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Introduction

Various techniques can be used to solve source identification problems (SIPs) for parabolic equa-
tions. These may include optimization algorithms, regularization methods, or numerical techniques
such as finite element and finite difference methods (see [1–28] a references therein).

In papers [3, 18], SIP for abstract differential equation with self-adjoint positive definite operator
A

dv(t)

dt
+Av(t) = p+ f(t), 0 < t < 1, (1)

v(0) = ϕ, v(1) = ψ (2)

in a Hilbert space H was investigated. In paper [3], for solution of SIP (1), (2), stability estimates in
the Hölder norms were obtained.

Some applications to boundary value problems (BVPs) for partial differential equation (PDE) and
approximate solutions were studied in [8, 12].

Let s1, µ1, s2, µ2, ..., sr, µr be given numbers so that

r∑
k=1

|µk| < 1, 0 ≤ s1 < s2 < . . . < sr < 1 (3)
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and elements ϕ, ψ ∈ H and function f : [0, 1] → H are given. In paper [15] SIP to find a pair (p, v)
for equation

dv(t)

dt
+Av(t) = p+ f(t), 0 < t < 1,

with multi-point nonlocal conditions

v(0) =

r∑
k=1

µkv(sk) + ψ, (4)

v(1) = ϕ (5)

was studied and stability estimates for the solution were given in the following theorem.
Theorem 1. [15] Assume that conditions (3) for interior points and coefficients are valid, ϕ ∈ H,

ψ ∈ D(A), f ∈ Cα(H) (α ∈ (0, 1)) are given. Then, for the solution (v(t), p) of SIP (1), (4), (5) the
stability estimates

‖v‖C(H) ≤M
[
‖ϕ‖H + ‖ψ‖H + ‖f‖C(H)

]
and

‖p‖H ≤M
[
‖Aϕ‖H + ‖Aψ‖H +

1

α
‖f‖Cα(H)

]
are fullfilled, where M ∈ R+ does not depend on f , ψ, ϕ and α. Here C(H), Cα(H) and Cα1 (H) are
the Banach spaces of H-valued functions u(t) with the corresponding norms

‖u‖C(H) = max
0≤t≤1

‖u(t)‖H , ‖u‖Cα(H) = ‖u‖C(H) + sup
0≤t<t+τ≤1

‖u(t+τ)‖H−‖u(t)‖H
τα ,

‖u‖Cα1 (H) = ‖u‖C(H) + sup
0≤t<t+τ≤1

(1−t)α‖u(t+τ)‖H−‖u(t)‖H
τα ,

(6)

respectively.

1 SI parabolic problem with multi-point boundary conditions

Now, we study a source identification (SI) BVP for the multi-dimensional PDE.
Let Ω = (0, 1)n ⊂ Rn with boundary S = ∂Ω, Ω = Ω ∪ S.
Denote by L2(Ω) andW 2

2 (Ω) the Hilbert spaces of integrable functions u(y), defined on Ω, equipped
with the corresponding norms

‖u‖L2(Ω) =

{ ∫
y∈Ω

|u(y)|2 dy1 . . . dyn

} 1
2

,

‖u‖W 2
2 (Ω) =

{ ∫
y∈Ω

(
|u(y)|2 +

n∑
i=1

n∑
j=1

∣∣uyiyj (y)
∣∣2) dy1 . . . dyn

} 1
2

.

Let ϕ ∈ L2(Ω), ψ ∈ W 2
2 (Ω), f ∈ Cα(L2(Ω)) be given functions, and ai : Ω → R+ be known

smooth function for any index i = 1, . . . , n.
In [0, 1] × Ω, we study multi-dimensional SIP for parabolic PDE with multi-point boundary and

nonlocal conditions 

vt(t, x)−
n∑
i=1

(ai(x)vxi(t, x))xi + σv(t, x) = f(t, x) + p(x),

x = (x1, . . . , xn) ∈ Ω, 0 < t < 1,
∂
∂−→n v(t, x) = 0, x ∈ S, 0 < t < 1,

v(0, x) =
r∑

k=1

µkv(sk, x) + ψ(x), v(1, x) = ϕ(x), x ∈ Ω,

(7)
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where −→n is the normal vector to Ω at corresponding boundary point.
The differential expression

Axu(x) = −
n∑
i=1

(ai(x)uxi(x))xi + σu(x)

defines SAPD operator Ax, which acts on the Hilbert space L2(Ω) with the domain

D(Ax) =

{
u | u ∈W 2

2 (Ω),
∂u

∂−→n
(x) = 0 on S

}
.

