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In this paper, the solvability of initial-boundary value problems for a nonlocal analogue of a hyperbolic
equation in a cylindrical domain is studied. The elliptic part of the considered equation involves a nonlocal
Laplace operator, which is introduced using involution-type mappings. Two types of boundary conditions
are considered. These conditions are specified as a relationship between the values of the unknown function
at points in one half of the lateral part of the cylinder and the values at points in the other part of
the cylinder boundary. The boundary conditions specified in this form generalize known periodic and
antiperiodic boundary conditions for circular domains. The unknown function is represented in the form
u(x) = v(x) + w(x), where v(x) is the even part of the function and w(x) is the odd part of the function
with respect to the mapping. Using the properties of these functions, we obtain auxiliary initial-boundary
value problems with classical hyperbolic equations. In this case, the boundary conditions of these problems
are specified in the form of the Dirichlet and Neumann conditions. Further, using the known assertions
for the auxiliary problems, theorems on the existence and uniqueness of the solution to the main problems
are proved. The solutions to the problems are constructed as a series in systems of eigenfunctions of the
Dirichlet and Neumann problems for the classical Laplace operator.
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Introduction

This paper considers differential equations that belong to the class of equations containing shifts
of arguments. Such equations are widely used in describing various scientific models, for example, in
modeling immune processes [1, 2], in various population models [3, 4], in modeling the dynamics of
nonlinear optical systems [5, 6], and other systems.

Among equations with shifts of arguments, equations with involution occupy a special place.
Boundary value and initial-boundary value problems for analogues of elliptic and parabolic equa-
tions with involution have been studied by Al-Salti et al. [7, 8], Ashyralyev and Sarsenbi [9, 10],
Baranetskij et al. [11], Borikhanov and Mambetov [12], Kozhanov and Bzheumikhova [13], Mussirepova
et al. [14, 15], and Yarka et al. [16].

The analogues of hyperbolic equations with involution were considered in [17–19]. In [17], a non-
local analogue of a hyperbolic equation with involution with respect to the time variable was exam-
ined. In the paper, the initial problem was solved by reducing it to an equivalent initial problem
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for a fourth-order equation without involution. The estimates of stability of the solution and its first-
and second-order derivatives of the above problem were established. Similar studies were conducted
in [18, 19]. In these works, hyperbolic equations with involution with respect to the spatial variable
are considered in the one-dimensional case.

In this paper we investigate the solvability of initial-boundary value problems with periodic and
antiperiodic boundary conditions in the multidimensional case. Moreover, periodic and antiperiodic
boundary conditions are specified on the boundary of a circular cylinder. Boundary value problems
with periodic and antiperiodic boundary conditions in circular domains for the Poisson equation were
first studied in [20, 21], and for the nonlocal Poisson equation they were investigated in [22]. Note
also that boundary value problems with periodic conditions for a hyperbolic equation in rectangular
domains were studied in [23].

Let us turn to the formulation of the problems that are considered in this paper. Let Ω be a unit
ball, ∂Ω be a unit sphere, QT = Ω× (0, T ) be an open cylinder. For any x = (x1, x2, ..., xn) we assign
a point Sx = (−x1, α2x2, ..., αnxn), where αj , j = 2, 3, ..., n takes one of the values ±1.

Let us introduce the operator

Lxv(x) ≡ a04v(x) + a14v(Sx),

where a0, a1 are real numbers, 4 = ∂2

∂x21
+ ...+ ∂2

∂x2n
is the Laplace operator.

Denote

∂Ω+ = {x ∈ ∂Ω : x1 ≥ 0}, ∂Ω− = {x ∈ ∂Ω : x1 ≤ 0}, I = {x ∈ ∂Ω : x1 = 0}.

In the domain QT we consider a following problem:

∂2u(t, x)

∂t2
− Lxu(t, x) = f(t, x), (t, x) ∈ QT , (1)

u(0, x) = ϕ(x), ut(0, x) = ψ(x), x ∈ Ω, (2)

u(t, x) + (−1)ku(t, Sx) = 0, 0 ≤ t ≤ T, x ∈ ∂Ω+, (3)

∂νu(t, x)− (−1)k∂νu(t, Sx) = 0, 0 ≤ t ≤ T, x ∈ ∂Ω+, (4)

where k takes one of the values ±1 , ∂ν = ∂
∂r is the normal vector, r = |x|, ϕ(x) and ψ(x) are the given

functions.
A classical solution to problem (1)–(4) is a function u(t, x) from the class C2,2

t,x (QT ) ∩ C1,1
t,x (QT )

satisfying conditions (1)–(4) in the usual sense.

