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The paper investigates a Dirichlet-type boundary value problem for a three-dimensional elliptic equation
with three singular coefficients in the first octant. The uniqueness of the solution within the class of regular
solutions is established using the energy integral method. To prove the existence of a solution, the Hankel
integral transform method is employed. The use of the Hankel transform is particularly appropriate when
the variables in the equation range from zero to infinity. This transform is an effective method for obtaining
solutions to such problems. In three-dimensional space, to derive the image equation, the Hankel integral
transform is applied to the original equation with respect to the variables x and y. As a result, a boundary
value problem for an ordinary differential equation in the variable z arises. By solving this problem, a
solution to the original boundary value problem is constructed in the form of a double improper integral
involving Bessel functions of the first kind and Macdonald functions. To justify the uniform convergence
of the improper integrals, asymptotic estimates of the Bessel functions of the first kind and Macdonald
functions are utilized. Based on these estimates, bounds for the integrands are obtained, which ensure the
convergence of the resulting double improper integral, that is, the solution to the original boundary value
problem and its derivatives up to second order, inclusively, as well as the theorem of existence within the
class of regular solutions.
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singular coefficient, equation of elliptic type, Bessel operator, first octant.
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Introduction. Formulation of the problem

In recent years, interest in degenerate and singular equations has grown significantly, including
equations containing the Bessel differential operator. These equations are often encountered in appli-
cations, for example, in problems with axial symmetry in continuum mechanics. Interest in problems
related to the Bessel operator is also known from fundamental physics. This is due to its numerous
applications in gas dynamics, shell theory, magnetohydrodynamics, and other fields of science and tech-
nology. A special place in the theory of degenerate and singular equations is occupied by equations
containing the Bessel differential operator

Bz
q ≡

d2

dz2
+

2q + 1

z

d

dz
, q > −1/2.

According to the terminology by the Voronezh mathematician Ivan Aleksandrovich Kipriyanov,
equations of three main classes containing the Bessel operator are called B-elliptic, B-hyperbolic, and
B-parabolic, respectively. The monograph [1] studies boundary value problems for B-elliptic equations,
in addition to this, the account of multi-dimension integral Fourier-Bessel-Hankel transformation theory
is given in the monograph. The theory of boundary value problems for the equations with peculiarity
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has been reflected there, while the study of B-hyperbolic equations is presented in the monograph by
A.K. Urinov, S.M. Sitnik and Sh.T. Karimov [2]. A wide range of questions for equations with Bessel
operators was studied by I.A. Kipriyanov [1] and his students [3–5] and others.

In this paper, we study a Dirichlet-type problem for an elliptic equation with Bessel operators. The
solution to the problem under consideration is solved by the Hankel transform method [6–8].

In the domain Ω = {(x, y, z) : x ∈ (0,+∞) , y ∈ (0,+∞) , z = (0,+∞)} , we consider the following
three-dimensional equation with Bessel operators

Lu ≡
(
Bx
α−1/2 +By

β−1/2 +Bz
γ−1/2

)
u (x, y, z) = 0, (1)

where u (x, y, z) is an unknown function, and 0 < α, β, γ < 1/2.
In the domain Ω, equation (1) is of elliptic type. The planes x = 0, y = 0 and z = 0 are the planes

of the singularity of the coefficients of the equation.
In the domain Ω, we consider the following problem for equation (1):
Problem D∞. Find a solution to the equation (1) in the domain Ω, satisfying the conditions

u (x, y, z) ∈ C
(
Ω̄
)
∩ C2,2,2

x,y,z (Ω) , x2αux, y
2βuy, z

2γuz ∈ C
(
Ω̄
)
, (2)

u (0, y, z) = 0, lim
x→+∞

u (x, y, z) = 0, y, z ∈ [0,+∞), (3)

u (x, 0, z) = 0, lim
y→+∞

u (x, y, z) = 0, x, z ∈ [0,+∞), (4)

u (x, y, 0) = f (x, y) , lim
z→+∞

u (x, y, z) = 0, x, y ∈ [0,+∞), (5)

where Ω̄ = {(x, y, z) : x ∈ [0,+∞), y ∈ [0,+∞), z = [0,+∞)} , f (x, y) is a given continuous function,
such that f (0, y) = 0, f (x, 0) = 0, lim

x→+∞
f (x, y) = 0, lim

y→+∞
f (x, y) = 0.

