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In this paper, we define enriched Bγ,µ mapping in CAT(0) space and derive some fixed point results
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Introduction

Fixed point theory is an active and vibrant area of research, which serves as a powerful tool in
various fields of mathematics and other allied areas. Many implications across a diverse range of fields
such as engineering, economics, dynamical system, differential equation, integral equation etc., can be
formulated as a fixed point problem. In 1922, Banach proved a fundamental theorem [1] in metric
fixed point theory known as Banach contraction theorem, and over the past century, this theorem has
been generalized by various prominent authors considering different aspects.

In 2008, Suzuki [2] introduced a new class of mappings on a nonempty subset of a Banach space
by proposing a condition (C). Later many authors generalized this class of mappings in different ways
and derived different fixed point theorems and convergence results of different iteration schemes. These
generalizations often involve relaxing the assumptions or considering more general settings, leading to
broader applicability and deeper theoretical understanding.

In 2018, Patir et al. [3] introduced a new class of generalized nonexpansive mappings which is wider
than the class of mappings satisfying Suzuki (C) condition. They proved some fixed point results as
well as some properties of this class of mappings. In 2019, Berinde [4] introduced the class of enriched
nonexpansive mappings in Hilbert space and approximated the fixed point of such mappings using
Krasnoselskii iteration. Using the technique of enriching a mapping, many authors generalized and
introduced several new classes of mappings with different aspects.

In 2024, Dashputre et al. [5] introduced SJR-iteration to approximate fixed point of generalized α-
nonexpansive mapping in CAT(0) spaces and established strong and ∆-convergence theorems for such
mapping. In the same year, Kim [6] introduced the concept of sequentially admissible mapping and
sequentially admissible perturbation with the construction of a new iteration process corresponding to
sequentially admissible mappings. They proved convergence results for the Mann type iterative method
using uniformly L-Lipschitzian, sequentially admissible perturbation of asymptotically demicontractive
mappings. Moreover, convergence result concerning Ishikawa type iterative method using uniformly
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L-Lipschitzian, sequentially admissible perturbation of asymptotically hemicontractive mappings to a
fixed point in CAT(0) spaces was also established.

Although the fixed point theory in linear spaces (for example, Banach spaces and Hilbert spaces)
have been developed extensively because of the linearity and convexity of the underlying spaces, but due
to the unavailability of convex structure in metric space, it seemed impossible to extend the results of
Banach space into metric space. Keeping in mind this situation, Reich et al. [7] introduced hyperbolic
metric space using geodesic segment and Menger convexity [8]. This class of metric space includes all
normed vector spaces, Hadamard manifolds, CAT(0) space, Hilbert balls, and the cartesian product of
Hilbert balls, etc. CAT(0) space is a non-linear example of hyperbolic metric space.

Fixed point theory in CAT(0) space was first studied by Kirk [9] in the year 2003, where it was
proved that every nonexpansive mapping defined on a bounded closed, convex subset of a complete
CAT(0) space always has a fixed point. Since then the fixed point theory for single valued and
multi-valued mappings in CAT(0) space have been rapidly developed with contributions from various
prominent researchers (refer to [10–13]).

Motivated by this, in this paper, we define a new class of mappings called enriched Bγ,µ mappings in
CAT(0) space. Some fixed point results are derived for such mappings. We also define a new iterative
algorithm in CAT(0) space using enriched Bγ,µ mappings. The ∆-convergence and strong convergence
results for this iterative algorithm are developed. This convergence is demonstrated graphically with
the help of a numerical example.

1 Preliminaries

For a metric space (X, d), let x, y ∈ X with d(x, y) = m. A geodesic path from x to y is a mapping
c : [0,m] → X such that c(0) = x, c(m) = y, which is an isometry. A geodesic segment is the image
of a geodesic path. A metric space (X, d) is termed a geodesic metric space if it satisfies the property
that every pair of points in X can be connected by a geodesic segment. (X, d) is called a uniquely
geodesic space if there exists exactly one geodesic segment connecting every two points.

In a geodesic metric space (X, d), a geodesic triangle ∆(x1, x2, x3) is formed by three points (ver-
tices) x1, x2, x3 in X and a geodesic segment connecting each pair of these vertices. For a geodesic
triangle ∆(x1, x2, x3) in (X, d), a comparison triangle is a triangle ∆̄(x1, x2, x3):=∆(x̄1, x̄2, x̄3) in R2

that satisfies the property dR2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}.
A geodesic space is referred to as a Cartan, Alexandrov, and Toponogov (0) space, in short, CAT(0)

space with curvature bound 0, if it satisfies the CAT(0) inequality. That is, for each geodesic triangle
∆(x1, x2, x3) in X and its corresponding comparison triangle ∆̄ := ∆(x̄1, x̄2, x̄3) in R2, the inequality

d(x, y) ≤ dR2(x′, y′)

holds for all x, y ∈ ∆ and x′, y′ ∈ ∆̄.
Similarly, for any integer k, one can define CAT(k) space by comparing it with another space.

