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In this paper, we consider the application of the method of fictitious domains to a viscoelastic incompressible
medium based on the Kelvin-Voigt model. Application of the method of fictitious domains allows solving
the original problem in regions with complex geometric configuration. This makes it easier to automate the
construction of a consistent difference mesh, and to solve the problem in areas of standard shape. Estimates
for the proximity of the auxiliary problem’s solution are obtained. The auxiliary problem is constructed
by the method of fictitious domains. These estimates refer to the solution of the original problem. The
original problem describes a viscoelastic incompressible medium. Convergence follows from the estimates of
the proximity of the solutions of the original and auxiliary problems. Further, on the basis of the method of
fictitious domains, two-sided estimates on a small parameter for the difference between the solution of the
original problem and the solution of the auxiliary problem constructed by the method of fictitious domains
are obtained. Moreover, the solution to the auxiliary problem is expanded as a series in powers of the
small parameter. This is possible because that solution is represented as a functional series that converges
absolutely in the original domain.
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Introduction and problem statement

This paper presents two-sided estimates for a small parameter of the solution of the initial problem.
Since a priori estimates help to determine the interval or band in which the solution lies, this is relevant.
In addition, since the initial problem does not have an analytical solution, two-sided estimates allow
us to determine the initial approximation for finding an approximate solution to the problem, which
is an important step in the process of finding a solution.

We consider the application of the method of fictitious domains for incompressible Kelvin-Voigt
medium. Two-sided estimates of the convergence of the approximate solution to the exact solution by a
small parameter α are obtained. We consider the formulation of a dynamic viscoelastic incompressible
medium based on the Kelvin-Voigt model in a cylinder Q = {D × [0 ≤ t ≤ t1]}, where D ⊂ R3 is
a bounded singly connected region with a sufficiently smooth boundary γ. Let us introduce the
notation γt = γ × [0, t1], the strain and stress vector-functions −→ε = {ε11, ε22, ε33, 2ε12, 2ε13, 2ε23}T ,−→σ = {σ11, σ22, σ33, σ12, σ13, σ23}T , here the symbol T is transpose, the displacement and velocity
vector functions

−→
U = {U1, U2, U3}T ,

−→
ϑ = {ϑ1, ϑ2, ϑ3}T . Following the work of [1] we consider the

velocity-stress formulation. We find the solution satisfying the following relations:

∂
−→
ϑ

∂t
+R−→σ =

−→
f , (x, t) ∈ Q (1)
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which is an equation of motion,
∂−→ε
∂t
−R
−→
ϑ = 0, (2)

displacement-strain ratio,

B−→σ = J−→ε +D
∂−→ε
∂t

. (3)

The equation of state for the Kelvin-Voigt medium is

div−→u = 0. (4)

The condition of incompressibility of the medium, taking into account the stresses and the pressure
function p, is given by the relationship

σik = −δikp+ 2µεik, i, k = 1, 2, 3. (5)

Here δik is the Kronecker symbol,
−→
f is the vector of mass forces, B = BT , C = CT are symmetric

positive-definite matrices depending on the Lamé constants and viscosity coefficient, J is an diagonal
matrix, their form is given in [2].

R is a linear matrix-differential operator:

R =

 ∇1 0 0
0 ∇2 0
0 0 ∇3

∇2 ∇3 0
∇1 0 ∇3

0 ∇1 ∇2

T

, R∗ = −RT , ∇i =
∂

∂xi
, i = 1, 2, 3.

The system of equations (1)–(5) transform to the following form, a vector function −→σ (x, t) that
satisfies the following relations

B
∂2−→σ
∂t2

= A−→σ +DA
∂−→σ
∂t

+
−→
F , (6)

A = −RR∗,
−→
F = R

−→
f , satisfies the initial conditions:

−→σ (x, 0) = −→q (x) ,
∂−→σ
∂t

(x, 0) = −→g (x) (7)

and boundary conditions
3∑

k=1

σik (x, t)nk = 0, (x, t) ∈ γt; (8)

here nk = (n1, n2, n3)
T is the vector of normal to γ, γt = γ× [0, t1]. Let us denote the problem (6)–(8)

by the problem I.

Main provisions

In [2], we show the stationalization of the solution of the problem I to the solution of the static
elastic problem.