In recent years, there has been a steady increase in interest in studying boundary value problems
for elliptic equations that involve singularities. Examples of such studies can be found in works [9,10],
among others.

In this paper, we study the stated ProblemD∞ using the Hankel transform method. Many problems
in physics, applied mathematics, and mathematical modeling reduce to solving differential, integral,
and integro-differential equations. One of the effective methods for obtaining an analytical solution is
the method of integral transforms. Among all Bessel-type transforms, the Hankel integral transform
is the most thoroughly studied and widely used.

The integral Hankel transform of the order ν of a function is called the integral [6–8]

f̄ (p) =

+∞∫
0

f (t) tJν (pt) dt, ν ≥ −1/2, 0 < p < +∞,

where Jν (z) is the Bessel function of the first kind of order ν [6].
The Hankel transform of a function f (t) is true for any points on the interval (0,+∞) in which

the function f (t) is continuous or piecewise continuous with a finite number of discontinuity points of
the first kind, and

+∞∫
0

|f (t)| t1/2dt < +∞.

The inversion formula of the Hankel transform is determined by the integral

f (t) =

+∞∫
0

f̄ (p) pJν (pt) dp, 0 < t < +∞.
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The function f̄ (p) is often called the Fourier-Bessel-Hankel image [11], and the function f (t) is the
original.

The Hankel transform is advisable to apply, obviously, in the case when the variables in the equation
change from 0 to +∞ .

1 Uniqueness of the solution to the problem D∞

Theorem 1. If there exists solution to Problem D∞, then it is unique.

Proof. Let ProblemD∞ have two solutions u1 (x, y, z) and u2 (x, y, z). Then u (x, y, z) = u1 (x, y, z)−
− u2 (x, y, z) satisfies equation (1) and the homogeneous boundary conditions. We will prove that
u (x, y, z) ≡ 0 in Ω̄. In the domain Ω the identity is valid

x2αy2βz2γuLu =
(
x2αy2βz2γuux

)
x

+
(
x2αy2βz2γuuy

)
y

+
(
x2αy2βz2γuuz

)
z
−

−x2αy2βz2γ
(
u2
x + u2

y + u2
z

)
= 0.

Integrating this identity over the domain

Ωδ2δ4δ6
δ1δ3δ5

= {(x, y, z) : δ1 < x < δ2, δ3 < y < δ4, δ5 < z < δ6} ,

where δj , j = 1, 6 are positive numbers, we have∫∫∫
Ω

δ2δ4δ6
δ1δ3δ5

[(
x2αy2βz2γuux

)
x

+
(
x2αy2βz2γuuy

)
y

+
(
x2αy2βz2γuuz

)
z

]
dxdydz =

=

∫∫∫
Ω

δ2δ4δ6
δ1δ3δ5

[
x2αy2βz2γ

(
u2
x + u2

y + u2
z

)]
dxdydz. (6)

It is obvious that if δ1, δ3, δ5 → 0, δ2, δ4, δ6 → +∞, then Ωδ2δ4δ6
δ1δ3δ5

→ Ω.

Applying the Gauss-Ostrogradsky formula [12] to the left side of equality (6), we have

δ6∫
δ5

δ4∫
δ3

y2βz2γ
[
δ2α

2 u (δ2, y, z)ux (δ2, y, z)− δ2α
1 u (δ1, y, z)ux (δ1, y, z)

]
dydz+

+

δ6∫
δ5

δ2∫
δ1

x2αz2γ
[
δ2β

4 u (x, δ4, z)uy (x, δ4, z)− δ2β
3 u (x, δ3, z)uy (x, δ3, z)

]
dxdz+

+

δ4∫
δ3

δ2∫
δ1

x2αy2β
[
δ6

2γu (x, y, δ6)uz (x, y, δ6)− δ2γ
5 u (x, y, δ5)uz (x, y, δ5)

]
dxdy =

=

∫∫∫
Ω

δ2δ4δ6
δ1δ3δ5

[
x2αy2βz2γ

(
u2
x + u2

y + u2
z

)]
dxdydz.
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Hence, passing to the limit at δ1, δ3, δ5 → 0, δ2, δ4, δ6 → +∞ and taking into account conditions (2),
(3), (4) and (5) (for f (x, y) ≡ 0), from the last equality, we obtain∫∫∫

Ω

[
x2αy2βz2γ

(
u2
x + u2

y + u2
z

)]
dxdydz = 0.

