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This paper studies the problems of classification and reduction to canonical form of linear partial differential
equations of the sixth-order with non-multiple characteristics and constant coefficients. Considering that
with the growth of the order of the equation or the increase in the number of independent variables,
the problems of classification and reduction to canonical form become more complicated. The article
first provides a general formula for the coefficients of the new equation obtained after the transformation
of variables, and then formulates and proves three lemmas that play an important role in finding the
canonical form of the equation. The classification problems are considered and the corresponding canonical
types of equations are found by a new method in four cases in which the equation with partial derivatives
of the sixth-order has: 1) six different real characteristics; 2) four different real roots and two complex-
conjugate characteristics; 3) two real roots and four different complex-conjugate characteristics; 4) six
different complex-conjugate characteristics and, consequently, the corresponding theorem is proved.
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Introduction

In order to achieve meaningful outcomes in the study of boundary or initial value problems for
partial differential equations, it is essential to begin by identifying the type of equation and deriving
its corresponding canonical form. This classification and transformation play a fundamental role in
understanding the general properties of the solutions, ensuring the correct formulation of boundary
value problems, informing the selection of suitable solution methods, and facilitating the analysis of
both direct and inverse problems. Furthermore, in certain cases, establishing the canonical form may
enable the derivation of a general solution or the reduction of the order of the equations .

Therefore, the comprehensive classification, identification of the equation type, and derivation of
the corresponding canonical form represent a task of great importance in the theory of differential
equations, carrying not only theoretical relevance but also practical significance.
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The classification and determination of the canonical forms of second-order partial differential
equations are well known. A comprehensive treatment of the classification and canonical form reduction
for third- and fourth-order equations was provided in [1| and [2], respectively. Further investigations
into fifth-order equations were conducted in [3], while the study presented in [4] addressed the derivation
of canonical forms for n-th order partial differential equations involving two independent variables.

A significant number of studies have been devoted to the investigation of boundary value prob-
lems for high-order partial differential equations. For example, in [5] and [6], initial-boundary value
problems for high even-order partial differential equations are analyzed. In [7], a completely new
numerical method is proposed for solving general linear and nonlinear high-order partial differential
equations. In [8], an initial-boundary value problem for a high-order partial differential equation in the
multidimensional case is studied.

However, to this day, the issues of complete classification and determination of canonical forms
of linear partial differential equations of sixth and higher orders remain unstudied. Although sixth-
order partial differential equations do indeed arise in applied problems (for example, wave motion in
water with surface tension is described by a sixth-order equation [9]), significant research has also been
devoted to the study of boundary value problems for sixth-order partial differential equations. For
instance, in [10] and [11], sixth-order partial differential equations are analyzed with respect to the
Painlevé property and the behavior of their solutions. In [12], the reduction of equations describing
orthotropic bodies to a sixth-order partial differential equation and its analysis is presented. In [13], a
nonlocal inverse boundary value problem for a sixth-order partial differential equation with additional
integral conditions is investigated.

Therefore, the wide range of applications involving sixth-order partial differential equations under-
scores the need for a comprehensive investigation into their full classification and reduction to canonical
forms.

It should be noted that the classification and determination of canonical forms of partial differen-
tial equations are carried out based on the classification of the roots of the corresponding algebraic
equations. As the order of the equation increases or the number of independent variables grows, the
problems of classification and reduction to canonical form become increasingly complex. The complete
classification of second-order partial differential equations and the determination of their corresponding
canonical forms have been studied in three cases; for third-order equations — in four cases; and for
fourth- and fifth-order partial differential equations — in nine and twelve cases, respectively.

Based on the above analysis, it can be concluded that the classification of sixth-order linear partial
differential equations is fundamentally influenced by the quantity and multiplicity of real and complex
roots of the corresponding sixth-degree algebraic equations.

For sixth-degree linear algebraic equations, one of the following scenarios invariably applies:

1) six distinct real roots;
2) four distinct real roots accompanied by one pair of complex conjugates;
3) two distinct real roots along with two distinct pairs of complex conjugates;
4) three distinct pairs of complex conjugate roots;
5) one double real root plus four distinct real roots;
6) two double real roots and two distinct real roots;
7) three double real roots;
8) one double root, one triple root, and one simple real root;
9) one triple root together with three distinct real roots;
10) two triple real roots;
11) one double root and one quadruple real root;
12) one quadruple root with two distinct real roots;
13) one quintuple root alongside one simple real root;
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) one sextuple real root;
) one double root, two distinct real roots, and one pair of complex conjugates;
) one double real root and two distinct pairs of complex conjugates;
) one double real root and one double pair of complex conjugates;
18) one triple root, one simple real root, and one pair of complex conjugates;
) one quadruple real root and one pair of complex conjugates;
) two distinct real roots and two distinct double pairs of complex conjugates;
) two distinct pairs of complex conjugates plus two distinct double pairs of complex conjugates;
) two distinct double real roots and one pair of complex conjugates;
23) three distinct double pairs of complex conjugate roots.

Consequently, the comprehensive classification and reduction to canonical form of sixth-order equa-
tions can be systematically explored through exactly 23 distinct cases, each corresponding to one of
the possible root structures of sixth-degree algebraic equations.

In this study, within the scope of the article, we focus on the classification and reduction to canonical
form of sixth-order linear partial differential equations possessing non-multiple characteristics.