CAT(0) space is uniquely geodesic space. For k ∈ [0, 1], the notation (1− k)x⊕ ky denotes the unique
point z on the geodesic segment from x to y with d(z, x) = kd(x, y) and d(z, y) = (1 − k)d(x, y).
Suppose (X, d) is a CAT(0) space and x, y, z ∈ (X, d) with k ∈ [0, 1]. Then

d((1− k)x⊕ ky, z) ≤ (1− k)d(x, z) + d(y, z) ([14]).

For detailed discussion on CAT(0) space, one may refer to [15,16].
Now we recall some basic definitions and key results.
For a bounded sequence {xn} in a nonempty closed convex subset C of a CAT(0) space (X, d),

define a functional r(., {xn}) : X → R+ by

r(x, {xn}) = lim sup
n→∞

d(x, {xn}), x ∈ X.
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The asymptotic radius of the sequence {xn} with respect to C is defined by

r({xn}) = inf
x∈C

r(x, {xn}).

The asymptotic center of the sequence {xn} with respect to C is defined by

A({xn}) = {y ∈ C : r(y, {xn}) = r({xn})}.

Definition 1. [17] In a CAT(0) space (X, d), a sequence {xn} is said to be ∆-convergent to x ∈ X,
if for every subsequence {zn} of {xn} x serves as the unique asymptotic center of {zn}. It is denoted
by ∆-limn→∞ xn = x and x is referred to as the ∆-limit of {xn}.

A bounded sequence {xn} in X is said to be regular if r({xn}) = r({zn}) for every subsequence
{zn} of {xn}. In Banach space, every bounded sequence contains a regular subsequence [18].

Lemma 1. [19] Suppose {xn} is a sequence in a CAT(0) space (X, d) and {xn} is ∆-convergent to
x ∈ X. Let y ∈ X be such that y 6= x. Then

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

In a Banach space, the above condition is known as Opial property [20].

Definition 2. [21] For a closed convex subset C of a CAT(0) space (X, d), a bounded sequence {xn}
in C converges weakly to q ∈ C if and only if Φ(q) = infx∈C Φ(x), where Φ(x) = lim supn→∞ d(xn, x),
x ∈ C.

Note that {xn} converges weakly to q if and only if A({xn}) = {q} (refer to [17]).
Nanjaras and Panyanak [14] established the following relation between ∆-convergence and weak

convergence in CAT(0) space.

Lemma 2. [14] For a bounded sequence {xn} in a CAT(0) space (X, d), let C be a closed convex
subset of X which contains {xn}. Then

(i) ∆-limn→∞ xn = x implies {xn} converges weakly to x.
(ii) The converse of (i) is true if {xn} is regular.

Lemma 3. [22] For a closed convex subset C of a CAT(0) space (X, d) and a bounded sequence
{xn} in C, the asymptotic center of {xn} is in C.

Lemma 4. [14] In a CAT(0) space, every bounded sequence has a ∆-convergent subsequence.

Lemma 5. [23] For a closed convex subset C of a CAT(0) space (X, d) and a bounded sequence
{xn} in C, the asymptotic center A({xn}) contains exactly one point.

Lemma 6. [24] In a complete CAT(0) space (X, d) and x ∈ X, suppose {tn} is a sequence in [p, q]
for some p, q ∈ (0, 1) and {un}, {vn} are sequences in X satisfying

lim sup
n→∞

d(un, x) ≤ r,

lim sup
n→∞

d(vn, x) ≤ r

and
lim
n→∞

d(tnvn ⊕ (1− tn)un, x) = r

for some r ≥ 0. Then lim
n→∞

d(un, vn) = 0.
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We recall that (refer to [25]) for a nonempty subset C of a metric space (X, d), a mapping T on C
is said to be nonexpansive if

d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C.

T is a quasi-nonexpansive mapping if

d(Tx, y) ≤ d(x, y) for all x ∈ C and for z ∈ F (T ) 6= ∅,

where F (T ) denotes the set of all fixed points of T .
T is a Suzuki nonexpansive mapping if

1

2
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C.