R∗−→σ y
(x) +

−→
F (x) = 0, −→σ y

(x) = Rεy (x) ,

3∑
k=1

σyik (x)nk = 0, x ∈ γ. (9)

In [2], the closeness estimate of the solution of problem I and problem (9) is obtained:∥∥−→σ − −→σ y∥∥ ≤ e−βt · ∥∥−→σ (x, 0)−−→σ y
(x)
∥∥ ,
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where β>0 is a constant.
The following theorem is true for problem I:
Theorem 1 . Let

−→σ (x, t) ∈W 2,1
2 (Q) , −→g (x) ∈ Ẇ 1

2 (D) , −→q (x) ∈ L2 (D) ,
−→
F (x, t) ∈ L2 (Q) ,

then there exists a unique solution to the problem I and the following estimation is true

‖−→σ (x, t)‖
W 2,1

2 (Q)
≤ C1(

∥∥∥−→F ∥∥∥
L2(Q)

+ ‖−→q ‖L2(D) +

∫ t1

0
‖−→g ‖Ẇ 1

2 (D)dτ).

The proof is similar to the proof of Theorem 1 in [3].
According to the method of fictitious domains [3–6], we augment the original region D with the

region D1 to a composite region D0 = D ∪D1, with boundary Γ,Γt = Γ× [0, t1] , +Q1 = D1 × [0, t1]
and construct the auxiliary problem

Lα
−→σ α

=
−→
F , (x, t) ∈ Q, Lα

−→σ α
= 0, (x, t) ∈ Q1,

3∑
k=1

(−→σ α
)iknk = 0, (x, t) ∈ γt, −→σ α

(x, 0) = 0, x ∈ D1,

−→σ α
(x, 0) = −→q (x) , x ∈ D, ∂−→σ α

∂t
(x, 0) = 0, x ∈ D1

∂−→σ α

∂t

∣∣∣∣
t

= −→g (x) , x ∈ D,
3∑

k=1

σαiknk = 0, (x, t) ∈ Γt, (10)

where Lα−→σ α
= B ∂2−→σ α

∂t2
− aαA−→σ α

+ JA∂−→σ α
∂t , aα =

{
1, x ∈ D,
−α2, x ∈ D1,

α > 0 is a small parameter.

On the coefficient gap curve γt, we set the following matching conditions

−→σ α∣∣+
γt

= −→σ α∣∣−
γt
,

∂−→σ α

∂N

∣∣∣∣+
γt

=
M

α

∂−→σ α

∂n

∣∣∣∣−
γt

.

Signs “+” or “–” mean convergence to the limit value of the function from inside or outside to the
boundary γt. The parameter M takes the values –1 or +1 [6, 7].

Let us introduce the following series into consideration:

S1 =

∞∑
k=0

αk
−→
Vk, on Q, S2 =

∞∑
k=1

αk
−→
Wk, on Q1. (11)

Putting (11) into (10), we obtain relations for determining
−→
Vk and

−→
Wk:

Lα
−→
V0 =

−→
F , (x, t) ∈ QLα,

−→
W1 = 0, (x, t) ∈ Q1,

3∑
k=1

(V0)iknk = 0, (x, t) ∈ γt,
−→
W1 (x, 0) = 0,

∂
−→
W1

∂t
(x, 0) = 0, x ∈ D1.

−→
V0 (x, 0) = −→q (x) ,

∂
−→
V0
∂t

(x, 0) = −→g (x) , x ∈ D, ∂
−→
W1

∂n
= M

∂
−→
V0
∂N

, (x, t) ∈ γt. (12)
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3∑
k=1

(
−→
W1)iknk = 0, (x, t) ∈ γt.

And for k≥1
Lα
−→
Vk =

−→
F , (x, t) ∈ Q, Lα

−→
W k+1 = 0, (x, t) ∈ Q1,

3∑
k=1

(Vk)iknk = 0, (x, t) ∈ γt,
3∑

k=1

(Wk+1)iknk = 0, (x, t) ∈ γt,

−→
Vk (x, 0) = 0, x ∈ D,

−→
W k+1 (x, 0) = 0, x ∈ D1,

∂
−→
Vk
∂t

(x, 0) = 0, x ∈ D, ∂
−→
W k+1

∂t
(x, 0) = 0, x ∈ D1,

−→
Vk =

−→
Wk, (x, t) ∈ γt.