From the last, we have

ux (x, y, z) ≡ uy (x, y, z) ≡ uz (x, y, z) ≡ 0, (x, y, z) ∈ Ω.

Then, u (x, y, z) ≡ const, (x, y, z) ∈ Ω. Since u ∈ C
(
Ω̄
)
and u (0, y, z) ≡ 0, then u (x, y, z) ≡ 0,

(x, y, z) ∈ Ω̄. From this follows the statement of Theorem 1.

2 Existence of the solution to the problem D∞

Let ũ (λ, µ, z) be the Hankel transformation of the unknown function u (x, y, z) with respect to the
variables x and y. Then, by the definition, we have

ũ (λ, µ, z) =

+∞∫
0

+∞∫
0

xy
[
xα−1/2yβ−1/2u (x, y, z)

]
J1/2−α (λx) J1/2−β (µy) dxdy. (7)

Considering inverse thansform, we also have

u (x, y, z) = x1/2−αy1/2−β
+∞∫
0

+∞∫
0

λµũ (λ, µ, z) J1/2−α (λx) J1/2−β (µy) dλdµ.

Based on (7), we introduce the functions

ũε2ε4ε1ε3 (λ, µ, z) =

ε4∫
ε3

ε2∫
ε1

x1/2+αy1/2+βu (x, y, z) J1/2−α (λx) J1/2−β (µy) dxdy, (8)

where εj , j = 1, 4 are positive numbers.
It’s obvious that lim

ε1,ε3→0
ε2,ε4→+∞

ũε2ε4ε1ε3 (λ, µ, z) = ũ (λ, µ, z) .

Using the function (8) and the equation (1), we simplify the expression of Bz
γ−1/2ũ

ε2ε4
ε1ε3 (λ, µ, z) :

Bz
γ−1/2ũ

ε2ε4
ε1ε3 =

ε4∫
ε3

ε2∫
ε1

x1/2+αy1/2+βJ1/2−α (λx) J1/2−β (µy)Bz
γ−1/2u (x, y, z) dxdy =

= −
ε4∫
ε3

ε2∫
ε1

x1/2+αy1/2+βJ1/2−α (λx) J1/2−β (µy)
(
Bx
α−1/2 +By

β−1/2

)
u (x, y, z) dxdy =

= −
ε4∫
ε3

 ε2∫
ε1

x1/2+αJ1/2−α (λx)Bx
α−1/2u (x, y, z) dx

 y1/2+βJ1/2−β (µy) dy−

−
ε2∫
ε1

 ε4∫
ε3

y1/2+βJ1/2−β (µy)By
β−1/2u (x, y, z) dy

x1/2+αJ1/2−α (µx) dx. (9)
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Applying the rule of integration by parts, from (9), we obtain

Bz
γ−1/2ũ

ε2ε4
ε1ε3 (λ, µ, z) = −

ε4∫
ε3

{[
J1/2−α (λx)ux − λJ−1/2−α (λx)u

]
x1/2+α

∣∣∣x=ε2

x=ε1
−

−λ2

ε2∫
ε1

u(x, y, z)x1/2+αJ1/2−α (λx) dx

 y1/2+βJ1/2−β (µy) dy−

−
ε2∫
ε1

{[
J1/2−β (µy)uy − µJ−1/2−β (µy)u

]
y1/2+β

∣∣∣y=ε4

y=ε3
−

−µ2

ε4∫
ε3

u(x, y, z)y1/2+βJ1/2−β (µy) dy

x1/2+αJ1/2−α (λx) dx. (10)

By direct calculation, one can easily verify that the following limits for fixed λ ∈ (0,+∞) and
µ ∈ (0,+∞) , exist and are finite:

lim
x→0

x1/2+αJ−1/2−α (λx) = 21/2+αλ−1/2−α/Γ (1/2− α) , (11)

lim
y→0

y1/2+βJ−1/2−β (µy) = 21/2+βµ−1/2−β/Γ (1/2− β) . (12)

The behavior of the function Jv(x) for sufficiently small and large values of x is described by the
formulas given in [13], respectively:

Jν(x) ≈
x→0

xν

2νΓ(1 + ν)
, Jν(x) ≈

x→+∞

(
2

πx

)1/2

cos
(
x− νπ

2
− π

4

)
. (13)

From the equality (10), passing to the limit at ε1 → 0, ε3 → 0, ε2 → +∞, ε4 → +∞, and taking
the conditions (2), (3), (4) and equalities (11), (12), (13) into account, as well as the notation (7), we
obtain the following equation

ũzz (λ, µ, z) +
2γ

z
ũz (λ, µ, z)− χ2ũ (λ, µ, z) = 0, 0 < λ, µ, z < +∞, (14)

where χ2 = λ2 + µ2.
Moreover, due to the boundary conditions (5), from (7) it follows that the function ũ (λ, µ, z)

satisfies the following boundary conditions:

ũ (λ, µ, 0) = fλµ, lim
z→+∞

ũ (λ, µ, z) = 0, (15)

where

fλµ =

+∞∫
0

+∞∫
0

x1/2+αy1/2+βf (x, y) J1/2−α (λx) J1/2−β (µy) dxdy. (16)

We solve the problem (14), (15). It knows that the general solution of the equation (14) has the form [9]

ũ (λ, µ, z) = c1z
1/2−γI1/2−γ (χz) + c2z

1/2−γK1/2−γ (χz) , z ∈ [0, c], (17)
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where c1 and c2 are arbitrary constants, Il (x) and Kl (x) are the Bessel function of the imaginary
argument and the Macdonald function of order l [6], respectively.

From the equality (17), based on the asymptotic behavior of the functions Iν (x) and Kν (x) for
sufficiently large x [13], we have

Iν (x) ≈ ex

(2πx)1/2
, Kν (x) ≈

( π
2x

)1/2
e−x,

from which follows that the solution of equation (14) satisfying the second condition (15) is determined
by the equality

ũ (λ, µ, z) = c2z
1/2−γK1/2−γ (χz) . (18)

By the first condition of (15) from (17), we obtain the equality

ũ (λ, µ, 0) = c22−1/2−γχ−1/2+γΓ (1/2− γ) = fλµ,

from which we uniquely find c2 as follows:

c2 = 21/2+γχ1/2−γfλµ/Γ (1/2− γ) .

Substituting the value of c2 into the equality (18), we uniquely find a solution to the problem
(14), (15) in the form

ũ (λ, µ, z) = K̄1/2−γ (χz) fλµ, (19)

where K̄ν(x) = 21−νxνKν(x)/Γ(ν), ν > 0.
The solution of the original problem will be obtained by using the inverse Hankel transform as

follows:

u (x, y, z) =

+∞∫
0

+∞∫
0

λµXλ (x)Qµ (y) ũ (λ, µ, z) dλdµ, (20)

where Xλ(x) = x1/2−αJ1/2−α(λx), Qµ(y) = y1/2−βJ1/2−β(µy), and ũ(λ, µ, z) is determined by the
formula (19) and they are respectively solutions of the following equations:

Bx
α−1/2Xλ (x) = −λ2Xλ (x) , 0 < x < +∞, (21)

By
β−1/2Qµ (y) = −µ2Qµ (y) , 0 < y < +∞, (22)

Bz
γ−1/2ũ (λ, µ, z) = χ2ũ (λ, µ, z) , χ2 = λ2 + µ2, 0 < λ, µ, z < +∞. (23)

If differentiation under the integral sign is possible in (20), then the function u(x, y, z) is a solution to
equation (1). Indeed,

Bx
α−1/2u(x, y, z) +By

β−1/2u(x, y, z) +Bz
γ−1/2u(x, y, z) =

=

+∞∫
0

+∞∫
0

λµ
[
Bx
α−1/2Xλ (x)

]
Qµ (y) ũ (λ, µ, z) dλdµ+

+

+∞∫
0

+∞∫
0

λµXλ (x)
[
By
β−1/2Qµ (y)

]
ũ (λ, µ, z) dλdµ+
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+

+∞∫
0

+∞∫
0

λµXλ (x)Qµ (y)
[
Bz
γ−1/2ũ (λ, µ, z)

]
dλdµ.

Hence, by virtue of (21), (22) and (23), we have

Bx
α−1/2u(x, y, z) +By

β−1/2u(x, y, z) +Bz
γ−1/2u(x, y, z) = 0.