In 2020, Berinde et al. [26] defined enriched nonexpansive mapping in Banach space as follows:
Let X be a Banach space. A mapping T : X → X is said to be an enriched nonexpansive mapping

if there exists b ∈ [0,∞) such that

||b(x− y) + Tx− Ty|| ≤ (b+ 1)||x− y||

for all x, y ∈ X.
Generalizing Suzuki nonexpansive mappings, Patir et al. [3] defined the following class of Bγ,µ

mappings.

Definition 3. [3] For a nonempty subset C of a Banach space X, let γ ∈ [0, 1] and µ ∈ [0, 12 ]
satisfying 2µ ≤ γ. A mapping T : C → C is a Bγ,µ mapping if

γ||x− Tx|| ≤ ||x− y||+ µ||y − Ty||

implies ||Tx− Ty|| ≤ (1− γ)||x− y||+ µ(||x− Ty||+ ||y − Tx||) for all x, y ∈ C.
In metric space setting the above definition will reduce to the following.

Definition 4. Let C be a nonempty subset of a metric space (X, d) and γ ∈ [0,1], µ ∈ [0, 12 ] so that
2µ ≤ γ. A self-mapping T : C → C is a Bγ,µ mapping if

γd(x, Tx) ≤ d(x, y) + µd(y, Ty)

implies

d(Tx, Ty) ≤ (1− γ)d(x, y) + µ(d(x, Ty) + d(y, Tx)) for all x, y ∈ C.

Lemma 7. [3] Let C be a nonempty subset of a Banach space X and T be a Bγ,µ mapping on C.
Then T is quasi-nonexpansive.

The concept of an averaged mapping appeared in the work of Krasnoselskii [27] in the context of
Hilbert space, and the term averaged was given in [28].

Definition 5. [28] Given a mapping T : X → X, where X is a Banach space, the averaged mapping
Tk : X → X for k ∈ (0, 1] is defined by

Tk(x) = (1− k)x+ kTx for all x ∈ X.

Lemma 8. [29] For a self-mapping T on a convex subset C of a Banach space X and for any
k ∈ (0, 1], F (Tk) = F (T ).
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2 Main results

In this section, we define an enriched class of mappings in CAT(0) space that generalizes the class
of Bγ,µ mappings. We discuss some fixed point properties of this class. Next, we introduce an iterative
algorithm in CAT(0) space involving such mappings with convergence properties.

Definition 6. Let (X, d) be a CAT(0) space and C be a nonempty subset of X. Let γ ∈ [0,1],
µ ∈ [0, 12 ] be such that 2µ ≤ γ. A mapping T : C → C is said to be an enriched Bγ,µ mapping if there
exists b ∈ [0,∞) such that for k = 1

b+1 ,

γd(x, (1− k)x⊕ kTx) ≤ d(x, y) + µd(y, (1− k)y ⊕ kTy)

implies

d((1− k)x⊕ kTx, (1− k)y ⊕ kTy) ≤ (1− γ)d(x, y) + µ(d(x, (1− k)y ⊕ kTy)

+ d(y, (1− k)x⊕ kTx)) for all x, y ∈ C.

It can be seen that every Bγ,µ mapping is an enriched Bγ,µ mapping with b = 0.
For b = 0, γ = µ = 0, an enriched Bγ,µ mapping reduces to nonexpansive mapping. Again for

b = 0, γ = 1/2, µ = 0, it reduces to Suzuki nonexpansive mapping.

Example 1. Consider the CAT(0) space (R, d) with d(x, y) = |x−y| for all x, y ∈ R. Then T : R→ R
defined by T (x) = 1 − 2x for x ∈ R is an enriched Bγ,µ mapping with b = 2, γ = 2

3 , µ = 0. But it is
not a Bγ,µ mapping.

Example 2. For the CAT(0) space (R2, d) with

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 for x = (x1, x2), y = (y1, y2) ∈ R2

and C = [0, 1]× [0, 1] ⊂ R2, define T : C → C such that

T (x1, x2) = (1− x1, 1− x2) for all (x1, x2) ∈ C.

Then T is an enriched Bγ,µ mapping with b = 1, γ = 1
2 , µ = 0.

Lemma 9. Let T be a Bγ,µ mapping on a CAT(0) space (X, d) with F (T ) 6= ∅. Then T is quasi-
nonexpansive.

Proof. Let z ∈ F (T ). Then
γd(z, Tz) = 0 ≤ d(z, x).

Again, for x(6= z) ∈ X, by Bγ,µ condition, we have

d(Tx, Tz) ≤ (1− γ)d(x, z) + µ(d(x, Tz) + d(z, Tx)),

d(Tx, z) ≤ (1− γ)d(x, z) + µ(d(x, z) + d(z, Tx)),

d(Tx, z) ≤ (1− γ + µ)

1− µ
d(x, z) ≤ d(x, z).