So, the SI BVP (7) for the multi-dimensional parabolic PDE can be replaced with the abstract problem
(1), (4), (5) for H = L2(Ω). By using stability estimates of Theorem 1, we obtain the following stability
estimates for solution of BVP (7).

Theorem 2. Suppose that conditions (3) are satisfied, ϕ,ψ ∈ W 2
2 (Ω) and f ∈ Cα(L2(Ω)). Then,

for the solution of multi-dimensional SIP for parabolic PDE (7), the following estimates are valid

‖p‖L2(Ω) ≤M
[
‖ϕ‖W 2

2 (Ω) + ‖ψ‖W 2
2 (Ω) +

1

α
‖f‖Cα(L2(Ω))

]
,

‖v‖C(L2(Ω)) ≤M
[
‖ϕ‖L2(Ω) + ‖ψ‖L2(Ω) + ‖f‖C(L2(Ω))

]
,

where positive number M is independent of f , ψ, ϕ and α.

2 First and second order of ADSs

We will use the set of uniform grid points

[0, 1]τ = {tk = kτ, k = 0, 1, . . . , N, Nτ = 1}.

To discretize problem (7) we use algorithm with two steps. Firstly, we define grid spaces

Ω̃h = {x = xm = (h1m1, . . . , hnmn); m = (m1, . . . ,mn),
mj = 0, . . . , Nj , hjNj = 1, j = 1, . . . , n} ,

Ωh = Ω̃h ∩ Ω, Sh = Ω̃h ∩ S.

Introduce difference operator Axh by formula

Axhv
h(x) = −

n∑
i=1

(
ai(x)vhxi(x)

)
xi,ji

+ σvh(x),

which acts in space of grid functions vh(x) and satisfies the condition Dvh(x) = 0 for all x ∈ Sh.
Applying Axh, we arrive at the multi-point nonlocal BVP for some infinite system of ordinary

differential equations. Secondly, by using Equation (26) [15; p. 1922], we get the first order of accuracy
difference scheme (ADS)

τ−1
(
vhk (x)− vhk−1(x)

)
+Axhv

h
k (x) = fh(tk, x) + ph(x), 1 ≤ k ≤ N, x ∈ Ω̃h,

vhN (x) = ϕh(x), vh0 (x) =

r∑
i=1

µiv
h
li

(x) + ψh(x), x ∈ Ω̃h.
(8)
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By using Equations (37)–(39) [15; p. 1925], we get the second order of ADS

τ−1
(
vhk (x)− vhk−1(x)

)
+Axh

(
I +

τAxh
2

)
vhk (x)

=

(
I +

τAxh
2

)(
fh(tk− τ

2
, x) + ph(x)

)
, 1 ≤ k ≤ N, x ∈ Ω̃h,

vhN (x) = ϕh(x), x ∈ Ω̃h,

vh0 (x) =
r∑
i=1

{
µi (1− ρi) vhli(x) + µi ρiv

h
li+1(x)

}
+ ψh(x), x ∈ Ω̃h.

(9)

Denote by L2h = L2(Ω̃h) and W 2
2h = W 2

2 (Ω̃h), the spaces of the grid functions
uh(x) = {u(h1m1, . . . , hnmn)} defined on Ω̃h, equipped with the corresponding norms

∥∥∥uh∥∥∥
L2h

=

∑
x∈Ω̃h

|uh(x)|2h1 · · ·hn

1/2

,

∥∥∥uh∥∥∥
W 2

2h

=
∥∥∥uh∥∥∥

L2h

+

∑
x∈Ω̃h

n∑
r=1

∣∣∣(uh(x))xrxr,mr

∣∣∣2 h1 · · ·hn

1/2

,

and by Cτ (L2h) = C([0, 1]τ , L2h), the Banach space of L2h-valued grid functions uτ = {uk}N1 with the
suitable norm ‖uτ‖Cτ (L2h) = max

1≤k≤N
‖uk‖L2h

.