1 Initial-boundary value problem with Dirichlet boundary condition

In this section we present the well-known statements from V.A. Ilyin’s paper [24] regarding the
initial-boundary value problem for the classical wave equation

4z(t, x)− 1

a2

∂2z(t, x)

∂t2
= −f(t, x), f(t, x) ∈ QT . (5)

For equation (5), problems with initial conditions

z(0, x) = τ(x), zt(0, x) = ρ(x), x ∈ Ω, (6)

and with the Dirichlet boundary condition

z(t, x) = 0, [0, T ]× ∂Ω, (7)
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or with the Neumann boundary condition

∂νz(t, x) = 0, [0, T ]× ∂Ω, (8)

were studied.
A classical solution to the problem with conditions (5)–(7) (or with conditions (5), (6) and (8)) is

a function z(t, x) from the class C2,2
t,x (QT )∩C1,1

t,x (QT ) satisfying conditions (5)–(7) (or with conditions
(5), (6) and (8)) in the usual sense. The following assertions are proved.

Lemma 1. [24] Let the functions τ(x), ρ(x) and f(t, x) satisfy the following conditions:
1) the function τ(x) is continuous in the domain Ω and has continuous derivatives up to order

[n/2] + 2 and square-integrable derivatives of order [n/2] + 3 in this domain. In addition,

τ(x) = 4τ(x) = ... = 4kτ(x) = 0, k = [(n+ 4)/4];

2) the function ρ(x) is continuous in the domain and has continuous derivatives up to order [n/2]+1
and square-integrable derivatives of order [n/2] + 2 in this domain. In addition,

ρ(x) = 4ρ(x) = ... = 4kρ(x) = 0, k = [(n+ 2)/4];

3) the function f(t, x) is continuous in a closed cylinder QT = Ω × [0, T ] and has continuous
derivatives up to order [n/2] + 1 and square-integrable derivatives of order [n/2] + 2 in this cylinder.
In addition,

f(t, x) = 4f(t, x) = ... = 4kf(t, x) = 0, k = [(n+ 2)/4].

Then, a classical solution to problem (5)–(7) exists, is unique, and can be represented as

z(t, x) =

∞∑
m=1

{
τm cos a

√
µmt+

ρm
a
√
µ
m

sin a
√
µmt

}
zm,D(x)+

+

∞∑
m=1

{
a
√
µ
m

∫ t

0
fm(s) sin a

√
µmt− s

}
zm,D(x).

Here zm,D(x) are normalized eigenfunctions of the Dirichlet problem

4z(x) + µz(x) = 0, x ∈ Ω, z(x) = 0, x ∈ ∂Ω, (9)

and τm, ρm, and fm(t) are Fourier coefficients in the expansion of functions τ(x), ρ(x) and f(t, x) in
the system zm,D(x) , i.e., τm = (τm, zm,D(x)), ρm = (ρm, zm,D(x)) and fm = (fm, zm,D(x)).

Lemma 2. [24] Let the functions τ(x), ρ(x) and f(t, x) satisfy the following conditions:
1) the function τ(x) is continuous in the domain Ω and has continuous derivatives up to order

[n/2] + 2 and square-integrable derivatives of order [n/2] + 3 in this domain. In addition,

τ(x) = 4τ(x) = ... = 4kτ(x) = 0, k = [(n+ 2)/4];

2) the function ρ(x) is continuous in the domain and has continuous derivatives up to order [n/2]+1
and square-integrable derivatives of order [n/2] + 2 in this domain. In addition,

ρ(x) = 4ρ(x) = ... = 4kρ(x) = 0, k = [n/4];
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3) the function f(t, x) is continuous in a closed cylinder QT = Ω × [0, T ] and has continuous
derivatives up to order [n/2] + 1 and square-integrable derivatives of order [n/2] + 2 in this cylinder.
In addition,

f(t, x) = 4f(t, x) = ... = 4kf(t, x) = 0, k = [n/4].