Let us demonstrate that the function (20) satisfies conditions (3) and (4). Using formulas (13), the
functions Xλ (x) and Qµ (y) for small and large argument values, respectively, can be rewritten in the
form [12]

Xλ (x)≈ λ1/2−αx1−2α

21/2−αΓ (3/2− α)
, 0 < x, λ < 1; (24)

Xλ (x)≈x−α
(

2

πλ

)1/2

sin
(
λx+

απ

2

)
, 1 < x, λ < +∞; (25)

Qµ (y)≈ µ1/2−βy1−2β

21/2−βΓ (3/2− β)
, 0 < y, µ < 1;

Qµ (y)≈ y−β
(

2

πµ

)1/2

sin

(
µy +

βπ

2

)
, 0 < y, µ < +∞.

From these equalities, it follows that the function (20) satisfies the conditions (3) and (4).
Now, we prove several lemmas used in establishing the uniform convergence of the double inte-

gral (23).
Lemma 1. If α ∈ (0, 1/2), then, with respect to the functions at Xλ (x) = x1/2−αJ1/2−α (λx) , as

x ∈ [0,+∞), the following estimates hold:

|Xλ (x)| ≤
{
c3x

1−2αλ1/2−α, 0 < x, λ < 1,

c4x
−αλ−1/2, 1 < x, λ < +∞, (26)

∣∣x2αX ′n (x)
∣∣ ≤ { c5λ

1/2−α, 0 < x, λ < 1,

c6λ
1/2xα, 1 < x, λ < +∞, (27)

∣∣∣Bx
α−1/2Xλ (x)

∣∣∣ ≤ { c7x
1−2αλ5/2−α, 0 < x, λ < 1,

c8x
−αλ3/2, 1 < x, λ < +∞, (28)

where cj , j = 3, 8 are positive constants.
Proof. From the equalities (24) and (25), we obtain estimate (26). Next, consider the functions

x2αX ′λ (x) = λx1/2+αJ−1/2−α(λx) and (23). By virtue of the asymptotic formula (13), it is straight-
forward to show that these functions satisfy the estimates (27) and (28), respectively. Lemma 1 has
been proved.

Similarly, the following lemma can be proved.
Lemma 2. If β ∈ (0, 1/2), then with respect to the functions Qµ (y) = y1/2−βJ1/2−β (µy) , at

y ∈ [0,+∞) the following estimates hold:

|Qµ (y)| ≤
{
c9y

1−2βµ1/2−β, 0 < y, µ < 1,

c10y
−βµ−1/2, 1 < y, µ < +∞, (29)

∣∣∣y2βQ′µ (y)
∣∣∣ ≤ { c11µ

1/2−β, 0 < y, µ < 1,

c12µ
1/2yβ, 1 < y, µ < +∞,
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∣∣∣By
β−1/2Qµ (y)

∣∣∣ ≤ { c13y
1−2βµ5/2−β, 0 < y, µ < 1,

c14y
−βµ3/2, 1 < y, µ < +∞,

where cj , j = 9, 14 are positive constants.
Lemma 3. For any λ, µ, z ∈ (0,+∞), the functions ũ(λ, µ, z), defined by equality (19) satisfy the

estimates
|ũ(λ, µ, z)| ≤ |fλµ| ,

∣∣∣Bz
γ−1/2ũ(λ, µ, z)

∣∣∣ ≤ χ2 |fλµ| . (30)

Proof. It is known [9] that if ν = const > 0, then

K̄ν (t) ≤ 1, K̄ν (0) = 1. (31)

From equality (19), according to (31) the first estimate in (30) follows.
As demonstrated earlier, the function ũ (λ, µ, z) satisfies the equation (23). Therefore, by virtue of

the first estimate in (30), the validity of the second estimate in (30) immediately follows. Lemma 3
has been proved.

Lemma 4. Let α, β, γ ∈ (0, 1/2) and the function f (x, y) satisfy the following conditions:
I. f (x, y) ∈ C4,4

x,y

(
Π̄
)
, where Π = {(x, y) : 0 < x < +∞, 0 < y < +∞} ;

II. lim
x→0

(
∂j/∂xj

)
f (x, y) = 0, lim

x→+∞
xα
(
∂j/∂xj

)
f (x, y) = 0, lim

y→0

(
∂j/∂yj

)
f (x, y) = 0,

lim
y→+∞

yβ
(
∂j/∂yj

)
f (x, y) = 0, j = 0, 3.

