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In this article, we study the spectrum, fine spectrum and boundedness property of second order quantum
difference operator ∆2

q (0 < q < 1) over the class of sequence lp (1 < p < ∞), the pth summable sequence
space. The second order quantum difference operator ∆2

q is a lower triangular triple band matrix ∆2
q(1,−(1+

q), q). We also determine the approximate point spectrum, defect spectrum, compression spectrum, and
Goldberg classification of the operator on the class of sequence. We obtained the results by solving an
infinite system of linear equations and computing the inverse of a lower triangular infinite matrix. We also
provide appropriate examples along with graphical representations where necessary.
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Introduction

Spectral theory of bounded linear operators on Banach or Hilbert spaces holds a significant place
in different branches of Mathematics due to its many applications. The fundamental principle of
the modern spectral theorem is that certain linear operators on infinite dimensional spaces can be
represented in a “diagonal” matrix form. From this diagonal form, we can determine the spectrum of
the operator. The spectrum of an operator can be classified into three parts: the point spectrum, the
continuous spectrum, and the residual spectrum. These three disjoint parts together are referred to as
the “fine spectrum”.

In operator theory, one of the most important linear operators is the difference operator. The
spectrum of this operator and its different forms on various sequence spaces have been studied by
many researchers. In recent times, researchers have started analyzing the spectrum of the quantum
version of some well-known operators, one of which is the difference operator. In our study, we analyze
the spectrum of a second order quantum difference operator. The q−analog of the second order
difference operator is defined as (∆2

qu)k = uk − (1 + q)uk−1 + quk−2, for all k ∈ N and any term with
negative indices are zero. The matrix representation of this operator is given below

∆2
q =


1 0 0 0 . . .

−(1 + q) 1 0 0 . . .
q −(1 + q) 1 0 . . .
0 q −(1 + q) 1 . . .
...

...
...

...
. . .

 .

The nth order q−difference operator is defined as (∆n
qu)k =

∑n
i=0(−1)i

(
n
i

)
q
q(

i
2)un+k−i, which was

introduced by Bustoz and Gordillo [1].
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The initial study of the spectrum of the difference operator ∆, (∆yk = yk − yk+1) was conducted
by Altay and Basar [2], Kayaduman and Furkan [3], and Akhmedov and Basar [4, 5] in the spaces
co, c, ; l1, bv and lp, bvp respectively. The spectrum of the second-order difference operator ∆2 was
studied by Dutta and Baliarsingh [6] over the space c0. After this the operator ∆ was generalized
to B(r, s), B(r, s)(yk) = (ryk + syk−1). The spectrum of this operator was studied by Altay and
Basar [7], Kayaduman et al. [8], Bilgic and Furkan [9], Dutta and Tripathy [10] over the spaces
c0, c; l1, bv; lp, bvp (1 ≤ p < ∞) and cs respectively. B(r, s) was further generalized to B(r, s, t),
B(r, s, t)(yk) = (ryk + syk−1 + tyk−2). The spectrum of this operator was studied by Bilgic and
Furkan [11]; Furkan et al. [12, 13] over the spaces l1, bv, c0, c and lp, bvp respectively. Srivastava
and Kumar [14, 15]; Akhmedov and El-Shabrawy [16] studied the spectrum of the generalised dif-
ference operator ∆v, where ∆v(yk) = (vkyk − vk−1yk−1) over the sequence spaces c0, l1 and c, lp
respectively. Akhmedov and El-Shabrawy [17, 18]; Dutta and Baliarsingh [19] obtained the spec-
trum of the operator ∆ab, where ∆ab(yk) = (akyk + bk−1yk−1) over the sequence spaces c0, c and
lp, bvp respectively. Panigrahi and Srivastava [20, 21] also analyzed the spectrum of ∆2

uv, where
∆2
uv(yk) = (ukyk − vk−1yk−1 + uk−2yk−2) and ∆2

uvw, where ∆2
uvw(yk) = (ukyk + vk−1yk−1 +wk−2yk−2)

over the sequence spaces c0 and l1 respectively. Then, Altundağ and Abay [22] studied on the fine
spectrum of generalized upper triangular triple-band matrices (∆2