1 Mawn part

In some domain €2 of the plane xOy, we consider the sixth-order partial differential equation with
two independent variables, linear with respect to the highest derivatives:

6 9%
ul kzzo k@xﬁfkﬁyk ’ (1)

where Ay (k = 0,6) are given constants, and F' is a continuous function depending on x,y,u and its
partial derivatives with respect to x, y up to the fifth order inclusive, where Z A2 #0.

Using the transformation of variables £ = &(x,y), n = n(z,y), allowing for the inverse transforma-
tion, that is, fulfilling condition J = &1y — &{ne # 0, from (1), we obtain

0 Ou
u] = Z Ak D€~k ok = I, (2)
k=0

where F is a function depending on &,7,u and its partial derivatives with respect to £, n up to the
fifth order inclusive, and aj are new coefficients that are linearly dependent on Ag, k = 0, 6.
Taking into account the notation

f (22, 2y) = Agz5 + A1202, + Agzizz + Agzgzz + A4z§z3 + A5zxz?§ + AGZS,

the coefficients ay (k = 0, 6) of equation (2) can be written as

1/ 0 o \* 1 0\
ay = E (nxagz + ny@gy) I ({w;gy) (6 ]{7) (fxan + fy aT]y) f (77587 77y) . (3)

Let us choose variables £ and 1 such that equation (1) has a canonical form and so that the largest
coefficients of equation (2) vanish. Since, from formula (3) it is clear that all coefficients of equation
(2) are related to the function f (2, 2,) and its partial derivatives with respect to the arguments, we
will consider an equation with partial derivatives of the first order:

Ap28 + A1202, + AQZiZi + Agzgzg’ + A4z§z§ + A5zng + AGZS =0. (4)
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Let z = ¢(z,y) be a particular solution of this equation. If we set £ = ¢(x,y), then the coefficient
ag will obviously be equal to zero. Thus, the above-mentioned problem of choosing new independent
variables will be related to the solution of equation (4), and the solution of equation (4) is related by
the general integral of the following ordinary differential equation

Ag(dy)® — Ay (dy)3dx 4+ Ay(dy)*(dx)? — As(dy)(dz)® + Ag(dy)?(dx)* — Asdy(dzx)® + Ag(dz)® = 0. (5)

Equation (5) is called characteristics equation for equation (1), and its integrals are called
characteristics. Dividing both parts of (5) by (dz)® and introducing the notation t = dy/dx, we
have the following algebraic equation

A0t6 — A1t5 + A2t4 — A3t3 + A4t2 — Ast + Ag = 0. (6)

Considering ¢ = dy/dx, we can see that finding the general integral of the ordinary differential
equation (5) is connected with the roots (algebraic with respect to ¢ (t = dy/dz) of the equation (6).

Similarly, as in [4], we will prove the following three lemmas, which play an important role in
finding the canonical form of equation (1):

Lemma 1. If the function z = ¢(z, y) is a solution to equation (4), then the relation ¢(x,y) = const
is a general integral of the ordinary differential equation (5).

Proof. Since the function z = ¢(z,y) is a solution to equation (4), then the equality

Aol + A1y + Aopapr + Asps Zy + Asproy + Aspapy + Aspy = 0

is an identity in the domain where the solution is considered. Dividing both sides of the last equation
by gog, we obtain the following identity:

6 5 4 3 2
%<—%> fm<—%> +@(—%> f@(—@ﬁ +@<—%) f%<—%>+A6:a(n
Py Py Py Py Py Py

It is known that if a function y, determined from an implicit relation ¢(x,y) = const, satisfies equa-
tion (5), then ¢(x,y) = const is a general integral of the ordinary differential equation (5). Let
y = f(z,C) be this function. Then

dy__[%@w) (8)

2= [ e

Here, the square brackets and the index y = f(z, C) indicate that on the righthand side of equal-
ity (8) the variable y is not an independent variable, but has a value equal to f(x,C). It follows that
y = f(x,C) satisfies equation (5), since

dy\°® dy\°® dy\* dy\ > dy\ 2 dy
Ao (=) —4 (=2 Ay (=) —As (=2 A (=) — A5 (=2) + 4Ag =
O<daz> 1<d:c> A dz S\ da A dz >\ da A
6 5 4 3
w2 a (5] () )
Py Py Py Py
2
+m<l%>—A4}%>+% —0,
Py Py y=F(@C)

by virtue of (7) the expression in square brackets is equal to zero for all values of z,y, and not only
for y = f(x,C).
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Lemma 2. If p(z,y) = const is a k-fold (k < 6) general integral of equation (5), then for z = p(z,y)
the function f (2., 2y) and all its derivatives with respect to z,z, up to and including (k — 1) order
are equal to zero.

Proof. Let ¢(x,y) = const be a k-fold general integral of equation (5), and t1,ts, ..., ts be the roots
of equation (6), where t; (t; = —¢,/py) is the corresponding k-fold root of equation (6). Then, based
on the corollary of Bezout’s theorem, equation (6) can be written in the form

6

At —t)* J[ t—t)=o0. (9)

j=k+1
If we consider t = dy/dx, the equation (9) takes the form

6
Ag (dy — tyda)F H (dy — tjdz) = 0.
Jj=k+1

Taking this into account, the function f(z;,2,) and the equation (4) can be written as

6 6
[ (22, 2y) = Ao (22 + tlzy)k [T (22 +tjzy) and Ag (2 + tlzy)k [T (2z+tjzy) = 0, respectively.
j=k41 j=k+1
Therefore, for z = p(z,y), we have

6

f (e 2y) = Ao (2 + t12)" [ (20 +t2) = 0.
j=k+1

It easily follows from this that all derivatives of the function f(z,,z2,) with respect to z,z, up to
(k — 1) order inclusive for z = ¢(z,y) are equal to zero.