Let Cα(L2h) = Cα([0, 1]τ , L2h) and Cατ (L2h) = Cατ ([0, 1]τ , L2h) be correspondingly Hölder and
weighted Hölder spaces with the corresponding norms defined by (6) for H = L2h.

Theorem 3. Suppose that τ and |h| =
√
h2

1 + · · ·+ h2
n are sufficiently small positive numbers,

ϕh ∈ L2h, ψh ∈ W 2
2h and

{
fhk
}N

1
∈ Cατ (L2h). Then, for the solution of difference schemes (DSs) (8)

and (9), the following stability estimates hold∥∥∥ph∥∥∥
Cτ (L2h)

≤M

[∥∥∥ϕh∥∥∥
L2h

+
∥∥∥ψh∥∥∥

W2h

+
1

α

∥∥∥∥{fhk}N1
∥∥∥∥
Cατ (L2h)

]
,

∥∥∥∥{vhk}N1
∥∥∥∥
Cτ (L2h)

≤M

[∥∥∥ϕh∥∥∥
L2h

+
∥∥∥ψh∥∥∥

L2h

+

∥∥∥∥{fhk}N1
∥∥∥∥
Cτ (L2h)

]
,

where M is independent of
{
fhk
}N

1
, ψh(x), ϕh(x) and τ .

The proof of Theorem 3 based on Theorems 3.1 and 3.2 of paper [15] on stability estimate for
solutions of corresponding DSs for approximate solution of abstract SIP (1), (4), (5) and the theorem
on the coercivity inequality for the solution of the elliptic difference problem in L2h.

3 Numerical analysis

For test example, we consider the SIP
vt(t, x)− (3 + 2 cosx)vxx (t, x) + 2 sinx·vx(t, x) + v(t, x) = f(t, x) + p(x),
0 < x < π, 0 < t < 1,
v(1, x) = ϕ (x),
v(0, x) = v(1

3 , x) + ψ(x), 0 ≤ x ≤ π,
vx(t, 0) = 0, vx(t, π) = 0, 0 ≤ t ≤ 1

(10)
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for one-dimensional parabolic PDE. Here

f(t, x) =
(
e−t − e−1

)
(3 cosx+ 2 cos 2x)− e−1 cosx, 0 < x < π, 0 < t < 1,

ϕ(x) = cosx, ψ(x) =
(

1− e−
1
3

)
cosx, 0 ≤ x ≤ π.

It is easy to check that the pair
(
e−1 (4 cosx+ 2 cos 2x) , e−t cosx

)
is the exact solution of problem (10).

An algorithm of finding the solution of problem (10) contains three stages. In the first stage, we
find the solution of auxiliary BVP

ut(t, x)− (3 + 2 cosx)uxx(t, x) + 2 sinx·ux(t, x) + u(t, x)
= (3 + 2 cosx) cosx− 2 sinx· sinx+ cosx+ f(t, x), 0 < x < π, 0 < t < 1,
u(1, x)− u(1

3 , x) = ψ(x), 0 ≤ x ≤ π,
ux(t, 0) = 0, ux(t, π) = 0, 0 ≤ t ≤ 1.

(11)

Then, in the second stage, we find p(x) by

p(x) = −(3 + 2 cosx)uxx(1, x) + 2 sinx·ux(1, x) + u(1, x).

In the third stage, we put p(x) in the right side of equation (10) and solve that problem for v(t, x).
Introduce the set of grid points

[0, 1]τ × [0, π]h = {(tk, xn) | tk = kτ, k = 1, . . . , N − 1, Nτ = 1,
xn = nh, n = 1, . . . ,M − 1, Mh = π}.