Then, for the coefficients (16), the following estimate holds:

|fλµ| ≤ c15(λµ)−4, (32)

where c15 is some positive constant.
Proof. The coefficients fλµ, according to formula (16), can be rewritten as

fλµ =

+∞∫
0

y1/2+βJ1/2−β (µy)Fjλ (y) dy, (33)

where

Fλ (y) =

+∞∫
0

x1/2+αJ1/2−α (λx) f (x, y) dx.

First, consider the function Fλ (y) . Using the equalities

x1/2+αJ1/2−α (λx) = − 1

λ

d

dx

[
x1/2+αJ−1/2−α (λx)

]
,

the function Fλ (y) can be represented as

Fλ (y) = − 1

λ

+∞∫
0

d

dx

[
x1/2+αJ−1/2−α (λx)

]
f (x, y) dx.

Applying integration by parts four times to the above integral, we obtain

Fλ (y) = − 1

λ
x1/2+αJ−1/2−α (λx) f (x, y)

∣∣∣∣x=+∞

x=0

+
1

λ2
x1/2+αJ1/2−α (λx) fx (x, y)

∣∣∣∣x=+∞

x=0

+

+
1

λ3
x1/2+αJ−1/2−α (λx)Bx

α−1/2f (x, y)

∣∣∣∣x=+∞

x=0

− 1

λ4
x1/2+αJ1/2−α (λx)

∂

∂x
Bx
α−1/2f (x, y)

∣∣∣∣x=+∞

x=0

+
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+
1

λ4

+∞∫
0

Xλ (x)
∂

∂x
x2α ∂

∂x
Bx
α−1/2f (x, y) dx. (34)

By the conditions of Lemma 4, the boundary terms in (34) vanish. Consequently,

Fλ (y) =
1

λ4

+∞∫
0

Xλ (x)
∂

∂x
x2α ∂

∂x
Bx
α−1/2f (x, y) dx. (35)

Using the decomposition of the operator Bx
α−1/2, it is easy to verify that the functions

∂
∂xx

2α ∂
∂xB

x
α−1/2f (x, y), based on the conditions of Lemma 4, satisfy ∂

∂xx
2α ∂

∂xB
x
α−1/2f (x, y) ∈ C

(
Π̄
)
.

Taking this into account and the fact that Xn (x) ∈ C[0,+∞), we conclude that the integral in (35)
exists and that Fλ (y) ∈ C[0,+∞).

Now, consider the coefficient fλµ, defined by equality (33). Similarly to the previous case, applying
integration by parts four times to the integral in (33), we obtain

fλµ = − 1

µ
y1/2+βJ−1/2−β (µy)Fλ (y)

∣∣∣∣y=+∞

y=0

+
1

µ2
y1/2+βJ1/2−β (µy)F ′λ (y)

∣∣∣∣y=+∞

y=0

+

+
1

µ3
y1/2+βJ−1/2−β (µy)By

β−1/2Fλ (y)

∣∣∣∣y=+∞

y=0

− 1

µ4
y1/2+βJ1/2−β (µy)

∂

∂y
By
β−1/2Fλ (y)

∣∣∣∣y=+∞

y=0

+

+
1

µ4

+∞∫
0

Qµ (y)
∂

∂y
y2β ∂

∂y
By
β−1/2Fλ (y)dy. (36)

Since the integral in (36) converges uniformly with respect to y, all derivatives and operators with
respect to y acting on the functions Fλ (y) can be transferred to the functions f (x, y) . Then, by the
conditions of Lemma 4, the boundary terms in (36) vanish, and therefore

fλµ =
1

µ4

+∞∫
0

Qµ (y)
∂

∂y
y2β ∂

∂y
By
β−1/2Fλ (y) dy.