So, T is quasi-nonexpansive.

Lemma 10. If T is an enriched Bγ,µ mapping on a CAT(0) space, then for k = 1
b+1 , the averaged

mapping Tk is a Bγ,µ mapping.

Lemma 11. For a self-mapping T on a convex subset C of a CAT(0) space (X, d) and for any
k ∈ (0, 1], F (Tk) = F (T ), where Tk is the averaged mapping of T .
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Proof. Clearly, if x ∈ F (T ), then x ∈ F (Tk). So, F (T ) ⊆ F (Tk).

Let x ∈ F (Tk). Then Tkx = x. Now,

d((1− k)x⊕ kTx, x) = kd(x, Tx),

d(x, x) = kd(x, Tx),

d(x, Tx) = 0,

x ∈ F (T ).

Lemma 12. For a nonempty subset C of a CAT(0) space (X, d), let T be an enriched Bγ,µ mapping
on C. If F (T ) 6= ∅, then F (T ) is closed.

Proof. Let p ∈ F (T ) (the closure of F (T )). Then there exists a sequence {xn} ⊆ F (T ) such that
xn → p. Since T is an enriched Bγ,µ mapping, so, for k = 1

b+1 , using Lemma 10 and Lemma 9, Tk is
quasi-nonexpansive.

Now,
0 = lim

n→∞
d(xn, p) ≥ lim

n→∞
d(xn, Tkp) = d(Tkp, p).

So, Tkp = p. Therefore by Lemma 11, p ∈ F (T ). Hence F (T ) is closed.

Lemma 13. For a nonempty subset C of a CAT(0) space (X, d), let T be an enriched Bγ,µ mapping
on C with the averaged mapping Tk, for k = 1

b+1 . Then for all x, y ∈ C, c ∈ [0, 1]

(i) d(Tkx, T
2
kx) ≤ d(x, Tkx);

(ii) at least one of the following ((a) and (b)) holds:
(a) c

2d(x, Tkx) ≤ d(x, y);
(b) c

2d(Tkx, T
2
kx) ≤ d(Tkx, y).

The condition (a) implies d(Tkx, Tky) ≤ (1− c
2)d(x, y) +µ(d(x, Tky) + d(y, Tkx)), the condition (b)

implies d(T 2
kx, Tky) ≤ (1− c

2)d(Tkx, y) + µ(d(Tkx, Tky) + d(y, T 2
kx));

(iii) d(x, Tky) ≤ (3− c
2)d(x, Tkx)+(1− c

2)d(x, y)+µ(2d(x, Tkx)+d(x, Tky)+d(y, Tkx)+2d(Tkx, T
2
kx)).

Proof. (i) For all x ∈ C

γd(x, Tkx) ≤ d(x, Tkx) + µd(Tkx, T
2
kx).

So, by Lemma 10,

d(Tkx, T
2
kx) ≤ (1− γ)d(x, Tkx) + µd(x, T 2

kx)

≤ (1− γ)d(x, Tkx) + µd(x, T 2
kx) + µd(Tkx, T

2
kx),

that is,

d(Tkx, T
2
kx) ≤ 1− γ + µ

1− µ
d(x, Tkx) ≤ d(x, Tkx).

(ii) If possible, let c
2d(x, Tkx) > d(x, y) and

c

2
d(Tkx, T

2
kx) > d(Tkx, y) for some x, y ∈ C.

Mathematics Series. No. 2(118)/2025 65



N. Goswami, D. Pathak

Now,

d(x, Tkx) ≤d(x, y) + d(y, Tkx)

<
c

2
d(x, Tkx) +

c

2
d(Tkx, T

2
kx)

≤ c

2
d(x, Tkx) +

c

2
d(x, Tkx) (using (i))

≤ d(x, Tkx),

that is, d(x, Tkx) < d(x, Tkx), which is impossible. So, at least one of (a) and (b) holds.
If (a) holds, then, c2d(x, Tkx) ≤ d(x, y). So,

c

2
d(x, Tkx) ≤ d(x, y) + µd(y, Tky).

Therefore,

d(Tkx, Tky) ≤
(

1− c

2

)
+ µ(d(x, Tky) + d(y, Tkx)).

If (b) holds, then, c2d(Tkx, T
2
kx) ≤ d(Tkx, y).

That is,
c

2
d(T 2

kx, Tkx) ≤ d(Tkx, y).