We use notation l =
[γ
τ

]
for greatest integer function of γτ and ρ = γ

τ − l.
So, we get the first order of ADS for SIP (10)

vkn−v
k−1
n

τ − (3+2 cosxn)(vkn+1−2vkn+vkn−1)
h2

+
sin (xn)(vkn+1−vkn−1)

h + vkn
= f(tk, xn) + p(xn), k = 1, . . . , N, n = 1, . . . ,M − 1,
vNn = ϕn, v

0
n − ρvln = ψn, n = 0, . . . ,M,

vk0 = vk1 , v
k
M = vkM−1, k = 0, . . . , N.

Later, p(xn) can be obtained by

p(xn) = −
(3 + 2 cos (xn))

(
uNn+1 − 2uNn + uNn−1

)
h2

+
sin (xn)

(
uNn+1 − uNn−1

)
h

+ uNn , (12)

where
{
ukn
}
is solution of the difference problem

ukn − uk−1
n

τ
−

(3 + 2 cos (xn))
(
ukn+1 − 2ukn + ukn−1

)
h2

+
sin (xn)

(
ukn+1 − ukn−1

)
h

+ ukn = f(tk, xn)− (3 + 2 cos (xn)) (ϕn+1 − 2ϕn + ϕn−1)

h2

+
sin (xn) (ϕn+1 − ϕn−1)

h
+ ϕn, k = 1, . . . , N, n = 1, . . . ,M − 1,

u0
n − uln = ψn, n = 0, . . . ,M,

uk0 − ukM = 0, ukM − ukM−1 = 0, k = 0, . . . , N,

(13)

which is the first order of ADS for approximate solution of the nonlocal BVP (11).
For computational reasons it is convenient to write (13) in the following matrix form

Anun+1 +Bnun + Cnun−1 = Iθn, n = 1, . . . ,M − 1,
u0 = u1, uM = uM−1.

(14)
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Here, θn is column vector, An, Bn, Cn, I are square matrices with (N + 1) rows and columns:

An =


0 . . . 0 0

anR

0
...
0

 , Cn =


0 . . . 0 0

cnR

0
...
0

 ,

Bn =



1 0 0 0 · · · −1 · · · 0 0 0 0
bn d 0 0 · · · 0 · · · 0 0 0 0
0 bn d 0 · · · 0 · · · 0 0 0 0
...

...
...

... · · · · · · · · ·
...

...
...

...
0 0 0 0 · · · 0 · · · 0 bn d 0
0 0 0 0 · · · 0 · · · 0 0 bn d


,

an = −(3 + 2 cos (xn))h−2 + sin (xn)h−1, d = 1
τ ,

bn = 1 + d+ 2(3 + 2 cos (xn))h−2,
cn = −(3 + 2 cos (xn))h−2 − sin (xn)h−1,

θn =

θ0
n
...
θNn

, un±1 =

 u0
n±1
...

uNn±1


(N+1)×1

, un =

 u0
n
...
uNn


(N+1)×1

.

R is the N ×N identity matrix, as well as

θ0
n = ψn, n = 1, . . . ,M − 1,

θkn = f(tk, xn)− (3+2 cos (xn))(ϕn+1−2ϕn+ϕ)
h2

+ sin (xn)(ϕn+1−ϕn−1)
h + ϕn,

k = 1, . . . , N, n = 1, . . . ,M − 1.

We search solution of (14) by reccurence formula

un = αn+1un+1 + βn+1, n = M − 1, . . . , 1,

where αn and βn (n = 1, . . . ,M − 1) are column vectors with (N + 1) elements. For the solution of
difference equation (14) we use the following formulas for αn, βn

αn = −(Bn + Cnαn−1)−1An,

βn = (Bn + Cnαn−1)−1(Rθn − Cnβn−1), n = 1, . . . ,M − 1,

where α1 is the (N + 1) × (N + 1) identity matrix and β1 is the column vector with (N + 1) zeros.
uM is computed by formula

uM = (AM +BM + CMαM )−1(IθM − CMβM ).