Hence, taking (36) into account, we have

fλµ =
1

λ4µ4

+∞∫
0

+∞∫
0

Xλ (x)Qµ (y)
∂

∂y
y2β ∂

∂y
By
β−1/2

[
∂

∂x
x2α ∂

∂x
Bx
α−1/2f (x, y)

]
dxdy. (37)

By virtue of the conditions of Lemma 4, the following hold:

∂

∂x
x2α ∂

∂x
Bx
α−1/2f (x, y) ∈ C

(
Π̄
)
,

∂

∂y
y2β ∂

∂y
By
β−1/2f (x, y) ∈ C

(
Π̄
)
,

therefore
∂

∂y
y2β ∂

∂y
By
β−1/2

[
∂

∂x
x2α ∂

∂x
Bx
α−1/2f (x, y)

]
∈ C

(
Π̄
)
.

Taking this into account, along with Xλ (x)Qµ (y) ∈ C
(
Π̄
)
, we conclude that the integrand is con-

tinuous on Π̄, and the multiple integral in (37) exists. These considerations complete the proof of
Lemma 4.
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Based on (32), estimate (30) can be rewritten as

|ũ (λ, µ, z)| ≤ c16(λµ)−4,
∣∣∣Bz

γ−1/2ũ (λ, µ, z)
∣∣∣ ≤ c17(λµ)−2, (38)

where c16 and c17 are positive constants.
Lemma 5. Let α, β, γ ∈ (0, 1/2), and let f(x, y) be a function such that for λ, µ ∈ (0, 1), the

following condition holds:
1∫

0

1∫
0

xyf(x, y)dxdy < +∞,

then the following estimate is valid:

|fλµ| ≤ c18λ
1/2−αµ1/2−β, c18 = const > 0. (39)

Proof. We estimate the coefficient fλµ defined by equality (16). Taking into account that
0 < x, y, λ, µ < 1, and using the asymptotic formulas for Bessel functions for small values of ar-
guments (13), as well as the condition of Lemma 5, we obtain inequality (39).

Taking into account (39) and (31), the function in (19) is estimated in the following form

|ũ(λ, µ, z)| ≤ c19λ
1/2−αµ1/2−β, c19 = const > 0. (40)

Now, let us analyze the function (20), i.e., we find an estimate for the function (20). By virtue of
the estimates (26), (29), (38) and (40), the integral (23) is bounded, respectively, for 0 < x, y, z < 1
and for 1 < x, y, z < +∞ by the following absolutely convergent improper double integrals:

|u (x, y, z)| ≤
+∞∫
0

+∞∫
0

|λµXλ (x)Qµ (y) ũ (λ, µ, z)| dλdµ ≤

≤ c20x
1−2βy1−2β

1∫
0

1∫
0

λ1,5−αµ1,5−βdλdµ, 0 < x, y < 1,

|u (x, y, z)| ≤
+∞∫
0

+∞∫
0

|λµXλ (x)Qµ (y) ũ (λ, µ, z)| dλdµ ≤

≤ c21x
−αy−β

+∞∫
1

+∞∫
1

λ−3,5µ−3,5dλdµ, 1 < x, y < +∞.

Similarly, it can be shown that the integrals x2αux, y
2βuy, z

2γuz, B
x
α−1/2u, B

y
β−1/2u and Bz

γ−1/2u
are bounded by absolutely convergent improper double integrals.

According to Theorem 4 from [14; 233], the double integral in (20) converges uniformly.
Due to the uniform convergence of the double series (20), it can be integrated term by term, and

for each term, the order of integration can be interchanged.
Consequently, the integrand in (20) is continuous, and the double integral in (20) converges uni-

formly for 0 < x, y, z < +∞. Therefore, by Theorem 1 from [14; 231], this integral represents a
continuous function of x, y and z. Hence, u(x, y, z) is a continuous function in its domain of definition.

Based on these statements, the following theorem holds:
Theorem 2. Let α, β, γ ∈ (0, 1/2) and the function f(x, y) satisfy the conditions of Lemma 4 and

Lemma 5. Then the solution of Problem D∞ exists and is given by formula (20).
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Conclusion

In this work, a Dirichlet type boundary value problem for a three-dimensional elliptic equation with
three singular coefficients is formulated and studied. The uniqueness of the solution to the problem
has been proved by the method of energy integrals. The Hankel transform method was used to prove
the existence of solutions. The solution of the original problem was obtained using the inverse Hankel
transform in the form of a two-fold improper integral. Asymptotic methods were used to substantiate
the uniform convergence of improper integrals. The obtained estimate made it possible to prove the
convergence of these improper integrals and its derivatives up to and including the second order.
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