Then, a classical solution to the initial boundary value problem for equation (5) with conditions
(6), (8) exists, is unique and can be represented as

z(t, x) =
∞∑
m=1

{
τm cos a

√
µmt+

ρm
a
√
µ
m

sin a
√
µmt

}
zm,N (x)+

+

∞∑
m=1

{
a
√
µ
m

∫ t

0
fm(s) sin a

√
µm(t− s)ds

}
zm,N (x).

Here zm,N (x) are normalized eigenfunctions of the Neumann problem

4z(x) + µz(x) = 0, x ∈ Ω, z(x) = 0, x ∈ ∂Ω, (10)

and τm, ρm and fm(t) are Fourier coefficients in the expansion of functions τ(x), ρ(x) and f(t, x) in
the system zm,N (x).

Further, we present some properties of eigenfunctions zm,D(x) and zm,N (x). In [21], the following
statement is proved.

Lemma 3. All eigenfunctions of the Dirichlet problem (9) and the Neumann problem (10) can be
chosen so that they have one of the symmetry properties:

z(x)− z(Sx) = 0, (11)

or
z(x) + z(Sx) = 0. (12)

2 The main problem

Let u(t, x) be a solution to problem (1)–(4) in the case k = 1. From equation (1) we obtain the
system ut(t, x)− a04u(t, x)− a14u(t, Sx) = f(t, x),

ut(t, Sx)− a14u(t, x)− a04u(t, Sx) = f(t, Sx).
(13)

We denote the operator of the type ISu(t, x) = u(t, Sx) as IS . In [25] it was proved that if S is an
orthogonal matrix, then the operator IS commutes with the operators 4 and Λ ≡ r ∂∂r , where r = |x|.
In our case, the mapping matrix S is orthogonal and therefore from (13) it follows that

f(t, x) + f(t, Sx) = ut(t, x)− a04u(t, x)− a14u(t, Sx) + ut(t, Sx)− a14u(t, x)− a04u(t, Sx) =

= ∂t[u(t, x) + u(t, Sx)]− ao4[u(t, x) + u(t, Sx)]− a14[u(t, x) + u(t, Sx)] =

= ∂t[u(t, x) + u(t, Sx)]− (a0 + a1)4[u(t, x) + u(t, Sx)],

f(t, x)− f(t, Sx) = ut(t, x)− a04u(t, x)− a14u(t, Sx)− [ut(t, Sx)− a14u(t, x)− a04u(t, Sx)] =

= ∂t[u(t, x)− u(t, Sx)]− ao4[u(t, x)− u(t, Sx)]− a14[u(t, x)− u(t, Sx)] =

= ∂t[u(t, x)− u(t, Sx)]− (a0 − a1)4[u(t, x)− u(t, Sx)].
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Let us introduce the notations

v(t, x) =
1

2
[u(t, x) + u(t, Sx)], w(t, x) =

1

2
[u(t, x)− u(t, Sx)].

It is obvious that u(t, x) = v(t, x) + w(t, x) and for all x ∈ Ω the symmetry properties

v(t, Sx) = v(t, x), w(t, Sx) = −w(t, x)

are satisfied.
Then, for the functions v(t, x) and w(t, x), we obtain the following equations

vtt(t, x)− (a0 + a1)4v(t, x) = f+(t, x), wtt(t, x)− (a0 − a1)4w(t, x) = f−(t, x),

where 2f±(t, x) = f(t, x)± f(t, Sx).

From initial conditions (2) for the functions v(t, x) and w(t, x), we obtain

v(0, x) =
1

2
[u(0, x) + u(0, Sx)] =

1

2
[ϕ(x) + ϕ(Sx)] ≡ ϕ+(x),

vt(0, x) =
1

2
[ut(0, x) + ut(0, Sx)] =

1

2
[ψ(x) + ψ(Sx)] ≡ ψ+(x),

w(0, t) =
1

2
[u(0, x)− u(0, Sx)] =

1

2
[ϕ(x)− ϕ(Sx)] ≡ ϕ−(x),

wt(0, x) =
1

2
[ut(0, x)− ut(0, Sx)] =

1

2
[ψ(x)− ψ(Sx)] ≡ ψ−(x).