uvw)t where the transpose of matrix
operator ∆2

uvw over the sequence space l1. Patra and Srivastava [23] considered a new generalized
difference operator A(p1, p2; q1, q2; r1, r2) and determined its spectrum over the sequence space lp
(1 ≤ p <∞). The operators mentioned above can be expressed using a lower triangular band matrix.
Spectral analysis of the quantum versions of some well-known operators has been conducted in recent
years. The spectrum of q−Cesàro matrix was studied by Yildirim [24], Durna and Turkay [25] over
the sequence space c0 and c respectively. Yaying et al. [26, 27] studied the spectrum of second order
q−difference operator over the sequence space c0, l1 respectively. Spectrum of weighted q−difference
operator was studied by Yaying et al. [28] over the sequence space c0.

q−Analog : A q−analog of a number, a theorem, an identity or an expression is a generalization
that involves a new parameter q and it reduced to the original number, theorem, identity as the
limit q −→ 1−. In the 19th century, the basic hypergeometric series became the first q−analog to be
extensively studied. In recent research of many areas of Mathematics like combinatorics, approximation
theory, difference and integral equations, etc., q−calculus have been used extensively.

The q−analog [m]q of m for q ∈ (0, 1) can be determined as

[m]q =

{∑m−1
k=0 q

k, m = 1, 2, 3, . . . ,

0, m = 0.

One might observe that [m]q = m whenever q −→ 1−. The q−analog
(
m
k

)
q
of binomial coefficient

(
m
k

)
can be determined as

(
m

q

)
q

=


[m]q!

[m− k]q![k]q!
, m ≥ k,

0, k > m,

where the q−analog of the factorial, i.e., q−factorial, is defined as

[m]q! =

{∏m
k=1[k]q, m = 1, 2, 3, . . . ,

1, m = 0.

The q−analog of some specific binomials such as
(
0
0

)
=
(
m
0

)
=
(
m
m

)
= 1, also

(
m

m−k
)
q

=
(
m
k

)
q
. For an

in-depth study of quantum calculus, we refer to the book [29].
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1 Some Definitions and Preliminaries

Consider M : U −→ V be a bounded linear operator, in which U and V are Banach spaces, the
following collections

R(M) = {v ∈ V : v = Mu, u ∈ U}
and B(U, V ) = {M : U −→ V : M is continuous and linear}

are termed as the range of the operator M and the set of all bounded linear operators from U to V
respectively. The adjoint operator M∗ of M is defined from V ∗ to U∗, where V ∗ and U∗ represent the
dual space of V and U respectively. Again, it is defined as (M∗f)(u) = f(Mu), for all f ∈ V ∗ and
u ∈ U .

Let M : D(M) −→ U , where D(M) denotes the domain of M . From M we can get an operator,

Mµ = M − µI,

where µ ∈ C and I is the identity operator. A regular value µ ∈ C of M is such that Mµ is invertible,
and its inverse (M−1µ ) is bounded and defined on a set A and call it the resolvent operator ofM , where
A is dense in U . The collections of such µ is called the resolvent set and is denoted by ρ(M,U). In the
complex plane C, the compliment of ρ(M,U) is denoted by σ(M,U), and is called the spectrum of M .

Further, σ(M,U) is classified into three disjoint subsets, namely, the point spectrum σp(M,U),
the continuous spectrum σc(M,U), and the residual spectrum σr(M,U). In point spectrum, M−1µ
does not exist for any µ ∈ σp(M,U), while in continuous spectrum, M−1µ exist but unbounded for
every µ ∈ σc(M,U), and also defined on a set that is dense in U . On the other hand, in the residual
spectrum, M−1µ exists but may or may not be bounded for µ ∈ σr(M,U) and is not dense in U .

There are more subdivisions of the spectrum of a bounded operator such as approximate point spec-
trum σap(M,U), defect spectrum σδ(M,U) and compression spectrum σco(M,U), which are defined
as follows:
• σap(M,U) = {µ ∈ C : (M − µI) is not bounded below};
• σδ(M,U) = {µ ∈ C : (M − µI) is not surjective};
• σco(M,U) = {µ ∈ C : R(M − µI) 6= U}.