Functions
−→
Vk ∈W 2,1

2 (Q) , k = 0, 1, . . . ,
−→
Wk ∈W 2,1

2 (Q1) , k = 0, 1, . . .
We obtain estimates of the convergence of the solution of the auxiliary problem to the solution of

the original problem with respect to the small parameter α.
Theorem 2. If α0 is such that 0 < α < α0, then the series S1, S2 absolutely converge to W 2,1

2 (Q)

and W 2,1
2 (Q1), and the following equalities are true

−→σ α
= S1, (x, t) ∈ Q, −→σ α

= S2, (x, t) ∈ Q1,

where −→σ α is the solution of problem (10).
Proof. We search obvious priori estimates [7, 8].

∥∥∥−→Wk

∥∥∥
W 2,1

2 (Q1)
≤ C1

∥∥∥∥∥∂
−→
Wk

∂n

∥∥∥∥∥
W

1
2
2 (γt)

≤ C2

∥∥∥∥∥∂
−→
V k−1
∂N

∥∥∥∥∥
W

1
2 ,1

2 (γt)

≤ C1C2

∥∥∥−→V k−1

∥∥∥
W

1
2
2 (γt)

, (13)

where C1, C2 are constants depending on the regions D,D1 and not depending on α.
Now we show the convergence of the series S1 to W 2,1

2 (Q1) and S2 to W 2,1
2 (Q1), we have∥∥∥−→Vk∥∥∥

W 2,1
2 (Q)

≤ C3

∥∥∥−→Vk∥∥∥
W

3
2 , 1

2 (γt)
= C3

∥∥∥−→Wk

∥∥∥
W

3
2 ,1

2 (γt)
≤ C3C4

∥∥∥−→Wk

∥∥∥
W 2,1

2 (Q1)
,

and using (8), (13), we obtain∥∥∥−→Vk∥∥∥
W 2,1

2 (Q)
≤ C5

∥∥∥−→V k−1

∥∥∥
W

3
2 ,1

2 (Q)
, k ≥ 1,

then ∥∥∥−→V0∥∥∥
W 2,1

2 (Q)
≤ C6

(∥∥∥−→F ∥∥∥
L2(Q)

+ ‖−→q ‖L2(D) +

∫ t1

0
‖−→g ‖Ẇ 1

2 (D)dt

)
,

where C6 = C1C2C3C4C5.
Assuming α < α0 = C−16 , we obtain the series S1, is absolutely convergent to W 2,1

2 (Q) and
correspondingly the series S2 is absolutely convergent to W 2,1

2 (Q1).
Multiplying (12) for

−→
Vk and

−→
Wk by αk, and summing over k, we have

LS1 =
−→
F , (x, t) ∈ Q, LαS2 = 0, (x, t) ∈ Q1,

S1 (x, 0) = −→q (x) , x ∈ DS2 (x, 0) = 0, x ∈ D1, (14)
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∂S1
∂t

(x, 0) = −→g (x) , x ∈ D, ∂S2
∂t

(x, 0) = 0, x ∈ D1.

S2 (x, t) = 0, (x, t) ∈ γt,

S1 = S2, (x, t) ∈ Γt,
∂S2
∂n

=
M

α

∂S1
∂N

, (x, t) ∈ γt,

L−→σ = B
∂2−→σ
∂t2

−A−→σ − JA∂
−→σ
∂t

.

Hence, (14) we obtain that −→σ α
= S1 in Q and −→σ α

= S2 in Q1, if the condition 0 < α < α0 is met.
From the proof of Theorem 2 implies the following statement∥∥−→σ −−→σ α

+

∥∥
W 2,1

2 (Q)
≤ C7α,

∥∥−→σ −−→σ α
−
∥∥
W 2,1

2 (Q)
≤ C8α, (15)

here −→σ α
+ = −→σ α, at M = 1, −→σ α

− = −→σ α, at M = −1. −→σ is the solution to the problem I. C7, C8 are
constants depend on the areas D,D1 and are independent of α.