So,

d(T 2
kx, Tky) ≤

(
1− c

2

)
d(Tkx, y) + µ(d(Tkx, Tky) + d(y, T 2

kx)).

(iii) We assume that (a) holds. Then

d(Tkx, Tky) ≤
(

1− c

2

)
d(x, y) + µ(d(x, Tky) + d(y, Tkx)).

Now,

d(x, Tky) ≤ d(x, Tkx) + d(Tkx, Tky)

≤ d(x, Tkx) +
(

1− c

2

)
d(x, y) + µ(d(x, Tky) + d(y, Tkx))

≤
(

3− c

2

)
d(x, Tkx) +

(
1− c

2

)
d(x, y) + µ(d(x, Tky) + d(y, Tkx)

+ 2d(x, T 2
kx)), since c ∈ [0, 1]

≤
(

3− c

2

)
d(x, Tkx) +

(
1− c

2

)
d(x, y) + µ(d(x, Tky) + d(y, Tkx)

+ 2d(x, Tkx) + 2d(Tkx, T
2
kx)).

Now, suppose (b) holds. Then

d(T 2
kx, Tky) ≤

(
1− c

2

)
d(Tkx, y) + µ(d(Tkx, Tky) + d(y, T 2

kx)).
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By triangle inequality,

d(x, Tky) ≤ d(x, Tkx) + d(T 2
kx, Tkx) + d(T 2

kx, Tky)

≤ d(x, Tkx) + d(x, Tkx) +
(

1− c

2

)
d(Tkx, y) + µ(d(Tkx, Tky) + d(y, T 2

kx))

≤ 2d(x, Tkx) +
(

1− c

2

)
d(Tkx, x) +

(
1− c

2

)
d(x, y) + µ(d(Tkx, Tky) + d(y, T 2

kx))

≤
(

3− c

2

)
d(x, Tkx) +

(
1− c

2

)
d(x, y) + µ(d(x, T 2

kx) + d(Tkx, Tky) + d(y, T 2
kx))

≤
(

3− c

2

)
d(x, Tkx) +

(
1− c

2

)
d(x, y) + µ(d(x, Tkx) + d(Tkx, T

2
kx) + d(Tkx, x)

+ d(x, Tky) + d(y, Tkx) + d(Tkx, T
2
kx))

=
(

3− c

2

)
d(x, Tkx) +

(
1− c

2

)
d(x, y) + µ(2d(x, Tkx) + d(x, Tky)

+ d(y, Tkx) + 2d(Tkx, T
2
kx)).

Next, we derive the following fixed point result using ∆-convergence.

Theorem 1. For a nonempty subset C of a CAT(0) space (X, d), let T be an enriched Bγ,µ mapping
on C with the averaged mapping Tk, for k = 1

b+1 . Suppose {xn} is a sequence in C such that
(i) {xn} is ∆-convergent to z,
(ii) limn→∞ d(Tkxn, xn) = 0, and
(iii) d(z, Tkxn) ≤ d(z, xn).
Then z ∈ F (T ).

Proof. Since T is enriched Bγ,µ mapping, so, by Lemma 13 (iii), for c ∈ [0, 1],

d(xn, Tkz) ≤
(

3− c

2

)
d(xn, Tkxn) +

(
1− c

2

)
d(xn, z) + µ(2d(xn, Tkxn) + d(xn, Tkz)

+ d(z, Tkxn) + 2d(Tkxn, T
2
kxn)).

Using condition (iii) and Lemma 13(i),

d(xn, Tkz) ≤
(

3− c

2

)
d(xn, Tkxn) +

(
1− c

2

)
d(xn, z) + µ(2d(xn, Tkxn) + d(xn, Tkz)

+ d(z, xn) + 2d(xn, Tkxn)).
(1)

Taking n→∞ on both sides of (1) and using conditions (ii) and (iii), we get

(1− µ) lim
n→∞

d(xn, Tkz) ≤
(

1− c

2
+ µ

)
lim
n→∞

d(xn, z),

that is,
lim
n→∞

d(xn, Tkz) ≤ lim
n→∞

d(xn, z),

lim sup
n→∞

d(xn, Tkz) ≤ lim sup
n→∞

d(xn, z).

Since {xn} is ∆-convergent to z, so, if Tkz 6= z, then by Lemma 1,

lim sup
n→∞

d(xn, z) < lim sup
n→∞

d(xn, Tkz) ≤ lim sup
n→∞

d(xn, z), which is a contradiction.