Lemma 3. When transforming variables & = &(x,y), n = n(z,y) that allow inverse transformation,
the number and multiplicity of real and complex roots of equation (6) are invariant, and the identity
holds Dg = J3°Dg, where

De=AY [] ti—t)? (10)
6>i>5>1

is the discriminant of the equation (6), and

De=a’ [ (mi—ny)? (11)
6>1>5>1

is the discriminant of the following equation
6 5 4 _ 3 2 _ =0 =dn/d 12
app” — a1’ + agp® — azp® + agp® — asp+ag =0 (u = dn/dg), (12)

where ty,ta,...,t¢ and u1, pa, ..., ue are the roots of the equations (6) and (12), respectively.

Proof. As shown above, when transforming the variables £ = {(z,y), n = n(x,y), the equation (1)
with the condition J = &1, — §mn, # 0, was transformed into equation (2). By introducing the
notation ¢ = dy/dx, p = dn/d¢ into the equations of the characteristics for equations (1) and (2),
algebraic equations (6) and (12) were found, respectively. Then, taking into account ¢ = dy/dx and
p = dn/d€¢, we have the following relation

dn(z,y) _ nedz +nydy  ne+ ny(dy/dr)  ne 4yt
df(% y) Exdx + fydy Ex + fy (dy/dx) §x + fyt

p= (13)

8 Bulletin of the Karaganda University



Classification and reduction to canonical ...

From (13), we find the relation between the roots u; and t; of the equations (6) and (12) in
the form p; = (e +ny-t;) / (&x + &y - ti). It follows that the number and multiplicity of the real
and complex roots of equations (6) and (12) are the same. That is, when transforming variables
& =¢&(x,y),n =n(x,y), allowing for an inverse transformation, the number and multiplicity of the real
and complex roots of equation (6) are invariant. In addition, we have

p — g5 = J (te — t5) [(&0 + te&y) (& + €)1, k,j=T1,6.

Using these equalities, from (11), we find

D=al T (& +118y) Gty - G+t [ te—1)%
6>k>j>1

From here, opening the brackets inside the square bracket and taking into account equality (10),
we obtain

~ —-10 , _
D=a? D[+ (ti+ta+...+t6) &+ +ti-ta-...telh] Ay'Y. (14)

On the other hand, according to Vieta’s formulas, the following equalities hold:

A A A
t1+t2+...+t6:A—;, t1t2+t1t3+...—|—t5t6:A—z,...,t1~...~t6:A—S. (15)

Based on (15), equality (14) takes the form
D =al’TD (A€ + A1€36, + ... + A8 17

Since, according to formula (3), ag = Ao&S + Algggy +... 4+ A6£S, then from the latter it follows

that D = J3°D. From this equality, by virtue of .J = 0, it follows that when transforming variables,
the sign of the discriminant D is invariant.

Without loss of generality, we can assume [4] that condition Ay > 0 is also satisfied.

As is well established from the corollary to the Fundamental Theorem of Algebra, any polynomial of
degree n over the field of complex numbers possesses exactly n roots, counted with their multiplicities.
Accordingly, equation (6) has exactly six roots — real and /or complex conjugates — taking multiplicities
into account.

Given that the algebraic equation (6) presents 23 possible root configurations, the corresponding
partial differential equation (1) may be analyzed in all these cases. Nevertheless, owing to limitations of
space, the present study will concentrate solely on the four cases in which equation (6) has exclusively
simple (non-repeated) roots.

1. Let equation (6) have six different real roots t1 = A1, ta = Ao, t3 = A3, t4 = Ay, t5 = A5, t6 = Ng
and A\; > Ag > A3 > Ay > A5 > Ag. Then, equation (5) has six different real general integrals:

Uy (z,y) =y — Az = const, Wo(x,y) =y — Aex = const, W3(z,y) =y — A3z = const,

Uy(x,y) =y — Max = const, Ws(z,y) =y — A\sz = const, Yg(z,y) =y — A\gz = const.
If we take into account (15), then equation (1) can be written as:
O%u O ou

Ag | =—= AMFAFA+M+ A5+ X)) =—=— + (M A+ A i A56) ———= + ...
0|56 T (A1 F A2+ Az + A+ A5 + 6)8x58y+( 12+ AMAz + ..+ As 6)8$48y2+

A%

o) =1

oot ()\1)\2)\3)\4)\5)\6)
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Using first-order differential operators of the form ( y), the last equation can be formally
written as: 5
0 0
A — 4+ A\ =F. 16
o |TT (55 + Mg ) | (16)
k=1
. . . . (A1 — As) (A2 — As) (A3 — A5)
B trod the foll tat — = —_— = =
y introducing the following notations 1 = h) 11, W 2, O — o) 13,
M = 4, let us change the variables by
(A1 — X¢)

€= (L+ Vi) y — Qs + ey e, 1= (1 - Visan)y — (s — deyiman . (17)