Second, applying appropriate approximation formulas for derivatives in the nonlocal BVP (10), we
get the second order of ADS in t and x
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

vkn−v
k−1
n

τ +
q2(vkn+1−vkn−1)

2h +
q3(vkn+1−2vkn+vkn−1)

h2

+ τq0
2

(vkn+2−3vkn+1+3vkn−vkn−1)
h3

+ τq1
2

(vkn+2−4vkn+1+6vkn−4vkn−1+vkn−2)
h4

= θkn + p(xn)− τ
2 ·

(3+2 sinxn) (p(xn+1)−2p(xn)+p(xn−1))
h2

− τ
2 ·

cos(xn)(p(xn+1)−p(xn−1))
h + τp(xn)

2 ,
k = 1, . . . N, n = 2, . . . ,M − 2,
−3vk0 + 4vk1 − vk2 = 0, − 3vkM + 4vkM−1 − vkM−2 = 0,
10vk0 − 15vk1 + 6vk2 − vk3 = 0,
10vkM − 15vkM−1 + 6vkM−2 − vkM−3 = 0, k = 0, . . . , N, n = 0, . . . ,M,

vNn = ϕn, v
0
n − (1− ρ)vln − ρvl+1

n = ψ(xn), n = 0, . . . ,M

for the approximate solution of the nonlocal BVP (10).
Later, we calculate p(xn) by using (12), where

{
ukn
}

is solution of the difference problem

ukn−u
k−1
n

τ +
q2(ukn+1−ukn−1)

2h +
q3(ukn+1−2ukn+ukn−1)

h2
+ τ

2

q0(ukn+2−2ukn+1+2ukn−1−ukn−2)
2h3

+ τ
2

q1(ukn+2−4ukn+1+6ukn−4ukn−1+ukn−2)
h4

= θkn, k = 1, . . . , N, n = 2, . . . ,M − 2,
−3uk0 + 4uk1 − uk2 = 0, − 3ukM + 4ukM−1 − ukM−2 = 0,
10uk0 − 15uk1 + 6uk2 − uk3 = 0,
10ukM − 15ukM−1 + 6ukM−2 − ukM−3 = 0, k = 0, . . . , N,
u0
n − (1− ρ)uln − ρul+1

n = ψ(xn), n = 0, . . . ,M,

(15)

which is the second order of ADS for nonlocal BVP (11).
For computational reasons it is convenient to rewrite the system (15) in the following matrix form

Anun+2 +Bnun+1 + Cnun +Dnun−1 + Enun−2 = Iθn, n = 2, . . . ,M − 2,

−3u0 + 4u1 − u2 =
−→
0 , − 3uM + 4uM−1 − uM−2 =

−→
0 ,

10u0 − 15u1 + 6u2 − u3 =
−→
0 , 10uM − 15uM−1 + 6uM−2 − uM−3 =

−→
0 ,

(16)

where θn is column vector, An, Bn, Cn, Dn, En, I are (N + 1)× (N + 1) square matrices, R is N ×N
identity matrix,

An =


0 . . . 0 0

enR

0
...
0

 , Bn =


0 . . . 0 0

ynR

0
...
0

 ,

Dn =


0 . . . 0 0

znR

0
...
0

 , En =


0 . . . 0 0

wnR

0
...
0

 ,

Cn =



1 0 0 · · · −(1− ρ) ρ · · · 0 0 0
rn d 0 · · · 0 0 · · · 0 0 0
0 rn d · · · 0 0 · · · 0 0 0
...

...
... · · · · · · · · · · · ·

...
...

...
0 0 0 · · · 0 0 · · · rn d 0
0 0 0 · · · 0 0 · · · 0 rn d


, θn =

 θ0
n
...
θNn

 ,
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en = τq0
4h3

+ τq1
2h4

, yn = q2
2h + 1

h2
q3 − τq0

2h3
− 2τq1

h4
,

rn = 1 + 1
τ + τ

2 −
2
h2
q3 + 3τq1

h4
,

zn = − q2
2h + 1

h2
q3 + τq0

h3
− 2τq1

h4
,

wn = − τq0
4h3

+ τq1
2h4

, n = 2, . . . ,M − 2.

