for the
numerical solution of the nonlocal BVP (4). Using the equation (4) and formulas (5), (7), (8), (9),

(10), (11), (13), (14), (16), (17), and disregarding minor terms, we can present the eighth order of
approximation DS
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A (upsa — Augpy + 6up — dup—1 + up_2) + (1
—htaly)) alyr)ur + 25a(Y1) w1 + a(Ye—1)ur—1
+ 155 (a(Yrs2)tiro + a(yp—2)up—2) = (1% + 1assh alyr)) F (yk)
+25 (F (Ykt1) + F (Y1) + 1o (F Wkt2) + F (yp—2))
— 35 h F W (i),
Uug = uUN + @,
1 {(—% + msﬁh‘la (0)) ug + (% + %h‘%t(h)) Uy
—%u4 — (% + %h‘la@h)) Uo
+ 193503 + =S ug — 223 ug

Y Sl T 2223 | 69 14
=h {(@ — Toagh’a (O)) UN — (m + 5igh a(h)) UN_1
+ (%% + mh4a(2h)) UN—-2 — %UN,;),
+7IUN-—4 — %UN—5 + %UN—ﬁ} +n,

h—2 {(6937573 23426639 h4a (0) U — (26 121217

%ﬁ’)%§28 206389680 5183 742

_ 1270894, Y, o (21060241 5216939 14, opy) g,
899 825 908 132&6%2 h4a(i(3i§))151242_ 20484240 ( ))

(19)

— 850957 ~ 103194840 ) 484 W4

$2858 03194840 6o37573" 23430830 ot
+efsapusy =N 130898 — 5063800680/ @ (T)) uN
n (_2 D107 _ 12741989 pd )y h)) Un -1

p159742 0638968

4 (210 02417 5216650 pa oy 2h)) un—s

SL0TAY 20451240
+( 892 879 354601

4
0057 + 1051048097 (T — Bh)) UN-3
— 20200y, + U +w
10319484 “N—4 T 5159742 YIN—5 )

h73 _ 17265457 4 467941 h4a (0) ug
Bt O

+
4505, 760 1501 920 15 0
1595929 0% 145949355 , 11798430 4
+ h*a(2h)) us + + h*a(3h)) us
P0G 901 152 500 640
24699239, 1667173, 4600391, "y "300293 ,
001 152 214360 5 4505760 6 T 1505760 “7
— o h3 [ (20807473 467941 p4, (0)) u
=0 L\ 4505760 " 1501920 N
(126630131 07497 pa.p 78 574591
( 4595 760 + Troroa0 7 ol )) uN-1 + ( 150,920 +
1528979 14 (o1, 45949355 _ 11738334 (3p
50064010 a(2h) “N—2+( 901 152 00640 10 a(3h)) un—3
424699239 _ 1667173, 4 4609391, _ 309203 }
001152 *“N—4 = 214560 “N—5 T 1505760 “N—6 — 1505760 “N—7

\

for the numerical solution of the nonlocal BVP (4).

Now, for numerical analysis we consider the BVPs (1)—(4), for the simple case when T = 1,
aly)=1,p=n=w=x=0, and

8 1— 8 1
ya-y)” + —y* (y — 1)* (130y* — 260y° + 182y* — 52y +5) .

FHy) =" 120

Then,
y*(1—y)°
8!
is the exact solution of these BVPs. For solving these problems, we use the eighth order of approxi-

mation DSs (12), (15), (18), and (19), respectively, with different values of h. The error is computed
by

Uy) =

Eyx = — )
N OIST}?SXN’U(ZM) u|

The error analysis shown in Table indicates that all DSs have correct convergence rates.
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Table

Numerical Results

N = 40 N=80 | N =160
(12) | 1.2225e-13 | 5.5447e-15 | 3.0095¢-16
(15) | 2.0641e-12 | 3.7546e-14 | 6.4559¢-16

DS (18) | 5.2435e-13 | 1.2208¢-14 | 3.1736e-16
(19)

3.6094e-09 | 1.7743e-10 | 6.4050e-12

Conclusion

1. In this work, we examine LNBVPs for FODEs with variable coefficients. We develop and analyze
finite DSs of eighth-order accuracy using a novel method based on five-point grids for addressing these
problems. Our findings are validated through extensive numerical experiments.

2. Highly accurate four-step finite DSs for solving LNBVPs of the general FODE

u® (s) + d(s)u® (s) + c(s)u? (s) + b(s)u (s) + a(s)u(s) = ¥(s),0 < s < T

will be presented and investigated.
3. Highly accurate four-step finite DSs for solving LNBVPs for elliptic FODEs

u®(s) + Au(s) = U(s),0< s < T

will be constructed and studied. Here A is a self-adjoint positive definite operator in a Hilbert space H.
The stability of these DSs is ensured by the operator method discussed in reference [1].
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