Further, from boundary condition (3) it follows that if 0 ≤ t ≤ T, x ∈ ∂Ω+, then

v(t, x) |t∈[0,T ],x∈Ω+
= u(t, x) + u(t, Sx) |t∈[0,T ],x∈∂Ω+

= 0,

and if x ∈ ∂Ω−, then Sx ∈ ∂Ω+, hence

v(t, x) |t∈[0,T ],x∈∂Ω−= u(t, x) + u(t, Sx) |t∈[0,T ],x∈∂Ω−= u(t, Sx) + u(t, x) |t∈[0,T ],Sx∈∂Ω+
= 0.

Thus, for the function v(t, x) for all t ∈ [0, T ] and x ∈ ∂Ω, we have v(t, x) = 0.

From the symmetry properties of functions v(t, x) and w(t, x), we get the following equalities:

∂νv(t, Sx) |∂Ω= Λv(t, Sx) |∂Ω= Λv(t, x) |∂Ω= ∂νv(t, x) |∂Ω,

∂νw(t, Sx) |∂Ω= Λw(t, Sx) |∂Ω= −Λw(t, x) |∂Ω= −∂νw(t, x) |∂Ω .

Then from boundary condition (4) for the function w(t, x) for all t ∈ [0, T ] and x ∈ ∂Ω, we obtain the
following edge condition

∂νw(t, x) = 0.

Hence, if u(t, x) is a solution to problem (1)–(4) for k = 1, then the function v(t, x) satisfies the
conditions of the problem

vtt(t, x)− (a0 + a1)4v(t, x) = f+(t, x), (t, x) ∈ QT , (14)

v(0, x) = ϕ+(x), vt(0, x) = ψ+(x), x ∈ Ω, (15)

v(t, x) = 0, [0, T ]× ∂Ω. (16)
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Therefore, the function w(t, x) satisfies the conditions of the problem

wtt(t, x)− (a0 − a1)4v(t, x) = f−(t, x), (t, x) ∈ QT , (17)

w(0, x) = ψ−(x), wt(0, x) = ψ−(x), x ∈ Ω, (18)

∂νw(t, x) = 0, [0, T ]× ∂Ω. (19)

Thus, we have obtained two auxiliary initial-boundary value problems for the classical wave equation.
In the first problem, the boundary condition is specified in the form of the Dirichlet condition, and in
the second problem, in the form of the Neumann condition.

Further, we assume that a0 ± a1 > 0 and rewrite equations (14) and (17) as

4v(t, x)− 1

ε2
0

vtt(t, x) = − 1

ε2
0

f+(t, x), (t, x) ∈ QT ,

4w(t, x)− 1

ε2
1

wtt(t, x) = − 1

ε2
1

f−(t, x), (t, x) ∈ QT ,

where ε0 =
√
a0 + a1, ε1 =

√
a0 − a1 .

To study the solvability of problem (14)–(16), we can use the assertion of Lemma 1. If the functions
f+(t, x), ϕ+(x) and ψ+(x) satisfy the conditions of this lemma, then the classical solution to problem
(14)–(16) exists, is unique, and can be represented as

v(t, x) =

∞∑
m=1

{
ϕ+
m cos ε0

√
µm,Dt+

ψ+
m

ε0
√
µm,D

sin ε0
√
µm,Dt

}
zm,D(x)+

+
∞∑
m=1

{
1

ε0
√
µm,D

∫ t

0
f+
m(s) sin ε0

√
µm,D(t− s)ds

}
zm,D(x), (20)

where ϕ+
m = (ϕ+, zm,D), ψ+

m = (ψ+, zm,D) and f+
m(t) = (f+, zm,D).

Similarly, if the functions f−(t, x), ϕ− and ψ− satisfy the conditions of Lemma 2, then the classical
solution to problem (17)-(18) exists, is unique, and is represented as

w(t, x) =

∞∑
m=1

{
ϕ−m cos ε1

√
µm,N t+

ψ−m
ε1
√
µm,N

sin ε1
√
µm,N t

}
zm,N (x)+

+
∞∑
m=1

{
1

ε1
√
µm,N

∫ t

0
f−m(s) sin ε1

√
µm,N (t− s)ds

}
zm,N (x), (21)

where ϕ−m = (ϕ−, zm,D), ψ+
m = (ψ+, zm,D) and f−m(t) = (f−, zm,D).

Let us transform the functions v(t, x) and w(t, x) from equalities (20) and (21). To do this, we
use the properties of the eigenfunctions zm,D(x) and zm,N (x) formulated in Lemma 3. In this case, we
renumber the eigenfunctions zm,D(x) as follows: we denote the eigenfunctions with property (11) as
z2m,D(x), and the eigenfunctions with property (12) as z2m−1,D(x). We will use a similar notation for
the eigenfunctions zm,D(x) and zm,N (x).