We search solution of linear system equation (16) in the next form

un = αn+1un+1 + βn+1un+2 + γn+1, n = M − 2, . . . , 0,

uM = D−1
M ((3I − 2αM−2) γM−1 − 3γM−2) ,

uM−1 = D−1
M [(4I − αM−2) γM−1 − γM−2] ,

DM = (βM−2 + 5I)− (4I − αM−2)αM−1,

where
γ0 = γ1 =

−→
0 , α0 = 4

3I, β0 = −1
3I, α1 = 8

5I, β1 = −3
5I

γM−2 = γM−3 =
−→
0 , αM−2 = 4I, βM−2 = −3I, αM−3 = 8

5I, βM−3 = −3
5I,

and
Fn = (Cn +Dnαn−1 + Enβn−2 + Enαn−2αn−1) , n = 2, . . . ,M − 4.
αn = −F−1

n (Bn +Dnβn−1 + Enαn−2βn−1) , βn = −F−1
n An,

γn = −F−1
n (Iϕn −Dnγn−1 − Enαn−2γn−1 − Enγn−2) ,

Q11 = −3BM−2 − 8CM−2 − 8DM−2αM−3 − 3DM−2βM−3

−8EM−2αM−4αM−3 − 3EM−2αM−4βM−3 − 8EM−2βM−4,
Q12 = AM−2 + 4BM−2 + 9CM−2 + 9DM−2αM−3 + 4DM−2βM−3

+9EM−2αM−4αM−3 + 4EM−2αM−4βM−3 + 9EM−2βM−4,
Q21 = AM−1 − 3CM−1 − 8DM−1 − EM−1(8αM−3 + 3βM−3),
Q22 = BM−1 + 4CM−1 + 9DM−1 + EM−1(9αM−3 + 4βM−3),
G1 = IϕM−2 −DM−2γM−3 − EM−2αM−4γM−3 − EM−2γM−3,
G2 = IϕM−1 − EM−1γM−3,

uM = (Q11 −Q12Q
−1
22 Q21)−1(G1 −Q12Q

−1
22 G2),

uM−1 = Q−1
22 (G2 −Q21uM ).

Numerical illustration is carried out by using MATLAB program. Solutions of DSs are computed
for different values of (N,M). vkn and ukn correspond to the corresponding numerical values of v(t, x)
and u(t, x) at (t, x) = (tk, xn) and pn represents the numerical value of p(x) at point x = xn. The
errors are computed by

EvNM = max0≤k≤N

(
M−1∑
n=1

∣∣v(tk, xn)− vkn
∣∣2 h) 1

2

,

EuNM = max0≤k≤N

(
M−1∑
n=1

∣∣u(tk, xn)− ukn
∣∣2 h) 1

2

,

EpM =

(
M−1∑
n=1
|p(xn)− pn|2 h

) 1
2

.

Tables 1 and 2 illustrate the errors between the exact and approximate solutions of DSs for various
N and M, respectively. It can be seen from output results that the second order of ADS is more
accurate than the first order of ADS. The error analysis shown in Tables 1 and 2 indicate that both
DSs have correct convergence rates.
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T a b l e 1

Mesh grid absolute value of difference between exact solution and solution of first order of ADS

N=M 20 40 80 160
EvNM 0.034277 0.016674 0.008483 0.004278
EpM 0.086716 0.043925 0.022123 0.011104
EvNM 0.152320 0.075113 0.037321 0.018601

T a b l e 2

Mesh grid absolute value of difference between exact solution and solution of second order of ADS

N=M 20 40 80 160
EvNM 0.020123 0.004141 0.000920 0.000217
EpM 0.08946 0.024373 0.006796 0.001926
EvNM 0.089678 0.018803 0.004188 0.000969

Conclusion

In this work, SIP for a multi-dimensional parabolic partial differential equation with multi-point
nonlocal boundary condition was studied. Stability estimates for solution of inverse problem were
obtained. Well-posedness of three SIPs for the reverse parabolic partial differential equations was
established.
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