2 Goldberg’s classification of spectrum

A detailed classification of the spectrum of an operator was given by Goldberg [30]. This classifi-
cation is based on the nature of the set R(Mµ) and the inverse M−1µ .

If M ∈ B(U,U), then there are three possibilities for R(Mµ):
(P) R(Mµ) = U ,
(Q) R(Mµ) = U, but R(Mµ) 6= U ,
(R) R(Mµ) 6= U

and three possibilities for M−1µ :
(1 ) Exist and continuous,
(2 ) Exist but discontinuous,
(3 ) Does not exist.
Combination of the possibilities P, Q, R and 1, 2, 3 leads to nine different states. They are

identified as P1, P2, P3, Q1, Q2, Q3, R1, R2, and R3.
If Mµ ∈ P1 or Mµ ∈ Q1, then µ ∈ ρ(M,X). If Mµ ∈ R2, then M−1µ exists and is unbounded, and

R(Mµ) 6= X and we can write µ ∈ R2σ(M,X). We can summarize this classification in the following
Table 1.
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T a b l e 1

Goldberg’s classification of spectrum of linear operator

1 2 3
M−1
µ M−1

µ M−1
µ

exist and bounded exist and unbounded does not exist
P R(Mµ) = U µ ∈ ρ(M,U) - µ ∈ σp(M,U)

µ ∈ σap(M,U)

Q R(Mµ) = U µ ∈ ρ(M,U) µ ∈ σc(M,U) µ ∈ σp(M,U)
µ ∈ σδ(M,U) µ ∈ σδ(M,U)
µ ∈ σap(M,U) µ ∈ σap(M,U)

R R(Mµ) 6= U µ ∈ σr(M,U) µ ∈ σr(M,U) µ ∈ σp(M,U)
µ ∈ σδ(M,U) µ ∈ σδ(M,U) µ ∈ σδ(M,U)
µ ∈ σco(M,U) µ ∈ σco(M,U) µ ∈ σco(M,U)

µ ∈ σap(M,U) µ ∈ σap(M,U)

Proposition 1. ([31], p. 28) Spectral and sub-spectral relationships of an operatorM and its adjoint
operator M∗ are provided below.

(a) σ(M∗, Y ∗) = σ(M,Y ),

(b) σap(M∗, Y ∗) = σδ(M,Y ),

(c) σδ(M∗, Y ∗) = σap(M,Y ),

(d) σp(M∗, Y ∗) = σco(M,Y ),

(e) σ(M,Y ) = σap(M,Y )
⋃
σp(M

∗, Y ∗) = σp(M,Y )
⋃
σap(M

∗, Y ∗).

Lemma 1. ([30], p. 60) The adjoint operator M∗ of M is onto if and only if M has a bounded
inverse.

Lemma 2. ([30], p. 59) The bounded linear operator M : U −→ V has dense range if and only if
M∗ is one to one.

Throughout this work, the aforementioned spaces c0, c, l1, lp, bv, bvp, cs and l∞ represent the
spaces of all null, convergent, absolutely summable, p−absolutely summable, bounded variation, p−
bounded variation, convergent series, and bounded sequences, respectively.

Before going to the main results we state a remark, “if z is a complex number, then
√
z means the

square root of z with non-negative real part. If Re
√
z = 0, then

√
z means the square root of z with

Im(z) ≥ 0”.

3 Spectrum of ∆2
q(1,−(1 + q), q) on lp

Theorem 1. ∆2
q ∈ B(lp) with (1 + (1 + q)p + qp)1/p ≤ ||∆2

q ||lp ≤ 2(q + 1) for 0 < q < 1, where
1 < p <∞.

Proof. The linearity of ∆2
q is straightforward to prove, so it is omitted. Now, consider

e(0) = (1, 0, 0, . . .) in lp. Then, (∆2
q)e

(0) = (1,−(1 + q), q, 0, 0, . . .) and it is obtained that

||(∆2
q)e

(0)||lp
||e(0)||lp

= (1 + (1 + q)P + qp)1/p.