Hence Tkz = z.
Since k ∈ (0, 1], by Lemma 11, z ∈ F (T ).
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Theorem 2. Let (X, d) be a CAT(0) space and C be a nonempty closed convex and bounded subset
of X. Let T be an enriched Bγ,µ mapping on C with the averaged mapping Tk for k = 1

b+1 . Suppose
{xn} is a bounded sequence in C that satisfies

(i) limn→∞ d(xn, Tkxn) = 0 and
(ii) limn→∞ d(Tkxn, T

2
kxn) = 0.

Then F (T ) 6= ∅.

Proof. Since A({xn}) contains exactly one point, let z ∈ A({xn}). Then by Lemma 3, z ∈ C.
By Lemma 13 (iii), for each n ∈ N ∪ {0} and c ∈ [0, 1], we have

d(xn, Tkz) ≤
(

3− c

2

)
d(xn, Tkxn) +

(
1− c

2

)
d(xn, z) + µ(2d(xn, Tkxn) + d(xn, Tkz)

+ d(z, Tkxn) + 2d(Tkxn, T
2
kxn)),

that is,

d(xn, Tkz) ≤
(

3− c

2

)
d(xn, Tkxn) +

(
1− c

2

)
d(xn, z) + µ(2d(xn, Tkxn) + d(xn, Tkz)+

d(z, xn) + d(xnTkxn) + 2d(Tkxn, T
2
kxn)).

So,

(1− µ) lim sup
n→∞

d(xn, Tkz) ≤
(

1− c

2
+ µ

)
lim sup
n→∞

d(xn, z).

Therefore,
r(Tkz, {xn}) ≤ r(z, {xn}).

Hence
Tkz ∈ A({xn}).

By uniqueness of asymptotic centers in CAT(0) space, we have Tkz = z. So, by Lemma 11, z is a fixed
point of T .

3 A new iterative algorithm in CAT(0) space

In this section, we develop the following iterative scheme for approximating fixed points of enriched
Bγ,µ mapping in CAT(0) space.

Let C be a nonempty subset of a CAT(0) space and x0 ∈ C. Let T be an enriched Bγ,µ mapping
on C with the averaged mapping Tk for k = 1

b+1 .
For n ∈ N ∪ {0}, we define

xn+1 = (1− βn)yn ⊕ βnTkyn,
yn = Tkzn,

zn = (1− αn)xn ⊕ αnTkxn, (2)

where αn, βn ∈ [0, 1].

Lemma 14. Let T be an enriched Bγ,µ mapping on a nonempty closed and convex subset C of
a CAT(0) space (X, d). For x0 ∈ C, let {xn} be a sequence defined by (2). If F (T ) 6= ∅, then
limn→∞ d(xn, p) exists for all p ∈ F (T ).
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Proof. For p ∈ F (T ) and k = 1
b+1 ,

d(xn+1, p) = d((1− βn)yn ⊕ βnTkyn, p)
≤ (1− βn)d(yn, p) + βnd(Tkyn, p).

Since Tk is quasi-nonexpansive,

d(xn+1, p) ≤ (1− βn)d(yn, p) + βnd(yn, p)

≤ d(yn, p)

= d(Tkzn, p)

≤ d(zn, p)

= d((1− αn)xn ⊕ αnTkxn, p)
≤ (1− αn)d(xn, p) + αnd(Tkxn, p)

≤ (1− αn)d(xn, p) + αnd(xn, p)

= d(xn, p).

Thus, {d(xn, p)} is a monotonically decreasing sequence that is bounded below.
Hence, limn→∞ d(zn, p) exists for all p ∈ F (T ).

Theorem 3. Let C be a nonempty closed and convex subset of a complete CAT(0) space (X, d)
and T be an enriched Bγ,µ mapping on C. For x0 ∈ C, let {xn} be a sequence defined by (2).
Then F (T ) 6= ∅ if and only if {xn} is bounded and limn→∞ d(xn, Tkxn) = 0, where Tk is the averaged
mapping with k = 1

b+1 .

Proof. Let F (T ) 6= ∅ and p ∈ F (T ). So by Lemma 14, limn→∞ d(xn, p) exists and thus, {xn} is
bounded.

Let limn→∞ d(xn, p) = a ≥ 0. For n ∈ N ∪ {0},

d(xn, Tkxn) ≤ d(xn, p) + d(Tkxn, p)

≤ 2d(xn, p).

So, limn→∞ d(xn, Tkxn) exists.
Now,

d(xn+1, p) ≤ d(yn, p) ≤ d(zn, p) ≤ d(xn, p),

that is,

a = lim sup
n→∞

d(xn+1, p) ≤ lim sup
n→∞

d(yn, p) ≤ lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(xn, p) = a.