Next, we can formulate a theorem giving two-sided estimates on α [9].
Theorem 3. If 0 < α < α0, −→σ is a solution of problem I, −→σ α

+,
−→σ α
− is a solution of problem (10) at

M = 1 and M = −1, then the following estimation (16) is true∥∥∥∥−→σ − 1

2

(−→σ α
+ +−→σ α

−
)∥∥∥∥
W 2,1

2 (Q)

≤ C9α
2, (16)

where
−→σ α

= S1, (x, t) ∈ Q, −→σ α
= S2, (x, t) ∈ Q1. (17)

Proof. By virtue of Theorem 2, we have

−→σα+ =

∞∑
k=0

αk
−→
V

+

k , (x, t) ∈ Q, −→σ α
+ =

∞∑
k=1

αk
−→
W

+

k , (x, t) ∈ Q1, (18)

here
−→
V

+

k ,
−→
W

+

k are solutions of (10) at M = 1, moreover

−→σ α
− =

∞∑
k=0

αk
−→
V
−
k , (x, t) ∈ Q, −→σ α

− =
∞∑
k=1

αk
−→
W
−
k , (x, t) ∈ Q1, (19)

here
−→
V
−
k ,
−→
W
−
k are solutions of (10) at M = −1.

We obtain
−→
V

+

0 ≡
−→
V
−
0 ≡ −→σ , it is a solution of problem I.

We introduce the notation
−→
W1 =

−→
W

+

1 +
−→
W
−
1 , the function

−→
W1 satisfies the following problem

Lα
−→
W1 = 0, (x, t) ∈ Q1,

∂
−→
W1

∂n
= 0, (x, t) ∈ γt,

−→
W1 (x, 0) = 0,

∂
−→
W1

∂t
(x, 0) = 0, x ∈ D1,

−→
W1 (x, t) = 0, (x, t) ∈ Γt,

hence, we obtain that
−→
W1 = 0, or

−→
W

+

1 = −
−→
W
−
1 .

Further we introduce
−→
V1 =

−→
V

+

1 +
−→
V
−
1 , the function

−→
V1 satisfies the problem

Lα
−→
V1 = 0, (x, t) ∈ Q, ∂

−→
V1
∂t

(x, 0) = 0, x ∈ D,
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−→
V1 (x, 0) = 0, (x, t) ∈ Γt,

−→
V1 (x, t) = 0, (x, t) ∈ γt,

from which we obtain
−→
V1 = 0, or

−→
V

+

1 = −
−→
V
−
1 . By sequentially introducing

−→
W2 =

−→
W

+

2 +
−→
W
−
2 ,

−→
V2 =

−→
V

+

2 +
−→
V
−
2 ,

we get
−→
W2 =

−→
W
−
2 ,

−→
V

+

2 =
−→
V
−
2 ,

continuing this process, we get

−→
V

+

k =
−→
V
−
k , if k is even,

−→
V

+

k = −
−→
V
−
k , if k is odd.

Substituting (20) into (18), (19), we have

−→σ α
+ = −→σ + σ

−→
V

+

1 + σ2
−→
V

+

2 + . . .

−→σ α
− = −→σ − σ

−→
V

+

1 + σ2
−→
V

+

2 + . . .

Applying decomposition (20), as well as estimation (17) at 0 < α < α0, we obtain∥∥∥∥−→σ − 1

2

(−→σ α
+ +−→σ α

−
)∥∥∥∥
W 2,1

2 (Q)

≤ α2
∥∥∥−→V +

2 + α2−→V
+

4 + . . .
∥∥∥
W 2,1

2 (Q)
≤ C8α

2
∥∥∥−→V +

0

∥∥∥
W 2,1

2 (Q)
≤ C9α

2;

here C8 = C2
α, so for x ∈ D, 0 < α < α0, we have a two-sided estimation

O
(
α2
)

+ min
(−→σ α

+ , −→σ α
−
)
≤ −→σ ≤ max

(−→σ α
+ , −→σ α

−
)

+O(α2).

Thus, a two-sided estimate in terms of the small parameter of the solution to the original problem
has been obtained through the solution of the auxiliary problem, where the parameter valuesM = −1,
M = 1 corresponds to −→σ α

+.

Conclusion

The obtained estimate is essential for the application of the numerical solution of the auxiliary
problem, and it is not considered in the works [10–16]. Continuation by the lowest coefficient in the
fictitious region method leads to the same estimates. In works [10–16], the numerical implementation
of the Kelvin-Voigt model in equivalent formulations is considered.
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