Then, for the coefficients of the function ϕ(x), we have

ϕ+
m =

1

2

∫
Ω

[ϕ(x) + ϕ(Sx)]zm,D(x)dx =
1

2

∫
Ω

ϕ(x)[zm,D(x) + zm,D(Sx)]dx.
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Further, if m = 2j − 1, j = 1, 2, ..., then z2j−1,D(x) + z2j−1,D(Sx) = 0 and if m = 2j, j = 1, 2, ...,
then z2j,D(x) + z2j,D(Sx) = 2z2j,D(x), thus

ϕ+
2m =

∫
Ω

ϕ(x)zm,D(x)dx = ϕ2m, m ≥ 1.

Similarly, for the coefficients ϕ−2m−1, we obtain the equalities

ϕ−2m−1 =

∫
Ω

ϕ(x)z2m−1,N (x)dx = ϕ2m−1, m ≥ 1.

Similar equalities can be obtained for the coefficients f±m(t, x) and ψ−(x) :

ψ+
2m = ψ2m ≡ (ψ, z2m,D), ψ−2m−1 = ψ2m−1 ≡ (ψ, z2m−1,N ),

f+
2m(t) = f2m ≡ (f, z2m,D), f−2m−1(t) = f2m−1 ≡ (f, z2m−1,N ).

Then, formula (20), or more precisely the solution to problem (14)–(16) can be rewritten as

v(t, x) =

∞∑
m=1

{
ϕ2m cos ε0

√
µ2m,Dt+

ψ2m

ε0
√
µ2m,D

sin ε0
√
µ2m,Dt

}
z2m,D(x)+

+
∞∑
m=1

{
1

ε0
√
µ2m,D

∫ t

0
f2m(s) sin ε0

√
µ2m,D(t− s)ds

}
z2m,D(x), (22)

and formula (21) as

w(t, x) =
∞∑
m=1

{
ϕ2m−1 cos ε1

√
µ2m−1,N t+

ψ2m−1

ε1
√
µ2m−1,N

sin ε1
√
µ2m−1,N t

}
z2m−1,N (x)+

+

∞∑
m=1

{
1

ε1
√
µ2m−1,N

∫ t

0
f2m−1(s) sin ε1

√
µ2m−1,N (t− s)ds

}
z2m−1,N (x). (23)

Now we present the main assertion regarding problem (1)–(4).

Theorem 1. Let k = 1, a0 ± a1 > 0, functions f(t, x), ϕ(x) and ψ(x) satisfy the conditions of
Lemma 1. Then, the classical solution to problem (1)–(4), exists, is unique, and can be represented as

u(t, x) =
∞∑
m=1

{
ϕ2m cos

√
(a0 + a1)µ2m,Dt+

ψ2m√
(a0 + a1)µ2m,D

sin (a0 + a1)
√
µ2mt

}
z2m,D(x)+

+

∞∑
m=1

{
ϕ2m−1 cos

√
(a0 − a1)µ2m−1,N t+

ψ2m−1√
(a0 − a1)µ2m−1,N

sin
√

(a0 − a1)µ2m−1,N t

}
z2m−1,N (x)+

+
∞∑
m=1

{
1√

(a0 + a1)µ2m,D

∫ t

0
f2m(s) sin

√
(a0 + a1)µ2m,D(t− s)ds

}
z2m,D(x)+

+
∞∑
m=1

{
1√

(a0 − a1)µ2m−1,N

∫ t

0
f2m−1(s) sin

√
(a0 − a1)µ2m−1,N (t− s)ds

}
z2m−1,N (x). (24)
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Proof. If the functions f(t, x), ϕ(x) and ψ(x) satisfy the conditions of Lemma 1, then the functions
f+(t, x), ϕ+(x) and ψ+(x) satisfy the same conditions. Then, by the assertion of Lemma 1, the solution
to problem (14)–(16) exists, is unique, and can be represented in the form (20). If the functions
f−(t, x), ϕ−(x) and ψ−(x) satisfy the conditions of Lemma 1, they also satisfy the conditions of
Lemma 2. Then, by the assertion of Lemma 2, the solution to problem (17)–(19) with functions exists,
is unique, and can be represented in the form (21). Note that the functions v(t, x) and w(t, x) from
equalities (22) and (23) have the symmetry properties v(t, Sx) = v(t, x) and w(t, Sx) = −w(t, x). We
will show that the function u(t, x) = v(t, x) + w(t, x) will be a classical solution to problem (1)–(4).