Also,
a = lim inf

n→∞
d(xn+1, p) ≤ lim inf

n→∞
d(yn, p) ≤ lim inf

n→∞
d(zn, p) ≤ lim inf

n→∞
d(xn, p) = a.

Hence
lim sup
n→∞

d(zn, p) = lim inf
n→∞

d(zn, p) = a.

So,
lim
n→∞

d(zn, p) = a,
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that is,
lim
n→∞

d((1− αn)xn ⊕ αnTkxn, p) = a.

Also, we have
lim sup
n→∞

d(xn, p) ≤ a and lim sup
n→∞

d(Tkxn, p) ≤ a.

So, by Lemma 6, limn→∞ d(xn, Tkxn) = 0.
Conversely, suppose that {xn} is bounded and limn→∞ d(xn, Tkxn) = 0. Since A({xn}) contains

exactly one point, let p ∈ A({xn}). By Lemma 13 (iii), for c ∈ [0, 1], we get

d(xn, Tkp) ≤
(

3− c

2

)
d(xn, Tkxn) +

(
1− c

2

)
d(xn, p) + µ(2d(xn, Tkxn) + d(xn, Tkp)

+ d(p, Tkxn) + 2d(Tkxn, T
2
kxn))

≤
(

3− c

2

)
d(xn, Tkxn) +

(
1− c

2

)
d(xn, p) + µ(2d(xn, Tkxn) + d(xn, Tkp)

+ d(p, Tkxn) + 2d(xn, Tkxn)).

So,

lim sup
n→∞

d(xn, Tkp) ≤
(

3− c

2

)
lim sup
n→∞

d(xn, Tkxn) +
(

1− c

2

)
lim sup
n→∞

d(xn, p)

+ µ(2 lim sup
n→∞

d(xn, Tkxn) + lim sup
n→∞

d(xn, Tkp) + lim sup
n→∞

d(p, Tkxn)

+ 2 lim sup
n→∞

d(Tkxn, T
2
kxn))

≤
(

3− c

2

)
lim sup
n→∞

d(xn, Tkxn) +
(

1− c

2

)
lim sup
n→∞

d(xn, p)

+ µ(2 lim sup
n→∞

d(xn, Tkxn) + lim sup
n→∞

d(xn, Tkp)

+ lim sup
n→∞

d(p, Tkxn) + 2 lim sup
n→∞

d(xn, Tkxn)),

that is,

(1− µ) lim sup
n→∞

d(xn, Tkp) ≤
(

1− c

2
+ µ

)
lim sup
n→∞

d(xn, p).

Since 2µ ≤ γ, taking c = 2γ, we get

lim sup
n→∞

d(xn, Tkp) ≤ lim sup
n→∞

d(xn, p).

Therefore,
r(Tkp, {xn}) ≤ r(p, {xn}).

Hence
Tkp ∈ A({xn}).

By Lemma 5, Tkp = p, that is, p ∈ F (Tk) and by Lemma 11, p ∈ F (T ). Hence, F (T ) 6= ∅.

In view of the above theorem, we can say that the sequence {xn} defined by (2), is ∆-convergent
to a fixed point of T .

The next result deals with the strong convergence of the iterative algorithm (2) to a fixed point.
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Theorem 4. Let C be a nonempty closed and convex subset of a complete CAT(0) space (X, d).
Let T be an enriched Bγ,µ mapping on X and for x0 ∈ C, {xn} be a sequence defined by (2). Let
F (T ) 6= ∅. Then {xn} converges strongly to a fixed point of T if and only if

lim inf
n→∞

d(xn, F (T )) = 0,

where d(x, F (T )) = inf{d(x, p); p ∈ F (T )}.

Proof. Let {xn} be convergent to p ∈ F (T ). Then limn→∞ d(xn, p) = 0. Now,

0 ≤ d(xn, F (T )) = inf{d(xn, p) : p ∈ F (T )} ≤ d(xn, p).

Therefore, limn→∞ d(xn, F (T )) = 0. Hence

lim inf
n→∞

d(xn, F (T )) = 0.

Conversely, let
lim inf
n→∞

d(xn, F (T )) = 0.

By Lemma 14, limn→∞ d(xn, p) exists for all p ∈ F (T ) and {d(xn, p)} is monotonically decreasing.
Thus,

lim
n→∞

d(xn, F (T )) = 0.

Consider a subsequence {xnk} of {xn} such that

d(xnk , pk) <
1

2k
for all k ∈ N and for {pk} ⊆ F (T ).