From this we get, (1 + (1 + q)P + qp)1/p ≤ ||(∆2
q)e

(0)||. Again for any u = (uk) ∈ lp and using the
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Minkowaski inequality, we get

||∆2
qu||lp =

(∑
k

|quk−1 + (−(1 + q))uk + uk+1|p
)1/p

≤

(∑
k

|quk−1|p
)1/p

+

(∑
k

|(1 + q)uk|p
)1/p

+

(∑
k

|uk+1|p
)1/p

=

(
qp
∑
k

|uk−1|p
)1/p

+

(
(1 + q)p

∑
k

|uk|p
)1/p

+

(∑
k

|uk+1|p
)1/p

= (q + (1 + q) + 1) ||u||lp
= 2(1 + q)||u||lp .

As a result, we get (1 + (1 + q)p + qp)1/p ≤ ||∆2
q ||lp ≤ 2(q + 1).

Theorem 2. The point spectrum σp(∆
2
q , lp) = φ (the empty set).

Proof. We prove this theorem by the method of contradiction. Consider σp(C1(q), lp) 6= φ. Then
for any 0 6= u ∈ lp with (∆2

q)u = λu, we get the following equalities:

u0 =λu0,

−(1 + q)u0 + u1 =λu1,

qu0 − (1 + q)u1 + u2 =λu2,

qu1 − (1 + q)u2 + u3 =λu3,

...
qum−2 − (1 + q)um−1 + um =λum,

...

If um is the first non zero entry of the sequence u = (um), then from the above equations we get
λ = 1. Putting the value of λ = 1 in the proceeding equation, we get um = 0, which contradicts our
assumption. Thus, σp(∆2

q , lp) = φ.

Lemma 3. ([32], p. 126) The matrix A = (ank) defines a bounded linear operator T ∈ B(l1),
mapping l1 to itself, if and only if the supremum of l1 norms of the columns of A is bounded.

Lemma 4. ([32], p. 126) The matrix A = (ank) defines a bounded linear operator T ∈ B(l∞),
mapping l∞ to itself, if and only if the supremum of l1 norms of the rows of A is bounded.

Lemma 5. ([33], p. 174, Theorem 9) If 1 < p <∞ and A ∈ (l1, l1) ∩ (l∞, l∞). Then A ∈ (lp, lp).

Theorem 3. σ(∆2
q , lp) =

{
µ ∈ C : |2(1− µ)| ≤

∣∣∣(1 + q) +
√

(1 + q)2 − 4(1− µ)q
∣∣∣}.

Proof. We consider

S =
{
µ ∈ C : |2(1− µ)| ≤

∣∣∣(1 + q) +
√

(1 + q)2 − 4(1− µ)q
∣∣∣}
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and let µ /∈ S. So, we get µ 6= 1, and this implies that (∆2
q − µI) has an inverse. Now,

(∆2
q − µI) =



1− µ 0 0 0 0 . . .
−(1 + q) 1− µ 0 0 0 . . .

q −(1 + q) 1− µ 0 0 . . .
0 q −(1 + q) 1− µ 0 . . .
0 0 q −(1 + q) 1− µ . . .
...

...
...

...
...

. . .


.

Since (∆2
q − µI) is a lower triangular matrix, its inverse can be obtained easily and has been given

below:

(∆2
q − µI)−1 =


m1 0 0 0 . . .
m2 m1 0 0 . . .
m3 m2 m1 0 . . .
m4 m3 m2 m1 . . .
...

...
...

...
. . .

 ,
where

m1 =
1

1− µ
,

m2 =
q + 1

(1− µ)2
,

m3 =
(q + 1)2 − q(1− µ)

(1− µ)3
,

...

here the sequence (mk) satisfies the following recurrence relation

mk =
(q + 1)mk−1 − qmk−2

1− µ
, for k ≥ 3.

From this recurrence relation, we get the characteristic equation as

(1− µ)w2 − (1 + q)w + q = 0,

whose solutions are:

w1 =
(1 + q) +

√
(1 + q)2 − 4(1− µ)q

2(1− µ)
,

w2 =
(1 + q)−

√
(1 + q)2 − 4(1− µ)q

2(1− µ)
.