Indeed, the following equalities hold for this function

utt(t, x)− Lxu(t, x) =

= vtt(t, x)− a04v(t, x)− a14v(t, Sx) + wtt(t, x)− a04w(t, x)− a14w(t, Sx) =

= vtt(t, x)− (a0 + a1)4v(t, x) + wtt(t, x)− (a0 − a1)4w(t, x) =

= f+(t, x) + f−(t, x) = f(t, x),

u(0, x) = v(0, x) + w(0, x) = ϕ+(x) + ϕ−(x) = ϕ(x), x ∈ Ω,

ut(0, x) = vt(0, x) + wt(0, x) = ψ+(x) + ψ−(x) = ψ(x), x ∈ Ω.

From the symmetry conditions, as well as from boundary conditions (16) and (19) for x ∈ ∂Ω+ for
k = 1, we obtain

u(t, x) + u(t, Sx) = v(t, x) + w(t, x) + v(t, Sx) + w(t, Sx) =

= [v(t, x) + v(t, Sx)] + [w(t, x) + w(t, Sx)] = 2v(t, x) + [w(t, x)− w(t, Sx)] = 0

and

∂νu(t, x)− ∂νu(t, Sx) = ∂ν [v(t, x)− v(t, Sx)] + ∂ν [w(t, x) + w(t, Sx)] =

= ∂ν [0] + ∂νw(t, x) = 0.

Thus, boundary conditions (3) and (4) are also satisfied. Then, substituting the values of the
functions v(t, x) and w(t, x) from equalities (22) and (23) into the left-hand side of the equality u(t, x) =
v(t, x) + w(t, x), we obtain representation (24). The theorem is proved.

We conduct similar studies in the case k = 2. In this case, if we choose functions v(t, x) and w(t, x)
in the form (13), then we obtain a problem with conditions (14), (15) and the Neumann boundary
condition ∂νv(t, x) = 0, [0, T ]× ∂Ω.

Hence, for the function w(t, x), we obtain a problem with conditions (17), (18) and the Dirichlet
boundary condition w(t, x) = 0, [0, T ]× ∂Ω. The main assertion regarding problem (1)–(4) in the case
k = 2 is the following theorem.

Theorem 2. Let k = 2, a0 ± a1 > 0, functions f(t, x), ϕ(x) and ψ(x) the functions and satisfy the
conditions of Lemma 1. Then the classical solution to problem (1)–(4) exists, is unique and can be
represented in the form
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u(t, x) =
∞∑
m=1

{
ϕ2m−1 cos

√
(a0 + a1)µ2m−1,Dt+

ψ2m−1√
(a0 + a1)µ2m−1,D

sin(a0 + a1)
√
µ2mt

}
z2m−1,D(x)+

+

∞∑
m=1

{
ϕ2m cos

√
(a0 − a1)µ2m,N t+

ψ2m√
(a0 − a1)µ2m,N

sin(a0 − a1)
√
µ2m,N t

}
z2m,N (x)+

+
∞∑
m=1

{
1√

(a0 + a1)µ2m−1,D

∫ t

0
f2m−1(s) sin

√
(a0 + a1)µ2m−1,D(t− s)ds

}
z2m−1,D(x)+

+

∞∑
m=1

{
1√

(a0 − a1)µ2m,N

∫ t

0
f2m(s) sin

√
(a0 − a1)µ2m,N (t− s)ds

}
z2m,N (x).

Conclusion

In this paper, the initial-boundary value problem for an analogue of a hyperbolic equation with
involution is studied in a multidimensional circular cylinder. Periodic and antiperiodic conditions are
considered as boundary conditions. The unknown function is represented as the sum of an even and odd
part with respect to the involution transformation. For auxiliary functions, initial-boundary functions
for the classical hyperbolic equation are obtained. Using known assertions for the obtained problems,
theorems on the existence and uniqueness of the main problems are proved.

It is planned to study similar problems for analogues of hyperbolic equations with multiple involu-
tion.
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