Then, taking (17) into account, we have

6 0 0 0
o= Ex e Ty T T (A5 + A6 /1spia) 875 — (A5 = Asv/i3hta) o
0 0 0
ay éy ag +n ya ( + V L3144 ) ( v 34 ) an
- . 9 :
Substituting these expressions of e and ay into the equation (16), we obtain
i 9 5
(A1 = A5 + Viapia (A1 — Ag)) oe t (A1 = A5 = VHspia (M = Re)) 5 | %
[ 0 0
X (A2 = As + Vs (A2 — Ag)) g T2 = A5~ Visla Qe = X)) 5| X
- 5 5
X (>\3—>\5+\/M()\3—)\6))3*£+()\3—)\5—x/m0\3—>\6))3* X
[ 0 0
X | (Ag = A5 + V/uapia (A — Ag)) o + (M = A5 = Viuspa (A = X)) 5| X
o 0 0 0
— — - = - =+ = = F.
v =0 (e = g )] [ 00 =29 (5 + )| = 7

Let us divide both sides of the last equation by

fsis (A1 — As) (A2 — Ag) (A3 — Ag) (Aa — X6) (As — X6)” (# 0).

Then, we have

[(m + V/13/h4) ;5 + (1 — \/Hafia) ;7] X {(uz + V/13/04) c‘?g (12 — /13pa) }

T (54 V) 3+ (5~ V) ] T (4 ) &+ (= ) 2]

0*u  O*u
(56~ 5) - "

where Fy = Fy/ {—\/m(xl “26) Qo — Ag) (g — Ag) (Aa — Ag) (s — /\6)2}.
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And the equation (18) can be rewritten as:

[8+(u1 W)@]X[a+(uz—¢m)a
98 (p1 + /mspa) On 98 (p2 + /H3pa) 0

2

[E-tmm) (-2

X

0 (@ + i) 0
0 0 52 2 o2 92u 92w -
<8£+01877> < > <€2 > <a£2 - (9772> —Fg,
Wherec:w c ('u2_ VH3fa) b2:(\//7_—\/'[74)2
Tl vmm) 2 (et viem) (Vi + i)

Py = Fy/ { \Jiigiin (i + i) (2 + /iisiin) (i + Vi) }

Example 1. Consider the following sixth-order partial differential equation:
Upgzere T OUzzzery — 10Uzzzeyy — 100Uszayyy — 111 Uzayyyy + YUsyyyyy + 120Uyyyyyy = 0. (19)
The characteristic equation corresponding to the equation (19) has the form
(dy)® — 6(dy)®(dx) — 10(dy)*(dz)? + 100(dy)?(dz)® — 111(dy)?(dz)* — 94(dy)(dz)> + 120(dz)’ =
It is easy to verify that this equation has six different real roots for t = dy/dz:
ti=1,to=—1,t3=2, t, =3, t5 = —4, t5g = 5.

Then, equation (19) can be written as follows:

0 0 0 0 0 0 0 0 0
() G =) et 2a) (o) (e 3) (e e o) wmo 0
After the transformation & = (1 + v7)y + (4 — 5v7)z, n = (1 — V/7)y + (4 4+ 5/7)z, we obtain
= (4 — S\ﬁ) 8% (4 + 5\[) 20 (1 + \ﬁ) 8% + (1 — \ﬁ) 8@ Considering these, from (20), w

o0 _
’ By
have
D 0N B (P o)
¢ €2 on?) \og  om2) 7
(5+4f) _ (3+6\[ 2 _ (28+11V7
where e = G5 2 = ) ! —( )

2. Let the equation (6) have four different real roots t1 = Ay, toa = Ao, t3 = A3, t4 = Ay and two
complex conjugate roots t5 = o + fi, ts = o — fi. Then the equation (5) has four different real and
two different complex conjugate general integrals:

Uy (x,y) =y — Aix = const, Uy(z,y) =y — Az = const, ¥3(z,y) = y — A3z = const,

Uy(x,y) =y — Az = const, o(x,y) =y — ax —iSx = const, p*(x,y) =y — ax + iSx = const,
where o, 5 € R and 8 # 0.

If we take into account (15), then the equation (1) can be written as:

0% 9% 9%

Ag | =— A A t te) === ..+ t5t6) ===
0 63:6+( 1+tA2+ A3+ A+t + 6)8x58y+(>\1)\2+>\1)\3+ + 56)8x48y2+

6

0°u
+ (M A2 A3 M\gtste) =—= | = F.
(123456)8y6
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Hence, similarly to equation (16), we have

4
0 0 0*u 0*u 0*u
A + A —— +2a *+8) | =F 21
O{H<3x £y )}<8x2+ “Guay T (@ +6)8y2> 1)
Let us change the variables by the following formulas
{=y—ax, n=pr (22)
8 0 0 0 0 0 0
Then — v T ey = —0ge P Z _“
o 5 =g+ iy = 5 Py g =g vy = o
Substituting these expressions of e and En into the equation (21), we have
Y
4082 T |« A—a3+58 @+@ =F (23)

Assume that (A\; — @) (A2 — @) (A3 — @) (A4 — @) # 0. Then, dividing both parts of the equality (23)
by AgB% (M1 — a) (A2 — a) (A3 — a) (A4 — a) and introducing the notation

B B B B

)\1—067 M6ZA2—Q’ M’?:)\g—a? /1’8:)\4_0[7

8 8 8+ 0 8+ 0 8+ 0 @—F@ _r
o " o¢ " Moy ) \oe " an) \oe T an ) \oez T ap) T
62 82 82 2 62 82