From elementary calculations on recurrence sequence, we get

mk =
wk1 − wk2√

(1 + q)2 − 4(1− µ)q
. (1)

Now, we can proceed to the proof in two cases.
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Case 1: If (1 + q)2 = 4q(1− µ), then we get

mk =

(
2k

1 + q

)[
(1 + q)

2(1− µ)

]k
.

It can be easily proved that (mk) ∈ lp if
∣∣∣∣ (1 + q)

2(1− µ)

∣∣∣∣ < 1 . So, µ /∈ S implies that (mk) ∈ lp.

Case 2: If (1 + q)2 6= 4q(1 − µ). Since µ /∈ S, we have |w1| < 1. Again, using the inequality
|1−
√
z| ≤ |1 +

√
z| for any z ∈ C, we get∣∣∣∣∣ (1 + q)

2(1− µ)
−
√

(1 + q)2 − 4(1− µ)q

2(1− µ)

∣∣∣∣∣ ≤
∣∣∣∣∣ (1 + q)

2(1− µ)
+

√
(1 + q)2 − 4(1− µ)q

2(1− µ)

∣∣∣∣∣
=⇒ |w2| ≤ |w1| < 1.

Using this in equation (1), it is obtained that (mk) −→ 0 as k −→∞. Now

||(∆2
q − µI)−1||(l1:l1) = sup

k∈N

∞∑
i=k

|mi| =
∞∑
i=1

|mi|

≤ 1

|
√

(1 + q)2 − 4(1− µ)q|

( ∞∑
i=1

|w1|i +

∞∑
i=1

|w2|i
)
<∞.

Since |w1| < 1 and |w2| < 1, it follows that (∆2
q − µI)−1 ∈ (l1, l1). Again, since (mk) ∈ l1, the

supremum of l1 norms of the rows of (∆2
q − µI)−1 is finite. This results in (∆2

q − µI)−1 ∈ (l∞, l∞).
Now, using Lemma 5, we get (∆2

q − µI)−1 ∈ (l1, l1) ∩ (l∞, l∞) =⇒ (∆2
q − µI)−1 ∈ (lp, lp). It proves

that σ(∆2
q , lp) ⊆ S.

Now consider µ ∈ S. If µ = 1, then we get

(∆2
q − µI) = (∆2

q − I) =



0 0 0 0 0 . . .
−(1 + q) 0 0 0 0 . . .

q −(1 + q) 0 0 0 . . .
0 q −(1 + q) 0 0 . . .
0 0 q −(1 + q) 0 . . .
...

...
...

...
...

. . .


.

Now (∆2
q − I)u = θ =⇒ u = θ. So, we get (∆2

q − I) : lp −→ lp is one-one but not onto. This implies
(∆2

q − I) is not invertible.

If we take µ from S other than 1, then it is obtained from Case 1 that
∣∣∣∣ (1 + q)

2(1− µ)

∣∣∣∣ ≥ 1. It implies

(∆2
q − µI)−1 /∈ B(lp). Again, from Case 2, it is obtained that |w1| ≥ 1 and the inequality |w1| > |w2|,

which directly implies (wk) 9 0, and so
∑∞

i=1 |wi|p diverges. Consider v = (1, 0, 0, . . .) ∈ lp. Then
(∆2

q − µI)−1v = (m1,m2,m3, . . .), which doesn’t belong to lp. Therefore, (∆2
q − µI)−1 /∈ B(lp) and

this proves that S ⊆ σ(∆2
q , lp). Finally, it is obtained σ(∆2

q , lp) = S.

Lemma 6. ([34], p. 215) For any A ∈ B(lp) (1 < p < ∞), the adjoint operator A∗ ∈ B(lq), where
1
p + 1

q = 1 and can be represented by the transpose of A matrix.