Since {d(xn, p)}, p ∈ F (T ) is monotonically decreasing, so, for each k,

d(xnk+1
, pk) ≤ d(xnk , pk) <

1

2k
.

Now,

d(pk+1, pk) ≤ d(pk+1, xnk+1
) + d(xnk+1

, pk)

<
1

2k+1
+

1

2k

<
1

2k−1
.

Hence {pk} is a Cauchy sequence in F (T ). Since F (T ) is closed, {pk} converges to some p ∈ F (T ).
Now,

d(xnk , p) ≤ d(xnk , pk) + d(pk, p).

Taking k →∞, we get
lim
n→∞

d(xnk , p) = 0.

Since, limn→∞ d(xn, p) exists, so, limn→∞ d(xn, p) = 0.
Hence {xn} converges to p ∈ F (T ).

We recall from [30] that a mapping T on a nonempty convex subset C of a CAT(0) space (X, d)
with F (T ) 6= ∅ satisfies the condition (I) if there exists a nondecreasing function f : [0,∞) → [0,∞)
with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that f(d(x, F (T ))) ≤ d(x, Tx) for all x ∈ C. Here
we use this condition (I) to prove the next strong convergence result.
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Theorem 5. For a nonempty closed and convex subset C of a complete CAT(0) space (X, d), let T
be an enriched Bγ,µ mapping on C with the averaged mapping Tk for k = 1

b+1 . Let F (T ) 6= ∅ and for
x0 ∈ C, {xn} be a sequence defined by (2). If Tk satisfies condition (I) for a self-mapping f on [0,∞),
then {xn} converges strongly to a fixed point of T .

Proof. Since F (T ) 6= ∅, by Theorem 3, limn→∞ d(xn, Tkxn) = 0.
Also, by condition (I),

lim
n→∞

f(d(xn, F (Tk))) ≤ lim
n→∞

d(xn, Tkxn) = 0.

So,
lim
n→∞

f(d(xn, F (Tk))) = 0.

Therefore,
lim
n→∞

(d(xn, F (Tk))) = 0.

As k ∈ (0, 1], so,
lim
n→∞

(d(xn, F (T ))) = 0.

Hence {xn} converges strongly to a fixed point of T .

We demonstrate the above theorem by the following example.

Example 3. Consider the CAT(0) space X = [0, 1] with

d(x, y) =

{
x+ y, if x 6= y,

0, otherwise.

Let C = [0, 13 ] and T : C → C be defined by T (x) = 1 − 2x, x ∈ C. Then T is an enriched Bγ,µ
mapping with b = 1, γ = 2

3 , µ = 0.
For k = 1

2 , the averaged mapping Tk is given by Tk(x) = 1−x
2 , x ∈ C.

Clearly, F (Tk) = F (T ) = {13} 6= ∅.
We take f as the identity mapping on [0,∞). Then Tk satisfies condition (I) with respect to f .
So, by Theorem 5, for x0 ∈ C, the sequence {xn} defined by (2) converges strongly to a fixed point

of Tk.
Taking x0 = 0.05, x0 = 0.1, x0 = 0.2 and x0 = 0.25, we see the convergence of the iterative scheme

as follows:

n x0 = 0.05 x0 = 0.1 x0 = 0.2 x0 = 0.25

1 0.342188 0.340625 0.337500 0.335938
2 0.333057 0.333105 0.333203 0.333252
3 0.333342 0.333340 0.333337 0.333336
4 0.333333 0.333333 0.333333 0.333333
5 0.333333 0.333333 0.333333 0.333333
6 0.333333 0.333333 0.333333 0.333333

In Figure 1, the blue, purple, red, and green dotted lines represent the sequences defined by the
iterative algorithm (2), when x0 = 0.05, x0 = 0.1, x0 = 0.2 and x0 = 0.25 respectively. It is seen that
each sequence converges to the fixed point 1

3 .

72 Bulletin of the Karaganda University



Approximation of fixed points for...

Figure 1. Convergence of the iteration scheme (2) with different initial points

Conclusion

We have established some fixed point results for enriched Bγ,µ mapping in CAT(0) space. Also,
we introduced a new iteration scheme for such mappings in CAT(0) space and proved weak and
strong convergence results of this iteration scheme. In 2022, Tufa et al. [31] constructed an iterative
scheme to approximate the fixed point of a countable family of quasi-nonexpansive non-self-mapping
in complete CAT(0) space. In this context, the investigation of common fixed points for a countable
family of enriched Bγ,µ mappings is a scope of future study. Moreover, the comparison of the rate of
convergence of our derived iteration scheme with some existing iteration schemes is another aspect for
future discussion.
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