<a€2+(ﬂ5+ﬂ6)856n+/15/168772> (852 +(M7+M8)8§an+uwsanz> X

2 2
<;fﬁ)>:ﬂ’ 24

where F4 = Fl/ [A()BZ ()\1 — a) ()\2 — Oz) ()\3 — a) ()\4 — Oz)]
If us = —pe, 7 = —ps, then the equation (24) takes the form

O 2PN 0N (Pu Pu L
e "z ) \ae e )\ o) = T

0? 0? 0? 0? 0?
Let — — then — — — and —
et pus # —He, K7 # —Hs, then ot (15 + p16) aeay Tt g e Ad 5e + (17 + 18) 5.7 dEdn
2
+ /J7,U«8W are hyperbolic differential operators, since (us +M6)2 — duspe = (us — ,u6)2 > 0 and
n

s =

we obtain

or

(7 + ps)® — dpzps = (ur — ps)® > 0.
To further simplify equation (24), we make a change of variables by

=s(&mn), t=tEmn) (25)

and J = s¢t;) — syte # 0, then a% = 55% + tgg, a% = sn% + tn%- Taking this into account, from

equation (24), we obtain a new equation in the following form

B, B B 0
(¢ + pssn) -+ (te + psty) 5, ) | (s¢ + p6sn) 5+ (b + notn) 5
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2

H? 0
(35 + (p7 + ps) sesy + prpss ) 952 + (755 + (p7 + ps) tety + prust ) atQ

82
—HN%Q+M%%W+UW+%M%%+%QD8&>X

O*u o*u 0“u
(@5+s)62 2@gg+%%%%m+(Q+ﬂ)a2>:F5 (26)

where Fj5 is a function depending on s, t, u and its partial derivatives with respect to s,t up to the fifth
order inclusive.

To make equation (26) simpler, we take a replacement for (25) as
s =mn+po€, t=pon—E¢, (27)
where g is one of two solutions of the equation

2 2(1—prps)

—-1=0, (28)
M7+ g
1— 1-— 2 1— 1— 2
that is, o = P78 o JOZRIS) g o = L AT RIS g s
p7 + b (7 + ps) 7 + s (7 + ps)
case, s¢ = t, = po,Sp, = —t¢ = 1 and therefore J = s¢t, — s,te = u% + 1 # 0. In addition,

the equalities 2(sgt, + purpuss,t,) + (7 + ps)(set, + syte) = 2(—pg + prpspg) + (pr + ps) X (1§ —
2(1 —
_1):[M2_(W

M7 + g
account these equalities, then equation (26) takes the form

— 1} (w7 + pg)=0, s¢te + syty = —po + po = 0 are valid. If we take into

((M()Jrliz))aa (=1 + pspo) §t> <(/~00+M6)8a (=1 + pepo) ;)

0? 0?
X [(N(Q) + (p7 + pg) po + prps) 92 T (1= (7 + p8) po + prpispg) ] X

ot?
0“u 0u
2 2
1 = F5.
><<(,u0+)82+(+ )8t2> 5
Then, dividing both parts and both sides of the last equation by

(pspo — 1)

(1§ + 1) (o + p5) (o + p6) (10 + 7) (10 + pg) and introducing the notations ¢z = (0 +713) "
0+ ps

_ (mepo — 1) B2 (1 — prpio)(pspo — 1)
(o + pe) ! (o + p7)(po + ps)

0 0 0 0 H? 262 Pu O
(a +C38t> <a e 8t> (aﬁ‘%ﬁ) <852+8t2>_F6’ (29)

where Fg = Fs/ [(1§ + 1) (1o + p5) (ko + p6) (o + p7) (1o + p18)] -

, We come

-1 —1
Let us prove that b2 > 0. Introducing the notations v = M, vy = HoMs — © nd taking
Ho + p7 Ho + pg
. . . : .9 2 (prps — 1)
into account that po is one of the two solutions of equation (28), that is, ug + Moﬁ —
M7 T 8
2 (prps — 1)
popr — 1 pops — 1 Ko+ Ho (b7 +ps)
—1 =0, we have v + 1 = + = (7 + ps) = 0. Then
( ' ( ) Mo + p7 Ho + pg (o + pi7) (po + ps)
pop7 — 1) (pops — 1 1 2 1 2
b2:— = -1y =- |+ —4nwm| =-(r —1r)" >0.
' (1o + p7)(po + pg) 1l ) 7 )
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It is easy to verify that if one of the expressions A\ — a(k = 1,2,3,4) is equal to zero, that is, for
example A\ — o = 0, then the equation (23) takes the form

(1 on-or o]} (s 22) =

and this equation, as in case (29), after changing variables by s = n+ o, t = pon — &, can be brought

to the form
8 + 8 8 +c a 872 _ bzig @ + @ — F
os M%) \as T %0t ) \as2 " a2 ) \as2 Tz ) T

where Fy = Fi/ [Aof% (A2 — @) (As — a) (As — ) (g + 1) (1o + p6) (1o + p17) (o + )] -
Example 2. Consider the following sixth-order partial differential equation:
Unzzzze + 24Uzzrzey + 23Npzzyy + 1264z mzyyy + 3663Uzyyyy + 5240Unyyyyy + 2625Uyyyyyy = 0. (30)
The characteristic equation corresponding to the equation (30) has the form
(dy)® —24(dy)® (dz)+239(dy)* (dz)? —1264(dy)® (dz)* +3663(dy)* (dz)* —5240(dy) (dz)® +2625(dx)® =

It is easy to verify that this equation has four different real roots and two complex conjugate roots
for t = dy/dx:
t1=050,1=3,t3=1, t4, =7, t5 =4+ 31, tg =4 — 31.