Theorem 4. σp((∆2
q)
∗, l∗p
∼= lq) =

{
µ ∈ C : |2(1− µ)| <

∣∣∣(1 + q) +
√

(1 + q)2 − 4(1− µ)q
∣∣∣}.
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Proof. Consider the set S1 =
{
µ ∈ C : |2(1− µ)| <

∣∣∣(1 + q) +
√

(1 + q)2 − 4(1− µ)q
∣∣∣}, and let

µ ∈ S1. Now, solving (∆2
q)
∗u = µu, for θ 6= u ∈ l∗p ∼= lq, i.e.,


1 −(1 + q) q 0 0 0 . . .
0 1 −(1 + q) q 0 0 . . .
0 0 1 −(1 + q) q 0 . . .
0 0 0 1 −(1 + q) q . . .
...

...
...

...
...

...
. . .




u0
u1
u2
u3
...

 = µ


u0
u1
u2
u3
...

 ,

we get the following linear equations

u0 − (1 + q)u1 + qu2 = µu0,

u1 − (1 + q)u2 + qu3 = µu1,

u2 − (1 + q)u3 + qu4 = µu2,

...
uk − (1 + q)uk+1 + quk+2 = µuk,

...

Now, if we take µ = 1, then we get an eigenvector (1, 0, 0, . . .) corresponding to µ = 1. We consider
µ ∈ S1 other than 1. The above linear equations can also be expressed in terms of u1 and u0 as

u2 =
(1 + q)

q
u1 −

1− α
q

u0,

u3 =
(1 + q)2 − q(1− µ)

q2
u1 −

(1− µ)(1 + q)

q2
,

...

uk =
mk(1− µ)k

qk−1
u1 −

mk−1(1− µ)k

qk−1
u0, k ≥ 2, (2)

in which (mk) comes from equation (1). Now, we can find the eigenvector (uk), for µ 6= 1. Here we

can make a choice for u0 and u1. Let u0 = 1 and u1 =
2(1− µ)

(1 + q) +
√

(1 + q)2 − 4q(1− µ)
.

Already, we have obtained that w1 and w2 are roots of the characteristic equation (1−µ)w2− (1 +

+ q)w + q = 0. So, we get w1 · w2 =
q

1− µ
, and w1 − w2 =

√
(1 + q)2 − 4q(1− µ)

1− µ
.
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It can also be seen that u1 = 1
w1

. Using these facts in the relation of the sequence (uk), we get

uk =
mk(1− µ)k

qk−1
u1 −

mk−1(1− µ)k

qk−1
u0

=

(
1− µ
q

)k−1
(1− µ)(−mk−1u0 +mku1)

=
1

(w1w2)k−1
(1− µ)(−mk−1 +mk

1

w1
)

=
1

(w1w2)k−1
(1− µ)

(
−wk−11 + wk−12√

(1 + q)2 − 4q(1− µ)
+

wk1 − wk2√
(1 + q)2 − 4q(1− µ)

w−11

)
=

1

wk−11 wk−12

1− µ√
(1 + q)2 − 4q(1− µ)

(−wk−11 + wk−12 + wk−11 − wk2w−11 )

=
1

wk−11 wk−12

(
1

w1 − w2

)
wk−12

(
1− w2

w1

)
=

1

wk−11

1

w1

=
1

wk1

= uk1.

Finally, we obtained that the sequence (uk) = uk1, for all k ≥ 2. If we consider w1 = w2, i.e., for the case
(1 + q)2 = 4q(1− µ), we get the same result. Thus, it is clearly seen that the sequence u = (uk) ∈ l∗p,
since |u1| < 1. As a result, S1 ⊆ σp((∆2

q)
∗, lq).

Now, we consider µ /∈ S1, i.e.,

|2(1− µ)| ≥
∣∣∣(1 + q) +

√
(1 + q)2 − 4(1− µ)q

∣∣∣
=⇒

∣∣∣∣ 1

w1

∣∣∣∣ ≥ 1

=⇒ |w1| ≤ 1.

Here, we have to show that µ /∈ σp((∆2
q)
∗, lq). From equation (2), it is obtained that

uk+1

uk
=

(
1− µ
q

)(
mk

mk−1

)−u0 +
mk+1

mk
u1

−u0 +
mk

mk−1
u1

 .

Based on the roots w1 and w2, we will consider three cases.

Case 1: |w2| < |w1| ≤ 1.
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For this case, we get (1 + q)2 6= 4q(1− µ) and

lim
k→∞

mk

mk−1
= lim

k→∞

mk+1

mk
= lim

k→∞

wk+1
1 − wk+1

2

wk1 − wk2

= lim
k→∞

wk+1
1

[
1−

(
w2
w1

)k+1
]

wk1

[
1−

(
w2
w1

)k]
= w1.

Again, from equation (2), we get

uk =

(
1− µ
q

)k−1
(1− µ)(−mk−1u0 +mku1). (3)

If −u0+w1u1 = 0, then from equation (3), we find (uk) =
(
u0
wk1

)
, which doesn’t belong to lq as |w1| ≤ 1.

Otherwise,

lim
k→∞

∣∣∣∣uk+1

uk

∣∣∣∣q =
1

|w1|q|w2|q
|w1|q =

1

|w2|q
> 1.

Case 2: |w2| = |w1| < 1.
For this case, we get (1 + q)2 = 4q(1− µ) and, using the formula

mk =

(
2k

1 + q

)[
1 + q

2(1− µ)

]k
, for all k ≥ 1,

we get that

lim
k→∞

∣∣∣∣ mk

mk−1

∣∣∣∣q =

∣∣∣∣ 1 + q

2(1− µ)

∣∣∣∣q = |w1|q

which leads to

lim
k→∞

∣∣∣∣uk+1

uk

∣∣∣∣q =
1

|w1|q|w2|q
|w1|q =

1

|w2|q
> 1.

This implies that (uk) doesn’t belong to lq.

Case 3: |w1| = |w2| = 1.

For this case, we get (1 + q)2 = 4q(1 − µ) and
∣∣∣∣1 + q

2q

∣∣∣∣ = 1. Assume that µ ∈ σp((∆2
q)
∗, lq), then
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there exists θ 6= u ∈ lq. Now, rewriting equation (2), we get

uk =
mk(1− µ)k

qk−1
u1 −

mk−1(1− µ)k

qk−1
u0

=

(
2k
1+q

)(
1+q

2(1−µ)

)k
(1− µ)k

qk−1
u1 −

(
2(k−1)
1+q

)(
1+q

2(1−µ)

)k−1
(1− µ)k

qk−1
u0

=
k(1 + q)k−1

(2q)k−1
u1 −

(k − 1)
(
1+q
2

)k−2
(1− µ)

qk−1
u0

=
k(1 + q)k−1

(2q)k−1
u1 −

(k − 1)
(
1+q
2

)k−2
(1+q)2

4q

qk−1
u0

=
k(1 + q)k−1

(2q)k−1
u1 −

(k − 1)(1 + q)k

(2q)k
u0

=

(
1 + q

2q

)k−1 [
ku1 − (k − 1)

1 + q

2q
u0

]
.

Since limk→∞ uk = 0 =⇒ limk→∞

[
ku1 − (k − 1)1+q2q u0

]
= 0, and we must have u0 = u1 = 0.

Consequently, it implies u = θ, a contradiction. So, we get µ /∈ σp((∆2
q)
∗, lq). Thus, σp((∆2

q)
∗, lq) ⊆ S1,

and hence σp((∆2
q)
∗, lq) = S1.

Theorem 5. The residual spectrum:

σr(∆
2
q , lp) =

{
µ ∈ C : |2(1− µ)| <

∣∣∣(1 + q) +
√

(1 + q)2 − 4(1− µ)q
∣∣∣} .

Proof. From Lemma 2, we get σr(∆2
q , lp) = σp((∆

2
q)
∗, lq)\σp(∆2

q , lp). Now, applying the Theorems
2 and 4, we get the required result.

Theorem 6. The continuous spectrum:

σc(∆
2
q , lp) =

{
µ ∈ C : |2(1− µ)| =

∣∣∣(1 + q) +
√

(1 + q)2 − 4(1− µ)q
∣∣∣} .

Proof. We have σ(∆2
q , lp) = σp(∆

2
q , lp) ∪ σr(∆2

q , lp) ∪ σc(∆2
q , lp) and the corresponding sets are

pairwise disjoint. Now, applying Theorems 3, 4 and 5, we get the required result.