Then, equation (30) can be written as follows:

0 0 0 0 0 0 0 0 0? 0? 0?
SO S Y (AN S | (i i, 252 ) u=0. 1
<8x +58y) <8x +38y> <83: * 8y) <8x + 78y) <85L‘2 +88x8y + 50y > 0 (31)

After the transformation £ = y — 4z, n = 3z, we obtain: % = —45 o e+ 38?7’ oy = 8@ Considering

these from (31), we have
0? 0? 0?9 0?9
(e ~52) (5~ o) (s o) =0

3. Let equation (6) have two different simple real roots and four complex conjugate roots:
tl = )\latQ = >\27t3 = (5+’}/Z,t4 = 6_7171:5 = O‘+B7’at6 = Cl—ﬁ’i,

where A1, Ao, i, 3,8,7 € R such that 3 # 0,7 # 0, (a — 8)% + (|8] — |7])?
Then the equation (5) has one real and four different complex conjugate general integrals

Uy(z,y) =y — Az = const, Ua(z,y) =y — Aoz = const,
Us(x,y) =y — dx —iyz = const, Uy(z,y) =y — dx + iyx = const,
o(r,y) =y — ax —ifx = const, p*(z,y) =y — ax + ifx = const.

Using the same reasoning as when obtaining equation (21), equation (1) can be written as
d 0 0 0 0? 0? 0?
4. (2 o o\ (9 2., .2y 9
0 <a +>\16y> (8:p+>\28y> (axQ +20 - 8y+ (62 +~%) ay2> X

0%u 0%u 5 o\ O%u
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Let us consider the substitution (22). Then, from equation (32), similarly to (23), we obtain the
equation

A0 | =) g+ 5| [ a =) g+ 5|

73 o¢
0? 0? 82 0%u 82
2 2 2 -9 2 2 = F .
X [(a +0% + 9% — 2a0) ez T 20— )5es, e T o | (33)
Hence, dividing both parts of (33) by 4gB8% (A1 — a) (A2 — a) [(Oz -6+ ] (7'é 0) and introducing
. s B B(6 — ) +pi . B(6 —a) —ybi
h = = = — — —
the notations /5 Moo T, o (=02 112 01 + 7%, pao (@— 37212
_ . Bl6-—o) VB - .
=61 — 714, o012 01, @022 71, we have an equation in the form

82 82 2 2 82 82
(852 + (p5 + pi6) @ + N5M68T’2) (352 + (p9 + p110) @ + M9M10W> X

?u  0%u
— + — | = Fg, 34
(5 + o) = oy
where Fg = Fy/AB3? [()\1 —a)(A—a) ((a —0)2 47 )]
. 2 2
Moreover, since (g + p10)” — 4 (opi10) = (o — p10)> = —7# < 0, then (%2 + (o + p10) %&7 +
+ ,ug,ulog—;g is an elliptic differential operator.
If g = —p10, then at 61 = 0 equation (34) takes the form

where Fg = Fl/AQ,B2 [()\1 — a) ()\2 — a) ’}/2] .
To further simplify equation (34) for §; # 0, we choose the substitution (27) as a change of variables,
where g is one of the two solutions of equation

2(1 —
g2 20— pomo) g
19 + 10

then, similarly to case 2, we obtain the equation

0L ON(O DN (P a0 (P Py
as  ot) \os T %) \os2 T 202 ) \ 852 T o2 ) T 71O
(Hope — 1) (popr0 — 1)

(1o + po) (ko + p10)
Let us prove that bg > 0. Introducing the notations v3 =

where b3 = s Fio=Fs/ [(1d+1) (ro + p6) (o + p9) (1o + p10)] -

popy — 1 yy = Hor10 = 1
fo + o o + H10

2410 (popr1o — 1)

and taking

2p0(pop10—1)
o + (t9+410)

—

into account that is, we have v3+vy = (po + p1o), pe+ —-1=0,
: v (ko + Mg)) (1o + p10) O" (po + pao)
poty — 1) (pop10 — 1 2 1 2
v3 4+ vy = 0. Then b3 = = V3Vy = 5 [4V31/4 —(v3+ 1y = —z(r3—1my)" =
© (o + po) (o + p1ao) ! ( ) 1l )

_ 1 ((2%2‘(1 + po)” )2 -0

4\ (o + 61)? + 2

Mathematics Series. No.3(119)/2025 15



A.T. Abdukodirov, T.A. Tulkinboev

Ezxample 3. Consider the following sixth-order partial differential equation:
Uzzazzr + 11Uszazzy + 60Uzzeayy + 130Uszryyy — 5lUzzyyyy — T81Uszyyyyy — 650Uyyyyyy = 0. (35)
The characteristic equation corresponding equation (35) has the form

(dy)® — 11(dy)® (dz) + 60(dy)* (dz)* — 130(dy)>(dz)® — 51(dy)?(dz)* + 781(dy)(dz)® — 650(dz)® =

It is easy to verify that this equation has two different simple real roots and four complex conjugate
roots for t = dy/dx:

=1, to=-2,t3=3+4d, t4y =3 —41, t5 =3+ 21, tg =3 — 2i.
Then, equation (35) can be written as follows:
o 0 0 0 0? 0? 0? 0? 0? 0?
— + = — —2— — + 66—+ 25— — + 06— +13— =0. 36
<6:B + 8y> (8x 8y) (8m2 + dx0y * 8y2> <8x2 + Oxdy + 8y2) " (36)

38 88 0

After the transformation £ = y — 3z, n = 2z, we obtain: % = 317, 3y = oE- Considering

these, from (36), we have
0 0 o 20 0% 1 9? 0? 0?
(86_377) (as‘w) (852+48772) (as%) -
4. If equation (6) has six different complex conjugate roots:
tiv=0+C, to=0c—C(i, ts3=0+7vi, tgs=0—"i, ts=a+pi, tsg=a— [,
where a, 3,6,7,0,( € R such that 8 # 0,7 # 0,( # 0,
[(a =82+ (8= 111)?] [ =) + (181 = 1¢?] [6 = o)+ (1¢] = 171)?] #0

then after replacing (22), from equation (1), similarly to equation (33), we obtain the equation

2| (2 2 2 ? 0 y O
Ayp [(a +o°+¢ —2a0)a§2+2,6’( )aga + 2 }x
0? 0? 0? 0’u  0%u

x{(a2+52+’y2—2a5)a£2+25( )aga 2 Kagﬁ >:F1. (37)
Hence, dividing both parts of (37) by AoB% [(a —0)? + CQ] [(a—6)? +~%] (# 0) and introduc-
ing Zhe no)tations Hil = W —) o1+ (i, p12 = W = o1 — (1%, g =
B —a)+Bi . B0 —a)—pi o Blo —«a _ B _
BTl =01+ i, p1o = o= 077 =01 — i, —of+@ Y aorra

= (1, plo—a) _ 1) il = 1, we have the following equation

(=822 T (a—8)? 72
82 82 2 2 82 82
(852 + (H11 + 2) 55— Bon + ey 2) (852 + (19 + p10) aeon + ,U9M108772> X

?u  0%u
X <8§2+6772> :Fll, (38)
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where Fiy = Fi/Aof* [((a — 0)* +¢*) ((a = 8)* +77)].

Moreover, since (p11 + pn2)* — 4 (pp2)? = (un — pi2)” = —=(F <0, (pg + o)* — 4 (N9M10)2 =
= (i = pao)? = =7 < 0. then T+ (a1 + ur) o + O and T (o ) o+
= M9 — H10) = =7 ) €2 H11 T H12 DEdn unmga 3 o€z o + p10 9En

2

+ ,ug,uloaT72 are elliptic differential operators.
If 11 = —pa2, p9 = —p10, that is, when o3 = 0,7 = 0, equation (38) takes the form

2 LN\ [0 L0\ [0Pu  Ou
o +<op ) \oe T o) \ae *op ) ~ T

To further simplify equation (38) for o1 # 0 and 01 # 0, we introduce the substitution (27), where
1o is one of the two solutions of equation

2(1—
o 2(1— popo) 1o,
Mo + f410

then, similarly to case 3 , we obtain the equation

872_’_( + )82 + 82 8724_[)2872 @4_@ =F
952 T \B T oot TO%hz |\ a2 T 202 )\ a2 T a2 ) T 11

where ¢5 = [p1p0 — 1]/ [11 + pol, e = [pa2p0 — 1] / (12 + pol,
Fia = Fs/ [(4#§ + 1) (o + p9) (10 + 10) (o + pa1) (po + pa2)] -
2Gyi(1 + po)’

fo +01)* + ¢
62 82 82 2 2
operators P + (c5 4+ ¢6) == pen + c5c6 == 92 8 5+ b — 912 the last equation are elliptic.

Ezxample 4. Consider the following sixth-order partial differential equation:

2
Since (c5 + 66)2 — deseg = (5 — 06)2 = (( > < 0 and b2 > 0, then the differential

Upzazze + 24Usgazay + 254Usearyy + 1504Us00yyy + 5233Uszyyyy + 10120Usyyyyy + 8500Uyyyyyy = 0. (39)
The characteristic equation corresponding to equation (39) has the form
(dy)®—24(dy)® (dz)+254(dy)* (dz)* —1504(dy)> (dz)>+5233(dy)? (dz)*—10120(dy) (dz)°+8500(dzx)® =
It is easy to verify that this equation has six different complex conjugate roots for ¢t = dy/dx:
th=4+14, tao=4—14, t3=44+2i, t4=4—-2i, t5 =44 31, tg =4 — 3i.

Then, equation (39) can be written as follows:
ok ok 0? 0? 0? 0? 0? 0? 0?
17— 20— — — + 25— =0. 4
<8x2 * 883@63/ + 76y2> (8x2 + 863003/ * 081/2) <81‘2 * 883}8@/ + 58y2> u=0 (40)

After the transformation £ = y — 4z, n = 3z we obtain: % = —45 o e+ 3 = g Considering

on’ ay
these from (40), we have

O GEN(2 9PN BN
€2 on?) \o€z  4on2)\oe  on2)

Thus, we have proved the following
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Theorem 1. Let one of the following statements be true with respect to equation (6):

1) has six different real roots;

2) has four different real roots and two complex conjugate roots;

3) has two real roots and four different complex conjugate roots;

4) has six different complex conjugate roots.