Theorem 7. P3σ(∆2
q , lp) = Q3σ(∆2

q , lp) = R3σ(∆2
q , lp) = φ.

Proof. From Table 1, we get σp(∆2
q , lp) = P3σ(∆2

q , lp) ∪ Q3σ(∆2
q , lp) ∪ R3σ(∆2

q , lp). Again, from
Theorem 2, we get σp(∆2

q , lp) = φ, and consequently we get the required result.

Theorem 8. The operator ∆2
q satisfies the following relations:

(a) Q2σ(∆2
q , lp) =

{
µ ∈ C : |2(1− µ)| =

∣∣∣(1 + q) +
√

(1 + q)2 − 4(1− µ)q
∣∣∣} ,

(b) R2σ(∆2
q , lp) ⊇

{
µ ∈ C : |2(1− µ)| <

∣∣∣(1 + q) +
√

(1 + q)2 − 4(1− µ)q
∣∣∣} \{1},

(c) R1σ(∆2
q , lp) ⊆ {1}.

Proof. We have from Table 1 that σc(∆2
q , lp) = Q2σ(∆2

q , lp). Now, using Theorem 6, we get the
result of (a).

Again, from Theorem 3, if for any µ ∈ σr(∆
2
q , lp)\{1} then the operator (∆2

q − µI)−1 /∈ ∆2
q(lp).

From this, we get σr(∆2
q , lp)\{1} ⊆ R2σ(∆2

q , co) and R1σ(∆2
q , lp) ⊆ {1}.

132 Bulletin of the Karaganda University



Spectral analysis of ...

Theorem 9. For the operator ∆2
q the following results hold.

(a) σap(∆2
q , lp) ⊇

{
µ ∈ C : |2(1− µ)| ≤

∣∣∣(1 + q) +
√

(1 + q)2 − 4(1− µ)q
∣∣∣} \{1},

(b) σap((∆2
q)
∗, l∗p) =

{
µ ∈ C : |2(1− µ)| ≤

∣∣∣(1 + q) +
√

(1 + q)2 − 4(1− µ)q
∣∣∣} ,

(c) σδ(∆2
q , lp) =

{
µ ∈ C : |2(1− µ)| ≤

∣∣∣(1 + q) +
√

(1 + q)2 − 4(1− µ)q
∣∣∣} ,

(d) δco(∆2
q , lp) =

{
µ ∈ C : |2(1− µ)| <

∣∣∣(1 + q) +
√

(1 + q)2 − 4(1− µ)q
∣∣∣} .

Proof. (a) From Table 1, we get

σap(∆
2
q , lp) = σ(∆2

q , lp)\R1σ(∆2
q , lp).

Now, applying the Theorems 3 and 8, we get the required result.
(b) The result in (b) is obtained from the relation (e) in Proposition 1.
(c) The result in (c) is obtained from the relation (b) in Proposition 1.
(d) The result in (d) is obtained from the relation (d) in Proposition 1.

4 Example

Taking particular values for q ∈ (0, 1), we construct some examples of spectrum of ∆2
q that are

given below.
(i) If q = 1

2 , then the spectrum of ∆2
1/2 is given by

σ(∆2
q , lp) =

{
µ ∈ C : |2(1− µ)| ≤

∣∣∣∣∣32 +

√
9

4
− 2(1− µ)

∣∣∣∣∣
}
.

(ii) If q = 1
4 , then the spectrum of ∆2

1/4 is given by

σ(∆2
q , lp) =

{
µ ∈ C : |2(1− µ)| ≤

∣∣∣∣∣54 +

√
25

16
− (1− µ)

∣∣∣∣∣
}
.

The graphical representation of the spectra for these examples is presented in Figures 1 and 2.

Figure 1. Spectrum of ∆2
1/2
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Figure 2. Spectrum of ∆2
1/4

Conclusion

In our study, we have determined the spectrum and fine spectrum of q−analog of second order
difference operator. This operator reduces to second order difference operator when q → 1. Like a
generalized difference operator, we have a generalized quantum difference operator. Spectral analysis
of generalized quantum difference operator can also be done in different sequence spaces.
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