Then, in the domain €2, equation (1) can be reduced to the one of the following canonical forms

(5 v (&rom) (S re) (5250 -
o€ o€ OE2 an2 ez o2 ’
(2 o2 (2 +ed) (202 (3 52) -
0 ot) \os Yot ) \os2 torz) \o9sz T o 6
3)(a+ca><8+ca>(82+b282)<82”+82”>:F-
ds  Pot)\os " tor) \osz T 2o2) \9s2 " o2 10
92 02 927 [ 82 92\ [(0%u O%u
4) |:882+(C5+C6) a 8t +C5 68t2:| <W+bgﬁﬂ> (8824—8t2) :Flg.

It should be noted that equations (1), similar to equations of hyperbolic and/or elliptic type,

possess simple (non-repeated) real and/or complex characteristics. Consequently, in all cases considered
above, the discriminant is non-zero. Moreover, the canonical forms of equation (1) may contain both
hyperbolic and/or elliptic differential operators.

Remark 1. The classification and reduction to canonical form of sixth-order linear partial differential

equations with multiple real characteristics are studied in ten distinct cases. Analogously, the following
theorem can be proven:

Theorem 2. Assume that equation (6) exhibits one of the following root configurations:
one double root and four distinct real roots;

2

3

one double root and one quadruple real root;
two triple real roots;
one quintuple root and one simple real root;

6
7
8
9

)
)
)
)
5) one sextuple real root;
) two double roots and two distinct real roots;
) three double real roots;
) one double root, one triple root, and one simple real root;
)

one triple root and three distinct real roots;

10) one quadruple root and two distinct real roots.

Then, in the domain 2, equation (1) can be reduced to one of the following canonical forms

corresponding to the root structures:

18

D (&+ad) (Gred) (5 - ) =5
gets = Fi/ (A = X)%;

sedo = B/ { = 00 =)'}

85886775’“ =F/ {— (A1 — )\2)6};

3%

2
0 o) o* o* _ .
6 <87§+c387n> (TE%_ 852;772> —F5,
0 o) 94 _ .
7 (3*5 + 648777) 852(;;72 - F67
6
8 8584 ] +C4agiaun3 = F7;

0 o) 9° 9° _ .
D€ + c5377> <8£23un3 + CG@&@ZAL) - F87
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6 6
10) gzger + C1 505 = Fo.
Remark 2. The classification and reduction to canonical form of sixth-order linear partial differential

equations with multiple and complex characteristics are studied in nine distinct cases. Analogously,
the following theorem can be proven:

Theorem 3. Assume that equation (6) exhibits one of the following root structures:

1) one double real root, two distinct real roots, and one pair of complex conjugate roots;

\)

two distinct double real roots and one pair of complex conjugate roots;

w

one triple real root, one simple real root, and one pair of complex conjugate roots;

W

one quadruple real root and one pair of complex conjugate roots;

ot

one double real root and two distinct double pairs of complex conjugate roots;

(=)

two distinct real roots and two distinct double pairs of complex conjugate roots;

3

one double real root and two distinct pairs of complex conjugate roots;

)
)
)
)
)
)
)
)

co

two distinct pairs of complex conjugate roots and two distinct double pairs of complex conjugate
roots;
9) two distinct triple pairs of complex conjugate roots.
Then, in the domain 2, equation (1) can be reduced to one of the following canonical forms
corresponding to the root structures:

) N2 (2 0%\ [0%u 0% 92 L2\ (0%u 0%
2 (83+618t> <a2 - w) <832+8t2>_F4’ 2) <az _b18t2> <as2+at2>_F6’
o d\[ Pu  Pu Pu  u # 9\
SCARPCAN f (CACTTICA) PR WYY (At B PO (AR IR O
3) (as “2(%) (as2at3 + 6755) 8 )(032&4 + at6> 103 5) <6326t + 8t3> U= 15
2 L0\ [ 97\ 5, o\?( 0 2\ (0% 0%
I = I = = F\y- s e o 27 - Z )= Fya-
6) <as2 blaﬂ) <832 * 8t2> u=Fig; 7) (as +Clat> (as2 +b28t2> <as2 + at2> 16;

2 LN\ [ 2 92\ 2 0\’

It should be noted that equation (1), like parabolic-type equations, exhibits multiple characteristics.
Consequently, in all the cases discussed above, the discriminant is zero (D = 0). Nonetheless, the
canonical forms of equation (1) may still involve both hyperbolic and/or elliptic differential operators.

Conclusion

In this paper, we prove a theorem on the canonical forms of equation (1) and three lemmas that
play an important role in finding the canonical form of the equation (1).

Arguing similarly, we can find canonical forms of equation (1) in cases with multiple characteristics,
provided that the coefficients of the equation (1) are sufficiently smooth functions.

We can give a number of examples when only finding the canonical form of an equation helps to
obtain serious results. Considering the canonical form of the equation (1), when studying some bound-
ary value problems, we can use potential theory or the Green or Riman function method. Therefore,
the found canonical forms of linear differential equations with partial derivatives of the sixth-order
with non-multiple characteristics and with constant coefficients allow us to correctly formulate and
systematically study correct boundary value problems for such equations. These problems are the
subject of further research.

From the canonical form of the equation (1), obtained in the first case considered above, it is clear
that if the function F3 does not depend on the unknown function u and its derivatives, then it is
possible to find a general solution to equation (1).
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Based on the proposed method for finding the canonical form of the equation (1), it is possible

to study the problems of classification and reduction to canonical form of differential equations of
higher-order with partial derivatives.
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